xref: /openbmc/qemu/target/arm/cpu.h (revision de2db7ec894f11931932ca78cd14a8d2b1389d5b)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SECURE  7
70 #define ARMV7M_EXCP_SVC     11
71 #define ARMV7M_EXCP_DEBUG   12
72 #define ARMV7M_EXCP_PENDSV  14
73 #define ARMV7M_EXCP_SYSTICK 15
74 
75 /* For M profile, some registers are banked secure vs non-secure;
76  * these are represented as a 2-element array where the first element
77  * is the non-secure copy and the second is the secure copy.
78  * When the CPU does not have implement the security extension then
79  * only the first element is used.
80  * This means that the copy for the current security state can be
81  * accessed via env->registerfield[env->v7m.secure] (whether the security
82  * extension is implemented or not).
83  */
84 enum {
85     M_REG_NS = 0,
86     M_REG_S = 1,
87     M_REG_NUM_BANKS = 2,
88 };
89 
90 /* ARM-specific interrupt pending bits.  */
91 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #ifdef HOST_WORDS_BIGENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 #define NB_MMU_MODES 7
116 /* ARM-specific extra insn start words:
117  * 1: Conditional execution bits
118  * 2: Partial exception syndrome for data aborts
119  */
120 #define TARGET_INSN_START_EXTRA_WORDS 2
121 
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124  * help the sleb128 encoder do a better job.
125  * When restoring the CPU state, we shift it back up.
126  */
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
129 
130 /* We currently assume float and double are IEEE single and double
131    precision respectively.
132    Doing runtime conversions is tricky because VFP registers may contain
133    integer values (eg. as the result of a FTOSI instruction).
134    s<2n> maps to the least significant half of d<n>
135    s<2n+1> maps to the most significant half of d<n>
136  */
137 
138 /* CPU state for each instance of a generic timer (in cp15 c14) */
139 typedef struct ARMGenericTimer {
140     uint64_t cval; /* Timer CompareValue register */
141     uint64_t ctl; /* Timer Control register */
142 } ARMGenericTimer;
143 
144 #define GTIMER_PHYS 0
145 #define GTIMER_VIRT 1
146 #define GTIMER_HYP  2
147 #define GTIMER_SEC  3
148 #define NUM_GTIMERS 4
149 
150 typedef struct {
151     uint64_t raw_tcr;
152     uint32_t mask;
153     uint32_t base_mask;
154 } TCR;
155 
156 typedef struct CPUARMState {
157     /* Regs for current mode.  */
158     uint32_t regs[16];
159 
160     /* 32/64 switch only happens when taking and returning from
161      * exceptions so the overlap semantics are taken care of then
162      * instead of having a complicated union.
163      */
164     /* Regs for A64 mode.  */
165     uint64_t xregs[32];
166     uint64_t pc;
167     /* PSTATE isn't an architectural register for ARMv8. However, it is
168      * convenient for us to assemble the underlying state into a 32 bit format
169      * identical to the architectural format used for the SPSR. (This is also
170      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
171      * 'pstate' register are.) Of the PSTATE bits:
172      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
173      *    semantics as for AArch32, as described in the comments on each field)
174      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
175      *  DAIF (exception masks) are kept in env->daif
176      *  all other bits are stored in their correct places in env->pstate
177      */
178     uint32_t pstate;
179     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
180 
181     /* Frequently accessed CPSR bits are stored separately for efficiency.
182        This contains all the other bits.  Use cpsr_{read,write} to access
183        the whole CPSR.  */
184     uint32_t uncached_cpsr;
185     uint32_t spsr;
186 
187     /* Banked registers.  */
188     uint64_t banked_spsr[8];
189     uint32_t banked_r13[8];
190     uint32_t banked_r14[8];
191 
192     /* These hold r8-r12.  */
193     uint32_t usr_regs[5];
194     uint32_t fiq_regs[5];
195 
196     /* cpsr flag cache for faster execution */
197     uint32_t CF; /* 0 or 1 */
198     uint32_t VF; /* V is the bit 31. All other bits are undefined */
199     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
200     uint32_t ZF; /* Z set if zero.  */
201     uint32_t QF; /* 0 or 1 */
202     uint32_t GE; /* cpsr[19:16] */
203     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
204     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
205     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
206 
207     uint64_t elr_el[4]; /* AArch64 exception link regs  */
208     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
209 
210     /* System control coprocessor (cp15) */
211     struct {
212         uint32_t c0_cpuid;
213         union { /* Cache size selection */
214             struct {
215                 uint64_t _unused_csselr0;
216                 uint64_t csselr_ns;
217                 uint64_t _unused_csselr1;
218                 uint64_t csselr_s;
219             };
220             uint64_t csselr_el[4];
221         };
222         union { /* System control register. */
223             struct {
224                 uint64_t _unused_sctlr;
225                 uint64_t sctlr_ns;
226                 uint64_t hsctlr;
227                 uint64_t sctlr_s;
228             };
229             uint64_t sctlr_el[4];
230         };
231         uint64_t cpacr_el1; /* Architectural feature access control register */
232         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
233         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
234         uint64_t sder; /* Secure debug enable register. */
235         uint32_t nsacr; /* Non-secure access control register. */
236         union { /* MMU translation table base 0. */
237             struct {
238                 uint64_t _unused_ttbr0_0;
239                 uint64_t ttbr0_ns;
240                 uint64_t _unused_ttbr0_1;
241                 uint64_t ttbr0_s;
242             };
243             uint64_t ttbr0_el[4];
244         };
245         union { /* MMU translation table base 1. */
246             struct {
247                 uint64_t _unused_ttbr1_0;
248                 uint64_t ttbr1_ns;
249                 uint64_t _unused_ttbr1_1;
250                 uint64_t ttbr1_s;
251             };
252             uint64_t ttbr1_el[4];
253         };
254         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
255         /* MMU translation table base control. */
256         TCR tcr_el[4];
257         TCR vtcr_el2; /* Virtualization Translation Control.  */
258         uint32_t c2_data; /* MPU data cacheable bits.  */
259         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
260         union { /* MMU domain access control register
261                  * MPU write buffer control.
262                  */
263             struct {
264                 uint64_t dacr_ns;
265                 uint64_t dacr_s;
266             };
267             struct {
268                 uint64_t dacr32_el2;
269             };
270         };
271         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
272         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
273         uint64_t hcr_el2; /* Hypervisor configuration register */
274         uint64_t scr_el3; /* Secure configuration register.  */
275         union { /* Fault status registers.  */
276             struct {
277                 uint64_t ifsr_ns;
278                 uint64_t ifsr_s;
279             };
280             struct {
281                 uint64_t ifsr32_el2;
282             };
283         };
284         union {
285             struct {
286                 uint64_t _unused_dfsr;
287                 uint64_t dfsr_ns;
288                 uint64_t hsr;
289                 uint64_t dfsr_s;
290             };
291             uint64_t esr_el[4];
292         };
293         uint32_t c6_region[8]; /* MPU base/size registers.  */
294         union { /* Fault address registers. */
295             struct {
296                 uint64_t _unused_far0;
297 #ifdef HOST_WORDS_BIGENDIAN
298                 uint32_t ifar_ns;
299                 uint32_t dfar_ns;
300                 uint32_t ifar_s;
301                 uint32_t dfar_s;
302 #else
303                 uint32_t dfar_ns;
304                 uint32_t ifar_ns;
305                 uint32_t dfar_s;
306                 uint32_t ifar_s;
307 #endif
308                 uint64_t _unused_far3;
309             };
310             uint64_t far_el[4];
311         };
312         uint64_t hpfar_el2;
313         uint64_t hstr_el2;
314         union { /* Translation result. */
315             struct {
316                 uint64_t _unused_par_0;
317                 uint64_t par_ns;
318                 uint64_t _unused_par_1;
319                 uint64_t par_s;
320             };
321             uint64_t par_el[4];
322         };
323 
324         uint32_t c9_insn; /* Cache lockdown registers.  */
325         uint32_t c9_data;
326         uint64_t c9_pmcr; /* performance monitor control register */
327         uint64_t c9_pmcnten; /* perf monitor counter enables */
328         uint32_t c9_pmovsr; /* perf monitor overflow status */
329         uint32_t c9_pmuserenr; /* perf monitor user enable */
330         uint64_t c9_pmselr; /* perf monitor counter selection register */
331         uint64_t c9_pminten; /* perf monitor interrupt enables */
332         union { /* Memory attribute redirection */
333             struct {
334 #ifdef HOST_WORDS_BIGENDIAN
335                 uint64_t _unused_mair_0;
336                 uint32_t mair1_ns;
337                 uint32_t mair0_ns;
338                 uint64_t _unused_mair_1;
339                 uint32_t mair1_s;
340                 uint32_t mair0_s;
341 #else
342                 uint64_t _unused_mair_0;
343                 uint32_t mair0_ns;
344                 uint32_t mair1_ns;
345                 uint64_t _unused_mair_1;
346                 uint32_t mair0_s;
347                 uint32_t mair1_s;
348 #endif
349             };
350             uint64_t mair_el[4];
351         };
352         union { /* vector base address register */
353             struct {
354                 uint64_t _unused_vbar;
355                 uint64_t vbar_ns;
356                 uint64_t hvbar;
357                 uint64_t vbar_s;
358             };
359             uint64_t vbar_el[4];
360         };
361         uint32_t mvbar; /* (monitor) vector base address register */
362         struct { /* FCSE PID. */
363             uint32_t fcseidr_ns;
364             uint32_t fcseidr_s;
365         };
366         union { /* Context ID. */
367             struct {
368                 uint64_t _unused_contextidr_0;
369                 uint64_t contextidr_ns;
370                 uint64_t _unused_contextidr_1;
371                 uint64_t contextidr_s;
372             };
373             uint64_t contextidr_el[4];
374         };
375         union { /* User RW Thread register. */
376             struct {
377                 uint64_t tpidrurw_ns;
378                 uint64_t tpidrprw_ns;
379                 uint64_t htpidr;
380                 uint64_t _tpidr_el3;
381             };
382             uint64_t tpidr_el[4];
383         };
384         /* The secure banks of these registers don't map anywhere */
385         uint64_t tpidrurw_s;
386         uint64_t tpidrprw_s;
387         uint64_t tpidruro_s;
388 
389         union { /* User RO Thread register. */
390             uint64_t tpidruro_ns;
391             uint64_t tpidrro_el[1];
392         };
393         uint64_t c14_cntfrq; /* Counter Frequency register */
394         uint64_t c14_cntkctl; /* Timer Control register */
395         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
396         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
397         ARMGenericTimer c14_timer[NUM_GTIMERS];
398         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
399         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
400         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
401         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
402         uint32_t c15_threadid; /* TI debugger thread-ID.  */
403         uint32_t c15_config_base_address; /* SCU base address.  */
404         uint32_t c15_diagnostic; /* diagnostic register */
405         uint32_t c15_power_diagnostic;
406         uint32_t c15_power_control; /* power control */
407         uint64_t dbgbvr[16]; /* breakpoint value registers */
408         uint64_t dbgbcr[16]; /* breakpoint control registers */
409         uint64_t dbgwvr[16]; /* watchpoint value registers */
410         uint64_t dbgwcr[16]; /* watchpoint control registers */
411         uint64_t mdscr_el1;
412         uint64_t oslsr_el1; /* OS Lock Status */
413         uint64_t mdcr_el2;
414         uint64_t mdcr_el3;
415         /* If the counter is enabled, this stores the last time the counter
416          * was reset. Otherwise it stores the counter value
417          */
418         uint64_t c15_ccnt;
419         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
420         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
421         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
422     } cp15;
423 
424     struct {
425         /* M profile has up to 4 stack pointers:
426          * a Main Stack Pointer and a Process Stack Pointer for each
427          * of the Secure and Non-Secure states. (If the CPU doesn't support
428          * the security extension then it has only two SPs.)
429          * In QEMU we always store the currently active SP in regs[13],
430          * and the non-active SP for the current security state in
431          * v7m.other_sp. The stack pointers for the inactive security state
432          * are stored in other_ss_msp and other_ss_psp.
433          * switch_v7m_security_state() is responsible for rearranging them
434          * when we change security state.
435          */
436         uint32_t other_sp;
437         uint32_t other_ss_msp;
438         uint32_t other_ss_psp;
439         uint32_t vecbase[M_REG_NUM_BANKS];
440         uint32_t basepri[M_REG_NUM_BANKS];
441         uint32_t control[M_REG_NUM_BANKS];
442         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
443         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
444         uint32_t hfsr; /* HardFault Status */
445         uint32_t dfsr; /* Debug Fault Status Register */
446         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
447         uint32_t bfar; /* BusFault Address */
448         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
449         int exception;
450         uint32_t primask[M_REG_NUM_BANKS];
451         uint32_t faultmask[M_REG_NUM_BANKS];
452         uint32_t aircr; /* only holds r/w state if security extn implemented */
453         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
454     } v7m;
455 
456     /* Information associated with an exception about to be taken:
457      * code which raises an exception must set cs->exception_index and
458      * the relevant parts of this structure; the cpu_do_interrupt function
459      * will then set the guest-visible registers as part of the exception
460      * entry process.
461      */
462     struct {
463         uint32_t syndrome; /* AArch64 format syndrome register */
464         uint32_t fsr; /* AArch32 format fault status register info */
465         uint64_t vaddress; /* virtual addr associated with exception, if any */
466         uint32_t target_el; /* EL the exception should be targeted for */
467         /* If we implement EL2 we will also need to store information
468          * about the intermediate physical address for stage 2 faults.
469          */
470     } exception;
471 
472     /* Thumb-2 EE state.  */
473     uint32_t teecr;
474     uint32_t teehbr;
475 
476     /* VFP coprocessor state.  */
477     struct {
478         /* VFP/Neon register state. Note that the mapping between S, D and Q
479          * views of the register bank differs between AArch64 and AArch32:
480          * In AArch32:
481          *  Qn = regs[2n+1]:regs[2n]
482          *  Dn = regs[n]
483          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
484          * (and regs[32] to regs[63] are inaccessible)
485          * In AArch64:
486          *  Qn = regs[2n+1]:regs[2n]
487          *  Dn = regs[2n]
488          *  Sn = regs[2n] bits 31..0
489          * This corresponds to the architecturally defined mapping between
490          * the two execution states, and means we do not need to explicitly
491          * map these registers when changing states.
492          */
493         float64 regs[64];
494 
495         uint32_t xregs[16];
496         /* We store these fpcsr fields separately for convenience.  */
497         int vec_len;
498         int vec_stride;
499 
500         /* scratch space when Tn are not sufficient.  */
501         uint32_t scratch[8];
502 
503         /* fp_status is the "normal" fp status. standard_fp_status retains
504          * values corresponding to the ARM "Standard FPSCR Value", ie
505          * default-NaN, flush-to-zero, round-to-nearest and is used by
506          * any operations (generally Neon) which the architecture defines
507          * as controlled by the standard FPSCR value rather than the FPSCR.
508          *
509          * To avoid having to transfer exception bits around, we simply
510          * say that the FPSCR cumulative exception flags are the logical
511          * OR of the flags in the two fp statuses. This relies on the
512          * only thing which needs to read the exception flags being
513          * an explicit FPSCR read.
514          */
515         float_status fp_status;
516         float_status standard_fp_status;
517     } vfp;
518     uint64_t exclusive_addr;
519     uint64_t exclusive_val;
520     uint64_t exclusive_high;
521 
522     /* iwMMXt coprocessor state.  */
523     struct {
524         uint64_t regs[16];
525         uint64_t val;
526 
527         uint32_t cregs[16];
528     } iwmmxt;
529 
530 #if defined(CONFIG_USER_ONLY)
531     /* For usermode syscall translation.  */
532     int eabi;
533 #endif
534 
535     struct CPUBreakpoint *cpu_breakpoint[16];
536     struct CPUWatchpoint *cpu_watchpoint[16];
537 
538     /* Fields up to this point are cleared by a CPU reset */
539     struct {} end_reset_fields;
540 
541     CPU_COMMON
542 
543     /* Fields after CPU_COMMON are preserved across CPU reset. */
544 
545     /* Internal CPU feature flags.  */
546     uint64_t features;
547 
548     /* PMSAv7 MPU */
549     struct {
550         uint32_t *drbar;
551         uint32_t *drsr;
552         uint32_t *dracr;
553         uint32_t rnr[M_REG_NUM_BANKS];
554     } pmsav7;
555 
556     /* PMSAv8 MPU */
557     struct {
558         /* The PMSAv8 implementation also shares some PMSAv7 config
559          * and state:
560          *  pmsav7.rnr (region number register)
561          *  pmsav7_dregion (number of configured regions)
562          */
563         uint32_t *rbar[M_REG_NUM_BANKS];
564         uint32_t *rlar[M_REG_NUM_BANKS];
565         uint32_t mair0[M_REG_NUM_BANKS];
566         uint32_t mair1[M_REG_NUM_BANKS];
567     } pmsav8;
568 
569     void *nvic;
570     const struct arm_boot_info *boot_info;
571     /* Store GICv3CPUState to access from this struct */
572     void *gicv3state;
573 } CPUARMState;
574 
575 /**
576  * ARMELChangeHook:
577  * type of a function which can be registered via arm_register_el_change_hook()
578  * to get callbacks when the CPU changes its exception level or mode.
579  */
580 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
581 
582 
583 /* These values map onto the return values for
584  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
585 typedef enum ARMPSCIState {
586     PSCI_ON = 0,
587     PSCI_OFF = 1,
588     PSCI_ON_PENDING = 2
589 } ARMPSCIState;
590 
591 /**
592  * ARMCPU:
593  * @env: #CPUARMState
594  *
595  * An ARM CPU core.
596  */
597 struct ARMCPU {
598     /*< private >*/
599     CPUState parent_obj;
600     /*< public >*/
601 
602     CPUARMState env;
603 
604     /* Coprocessor information */
605     GHashTable *cp_regs;
606     /* For marshalling (mostly coprocessor) register state between the
607      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
608      * we use these arrays.
609      */
610     /* List of register indexes managed via these arrays; (full KVM style
611      * 64 bit indexes, not CPRegInfo 32 bit indexes)
612      */
613     uint64_t *cpreg_indexes;
614     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
615     uint64_t *cpreg_values;
616     /* Length of the indexes, values, reset_values arrays */
617     int32_t cpreg_array_len;
618     /* These are used only for migration: incoming data arrives in
619      * these fields and is sanity checked in post_load before copying
620      * to the working data structures above.
621      */
622     uint64_t *cpreg_vmstate_indexes;
623     uint64_t *cpreg_vmstate_values;
624     int32_t cpreg_vmstate_array_len;
625 
626     /* Timers used by the generic (architected) timer */
627     QEMUTimer *gt_timer[NUM_GTIMERS];
628     /* GPIO outputs for generic timer */
629     qemu_irq gt_timer_outputs[NUM_GTIMERS];
630     /* GPIO output for GICv3 maintenance interrupt signal */
631     qemu_irq gicv3_maintenance_interrupt;
632     /* GPIO output for the PMU interrupt */
633     qemu_irq pmu_interrupt;
634 
635     /* MemoryRegion to use for secure physical accesses */
636     MemoryRegion *secure_memory;
637 
638     /* 'compatible' string for this CPU for Linux device trees */
639     const char *dtb_compatible;
640 
641     /* PSCI version for this CPU
642      * Bits[31:16] = Major Version
643      * Bits[15:0] = Minor Version
644      */
645     uint32_t psci_version;
646 
647     /* Should CPU start in PSCI powered-off state? */
648     bool start_powered_off;
649 
650     /* Current power state, access guarded by BQL */
651     ARMPSCIState power_state;
652 
653     /* CPU has virtualization extension */
654     bool has_el2;
655     /* CPU has security extension */
656     bool has_el3;
657     /* CPU has PMU (Performance Monitor Unit) */
658     bool has_pmu;
659 
660     /* CPU has memory protection unit */
661     bool has_mpu;
662     /* PMSAv7 MPU number of supported regions */
663     uint32_t pmsav7_dregion;
664 
665     /* PSCI conduit used to invoke PSCI methods
666      * 0 - disabled, 1 - smc, 2 - hvc
667      */
668     uint32_t psci_conduit;
669 
670     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
671      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
672      */
673     uint32_t kvm_target;
674 
675     /* KVM init features for this CPU */
676     uint32_t kvm_init_features[7];
677 
678     /* Uniprocessor system with MP extensions */
679     bool mp_is_up;
680 
681     /* The instance init functions for implementation-specific subclasses
682      * set these fields to specify the implementation-dependent values of
683      * various constant registers and reset values of non-constant
684      * registers.
685      * Some of these might become QOM properties eventually.
686      * Field names match the official register names as defined in the
687      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
688      * is used for reset values of non-constant registers; no reset_
689      * prefix means a constant register.
690      */
691     uint32_t midr;
692     uint32_t revidr;
693     uint32_t reset_fpsid;
694     uint32_t mvfr0;
695     uint32_t mvfr1;
696     uint32_t mvfr2;
697     uint32_t ctr;
698     uint32_t reset_sctlr;
699     uint32_t id_pfr0;
700     uint32_t id_pfr1;
701     uint32_t id_dfr0;
702     uint32_t pmceid0;
703     uint32_t pmceid1;
704     uint32_t id_afr0;
705     uint32_t id_mmfr0;
706     uint32_t id_mmfr1;
707     uint32_t id_mmfr2;
708     uint32_t id_mmfr3;
709     uint32_t id_mmfr4;
710     uint32_t id_isar0;
711     uint32_t id_isar1;
712     uint32_t id_isar2;
713     uint32_t id_isar3;
714     uint32_t id_isar4;
715     uint32_t id_isar5;
716     uint64_t id_aa64pfr0;
717     uint64_t id_aa64pfr1;
718     uint64_t id_aa64dfr0;
719     uint64_t id_aa64dfr1;
720     uint64_t id_aa64afr0;
721     uint64_t id_aa64afr1;
722     uint64_t id_aa64isar0;
723     uint64_t id_aa64isar1;
724     uint64_t id_aa64mmfr0;
725     uint64_t id_aa64mmfr1;
726     uint32_t dbgdidr;
727     uint32_t clidr;
728     uint64_t mp_affinity; /* MP ID without feature bits */
729     /* The elements of this array are the CCSIDR values for each cache,
730      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
731      */
732     uint32_t ccsidr[16];
733     uint64_t reset_cbar;
734     uint32_t reset_auxcr;
735     bool reset_hivecs;
736     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
737     uint32_t dcz_blocksize;
738     uint64_t rvbar;
739 
740     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
741     int gic_num_lrs; /* number of list registers */
742     int gic_vpribits; /* number of virtual priority bits */
743     int gic_vprebits; /* number of virtual preemption bits */
744 
745     /* Whether the cfgend input is high (i.e. this CPU should reset into
746      * big-endian mode).  This setting isn't used directly: instead it modifies
747      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
748      * architecture version.
749      */
750     bool cfgend;
751 
752     ARMELChangeHook *el_change_hook;
753     void *el_change_hook_opaque;
754 
755     int32_t node_id; /* NUMA node this CPU belongs to */
756 
757     /* Used to synchronize KVM and QEMU in-kernel device levels */
758     uint8_t device_irq_level;
759 };
760 
761 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
762 {
763     return container_of(env, ARMCPU, env);
764 }
765 
766 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
767 
768 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
769 
770 #define ENV_OFFSET offsetof(ARMCPU, env)
771 
772 #ifndef CONFIG_USER_ONLY
773 extern const struct VMStateDescription vmstate_arm_cpu;
774 #endif
775 
776 void arm_cpu_do_interrupt(CPUState *cpu);
777 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
778 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
779 
780 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
781                         int flags);
782 
783 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
784                                          MemTxAttrs *attrs);
785 
786 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
787 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
788 
789 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
790                              int cpuid, void *opaque);
791 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
792                              int cpuid, void *opaque);
793 
794 #ifdef TARGET_AARCH64
795 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
796 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
797 #endif
798 
799 target_ulong do_arm_semihosting(CPUARMState *env);
800 void aarch64_sync_32_to_64(CPUARMState *env);
801 void aarch64_sync_64_to_32(CPUARMState *env);
802 
803 static inline bool is_a64(CPUARMState *env)
804 {
805     return env->aarch64;
806 }
807 
808 /* you can call this signal handler from your SIGBUS and SIGSEGV
809    signal handlers to inform the virtual CPU of exceptions. non zero
810    is returned if the signal was handled by the virtual CPU.  */
811 int cpu_arm_signal_handler(int host_signum, void *pinfo,
812                            void *puc);
813 
814 /**
815  * pmccntr_sync
816  * @env: CPUARMState
817  *
818  * Synchronises the counter in the PMCCNTR. This must always be called twice,
819  * once before any action that might affect the timer and again afterwards.
820  * The function is used to swap the state of the register if required.
821  * This only happens when not in user mode (!CONFIG_USER_ONLY)
822  */
823 void pmccntr_sync(CPUARMState *env);
824 
825 /* SCTLR bit meanings. Several bits have been reused in newer
826  * versions of the architecture; in that case we define constants
827  * for both old and new bit meanings. Code which tests against those
828  * bits should probably check or otherwise arrange that the CPU
829  * is the architectural version it expects.
830  */
831 #define SCTLR_M       (1U << 0)
832 #define SCTLR_A       (1U << 1)
833 #define SCTLR_C       (1U << 2)
834 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
835 #define SCTLR_SA      (1U << 3)
836 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
837 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
838 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
839 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
840 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
841 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
842 #define SCTLR_ITD     (1U << 7) /* v8 onward */
843 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
844 #define SCTLR_SED     (1U << 8) /* v8 onward */
845 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
846 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
847 #define SCTLR_F       (1U << 10) /* up to v6 */
848 #define SCTLR_SW      (1U << 10) /* v7 onward */
849 #define SCTLR_Z       (1U << 11)
850 #define SCTLR_I       (1U << 12)
851 #define SCTLR_V       (1U << 13)
852 #define SCTLR_RR      (1U << 14) /* up to v7 */
853 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
854 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
855 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
856 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
857 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
858 #define SCTLR_HA      (1U << 17)
859 #define SCTLR_BR      (1U << 17) /* PMSA only */
860 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
861 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
862 #define SCTLR_WXN     (1U << 19)
863 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
864 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
865 #define SCTLR_FI      (1U << 21)
866 #define SCTLR_U       (1U << 22)
867 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
868 #define SCTLR_VE      (1U << 24) /* up to v7 */
869 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
870 #define SCTLR_EE      (1U << 25)
871 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
872 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
873 #define SCTLR_NMFI    (1U << 27)
874 #define SCTLR_TRE     (1U << 28)
875 #define SCTLR_AFE     (1U << 29)
876 #define SCTLR_TE      (1U << 30)
877 
878 #define CPTR_TCPAC    (1U << 31)
879 #define CPTR_TTA      (1U << 20)
880 #define CPTR_TFP      (1U << 10)
881 
882 #define MDCR_EPMAD    (1U << 21)
883 #define MDCR_EDAD     (1U << 20)
884 #define MDCR_SPME     (1U << 17)
885 #define MDCR_SDD      (1U << 16)
886 #define MDCR_SPD      (3U << 14)
887 #define MDCR_TDRA     (1U << 11)
888 #define MDCR_TDOSA    (1U << 10)
889 #define MDCR_TDA      (1U << 9)
890 #define MDCR_TDE      (1U << 8)
891 #define MDCR_HPME     (1U << 7)
892 #define MDCR_TPM      (1U << 6)
893 #define MDCR_TPMCR    (1U << 5)
894 
895 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
896 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
897 
898 #define CPSR_M (0x1fU)
899 #define CPSR_T (1U << 5)
900 #define CPSR_F (1U << 6)
901 #define CPSR_I (1U << 7)
902 #define CPSR_A (1U << 8)
903 #define CPSR_E (1U << 9)
904 #define CPSR_IT_2_7 (0xfc00U)
905 #define CPSR_GE (0xfU << 16)
906 #define CPSR_IL (1U << 20)
907 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
908  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
909  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
910  * where it is live state but not accessible to the AArch32 code.
911  */
912 #define CPSR_RESERVED (0x7U << 21)
913 #define CPSR_J (1U << 24)
914 #define CPSR_IT_0_1 (3U << 25)
915 #define CPSR_Q (1U << 27)
916 #define CPSR_V (1U << 28)
917 #define CPSR_C (1U << 29)
918 #define CPSR_Z (1U << 30)
919 #define CPSR_N (1U << 31)
920 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
921 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
922 
923 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
924 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
925     | CPSR_NZCV)
926 /* Bits writable in user mode.  */
927 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
928 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
929 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
930 /* Mask of bits which may be set by exception return copying them from SPSR */
931 #define CPSR_ERET_MASK (~CPSR_RESERVED)
932 
933 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
934 #define XPSR_EXCP 0x1ffU
935 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
936 #define XPSR_IT_2_7 CPSR_IT_2_7
937 #define XPSR_GE CPSR_GE
938 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
939 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
940 #define XPSR_IT_0_1 CPSR_IT_0_1
941 #define XPSR_Q CPSR_Q
942 #define XPSR_V CPSR_V
943 #define XPSR_C CPSR_C
944 #define XPSR_Z CPSR_Z
945 #define XPSR_N CPSR_N
946 #define XPSR_NZCV CPSR_NZCV
947 #define XPSR_IT CPSR_IT
948 
949 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
950 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
951 #define TTBCR_PD0    (1U << 4)
952 #define TTBCR_PD1    (1U << 5)
953 #define TTBCR_EPD0   (1U << 7)
954 #define TTBCR_IRGN0  (3U << 8)
955 #define TTBCR_ORGN0  (3U << 10)
956 #define TTBCR_SH0    (3U << 12)
957 #define TTBCR_T1SZ   (3U << 16)
958 #define TTBCR_A1     (1U << 22)
959 #define TTBCR_EPD1   (1U << 23)
960 #define TTBCR_IRGN1  (3U << 24)
961 #define TTBCR_ORGN1  (3U << 26)
962 #define TTBCR_SH1    (1U << 28)
963 #define TTBCR_EAE    (1U << 31)
964 
965 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
966  * Only these are valid when in AArch64 mode; in
967  * AArch32 mode SPSRs are basically CPSR-format.
968  */
969 #define PSTATE_SP (1U)
970 #define PSTATE_M (0xFU)
971 #define PSTATE_nRW (1U << 4)
972 #define PSTATE_F (1U << 6)
973 #define PSTATE_I (1U << 7)
974 #define PSTATE_A (1U << 8)
975 #define PSTATE_D (1U << 9)
976 #define PSTATE_IL (1U << 20)
977 #define PSTATE_SS (1U << 21)
978 #define PSTATE_V (1U << 28)
979 #define PSTATE_C (1U << 29)
980 #define PSTATE_Z (1U << 30)
981 #define PSTATE_N (1U << 31)
982 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
983 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
984 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
985 /* Mode values for AArch64 */
986 #define PSTATE_MODE_EL3h 13
987 #define PSTATE_MODE_EL3t 12
988 #define PSTATE_MODE_EL2h 9
989 #define PSTATE_MODE_EL2t 8
990 #define PSTATE_MODE_EL1h 5
991 #define PSTATE_MODE_EL1t 4
992 #define PSTATE_MODE_EL0t 0
993 
994 /* Write a new value to v7m.exception, thus transitioning into or out
995  * of Handler mode; this may result in a change of active stack pointer.
996  */
997 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
998 
999 /* Map EL and handler into a PSTATE_MODE.  */
1000 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1001 {
1002     return (el << 2) | handler;
1003 }
1004 
1005 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1006  * interprocessing, so we don't attempt to sync with the cpsr state used by
1007  * the 32 bit decoder.
1008  */
1009 static inline uint32_t pstate_read(CPUARMState *env)
1010 {
1011     int ZF;
1012 
1013     ZF = (env->ZF == 0);
1014     return (env->NF & 0x80000000) | (ZF << 30)
1015         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1016         | env->pstate | env->daif;
1017 }
1018 
1019 static inline void pstate_write(CPUARMState *env, uint32_t val)
1020 {
1021     env->ZF = (~val) & PSTATE_Z;
1022     env->NF = val;
1023     env->CF = (val >> 29) & 1;
1024     env->VF = (val << 3) & 0x80000000;
1025     env->daif = val & PSTATE_DAIF;
1026     env->pstate = val & ~CACHED_PSTATE_BITS;
1027 }
1028 
1029 /* Return the current CPSR value.  */
1030 uint32_t cpsr_read(CPUARMState *env);
1031 
1032 typedef enum CPSRWriteType {
1033     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1034     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1035     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1036     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1037 } CPSRWriteType;
1038 
1039 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1040 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1041                 CPSRWriteType write_type);
1042 
1043 /* Return the current xPSR value.  */
1044 static inline uint32_t xpsr_read(CPUARMState *env)
1045 {
1046     int ZF;
1047     ZF = (env->ZF == 0);
1048     return (env->NF & 0x80000000) | (ZF << 30)
1049         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1050         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1051         | ((env->condexec_bits & 0xfc) << 8)
1052         | env->v7m.exception;
1053 }
1054 
1055 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1056 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1057 {
1058     if (mask & XPSR_NZCV) {
1059         env->ZF = (~val) & XPSR_Z;
1060         env->NF = val;
1061         env->CF = (val >> 29) & 1;
1062         env->VF = (val << 3) & 0x80000000;
1063     }
1064     if (mask & XPSR_Q) {
1065         env->QF = ((val & XPSR_Q) != 0);
1066     }
1067     if (mask & XPSR_T) {
1068         env->thumb = ((val & XPSR_T) != 0);
1069     }
1070     if (mask & XPSR_IT_0_1) {
1071         env->condexec_bits &= ~3;
1072         env->condexec_bits |= (val >> 25) & 3;
1073     }
1074     if (mask & XPSR_IT_2_7) {
1075         env->condexec_bits &= 3;
1076         env->condexec_bits |= (val >> 8) & 0xfc;
1077     }
1078     if (mask & XPSR_EXCP) {
1079         /* Note that this only happens on exception exit */
1080         write_v7m_exception(env, val & XPSR_EXCP);
1081     }
1082 }
1083 
1084 #define HCR_VM        (1ULL << 0)
1085 #define HCR_SWIO      (1ULL << 1)
1086 #define HCR_PTW       (1ULL << 2)
1087 #define HCR_FMO       (1ULL << 3)
1088 #define HCR_IMO       (1ULL << 4)
1089 #define HCR_AMO       (1ULL << 5)
1090 #define HCR_VF        (1ULL << 6)
1091 #define HCR_VI        (1ULL << 7)
1092 #define HCR_VSE       (1ULL << 8)
1093 #define HCR_FB        (1ULL << 9)
1094 #define HCR_BSU_MASK  (3ULL << 10)
1095 #define HCR_DC        (1ULL << 12)
1096 #define HCR_TWI       (1ULL << 13)
1097 #define HCR_TWE       (1ULL << 14)
1098 #define HCR_TID0      (1ULL << 15)
1099 #define HCR_TID1      (1ULL << 16)
1100 #define HCR_TID2      (1ULL << 17)
1101 #define HCR_TID3      (1ULL << 18)
1102 #define HCR_TSC       (1ULL << 19)
1103 #define HCR_TIDCP     (1ULL << 20)
1104 #define HCR_TACR      (1ULL << 21)
1105 #define HCR_TSW       (1ULL << 22)
1106 #define HCR_TPC       (1ULL << 23)
1107 #define HCR_TPU       (1ULL << 24)
1108 #define HCR_TTLB      (1ULL << 25)
1109 #define HCR_TVM       (1ULL << 26)
1110 #define HCR_TGE       (1ULL << 27)
1111 #define HCR_TDZ       (1ULL << 28)
1112 #define HCR_HCD       (1ULL << 29)
1113 #define HCR_TRVM      (1ULL << 30)
1114 #define HCR_RW        (1ULL << 31)
1115 #define HCR_CD        (1ULL << 32)
1116 #define HCR_ID        (1ULL << 33)
1117 #define HCR_MASK      ((1ULL << 34) - 1)
1118 
1119 #define SCR_NS                (1U << 0)
1120 #define SCR_IRQ               (1U << 1)
1121 #define SCR_FIQ               (1U << 2)
1122 #define SCR_EA                (1U << 3)
1123 #define SCR_FW                (1U << 4)
1124 #define SCR_AW                (1U << 5)
1125 #define SCR_NET               (1U << 6)
1126 #define SCR_SMD               (1U << 7)
1127 #define SCR_HCE               (1U << 8)
1128 #define SCR_SIF               (1U << 9)
1129 #define SCR_RW                (1U << 10)
1130 #define SCR_ST                (1U << 11)
1131 #define SCR_TWI               (1U << 12)
1132 #define SCR_TWE               (1U << 13)
1133 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1134 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1135 
1136 /* Return the current FPSCR value.  */
1137 uint32_t vfp_get_fpscr(CPUARMState *env);
1138 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1139 
1140 /* For A64 the FPSCR is split into two logically distinct registers,
1141  * FPCR and FPSR. However since they still use non-overlapping bits
1142  * we store the underlying state in fpscr and just mask on read/write.
1143  */
1144 #define FPSR_MASK 0xf800009f
1145 #define FPCR_MASK 0x07f79f00
1146 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1147 {
1148     return vfp_get_fpscr(env) & FPSR_MASK;
1149 }
1150 
1151 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1152 {
1153     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1154     vfp_set_fpscr(env, new_fpscr);
1155 }
1156 
1157 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1158 {
1159     return vfp_get_fpscr(env) & FPCR_MASK;
1160 }
1161 
1162 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1163 {
1164     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1165     vfp_set_fpscr(env, new_fpscr);
1166 }
1167 
1168 enum arm_cpu_mode {
1169   ARM_CPU_MODE_USR = 0x10,
1170   ARM_CPU_MODE_FIQ = 0x11,
1171   ARM_CPU_MODE_IRQ = 0x12,
1172   ARM_CPU_MODE_SVC = 0x13,
1173   ARM_CPU_MODE_MON = 0x16,
1174   ARM_CPU_MODE_ABT = 0x17,
1175   ARM_CPU_MODE_HYP = 0x1a,
1176   ARM_CPU_MODE_UND = 0x1b,
1177   ARM_CPU_MODE_SYS = 0x1f
1178 };
1179 
1180 /* VFP system registers.  */
1181 #define ARM_VFP_FPSID   0
1182 #define ARM_VFP_FPSCR   1
1183 #define ARM_VFP_MVFR2   5
1184 #define ARM_VFP_MVFR1   6
1185 #define ARM_VFP_MVFR0   7
1186 #define ARM_VFP_FPEXC   8
1187 #define ARM_VFP_FPINST  9
1188 #define ARM_VFP_FPINST2 10
1189 
1190 /* iwMMXt coprocessor control registers.  */
1191 #define ARM_IWMMXT_wCID		0
1192 #define ARM_IWMMXT_wCon		1
1193 #define ARM_IWMMXT_wCSSF	2
1194 #define ARM_IWMMXT_wCASF	3
1195 #define ARM_IWMMXT_wCGR0	8
1196 #define ARM_IWMMXT_wCGR1	9
1197 #define ARM_IWMMXT_wCGR2	10
1198 #define ARM_IWMMXT_wCGR3	11
1199 
1200 /* V7M CCR bits */
1201 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1202 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1203 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1204 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1205 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1206 FIELD(V7M_CCR, STKALIGN, 9, 1)
1207 FIELD(V7M_CCR, DC, 16, 1)
1208 FIELD(V7M_CCR, IC, 17, 1)
1209 
1210 /* V7M AIRCR bits */
1211 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1212 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1213 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1214 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1215 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1216 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1217 FIELD(V7M_AIRCR, PRIS, 14, 1)
1218 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1219 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1220 
1221 /* V7M CFSR bits for MMFSR */
1222 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1223 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1224 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1225 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1226 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1227 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1228 
1229 /* V7M CFSR bits for BFSR */
1230 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1231 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1232 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1233 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1234 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1235 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1236 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1237 
1238 /* V7M CFSR bits for UFSR */
1239 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1240 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1241 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1242 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1243 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1244 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1245 
1246 /* V7M CFSR bit masks covering all of the subregister bits */
1247 FIELD(V7M_CFSR, MMFSR, 0, 8)
1248 FIELD(V7M_CFSR, BFSR, 8, 8)
1249 FIELD(V7M_CFSR, UFSR, 16, 16)
1250 
1251 /* V7M HFSR bits */
1252 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1253 FIELD(V7M_HFSR, FORCED, 30, 1)
1254 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1255 
1256 /* V7M DFSR bits */
1257 FIELD(V7M_DFSR, HALTED, 0, 1)
1258 FIELD(V7M_DFSR, BKPT, 1, 1)
1259 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1260 FIELD(V7M_DFSR, VCATCH, 3, 1)
1261 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1262 
1263 /* v7M MPU_CTRL bits */
1264 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1265 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1266 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1267 
1268 /* If adding a feature bit which corresponds to a Linux ELF
1269  * HWCAP bit, remember to update the feature-bit-to-hwcap
1270  * mapping in linux-user/elfload.c:get_elf_hwcap().
1271  */
1272 enum arm_features {
1273     ARM_FEATURE_VFP,
1274     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1275     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1276     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1277     ARM_FEATURE_V6,
1278     ARM_FEATURE_V6K,
1279     ARM_FEATURE_V7,
1280     ARM_FEATURE_THUMB2,
1281     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1282     ARM_FEATURE_VFP3,
1283     ARM_FEATURE_VFP_FP16,
1284     ARM_FEATURE_NEON,
1285     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1286     ARM_FEATURE_M, /* Microcontroller profile.  */
1287     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1288     ARM_FEATURE_THUMB2EE,
1289     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1290     ARM_FEATURE_V4T,
1291     ARM_FEATURE_V5,
1292     ARM_FEATURE_STRONGARM,
1293     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1294     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1295     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1296     ARM_FEATURE_GENERIC_TIMER,
1297     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1298     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1299     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1300     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1301     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1302     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1303     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1304     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1305     ARM_FEATURE_V8,
1306     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1307     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1308     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1309     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1310     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1311     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1312     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1313     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1314     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1315     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1316     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1317     ARM_FEATURE_PMU, /* has PMU support */
1318     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1319     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1320     ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1321 };
1322 
1323 static inline int arm_feature(CPUARMState *env, int feature)
1324 {
1325     return (env->features & (1ULL << feature)) != 0;
1326 }
1327 
1328 #if !defined(CONFIG_USER_ONLY)
1329 /* Return true if exception levels below EL3 are in secure state,
1330  * or would be following an exception return to that level.
1331  * Unlike arm_is_secure() (which is always a question about the
1332  * _current_ state of the CPU) this doesn't care about the current
1333  * EL or mode.
1334  */
1335 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1336 {
1337     if (arm_feature(env, ARM_FEATURE_EL3)) {
1338         return !(env->cp15.scr_el3 & SCR_NS);
1339     } else {
1340         /* If EL3 is not supported then the secure state is implementation
1341          * defined, in which case QEMU defaults to non-secure.
1342          */
1343         return false;
1344     }
1345 }
1346 
1347 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1348 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1349 {
1350     if (arm_feature(env, ARM_FEATURE_EL3)) {
1351         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1352             /* CPU currently in AArch64 state and EL3 */
1353             return true;
1354         } else if (!is_a64(env) &&
1355                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1356             /* CPU currently in AArch32 state and monitor mode */
1357             return true;
1358         }
1359     }
1360     return false;
1361 }
1362 
1363 /* Return true if the processor is in secure state */
1364 static inline bool arm_is_secure(CPUARMState *env)
1365 {
1366     if (arm_is_el3_or_mon(env)) {
1367         return true;
1368     }
1369     return arm_is_secure_below_el3(env);
1370 }
1371 
1372 #else
1373 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1374 {
1375     return false;
1376 }
1377 
1378 static inline bool arm_is_secure(CPUARMState *env)
1379 {
1380     return false;
1381 }
1382 #endif
1383 
1384 /* Return true if the specified exception level is running in AArch64 state. */
1385 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1386 {
1387     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1388      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1389      */
1390     assert(el >= 1 && el <= 3);
1391     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1392 
1393     /* The highest exception level is always at the maximum supported
1394      * register width, and then lower levels have a register width controlled
1395      * by bits in the SCR or HCR registers.
1396      */
1397     if (el == 3) {
1398         return aa64;
1399     }
1400 
1401     if (arm_feature(env, ARM_FEATURE_EL3)) {
1402         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1403     }
1404 
1405     if (el == 2) {
1406         return aa64;
1407     }
1408 
1409     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1410         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1411     }
1412 
1413     return aa64;
1414 }
1415 
1416 /* Function for determing whether guest cp register reads and writes should
1417  * access the secure or non-secure bank of a cp register.  When EL3 is
1418  * operating in AArch32 state, the NS-bit determines whether the secure
1419  * instance of a cp register should be used. When EL3 is AArch64 (or if
1420  * it doesn't exist at all) then there is no register banking, and all
1421  * accesses are to the non-secure version.
1422  */
1423 static inline bool access_secure_reg(CPUARMState *env)
1424 {
1425     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1426                 !arm_el_is_aa64(env, 3) &&
1427                 !(env->cp15.scr_el3 & SCR_NS));
1428 
1429     return ret;
1430 }
1431 
1432 /* Macros for accessing a specified CP register bank */
1433 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1434     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1435 
1436 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1437     do {                                                \
1438         if (_secure) {                                   \
1439             (_env)->cp15._regname##_s = (_val);            \
1440         } else {                                        \
1441             (_env)->cp15._regname##_ns = (_val);           \
1442         }                                               \
1443     } while (0)
1444 
1445 /* Macros for automatically accessing a specific CP register bank depending on
1446  * the current secure state of the system.  These macros are not intended for
1447  * supporting instruction translation reads/writes as these are dependent
1448  * solely on the SCR.NS bit and not the mode.
1449  */
1450 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1451     A32_BANKED_REG_GET((_env), _regname,                \
1452                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1453 
1454 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1455     A32_BANKED_REG_SET((_env), _regname,                                    \
1456                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1457                        (_val))
1458 
1459 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1460 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1461                                  uint32_t cur_el, bool secure);
1462 
1463 /* Interface between CPU and Interrupt controller.  */
1464 #ifndef CONFIG_USER_ONLY
1465 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1466 #else
1467 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1468 {
1469     return true;
1470 }
1471 #endif
1472 /**
1473  * armv7m_nvic_set_pending: mark the specified exception as pending
1474  * @opaque: the NVIC
1475  * @irq: the exception number to mark pending
1476  * @secure: false for non-banked exceptions or for the nonsecure
1477  * version of a banked exception, true for the secure version of a banked
1478  * exception.
1479  *
1480  * Marks the specified exception as pending. Note that we will assert()
1481  * if @secure is true and @irq does not specify one of the fixed set
1482  * of architecturally banked exceptions.
1483  */
1484 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1485 /**
1486  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1487  * @opaque: the NVIC
1488  *
1489  * Move the current highest priority pending exception from the pending
1490  * state to the active state, and update v7m.exception to indicate that
1491  * it is the exception currently being handled.
1492  *
1493  * Returns: true if exception should be taken to Secure state, false for NS
1494  */
1495 bool armv7m_nvic_acknowledge_irq(void *opaque);
1496 /**
1497  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1498  * @opaque: the NVIC
1499  * @irq: the exception number to complete
1500  * @secure: true if this exception was secure
1501  *
1502  * Returns: -1 if the irq was not active
1503  *           1 if completing this irq brought us back to base (no active irqs)
1504  *           0 if there is still an irq active after this one was completed
1505  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1506  */
1507 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1508 /**
1509  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1510  * @opaque: the NVIC
1511  *
1512  * Returns: the raw execution priority as defined by the v8M architecture.
1513  * This is the execution priority minus the effects of AIRCR.PRIS,
1514  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1515  * (v8M ARM ARM I_PKLD.)
1516  */
1517 int armv7m_nvic_raw_execution_priority(void *opaque);
1518 /**
1519  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1520  * priority is negative for the specified security state.
1521  * @opaque: the NVIC
1522  * @secure: the security state to test
1523  * This corresponds to the pseudocode IsReqExecPriNeg().
1524  */
1525 #ifndef CONFIG_USER_ONLY
1526 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1527 #else
1528 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1529 {
1530     return false;
1531 }
1532 #endif
1533 
1534 /* Interface for defining coprocessor registers.
1535  * Registers are defined in tables of arm_cp_reginfo structs
1536  * which are passed to define_arm_cp_regs().
1537  */
1538 
1539 /* When looking up a coprocessor register we look for it
1540  * via an integer which encodes all of:
1541  *  coprocessor number
1542  *  Crn, Crm, opc1, opc2 fields
1543  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1544  *    or via MRRC/MCRR?)
1545  *  non-secure/secure bank (AArch32 only)
1546  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1547  * (In this case crn and opc2 should be zero.)
1548  * For AArch64, there is no 32/64 bit size distinction;
1549  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1550  * and 4 bit CRn and CRm. The encoding patterns are chosen
1551  * to be easy to convert to and from the KVM encodings, and also
1552  * so that the hashtable can contain both AArch32 and AArch64
1553  * registers (to allow for interprocessing where we might run
1554  * 32 bit code on a 64 bit core).
1555  */
1556 /* This bit is private to our hashtable cpreg; in KVM register
1557  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1558  * in the upper bits of the 64 bit ID.
1559  */
1560 #define CP_REG_AA64_SHIFT 28
1561 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1562 
1563 /* To enable banking of coprocessor registers depending on ns-bit we
1564  * add a bit to distinguish between secure and non-secure cpregs in the
1565  * hashtable.
1566  */
1567 #define CP_REG_NS_SHIFT 29
1568 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1569 
1570 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1571     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1572      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1573 
1574 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1575     (CP_REG_AA64_MASK |                                 \
1576      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1577      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1578      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1579      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1580      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1581      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1582 
1583 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1584  * version used as a key for the coprocessor register hashtable
1585  */
1586 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1587 {
1588     uint32_t cpregid = kvmid;
1589     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1590         cpregid |= CP_REG_AA64_MASK;
1591     } else {
1592         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1593             cpregid |= (1 << 15);
1594         }
1595 
1596         /* KVM is always non-secure so add the NS flag on AArch32 register
1597          * entries.
1598          */
1599          cpregid |= 1 << CP_REG_NS_SHIFT;
1600     }
1601     return cpregid;
1602 }
1603 
1604 /* Convert a truncated 32 bit hashtable key into the full
1605  * 64 bit KVM register ID.
1606  */
1607 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1608 {
1609     uint64_t kvmid;
1610 
1611     if (cpregid & CP_REG_AA64_MASK) {
1612         kvmid = cpregid & ~CP_REG_AA64_MASK;
1613         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1614     } else {
1615         kvmid = cpregid & ~(1 << 15);
1616         if (cpregid & (1 << 15)) {
1617             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1618         } else {
1619             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1620         }
1621     }
1622     return kvmid;
1623 }
1624 
1625 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1626  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1627  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1628  * TCG can assume the value to be constant (ie load at translate time)
1629  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1630  * indicates that the TB should not be ended after a write to this register
1631  * (the default is that the TB ends after cp writes). OVERRIDE permits
1632  * a register definition to override a previous definition for the
1633  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1634  * old must have the OVERRIDE bit set.
1635  * ALIAS indicates that this register is an alias view of some underlying
1636  * state which is also visible via another register, and that the other
1637  * register is handling migration and reset; registers marked ALIAS will not be
1638  * migrated but may have their state set by syncing of register state from KVM.
1639  * NO_RAW indicates that this register has no underlying state and does not
1640  * support raw access for state saving/loading; it will not be used for either
1641  * migration or KVM state synchronization. (Typically this is for "registers"
1642  * which are actually used as instructions for cache maintenance and so on.)
1643  * IO indicates that this register does I/O and therefore its accesses
1644  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1645  * registers which implement clocks or timers require this.
1646  */
1647 #define ARM_CP_SPECIAL 1
1648 #define ARM_CP_CONST 2
1649 #define ARM_CP_64BIT 4
1650 #define ARM_CP_SUPPRESS_TB_END 8
1651 #define ARM_CP_OVERRIDE 16
1652 #define ARM_CP_ALIAS 32
1653 #define ARM_CP_IO 64
1654 #define ARM_CP_NO_RAW 128
1655 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1656 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1657 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1658 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1659 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1660 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1661 /* Used only as a terminator for ARMCPRegInfo lists */
1662 #define ARM_CP_SENTINEL 0xffff
1663 /* Mask of only the flag bits in a type field */
1664 #define ARM_CP_FLAG_MASK 0xff
1665 
1666 /* Valid values for ARMCPRegInfo state field, indicating which of
1667  * the AArch32 and AArch64 execution states this register is visible in.
1668  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1669  * If the reginfo is declared to be visible in both states then a second
1670  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1671  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1672  * Note that we rely on the values of these enums as we iterate through
1673  * the various states in some places.
1674  */
1675 enum {
1676     ARM_CP_STATE_AA32 = 0,
1677     ARM_CP_STATE_AA64 = 1,
1678     ARM_CP_STATE_BOTH = 2,
1679 };
1680 
1681 /* ARM CP register secure state flags.  These flags identify security state
1682  * attributes for a given CP register entry.
1683  * The existence of both or neither secure and non-secure flags indicates that
1684  * the register has both a secure and non-secure hash entry.  A single one of
1685  * these flags causes the register to only be hashed for the specified
1686  * security state.
1687  * Although definitions may have any combination of the S/NS bits, each
1688  * registered entry will only have one to identify whether the entry is secure
1689  * or non-secure.
1690  */
1691 enum {
1692     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1693     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1694 };
1695 
1696 /* Return true if cptype is a valid type field. This is used to try to
1697  * catch errors where the sentinel has been accidentally left off the end
1698  * of a list of registers.
1699  */
1700 static inline bool cptype_valid(int cptype)
1701 {
1702     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1703         || ((cptype & ARM_CP_SPECIAL) &&
1704             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1705 }
1706 
1707 /* Access rights:
1708  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1709  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1710  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1711  * (ie any of the privileged modes in Secure state, or Monitor mode).
1712  * If a register is accessible in one privilege level it's always accessible
1713  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1714  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1715  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1716  * terminology a little and call this PL3.
1717  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1718  * with the ELx exception levels.
1719  *
1720  * If access permissions for a register are more complex than can be
1721  * described with these bits, then use a laxer set of restrictions, and
1722  * do the more restrictive/complex check inside a helper function.
1723  */
1724 #define PL3_R 0x80
1725 #define PL3_W 0x40
1726 #define PL2_R (0x20 | PL3_R)
1727 #define PL2_W (0x10 | PL3_W)
1728 #define PL1_R (0x08 | PL2_R)
1729 #define PL1_W (0x04 | PL2_W)
1730 #define PL0_R (0x02 | PL1_R)
1731 #define PL0_W (0x01 | PL1_W)
1732 
1733 #define PL3_RW (PL3_R | PL3_W)
1734 #define PL2_RW (PL2_R | PL2_W)
1735 #define PL1_RW (PL1_R | PL1_W)
1736 #define PL0_RW (PL0_R | PL0_W)
1737 
1738 /* Return the highest implemented Exception Level */
1739 static inline int arm_highest_el(CPUARMState *env)
1740 {
1741     if (arm_feature(env, ARM_FEATURE_EL3)) {
1742         return 3;
1743     }
1744     if (arm_feature(env, ARM_FEATURE_EL2)) {
1745         return 2;
1746     }
1747     return 1;
1748 }
1749 
1750 /* Return true if a v7M CPU is in Handler mode */
1751 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1752 {
1753     return env->v7m.exception != 0;
1754 }
1755 
1756 /* Return the current Exception Level (as per ARMv8; note that this differs
1757  * from the ARMv7 Privilege Level).
1758  */
1759 static inline int arm_current_el(CPUARMState *env)
1760 {
1761     if (arm_feature(env, ARM_FEATURE_M)) {
1762         return arm_v7m_is_handler_mode(env) ||
1763             !(env->v7m.control[env->v7m.secure] & 1);
1764     }
1765 
1766     if (is_a64(env)) {
1767         return extract32(env->pstate, 2, 2);
1768     }
1769 
1770     switch (env->uncached_cpsr & 0x1f) {
1771     case ARM_CPU_MODE_USR:
1772         return 0;
1773     case ARM_CPU_MODE_HYP:
1774         return 2;
1775     case ARM_CPU_MODE_MON:
1776         return 3;
1777     default:
1778         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1779             /* If EL3 is 32-bit then all secure privileged modes run in
1780              * EL3
1781              */
1782             return 3;
1783         }
1784 
1785         return 1;
1786     }
1787 }
1788 
1789 typedef struct ARMCPRegInfo ARMCPRegInfo;
1790 
1791 typedef enum CPAccessResult {
1792     /* Access is permitted */
1793     CP_ACCESS_OK = 0,
1794     /* Access fails due to a configurable trap or enable which would
1795      * result in a categorized exception syndrome giving information about
1796      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1797      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1798      * PL1 if in EL0, otherwise to the current EL).
1799      */
1800     CP_ACCESS_TRAP = 1,
1801     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1802      * Note that this is not a catch-all case -- the set of cases which may
1803      * result in this failure is specifically defined by the architecture.
1804      */
1805     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1806     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1807     CP_ACCESS_TRAP_EL2 = 3,
1808     CP_ACCESS_TRAP_EL3 = 4,
1809     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1810     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1811     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1812     /* Access fails and results in an exception syndrome for an FP access,
1813      * trapped directly to EL2 or EL3
1814      */
1815     CP_ACCESS_TRAP_FP_EL2 = 7,
1816     CP_ACCESS_TRAP_FP_EL3 = 8,
1817 } CPAccessResult;
1818 
1819 /* Access functions for coprocessor registers. These cannot fail and
1820  * may not raise exceptions.
1821  */
1822 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1823 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1824                        uint64_t value);
1825 /* Access permission check functions for coprocessor registers. */
1826 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1827                                   const ARMCPRegInfo *opaque,
1828                                   bool isread);
1829 /* Hook function for register reset */
1830 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1831 
1832 #define CP_ANY 0xff
1833 
1834 /* Definition of an ARM coprocessor register */
1835 struct ARMCPRegInfo {
1836     /* Name of register (useful mainly for debugging, need not be unique) */
1837     const char *name;
1838     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1839      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1840      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1841      * will be decoded to this register. The register read and write
1842      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1843      * used by the program, so it is possible to register a wildcard and
1844      * then behave differently on read/write if necessary.
1845      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1846      * must both be zero.
1847      * For AArch64-visible registers, opc0 is also used.
1848      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1849      * way to distinguish (for KVM's benefit) guest-visible system registers
1850      * from demuxed ones provided to preserve the "no side effects on
1851      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1852      * visible (to match KVM's encoding); cp==0 will be converted to
1853      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1854      */
1855     uint8_t cp;
1856     uint8_t crn;
1857     uint8_t crm;
1858     uint8_t opc0;
1859     uint8_t opc1;
1860     uint8_t opc2;
1861     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1862     int state;
1863     /* Register type: ARM_CP_* bits/values */
1864     int type;
1865     /* Access rights: PL*_[RW] */
1866     int access;
1867     /* Security state: ARM_CP_SECSTATE_* bits/values */
1868     int secure;
1869     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1870      * this register was defined: can be used to hand data through to the
1871      * register read/write functions, since they are passed the ARMCPRegInfo*.
1872      */
1873     void *opaque;
1874     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1875      * fieldoffset is non-zero, the reset value of the register.
1876      */
1877     uint64_t resetvalue;
1878     /* Offset of the field in CPUARMState for this register.
1879      *
1880      * This is not needed if either:
1881      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1882      *  2. both readfn and writefn are specified
1883      */
1884     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1885 
1886     /* Offsets of the secure and non-secure fields in CPUARMState for the
1887      * register if it is banked.  These fields are only used during the static
1888      * registration of a register.  During hashing the bank associated
1889      * with a given security state is copied to fieldoffset which is used from
1890      * there on out.
1891      *
1892      * It is expected that register definitions use either fieldoffset or
1893      * bank_fieldoffsets in the definition but not both.  It is also expected
1894      * that both bank offsets are set when defining a banked register.  This
1895      * use indicates that a register is banked.
1896      */
1897     ptrdiff_t bank_fieldoffsets[2];
1898 
1899     /* Function for making any access checks for this register in addition to
1900      * those specified by the 'access' permissions bits. If NULL, no extra
1901      * checks required. The access check is performed at runtime, not at
1902      * translate time.
1903      */
1904     CPAccessFn *accessfn;
1905     /* Function for handling reads of this register. If NULL, then reads
1906      * will be done by loading from the offset into CPUARMState specified
1907      * by fieldoffset.
1908      */
1909     CPReadFn *readfn;
1910     /* Function for handling writes of this register. If NULL, then writes
1911      * will be done by writing to the offset into CPUARMState specified
1912      * by fieldoffset.
1913      */
1914     CPWriteFn *writefn;
1915     /* Function for doing a "raw" read; used when we need to copy
1916      * coprocessor state to the kernel for KVM or out for
1917      * migration. This only needs to be provided if there is also a
1918      * readfn and it has side effects (for instance clear-on-read bits).
1919      */
1920     CPReadFn *raw_readfn;
1921     /* Function for doing a "raw" write; used when we need to copy KVM
1922      * kernel coprocessor state into userspace, or for inbound
1923      * migration. This only needs to be provided if there is also a
1924      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1925      * or similar behaviour.
1926      */
1927     CPWriteFn *raw_writefn;
1928     /* Function for resetting the register. If NULL, then reset will be done
1929      * by writing resetvalue to the field specified in fieldoffset. If
1930      * fieldoffset is 0 then no reset will be done.
1931      */
1932     CPResetFn *resetfn;
1933 };
1934 
1935 /* Macros which are lvalues for the field in CPUARMState for the
1936  * ARMCPRegInfo *ri.
1937  */
1938 #define CPREG_FIELD32(env, ri) \
1939     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1940 #define CPREG_FIELD64(env, ri) \
1941     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1942 
1943 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1944 
1945 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1946                                     const ARMCPRegInfo *regs, void *opaque);
1947 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1948                                        const ARMCPRegInfo *regs, void *opaque);
1949 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1950 {
1951     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1952 }
1953 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1954 {
1955     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1956 }
1957 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1958 
1959 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1960 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1961                          uint64_t value);
1962 /* CPReadFn that can be used for read-as-zero behaviour */
1963 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1964 
1965 /* CPResetFn that does nothing, for use if no reset is required even
1966  * if fieldoffset is non zero.
1967  */
1968 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1969 
1970 /* Return true if this reginfo struct's field in the cpu state struct
1971  * is 64 bits wide.
1972  */
1973 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1974 {
1975     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1976 }
1977 
1978 static inline bool cp_access_ok(int current_el,
1979                                 const ARMCPRegInfo *ri, int isread)
1980 {
1981     return (ri->access >> ((current_el * 2) + isread)) & 1;
1982 }
1983 
1984 /* Raw read of a coprocessor register (as needed for migration, etc) */
1985 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1986 
1987 /**
1988  * write_list_to_cpustate
1989  * @cpu: ARMCPU
1990  *
1991  * For each register listed in the ARMCPU cpreg_indexes list, write
1992  * its value from the cpreg_values list into the ARMCPUState structure.
1993  * This updates TCG's working data structures from KVM data or
1994  * from incoming migration state.
1995  *
1996  * Returns: true if all register values were updated correctly,
1997  * false if some register was unknown or could not be written.
1998  * Note that we do not stop early on failure -- we will attempt
1999  * writing all registers in the list.
2000  */
2001 bool write_list_to_cpustate(ARMCPU *cpu);
2002 
2003 /**
2004  * write_cpustate_to_list:
2005  * @cpu: ARMCPU
2006  *
2007  * For each register listed in the ARMCPU cpreg_indexes list, write
2008  * its value from the ARMCPUState structure into the cpreg_values list.
2009  * This is used to copy info from TCG's working data structures into
2010  * KVM or for outbound migration.
2011  *
2012  * Returns: true if all register values were read correctly,
2013  * false if some register was unknown or could not be read.
2014  * Note that we do not stop early on failure -- we will attempt
2015  * reading all registers in the list.
2016  */
2017 bool write_cpustate_to_list(ARMCPU *cpu);
2018 
2019 #define ARM_CPUID_TI915T      0x54029152
2020 #define ARM_CPUID_TI925T      0x54029252
2021 
2022 #if defined(CONFIG_USER_ONLY)
2023 #define TARGET_PAGE_BITS 12
2024 #else
2025 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2026  * have to support 1K tiny pages.
2027  */
2028 #define TARGET_PAGE_BITS_VARY
2029 #define TARGET_PAGE_BITS_MIN 10
2030 #endif
2031 
2032 #if defined(TARGET_AARCH64)
2033 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2034 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2035 #else
2036 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2037 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2038 #endif
2039 
2040 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2041                                      unsigned int target_el)
2042 {
2043     CPUARMState *env = cs->env_ptr;
2044     unsigned int cur_el = arm_current_el(env);
2045     bool secure = arm_is_secure(env);
2046     bool pstate_unmasked;
2047     int8_t unmasked = 0;
2048 
2049     /* Don't take exceptions if they target a lower EL.
2050      * This check should catch any exceptions that would not be taken but left
2051      * pending.
2052      */
2053     if (cur_el > target_el) {
2054         return false;
2055     }
2056 
2057     switch (excp_idx) {
2058     case EXCP_FIQ:
2059         pstate_unmasked = !(env->daif & PSTATE_F);
2060         break;
2061 
2062     case EXCP_IRQ:
2063         pstate_unmasked = !(env->daif & PSTATE_I);
2064         break;
2065 
2066     case EXCP_VFIQ:
2067         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2068             /* VFIQs are only taken when hypervized and non-secure.  */
2069             return false;
2070         }
2071         return !(env->daif & PSTATE_F);
2072     case EXCP_VIRQ:
2073         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2074             /* VIRQs are only taken when hypervized and non-secure.  */
2075             return false;
2076         }
2077         return !(env->daif & PSTATE_I);
2078     default:
2079         g_assert_not_reached();
2080     }
2081 
2082     /* Use the target EL, current execution state and SCR/HCR settings to
2083      * determine whether the corresponding CPSR bit is used to mask the
2084      * interrupt.
2085      */
2086     if ((target_el > cur_el) && (target_el != 1)) {
2087         /* Exceptions targeting a higher EL may not be maskable */
2088         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2089             /* 64-bit masking rules are simple: exceptions to EL3
2090              * can't be masked, and exceptions to EL2 can only be
2091              * masked from Secure state. The HCR and SCR settings
2092              * don't affect the masking logic, only the interrupt routing.
2093              */
2094             if (target_el == 3 || !secure) {
2095                 unmasked = 1;
2096             }
2097         } else {
2098             /* The old 32-bit-only environment has a more complicated
2099              * masking setup. HCR and SCR bits not only affect interrupt
2100              * routing but also change the behaviour of masking.
2101              */
2102             bool hcr, scr;
2103 
2104             switch (excp_idx) {
2105             case EXCP_FIQ:
2106                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2107                  * we override the CPSR.F in determining if the exception is
2108                  * masked or not. If neither of these are set then we fall back
2109                  * to the CPSR.F setting otherwise we further assess the state
2110                  * below.
2111                  */
2112                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2113                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2114 
2115                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2116                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2117                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2118                  * when non-secure but only when FIQs are only routed to EL3.
2119                  */
2120                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2121                 break;
2122             case EXCP_IRQ:
2123                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2124                  * we may override the CPSR.I masking when in non-secure state.
2125                  * The SCR.IRQ setting has already been taken into consideration
2126                  * when setting the target EL, so it does not have a further
2127                  * affect here.
2128                  */
2129                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2130                 scr = false;
2131                 break;
2132             default:
2133                 g_assert_not_reached();
2134             }
2135 
2136             if ((scr || hcr) && !secure) {
2137                 unmasked = 1;
2138             }
2139         }
2140     }
2141 
2142     /* The PSTATE bits only mask the interrupt if we have not overriden the
2143      * ability above.
2144      */
2145     return unmasked || pstate_unmasked;
2146 }
2147 
2148 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2149 
2150 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2151 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2152 
2153 #define cpu_signal_handler cpu_arm_signal_handler
2154 #define cpu_list arm_cpu_list
2155 
2156 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2157  *
2158  * If EL3 is 64-bit:
2159  *  + NonSecure EL1 & 0 stage 1
2160  *  + NonSecure EL1 & 0 stage 2
2161  *  + NonSecure EL2
2162  *  + Secure EL1 & EL0
2163  *  + Secure EL3
2164  * If EL3 is 32-bit:
2165  *  + NonSecure PL1 & 0 stage 1
2166  *  + NonSecure PL1 & 0 stage 2
2167  *  + NonSecure PL2
2168  *  + Secure PL0 & PL1
2169  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2170  *
2171  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2172  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2173  *     may differ in access permissions even if the VA->PA map is the same
2174  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2175  *     translation, which means that we have one mmu_idx that deals with two
2176  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2177  *     architecturally permitted]
2178  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2179  *     handling via the TLB. The only way to do a stage 1 translation without
2180  *     the immediate stage 2 translation is via the ATS or AT system insns,
2181  *     which can be slow-pathed and always do a page table walk.
2182  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2183  *     translation regimes, because they map reasonably well to each other
2184  *     and they can't both be active at the same time.
2185  * This gives us the following list of mmu_idx values:
2186  *
2187  * NS EL0 (aka NS PL0) stage 1+2
2188  * NS EL1 (aka NS PL1) stage 1+2
2189  * NS EL2 (aka NS PL2)
2190  * S EL3 (aka S PL1)
2191  * S EL0 (aka S PL0)
2192  * S EL1 (not used if EL3 is 32 bit)
2193  * NS EL0+1 stage 2
2194  *
2195  * (The last of these is an mmu_idx because we want to be able to use the TLB
2196  * for the accesses done as part of a stage 1 page table walk, rather than
2197  * having to walk the stage 2 page table over and over.)
2198  *
2199  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2200  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2201  * NS EL2 if we ever model a Cortex-R52).
2202  *
2203  * M profile CPUs are rather different as they do not have a true MMU.
2204  * They have the following different MMU indexes:
2205  *  User
2206  *  Privileged
2207  *  Execution priority negative (this is like privileged, but the
2208  *  MPU HFNMIENA bit means that it may have different access permission
2209  *  check results to normal privileged code, so can't share a TLB).
2210  * If the CPU supports the v8M Security Extension then there are also:
2211  *  Secure User
2212  *  Secure Privileged
2213  *  Secure, execution priority negative
2214  *
2215  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2216  * are not quite the same -- different CPU types (most notably M profile
2217  * vs A/R profile) would like to use MMU indexes with different semantics,
2218  * but since we don't ever need to use all of those in a single CPU we
2219  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2220  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2221  * the same for any particular CPU.
2222  * Variables of type ARMMUIdx are always full values, and the core
2223  * index values are in variables of type 'int'.
2224  *
2225  * Our enumeration includes at the end some entries which are not "true"
2226  * mmu_idx values in that they don't have corresponding TLBs and are only
2227  * valid for doing slow path page table walks.
2228  *
2229  * The constant names here are patterned after the general style of the names
2230  * of the AT/ATS operations.
2231  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2232  */
2233 #define ARM_MMU_IDX_A 0x10 /* A profile */
2234 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2235 #define ARM_MMU_IDX_M 0x40 /* M profile */
2236 
2237 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2238 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2239 
2240 typedef enum ARMMMUIdx {
2241     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2242     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2243     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2244     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2245     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2246     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2247     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2248     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2249     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2250     ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2251     ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M,
2252     ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M,
2253     ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M,
2254     /* Indexes below here don't have TLBs and are used only for AT system
2255      * instructions or for the first stage of an S12 page table walk.
2256      */
2257     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2258     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2259 } ARMMMUIdx;
2260 
2261 /* Bit macros for the core-mmu-index values for each index,
2262  * for use when calling tlb_flush_by_mmuidx() and friends.
2263  */
2264 typedef enum ARMMMUIdxBit {
2265     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2266     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2267     ARMMMUIdxBit_S1E2 = 1 << 2,
2268     ARMMMUIdxBit_S1E3 = 1 << 3,
2269     ARMMMUIdxBit_S1SE0 = 1 << 4,
2270     ARMMMUIdxBit_S1SE1 = 1 << 5,
2271     ARMMMUIdxBit_S2NS = 1 << 6,
2272     ARMMMUIdxBit_MUser = 1 << 0,
2273     ARMMMUIdxBit_MPriv = 1 << 1,
2274     ARMMMUIdxBit_MNegPri = 1 << 2,
2275     ARMMMUIdxBit_MSUser = 1 << 3,
2276     ARMMMUIdxBit_MSPriv = 1 << 4,
2277     ARMMMUIdxBit_MSNegPri = 1 << 5,
2278 } ARMMMUIdxBit;
2279 
2280 #define MMU_USER_IDX 0
2281 
2282 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2283 {
2284     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2285 }
2286 
2287 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2288 {
2289     if (arm_feature(env, ARM_FEATURE_M)) {
2290         return mmu_idx | ARM_MMU_IDX_M;
2291     } else {
2292         return mmu_idx | ARM_MMU_IDX_A;
2293     }
2294 }
2295 
2296 /* Return the exception level we're running at if this is our mmu_idx */
2297 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2298 {
2299     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2300     case ARM_MMU_IDX_A:
2301         return mmu_idx & 3;
2302     case ARM_MMU_IDX_M:
2303         return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser)
2304             ? 0 : 1;
2305     default:
2306         g_assert_not_reached();
2307     }
2308 }
2309 
2310 /* Determine the current mmu_idx to use for normal loads/stores */
2311 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2312 {
2313     int el = arm_current_el(env);
2314 
2315     if (arm_feature(env, ARM_FEATURE_M)) {
2316         ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2317 
2318         if (armv7m_nvic_neg_prio_requested(env->nvic, env->v7m.secure)) {
2319             mmu_idx = ARMMMUIdx_MNegPri;
2320         }
2321 
2322         if (env->v7m.secure) {
2323             mmu_idx += ARMMMUIdx_MSUser;
2324         }
2325 
2326         return arm_to_core_mmu_idx(mmu_idx);
2327     }
2328 
2329     if (el < 2 && arm_is_secure_below_el3(env)) {
2330         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2331     }
2332     return el;
2333 }
2334 
2335 /* Indexes used when registering address spaces with cpu_address_space_init */
2336 typedef enum ARMASIdx {
2337     ARMASIdx_NS = 0,
2338     ARMASIdx_S = 1,
2339 } ARMASIdx;
2340 
2341 /* Return the Exception Level targeted by debug exceptions. */
2342 static inline int arm_debug_target_el(CPUARMState *env)
2343 {
2344     bool secure = arm_is_secure(env);
2345     bool route_to_el2 = false;
2346 
2347     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2348         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2349                        env->cp15.mdcr_el2 & (1 << 8);
2350     }
2351 
2352     if (route_to_el2) {
2353         return 2;
2354     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2355                !arm_el_is_aa64(env, 3) && secure) {
2356         return 3;
2357     } else {
2358         return 1;
2359     }
2360 }
2361 
2362 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2363 {
2364     if (arm_is_secure(env)) {
2365         /* MDCR_EL3.SDD disables debug events from Secure state */
2366         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2367             || arm_current_el(env) == 3) {
2368             return false;
2369         }
2370     }
2371 
2372     if (arm_current_el(env) == arm_debug_target_el(env)) {
2373         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2374             || (env->daif & PSTATE_D)) {
2375             return false;
2376         }
2377     }
2378     return true;
2379 }
2380 
2381 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2382 {
2383     int el = arm_current_el(env);
2384 
2385     if (el == 0 && arm_el_is_aa64(env, 1)) {
2386         return aa64_generate_debug_exceptions(env);
2387     }
2388 
2389     if (arm_is_secure(env)) {
2390         int spd;
2391 
2392         if (el == 0 && (env->cp15.sder & 1)) {
2393             /* SDER.SUIDEN means debug exceptions from Secure EL0
2394              * are always enabled. Otherwise they are controlled by
2395              * SDCR.SPD like those from other Secure ELs.
2396              */
2397             return true;
2398         }
2399 
2400         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2401         switch (spd) {
2402         case 1:
2403             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2404         case 0:
2405             /* For 0b00 we return true if external secure invasive debug
2406              * is enabled. On real hardware this is controlled by external
2407              * signals to the core. QEMU always permits debug, and behaves
2408              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2409              */
2410             return true;
2411         case 2:
2412             return false;
2413         case 3:
2414             return true;
2415         }
2416     }
2417 
2418     return el != 2;
2419 }
2420 
2421 /* Return true if debugging exceptions are currently enabled.
2422  * This corresponds to what in ARM ARM pseudocode would be
2423  *    if UsingAArch32() then
2424  *        return AArch32.GenerateDebugExceptions()
2425  *    else
2426  *        return AArch64.GenerateDebugExceptions()
2427  * We choose to push the if() down into this function for clarity,
2428  * since the pseudocode has it at all callsites except for the one in
2429  * CheckSoftwareStep(), where it is elided because both branches would
2430  * always return the same value.
2431  *
2432  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2433  * don't yet implement those exception levels or their associated trap bits.
2434  */
2435 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2436 {
2437     if (env->aarch64) {
2438         return aa64_generate_debug_exceptions(env);
2439     } else {
2440         return aa32_generate_debug_exceptions(env);
2441     }
2442 }
2443 
2444 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2445  * implicitly means this always returns false in pre-v8 CPUs.)
2446  */
2447 static inline bool arm_singlestep_active(CPUARMState *env)
2448 {
2449     return extract32(env->cp15.mdscr_el1, 0, 1)
2450         && arm_el_is_aa64(env, arm_debug_target_el(env))
2451         && arm_generate_debug_exceptions(env);
2452 }
2453 
2454 static inline bool arm_sctlr_b(CPUARMState *env)
2455 {
2456     return
2457         /* We need not implement SCTLR.ITD in user-mode emulation, so
2458          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2459          * This lets people run BE32 binaries with "-cpu any".
2460          */
2461 #ifndef CONFIG_USER_ONLY
2462         !arm_feature(env, ARM_FEATURE_V7) &&
2463 #endif
2464         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2465 }
2466 
2467 /* Return true if the processor is in big-endian mode. */
2468 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2469 {
2470     int cur_el;
2471 
2472     /* In 32bit endianness is determined by looking at CPSR's E bit */
2473     if (!is_a64(env)) {
2474         return
2475 #ifdef CONFIG_USER_ONLY
2476             /* In system mode, BE32 is modelled in line with the
2477              * architecture (as word-invariant big-endianness), where loads
2478              * and stores are done little endian but from addresses which
2479              * are adjusted by XORing with the appropriate constant. So the
2480              * endianness to use for the raw data access is not affected by
2481              * SCTLR.B.
2482              * In user mode, however, we model BE32 as byte-invariant
2483              * big-endianness (because user-only code cannot tell the
2484              * difference), and so we need to use a data access endianness
2485              * that depends on SCTLR.B.
2486              */
2487             arm_sctlr_b(env) ||
2488 #endif
2489                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2490     }
2491 
2492     cur_el = arm_current_el(env);
2493 
2494     if (cur_el == 0) {
2495         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2496     }
2497 
2498     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2499 }
2500 
2501 #include "exec/cpu-all.h"
2502 
2503 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2504  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2505  * We put flags which are shared between 32 and 64 bit mode at the top
2506  * of the word, and flags which apply to only one mode at the bottom.
2507  */
2508 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2509 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2510 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2511 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2512 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2513 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2514 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2515 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2516 /* Target EL if we take a floating-point-disabled exception */
2517 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2518 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2519 
2520 /* Bit usage when in AArch32 state: */
2521 #define ARM_TBFLAG_THUMB_SHIFT      0
2522 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2523 #define ARM_TBFLAG_VECLEN_SHIFT     1
2524 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2525 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2526 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2527 #define ARM_TBFLAG_VFPEN_SHIFT      7
2528 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2529 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2530 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2531 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2532 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2533 /* We store the bottom two bits of the CPAR as TB flags and handle
2534  * checks on the other bits at runtime
2535  */
2536 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2537 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2538 /* Indicates whether cp register reads and writes by guest code should access
2539  * the secure or nonsecure bank of banked registers; note that this is not
2540  * the same thing as the current security state of the processor!
2541  */
2542 #define ARM_TBFLAG_NS_SHIFT         19
2543 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2544 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2545 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2546 /* For M profile only, Handler (ie not Thread) mode */
2547 #define ARM_TBFLAG_HANDLER_SHIFT    21
2548 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2549 
2550 /* Bit usage when in AArch64 state */
2551 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2552 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2553 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2554 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2555 
2556 /* some convenience accessor macros */
2557 #define ARM_TBFLAG_AARCH64_STATE(F) \
2558     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2559 #define ARM_TBFLAG_MMUIDX(F) \
2560     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2561 #define ARM_TBFLAG_SS_ACTIVE(F) \
2562     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2563 #define ARM_TBFLAG_PSTATE_SS(F) \
2564     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2565 #define ARM_TBFLAG_FPEXC_EL(F) \
2566     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2567 #define ARM_TBFLAG_THUMB(F) \
2568     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2569 #define ARM_TBFLAG_VECLEN(F) \
2570     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2571 #define ARM_TBFLAG_VECSTRIDE(F) \
2572     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2573 #define ARM_TBFLAG_VFPEN(F) \
2574     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2575 #define ARM_TBFLAG_CONDEXEC(F) \
2576     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2577 #define ARM_TBFLAG_SCTLR_B(F) \
2578     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2579 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2580     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2581 #define ARM_TBFLAG_NS(F) \
2582     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2583 #define ARM_TBFLAG_BE_DATA(F) \
2584     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2585 #define ARM_TBFLAG_HANDLER(F) \
2586     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2587 #define ARM_TBFLAG_TBI0(F) \
2588     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2589 #define ARM_TBFLAG_TBI1(F) \
2590     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2591 
2592 static inline bool bswap_code(bool sctlr_b)
2593 {
2594 #ifdef CONFIG_USER_ONLY
2595     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2596      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2597      * would also end up as a mixed-endian mode with BE code, LE data.
2598      */
2599     return
2600 #ifdef TARGET_WORDS_BIGENDIAN
2601         1 ^
2602 #endif
2603         sctlr_b;
2604 #else
2605     /* All code access in ARM is little endian, and there are no loaders
2606      * doing swaps that need to be reversed
2607      */
2608     return 0;
2609 #endif
2610 }
2611 
2612 /* Return the exception level to which FP-disabled exceptions should
2613  * be taken, or 0 if FP is enabled.
2614  */
2615 static inline int fp_exception_el(CPUARMState *env)
2616 {
2617     int fpen;
2618     int cur_el = arm_current_el(env);
2619 
2620     /* CPACR and the CPTR registers don't exist before v6, so FP is
2621      * always accessible
2622      */
2623     if (!arm_feature(env, ARM_FEATURE_V6)) {
2624         return 0;
2625     }
2626 
2627     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2628      * 0, 2 : trap EL0 and EL1/PL1 accesses
2629      * 1    : trap only EL0 accesses
2630      * 3    : trap no accesses
2631      */
2632     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2633     switch (fpen) {
2634     case 0:
2635     case 2:
2636         if (cur_el == 0 || cur_el == 1) {
2637             /* Trap to PL1, which might be EL1 or EL3 */
2638             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2639                 return 3;
2640             }
2641             return 1;
2642         }
2643         if (cur_el == 3 && !is_a64(env)) {
2644             /* Secure PL1 running at EL3 */
2645             return 3;
2646         }
2647         break;
2648     case 1:
2649         if (cur_el == 0) {
2650             return 1;
2651         }
2652         break;
2653     case 3:
2654         break;
2655     }
2656 
2657     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2658      * check because zero bits in the registers mean "don't trap".
2659      */
2660 
2661     /* CPTR_EL2 : present in v7VE or v8 */
2662     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2663         && !arm_is_secure_below_el3(env)) {
2664         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2665         return 2;
2666     }
2667 
2668     /* CPTR_EL3 : present in v8 */
2669     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2670         /* Trap all FP ops to EL3 */
2671         return 3;
2672     }
2673 
2674     return 0;
2675 }
2676 
2677 #ifdef CONFIG_USER_ONLY
2678 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2679 {
2680     return
2681 #ifdef TARGET_WORDS_BIGENDIAN
2682        1 ^
2683 #endif
2684        arm_cpu_data_is_big_endian(env);
2685 }
2686 #endif
2687 
2688 #ifndef CONFIG_USER_ONLY
2689 /**
2690  * arm_regime_tbi0:
2691  * @env: CPUARMState
2692  * @mmu_idx: MMU index indicating required translation regime
2693  *
2694  * Extracts the TBI0 value from the appropriate TCR for the current EL
2695  *
2696  * Returns: the TBI0 value.
2697  */
2698 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2699 
2700 /**
2701  * arm_regime_tbi1:
2702  * @env: CPUARMState
2703  * @mmu_idx: MMU index indicating required translation regime
2704  *
2705  * Extracts the TBI1 value from the appropriate TCR for the current EL
2706  *
2707  * Returns: the TBI1 value.
2708  */
2709 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2710 #else
2711 /* We can't handle tagged addresses properly in user-only mode */
2712 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2713 {
2714     return 0;
2715 }
2716 
2717 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2718 {
2719     return 0;
2720 }
2721 #endif
2722 
2723 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2724                                         target_ulong *cs_base, uint32_t *flags)
2725 {
2726     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2727     if (is_a64(env)) {
2728         *pc = env->pc;
2729         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2730         /* Get control bits for tagged addresses */
2731         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2732         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2733     } else {
2734         *pc = env->regs[15];
2735         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2736             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2737             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2738             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2739             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2740         if (!(access_secure_reg(env))) {
2741             *flags |= ARM_TBFLAG_NS_MASK;
2742         }
2743         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2744             || arm_el_is_aa64(env, 1)) {
2745             *flags |= ARM_TBFLAG_VFPEN_MASK;
2746         }
2747         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2748                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2749     }
2750 
2751     *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2752 
2753     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2754      * states defined in the ARM ARM for software singlestep:
2755      *  SS_ACTIVE   PSTATE.SS   State
2756      *     0            x       Inactive (the TB flag for SS is always 0)
2757      *     1            0       Active-pending
2758      *     1            1       Active-not-pending
2759      */
2760     if (arm_singlestep_active(env)) {
2761         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2762         if (is_a64(env)) {
2763             if (env->pstate & PSTATE_SS) {
2764                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2765             }
2766         } else {
2767             if (env->uncached_cpsr & PSTATE_SS) {
2768                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2769             }
2770         }
2771     }
2772     if (arm_cpu_data_is_big_endian(env)) {
2773         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2774     }
2775     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2776 
2777     if (arm_v7m_is_handler_mode(env)) {
2778         *flags |= ARM_TBFLAG_HANDLER_MASK;
2779     }
2780 
2781     *cs_base = 0;
2782 }
2783 
2784 enum {
2785     QEMU_PSCI_CONDUIT_DISABLED = 0,
2786     QEMU_PSCI_CONDUIT_SMC = 1,
2787     QEMU_PSCI_CONDUIT_HVC = 2,
2788 };
2789 
2790 #ifndef CONFIG_USER_ONLY
2791 /* Return the address space index to use for a memory access */
2792 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2793 {
2794     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2795 }
2796 
2797 /* Return the AddressSpace to use for a memory access
2798  * (which depends on whether the access is S or NS, and whether
2799  * the board gave us a separate AddressSpace for S accesses).
2800  */
2801 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2802 {
2803     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2804 }
2805 #endif
2806 
2807 /**
2808  * arm_register_el_change_hook:
2809  * Register a hook function which will be called back whenever this
2810  * CPU changes exception level or mode. The hook function will be
2811  * passed a pointer to the ARMCPU and the opaque data pointer passed
2812  * to this function when the hook was registered.
2813  *
2814  * Note that we currently only support registering a single hook function,
2815  * and will assert if this function is called twice.
2816  * This facility is intended for the use of the GICv3 emulation.
2817  */
2818 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2819                                  void *opaque);
2820 
2821 /**
2822  * arm_get_el_change_hook_opaque:
2823  * Return the opaque data that will be used by the el_change_hook
2824  * for this CPU.
2825  */
2826 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2827 {
2828     return cpu->el_change_hook_opaque;
2829 }
2830 
2831 #endif
2832