1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 26 #if defined(TARGET_AARCH64) 27 /* AArch64 definitions */ 28 # define TARGET_LONG_BITS 64 29 #else 30 # define TARGET_LONG_BITS 32 31 #endif 32 33 /* ARM processors have a weak memory model */ 34 #define TCG_GUEST_DEFAULT_MO (0) 35 36 #define CPUArchState struct CPUARMState 37 38 #include "qemu-common.h" 39 #include "cpu-qom.h" 40 #include "exec/cpu-defs.h" 41 42 #include "fpu/softfloat.h" 43 44 #define EXCP_UDEF 1 /* undefined instruction */ 45 #define EXCP_SWI 2 /* software interrupt */ 46 #define EXCP_PREFETCH_ABORT 3 47 #define EXCP_DATA_ABORT 4 48 #define EXCP_IRQ 5 49 #define EXCP_FIQ 6 50 #define EXCP_BKPT 7 51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 53 #define EXCP_HVC 11 /* HyperVisor Call */ 54 #define EXCP_HYP_TRAP 12 55 #define EXCP_SMC 13 /* Secure Monitor Call */ 56 #define EXCP_VIRQ 14 57 #define EXCP_VFIQ 15 58 #define EXCP_SEMIHOST 16 /* semihosting call */ 59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 62 63 #define ARMV7M_EXCP_RESET 1 64 #define ARMV7M_EXCP_NMI 2 65 #define ARMV7M_EXCP_HARD 3 66 #define ARMV7M_EXCP_MEM 4 67 #define ARMV7M_EXCP_BUS 5 68 #define ARMV7M_EXCP_USAGE 6 69 #define ARMV7M_EXCP_SECURE 7 70 #define ARMV7M_EXCP_SVC 11 71 #define ARMV7M_EXCP_DEBUG 12 72 #define ARMV7M_EXCP_PENDSV 14 73 #define ARMV7M_EXCP_SYSTICK 15 74 75 /* For M profile, some registers are banked secure vs non-secure; 76 * these are represented as a 2-element array where the first element 77 * is the non-secure copy and the second is the secure copy. 78 * When the CPU does not have implement the security extension then 79 * only the first element is used. 80 * This means that the copy for the current security state can be 81 * accessed via env->registerfield[env->v7m.secure] (whether the security 82 * extension is implemented or not). 83 */ 84 enum { 85 M_REG_NS = 0, 86 M_REG_S = 1, 87 M_REG_NUM_BANKS = 2, 88 }; 89 90 /* ARM-specific interrupt pending bits. */ 91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 94 95 /* The usual mapping for an AArch64 system register to its AArch32 96 * counterpart is for the 32 bit world to have access to the lower 97 * half only (with writes leaving the upper half untouched). It's 98 * therefore useful to be able to pass TCG the offset of the least 99 * significant half of a uint64_t struct member. 100 */ 101 #ifdef HOST_WORDS_BIGENDIAN 102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #define offsetofhigh32(S, M) offsetof(S, M) 104 #else 105 #define offsetoflow32(S, M) offsetof(S, M) 106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 107 #endif 108 109 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 110 #define ARM_CPU_IRQ 0 111 #define ARM_CPU_FIQ 1 112 #define ARM_CPU_VIRQ 2 113 #define ARM_CPU_VFIQ 3 114 115 #define NB_MMU_MODES 7 116 /* ARM-specific extra insn start words: 117 * 1: Conditional execution bits 118 * 2: Partial exception syndrome for data aborts 119 */ 120 #define TARGET_INSN_START_EXTRA_WORDS 2 121 122 /* The 2nd extra word holding syndrome info for data aborts does not use 123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 124 * help the sleb128 encoder do a better job. 125 * When restoring the CPU state, we shift it back up. 126 */ 127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 128 #define ARM_INSN_START_WORD2_SHIFT 14 129 130 /* We currently assume float and double are IEEE single and double 131 precision respectively. 132 Doing runtime conversions is tricky because VFP registers may contain 133 integer values (eg. as the result of a FTOSI instruction). 134 s<2n> maps to the least significant half of d<n> 135 s<2n+1> maps to the most significant half of d<n> 136 */ 137 138 /* CPU state for each instance of a generic timer (in cp15 c14) */ 139 typedef struct ARMGenericTimer { 140 uint64_t cval; /* Timer CompareValue register */ 141 uint64_t ctl; /* Timer Control register */ 142 } ARMGenericTimer; 143 144 #define GTIMER_PHYS 0 145 #define GTIMER_VIRT 1 146 #define GTIMER_HYP 2 147 #define GTIMER_SEC 3 148 #define NUM_GTIMERS 4 149 150 typedef struct { 151 uint64_t raw_tcr; 152 uint32_t mask; 153 uint32_t base_mask; 154 } TCR; 155 156 typedef struct CPUARMState { 157 /* Regs for current mode. */ 158 uint32_t regs[16]; 159 160 /* 32/64 switch only happens when taking and returning from 161 * exceptions so the overlap semantics are taken care of then 162 * instead of having a complicated union. 163 */ 164 /* Regs for A64 mode. */ 165 uint64_t xregs[32]; 166 uint64_t pc; 167 /* PSTATE isn't an architectural register for ARMv8. However, it is 168 * convenient for us to assemble the underlying state into a 32 bit format 169 * identical to the architectural format used for the SPSR. (This is also 170 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 171 * 'pstate' register are.) Of the PSTATE bits: 172 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 173 * semantics as for AArch32, as described in the comments on each field) 174 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 175 * DAIF (exception masks) are kept in env->daif 176 * all other bits are stored in their correct places in env->pstate 177 */ 178 uint32_t pstate; 179 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 180 181 /* Frequently accessed CPSR bits are stored separately for efficiency. 182 This contains all the other bits. Use cpsr_{read,write} to access 183 the whole CPSR. */ 184 uint32_t uncached_cpsr; 185 uint32_t spsr; 186 187 /* Banked registers. */ 188 uint64_t banked_spsr[8]; 189 uint32_t banked_r13[8]; 190 uint32_t banked_r14[8]; 191 192 /* These hold r8-r12. */ 193 uint32_t usr_regs[5]; 194 uint32_t fiq_regs[5]; 195 196 /* cpsr flag cache for faster execution */ 197 uint32_t CF; /* 0 or 1 */ 198 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 199 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 200 uint32_t ZF; /* Z set if zero. */ 201 uint32_t QF; /* 0 or 1 */ 202 uint32_t GE; /* cpsr[19:16] */ 203 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 204 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 205 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 206 207 uint64_t elr_el[4]; /* AArch64 exception link regs */ 208 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 209 210 /* System control coprocessor (cp15) */ 211 struct { 212 uint32_t c0_cpuid; 213 union { /* Cache size selection */ 214 struct { 215 uint64_t _unused_csselr0; 216 uint64_t csselr_ns; 217 uint64_t _unused_csselr1; 218 uint64_t csselr_s; 219 }; 220 uint64_t csselr_el[4]; 221 }; 222 union { /* System control register. */ 223 struct { 224 uint64_t _unused_sctlr; 225 uint64_t sctlr_ns; 226 uint64_t hsctlr; 227 uint64_t sctlr_s; 228 }; 229 uint64_t sctlr_el[4]; 230 }; 231 uint64_t cpacr_el1; /* Architectural feature access control register */ 232 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 233 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 234 uint64_t sder; /* Secure debug enable register. */ 235 uint32_t nsacr; /* Non-secure access control register. */ 236 union { /* MMU translation table base 0. */ 237 struct { 238 uint64_t _unused_ttbr0_0; 239 uint64_t ttbr0_ns; 240 uint64_t _unused_ttbr0_1; 241 uint64_t ttbr0_s; 242 }; 243 uint64_t ttbr0_el[4]; 244 }; 245 union { /* MMU translation table base 1. */ 246 struct { 247 uint64_t _unused_ttbr1_0; 248 uint64_t ttbr1_ns; 249 uint64_t _unused_ttbr1_1; 250 uint64_t ttbr1_s; 251 }; 252 uint64_t ttbr1_el[4]; 253 }; 254 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 255 /* MMU translation table base control. */ 256 TCR tcr_el[4]; 257 TCR vtcr_el2; /* Virtualization Translation Control. */ 258 uint32_t c2_data; /* MPU data cacheable bits. */ 259 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 260 union { /* MMU domain access control register 261 * MPU write buffer control. 262 */ 263 struct { 264 uint64_t dacr_ns; 265 uint64_t dacr_s; 266 }; 267 struct { 268 uint64_t dacr32_el2; 269 }; 270 }; 271 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 272 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 273 uint64_t hcr_el2; /* Hypervisor configuration register */ 274 uint64_t scr_el3; /* Secure configuration register. */ 275 union { /* Fault status registers. */ 276 struct { 277 uint64_t ifsr_ns; 278 uint64_t ifsr_s; 279 }; 280 struct { 281 uint64_t ifsr32_el2; 282 }; 283 }; 284 union { 285 struct { 286 uint64_t _unused_dfsr; 287 uint64_t dfsr_ns; 288 uint64_t hsr; 289 uint64_t dfsr_s; 290 }; 291 uint64_t esr_el[4]; 292 }; 293 uint32_t c6_region[8]; /* MPU base/size registers. */ 294 union { /* Fault address registers. */ 295 struct { 296 uint64_t _unused_far0; 297 #ifdef HOST_WORDS_BIGENDIAN 298 uint32_t ifar_ns; 299 uint32_t dfar_ns; 300 uint32_t ifar_s; 301 uint32_t dfar_s; 302 #else 303 uint32_t dfar_ns; 304 uint32_t ifar_ns; 305 uint32_t dfar_s; 306 uint32_t ifar_s; 307 #endif 308 uint64_t _unused_far3; 309 }; 310 uint64_t far_el[4]; 311 }; 312 uint64_t hpfar_el2; 313 uint64_t hstr_el2; 314 union { /* Translation result. */ 315 struct { 316 uint64_t _unused_par_0; 317 uint64_t par_ns; 318 uint64_t _unused_par_1; 319 uint64_t par_s; 320 }; 321 uint64_t par_el[4]; 322 }; 323 324 uint32_t c9_insn; /* Cache lockdown registers. */ 325 uint32_t c9_data; 326 uint64_t c9_pmcr; /* performance monitor control register */ 327 uint64_t c9_pmcnten; /* perf monitor counter enables */ 328 uint32_t c9_pmovsr; /* perf monitor overflow status */ 329 uint32_t c9_pmuserenr; /* perf monitor user enable */ 330 uint64_t c9_pmselr; /* perf monitor counter selection register */ 331 uint64_t c9_pminten; /* perf monitor interrupt enables */ 332 union { /* Memory attribute redirection */ 333 struct { 334 #ifdef HOST_WORDS_BIGENDIAN 335 uint64_t _unused_mair_0; 336 uint32_t mair1_ns; 337 uint32_t mair0_ns; 338 uint64_t _unused_mair_1; 339 uint32_t mair1_s; 340 uint32_t mair0_s; 341 #else 342 uint64_t _unused_mair_0; 343 uint32_t mair0_ns; 344 uint32_t mair1_ns; 345 uint64_t _unused_mair_1; 346 uint32_t mair0_s; 347 uint32_t mair1_s; 348 #endif 349 }; 350 uint64_t mair_el[4]; 351 }; 352 union { /* vector base address register */ 353 struct { 354 uint64_t _unused_vbar; 355 uint64_t vbar_ns; 356 uint64_t hvbar; 357 uint64_t vbar_s; 358 }; 359 uint64_t vbar_el[4]; 360 }; 361 uint32_t mvbar; /* (monitor) vector base address register */ 362 struct { /* FCSE PID. */ 363 uint32_t fcseidr_ns; 364 uint32_t fcseidr_s; 365 }; 366 union { /* Context ID. */ 367 struct { 368 uint64_t _unused_contextidr_0; 369 uint64_t contextidr_ns; 370 uint64_t _unused_contextidr_1; 371 uint64_t contextidr_s; 372 }; 373 uint64_t contextidr_el[4]; 374 }; 375 union { /* User RW Thread register. */ 376 struct { 377 uint64_t tpidrurw_ns; 378 uint64_t tpidrprw_ns; 379 uint64_t htpidr; 380 uint64_t _tpidr_el3; 381 }; 382 uint64_t tpidr_el[4]; 383 }; 384 /* The secure banks of these registers don't map anywhere */ 385 uint64_t tpidrurw_s; 386 uint64_t tpidrprw_s; 387 uint64_t tpidruro_s; 388 389 union { /* User RO Thread register. */ 390 uint64_t tpidruro_ns; 391 uint64_t tpidrro_el[1]; 392 }; 393 uint64_t c14_cntfrq; /* Counter Frequency register */ 394 uint64_t c14_cntkctl; /* Timer Control register */ 395 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 396 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 397 ARMGenericTimer c14_timer[NUM_GTIMERS]; 398 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 399 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 400 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 401 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 402 uint32_t c15_threadid; /* TI debugger thread-ID. */ 403 uint32_t c15_config_base_address; /* SCU base address. */ 404 uint32_t c15_diagnostic; /* diagnostic register */ 405 uint32_t c15_power_diagnostic; 406 uint32_t c15_power_control; /* power control */ 407 uint64_t dbgbvr[16]; /* breakpoint value registers */ 408 uint64_t dbgbcr[16]; /* breakpoint control registers */ 409 uint64_t dbgwvr[16]; /* watchpoint value registers */ 410 uint64_t dbgwcr[16]; /* watchpoint control registers */ 411 uint64_t mdscr_el1; 412 uint64_t oslsr_el1; /* OS Lock Status */ 413 uint64_t mdcr_el2; 414 uint64_t mdcr_el3; 415 /* If the counter is enabled, this stores the last time the counter 416 * was reset. Otherwise it stores the counter value 417 */ 418 uint64_t c15_ccnt; 419 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 420 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 421 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 422 } cp15; 423 424 struct { 425 /* M profile has up to 4 stack pointers: 426 * a Main Stack Pointer and a Process Stack Pointer for each 427 * of the Secure and Non-Secure states. (If the CPU doesn't support 428 * the security extension then it has only two SPs.) 429 * In QEMU we always store the currently active SP in regs[13], 430 * and the non-active SP for the current security state in 431 * v7m.other_sp. The stack pointers for the inactive security state 432 * are stored in other_ss_msp and other_ss_psp. 433 * switch_v7m_security_state() is responsible for rearranging them 434 * when we change security state. 435 */ 436 uint32_t other_sp; 437 uint32_t other_ss_msp; 438 uint32_t other_ss_psp; 439 uint32_t vecbase[M_REG_NUM_BANKS]; 440 uint32_t basepri[M_REG_NUM_BANKS]; 441 uint32_t control[M_REG_NUM_BANKS]; 442 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 443 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 444 uint32_t hfsr; /* HardFault Status */ 445 uint32_t dfsr; /* Debug Fault Status Register */ 446 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 447 uint32_t bfar; /* BusFault Address */ 448 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 449 int exception; 450 uint32_t primask[M_REG_NUM_BANKS]; 451 uint32_t faultmask[M_REG_NUM_BANKS]; 452 uint32_t aircr; /* only holds r/w state if security extn implemented */ 453 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 454 } v7m; 455 456 /* Information associated with an exception about to be taken: 457 * code which raises an exception must set cs->exception_index and 458 * the relevant parts of this structure; the cpu_do_interrupt function 459 * will then set the guest-visible registers as part of the exception 460 * entry process. 461 */ 462 struct { 463 uint32_t syndrome; /* AArch64 format syndrome register */ 464 uint32_t fsr; /* AArch32 format fault status register info */ 465 uint64_t vaddress; /* virtual addr associated with exception, if any */ 466 uint32_t target_el; /* EL the exception should be targeted for */ 467 /* If we implement EL2 we will also need to store information 468 * about the intermediate physical address for stage 2 faults. 469 */ 470 } exception; 471 472 /* Thumb-2 EE state. */ 473 uint32_t teecr; 474 uint32_t teehbr; 475 476 /* VFP coprocessor state. */ 477 struct { 478 /* VFP/Neon register state. Note that the mapping between S, D and Q 479 * views of the register bank differs between AArch64 and AArch32: 480 * In AArch32: 481 * Qn = regs[2n+1]:regs[2n] 482 * Dn = regs[n] 483 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n 484 * (and regs[32] to regs[63] are inaccessible) 485 * In AArch64: 486 * Qn = regs[2n+1]:regs[2n] 487 * Dn = regs[2n] 488 * Sn = regs[2n] bits 31..0 489 * This corresponds to the architecturally defined mapping between 490 * the two execution states, and means we do not need to explicitly 491 * map these registers when changing states. 492 */ 493 float64 regs[64]; 494 495 uint32_t xregs[16]; 496 /* We store these fpcsr fields separately for convenience. */ 497 int vec_len; 498 int vec_stride; 499 500 /* scratch space when Tn are not sufficient. */ 501 uint32_t scratch[8]; 502 503 /* fp_status is the "normal" fp status. standard_fp_status retains 504 * values corresponding to the ARM "Standard FPSCR Value", ie 505 * default-NaN, flush-to-zero, round-to-nearest and is used by 506 * any operations (generally Neon) which the architecture defines 507 * as controlled by the standard FPSCR value rather than the FPSCR. 508 * 509 * To avoid having to transfer exception bits around, we simply 510 * say that the FPSCR cumulative exception flags are the logical 511 * OR of the flags in the two fp statuses. This relies on the 512 * only thing which needs to read the exception flags being 513 * an explicit FPSCR read. 514 */ 515 float_status fp_status; 516 float_status standard_fp_status; 517 } vfp; 518 uint64_t exclusive_addr; 519 uint64_t exclusive_val; 520 uint64_t exclusive_high; 521 522 /* iwMMXt coprocessor state. */ 523 struct { 524 uint64_t regs[16]; 525 uint64_t val; 526 527 uint32_t cregs[16]; 528 } iwmmxt; 529 530 #if defined(CONFIG_USER_ONLY) 531 /* For usermode syscall translation. */ 532 int eabi; 533 #endif 534 535 struct CPUBreakpoint *cpu_breakpoint[16]; 536 struct CPUWatchpoint *cpu_watchpoint[16]; 537 538 /* Fields up to this point are cleared by a CPU reset */ 539 struct {} end_reset_fields; 540 541 CPU_COMMON 542 543 /* Fields after CPU_COMMON are preserved across CPU reset. */ 544 545 /* Internal CPU feature flags. */ 546 uint64_t features; 547 548 /* PMSAv7 MPU */ 549 struct { 550 uint32_t *drbar; 551 uint32_t *drsr; 552 uint32_t *dracr; 553 uint32_t rnr[M_REG_NUM_BANKS]; 554 } pmsav7; 555 556 /* PMSAv8 MPU */ 557 struct { 558 /* The PMSAv8 implementation also shares some PMSAv7 config 559 * and state: 560 * pmsav7.rnr (region number register) 561 * pmsav7_dregion (number of configured regions) 562 */ 563 uint32_t *rbar[M_REG_NUM_BANKS]; 564 uint32_t *rlar[M_REG_NUM_BANKS]; 565 uint32_t mair0[M_REG_NUM_BANKS]; 566 uint32_t mair1[M_REG_NUM_BANKS]; 567 } pmsav8; 568 569 void *nvic; 570 const struct arm_boot_info *boot_info; 571 /* Store GICv3CPUState to access from this struct */ 572 void *gicv3state; 573 } CPUARMState; 574 575 /** 576 * ARMELChangeHook: 577 * type of a function which can be registered via arm_register_el_change_hook() 578 * to get callbacks when the CPU changes its exception level or mode. 579 */ 580 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque); 581 582 583 /* These values map onto the return values for 584 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 585 typedef enum ARMPSCIState { 586 PSCI_ON = 0, 587 PSCI_OFF = 1, 588 PSCI_ON_PENDING = 2 589 } ARMPSCIState; 590 591 /** 592 * ARMCPU: 593 * @env: #CPUARMState 594 * 595 * An ARM CPU core. 596 */ 597 struct ARMCPU { 598 /*< private >*/ 599 CPUState parent_obj; 600 /*< public >*/ 601 602 CPUARMState env; 603 604 /* Coprocessor information */ 605 GHashTable *cp_regs; 606 /* For marshalling (mostly coprocessor) register state between the 607 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 608 * we use these arrays. 609 */ 610 /* List of register indexes managed via these arrays; (full KVM style 611 * 64 bit indexes, not CPRegInfo 32 bit indexes) 612 */ 613 uint64_t *cpreg_indexes; 614 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 615 uint64_t *cpreg_values; 616 /* Length of the indexes, values, reset_values arrays */ 617 int32_t cpreg_array_len; 618 /* These are used only for migration: incoming data arrives in 619 * these fields and is sanity checked in post_load before copying 620 * to the working data structures above. 621 */ 622 uint64_t *cpreg_vmstate_indexes; 623 uint64_t *cpreg_vmstate_values; 624 int32_t cpreg_vmstate_array_len; 625 626 /* Timers used by the generic (architected) timer */ 627 QEMUTimer *gt_timer[NUM_GTIMERS]; 628 /* GPIO outputs for generic timer */ 629 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 630 /* GPIO output for GICv3 maintenance interrupt signal */ 631 qemu_irq gicv3_maintenance_interrupt; 632 /* GPIO output for the PMU interrupt */ 633 qemu_irq pmu_interrupt; 634 635 /* MemoryRegion to use for secure physical accesses */ 636 MemoryRegion *secure_memory; 637 638 /* 'compatible' string for this CPU for Linux device trees */ 639 const char *dtb_compatible; 640 641 /* PSCI version for this CPU 642 * Bits[31:16] = Major Version 643 * Bits[15:0] = Minor Version 644 */ 645 uint32_t psci_version; 646 647 /* Should CPU start in PSCI powered-off state? */ 648 bool start_powered_off; 649 650 /* Current power state, access guarded by BQL */ 651 ARMPSCIState power_state; 652 653 /* CPU has virtualization extension */ 654 bool has_el2; 655 /* CPU has security extension */ 656 bool has_el3; 657 /* CPU has PMU (Performance Monitor Unit) */ 658 bool has_pmu; 659 660 /* CPU has memory protection unit */ 661 bool has_mpu; 662 /* PMSAv7 MPU number of supported regions */ 663 uint32_t pmsav7_dregion; 664 665 /* PSCI conduit used to invoke PSCI methods 666 * 0 - disabled, 1 - smc, 2 - hvc 667 */ 668 uint32_t psci_conduit; 669 670 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 671 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 672 */ 673 uint32_t kvm_target; 674 675 /* KVM init features for this CPU */ 676 uint32_t kvm_init_features[7]; 677 678 /* Uniprocessor system with MP extensions */ 679 bool mp_is_up; 680 681 /* The instance init functions for implementation-specific subclasses 682 * set these fields to specify the implementation-dependent values of 683 * various constant registers and reset values of non-constant 684 * registers. 685 * Some of these might become QOM properties eventually. 686 * Field names match the official register names as defined in the 687 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 688 * is used for reset values of non-constant registers; no reset_ 689 * prefix means a constant register. 690 */ 691 uint32_t midr; 692 uint32_t revidr; 693 uint32_t reset_fpsid; 694 uint32_t mvfr0; 695 uint32_t mvfr1; 696 uint32_t mvfr2; 697 uint32_t ctr; 698 uint32_t reset_sctlr; 699 uint32_t id_pfr0; 700 uint32_t id_pfr1; 701 uint32_t id_dfr0; 702 uint32_t pmceid0; 703 uint32_t pmceid1; 704 uint32_t id_afr0; 705 uint32_t id_mmfr0; 706 uint32_t id_mmfr1; 707 uint32_t id_mmfr2; 708 uint32_t id_mmfr3; 709 uint32_t id_mmfr4; 710 uint32_t id_isar0; 711 uint32_t id_isar1; 712 uint32_t id_isar2; 713 uint32_t id_isar3; 714 uint32_t id_isar4; 715 uint32_t id_isar5; 716 uint64_t id_aa64pfr0; 717 uint64_t id_aa64pfr1; 718 uint64_t id_aa64dfr0; 719 uint64_t id_aa64dfr1; 720 uint64_t id_aa64afr0; 721 uint64_t id_aa64afr1; 722 uint64_t id_aa64isar0; 723 uint64_t id_aa64isar1; 724 uint64_t id_aa64mmfr0; 725 uint64_t id_aa64mmfr1; 726 uint32_t dbgdidr; 727 uint32_t clidr; 728 uint64_t mp_affinity; /* MP ID without feature bits */ 729 /* The elements of this array are the CCSIDR values for each cache, 730 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 731 */ 732 uint32_t ccsidr[16]; 733 uint64_t reset_cbar; 734 uint32_t reset_auxcr; 735 bool reset_hivecs; 736 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 737 uint32_t dcz_blocksize; 738 uint64_t rvbar; 739 740 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 741 int gic_num_lrs; /* number of list registers */ 742 int gic_vpribits; /* number of virtual priority bits */ 743 int gic_vprebits; /* number of virtual preemption bits */ 744 745 /* Whether the cfgend input is high (i.e. this CPU should reset into 746 * big-endian mode). This setting isn't used directly: instead it modifies 747 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 748 * architecture version. 749 */ 750 bool cfgend; 751 752 ARMELChangeHook *el_change_hook; 753 void *el_change_hook_opaque; 754 755 int32_t node_id; /* NUMA node this CPU belongs to */ 756 757 /* Used to synchronize KVM and QEMU in-kernel device levels */ 758 uint8_t device_irq_level; 759 }; 760 761 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) 762 { 763 return container_of(env, ARMCPU, env); 764 } 765 766 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 767 768 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) 769 770 #define ENV_OFFSET offsetof(ARMCPU, env) 771 772 #ifndef CONFIG_USER_ONLY 773 extern const struct VMStateDescription vmstate_arm_cpu; 774 #endif 775 776 void arm_cpu_do_interrupt(CPUState *cpu); 777 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 778 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 779 780 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, 781 int flags); 782 783 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 784 MemTxAttrs *attrs); 785 786 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 787 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 788 789 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 790 int cpuid, void *opaque); 791 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 792 int cpuid, void *opaque); 793 794 #ifdef TARGET_AARCH64 795 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 796 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 797 #endif 798 799 target_ulong do_arm_semihosting(CPUARMState *env); 800 void aarch64_sync_32_to_64(CPUARMState *env); 801 void aarch64_sync_64_to_32(CPUARMState *env); 802 803 static inline bool is_a64(CPUARMState *env) 804 { 805 return env->aarch64; 806 } 807 808 /* you can call this signal handler from your SIGBUS and SIGSEGV 809 signal handlers to inform the virtual CPU of exceptions. non zero 810 is returned if the signal was handled by the virtual CPU. */ 811 int cpu_arm_signal_handler(int host_signum, void *pinfo, 812 void *puc); 813 814 /** 815 * pmccntr_sync 816 * @env: CPUARMState 817 * 818 * Synchronises the counter in the PMCCNTR. This must always be called twice, 819 * once before any action that might affect the timer and again afterwards. 820 * The function is used to swap the state of the register if required. 821 * This only happens when not in user mode (!CONFIG_USER_ONLY) 822 */ 823 void pmccntr_sync(CPUARMState *env); 824 825 /* SCTLR bit meanings. Several bits have been reused in newer 826 * versions of the architecture; in that case we define constants 827 * for both old and new bit meanings. Code which tests against those 828 * bits should probably check or otherwise arrange that the CPU 829 * is the architectural version it expects. 830 */ 831 #define SCTLR_M (1U << 0) 832 #define SCTLR_A (1U << 1) 833 #define SCTLR_C (1U << 2) 834 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 835 #define SCTLR_SA (1U << 3) 836 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 837 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 838 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 839 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 840 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 841 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 842 #define SCTLR_ITD (1U << 7) /* v8 onward */ 843 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 844 #define SCTLR_SED (1U << 8) /* v8 onward */ 845 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 846 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 847 #define SCTLR_F (1U << 10) /* up to v6 */ 848 #define SCTLR_SW (1U << 10) /* v7 onward */ 849 #define SCTLR_Z (1U << 11) 850 #define SCTLR_I (1U << 12) 851 #define SCTLR_V (1U << 13) 852 #define SCTLR_RR (1U << 14) /* up to v7 */ 853 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 854 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 855 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 856 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 857 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 858 #define SCTLR_HA (1U << 17) 859 #define SCTLR_BR (1U << 17) /* PMSA only */ 860 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 861 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 862 #define SCTLR_WXN (1U << 19) 863 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 864 #define SCTLR_UWXN (1U << 20) /* v7 onward */ 865 #define SCTLR_FI (1U << 21) 866 #define SCTLR_U (1U << 22) 867 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 868 #define SCTLR_VE (1U << 24) /* up to v7 */ 869 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 870 #define SCTLR_EE (1U << 25) 871 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 872 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 873 #define SCTLR_NMFI (1U << 27) 874 #define SCTLR_TRE (1U << 28) 875 #define SCTLR_AFE (1U << 29) 876 #define SCTLR_TE (1U << 30) 877 878 #define CPTR_TCPAC (1U << 31) 879 #define CPTR_TTA (1U << 20) 880 #define CPTR_TFP (1U << 10) 881 882 #define MDCR_EPMAD (1U << 21) 883 #define MDCR_EDAD (1U << 20) 884 #define MDCR_SPME (1U << 17) 885 #define MDCR_SDD (1U << 16) 886 #define MDCR_SPD (3U << 14) 887 #define MDCR_TDRA (1U << 11) 888 #define MDCR_TDOSA (1U << 10) 889 #define MDCR_TDA (1U << 9) 890 #define MDCR_TDE (1U << 8) 891 #define MDCR_HPME (1U << 7) 892 #define MDCR_TPM (1U << 6) 893 #define MDCR_TPMCR (1U << 5) 894 895 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 896 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 897 898 #define CPSR_M (0x1fU) 899 #define CPSR_T (1U << 5) 900 #define CPSR_F (1U << 6) 901 #define CPSR_I (1U << 7) 902 #define CPSR_A (1U << 8) 903 #define CPSR_E (1U << 9) 904 #define CPSR_IT_2_7 (0xfc00U) 905 #define CPSR_GE (0xfU << 16) 906 #define CPSR_IL (1U << 20) 907 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 908 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 909 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 910 * where it is live state but not accessible to the AArch32 code. 911 */ 912 #define CPSR_RESERVED (0x7U << 21) 913 #define CPSR_J (1U << 24) 914 #define CPSR_IT_0_1 (3U << 25) 915 #define CPSR_Q (1U << 27) 916 #define CPSR_V (1U << 28) 917 #define CPSR_C (1U << 29) 918 #define CPSR_Z (1U << 30) 919 #define CPSR_N (1U << 31) 920 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 921 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 922 923 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 924 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 925 | CPSR_NZCV) 926 /* Bits writable in user mode. */ 927 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 928 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 929 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 930 /* Mask of bits which may be set by exception return copying them from SPSR */ 931 #define CPSR_ERET_MASK (~CPSR_RESERVED) 932 933 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 934 #define XPSR_EXCP 0x1ffU 935 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 936 #define XPSR_IT_2_7 CPSR_IT_2_7 937 #define XPSR_GE CPSR_GE 938 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 939 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 940 #define XPSR_IT_0_1 CPSR_IT_0_1 941 #define XPSR_Q CPSR_Q 942 #define XPSR_V CPSR_V 943 #define XPSR_C CPSR_C 944 #define XPSR_Z CPSR_Z 945 #define XPSR_N CPSR_N 946 #define XPSR_NZCV CPSR_NZCV 947 #define XPSR_IT CPSR_IT 948 949 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 950 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 951 #define TTBCR_PD0 (1U << 4) 952 #define TTBCR_PD1 (1U << 5) 953 #define TTBCR_EPD0 (1U << 7) 954 #define TTBCR_IRGN0 (3U << 8) 955 #define TTBCR_ORGN0 (3U << 10) 956 #define TTBCR_SH0 (3U << 12) 957 #define TTBCR_T1SZ (3U << 16) 958 #define TTBCR_A1 (1U << 22) 959 #define TTBCR_EPD1 (1U << 23) 960 #define TTBCR_IRGN1 (3U << 24) 961 #define TTBCR_ORGN1 (3U << 26) 962 #define TTBCR_SH1 (1U << 28) 963 #define TTBCR_EAE (1U << 31) 964 965 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 966 * Only these are valid when in AArch64 mode; in 967 * AArch32 mode SPSRs are basically CPSR-format. 968 */ 969 #define PSTATE_SP (1U) 970 #define PSTATE_M (0xFU) 971 #define PSTATE_nRW (1U << 4) 972 #define PSTATE_F (1U << 6) 973 #define PSTATE_I (1U << 7) 974 #define PSTATE_A (1U << 8) 975 #define PSTATE_D (1U << 9) 976 #define PSTATE_IL (1U << 20) 977 #define PSTATE_SS (1U << 21) 978 #define PSTATE_V (1U << 28) 979 #define PSTATE_C (1U << 29) 980 #define PSTATE_Z (1U << 30) 981 #define PSTATE_N (1U << 31) 982 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 983 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 984 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) 985 /* Mode values for AArch64 */ 986 #define PSTATE_MODE_EL3h 13 987 #define PSTATE_MODE_EL3t 12 988 #define PSTATE_MODE_EL2h 9 989 #define PSTATE_MODE_EL2t 8 990 #define PSTATE_MODE_EL1h 5 991 #define PSTATE_MODE_EL1t 4 992 #define PSTATE_MODE_EL0t 0 993 994 /* Write a new value to v7m.exception, thus transitioning into or out 995 * of Handler mode; this may result in a change of active stack pointer. 996 */ 997 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 998 999 /* Map EL and handler into a PSTATE_MODE. */ 1000 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1001 { 1002 return (el << 2) | handler; 1003 } 1004 1005 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1006 * interprocessing, so we don't attempt to sync with the cpsr state used by 1007 * the 32 bit decoder. 1008 */ 1009 static inline uint32_t pstate_read(CPUARMState *env) 1010 { 1011 int ZF; 1012 1013 ZF = (env->ZF == 0); 1014 return (env->NF & 0x80000000) | (ZF << 30) 1015 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1016 | env->pstate | env->daif; 1017 } 1018 1019 static inline void pstate_write(CPUARMState *env, uint32_t val) 1020 { 1021 env->ZF = (~val) & PSTATE_Z; 1022 env->NF = val; 1023 env->CF = (val >> 29) & 1; 1024 env->VF = (val << 3) & 0x80000000; 1025 env->daif = val & PSTATE_DAIF; 1026 env->pstate = val & ~CACHED_PSTATE_BITS; 1027 } 1028 1029 /* Return the current CPSR value. */ 1030 uint32_t cpsr_read(CPUARMState *env); 1031 1032 typedef enum CPSRWriteType { 1033 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1034 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1035 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1036 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1037 } CPSRWriteType; 1038 1039 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1040 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1041 CPSRWriteType write_type); 1042 1043 /* Return the current xPSR value. */ 1044 static inline uint32_t xpsr_read(CPUARMState *env) 1045 { 1046 int ZF; 1047 ZF = (env->ZF == 0); 1048 return (env->NF & 0x80000000) | (ZF << 30) 1049 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1050 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1051 | ((env->condexec_bits & 0xfc) << 8) 1052 | env->v7m.exception; 1053 } 1054 1055 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1056 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1057 { 1058 if (mask & XPSR_NZCV) { 1059 env->ZF = (~val) & XPSR_Z; 1060 env->NF = val; 1061 env->CF = (val >> 29) & 1; 1062 env->VF = (val << 3) & 0x80000000; 1063 } 1064 if (mask & XPSR_Q) { 1065 env->QF = ((val & XPSR_Q) != 0); 1066 } 1067 if (mask & XPSR_T) { 1068 env->thumb = ((val & XPSR_T) != 0); 1069 } 1070 if (mask & XPSR_IT_0_1) { 1071 env->condexec_bits &= ~3; 1072 env->condexec_bits |= (val >> 25) & 3; 1073 } 1074 if (mask & XPSR_IT_2_7) { 1075 env->condexec_bits &= 3; 1076 env->condexec_bits |= (val >> 8) & 0xfc; 1077 } 1078 if (mask & XPSR_EXCP) { 1079 /* Note that this only happens on exception exit */ 1080 write_v7m_exception(env, val & XPSR_EXCP); 1081 } 1082 } 1083 1084 #define HCR_VM (1ULL << 0) 1085 #define HCR_SWIO (1ULL << 1) 1086 #define HCR_PTW (1ULL << 2) 1087 #define HCR_FMO (1ULL << 3) 1088 #define HCR_IMO (1ULL << 4) 1089 #define HCR_AMO (1ULL << 5) 1090 #define HCR_VF (1ULL << 6) 1091 #define HCR_VI (1ULL << 7) 1092 #define HCR_VSE (1ULL << 8) 1093 #define HCR_FB (1ULL << 9) 1094 #define HCR_BSU_MASK (3ULL << 10) 1095 #define HCR_DC (1ULL << 12) 1096 #define HCR_TWI (1ULL << 13) 1097 #define HCR_TWE (1ULL << 14) 1098 #define HCR_TID0 (1ULL << 15) 1099 #define HCR_TID1 (1ULL << 16) 1100 #define HCR_TID2 (1ULL << 17) 1101 #define HCR_TID3 (1ULL << 18) 1102 #define HCR_TSC (1ULL << 19) 1103 #define HCR_TIDCP (1ULL << 20) 1104 #define HCR_TACR (1ULL << 21) 1105 #define HCR_TSW (1ULL << 22) 1106 #define HCR_TPC (1ULL << 23) 1107 #define HCR_TPU (1ULL << 24) 1108 #define HCR_TTLB (1ULL << 25) 1109 #define HCR_TVM (1ULL << 26) 1110 #define HCR_TGE (1ULL << 27) 1111 #define HCR_TDZ (1ULL << 28) 1112 #define HCR_HCD (1ULL << 29) 1113 #define HCR_TRVM (1ULL << 30) 1114 #define HCR_RW (1ULL << 31) 1115 #define HCR_CD (1ULL << 32) 1116 #define HCR_ID (1ULL << 33) 1117 #define HCR_MASK ((1ULL << 34) - 1) 1118 1119 #define SCR_NS (1U << 0) 1120 #define SCR_IRQ (1U << 1) 1121 #define SCR_FIQ (1U << 2) 1122 #define SCR_EA (1U << 3) 1123 #define SCR_FW (1U << 4) 1124 #define SCR_AW (1U << 5) 1125 #define SCR_NET (1U << 6) 1126 #define SCR_SMD (1U << 7) 1127 #define SCR_HCE (1U << 8) 1128 #define SCR_SIF (1U << 9) 1129 #define SCR_RW (1U << 10) 1130 #define SCR_ST (1U << 11) 1131 #define SCR_TWI (1U << 12) 1132 #define SCR_TWE (1U << 13) 1133 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) 1134 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) 1135 1136 /* Return the current FPSCR value. */ 1137 uint32_t vfp_get_fpscr(CPUARMState *env); 1138 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1139 1140 /* For A64 the FPSCR is split into two logically distinct registers, 1141 * FPCR and FPSR. However since they still use non-overlapping bits 1142 * we store the underlying state in fpscr and just mask on read/write. 1143 */ 1144 #define FPSR_MASK 0xf800009f 1145 #define FPCR_MASK 0x07f79f00 1146 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1147 { 1148 return vfp_get_fpscr(env) & FPSR_MASK; 1149 } 1150 1151 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1152 { 1153 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1154 vfp_set_fpscr(env, new_fpscr); 1155 } 1156 1157 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1158 { 1159 return vfp_get_fpscr(env) & FPCR_MASK; 1160 } 1161 1162 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1163 { 1164 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1165 vfp_set_fpscr(env, new_fpscr); 1166 } 1167 1168 enum arm_cpu_mode { 1169 ARM_CPU_MODE_USR = 0x10, 1170 ARM_CPU_MODE_FIQ = 0x11, 1171 ARM_CPU_MODE_IRQ = 0x12, 1172 ARM_CPU_MODE_SVC = 0x13, 1173 ARM_CPU_MODE_MON = 0x16, 1174 ARM_CPU_MODE_ABT = 0x17, 1175 ARM_CPU_MODE_HYP = 0x1a, 1176 ARM_CPU_MODE_UND = 0x1b, 1177 ARM_CPU_MODE_SYS = 0x1f 1178 }; 1179 1180 /* VFP system registers. */ 1181 #define ARM_VFP_FPSID 0 1182 #define ARM_VFP_FPSCR 1 1183 #define ARM_VFP_MVFR2 5 1184 #define ARM_VFP_MVFR1 6 1185 #define ARM_VFP_MVFR0 7 1186 #define ARM_VFP_FPEXC 8 1187 #define ARM_VFP_FPINST 9 1188 #define ARM_VFP_FPINST2 10 1189 1190 /* iwMMXt coprocessor control registers. */ 1191 #define ARM_IWMMXT_wCID 0 1192 #define ARM_IWMMXT_wCon 1 1193 #define ARM_IWMMXT_wCSSF 2 1194 #define ARM_IWMMXT_wCASF 3 1195 #define ARM_IWMMXT_wCGR0 8 1196 #define ARM_IWMMXT_wCGR1 9 1197 #define ARM_IWMMXT_wCGR2 10 1198 #define ARM_IWMMXT_wCGR3 11 1199 1200 /* V7M CCR bits */ 1201 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1202 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1203 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1204 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1205 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1206 FIELD(V7M_CCR, STKALIGN, 9, 1) 1207 FIELD(V7M_CCR, DC, 16, 1) 1208 FIELD(V7M_CCR, IC, 17, 1) 1209 1210 /* V7M AIRCR bits */ 1211 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1212 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1213 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1214 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1215 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1216 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1217 FIELD(V7M_AIRCR, PRIS, 14, 1) 1218 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1219 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1220 1221 /* V7M CFSR bits for MMFSR */ 1222 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1223 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1224 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1225 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1226 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1227 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1228 1229 /* V7M CFSR bits for BFSR */ 1230 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1231 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1232 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1233 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1234 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1235 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1236 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1237 1238 /* V7M CFSR bits for UFSR */ 1239 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1240 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1241 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1242 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1243 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1244 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1245 1246 /* V7M CFSR bit masks covering all of the subregister bits */ 1247 FIELD(V7M_CFSR, MMFSR, 0, 8) 1248 FIELD(V7M_CFSR, BFSR, 8, 8) 1249 FIELD(V7M_CFSR, UFSR, 16, 16) 1250 1251 /* V7M HFSR bits */ 1252 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1253 FIELD(V7M_HFSR, FORCED, 30, 1) 1254 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1255 1256 /* V7M DFSR bits */ 1257 FIELD(V7M_DFSR, HALTED, 0, 1) 1258 FIELD(V7M_DFSR, BKPT, 1, 1) 1259 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1260 FIELD(V7M_DFSR, VCATCH, 3, 1) 1261 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1262 1263 /* v7M MPU_CTRL bits */ 1264 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1265 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1266 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1267 1268 /* If adding a feature bit which corresponds to a Linux ELF 1269 * HWCAP bit, remember to update the feature-bit-to-hwcap 1270 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1271 */ 1272 enum arm_features { 1273 ARM_FEATURE_VFP, 1274 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1275 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1276 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1277 ARM_FEATURE_V6, 1278 ARM_FEATURE_V6K, 1279 ARM_FEATURE_V7, 1280 ARM_FEATURE_THUMB2, 1281 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1282 ARM_FEATURE_VFP3, 1283 ARM_FEATURE_VFP_FP16, 1284 ARM_FEATURE_NEON, 1285 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ 1286 ARM_FEATURE_M, /* Microcontroller profile. */ 1287 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1288 ARM_FEATURE_THUMB2EE, 1289 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1290 ARM_FEATURE_V4T, 1291 ARM_FEATURE_V5, 1292 ARM_FEATURE_STRONGARM, 1293 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1294 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ 1295 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1296 ARM_FEATURE_GENERIC_TIMER, 1297 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1298 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1299 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1300 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1301 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1302 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1303 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1304 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1305 ARM_FEATURE_V8, 1306 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1307 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ 1308 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1309 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1310 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1311 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1312 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1313 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ 1314 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ 1315 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ 1316 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1317 ARM_FEATURE_PMU, /* has PMU support */ 1318 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1319 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1320 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */ 1321 }; 1322 1323 static inline int arm_feature(CPUARMState *env, int feature) 1324 { 1325 return (env->features & (1ULL << feature)) != 0; 1326 } 1327 1328 #if !defined(CONFIG_USER_ONLY) 1329 /* Return true if exception levels below EL3 are in secure state, 1330 * or would be following an exception return to that level. 1331 * Unlike arm_is_secure() (which is always a question about the 1332 * _current_ state of the CPU) this doesn't care about the current 1333 * EL or mode. 1334 */ 1335 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1336 { 1337 if (arm_feature(env, ARM_FEATURE_EL3)) { 1338 return !(env->cp15.scr_el3 & SCR_NS); 1339 } else { 1340 /* If EL3 is not supported then the secure state is implementation 1341 * defined, in which case QEMU defaults to non-secure. 1342 */ 1343 return false; 1344 } 1345 } 1346 1347 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1348 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1349 { 1350 if (arm_feature(env, ARM_FEATURE_EL3)) { 1351 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1352 /* CPU currently in AArch64 state and EL3 */ 1353 return true; 1354 } else if (!is_a64(env) && 1355 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1356 /* CPU currently in AArch32 state and monitor mode */ 1357 return true; 1358 } 1359 } 1360 return false; 1361 } 1362 1363 /* Return true if the processor is in secure state */ 1364 static inline bool arm_is_secure(CPUARMState *env) 1365 { 1366 if (arm_is_el3_or_mon(env)) { 1367 return true; 1368 } 1369 return arm_is_secure_below_el3(env); 1370 } 1371 1372 #else 1373 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1374 { 1375 return false; 1376 } 1377 1378 static inline bool arm_is_secure(CPUARMState *env) 1379 { 1380 return false; 1381 } 1382 #endif 1383 1384 /* Return true if the specified exception level is running in AArch64 state. */ 1385 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1386 { 1387 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1388 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1389 */ 1390 assert(el >= 1 && el <= 3); 1391 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1392 1393 /* The highest exception level is always at the maximum supported 1394 * register width, and then lower levels have a register width controlled 1395 * by bits in the SCR or HCR registers. 1396 */ 1397 if (el == 3) { 1398 return aa64; 1399 } 1400 1401 if (arm_feature(env, ARM_FEATURE_EL3)) { 1402 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1403 } 1404 1405 if (el == 2) { 1406 return aa64; 1407 } 1408 1409 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1410 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1411 } 1412 1413 return aa64; 1414 } 1415 1416 /* Function for determing whether guest cp register reads and writes should 1417 * access the secure or non-secure bank of a cp register. When EL3 is 1418 * operating in AArch32 state, the NS-bit determines whether the secure 1419 * instance of a cp register should be used. When EL3 is AArch64 (or if 1420 * it doesn't exist at all) then there is no register banking, and all 1421 * accesses are to the non-secure version. 1422 */ 1423 static inline bool access_secure_reg(CPUARMState *env) 1424 { 1425 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1426 !arm_el_is_aa64(env, 3) && 1427 !(env->cp15.scr_el3 & SCR_NS)); 1428 1429 return ret; 1430 } 1431 1432 /* Macros for accessing a specified CP register bank */ 1433 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 1434 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 1435 1436 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 1437 do { \ 1438 if (_secure) { \ 1439 (_env)->cp15._regname##_s = (_val); \ 1440 } else { \ 1441 (_env)->cp15._regname##_ns = (_val); \ 1442 } \ 1443 } while (0) 1444 1445 /* Macros for automatically accessing a specific CP register bank depending on 1446 * the current secure state of the system. These macros are not intended for 1447 * supporting instruction translation reads/writes as these are dependent 1448 * solely on the SCR.NS bit and not the mode. 1449 */ 1450 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 1451 A32_BANKED_REG_GET((_env), _regname, \ 1452 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 1453 1454 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 1455 A32_BANKED_REG_SET((_env), _regname, \ 1456 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 1457 (_val)) 1458 1459 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); 1460 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 1461 uint32_t cur_el, bool secure); 1462 1463 /* Interface between CPU and Interrupt controller. */ 1464 #ifndef CONFIG_USER_ONLY 1465 bool armv7m_nvic_can_take_pending_exception(void *opaque); 1466 #else 1467 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 1468 { 1469 return true; 1470 } 1471 #endif 1472 /** 1473 * armv7m_nvic_set_pending: mark the specified exception as pending 1474 * @opaque: the NVIC 1475 * @irq: the exception number to mark pending 1476 * @secure: false for non-banked exceptions or for the nonsecure 1477 * version of a banked exception, true for the secure version of a banked 1478 * exception. 1479 * 1480 * Marks the specified exception as pending. Note that we will assert() 1481 * if @secure is true and @irq does not specify one of the fixed set 1482 * of architecturally banked exceptions. 1483 */ 1484 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 1485 /** 1486 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 1487 * @opaque: the NVIC 1488 * 1489 * Move the current highest priority pending exception from the pending 1490 * state to the active state, and update v7m.exception to indicate that 1491 * it is the exception currently being handled. 1492 * 1493 * Returns: true if exception should be taken to Secure state, false for NS 1494 */ 1495 bool armv7m_nvic_acknowledge_irq(void *opaque); 1496 /** 1497 * armv7m_nvic_complete_irq: complete specified interrupt or exception 1498 * @opaque: the NVIC 1499 * @irq: the exception number to complete 1500 * @secure: true if this exception was secure 1501 * 1502 * Returns: -1 if the irq was not active 1503 * 1 if completing this irq brought us back to base (no active irqs) 1504 * 0 if there is still an irq active after this one was completed 1505 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 1506 */ 1507 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 1508 /** 1509 * armv7m_nvic_raw_execution_priority: return the raw execution priority 1510 * @opaque: the NVIC 1511 * 1512 * Returns: the raw execution priority as defined by the v8M architecture. 1513 * This is the execution priority minus the effects of AIRCR.PRIS, 1514 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 1515 * (v8M ARM ARM I_PKLD.) 1516 */ 1517 int armv7m_nvic_raw_execution_priority(void *opaque); 1518 /** 1519 * armv7m_nvic_neg_prio_requested: return true if the requested execution 1520 * priority is negative for the specified security state. 1521 * @opaque: the NVIC 1522 * @secure: the security state to test 1523 * This corresponds to the pseudocode IsReqExecPriNeg(). 1524 */ 1525 #ifndef CONFIG_USER_ONLY 1526 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 1527 #else 1528 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 1529 { 1530 return false; 1531 } 1532 #endif 1533 1534 /* Interface for defining coprocessor registers. 1535 * Registers are defined in tables of arm_cp_reginfo structs 1536 * which are passed to define_arm_cp_regs(). 1537 */ 1538 1539 /* When looking up a coprocessor register we look for it 1540 * via an integer which encodes all of: 1541 * coprocessor number 1542 * Crn, Crm, opc1, opc2 fields 1543 * 32 or 64 bit register (ie is it accessed via MRC/MCR 1544 * or via MRRC/MCRR?) 1545 * non-secure/secure bank (AArch32 only) 1546 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 1547 * (In this case crn and opc2 should be zero.) 1548 * For AArch64, there is no 32/64 bit size distinction; 1549 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 1550 * and 4 bit CRn and CRm. The encoding patterns are chosen 1551 * to be easy to convert to and from the KVM encodings, and also 1552 * so that the hashtable can contain both AArch32 and AArch64 1553 * registers (to allow for interprocessing where we might run 1554 * 32 bit code on a 64 bit core). 1555 */ 1556 /* This bit is private to our hashtable cpreg; in KVM register 1557 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 1558 * in the upper bits of the 64 bit ID. 1559 */ 1560 #define CP_REG_AA64_SHIFT 28 1561 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 1562 1563 /* To enable banking of coprocessor registers depending on ns-bit we 1564 * add a bit to distinguish between secure and non-secure cpregs in the 1565 * hashtable. 1566 */ 1567 #define CP_REG_NS_SHIFT 29 1568 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 1569 1570 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 1571 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 1572 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 1573 1574 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 1575 (CP_REG_AA64_MASK | \ 1576 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 1577 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 1578 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 1579 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 1580 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 1581 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 1582 1583 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 1584 * version used as a key for the coprocessor register hashtable 1585 */ 1586 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 1587 { 1588 uint32_t cpregid = kvmid; 1589 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 1590 cpregid |= CP_REG_AA64_MASK; 1591 } else { 1592 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 1593 cpregid |= (1 << 15); 1594 } 1595 1596 /* KVM is always non-secure so add the NS flag on AArch32 register 1597 * entries. 1598 */ 1599 cpregid |= 1 << CP_REG_NS_SHIFT; 1600 } 1601 return cpregid; 1602 } 1603 1604 /* Convert a truncated 32 bit hashtable key into the full 1605 * 64 bit KVM register ID. 1606 */ 1607 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 1608 { 1609 uint64_t kvmid; 1610 1611 if (cpregid & CP_REG_AA64_MASK) { 1612 kvmid = cpregid & ~CP_REG_AA64_MASK; 1613 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 1614 } else { 1615 kvmid = cpregid & ~(1 << 15); 1616 if (cpregid & (1 << 15)) { 1617 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 1618 } else { 1619 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 1620 } 1621 } 1622 return kvmid; 1623 } 1624 1625 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 1626 * special-behaviour cp reg and bits [15..8] indicate what behaviour 1627 * it has. Otherwise it is a simple cp reg, where CONST indicates that 1628 * TCG can assume the value to be constant (ie load at translate time) 1629 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 1630 * indicates that the TB should not be ended after a write to this register 1631 * (the default is that the TB ends after cp writes). OVERRIDE permits 1632 * a register definition to override a previous definition for the 1633 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 1634 * old must have the OVERRIDE bit set. 1635 * ALIAS indicates that this register is an alias view of some underlying 1636 * state which is also visible via another register, and that the other 1637 * register is handling migration and reset; registers marked ALIAS will not be 1638 * migrated but may have their state set by syncing of register state from KVM. 1639 * NO_RAW indicates that this register has no underlying state and does not 1640 * support raw access for state saving/loading; it will not be used for either 1641 * migration or KVM state synchronization. (Typically this is for "registers" 1642 * which are actually used as instructions for cache maintenance and so on.) 1643 * IO indicates that this register does I/O and therefore its accesses 1644 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 1645 * registers which implement clocks or timers require this. 1646 */ 1647 #define ARM_CP_SPECIAL 1 1648 #define ARM_CP_CONST 2 1649 #define ARM_CP_64BIT 4 1650 #define ARM_CP_SUPPRESS_TB_END 8 1651 #define ARM_CP_OVERRIDE 16 1652 #define ARM_CP_ALIAS 32 1653 #define ARM_CP_IO 64 1654 #define ARM_CP_NO_RAW 128 1655 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) 1656 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) 1657 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) 1658 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) 1659 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) 1660 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 1661 /* Used only as a terminator for ARMCPRegInfo lists */ 1662 #define ARM_CP_SENTINEL 0xffff 1663 /* Mask of only the flag bits in a type field */ 1664 #define ARM_CP_FLAG_MASK 0xff 1665 1666 /* Valid values for ARMCPRegInfo state field, indicating which of 1667 * the AArch32 and AArch64 execution states this register is visible in. 1668 * If the reginfo doesn't explicitly specify then it is AArch32 only. 1669 * If the reginfo is declared to be visible in both states then a second 1670 * reginfo is synthesised for the AArch32 view of the AArch64 register, 1671 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 1672 * Note that we rely on the values of these enums as we iterate through 1673 * the various states in some places. 1674 */ 1675 enum { 1676 ARM_CP_STATE_AA32 = 0, 1677 ARM_CP_STATE_AA64 = 1, 1678 ARM_CP_STATE_BOTH = 2, 1679 }; 1680 1681 /* ARM CP register secure state flags. These flags identify security state 1682 * attributes for a given CP register entry. 1683 * The existence of both or neither secure and non-secure flags indicates that 1684 * the register has both a secure and non-secure hash entry. A single one of 1685 * these flags causes the register to only be hashed for the specified 1686 * security state. 1687 * Although definitions may have any combination of the S/NS bits, each 1688 * registered entry will only have one to identify whether the entry is secure 1689 * or non-secure. 1690 */ 1691 enum { 1692 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 1693 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 1694 }; 1695 1696 /* Return true if cptype is a valid type field. This is used to try to 1697 * catch errors where the sentinel has been accidentally left off the end 1698 * of a list of registers. 1699 */ 1700 static inline bool cptype_valid(int cptype) 1701 { 1702 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 1703 || ((cptype & ARM_CP_SPECIAL) && 1704 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 1705 } 1706 1707 /* Access rights: 1708 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 1709 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 1710 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 1711 * (ie any of the privileged modes in Secure state, or Monitor mode). 1712 * If a register is accessible in one privilege level it's always accessible 1713 * in higher privilege levels too. Since "Secure PL1" also follows this rule 1714 * (ie anything visible in PL2 is visible in S-PL1, some things are only 1715 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 1716 * terminology a little and call this PL3. 1717 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 1718 * with the ELx exception levels. 1719 * 1720 * If access permissions for a register are more complex than can be 1721 * described with these bits, then use a laxer set of restrictions, and 1722 * do the more restrictive/complex check inside a helper function. 1723 */ 1724 #define PL3_R 0x80 1725 #define PL3_W 0x40 1726 #define PL2_R (0x20 | PL3_R) 1727 #define PL2_W (0x10 | PL3_W) 1728 #define PL1_R (0x08 | PL2_R) 1729 #define PL1_W (0x04 | PL2_W) 1730 #define PL0_R (0x02 | PL1_R) 1731 #define PL0_W (0x01 | PL1_W) 1732 1733 #define PL3_RW (PL3_R | PL3_W) 1734 #define PL2_RW (PL2_R | PL2_W) 1735 #define PL1_RW (PL1_R | PL1_W) 1736 #define PL0_RW (PL0_R | PL0_W) 1737 1738 /* Return the highest implemented Exception Level */ 1739 static inline int arm_highest_el(CPUARMState *env) 1740 { 1741 if (arm_feature(env, ARM_FEATURE_EL3)) { 1742 return 3; 1743 } 1744 if (arm_feature(env, ARM_FEATURE_EL2)) { 1745 return 2; 1746 } 1747 return 1; 1748 } 1749 1750 /* Return true if a v7M CPU is in Handler mode */ 1751 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 1752 { 1753 return env->v7m.exception != 0; 1754 } 1755 1756 /* Return the current Exception Level (as per ARMv8; note that this differs 1757 * from the ARMv7 Privilege Level). 1758 */ 1759 static inline int arm_current_el(CPUARMState *env) 1760 { 1761 if (arm_feature(env, ARM_FEATURE_M)) { 1762 return arm_v7m_is_handler_mode(env) || 1763 !(env->v7m.control[env->v7m.secure] & 1); 1764 } 1765 1766 if (is_a64(env)) { 1767 return extract32(env->pstate, 2, 2); 1768 } 1769 1770 switch (env->uncached_cpsr & 0x1f) { 1771 case ARM_CPU_MODE_USR: 1772 return 0; 1773 case ARM_CPU_MODE_HYP: 1774 return 2; 1775 case ARM_CPU_MODE_MON: 1776 return 3; 1777 default: 1778 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 1779 /* If EL3 is 32-bit then all secure privileged modes run in 1780 * EL3 1781 */ 1782 return 3; 1783 } 1784 1785 return 1; 1786 } 1787 } 1788 1789 typedef struct ARMCPRegInfo ARMCPRegInfo; 1790 1791 typedef enum CPAccessResult { 1792 /* Access is permitted */ 1793 CP_ACCESS_OK = 0, 1794 /* Access fails due to a configurable trap or enable which would 1795 * result in a categorized exception syndrome giving information about 1796 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 1797 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 1798 * PL1 if in EL0, otherwise to the current EL). 1799 */ 1800 CP_ACCESS_TRAP = 1, 1801 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 1802 * Note that this is not a catch-all case -- the set of cases which may 1803 * result in this failure is specifically defined by the architecture. 1804 */ 1805 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 1806 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 1807 CP_ACCESS_TRAP_EL2 = 3, 1808 CP_ACCESS_TRAP_EL3 = 4, 1809 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 1810 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 1811 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 1812 /* Access fails and results in an exception syndrome for an FP access, 1813 * trapped directly to EL2 or EL3 1814 */ 1815 CP_ACCESS_TRAP_FP_EL2 = 7, 1816 CP_ACCESS_TRAP_FP_EL3 = 8, 1817 } CPAccessResult; 1818 1819 /* Access functions for coprocessor registers. These cannot fail and 1820 * may not raise exceptions. 1821 */ 1822 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1823 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 1824 uint64_t value); 1825 /* Access permission check functions for coprocessor registers. */ 1826 typedef CPAccessResult CPAccessFn(CPUARMState *env, 1827 const ARMCPRegInfo *opaque, 1828 bool isread); 1829 /* Hook function for register reset */ 1830 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1831 1832 #define CP_ANY 0xff 1833 1834 /* Definition of an ARM coprocessor register */ 1835 struct ARMCPRegInfo { 1836 /* Name of register (useful mainly for debugging, need not be unique) */ 1837 const char *name; 1838 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 1839 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 1840 * 'wildcard' field -- any value of that field in the MRC/MCR insn 1841 * will be decoded to this register. The register read and write 1842 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 1843 * used by the program, so it is possible to register a wildcard and 1844 * then behave differently on read/write if necessary. 1845 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 1846 * must both be zero. 1847 * For AArch64-visible registers, opc0 is also used. 1848 * Since there are no "coprocessors" in AArch64, cp is purely used as a 1849 * way to distinguish (for KVM's benefit) guest-visible system registers 1850 * from demuxed ones provided to preserve the "no side effects on 1851 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 1852 * visible (to match KVM's encoding); cp==0 will be converted to 1853 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 1854 */ 1855 uint8_t cp; 1856 uint8_t crn; 1857 uint8_t crm; 1858 uint8_t opc0; 1859 uint8_t opc1; 1860 uint8_t opc2; 1861 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 1862 int state; 1863 /* Register type: ARM_CP_* bits/values */ 1864 int type; 1865 /* Access rights: PL*_[RW] */ 1866 int access; 1867 /* Security state: ARM_CP_SECSTATE_* bits/values */ 1868 int secure; 1869 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 1870 * this register was defined: can be used to hand data through to the 1871 * register read/write functions, since they are passed the ARMCPRegInfo*. 1872 */ 1873 void *opaque; 1874 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 1875 * fieldoffset is non-zero, the reset value of the register. 1876 */ 1877 uint64_t resetvalue; 1878 /* Offset of the field in CPUARMState for this register. 1879 * 1880 * This is not needed if either: 1881 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 1882 * 2. both readfn and writefn are specified 1883 */ 1884 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 1885 1886 /* Offsets of the secure and non-secure fields in CPUARMState for the 1887 * register if it is banked. These fields are only used during the static 1888 * registration of a register. During hashing the bank associated 1889 * with a given security state is copied to fieldoffset which is used from 1890 * there on out. 1891 * 1892 * It is expected that register definitions use either fieldoffset or 1893 * bank_fieldoffsets in the definition but not both. It is also expected 1894 * that both bank offsets are set when defining a banked register. This 1895 * use indicates that a register is banked. 1896 */ 1897 ptrdiff_t bank_fieldoffsets[2]; 1898 1899 /* Function for making any access checks for this register in addition to 1900 * those specified by the 'access' permissions bits. If NULL, no extra 1901 * checks required. The access check is performed at runtime, not at 1902 * translate time. 1903 */ 1904 CPAccessFn *accessfn; 1905 /* Function for handling reads of this register. If NULL, then reads 1906 * will be done by loading from the offset into CPUARMState specified 1907 * by fieldoffset. 1908 */ 1909 CPReadFn *readfn; 1910 /* Function for handling writes of this register. If NULL, then writes 1911 * will be done by writing to the offset into CPUARMState specified 1912 * by fieldoffset. 1913 */ 1914 CPWriteFn *writefn; 1915 /* Function for doing a "raw" read; used when we need to copy 1916 * coprocessor state to the kernel for KVM or out for 1917 * migration. This only needs to be provided if there is also a 1918 * readfn and it has side effects (for instance clear-on-read bits). 1919 */ 1920 CPReadFn *raw_readfn; 1921 /* Function for doing a "raw" write; used when we need to copy KVM 1922 * kernel coprocessor state into userspace, or for inbound 1923 * migration. This only needs to be provided if there is also a 1924 * writefn and it masks out "unwritable" bits or has write-one-to-clear 1925 * or similar behaviour. 1926 */ 1927 CPWriteFn *raw_writefn; 1928 /* Function for resetting the register. If NULL, then reset will be done 1929 * by writing resetvalue to the field specified in fieldoffset. If 1930 * fieldoffset is 0 then no reset will be done. 1931 */ 1932 CPResetFn *resetfn; 1933 }; 1934 1935 /* Macros which are lvalues for the field in CPUARMState for the 1936 * ARMCPRegInfo *ri. 1937 */ 1938 #define CPREG_FIELD32(env, ri) \ 1939 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 1940 #define CPREG_FIELD64(env, ri) \ 1941 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 1942 1943 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 1944 1945 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 1946 const ARMCPRegInfo *regs, void *opaque); 1947 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 1948 const ARMCPRegInfo *regs, void *opaque); 1949 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 1950 { 1951 define_arm_cp_regs_with_opaque(cpu, regs, 0); 1952 } 1953 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 1954 { 1955 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 1956 } 1957 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 1958 1959 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 1960 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 1961 uint64_t value); 1962 /* CPReadFn that can be used for read-as-zero behaviour */ 1963 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 1964 1965 /* CPResetFn that does nothing, for use if no reset is required even 1966 * if fieldoffset is non zero. 1967 */ 1968 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 1969 1970 /* Return true if this reginfo struct's field in the cpu state struct 1971 * is 64 bits wide. 1972 */ 1973 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 1974 { 1975 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 1976 } 1977 1978 static inline bool cp_access_ok(int current_el, 1979 const ARMCPRegInfo *ri, int isread) 1980 { 1981 return (ri->access >> ((current_el * 2) + isread)) & 1; 1982 } 1983 1984 /* Raw read of a coprocessor register (as needed for migration, etc) */ 1985 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 1986 1987 /** 1988 * write_list_to_cpustate 1989 * @cpu: ARMCPU 1990 * 1991 * For each register listed in the ARMCPU cpreg_indexes list, write 1992 * its value from the cpreg_values list into the ARMCPUState structure. 1993 * This updates TCG's working data structures from KVM data or 1994 * from incoming migration state. 1995 * 1996 * Returns: true if all register values were updated correctly, 1997 * false if some register was unknown or could not be written. 1998 * Note that we do not stop early on failure -- we will attempt 1999 * writing all registers in the list. 2000 */ 2001 bool write_list_to_cpustate(ARMCPU *cpu); 2002 2003 /** 2004 * write_cpustate_to_list: 2005 * @cpu: ARMCPU 2006 * 2007 * For each register listed in the ARMCPU cpreg_indexes list, write 2008 * its value from the ARMCPUState structure into the cpreg_values list. 2009 * This is used to copy info from TCG's working data structures into 2010 * KVM or for outbound migration. 2011 * 2012 * Returns: true if all register values were read correctly, 2013 * false if some register was unknown or could not be read. 2014 * Note that we do not stop early on failure -- we will attempt 2015 * reading all registers in the list. 2016 */ 2017 bool write_cpustate_to_list(ARMCPU *cpu); 2018 2019 #define ARM_CPUID_TI915T 0x54029152 2020 #define ARM_CPUID_TI925T 0x54029252 2021 2022 #if defined(CONFIG_USER_ONLY) 2023 #define TARGET_PAGE_BITS 12 2024 #else 2025 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6 2026 * have to support 1K tiny pages. 2027 */ 2028 #define TARGET_PAGE_BITS_VARY 2029 #define TARGET_PAGE_BITS_MIN 10 2030 #endif 2031 2032 #if defined(TARGET_AARCH64) 2033 # define TARGET_PHYS_ADDR_SPACE_BITS 48 2034 # define TARGET_VIRT_ADDR_SPACE_BITS 64 2035 #else 2036 # define TARGET_PHYS_ADDR_SPACE_BITS 40 2037 # define TARGET_VIRT_ADDR_SPACE_BITS 32 2038 #endif 2039 2040 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 2041 unsigned int target_el) 2042 { 2043 CPUARMState *env = cs->env_ptr; 2044 unsigned int cur_el = arm_current_el(env); 2045 bool secure = arm_is_secure(env); 2046 bool pstate_unmasked; 2047 int8_t unmasked = 0; 2048 2049 /* Don't take exceptions if they target a lower EL. 2050 * This check should catch any exceptions that would not be taken but left 2051 * pending. 2052 */ 2053 if (cur_el > target_el) { 2054 return false; 2055 } 2056 2057 switch (excp_idx) { 2058 case EXCP_FIQ: 2059 pstate_unmasked = !(env->daif & PSTATE_F); 2060 break; 2061 2062 case EXCP_IRQ: 2063 pstate_unmasked = !(env->daif & PSTATE_I); 2064 break; 2065 2066 case EXCP_VFIQ: 2067 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { 2068 /* VFIQs are only taken when hypervized and non-secure. */ 2069 return false; 2070 } 2071 return !(env->daif & PSTATE_F); 2072 case EXCP_VIRQ: 2073 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { 2074 /* VIRQs are only taken when hypervized and non-secure. */ 2075 return false; 2076 } 2077 return !(env->daif & PSTATE_I); 2078 default: 2079 g_assert_not_reached(); 2080 } 2081 2082 /* Use the target EL, current execution state and SCR/HCR settings to 2083 * determine whether the corresponding CPSR bit is used to mask the 2084 * interrupt. 2085 */ 2086 if ((target_el > cur_el) && (target_el != 1)) { 2087 /* Exceptions targeting a higher EL may not be maskable */ 2088 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 2089 /* 64-bit masking rules are simple: exceptions to EL3 2090 * can't be masked, and exceptions to EL2 can only be 2091 * masked from Secure state. The HCR and SCR settings 2092 * don't affect the masking logic, only the interrupt routing. 2093 */ 2094 if (target_el == 3 || !secure) { 2095 unmasked = 1; 2096 } 2097 } else { 2098 /* The old 32-bit-only environment has a more complicated 2099 * masking setup. HCR and SCR bits not only affect interrupt 2100 * routing but also change the behaviour of masking. 2101 */ 2102 bool hcr, scr; 2103 2104 switch (excp_idx) { 2105 case EXCP_FIQ: 2106 /* If FIQs are routed to EL3 or EL2 then there are cases where 2107 * we override the CPSR.F in determining if the exception is 2108 * masked or not. If neither of these are set then we fall back 2109 * to the CPSR.F setting otherwise we further assess the state 2110 * below. 2111 */ 2112 hcr = (env->cp15.hcr_el2 & HCR_FMO); 2113 scr = (env->cp15.scr_el3 & SCR_FIQ); 2114 2115 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 2116 * CPSR.F bit masks FIQ interrupts when taken in non-secure 2117 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 2118 * when non-secure but only when FIQs are only routed to EL3. 2119 */ 2120 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 2121 break; 2122 case EXCP_IRQ: 2123 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 2124 * we may override the CPSR.I masking when in non-secure state. 2125 * The SCR.IRQ setting has already been taken into consideration 2126 * when setting the target EL, so it does not have a further 2127 * affect here. 2128 */ 2129 hcr = (env->cp15.hcr_el2 & HCR_IMO); 2130 scr = false; 2131 break; 2132 default: 2133 g_assert_not_reached(); 2134 } 2135 2136 if ((scr || hcr) && !secure) { 2137 unmasked = 1; 2138 } 2139 } 2140 } 2141 2142 /* The PSTATE bits only mask the interrupt if we have not overriden the 2143 * ability above. 2144 */ 2145 return unmasked || pstate_unmasked; 2146 } 2147 2148 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model) 2149 2150 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2151 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2152 2153 #define cpu_signal_handler cpu_arm_signal_handler 2154 #define cpu_list arm_cpu_list 2155 2156 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2157 * 2158 * If EL3 is 64-bit: 2159 * + NonSecure EL1 & 0 stage 1 2160 * + NonSecure EL1 & 0 stage 2 2161 * + NonSecure EL2 2162 * + Secure EL1 & EL0 2163 * + Secure EL3 2164 * If EL3 is 32-bit: 2165 * + NonSecure PL1 & 0 stage 1 2166 * + NonSecure PL1 & 0 stage 2 2167 * + NonSecure PL2 2168 * + Secure PL0 & PL1 2169 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2170 * 2171 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2172 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2173 * may differ in access permissions even if the VA->PA map is the same 2174 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2175 * translation, which means that we have one mmu_idx that deals with two 2176 * concatenated translation regimes [this sort of combined s1+2 TLB is 2177 * architecturally permitted] 2178 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2179 * handling via the TLB. The only way to do a stage 1 translation without 2180 * the immediate stage 2 translation is via the ATS or AT system insns, 2181 * which can be slow-pathed and always do a page table walk. 2182 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2183 * translation regimes, because they map reasonably well to each other 2184 * and they can't both be active at the same time. 2185 * This gives us the following list of mmu_idx values: 2186 * 2187 * NS EL0 (aka NS PL0) stage 1+2 2188 * NS EL1 (aka NS PL1) stage 1+2 2189 * NS EL2 (aka NS PL2) 2190 * S EL3 (aka S PL1) 2191 * S EL0 (aka S PL0) 2192 * S EL1 (not used if EL3 is 32 bit) 2193 * NS EL0+1 stage 2 2194 * 2195 * (The last of these is an mmu_idx because we want to be able to use the TLB 2196 * for the accesses done as part of a stage 1 page table walk, rather than 2197 * having to walk the stage 2 page table over and over.) 2198 * 2199 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2200 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2201 * NS EL2 if we ever model a Cortex-R52). 2202 * 2203 * M profile CPUs are rather different as they do not have a true MMU. 2204 * They have the following different MMU indexes: 2205 * User 2206 * Privileged 2207 * Execution priority negative (this is like privileged, but the 2208 * MPU HFNMIENA bit means that it may have different access permission 2209 * check results to normal privileged code, so can't share a TLB). 2210 * If the CPU supports the v8M Security Extension then there are also: 2211 * Secure User 2212 * Secure Privileged 2213 * Secure, execution priority negative 2214 * 2215 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2216 * are not quite the same -- different CPU types (most notably M profile 2217 * vs A/R profile) would like to use MMU indexes with different semantics, 2218 * but since we don't ever need to use all of those in a single CPU we 2219 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2220 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2221 * the same for any particular CPU. 2222 * Variables of type ARMMUIdx are always full values, and the core 2223 * index values are in variables of type 'int'. 2224 * 2225 * Our enumeration includes at the end some entries which are not "true" 2226 * mmu_idx values in that they don't have corresponding TLBs and are only 2227 * valid for doing slow path page table walks. 2228 * 2229 * The constant names here are patterned after the general style of the names 2230 * of the AT/ATS operations. 2231 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2232 */ 2233 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2234 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2235 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2236 2237 #define ARM_MMU_IDX_TYPE_MASK (~0x7) 2238 #define ARM_MMU_IDX_COREIDX_MASK 0x7 2239 2240 typedef enum ARMMMUIdx { 2241 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, 2242 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, 2243 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, 2244 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, 2245 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, 2246 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, 2247 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, 2248 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, 2249 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, 2250 ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M, 2251 ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M, 2252 ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M, 2253 ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M, 2254 /* Indexes below here don't have TLBs and are used only for AT system 2255 * instructions or for the first stage of an S12 page table walk. 2256 */ 2257 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, 2258 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, 2259 } ARMMMUIdx; 2260 2261 /* Bit macros for the core-mmu-index values for each index, 2262 * for use when calling tlb_flush_by_mmuidx() and friends. 2263 */ 2264 typedef enum ARMMMUIdxBit { 2265 ARMMMUIdxBit_S12NSE0 = 1 << 0, 2266 ARMMMUIdxBit_S12NSE1 = 1 << 1, 2267 ARMMMUIdxBit_S1E2 = 1 << 2, 2268 ARMMMUIdxBit_S1E3 = 1 << 3, 2269 ARMMMUIdxBit_S1SE0 = 1 << 4, 2270 ARMMMUIdxBit_S1SE1 = 1 << 5, 2271 ARMMMUIdxBit_S2NS = 1 << 6, 2272 ARMMMUIdxBit_MUser = 1 << 0, 2273 ARMMMUIdxBit_MPriv = 1 << 1, 2274 ARMMMUIdxBit_MNegPri = 1 << 2, 2275 ARMMMUIdxBit_MSUser = 1 << 3, 2276 ARMMMUIdxBit_MSPriv = 1 << 4, 2277 ARMMMUIdxBit_MSNegPri = 1 << 5, 2278 } ARMMMUIdxBit; 2279 2280 #define MMU_USER_IDX 0 2281 2282 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 2283 { 2284 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 2285 } 2286 2287 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 2288 { 2289 if (arm_feature(env, ARM_FEATURE_M)) { 2290 return mmu_idx | ARM_MMU_IDX_M; 2291 } else { 2292 return mmu_idx | ARM_MMU_IDX_A; 2293 } 2294 } 2295 2296 /* Return the exception level we're running at if this is our mmu_idx */ 2297 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2298 { 2299 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { 2300 case ARM_MMU_IDX_A: 2301 return mmu_idx & 3; 2302 case ARM_MMU_IDX_M: 2303 return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser) 2304 ? 0 : 1; 2305 default: 2306 g_assert_not_reached(); 2307 } 2308 } 2309 2310 /* Determine the current mmu_idx to use for normal loads/stores */ 2311 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 2312 { 2313 int el = arm_current_el(env); 2314 2315 if (arm_feature(env, ARM_FEATURE_M)) { 2316 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv; 2317 2318 if (armv7m_nvic_neg_prio_requested(env->nvic, env->v7m.secure)) { 2319 mmu_idx = ARMMMUIdx_MNegPri; 2320 } 2321 2322 if (env->v7m.secure) { 2323 mmu_idx += ARMMMUIdx_MSUser; 2324 } 2325 2326 return arm_to_core_mmu_idx(mmu_idx); 2327 } 2328 2329 if (el < 2 && arm_is_secure_below_el3(env)) { 2330 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el); 2331 } 2332 return el; 2333 } 2334 2335 /* Indexes used when registering address spaces with cpu_address_space_init */ 2336 typedef enum ARMASIdx { 2337 ARMASIdx_NS = 0, 2338 ARMASIdx_S = 1, 2339 } ARMASIdx; 2340 2341 /* Return the Exception Level targeted by debug exceptions. */ 2342 static inline int arm_debug_target_el(CPUARMState *env) 2343 { 2344 bool secure = arm_is_secure(env); 2345 bool route_to_el2 = false; 2346 2347 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2348 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2349 env->cp15.mdcr_el2 & (1 << 8); 2350 } 2351 2352 if (route_to_el2) { 2353 return 2; 2354 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2355 !arm_el_is_aa64(env, 3) && secure) { 2356 return 3; 2357 } else { 2358 return 1; 2359 } 2360 } 2361 2362 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2363 { 2364 if (arm_is_secure(env)) { 2365 /* MDCR_EL3.SDD disables debug events from Secure state */ 2366 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 2367 || arm_current_el(env) == 3) { 2368 return false; 2369 } 2370 } 2371 2372 if (arm_current_el(env) == arm_debug_target_el(env)) { 2373 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) 2374 || (env->daif & PSTATE_D)) { 2375 return false; 2376 } 2377 } 2378 return true; 2379 } 2380 2381 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 2382 { 2383 int el = arm_current_el(env); 2384 2385 if (el == 0 && arm_el_is_aa64(env, 1)) { 2386 return aa64_generate_debug_exceptions(env); 2387 } 2388 2389 if (arm_is_secure(env)) { 2390 int spd; 2391 2392 if (el == 0 && (env->cp15.sder & 1)) { 2393 /* SDER.SUIDEN means debug exceptions from Secure EL0 2394 * are always enabled. Otherwise they are controlled by 2395 * SDCR.SPD like those from other Secure ELs. 2396 */ 2397 return true; 2398 } 2399 2400 spd = extract32(env->cp15.mdcr_el3, 14, 2); 2401 switch (spd) { 2402 case 1: 2403 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 2404 case 0: 2405 /* For 0b00 we return true if external secure invasive debug 2406 * is enabled. On real hardware this is controlled by external 2407 * signals to the core. QEMU always permits debug, and behaves 2408 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 2409 */ 2410 return true; 2411 case 2: 2412 return false; 2413 case 3: 2414 return true; 2415 } 2416 } 2417 2418 return el != 2; 2419 } 2420 2421 /* Return true if debugging exceptions are currently enabled. 2422 * This corresponds to what in ARM ARM pseudocode would be 2423 * if UsingAArch32() then 2424 * return AArch32.GenerateDebugExceptions() 2425 * else 2426 * return AArch64.GenerateDebugExceptions() 2427 * We choose to push the if() down into this function for clarity, 2428 * since the pseudocode has it at all callsites except for the one in 2429 * CheckSoftwareStep(), where it is elided because both branches would 2430 * always return the same value. 2431 * 2432 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we 2433 * don't yet implement those exception levels or their associated trap bits. 2434 */ 2435 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 2436 { 2437 if (env->aarch64) { 2438 return aa64_generate_debug_exceptions(env); 2439 } else { 2440 return aa32_generate_debug_exceptions(env); 2441 } 2442 } 2443 2444 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 2445 * implicitly means this always returns false in pre-v8 CPUs.) 2446 */ 2447 static inline bool arm_singlestep_active(CPUARMState *env) 2448 { 2449 return extract32(env->cp15.mdscr_el1, 0, 1) 2450 && arm_el_is_aa64(env, arm_debug_target_el(env)) 2451 && arm_generate_debug_exceptions(env); 2452 } 2453 2454 static inline bool arm_sctlr_b(CPUARMState *env) 2455 { 2456 return 2457 /* We need not implement SCTLR.ITD in user-mode emulation, so 2458 * let linux-user ignore the fact that it conflicts with SCTLR_B. 2459 * This lets people run BE32 binaries with "-cpu any". 2460 */ 2461 #ifndef CONFIG_USER_ONLY 2462 !arm_feature(env, ARM_FEATURE_V7) && 2463 #endif 2464 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 2465 } 2466 2467 /* Return true if the processor is in big-endian mode. */ 2468 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 2469 { 2470 int cur_el; 2471 2472 /* In 32bit endianness is determined by looking at CPSR's E bit */ 2473 if (!is_a64(env)) { 2474 return 2475 #ifdef CONFIG_USER_ONLY 2476 /* In system mode, BE32 is modelled in line with the 2477 * architecture (as word-invariant big-endianness), where loads 2478 * and stores are done little endian but from addresses which 2479 * are adjusted by XORing with the appropriate constant. So the 2480 * endianness to use for the raw data access is not affected by 2481 * SCTLR.B. 2482 * In user mode, however, we model BE32 as byte-invariant 2483 * big-endianness (because user-only code cannot tell the 2484 * difference), and so we need to use a data access endianness 2485 * that depends on SCTLR.B. 2486 */ 2487 arm_sctlr_b(env) || 2488 #endif 2489 ((env->uncached_cpsr & CPSR_E) ? 1 : 0); 2490 } 2491 2492 cur_el = arm_current_el(env); 2493 2494 if (cur_el == 0) { 2495 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; 2496 } 2497 2498 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; 2499 } 2500 2501 #include "exec/cpu-all.h" 2502 2503 /* Bit usage in the TB flags field: bit 31 indicates whether we are 2504 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 2505 * We put flags which are shared between 32 and 64 bit mode at the top 2506 * of the word, and flags which apply to only one mode at the bottom. 2507 */ 2508 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 2509 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) 2510 #define ARM_TBFLAG_MMUIDX_SHIFT 28 2511 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) 2512 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 2513 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) 2514 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26 2515 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) 2516 /* Target EL if we take a floating-point-disabled exception */ 2517 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24 2518 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) 2519 2520 /* Bit usage when in AArch32 state: */ 2521 #define ARM_TBFLAG_THUMB_SHIFT 0 2522 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) 2523 #define ARM_TBFLAG_VECLEN_SHIFT 1 2524 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) 2525 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4 2526 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) 2527 #define ARM_TBFLAG_VFPEN_SHIFT 7 2528 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) 2529 #define ARM_TBFLAG_CONDEXEC_SHIFT 8 2530 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) 2531 #define ARM_TBFLAG_SCTLR_B_SHIFT 16 2532 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) 2533 /* We store the bottom two bits of the CPAR as TB flags and handle 2534 * checks on the other bits at runtime 2535 */ 2536 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 2537 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2538 /* Indicates whether cp register reads and writes by guest code should access 2539 * the secure or nonsecure bank of banked registers; note that this is not 2540 * the same thing as the current security state of the processor! 2541 */ 2542 #define ARM_TBFLAG_NS_SHIFT 19 2543 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) 2544 #define ARM_TBFLAG_BE_DATA_SHIFT 20 2545 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) 2546 /* For M profile only, Handler (ie not Thread) mode */ 2547 #define ARM_TBFLAG_HANDLER_SHIFT 21 2548 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT) 2549 2550 /* Bit usage when in AArch64 state */ 2551 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */ 2552 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT) 2553 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */ 2554 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT) 2555 2556 /* some convenience accessor macros */ 2557 #define ARM_TBFLAG_AARCH64_STATE(F) \ 2558 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) 2559 #define ARM_TBFLAG_MMUIDX(F) \ 2560 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) 2561 #define ARM_TBFLAG_SS_ACTIVE(F) \ 2562 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) 2563 #define ARM_TBFLAG_PSTATE_SS(F) \ 2564 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) 2565 #define ARM_TBFLAG_FPEXC_EL(F) \ 2566 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) 2567 #define ARM_TBFLAG_THUMB(F) \ 2568 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) 2569 #define ARM_TBFLAG_VECLEN(F) \ 2570 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) 2571 #define ARM_TBFLAG_VECSTRIDE(F) \ 2572 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) 2573 #define ARM_TBFLAG_VFPEN(F) \ 2574 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) 2575 #define ARM_TBFLAG_CONDEXEC(F) \ 2576 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) 2577 #define ARM_TBFLAG_SCTLR_B(F) \ 2578 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) 2579 #define ARM_TBFLAG_XSCALE_CPAR(F) \ 2580 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2581 #define ARM_TBFLAG_NS(F) \ 2582 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) 2583 #define ARM_TBFLAG_BE_DATA(F) \ 2584 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) 2585 #define ARM_TBFLAG_HANDLER(F) \ 2586 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT) 2587 #define ARM_TBFLAG_TBI0(F) \ 2588 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT) 2589 #define ARM_TBFLAG_TBI1(F) \ 2590 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT) 2591 2592 static inline bool bswap_code(bool sctlr_b) 2593 { 2594 #ifdef CONFIG_USER_ONLY 2595 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 2596 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 2597 * would also end up as a mixed-endian mode with BE code, LE data. 2598 */ 2599 return 2600 #ifdef TARGET_WORDS_BIGENDIAN 2601 1 ^ 2602 #endif 2603 sctlr_b; 2604 #else 2605 /* All code access in ARM is little endian, and there are no loaders 2606 * doing swaps that need to be reversed 2607 */ 2608 return 0; 2609 #endif 2610 } 2611 2612 /* Return the exception level to which FP-disabled exceptions should 2613 * be taken, or 0 if FP is enabled. 2614 */ 2615 static inline int fp_exception_el(CPUARMState *env) 2616 { 2617 int fpen; 2618 int cur_el = arm_current_el(env); 2619 2620 /* CPACR and the CPTR registers don't exist before v6, so FP is 2621 * always accessible 2622 */ 2623 if (!arm_feature(env, ARM_FEATURE_V6)) { 2624 return 0; 2625 } 2626 2627 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 2628 * 0, 2 : trap EL0 and EL1/PL1 accesses 2629 * 1 : trap only EL0 accesses 2630 * 3 : trap no accesses 2631 */ 2632 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 2633 switch (fpen) { 2634 case 0: 2635 case 2: 2636 if (cur_el == 0 || cur_el == 1) { 2637 /* Trap to PL1, which might be EL1 or EL3 */ 2638 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2639 return 3; 2640 } 2641 return 1; 2642 } 2643 if (cur_el == 3 && !is_a64(env)) { 2644 /* Secure PL1 running at EL3 */ 2645 return 3; 2646 } 2647 break; 2648 case 1: 2649 if (cur_el == 0) { 2650 return 1; 2651 } 2652 break; 2653 case 3: 2654 break; 2655 } 2656 2657 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 2658 * check because zero bits in the registers mean "don't trap". 2659 */ 2660 2661 /* CPTR_EL2 : present in v7VE or v8 */ 2662 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 2663 && !arm_is_secure_below_el3(env)) { 2664 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 2665 return 2; 2666 } 2667 2668 /* CPTR_EL3 : present in v8 */ 2669 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 2670 /* Trap all FP ops to EL3 */ 2671 return 3; 2672 } 2673 2674 return 0; 2675 } 2676 2677 #ifdef CONFIG_USER_ONLY 2678 static inline bool arm_cpu_bswap_data(CPUARMState *env) 2679 { 2680 return 2681 #ifdef TARGET_WORDS_BIGENDIAN 2682 1 ^ 2683 #endif 2684 arm_cpu_data_is_big_endian(env); 2685 } 2686 #endif 2687 2688 #ifndef CONFIG_USER_ONLY 2689 /** 2690 * arm_regime_tbi0: 2691 * @env: CPUARMState 2692 * @mmu_idx: MMU index indicating required translation regime 2693 * 2694 * Extracts the TBI0 value from the appropriate TCR for the current EL 2695 * 2696 * Returns: the TBI0 value. 2697 */ 2698 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx); 2699 2700 /** 2701 * arm_regime_tbi1: 2702 * @env: CPUARMState 2703 * @mmu_idx: MMU index indicating required translation regime 2704 * 2705 * Extracts the TBI1 value from the appropriate TCR for the current EL 2706 * 2707 * Returns: the TBI1 value. 2708 */ 2709 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx); 2710 #else 2711 /* We can't handle tagged addresses properly in user-only mode */ 2712 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 2713 { 2714 return 0; 2715 } 2716 2717 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 2718 { 2719 return 0; 2720 } 2721 #endif 2722 2723 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 2724 target_ulong *cs_base, uint32_t *flags) 2725 { 2726 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 2727 if (is_a64(env)) { 2728 *pc = env->pc; 2729 *flags = ARM_TBFLAG_AARCH64_STATE_MASK; 2730 /* Get control bits for tagged addresses */ 2731 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 2732 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 2733 } else { 2734 *pc = env->regs[15]; 2735 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 2736 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 2737 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 2738 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 2739 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 2740 if (!(access_secure_reg(env))) { 2741 *flags |= ARM_TBFLAG_NS_MASK; 2742 } 2743 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 2744 || arm_el_is_aa64(env, 1)) { 2745 *flags |= ARM_TBFLAG_VFPEN_MASK; 2746 } 2747 *flags |= (extract32(env->cp15.c15_cpar, 0, 2) 2748 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 2749 } 2750 2751 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 2752 2753 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 2754 * states defined in the ARM ARM for software singlestep: 2755 * SS_ACTIVE PSTATE.SS State 2756 * 0 x Inactive (the TB flag for SS is always 0) 2757 * 1 0 Active-pending 2758 * 1 1 Active-not-pending 2759 */ 2760 if (arm_singlestep_active(env)) { 2761 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 2762 if (is_a64(env)) { 2763 if (env->pstate & PSTATE_SS) { 2764 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2765 } 2766 } else { 2767 if (env->uncached_cpsr & PSTATE_SS) { 2768 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2769 } 2770 } 2771 } 2772 if (arm_cpu_data_is_big_endian(env)) { 2773 *flags |= ARM_TBFLAG_BE_DATA_MASK; 2774 } 2775 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; 2776 2777 if (arm_v7m_is_handler_mode(env)) { 2778 *flags |= ARM_TBFLAG_HANDLER_MASK; 2779 } 2780 2781 *cs_base = 0; 2782 } 2783 2784 enum { 2785 QEMU_PSCI_CONDUIT_DISABLED = 0, 2786 QEMU_PSCI_CONDUIT_SMC = 1, 2787 QEMU_PSCI_CONDUIT_HVC = 2, 2788 }; 2789 2790 #ifndef CONFIG_USER_ONLY 2791 /* Return the address space index to use for a memory access */ 2792 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 2793 { 2794 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 2795 } 2796 2797 /* Return the AddressSpace to use for a memory access 2798 * (which depends on whether the access is S or NS, and whether 2799 * the board gave us a separate AddressSpace for S accesses). 2800 */ 2801 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 2802 { 2803 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 2804 } 2805 #endif 2806 2807 /** 2808 * arm_register_el_change_hook: 2809 * Register a hook function which will be called back whenever this 2810 * CPU changes exception level or mode. The hook function will be 2811 * passed a pointer to the ARMCPU and the opaque data pointer passed 2812 * to this function when the hook was registered. 2813 * 2814 * Note that we currently only support registering a single hook function, 2815 * and will assert if this function is called twice. 2816 * This facility is intended for the use of the GICv3 emulation. 2817 */ 2818 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 2819 void *opaque); 2820 2821 /** 2822 * arm_get_el_change_hook_opaque: 2823 * Return the opaque data that will be used by the el_change_hook 2824 * for this CPU. 2825 */ 2826 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu) 2827 { 2828 return cpu->el_change_hook_opaque; 2829 } 2830 2831 #endif 2832