1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "qemu/cpu-float.h" 25 #include "hw/registerfields.h" 26 #include "cpu-qom.h" 27 #include "exec/cpu-defs.h" 28 #include "qapi/qapi-types-common.h" 29 30 /* ARM processors have a weak memory model */ 31 #define TCG_GUEST_DEFAULT_MO (0) 32 33 #ifdef TARGET_AARCH64 34 #define KVM_HAVE_MCE_INJECTION 1 35 #endif 36 37 #define EXCP_UDEF 1 /* undefined instruction */ 38 #define EXCP_SWI 2 /* software interrupt */ 39 #define EXCP_PREFETCH_ABORT 3 40 #define EXCP_DATA_ABORT 4 41 #define EXCP_IRQ 5 42 #define EXCP_FIQ 6 43 #define EXCP_BKPT 7 44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 46 #define EXCP_HVC 11 /* HyperVisor Call */ 47 #define EXCP_HYP_TRAP 12 48 #define EXCP_SMC 13 /* Secure Monitor Call */ 49 #define EXCP_VIRQ 14 50 #define EXCP_VFIQ 15 51 #define EXCP_SEMIHOST 16 /* semihosting call */ 52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ 59 #define EXCP_VSERR 24 60 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */ 61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 62 63 #define ARMV7M_EXCP_RESET 1 64 #define ARMV7M_EXCP_NMI 2 65 #define ARMV7M_EXCP_HARD 3 66 #define ARMV7M_EXCP_MEM 4 67 #define ARMV7M_EXCP_BUS 5 68 #define ARMV7M_EXCP_USAGE 6 69 #define ARMV7M_EXCP_SECURE 7 70 #define ARMV7M_EXCP_SVC 11 71 #define ARMV7M_EXCP_DEBUG 12 72 #define ARMV7M_EXCP_PENDSV 14 73 #define ARMV7M_EXCP_SYSTICK 15 74 75 /* For M profile, some registers are banked secure vs non-secure; 76 * these are represented as a 2-element array where the first element 77 * is the non-secure copy and the second is the secure copy. 78 * When the CPU does not have implement the security extension then 79 * only the first element is used. 80 * This means that the copy for the current security state can be 81 * accessed via env->registerfield[env->v7m.secure] (whether the security 82 * extension is implemented or not). 83 */ 84 enum { 85 M_REG_NS = 0, 86 M_REG_S = 1, 87 M_REG_NUM_BANKS = 2, 88 }; 89 90 /* ARM-specific interrupt pending bits. */ 91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 94 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0 95 96 /* The usual mapping for an AArch64 system register to its AArch32 97 * counterpart is for the 32 bit world to have access to the lower 98 * half only (with writes leaving the upper half untouched). It's 99 * therefore useful to be able to pass TCG the offset of the least 100 * significant half of a uint64_t struct member. 101 */ 102 #if HOST_BIG_ENDIAN 103 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 104 #define offsetofhigh32(S, M) offsetof(S, M) 105 #else 106 #define offsetoflow32(S, M) offsetof(S, M) 107 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 108 #endif 109 110 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 111 #define ARM_CPU_IRQ 0 112 #define ARM_CPU_FIQ 1 113 #define ARM_CPU_VIRQ 2 114 #define ARM_CPU_VFIQ 3 115 116 /* ARM-specific extra insn start words: 117 * 1: Conditional execution bits 118 * 2: Partial exception syndrome for data aborts 119 */ 120 #define TARGET_INSN_START_EXTRA_WORDS 2 121 122 /* The 2nd extra word holding syndrome info for data aborts does not use 123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 124 * help the sleb128 encoder do a better job. 125 * When restoring the CPU state, we shift it back up. 126 */ 127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 128 #define ARM_INSN_START_WORD2_SHIFT 14 129 130 /* We currently assume float and double are IEEE single and double 131 precision respectively. 132 Doing runtime conversions is tricky because VFP registers may contain 133 integer values (eg. as the result of a FTOSI instruction). 134 s<2n> maps to the least significant half of d<n> 135 s<2n+1> maps to the most significant half of d<n> 136 */ 137 138 /** 139 * DynamicGDBXMLInfo: 140 * @desc: Contains the XML descriptions. 141 * @num: Number of the registers in this XML seen by GDB. 142 * @data: A union with data specific to the set of registers 143 * @cpregs_keys: Array that contains the corresponding Key of 144 * a given cpreg with the same order of the cpreg 145 * in the XML description. 146 */ 147 typedef struct DynamicGDBXMLInfo { 148 char *desc; 149 int num; 150 union { 151 struct { 152 uint32_t *keys; 153 } cpregs; 154 } data; 155 } DynamicGDBXMLInfo; 156 157 /* CPU state for each instance of a generic timer (in cp15 c14) */ 158 typedef struct ARMGenericTimer { 159 uint64_t cval; /* Timer CompareValue register */ 160 uint64_t ctl; /* Timer Control register */ 161 } ARMGenericTimer; 162 163 #define GTIMER_PHYS 0 164 #define GTIMER_VIRT 1 165 #define GTIMER_HYP 2 166 #define GTIMER_SEC 3 167 #define GTIMER_HYPVIRT 4 168 #define NUM_GTIMERS 5 169 170 #define VTCR_NSW (1u << 29) 171 #define VTCR_NSA (1u << 30) 172 #define VSTCR_SW VTCR_NSW 173 #define VSTCR_SA VTCR_NSA 174 175 /* Define a maximum sized vector register. 176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 177 * For 64-bit, this is a 2048-bit SVE register. 178 * 179 * Note that the mapping between S, D, and Q views of the register bank 180 * differs between AArch64 and AArch32. 181 * In AArch32: 182 * Qn = regs[n].d[1]:regs[n].d[0] 183 * Dn = regs[n / 2].d[n & 1] 184 * Sn = regs[n / 4].d[n % 4 / 2], 185 * bits 31..0 for even n, and bits 63..32 for odd n 186 * (and regs[16] to regs[31] are inaccessible) 187 * In AArch64: 188 * Zn = regs[n].d[*] 189 * Qn = regs[n].d[1]:regs[n].d[0] 190 * Dn = regs[n].d[0] 191 * Sn = regs[n].d[0] bits 31..0 192 * Hn = regs[n].d[0] bits 15..0 193 * 194 * This corresponds to the architecturally defined mapping between 195 * the two execution states, and means we do not need to explicitly 196 * map these registers when changing states. 197 * 198 * Align the data for use with TCG host vector operations. 199 */ 200 201 #ifdef TARGET_AARCH64 202 # define ARM_MAX_VQ 16 203 #else 204 # define ARM_MAX_VQ 1 205 #endif 206 207 typedef struct ARMVectorReg { 208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 209 } ARMVectorReg; 210 211 #ifdef TARGET_AARCH64 212 /* In AArch32 mode, predicate registers do not exist at all. */ 213 typedef struct ARMPredicateReg { 214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 215 } ARMPredicateReg; 216 217 /* In AArch32 mode, PAC keys do not exist at all. */ 218 typedef struct ARMPACKey { 219 uint64_t lo, hi; 220 } ARMPACKey; 221 #endif 222 223 /* See the commentary above the TBFLAG field definitions. */ 224 typedef struct CPUARMTBFlags { 225 uint32_t flags; 226 target_ulong flags2; 227 } CPUARMTBFlags; 228 229 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 230 231 typedef struct NVICState NVICState; 232 233 typedef struct CPUArchState { 234 /* Regs for current mode. */ 235 uint32_t regs[16]; 236 237 /* 32/64 switch only happens when taking and returning from 238 * exceptions so the overlap semantics are taken care of then 239 * instead of having a complicated union. 240 */ 241 /* Regs for A64 mode. */ 242 uint64_t xregs[32]; 243 uint64_t pc; 244 /* PSTATE isn't an architectural register for ARMv8. However, it is 245 * convenient for us to assemble the underlying state into a 32 bit format 246 * identical to the architectural format used for the SPSR. (This is also 247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 248 * 'pstate' register are.) Of the PSTATE bits: 249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 250 * semantics as for AArch32, as described in the comments on each field) 251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 252 * DAIF (exception masks) are kept in env->daif 253 * BTYPE is kept in env->btype 254 * SM and ZA are kept in env->svcr 255 * all other bits are stored in their correct places in env->pstate 256 */ 257 uint32_t pstate; 258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */ 259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */ 260 261 /* Cached TBFLAGS state. See below for which bits are included. */ 262 CPUARMTBFlags hflags; 263 264 /* Frequently accessed CPSR bits are stored separately for efficiency. 265 This contains all the other bits. Use cpsr_{read,write} to access 266 the whole CPSR. */ 267 uint32_t uncached_cpsr; 268 uint32_t spsr; 269 270 /* Banked registers. */ 271 uint64_t banked_spsr[8]; 272 uint32_t banked_r13[8]; 273 uint32_t banked_r14[8]; 274 275 /* These hold r8-r12. */ 276 uint32_t usr_regs[5]; 277 uint32_t fiq_regs[5]; 278 279 /* cpsr flag cache for faster execution */ 280 uint32_t CF; /* 0 or 1 */ 281 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 282 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 283 uint32_t ZF; /* Z set if zero. */ 284 uint32_t QF; /* 0 or 1 */ 285 uint32_t GE; /* cpsr[19:16] */ 286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 287 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */ 290 291 uint64_t elr_el[4]; /* AArch64 exception link regs */ 292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 293 294 /* System control coprocessor (cp15) */ 295 struct { 296 uint32_t c0_cpuid; 297 union { /* Cache size selection */ 298 struct { 299 uint64_t _unused_csselr0; 300 uint64_t csselr_ns; 301 uint64_t _unused_csselr1; 302 uint64_t csselr_s; 303 }; 304 uint64_t csselr_el[4]; 305 }; 306 union { /* System control register. */ 307 struct { 308 uint64_t _unused_sctlr; 309 uint64_t sctlr_ns; 310 uint64_t hsctlr; 311 uint64_t sctlr_s; 312 }; 313 uint64_t sctlr_el[4]; 314 }; 315 uint64_t vsctlr; /* Virtualization System control register. */ 316 uint64_t cpacr_el1; /* Architectural feature access control register */ 317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 319 uint64_t sder; /* Secure debug enable register. */ 320 uint32_t nsacr; /* Non-secure access control register. */ 321 union { /* MMU translation table base 0. */ 322 struct { 323 uint64_t _unused_ttbr0_0; 324 uint64_t ttbr0_ns; 325 uint64_t _unused_ttbr0_1; 326 uint64_t ttbr0_s; 327 }; 328 uint64_t ttbr0_el[4]; 329 }; 330 union { /* MMU translation table base 1. */ 331 struct { 332 uint64_t _unused_ttbr1_0; 333 uint64_t ttbr1_ns; 334 uint64_t _unused_ttbr1_1; 335 uint64_t ttbr1_s; 336 }; 337 uint64_t ttbr1_el[4]; 338 }; 339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ 341 /* MMU translation table base control. */ 342 uint64_t tcr_el[4]; 343 uint64_t vtcr_el2; /* Virtualization Translation Control. */ 344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */ 345 uint32_t c2_data; /* MPU data cacheable bits. */ 346 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 347 union { /* MMU domain access control register 348 * MPU write buffer control. 349 */ 350 struct { 351 uint64_t dacr_ns; 352 uint64_t dacr_s; 353 }; 354 struct { 355 uint64_t dacr32_el2; 356 }; 357 }; 358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 360 uint64_t hcr_el2; /* Hypervisor configuration register */ 361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */ 362 uint64_t scr_el3; /* Secure configuration register. */ 363 union { /* Fault status registers. */ 364 struct { 365 uint64_t ifsr_ns; 366 uint64_t ifsr_s; 367 }; 368 struct { 369 uint64_t ifsr32_el2; 370 }; 371 }; 372 union { 373 struct { 374 uint64_t _unused_dfsr; 375 uint64_t dfsr_ns; 376 uint64_t hsr; 377 uint64_t dfsr_s; 378 }; 379 uint64_t esr_el[4]; 380 }; 381 uint32_t c6_region[8]; /* MPU base/size registers. */ 382 union { /* Fault address registers. */ 383 struct { 384 uint64_t _unused_far0; 385 #if HOST_BIG_ENDIAN 386 uint32_t ifar_ns; 387 uint32_t dfar_ns; 388 uint32_t ifar_s; 389 uint32_t dfar_s; 390 #else 391 uint32_t dfar_ns; 392 uint32_t ifar_ns; 393 uint32_t dfar_s; 394 uint32_t ifar_s; 395 #endif 396 uint64_t _unused_far3; 397 }; 398 uint64_t far_el[4]; 399 }; 400 uint64_t hpfar_el2; 401 uint64_t hstr_el2; 402 union { /* Translation result. */ 403 struct { 404 uint64_t _unused_par_0; 405 uint64_t par_ns; 406 uint64_t _unused_par_1; 407 uint64_t par_s; 408 }; 409 uint64_t par_el[4]; 410 }; 411 412 uint32_t c9_insn; /* Cache lockdown registers. */ 413 uint32_t c9_data; 414 uint64_t c9_pmcr; /* performance monitor control register */ 415 uint64_t c9_pmcnten; /* perf monitor counter enables */ 416 uint64_t c9_pmovsr; /* perf monitor overflow status */ 417 uint64_t c9_pmuserenr; /* perf monitor user enable */ 418 uint64_t c9_pmselr; /* perf monitor counter selection register */ 419 uint64_t c9_pminten; /* perf monitor interrupt enables */ 420 union { /* Memory attribute redirection */ 421 struct { 422 #if HOST_BIG_ENDIAN 423 uint64_t _unused_mair_0; 424 uint32_t mair1_ns; 425 uint32_t mair0_ns; 426 uint64_t _unused_mair_1; 427 uint32_t mair1_s; 428 uint32_t mair0_s; 429 #else 430 uint64_t _unused_mair_0; 431 uint32_t mair0_ns; 432 uint32_t mair1_ns; 433 uint64_t _unused_mair_1; 434 uint32_t mair0_s; 435 uint32_t mair1_s; 436 #endif 437 }; 438 uint64_t mair_el[4]; 439 }; 440 union { /* vector base address register */ 441 struct { 442 uint64_t _unused_vbar; 443 uint64_t vbar_ns; 444 uint64_t hvbar; 445 uint64_t vbar_s; 446 }; 447 uint64_t vbar_el[4]; 448 }; 449 uint32_t mvbar; /* (monitor) vector base address register */ 450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */ 451 struct { /* FCSE PID. */ 452 uint32_t fcseidr_ns; 453 uint32_t fcseidr_s; 454 }; 455 union { /* Context ID. */ 456 struct { 457 uint64_t _unused_contextidr_0; 458 uint64_t contextidr_ns; 459 uint64_t _unused_contextidr_1; 460 uint64_t contextidr_s; 461 }; 462 uint64_t contextidr_el[4]; 463 }; 464 union { /* User RW Thread register. */ 465 struct { 466 uint64_t tpidrurw_ns; 467 uint64_t tpidrprw_ns; 468 uint64_t htpidr; 469 uint64_t _tpidr_el3; 470 }; 471 uint64_t tpidr_el[4]; 472 }; 473 uint64_t tpidr2_el0; 474 /* The secure banks of these registers don't map anywhere */ 475 uint64_t tpidrurw_s; 476 uint64_t tpidrprw_s; 477 uint64_t tpidruro_s; 478 479 union { /* User RO Thread register. */ 480 uint64_t tpidruro_ns; 481 uint64_t tpidrro_el[1]; 482 }; 483 uint64_t c14_cntfrq; /* Counter Frequency register */ 484 uint64_t c14_cntkctl; /* Timer Control register */ 485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 487 ARMGenericTimer c14_timer[NUM_GTIMERS]; 488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 489 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 492 uint32_t c15_threadid; /* TI debugger thread-ID. */ 493 uint32_t c15_config_base_address; /* SCU base address. */ 494 uint32_t c15_diagnostic; /* diagnostic register */ 495 uint32_t c15_power_diagnostic; 496 uint32_t c15_power_control; /* power control */ 497 uint64_t dbgbvr[16]; /* breakpoint value registers */ 498 uint64_t dbgbcr[16]; /* breakpoint control registers */ 499 uint64_t dbgwvr[16]; /* watchpoint value registers */ 500 uint64_t dbgwcr[16]; /* watchpoint control registers */ 501 uint64_t dbgclaim; /* DBGCLAIM bits */ 502 uint64_t mdscr_el1; 503 uint64_t oslsr_el1; /* OS Lock Status */ 504 uint64_t osdlr_el1; /* OS DoubleLock status */ 505 uint64_t mdcr_el2; 506 uint64_t mdcr_el3; 507 /* Stores the architectural value of the counter *the last time it was 508 * updated* by pmccntr_op_start. Accesses should always be surrounded 509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 510 * architecturally-correct value is being read/set. 511 */ 512 uint64_t c15_ccnt; 513 /* Stores the delta between the architectural value and the underlying 514 * cycle count during normal operation. It is used to update c15_ccnt 515 * to be the correct architectural value before accesses. During 516 * accesses, c15_ccnt_delta contains the underlying count being used 517 * for the access, after which it reverts to the delta value in 518 * pmccntr_op_finish. 519 */ 520 uint64_t c15_ccnt_delta; 521 uint64_t c14_pmevcntr[31]; 522 uint64_t c14_pmevcntr_delta[31]; 523 uint64_t c14_pmevtyper[31]; 524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 528 uint64_t gcr_el1; 529 uint64_t rgsr_el1; 530 531 /* Minimal RAS registers */ 532 uint64_t disr_el1; 533 uint64_t vdisr_el2; 534 uint64_t vsesr_el2; 535 536 /* 537 * Fine-Grained Trap registers. We store these as arrays so the 538 * access checking code doesn't have to manually select 539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test. 540 * FEAT_FGT2 will add more elements to these arrays. 541 */ 542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */ 543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */ 544 uint64_t fgt_exec[1]; /* HFGITR */ 545 546 /* RME registers */ 547 uint64_t gpccr_el3; 548 uint64_t gptbr_el3; 549 uint64_t mfar_el3; 550 } cp15; 551 552 struct { 553 /* M profile has up to 4 stack pointers: 554 * a Main Stack Pointer and a Process Stack Pointer for each 555 * of the Secure and Non-Secure states. (If the CPU doesn't support 556 * the security extension then it has only two SPs.) 557 * In QEMU we always store the currently active SP in regs[13], 558 * and the non-active SP for the current security state in 559 * v7m.other_sp. The stack pointers for the inactive security state 560 * are stored in other_ss_msp and other_ss_psp. 561 * switch_v7m_security_state() is responsible for rearranging them 562 * when we change security state. 563 */ 564 uint32_t other_sp; 565 uint32_t other_ss_msp; 566 uint32_t other_ss_psp; 567 uint32_t vecbase[M_REG_NUM_BANKS]; 568 uint32_t basepri[M_REG_NUM_BANKS]; 569 uint32_t control[M_REG_NUM_BANKS]; 570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 572 uint32_t hfsr; /* HardFault Status */ 573 uint32_t dfsr; /* Debug Fault Status Register */ 574 uint32_t sfsr; /* Secure Fault Status Register */ 575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 576 uint32_t bfar; /* BusFault Address */ 577 uint32_t sfar; /* Secure Fault Address Register */ 578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 579 int exception; 580 uint32_t primask[M_REG_NUM_BANKS]; 581 uint32_t faultmask[M_REG_NUM_BANKS]; 582 uint32_t aircr; /* only holds r/w state if security extn implemented */ 583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 584 uint32_t csselr[M_REG_NUM_BANKS]; 585 uint32_t scr[M_REG_NUM_BANKS]; 586 uint32_t msplim[M_REG_NUM_BANKS]; 587 uint32_t psplim[M_REG_NUM_BANKS]; 588 uint32_t fpcar[M_REG_NUM_BANKS]; 589 uint32_t fpccr[M_REG_NUM_BANKS]; 590 uint32_t fpdscr[M_REG_NUM_BANKS]; 591 uint32_t cpacr[M_REG_NUM_BANKS]; 592 uint32_t nsacr; 593 uint32_t ltpsize; 594 uint32_t vpr; 595 } v7m; 596 597 /* Information associated with an exception about to be taken: 598 * code which raises an exception must set cs->exception_index and 599 * the relevant parts of this structure; the cpu_do_interrupt function 600 * will then set the guest-visible registers as part of the exception 601 * entry process. 602 */ 603 struct { 604 uint32_t syndrome; /* AArch64 format syndrome register */ 605 uint32_t fsr; /* AArch32 format fault status register info */ 606 uint64_t vaddress; /* virtual addr associated with exception, if any */ 607 uint32_t target_el; /* EL the exception should be targeted for */ 608 /* If we implement EL2 we will also need to store information 609 * about the intermediate physical address for stage 2 faults. 610 */ 611 } exception; 612 613 /* Information associated with an SError */ 614 struct { 615 uint8_t pending; 616 uint8_t has_esr; 617 uint64_t esr; 618 } serror; 619 620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 621 622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 623 uint32_t irq_line_state; 624 625 /* Thumb-2 EE state. */ 626 uint32_t teecr; 627 uint32_t teehbr; 628 629 /* VFP coprocessor state. */ 630 struct { 631 ARMVectorReg zregs[32]; 632 633 #ifdef TARGET_AARCH64 634 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 635 #define FFR_PRED_NUM 16 636 ARMPredicateReg pregs[17]; 637 /* Scratch space for aa64 sve predicate temporary. */ 638 ARMPredicateReg preg_tmp; 639 #endif 640 641 /* We store these fpcsr fields separately for convenience. */ 642 uint32_t qc[4] QEMU_ALIGNED(16); 643 int vec_len; 644 int vec_stride; 645 646 uint32_t xregs[16]; 647 648 /* Scratch space for aa32 neon expansion. */ 649 uint32_t scratch[8]; 650 651 /* There are a number of distinct float control structures: 652 * 653 * fp_status: is the "normal" fp status. 654 * fp_status_fp16: used for half-precision calculations 655 * standard_fp_status : the ARM "Standard FPSCR Value" 656 * standard_fp_status_fp16 : used for half-precision 657 * calculations with the ARM "Standard FPSCR Value" 658 * 659 * Half-precision operations are governed by a separate 660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 661 * status structure to control this. 662 * 663 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 664 * round-to-nearest and is used by any operations (generally 665 * Neon) which the architecture defines as controlled by the 666 * standard FPSCR value rather than the FPSCR. 667 * 668 * The "standard FPSCR but for fp16 ops" is needed because 669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 670 * using a fixed value for it. 671 * 672 * To avoid having to transfer exception bits around, we simply 673 * say that the FPSCR cumulative exception flags are the logical 674 * OR of the flags in the four fp statuses. This relies on the 675 * only thing which needs to read the exception flags being 676 * an explicit FPSCR read. 677 */ 678 float_status fp_status; 679 float_status fp_status_f16; 680 float_status standard_fp_status; 681 float_status standard_fp_status_f16; 682 683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ 684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ 685 } vfp; 686 687 uint64_t exclusive_addr; 688 uint64_t exclusive_val; 689 /* 690 * Contains the 'val' for the second 64-bit register of LDXP, which comes 691 * from the higher address, not the high part of a complete 128-bit value. 692 * In some ways it might be more convenient to record the exclusive value 693 * as the low and high halves of a 128 bit data value, but the current 694 * semantics of these fields are baked into the migration format. 695 */ 696 uint64_t exclusive_high; 697 698 /* iwMMXt coprocessor state. */ 699 struct { 700 uint64_t regs[16]; 701 uint64_t val; 702 703 uint32_t cregs[16]; 704 } iwmmxt; 705 706 #ifdef TARGET_AARCH64 707 struct { 708 ARMPACKey apia; 709 ARMPACKey apib; 710 ARMPACKey apda; 711 ARMPACKey apdb; 712 ARMPACKey apga; 713 } keys; 714 715 uint64_t scxtnum_el[4]; 716 717 /* 718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order, 719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA 720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N]. 721 * When SVL is less than the architectural maximum, the accessible 722 * storage is restricted, such that if the SVL is X bytes the guest can 723 * see only the bottom X elements of zarray[], and only the least 724 * significant X bytes of each element of the array. (In other words, 725 * the observable part is always square.) 726 * 727 * The ZA storage can also be considered as a set of square tiles of 728 * elements of different sizes. The mapping from tiles to the ZA array 729 * is architecturally defined, such that for tiles of elements of esz 730 * bytes, the Nth row (or "horizontal slice") of tile T is in 731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous 732 * in the ZA storage, because its rows are striped through the ZA array. 733 * 734 * Because this is so large, keep this toward the end of the reset area, 735 * to keep the offsets into the rest of the structure smaller. 736 */ 737 ARMVectorReg zarray[ARM_MAX_VQ * 16]; 738 #endif 739 740 struct CPUBreakpoint *cpu_breakpoint[16]; 741 struct CPUWatchpoint *cpu_watchpoint[16]; 742 743 /* Optional fault info across tlb lookup. */ 744 ARMMMUFaultInfo *tlb_fi; 745 746 /* Fields up to this point are cleared by a CPU reset */ 747 struct {} end_reset_fields; 748 749 /* Fields after this point are preserved across CPU reset. */ 750 751 /* Internal CPU feature flags. */ 752 uint64_t features; 753 754 /* PMSAv7 MPU */ 755 struct { 756 uint32_t *drbar; 757 uint32_t *drsr; 758 uint32_t *dracr; 759 uint32_t rnr[M_REG_NUM_BANKS]; 760 } pmsav7; 761 762 /* PMSAv8 MPU */ 763 struct { 764 /* The PMSAv8 implementation also shares some PMSAv7 config 765 * and state: 766 * pmsav7.rnr (region number register) 767 * pmsav7_dregion (number of configured regions) 768 */ 769 uint32_t *rbar[M_REG_NUM_BANKS]; 770 uint32_t *rlar[M_REG_NUM_BANKS]; 771 uint32_t *hprbar; 772 uint32_t *hprlar; 773 uint32_t mair0[M_REG_NUM_BANKS]; 774 uint32_t mair1[M_REG_NUM_BANKS]; 775 uint32_t hprselr; 776 } pmsav8; 777 778 /* v8M SAU */ 779 struct { 780 uint32_t *rbar; 781 uint32_t *rlar; 782 uint32_t rnr; 783 uint32_t ctrl; 784 } sau; 785 786 #if !defined(CONFIG_USER_ONLY) 787 NVICState *nvic; 788 const struct arm_boot_info *boot_info; 789 /* Store GICv3CPUState to access from this struct */ 790 void *gicv3state; 791 #else /* CONFIG_USER_ONLY */ 792 /* For usermode syscall translation. */ 793 bool eabi; 794 #endif /* CONFIG_USER_ONLY */ 795 796 #ifdef TARGET_TAGGED_ADDRESSES 797 /* Linux syscall tagged address support */ 798 bool tagged_addr_enable; 799 #endif 800 } CPUARMState; 801 802 static inline void set_feature(CPUARMState *env, int feature) 803 { 804 env->features |= 1ULL << feature; 805 } 806 807 static inline void unset_feature(CPUARMState *env, int feature) 808 { 809 env->features &= ~(1ULL << feature); 810 } 811 812 /** 813 * ARMELChangeHookFn: 814 * type of a function which can be registered via arm_register_el_change_hook() 815 * to get callbacks when the CPU changes its exception level or mode. 816 */ 817 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 818 typedef struct ARMELChangeHook ARMELChangeHook; 819 struct ARMELChangeHook { 820 ARMELChangeHookFn *hook; 821 void *opaque; 822 QLIST_ENTRY(ARMELChangeHook) node; 823 }; 824 825 /* These values map onto the return values for 826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 827 typedef enum ARMPSCIState { 828 PSCI_ON = 0, 829 PSCI_OFF = 1, 830 PSCI_ON_PENDING = 2 831 } ARMPSCIState; 832 833 typedef struct ARMISARegisters ARMISARegisters; 834 835 /* 836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16 837 * bytes, i.e. each bit number + 1 is the vector length in quadwords. 838 * 839 * While processing properties during initialization, corresponding init bits 840 * are set for bits in sve_vq_map that have been set by properties. 841 * 842 * Bits set in supported represent valid vector lengths for the CPU type. 843 */ 844 typedef struct { 845 uint32_t map, init, supported; 846 } ARMVQMap; 847 848 /** 849 * ARMCPU: 850 * @env: #CPUARMState 851 * 852 * An ARM CPU core. 853 */ 854 struct ArchCPU { 855 /*< private >*/ 856 CPUState parent_obj; 857 /*< public >*/ 858 859 CPUNegativeOffsetState neg; 860 CPUARMState env; 861 862 /* Coprocessor information */ 863 GHashTable *cp_regs; 864 /* For marshalling (mostly coprocessor) register state between the 865 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 866 * we use these arrays. 867 */ 868 /* List of register indexes managed via these arrays; (full KVM style 869 * 64 bit indexes, not CPRegInfo 32 bit indexes) 870 */ 871 uint64_t *cpreg_indexes; 872 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 873 uint64_t *cpreg_values; 874 /* Length of the indexes, values, reset_values arrays */ 875 int32_t cpreg_array_len; 876 /* These are used only for migration: incoming data arrives in 877 * these fields and is sanity checked in post_load before copying 878 * to the working data structures above. 879 */ 880 uint64_t *cpreg_vmstate_indexes; 881 uint64_t *cpreg_vmstate_values; 882 int32_t cpreg_vmstate_array_len; 883 884 DynamicGDBXMLInfo dyn_sysreg_xml; 885 DynamicGDBXMLInfo dyn_svereg_xml; 886 DynamicGDBXMLInfo dyn_m_systemreg_xml; 887 DynamicGDBXMLInfo dyn_m_secextreg_xml; 888 889 /* Timers used by the generic (architected) timer */ 890 QEMUTimer *gt_timer[NUM_GTIMERS]; 891 /* 892 * Timer used by the PMU. Its state is restored after migration by 893 * pmu_op_finish() - it does not need other handling during migration 894 */ 895 QEMUTimer *pmu_timer; 896 /* GPIO outputs for generic timer */ 897 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 898 /* GPIO output for GICv3 maintenance interrupt signal */ 899 qemu_irq gicv3_maintenance_interrupt; 900 /* GPIO output for the PMU interrupt */ 901 qemu_irq pmu_interrupt; 902 903 /* MemoryRegion to use for secure physical accesses */ 904 MemoryRegion *secure_memory; 905 906 /* MemoryRegion to use for allocation tag accesses */ 907 MemoryRegion *tag_memory; 908 MemoryRegion *secure_tag_memory; 909 910 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 911 Object *idau; 912 913 /* 'compatible' string for this CPU for Linux device trees */ 914 const char *dtb_compatible; 915 916 /* PSCI version for this CPU 917 * Bits[31:16] = Major Version 918 * Bits[15:0] = Minor Version 919 */ 920 uint32_t psci_version; 921 922 /* Current power state, access guarded by BQL */ 923 ARMPSCIState power_state; 924 925 /* CPU has virtualization extension */ 926 bool has_el2; 927 /* CPU has security extension */ 928 bool has_el3; 929 /* CPU has PMU (Performance Monitor Unit) */ 930 bool has_pmu; 931 /* CPU has VFP */ 932 bool has_vfp; 933 /* CPU has 32 VFP registers */ 934 bool has_vfp_d32; 935 /* CPU has Neon */ 936 bool has_neon; 937 /* CPU has M-profile DSP extension */ 938 bool has_dsp; 939 940 /* CPU has memory protection unit */ 941 bool has_mpu; 942 /* PMSAv7 MPU number of supported regions */ 943 uint32_t pmsav7_dregion; 944 /* PMSAv8 MPU number of supported hyp regions */ 945 uint32_t pmsav8r_hdregion; 946 /* v8M SAU number of supported regions */ 947 uint32_t sau_sregion; 948 949 /* PSCI conduit used to invoke PSCI methods 950 * 0 - disabled, 1 - smc, 2 - hvc 951 */ 952 uint32_t psci_conduit; 953 954 /* For v8M, initial value of the Secure VTOR */ 955 uint32_t init_svtor; 956 /* For v8M, initial value of the Non-secure VTOR */ 957 uint32_t init_nsvtor; 958 959 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 960 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 961 */ 962 uint32_t kvm_target; 963 964 #ifdef CONFIG_KVM 965 /* KVM init features for this CPU */ 966 uint32_t kvm_init_features[7]; 967 968 /* KVM CPU state */ 969 970 /* KVM virtual time adjustment */ 971 bool kvm_adjvtime; 972 bool kvm_vtime_dirty; 973 uint64_t kvm_vtime; 974 975 /* KVM steal time */ 976 OnOffAuto kvm_steal_time; 977 #endif /* CONFIG_KVM */ 978 979 /* Uniprocessor system with MP extensions */ 980 bool mp_is_up; 981 982 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 983 * and the probe failed (so we need to report the error in realize) 984 */ 985 bool host_cpu_probe_failed; 986 987 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 988 * register. 989 */ 990 int32_t core_count; 991 992 /* The instance init functions for implementation-specific subclasses 993 * set these fields to specify the implementation-dependent values of 994 * various constant registers and reset values of non-constant 995 * registers. 996 * Some of these might become QOM properties eventually. 997 * Field names match the official register names as defined in the 998 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 999 * is used for reset values of non-constant registers; no reset_ 1000 * prefix means a constant register. 1001 * Some of these registers are split out into a substructure that 1002 * is shared with the translators to control the ISA. 1003 * 1004 * Note that if you add an ID register to the ARMISARegisters struct 1005 * you need to also update the 32-bit and 64-bit versions of the 1006 * kvm_arm_get_host_cpu_features() function to correctly populate the 1007 * field by reading the value from the KVM vCPU. 1008 */ 1009 struct ARMISARegisters { 1010 uint32_t id_isar0; 1011 uint32_t id_isar1; 1012 uint32_t id_isar2; 1013 uint32_t id_isar3; 1014 uint32_t id_isar4; 1015 uint32_t id_isar5; 1016 uint32_t id_isar6; 1017 uint32_t id_mmfr0; 1018 uint32_t id_mmfr1; 1019 uint32_t id_mmfr2; 1020 uint32_t id_mmfr3; 1021 uint32_t id_mmfr4; 1022 uint32_t id_mmfr5; 1023 uint32_t id_pfr0; 1024 uint32_t id_pfr1; 1025 uint32_t id_pfr2; 1026 uint32_t mvfr0; 1027 uint32_t mvfr1; 1028 uint32_t mvfr2; 1029 uint32_t id_dfr0; 1030 uint32_t id_dfr1; 1031 uint32_t dbgdidr; 1032 uint32_t dbgdevid; 1033 uint32_t dbgdevid1; 1034 uint64_t id_aa64isar0; 1035 uint64_t id_aa64isar1; 1036 uint64_t id_aa64pfr0; 1037 uint64_t id_aa64pfr1; 1038 uint64_t id_aa64mmfr0; 1039 uint64_t id_aa64mmfr1; 1040 uint64_t id_aa64mmfr2; 1041 uint64_t id_aa64dfr0; 1042 uint64_t id_aa64dfr1; 1043 uint64_t id_aa64zfr0; 1044 uint64_t id_aa64smfr0; 1045 uint64_t reset_pmcr_el0; 1046 } isar; 1047 uint64_t midr; 1048 uint32_t revidr; 1049 uint32_t reset_fpsid; 1050 uint64_t ctr; 1051 uint32_t reset_sctlr; 1052 uint64_t pmceid0; 1053 uint64_t pmceid1; 1054 uint32_t id_afr0; 1055 uint64_t id_aa64afr0; 1056 uint64_t id_aa64afr1; 1057 uint64_t clidr; 1058 uint64_t mp_affinity; /* MP ID without feature bits */ 1059 /* The elements of this array are the CCSIDR values for each cache, 1060 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 1061 */ 1062 uint64_t ccsidr[16]; 1063 uint64_t reset_cbar; 1064 uint32_t reset_auxcr; 1065 bool reset_hivecs; 1066 uint8_t reset_l0gptsz; 1067 1068 /* 1069 * Intermediate values used during property parsing. 1070 * Once finalized, the values should be read from ID_AA64*. 1071 */ 1072 bool prop_pauth; 1073 bool prop_pauth_impdef; 1074 bool prop_lpa2; 1075 1076 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 1077 uint32_t dcz_blocksize; 1078 uint64_t rvbar_prop; /* Property/input signals. */ 1079 1080 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 1081 int gic_num_lrs; /* number of list registers */ 1082 int gic_vpribits; /* number of virtual priority bits */ 1083 int gic_vprebits; /* number of virtual preemption bits */ 1084 int gic_pribits; /* number of physical priority bits */ 1085 1086 /* Whether the cfgend input is high (i.e. this CPU should reset into 1087 * big-endian mode). This setting isn't used directly: instead it modifies 1088 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 1089 * architecture version. 1090 */ 1091 bool cfgend; 1092 1093 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 1094 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 1095 1096 int32_t node_id; /* NUMA node this CPU belongs to */ 1097 1098 /* Used to synchronize KVM and QEMU in-kernel device levels */ 1099 uint8_t device_irq_level; 1100 1101 /* Used to set the maximum vector length the cpu will support. */ 1102 uint32_t sve_max_vq; 1103 1104 #ifdef CONFIG_USER_ONLY 1105 /* Used to set the default vector length at process start. */ 1106 uint32_t sve_default_vq; 1107 uint32_t sme_default_vq; 1108 #endif 1109 1110 ARMVQMap sve_vq; 1111 ARMVQMap sme_vq; 1112 1113 /* Generic timer counter frequency, in Hz */ 1114 uint64_t gt_cntfrq_hz; 1115 }; 1116 1117 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 1118 1119 void arm_cpu_post_init(Object *obj); 1120 1121 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 1122 1123 #ifndef CONFIG_USER_ONLY 1124 extern const VMStateDescription vmstate_arm_cpu; 1125 1126 void arm_cpu_do_interrupt(CPUState *cpu); 1127 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1128 1129 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1130 MemTxAttrs *attrs); 1131 #endif /* !CONFIG_USER_ONLY */ 1132 1133 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1134 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1135 1136 /* Returns the dynamically generated XML for the gdb stub. 1137 * Returns a pointer to the XML contents for the specified XML file or NULL 1138 * if the XML name doesn't match the predefined one. 1139 */ 1140 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1141 1142 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1143 int cpuid, DumpState *s); 1144 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1145 int cpuid, DumpState *s); 1146 1147 #ifdef TARGET_AARCH64 1148 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1149 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1150 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1151 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1152 int new_el, bool el0_a64); 1153 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask); 1154 1155 /* 1156 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1157 * The byte at offset i from the start of the in-memory representation contains 1158 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1159 * lowest offsets are stored in the lowest memory addresses, then that nearly 1160 * matches QEMU's representation, which is to use an array of host-endian 1161 * uint64_t's, where the lower offsets are at the lower indices. To complete 1162 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1163 */ 1164 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1165 { 1166 #if HOST_BIG_ENDIAN 1167 int i; 1168 1169 for (i = 0; i < nr; ++i) { 1170 dst[i] = bswap64(src[i]); 1171 } 1172 1173 return dst; 1174 #else 1175 return src; 1176 #endif 1177 } 1178 1179 #else 1180 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1181 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1182 int n, bool a) 1183 { } 1184 #endif 1185 1186 void aarch64_sync_32_to_64(CPUARMState *env); 1187 void aarch64_sync_64_to_32(CPUARMState *env); 1188 1189 int fp_exception_el(CPUARMState *env, int cur_el); 1190 int sve_exception_el(CPUARMState *env, int cur_el); 1191 int sme_exception_el(CPUARMState *env, int cur_el); 1192 1193 /** 1194 * sve_vqm1_for_el_sm: 1195 * @env: CPUARMState 1196 * @el: exception level 1197 * @sm: streaming mode 1198 * 1199 * Compute the current vector length for @el & @sm, in units of 1200 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN. 1201 * If @sm, compute for SVL, otherwise NVL. 1202 */ 1203 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm); 1204 1205 /* Likewise, but using @sm = PSTATE.SM. */ 1206 uint32_t sve_vqm1_for_el(CPUARMState *env, int el); 1207 1208 static inline bool is_a64(CPUARMState *env) 1209 { 1210 return env->aarch64; 1211 } 1212 1213 /** 1214 * pmu_op_start/finish 1215 * @env: CPUARMState 1216 * 1217 * Convert all PMU counters between their delta form (the typical mode when 1218 * they are enabled) and the guest-visible values. These two calls must 1219 * surround any action which might affect the counters. 1220 */ 1221 void pmu_op_start(CPUARMState *env); 1222 void pmu_op_finish(CPUARMState *env); 1223 1224 /* 1225 * Called when a PMU counter is due to overflow 1226 */ 1227 void arm_pmu_timer_cb(void *opaque); 1228 1229 /** 1230 * Functions to register as EL change hooks for PMU mode filtering 1231 */ 1232 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1233 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1234 1235 /* 1236 * pmu_init 1237 * @cpu: ARMCPU 1238 * 1239 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1240 * for the current configuration 1241 */ 1242 void pmu_init(ARMCPU *cpu); 1243 1244 /* SCTLR bit meanings. Several bits have been reused in newer 1245 * versions of the architecture; in that case we define constants 1246 * for both old and new bit meanings. Code which tests against those 1247 * bits should probably check or otherwise arrange that the CPU 1248 * is the architectural version it expects. 1249 */ 1250 #define SCTLR_M (1U << 0) 1251 #define SCTLR_A (1U << 1) 1252 #define SCTLR_C (1U << 2) 1253 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1254 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1255 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1256 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1257 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1258 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1259 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1260 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1261 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1262 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */ 1263 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1264 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1265 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1266 #define SCTLR_SED (1U << 8) /* v8 onward */ 1267 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1268 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1269 #define SCTLR_F (1U << 10) /* up to v6 */ 1270 #define SCTLR_SW (1U << 10) /* v7 */ 1271 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1272 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1273 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1274 #define SCTLR_I (1U << 12) 1275 #define SCTLR_V (1U << 13) /* AArch32 only */ 1276 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1277 #define SCTLR_RR (1U << 14) /* up to v7 */ 1278 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1279 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1280 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1281 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1282 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1283 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1284 #define SCTLR_BR (1U << 17) /* PMSA only */ 1285 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1286 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1287 #define SCTLR_WXN (1U << 19) 1288 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1289 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1290 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */ 1291 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1292 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1293 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1294 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1295 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1296 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1297 #define SCTLR_VE (1U << 24) /* up to v7 */ 1298 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1299 #define SCTLR_EE (1U << 25) 1300 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1301 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1302 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1303 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1304 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1305 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1306 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1307 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1308 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1309 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1310 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1311 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ 1312 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1313 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1314 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1315 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1316 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1317 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1318 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1319 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ 1320 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */ 1321 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */ 1322 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */ 1323 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */ 1324 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */ 1325 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */ 1326 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */ 1327 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */ 1328 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */ 1329 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */ 1330 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */ 1331 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */ 1332 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */ 1333 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */ 1334 1335 /* Bit definitions for CPACR (AArch32 only) */ 1336 FIELD(CPACR, CP10, 20, 2) 1337 FIELD(CPACR, CP11, 22, 2) 1338 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */ 1339 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */ 1340 FIELD(CPACR, ASEDIS, 31, 1) 1341 1342 /* Bit definitions for CPACR_EL1 (AArch64 only) */ 1343 FIELD(CPACR_EL1, ZEN, 16, 2) 1344 FIELD(CPACR_EL1, FPEN, 20, 2) 1345 FIELD(CPACR_EL1, SMEN, 24, 2) 1346 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */ 1347 1348 /* Bit definitions for HCPTR (AArch32 only) */ 1349 FIELD(HCPTR, TCP10, 10, 1) 1350 FIELD(HCPTR, TCP11, 11, 1) 1351 FIELD(HCPTR, TASE, 15, 1) 1352 FIELD(HCPTR, TTA, 20, 1) 1353 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */ 1354 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */ 1355 1356 /* Bit definitions for CPTR_EL2 (AArch64 only) */ 1357 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */ 1358 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */ 1359 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */ 1360 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */ 1361 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */ 1362 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */ 1363 FIELD(CPTR_EL2, TTA, 28, 1) 1364 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */ 1365 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */ 1366 1367 /* Bit definitions for CPTR_EL3 (AArch64 only) */ 1368 FIELD(CPTR_EL3, EZ, 8, 1) 1369 FIELD(CPTR_EL3, TFP, 10, 1) 1370 FIELD(CPTR_EL3, ESM, 12, 1) 1371 FIELD(CPTR_EL3, TTA, 20, 1) 1372 FIELD(CPTR_EL3, TAM, 30, 1) 1373 FIELD(CPTR_EL3, TCPAC, 31, 1) 1374 1375 #define MDCR_MTPME (1U << 28) 1376 #define MDCR_TDCC (1U << 27) 1377 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */ 1378 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */ 1379 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */ 1380 #define MDCR_EPMAD (1U << 21) 1381 #define MDCR_EDAD (1U << 20) 1382 #define MDCR_TTRF (1U << 19) 1383 #define MDCR_STE (1U << 18) /* MDCR_EL3 */ 1384 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1385 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1386 #define MDCR_SDD (1U << 16) 1387 #define MDCR_SPD (3U << 14) 1388 #define MDCR_TDRA (1U << 11) 1389 #define MDCR_TDOSA (1U << 10) 1390 #define MDCR_TDA (1U << 9) 1391 #define MDCR_TDE (1U << 8) 1392 #define MDCR_HPME (1U << 7) 1393 #define MDCR_TPM (1U << 6) 1394 #define MDCR_TPMCR (1U << 5) 1395 #define MDCR_HPMN (0x1fU) 1396 1397 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1398 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \ 1399 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \ 1400 MDCR_STE | MDCR_SPME | MDCR_SPD) 1401 1402 #define CPSR_M (0x1fU) 1403 #define CPSR_T (1U << 5) 1404 #define CPSR_F (1U << 6) 1405 #define CPSR_I (1U << 7) 1406 #define CPSR_A (1U << 8) 1407 #define CPSR_E (1U << 9) 1408 #define CPSR_IT_2_7 (0xfc00U) 1409 #define CPSR_GE (0xfU << 16) 1410 #define CPSR_IL (1U << 20) 1411 #define CPSR_DIT (1U << 21) 1412 #define CPSR_PAN (1U << 22) 1413 #define CPSR_SSBS (1U << 23) 1414 #define CPSR_J (1U << 24) 1415 #define CPSR_IT_0_1 (3U << 25) 1416 #define CPSR_Q (1U << 27) 1417 #define CPSR_V (1U << 28) 1418 #define CPSR_C (1U << 29) 1419 #define CPSR_Z (1U << 30) 1420 #define CPSR_N (1U << 31) 1421 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1422 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1423 1424 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1425 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1426 | CPSR_NZCV) 1427 /* Bits writable in user mode. */ 1428 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1429 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1430 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1431 1432 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1433 #define XPSR_EXCP 0x1ffU 1434 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1435 #define XPSR_IT_2_7 CPSR_IT_2_7 1436 #define XPSR_GE CPSR_GE 1437 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1438 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1439 #define XPSR_IT_0_1 CPSR_IT_0_1 1440 #define XPSR_Q CPSR_Q 1441 #define XPSR_V CPSR_V 1442 #define XPSR_C CPSR_C 1443 #define XPSR_Z CPSR_Z 1444 #define XPSR_N CPSR_N 1445 #define XPSR_NZCV CPSR_NZCV 1446 #define XPSR_IT CPSR_IT 1447 1448 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1449 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1450 #define TTBCR_PD0 (1U << 4) 1451 #define TTBCR_PD1 (1U << 5) 1452 #define TTBCR_EPD0 (1U << 7) 1453 #define TTBCR_IRGN0 (3U << 8) 1454 #define TTBCR_ORGN0 (3U << 10) 1455 #define TTBCR_SH0 (3U << 12) 1456 #define TTBCR_T1SZ (3U << 16) 1457 #define TTBCR_A1 (1U << 22) 1458 #define TTBCR_EPD1 (1U << 23) 1459 #define TTBCR_IRGN1 (3U << 24) 1460 #define TTBCR_ORGN1 (3U << 26) 1461 #define TTBCR_SH1 (1U << 28) 1462 #define TTBCR_EAE (1U << 31) 1463 1464 FIELD(VTCR, T0SZ, 0, 6) 1465 FIELD(VTCR, SL0, 6, 2) 1466 FIELD(VTCR, IRGN0, 8, 2) 1467 FIELD(VTCR, ORGN0, 10, 2) 1468 FIELD(VTCR, SH0, 12, 2) 1469 FIELD(VTCR, TG0, 14, 2) 1470 FIELD(VTCR, PS, 16, 3) 1471 FIELD(VTCR, VS, 19, 1) 1472 FIELD(VTCR, HA, 21, 1) 1473 FIELD(VTCR, HD, 22, 1) 1474 FIELD(VTCR, HWU59, 25, 1) 1475 FIELD(VTCR, HWU60, 26, 1) 1476 FIELD(VTCR, HWU61, 27, 1) 1477 FIELD(VTCR, HWU62, 28, 1) 1478 FIELD(VTCR, NSW, 29, 1) 1479 FIELD(VTCR, NSA, 30, 1) 1480 FIELD(VTCR, DS, 32, 1) 1481 FIELD(VTCR, SL2, 33, 1) 1482 1483 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1484 * Only these are valid when in AArch64 mode; in 1485 * AArch32 mode SPSRs are basically CPSR-format. 1486 */ 1487 #define PSTATE_SP (1U) 1488 #define PSTATE_M (0xFU) 1489 #define PSTATE_nRW (1U << 4) 1490 #define PSTATE_F (1U << 6) 1491 #define PSTATE_I (1U << 7) 1492 #define PSTATE_A (1U << 8) 1493 #define PSTATE_D (1U << 9) 1494 #define PSTATE_BTYPE (3U << 10) 1495 #define PSTATE_SSBS (1U << 12) 1496 #define PSTATE_IL (1U << 20) 1497 #define PSTATE_SS (1U << 21) 1498 #define PSTATE_PAN (1U << 22) 1499 #define PSTATE_UAO (1U << 23) 1500 #define PSTATE_DIT (1U << 24) 1501 #define PSTATE_TCO (1U << 25) 1502 #define PSTATE_V (1U << 28) 1503 #define PSTATE_C (1U << 29) 1504 #define PSTATE_Z (1U << 30) 1505 #define PSTATE_N (1U << 31) 1506 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1507 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1508 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1509 /* Mode values for AArch64 */ 1510 #define PSTATE_MODE_EL3h 13 1511 #define PSTATE_MODE_EL3t 12 1512 #define PSTATE_MODE_EL2h 9 1513 #define PSTATE_MODE_EL2t 8 1514 #define PSTATE_MODE_EL1h 5 1515 #define PSTATE_MODE_EL1t 4 1516 #define PSTATE_MODE_EL0t 0 1517 1518 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */ 1519 FIELD(SVCR, SM, 0, 1) 1520 FIELD(SVCR, ZA, 1, 1) 1521 1522 /* Fields for SMCR_ELx. */ 1523 FIELD(SMCR, LEN, 0, 4) 1524 FIELD(SMCR, FA64, 31, 1) 1525 1526 /* Write a new value to v7m.exception, thus transitioning into or out 1527 * of Handler mode; this may result in a change of active stack pointer. 1528 */ 1529 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1530 1531 /* Map EL and handler into a PSTATE_MODE. */ 1532 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1533 { 1534 return (el << 2) | handler; 1535 } 1536 1537 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1538 * interprocessing, so we don't attempt to sync with the cpsr state used by 1539 * the 32 bit decoder. 1540 */ 1541 static inline uint32_t pstate_read(CPUARMState *env) 1542 { 1543 int ZF; 1544 1545 ZF = (env->ZF == 0); 1546 return (env->NF & 0x80000000) | (ZF << 30) 1547 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1548 | env->pstate | env->daif | (env->btype << 10); 1549 } 1550 1551 static inline void pstate_write(CPUARMState *env, uint32_t val) 1552 { 1553 env->ZF = (~val) & PSTATE_Z; 1554 env->NF = val; 1555 env->CF = (val >> 29) & 1; 1556 env->VF = (val << 3) & 0x80000000; 1557 env->daif = val & PSTATE_DAIF; 1558 env->btype = (val >> 10) & 3; 1559 env->pstate = val & ~CACHED_PSTATE_BITS; 1560 } 1561 1562 /* Return the current CPSR value. */ 1563 uint32_t cpsr_read(CPUARMState *env); 1564 1565 typedef enum CPSRWriteType { 1566 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1567 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1568 CPSRWriteRaw = 2, 1569 /* trust values, no reg bank switch, no hflags rebuild */ 1570 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1571 } CPSRWriteType; 1572 1573 /* 1574 * Set the CPSR. Note that some bits of mask must be all-set or all-clear. 1575 * This will do an arm_rebuild_hflags() if any of the bits in @mask 1576 * correspond to TB flags bits cached in the hflags, unless @write_type 1577 * is CPSRWriteRaw. 1578 */ 1579 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1580 CPSRWriteType write_type); 1581 1582 /* Return the current xPSR value. */ 1583 static inline uint32_t xpsr_read(CPUARMState *env) 1584 { 1585 int ZF; 1586 ZF = (env->ZF == 0); 1587 return (env->NF & 0x80000000) | (ZF << 30) 1588 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1589 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1590 | ((env->condexec_bits & 0xfc) << 8) 1591 | (env->GE << 16) 1592 | env->v7m.exception; 1593 } 1594 1595 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1596 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1597 { 1598 if (mask & XPSR_NZCV) { 1599 env->ZF = (~val) & XPSR_Z; 1600 env->NF = val; 1601 env->CF = (val >> 29) & 1; 1602 env->VF = (val << 3) & 0x80000000; 1603 } 1604 if (mask & XPSR_Q) { 1605 env->QF = ((val & XPSR_Q) != 0); 1606 } 1607 if (mask & XPSR_GE) { 1608 env->GE = (val & XPSR_GE) >> 16; 1609 } 1610 #ifndef CONFIG_USER_ONLY 1611 if (mask & XPSR_T) { 1612 env->thumb = ((val & XPSR_T) != 0); 1613 } 1614 if (mask & XPSR_IT_0_1) { 1615 env->condexec_bits &= ~3; 1616 env->condexec_bits |= (val >> 25) & 3; 1617 } 1618 if (mask & XPSR_IT_2_7) { 1619 env->condexec_bits &= 3; 1620 env->condexec_bits |= (val >> 8) & 0xfc; 1621 } 1622 if (mask & XPSR_EXCP) { 1623 /* Note that this only happens on exception exit */ 1624 write_v7m_exception(env, val & XPSR_EXCP); 1625 } 1626 #endif 1627 } 1628 1629 #define HCR_VM (1ULL << 0) 1630 #define HCR_SWIO (1ULL << 1) 1631 #define HCR_PTW (1ULL << 2) 1632 #define HCR_FMO (1ULL << 3) 1633 #define HCR_IMO (1ULL << 4) 1634 #define HCR_AMO (1ULL << 5) 1635 #define HCR_VF (1ULL << 6) 1636 #define HCR_VI (1ULL << 7) 1637 #define HCR_VSE (1ULL << 8) 1638 #define HCR_FB (1ULL << 9) 1639 #define HCR_BSU_MASK (3ULL << 10) 1640 #define HCR_DC (1ULL << 12) 1641 #define HCR_TWI (1ULL << 13) 1642 #define HCR_TWE (1ULL << 14) 1643 #define HCR_TID0 (1ULL << 15) 1644 #define HCR_TID1 (1ULL << 16) 1645 #define HCR_TID2 (1ULL << 17) 1646 #define HCR_TID3 (1ULL << 18) 1647 #define HCR_TSC (1ULL << 19) 1648 #define HCR_TIDCP (1ULL << 20) 1649 #define HCR_TACR (1ULL << 21) 1650 #define HCR_TSW (1ULL << 22) 1651 #define HCR_TPCP (1ULL << 23) 1652 #define HCR_TPU (1ULL << 24) 1653 #define HCR_TTLB (1ULL << 25) 1654 #define HCR_TVM (1ULL << 26) 1655 #define HCR_TGE (1ULL << 27) 1656 #define HCR_TDZ (1ULL << 28) 1657 #define HCR_HCD (1ULL << 29) 1658 #define HCR_TRVM (1ULL << 30) 1659 #define HCR_RW (1ULL << 31) 1660 #define HCR_CD (1ULL << 32) 1661 #define HCR_ID (1ULL << 33) 1662 #define HCR_E2H (1ULL << 34) 1663 #define HCR_TLOR (1ULL << 35) 1664 #define HCR_TERR (1ULL << 36) 1665 #define HCR_TEA (1ULL << 37) 1666 #define HCR_MIOCNCE (1ULL << 38) 1667 #define HCR_TME (1ULL << 39) 1668 #define HCR_APK (1ULL << 40) 1669 #define HCR_API (1ULL << 41) 1670 #define HCR_NV (1ULL << 42) 1671 #define HCR_NV1 (1ULL << 43) 1672 #define HCR_AT (1ULL << 44) 1673 #define HCR_NV2 (1ULL << 45) 1674 #define HCR_FWB (1ULL << 46) 1675 #define HCR_FIEN (1ULL << 47) 1676 #define HCR_GPF (1ULL << 48) 1677 #define HCR_TID4 (1ULL << 49) 1678 #define HCR_TICAB (1ULL << 50) 1679 #define HCR_AMVOFFEN (1ULL << 51) 1680 #define HCR_TOCU (1ULL << 52) 1681 #define HCR_ENSCXT (1ULL << 53) 1682 #define HCR_TTLBIS (1ULL << 54) 1683 #define HCR_TTLBOS (1ULL << 55) 1684 #define HCR_ATA (1ULL << 56) 1685 #define HCR_DCT (1ULL << 57) 1686 #define HCR_TID5 (1ULL << 58) 1687 #define HCR_TWEDEN (1ULL << 59) 1688 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1689 1690 #define HCRX_ENAS0 (1ULL << 0) 1691 #define HCRX_ENALS (1ULL << 1) 1692 #define HCRX_ENASR (1ULL << 2) 1693 #define HCRX_FNXS (1ULL << 3) 1694 #define HCRX_FGTNXS (1ULL << 4) 1695 #define HCRX_SMPME (1ULL << 5) 1696 #define HCRX_TALLINT (1ULL << 6) 1697 #define HCRX_VINMI (1ULL << 7) 1698 #define HCRX_VFNMI (1ULL << 8) 1699 #define HCRX_CMOW (1ULL << 9) 1700 #define HCRX_MCE2 (1ULL << 10) 1701 #define HCRX_MSCEN (1ULL << 11) 1702 1703 #define HPFAR_NS (1ULL << 63) 1704 1705 #define SCR_NS (1ULL << 0) 1706 #define SCR_IRQ (1ULL << 1) 1707 #define SCR_FIQ (1ULL << 2) 1708 #define SCR_EA (1ULL << 3) 1709 #define SCR_FW (1ULL << 4) 1710 #define SCR_AW (1ULL << 5) 1711 #define SCR_NET (1ULL << 6) 1712 #define SCR_SMD (1ULL << 7) 1713 #define SCR_HCE (1ULL << 8) 1714 #define SCR_SIF (1ULL << 9) 1715 #define SCR_RW (1ULL << 10) 1716 #define SCR_ST (1ULL << 11) 1717 #define SCR_TWI (1ULL << 12) 1718 #define SCR_TWE (1ULL << 13) 1719 #define SCR_TLOR (1ULL << 14) 1720 #define SCR_TERR (1ULL << 15) 1721 #define SCR_APK (1ULL << 16) 1722 #define SCR_API (1ULL << 17) 1723 #define SCR_EEL2 (1ULL << 18) 1724 #define SCR_EASE (1ULL << 19) 1725 #define SCR_NMEA (1ULL << 20) 1726 #define SCR_FIEN (1ULL << 21) 1727 #define SCR_ENSCXT (1ULL << 25) 1728 #define SCR_ATA (1ULL << 26) 1729 #define SCR_FGTEN (1ULL << 27) 1730 #define SCR_ECVEN (1ULL << 28) 1731 #define SCR_TWEDEN (1ULL << 29) 1732 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4) 1733 #define SCR_TME (1ULL << 34) 1734 #define SCR_AMVOFFEN (1ULL << 35) 1735 #define SCR_ENAS0 (1ULL << 36) 1736 #define SCR_ADEN (1ULL << 37) 1737 #define SCR_HXEN (1ULL << 38) 1738 #define SCR_TRNDR (1ULL << 40) 1739 #define SCR_ENTP2 (1ULL << 41) 1740 #define SCR_GPF (1ULL << 48) 1741 #define SCR_NSE (1ULL << 62) 1742 1743 #define HSTR_TTEE (1 << 16) 1744 #define HSTR_TJDBX (1 << 17) 1745 1746 /* Return the current FPSCR value. */ 1747 uint32_t vfp_get_fpscr(CPUARMState *env); 1748 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1749 1750 /* FPCR, Floating Point Control Register 1751 * FPSR, Floating Poiht Status Register 1752 * 1753 * For A64 the FPSCR is split into two logically distinct registers, 1754 * FPCR and FPSR. However since they still use non-overlapping bits 1755 * we store the underlying state in fpscr and just mask on read/write. 1756 */ 1757 #define FPSR_MASK 0xf800009f 1758 #define FPCR_MASK 0x07ff9f00 1759 1760 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1761 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1762 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1763 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1764 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1765 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1766 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1767 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1768 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1769 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1770 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1771 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1772 #define FPCR_V (1 << 28) /* FP overflow flag */ 1773 #define FPCR_C (1 << 29) /* FP carry flag */ 1774 #define FPCR_Z (1 << 30) /* FP zero flag */ 1775 #define FPCR_N (1 << 31) /* FP negative flag */ 1776 1777 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1778 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1779 #define FPCR_LTPSIZE_LENGTH 3 1780 1781 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) 1782 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) 1783 1784 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1785 { 1786 return vfp_get_fpscr(env) & FPSR_MASK; 1787 } 1788 1789 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1790 { 1791 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1792 vfp_set_fpscr(env, new_fpscr); 1793 } 1794 1795 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1796 { 1797 return vfp_get_fpscr(env) & FPCR_MASK; 1798 } 1799 1800 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1801 { 1802 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1803 vfp_set_fpscr(env, new_fpscr); 1804 } 1805 1806 enum arm_cpu_mode { 1807 ARM_CPU_MODE_USR = 0x10, 1808 ARM_CPU_MODE_FIQ = 0x11, 1809 ARM_CPU_MODE_IRQ = 0x12, 1810 ARM_CPU_MODE_SVC = 0x13, 1811 ARM_CPU_MODE_MON = 0x16, 1812 ARM_CPU_MODE_ABT = 0x17, 1813 ARM_CPU_MODE_HYP = 0x1a, 1814 ARM_CPU_MODE_UND = 0x1b, 1815 ARM_CPU_MODE_SYS = 0x1f 1816 }; 1817 1818 /* VFP system registers. */ 1819 #define ARM_VFP_FPSID 0 1820 #define ARM_VFP_FPSCR 1 1821 #define ARM_VFP_MVFR2 5 1822 #define ARM_VFP_MVFR1 6 1823 #define ARM_VFP_MVFR0 7 1824 #define ARM_VFP_FPEXC 8 1825 #define ARM_VFP_FPINST 9 1826 #define ARM_VFP_FPINST2 10 1827 /* These ones are M-profile only */ 1828 #define ARM_VFP_FPSCR_NZCVQC 2 1829 #define ARM_VFP_VPR 12 1830 #define ARM_VFP_P0 13 1831 #define ARM_VFP_FPCXT_NS 14 1832 #define ARM_VFP_FPCXT_S 15 1833 1834 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1835 #define QEMU_VFP_FPSCR_NZCV 0xffff 1836 1837 /* iwMMXt coprocessor control registers. */ 1838 #define ARM_IWMMXT_wCID 0 1839 #define ARM_IWMMXT_wCon 1 1840 #define ARM_IWMMXT_wCSSF 2 1841 #define ARM_IWMMXT_wCASF 3 1842 #define ARM_IWMMXT_wCGR0 8 1843 #define ARM_IWMMXT_wCGR1 9 1844 #define ARM_IWMMXT_wCGR2 10 1845 #define ARM_IWMMXT_wCGR3 11 1846 1847 /* V7M CCR bits */ 1848 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1849 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1850 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1851 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1852 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1853 FIELD(V7M_CCR, STKALIGN, 9, 1) 1854 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1855 FIELD(V7M_CCR, DC, 16, 1) 1856 FIELD(V7M_CCR, IC, 17, 1) 1857 FIELD(V7M_CCR, BP, 18, 1) 1858 FIELD(V7M_CCR, LOB, 19, 1) 1859 FIELD(V7M_CCR, TRD, 20, 1) 1860 1861 /* V7M SCR bits */ 1862 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1863 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1864 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1865 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1866 1867 /* V7M AIRCR bits */ 1868 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1869 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1870 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1871 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1872 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1873 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1874 FIELD(V7M_AIRCR, PRIS, 14, 1) 1875 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1876 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1877 1878 /* V7M CFSR bits for MMFSR */ 1879 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1880 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1881 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1882 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1883 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1884 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1885 1886 /* V7M CFSR bits for BFSR */ 1887 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1888 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1889 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1890 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1891 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1892 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1893 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1894 1895 /* V7M CFSR bits for UFSR */ 1896 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1897 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1898 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1899 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1900 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1901 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1902 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1903 1904 /* V7M CFSR bit masks covering all of the subregister bits */ 1905 FIELD(V7M_CFSR, MMFSR, 0, 8) 1906 FIELD(V7M_CFSR, BFSR, 8, 8) 1907 FIELD(V7M_CFSR, UFSR, 16, 16) 1908 1909 /* V7M HFSR bits */ 1910 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1911 FIELD(V7M_HFSR, FORCED, 30, 1) 1912 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1913 1914 /* V7M DFSR bits */ 1915 FIELD(V7M_DFSR, HALTED, 0, 1) 1916 FIELD(V7M_DFSR, BKPT, 1, 1) 1917 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1918 FIELD(V7M_DFSR, VCATCH, 3, 1) 1919 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1920 1921 /* V7M SFSR bits */ 1922 FIELD(V7M_SFSR, INVEP, 0, 1) 1923 FIELD(V7M_SFSR, INVIS, 1, 1) 1924 FIELD(V7M_SFSR, INVER, 2, 1) 1925 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1926 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1927 FIELD(V7M_SFSR, LSPERR, 5, 1) 1928 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1929 FIELD(V7M_SFSR, LSERR, 7, 1) 1930 1931 /* v7M MPU_CTRL bits */ 1932 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1933 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1934 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1935 1936 /* v7M CLIDR bits */ 1937 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1938 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1939 FIELD(V7M_CLIDR, LOC, 24, 3) 1940 FIELD(V7M_CLIDR, LOUU, 27, 3) 1941 FIELD(V7M_CLIDR, ICB, 30, 2) 1942 1943 FIELD(V7M_CSSELR, IND, 0, 1) 1944 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1945 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1946 * define a mask for this and check that it doesn't permit running off 1947 * the end of the array. 1948 */ 1949 FIELD(V7M_CSSELR, INDEX, 0, 4) 1950 1951 /* v7M FPCCR bits */ 1952 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1953 FIELD(V7M_FPCCR, USER, 1, 1) 1954 FIELD(V7M_FPCCR, S, 2, 1) 1955 FIELD(V7M_FPCCR, THREAD, 3, 1) 1956 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1957 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1958 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1959 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1960 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1961 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1962 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1963 FIELD(V7M_FPCCR, RES0, 11, 15) 1964 FIELD(V7M_FPCCR, TS, 26, 1) 1965 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1966 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1967 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1968 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1969 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1970 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1971 #define R_V7M_FPCCR_BANKED_MASK \ 1972 (R_V7M_FPCCR_LSPACT_MASK | \ 1973 R_V7M_FPCCR_USER_MASK | \ 1974 R_V7M_FPCCR_THREAD_MASK | \ 1975 R_V7M_FPCCR_MMRDY_MASK | \ 1976 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1977 R_V7M_FPCCR_UFRDY_MASK | \ 1978 R_V7M_FPCCR_ASPEN_MASK) 1979 1980 /* v7M VPR bits */ 1981 FIELD(V7M_VPR, P0, 0, 16) 1982 FIELD(V7M_VPR, MASK01, 16, 4) 1983 FIELD(V7M_VPR, MASK23, 20, 4) 1984 1985 /* 1986 * System register ID fields. 1987 */ 1988 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1989 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1990 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1991 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1992 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1993 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1994 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1995 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1996 FIELD(CLIDR_EL1, LOC, 24, 3) 1997 FIELD(CLIDR_EL1, LOUU, 27, 3) 1998 FIELD(CLIDR_EL1, ICB, 30, 3) 1999 2000 /* When FEAT_CCIDX is implemented */ 2001 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 2002 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 2003 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 2004 2005 /* When FEAT_CCIDX is not implemented */ 2006 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 2007 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 2008 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 2009 2010 FIELD(CTR_EL0, IMINLINE, 0, 4) 2011 FIELD(CTR_EL0, L1IP, 14, 2) 2012 FIELD(CTR_EL0, DMINLINE, 16, 4) 2013 FIELD(CTR_EL0, ERG, 20, 4) 2014 FIELD(CTR_EL0, CWG, 24, 4) 2015 FIELD(CTR_EL0, IDC, 28, 1) 2016 FIELD(CTR_EL0, DIC, 29, 1) 2017 FIELD(CTR_EL0, TMINLINE, 32, 6) 2018 2019 FIELD(MIDR_EL1, REVISION, 0, 4) 2020 FIELD(MIDR_EL1, PARTNUM, 4, 12) 2021 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 2022 FIELD(MIDR_EL1, VARIANT, 20, 4) 2023 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 2024 2025 FIELD(ID_ISAR0, SWAP, 0, 4) 2026 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 2027 FIELD(ID_ISAR0, BITFIELD, 8, 4) 2028 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 2029 FIELD(ID_ISAR0, COPROC, 16, 4) 2030 FIELD(ID_ISAR0, DEBUG, 20, 4) 2031 FIELD(ID_ISAR0, DIVIDE, 24, 4) 2032 2033 FIELD(ID_ISAR1, ENDIAN, 0, 4) 2034 FIELD(ID_ISAR1, EXCEPT, 4, 4) 2035 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 2036 FIELD(ID_ISAR1, EXTEND, 12, 4) 2037 FIELD(ID_ISAR1, IFTHEN, 16, 4) 2038 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 2039 FIELD(ID_ISAR1, INTERWORK, 24, 4) 2040 FIELD(ID_ISAR1, JAZELLE, 28, 4) 2041 2042 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 2043 FIELD(ID_ISAR2, MEMHINT, 4, 4) 2044 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 2045 FIELD(ID_ISAR2, MULT, 12, 4) 2046 FIELD(ID_ISAR2, MULTS, 16, 4) 2047 FIELD(ID_ISAR2, MULTU, 20, 4) 2048 FIELD(ID_ISAR2, PSR_AR, 24, 4) 2049 FIELD(ID_ISAR2, REVERSAL, 28, 4) 2050 2051 FIELD(ID_ISAR3, SATURATE, 0, 4) 2052 FIELD(ID_ISAR3, SIMD, 4, 4) 2053 FIELD(ID_ISAR3, SVC, 8, 4) 2054 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 2055 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 2056 FIELD(ID_ISAR3, T32COPY, 20, 4) 2057 FIELD(ID_ISAR3, TRUENOP, 24, 4) 2058 FIELD(ID_ISAR3, T32EE, 28, 4) 2059 2060 FIELD(ID_ISAR4, UNPRIV, 0, 4) 2061 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 2062 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 2063 FIELD(ID_ISAR4, SMC, 12, 4) 2064 FIELD(ID_ISAR4, BARRIER, 16, 4) 2065 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 2066 FIELD(ID_ISAR4, PSR_M, 24, 4) 2067 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 2068 2069 FIELD(ID_ISAR5, SEVL, 0, 4) 2070 FIELD(ID_ISAR5, AES, 4, 4) 2071 FIELD(ID_ISAR5, SHA1, 8, 4) 2072 FIELD(ID_ISAR5, SHA2, 12, 4) 2073 FIELD(ID_ISAR5, CRC32, 16, 4) 2074 FIELD(ID_ISAR5, RDM, 24, 4) 2075 FIELD(ID_ISAR5, VCMA, 28, 4) 2076 2077 FIELD(ID_ISAR6, JSCVT, 0, 4) 2078 FIELD(ID_ISAR6, DP, 4, 4) 2079 FIELD(ID_ISAR6, FHM, 8, 4) 2080 FIELD(ID_ISAR6, SB, 12, 4) 2081 FIELD(ID_ISAR6, SPECRES, 16, 4) 2082 FIELD(ID_ISAR6, BF16, 20, 4) 2083 FIELD(ID_ISAR6, I8MM, 24, 4) 2084 2085 FIELD(ID_MMFR0, VMSA, 0, 4) 2086 FIELD(ID_MMFR0, PMSA, 4, 4) 2087 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 2088 FIELD(ID_MMFR0, SHARELVL, 12, 4) 2089 FIELD(ID_MMFR0, TCM, 16, 4) 2090 FIELD(ID_MMFR0, AUXREG, 20, 4) 2091 FIELD(ID_MMFR0, FCSE, 24, 4) 2092 FIELD(ID_MMFR0, INNERSHR, 28, 4) 2093 2094 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 2095 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 2096 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 2097 FIELD(ID_MMFR1, L1UNISW, 12, 4) 2098 FIELD(ID_MMFR1, L1HVD, 16, 4) 2099 FIELD(ID_MMFR1, L1UNI, 20, 4) 2100 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 2101 FIELD(ID_MMFR1, BPRED, 28, 4) 2102 2103 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 2104 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 2105 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 2106 FIELD(ID_MMFR2, HVDTLB, 12, 4) 2107 FIELD(ID_MMFR2, UNITLB, 16, 4) 2108 FIELD(ID_MMFR2, MEMBARR, 20, 4) 2109 FIELD(ID_MMFR2, WFISTALL, 24, 4) 2110 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 2111 2112 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 2113 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 2114 FIELD(ID_MMFR3, BPMAINT, 8, 4) 2115 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 2116 FIELD(ID_MMFR3, PAN, 16, 4) 2117 FIELD(ID_MMFR3, COHWALK, 20, 4) 2118 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 2119 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 2120 2121 FIELD(ID_MMFR4, SPECSEI, 0, 4) 2122 FIELD(ID_MMFR4, AC2, 4, 4) 2123 FIELD(ID_MMFR4, XNX, 8, 4) 2124 FIELD(ID_MMFR4, CNP, 12, 4) 2125 FIELD(ID_MMFR4, HPDS, 16, 4) 2126 FIELD(ID_MMFR4, LSM, 20, 4) 2127 FIELD(ID_MMFR4, CCIDX, 24, 4) 2128 FIELD(ID_MMFR4, EVT, 28, 4) 2129 2130 FIELD(ID_MMFR5, ETS, 0, 4) 2131 FIELD(ID_MMFR5, NTLBPA, 4, 4) 2132 2133 FIELD(ID_PFR0, STATE0, 0, 4) 2134 FIELD(ID_PFR0, STATE1, 4, 4) 2135 FIELD(ID_PFR0, STATE2, 8, 4) 2136 FIELD(ID_PFR0, STATE3, 12, 4) 2137 FIELD(ID_PFR0, CSV2, 16, 4) 2138 FIELD(ID_PFR0, AMU, 20, 4) 2139 FIELD(ID_PFR0, DIT, 24, 4) 2140 FIELD(ID_PFR0, RAS, 28, 4) 2141 2142 FIELD(ID_PFR1, PROGMOD, 0, 4) 2143 FIELD(ID_PFR1, SECURITY, 4, 4) 2144 FIELD(ID_PFR1, MPROGMOD, 8, 4) 2145 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 2146 FIELD(ID_PFR1, GENTIMER, 16, 4) 2147 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 2148 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 2149 FIELD(ID_PFR1, GIC, 28, 4) 2150 2151 FIELD(ID_PFR2, CSV3, 0, 4) 2152 FIELD(ID_PFR2, SSBS, 4, 4) 2153 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 2154 2155 FIELD(ID_AA64ISAR0, AES, 4, 4) 2156 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 2157 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 2158 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 2159 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 2160 FIELD(ID_AA64ISAR0, RDM, 28, 4) 2161 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 2162 FIELD(ID_AA64ISAR0, SM3, 36, 4) 2163 FIELD(ID_AA64ISAR0, SM4, 40, 4) 2164 FIELD(ID_AA64ISAR0, DP, 44, 4) 2165 FIELD(ID_AA64ISAR0, FHM, 48, 4) 2166 FIELD(ID_AA64ISAR0, TS, 52, 4) 2167 FIELD(ID_AA64ISAR0, TLB, 56, 4) 2168 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 2169 2170 FIELD(ID_AA64ISAR1, DPB, 0, 4) 2171 FIELD(ID_AA64ISAR1, APA, 4, 4) 2172 FIELD(ID_AA64ISAR1, API, 8, 4) 2173 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 2174 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 2175 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 2176 FIELD(ID_AA64ISAR1, GPA, 24, 4) 2177 FIELD(ID_AA64ISAR1, GPI, 28, 4) 2178 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 2179 FIELD(ID_AA64ISAR1, SB, 36, 4) 2180 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 2181 FIELD(ID_AA64ISAR1, BF16, 44, 4) 2182 FIELD(ID_AA64ISAR1, DGH, 48, 4) 2183 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 2184 FIELD(ID_AA64ISAR1, XS, 56, 4) 2185 FIELD(ID_AA64ISAR1, LS64, 60, 4) 2186 2187 FIELD(ID_AA64ISAR2, WFXT, 0, 4) 2188 FIELD(ID_AA64ISAR2, RPRES, 4, 4) 2189 FIELD(ID_AA64ISAR2, GPA3, 8, 4) 2190 FIELD(ID_AA64ISAR2, APA3, 12, 4) 2191 FIELD(ID_AA64ISAR2, MOPS, 16, 4) 2192 FIELD(ID_AA64ISAR2, BC, 20, 4) 2193 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4) 2194 2195 FIELD(ID_AA64PFR0, EL0, 0, 4) 2196 FIELD(ID_AA64PFR0, EL1, 4, 4) 2197 FIELD(ID_AA64PFR0, EL2, 8, 4) 2198 FIELD(ID_AA64PFR0, EL3, 12, 4) 2199 FIELD(ID_AA64PFR0, FP, 16, 4) 2200 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 2201 FIELD(ID_AA64PFR0, GIC, 24, 4) 2202 FIELD(ID_AA64PFR0, RAS, 28, 4) 2203 FIELD(ID_AA64PFR0, SVE, 32, 4) 2204 FIELD(ID_AA64PFR0, SEL2, 36, 4) 2205 FIELD(ID_AA64PFR0, MPAM, 40, 4) 2206 FIELD(ID_AA64PFR0, AMU, 44, 4) 2207 FIELD(ID_AA64PFR0, DIT, 48, 4) 2208 FIELD(ID_AA64PFR0, RME, 52, 4) 2209 FIELD(ID_AA64PFR0, CSV2, 56, 4) 2210 FIELD(ID_AA64PFR0, CSV3, 60, 4) 2211 2212 FIELD(ID_AA64PFR1, BT, 0, 4) 2213 FIELD(ID_AA64PFR1, SSBS, 4, 4) 2214 FIELD(ID_AA64PFR1, MTE, 8, 4) 2215 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 2216 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 2217 FIELD(ID_AA64PFR1, SME, 24, 4) 2218 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4) 2219 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4) 2220 FIELD(ID_AA64PFR1, NMI, 36, 4) 2221 2222 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 2223 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 2224 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 2225 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 2226 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 2227 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 2228 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 2229 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 2230 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 2231 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 2232 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 2233 FIELD(ID_AA64MMFR0, EXS, 44, 4) 2234 FIELD(ID_AA64MMFR0, FGT, 56, 4) 2235 FIELD(ID_AA64MMFR0, ECV, 60, 4) 2236 2237 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 2238 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 2239 FIELD(ID_AA64MMFR1, VH, 8, 4) 2240 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 2241 FIELD(ID_AA64MMFR1, LO, 16, 4) 2242 FIELD(ID_AA64MMFR1, PAN, 20, 4) 2243 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 2244 FIELD(ID_AA64MMFR1, XNX, 28, 4) 2245 FIELD(ID_AA64MMFR1, TWED, 32, 4) 2246 FIELD(ID_AA64MMFR1, ETS, 36, 4) 2247 FIELD(ID_AA64MMFR1, HCX, 40, 4) 2248 FIELD(ID_AA64MMFR1, AFP, 44, 4) 2249 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4) 2250 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4) 2251 FIELD(ID_AA64MMFR1, CMOW, 56, 4) 2252 2253 FIELD(ID_AA64MMFR2, CNP, 0, 4) 2254 FIELD(ID_AA64MMFR2, UAO, 4, 4) 2255 FIELD(ID_AA64MMFR2, LSM, 8, 4) 2256 FIELD(ID_AA64MMFR2, IESB, 12, 4) 2257 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 2258 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 2259 FIELD(ID_AA64MMFR2, NV, 24, 4) 2260 FIELD(ID_AA64MMFR2, ST, 28, 4) 2261 FIELD(ID_AA64MMFR2, AT, 32, 4) 2262 FIELD(ID_AA64MMFR2, IDS, 36, 4) 2263 FIELD(ID_AA64MMFR2, FWB, 40, 4) 2264 FIELD(ID_AA64MMFR2, TTL, 48, 4) 2265 FIELD(ID_AA64MMFR2, BBM, 52, 4) 2266 FIELD(ID_AA64MMFR2, EVT, 56, 4) 2267 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 2268 2269 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2270 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2271 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2272 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2273 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2274 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2275 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2276 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2277 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2278 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4) 2279 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2280 FIELD(ID_AA64DFR0, BRBE, 52, 4) 2281 FIELD(ID_AA64DFR0, HPMN0, 60, 4) 2282 2283 FIELD(ID_AA64ZFR0, SVEVER, 0, 4) 2284 FIELD(ID_AA64ZFR0, AES, 4, 4) 2285 FIELD(ID_AA64ZFR0, BITPERM, 16, 4) 2286 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) 2287 FIELD(ID_AA64ZFR0, SHA3, 32, 4) 2288 FIELD(ID_AA64ZFR0, SM4, 40, 4) 2289 FIELD(ID_AA64ZFR0, I8MM, 44, 4) 2290 FIELD(ID_AA64ZFR0, F32MM, 52, 4) 2291 FIELD(ID_AA64ZFR0, F64MM, 56, 4) 2292 2293 FIELD(ID_AA64SMFR0, F32F32, 32, 1) 2294 FIELD(ID_AA64SMFR0, B16F32, 34, 1) 2295 FIELD(ID_AA64SMFR0, F16F32, 35, 1) 2296 FIELD(ID_AA64SMFR0, I8I32, 36, 4) 2297 FIELD(ID_AA64SMFR0, F64F64, 48, 1) 2298 FIELD(ID_AA64SMFR0, I16I64, 52, 4) 2299 FIELD(ID_AA64SMFR0, SMEVER, 56, 4) 2300 FIELD(ID_AA64SMFR0, FA64, 63, 1) 2301 2302 FIELD(ID_DFR0, COPDBG, 0, 4) 2303 FIELD(ID_DFR0, COPSDBG, 4, 4) 2304 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2305 FIELD(ID_DFR0, COPTRC, 12, 4) 2306 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2307 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2308 FIELD(ID_DFR0, PERFMON, 24, 4) 2309 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2310 2311 FIELD(ID_DFR1, MTPMU, 0, 4) 2312 FIELD(ID_DFR1, HPMN0, 4, 4) 2313 2314 FIELD(DBGDIDR, SE_IMP, 12, 1) 2315 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2316 FIELD(DBGDIDR, VERSION, 16, 4) 2317 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2318 FIELD(DBGDIDR, BRPS, 24, 4) 2319 FIELD(DBGDIDR, WRPS, 28, 4) 2320 2321 FIELD(DBGDEVID, PCSAMPLE, 0, 4) 2322 FIELD(DBGDEVID, WPADDRMASK, 4, 4) 2323 FIELD(DBGDEVID, BPADDRMASK, 8, 4) 2324 FIELD(DBGDEVID, VECTORCATCH, 12, 4) 2325 FIELD(DBGDEVID, VIRTEXTNS, 16, 4) 2326 FIELD(DBGDEVID, DOUBLELOCK, 20, 4) 2327 FIELD(DBGDEVID, AUXREGS, 24, 4) 2328 FIELD(DBGDEVID, CIDMASK, 28, 4) 2329 2330 FIELD(MVFR0, SIMDREG, 0, 4) 2331 FIELD(MVFR0, FPSP, 4, 4) 2332 FIELD(MVFR0, FPDP, 8, 4) 2333 FIELD(MVFR0, FPTRAP, 12, 4) 2334 FIELD(MVFR0, FPDIVIDE, 16, 4) 2335 FIELD(MVFR0, FPSQRT, 20, 4) 2336 FIELD(MVFR0, FPSHVEC, 24, 4) 2337 FIELD(MVFR0, FPROUND, 28, 4) 2338 2339 FIELD(MVFR1, FPFTZ, 0, 4) 2340 FIELD(MVFR1, FPDNAN, 4, 4) 2341 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2342 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2343 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2344 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2345 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2346 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2347 FIELD(MVFR1, FPHP, 24, 4) 2348 FIELD(MVFR1, SIMDFMAC, 28, 4) 2349 2350 FIELD(MVFR2, SIMDMISC, 0, 4) 2351 FIELD(MVFR2, FPMISC, 4, 4) 2352 2353 FIELD(GPCCR, PPS, 0, 3) 2354 FIELD(GPCCR, IRGN, 8, 2) 2355 FIELD(GPCCR, ORGN, 10, 2) 2356 FIELD(GPCCR, SH, 12, 2) 2357 FIELD(GPCCR, PGS, 14, 2) 2358 FIELD(GPCCR, GPC, 16, 1) 2359 FIELD(GPCCR, GPCP, 17, 1) 2360 FIELD(GPCCR, L0GPTSZ, 20, 4) 2361 2362 FIELD(MFAR, FPA, 12, 40) 2363 FIELD(MFAR, NSE, 62, 1) 2364 FIELD(MFAR, NS, 63, 1) 2365 2366 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2367 2368 /* If adding a feature bit which corresponds to a Linux ELF 2369 * HWCAP bit, remember to update the feature-bit-to-hwcap 2370 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2371 */ 2372 enum arm_features { 2373 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2374 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2375 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2376 ARM_FEATURE_V6, 2377 ARM_FEATURE_V6K, 2378 ARM_FEATURE_V7, 2379 ARM_FEATURE_THUMB2, 2380 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2381 ARM_FEATURE_NEON, 2382 ARM_FEATURE_M, /* Microcontroller profile. */ 2383 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2384 ARM_FEATURE_THUMB2EE, 2385 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2386 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2387 ARM_FEATURE_V4T, 2388 ARM_FEATURE_V5, 2389 ARM_FEATURE_STRONGARM, 2390 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2391 ARM_FEATURE_GENERIC_TIMER, 2392 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2393 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2394 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2395 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2396 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2397 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2398 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2399 ARM_FEATURE_V8, 2400 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2401 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2402 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2403 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2404 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2405 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2406 ARM_FEATURE_PMU, /* has PMU support */ 2407 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2408 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2409 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2410 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2411 }; 2412 2413 static inline int arm_feature(CPUARMState *env, int feature) 2414 { 2415 return (env->features & (1ULL << feature)) != 0; 2416 } 2417 2418 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2419 2420 /* 2421 * ARM v9 security states. 2422 * The ordering of the enumeration corresponds to the low 2 bits 2423 * of the GPI value, and (except for Root) the concat of NSE:NS. 2424 */ 2425 2426 typedef enum ARMSecuritySpace { 2427 ARMSS_Secure = 0, 2428 ARMSS_NonSecure = 1, 2429 ARMSS_Root = 2, 2430 ARMSS_Realm = 3, 2431 } ARMSecuritySpace; 2432 2433 /* Return true if @space is secure, in the pre-v9 sense. */ 2434 static inline bool arm_space_is_secure(ARMSecuritySpace space) 2435 { 2436 return space == ARMSS_Secure || space == ARMSS_Root; 2437 } 2438 2439 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */ 2440 static inline ARMSecuritySpace arm_secure_to_space(bool secure) 2441 { 2442 return secure ? ARMSS_Secure : ARMSS_NonSecure; 2443 } 2444 2445 #if !defined(CONFIG_USER_ONLY) 2446 /** 2447 * arm_security_space_below_el3: 2448 * @env: cpu context 2449 * 2450 * Return the security space of exception levels below EL3, following 2451 * an exception return to those levels. Unlike arm_security_space, 2452 * this doesn't care about the current EL. 2453 */ 2454 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env); 2455 2456 /** 2457 * arm_is_secure_below_el3: 2458 * @env: cpu context 2459 * 2460 * Return true if exception levels below EL3 are in secure state, 2461 * or would be following an exception return to those levels. 2462 */ 2463 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2464 { 2465 ARMSecuritySpace ss = arm_security_space_below_el3(env); 2466 return ss == ARMSS_Secure; 2467 } 2468 2469 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2470 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2471 { 2472 assert(!arm_feature(env, ARM_FEATURE_M)); 2473 if (arm_feature(env, ARM_FEATURE_EL3)) { 2474 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2475 /* CPU currently in AArch64 state and EL3 */ 2476 return true; 2477 } else if (!is_a64(env) && 2478 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2479 /* CPU currently in AArch32 state and monitor mode */ 2480 return true; 2481 } 2482 } 2483 return false; 2484 } 2485 2486 /** 2487 * arm_security_space: 2488 * @env: cpu context 2489 * 2490 * Return the current security space of the cpu. 2491 */ 2492 ARMSecuritySpace arm_security_space(CPUARMState *env); 2493 2494 /** 2495 * arm_is_secure: 2496 * @env: cpu context 2497 * 2498 * Return true if the processor is in secure state. 2499 */ 2500 static inline bool arm_is_secure(CPUARMState *env) 2501 { 2502 return arm_space_is_secure(arm_security_space(env)); 2503 } 2504 2505 /* 2506 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. 2507 * This corresponds to the pseudocode EL2Enabled() 2508 */ 2509 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure) 2510 { 2511 return arm_feature(env, ARM_FEATURE_EL2) 2512 && (!secure || (env->cp15.scr_el3 & SCR_EEL2)); 2513 } 2514 2515 static inline bool arm_is_el2_enabled(CPUARMState *env) 2516 { 2517 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env)); 2518 } 2519 2520 #else 2521 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 2522 { 2523 return ARMSS_NonSecure; 2524 } 2525 2526 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2527 { 2528 return false; 2529 } 2530 2531 static inline ARMSecuritySpace arm_security_space(CPUARMState *env) 2532 { 2533 return ARMSS_NonSecure; 2534 } 2535 2536 static inline bool arm_is_secure(CPUARMState *env) 2537 { 2538 return false; 2539 } 2540 2541 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure) 2542 { 2543 return false; 2544 } 2545 2546 static inline bool arm_is_el2_enabled(CPUARMState *env) 2547 { 2548 return false; 2549 } 2550 #endif 2551 2552 /** 2553 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2554 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2555 * "for all purposes other than a direct read or write access of HCR_EL2." 2556 * Not included here is HCR_RW. 2557 */ 2558 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure); 2559 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2560 uint64_t arm_hcrx_el2_eff(CPUARMState *env); 2561 2562 /* Return true if the specified exception level is running in AArch64 state. */ 2563 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2564 { 2565 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2566 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2567 */ 2568 assert(el >= 1 && el <= 3); 2569 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2570 2571 /* The highest exception level is always at the maximum supported 2572 * register width, and then lower levels have a register width controlled 2573 * by bits in the SCR or HCR registers. 2574 */ 2575 if (el == 3) { 2576 return aa64; 2577 } 2578 2579 if (arm_feature(env, ARM_FEATURE_EL3) && 2580 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { 2581 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2582 } 2583 2584 if (el == 2) { 2585 return aa64; 2586 } 2587 2588 if (arm_is_el2_enabled(env)) { 2589 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2590 } 2591 2592 return aa64; 2593 } 2594 2595 /* Function for determing whether guest cp register reads and writes should 2596 * access the secure or non-secure bank of a cp register. When EL3 is 2597 * operating in AArch32 state, the NS-bit determines whether the secure 2598 * instance of a cp register should be used. When EL3 is AArch64 (or if 2599 * it doesn't exist at all) then there is no register banking, and all 2600 * accesses are to the non-secure version. 2601 */ 2602 static inline bool access_secure_reg(CPUARMState *env) 2603 { 2604 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2605 !arm_el_is_aa64(env, 3) && 2606 !(env->cp15.scr_el3 & SCR_NS)); 2607 2608 return ret; 2609 } 2610 2611 /* Macros for accessing a specified CP register bank */ 2612 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2613 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2614 2615 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2616 do { \ 2617 if (_secure) { \ 2618 (_env)->cp15._regname##_s = (_val); \ 2619 } else { \ 2620 (_env)->cp15._regname##_ns = (_val); \ 2621 } \ 2622 } while (0) 2623 2624 /* Macros for automatically accessing a specific CP register bank depending on 2625 * the current secure state of the system. These macros are not intended for 2626 * supporting instruction translation reads/writes as these are dependent 2627 * solely on the SCR.NS bit and not the mode. 2628 */ 2629 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2630 A32_BANKED_REG_GET((_env), _regname, \ 2631 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2632 2633 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2634 A32_BANKED_REG_SET((_env), _regname, \ 2635 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2636 (_val)) 2637 2638 void arm_cpu_list(void); 2639 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2640 uint32_t cur_el, bool secure); 2641 2642 /* Return the highest implemented Exception Level */ 2643 static inline int arm_highest_el(CPUARMState *env) 2644 { 2645 if (arm_feature(env, ARM_FEATURE_EL3)) { 2646 return 3; 2647 } 2648 if (arm_feature(env, ARM_FEATURE_EL2)) { 2649 return 2; 2650 } 2651 return 1; 2652 } 2653 2654 /* Return true if a v7M CPU is in Handler mode */ 2655 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2656 { 2657 return env->v7m.exception != 0; 2658 } 2659 2660 /* Return the current Exception Level (as per ARMv8; note that this differs 2661 * from the ARMv7 Privilege Level). 2662 */ 2663 static inline int arm_current_el(CPUARMState *env) 2664 { 2665 if (arm_feature(env, ARM_FEATURE_M)) { 2666 return arm_v7m_is_handler_mode(env) || 2667 !(env->v7m.control[env->v7m.secure] & 1); 2668 } 2669 2670 if (is_a64(env)) { 2671 return extract32(env->pstate, 2, 2); 2672 } 2673 2674 switch (env->uncached_cpsr & 0x1f) { 2675 case ARM_CPU_MODE_USR: 2676 return 0; 2677 case ARM_CPU_MODE_HYP: 2678 return 2; 2679 case ARM_CPU_MODE_MON: 2680 return 3; 2681 default: 2682 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2683 /* If EL3 is 32-bit then all secure privileged modes run in 2684 * EL3 2685 */ 2686 return 3; 2687 } 2688 2689 return 1; 2690 } 2691 } 2692 2693 /** 2694 * write_list_to_cpustate 2695 * @cpu: ARMCPU 2696 * 2697 * For each register listed in the ARMCPU cpreg_indexes list, write 2698 * its value from the cpreg_values list into the ARMCPUState structure. 2699 * This updates TCG's working data structures from KVM data or 2700 * from incoming migration state. 2701 * 2702 * Returns: true if all register values were updated correctly, 2703 * false if some register was unknown or could not be written. 2704 * Note that we do not stop early on failure -- we will attempt 2705 * writing all registers in the list. 2706 */ 2707 bool write_list_to_cpustate(ARMCPU *cpu); 2708 2709 /** 2710 * write_cpustate_to_list: 2711 * @cpu: ARMCPU 2712 * @kvm_sync: true if this is for syncing back to KVM 2713 * 2714 * For each register listed in the ARMCPU cpreg_indexes list, write 2715 * its value from the ARMCPUState structure into the cpreg_values list. 2716 * This is used to copy info from TCG's working data structures into 2717 * KVM or for outbound migration. 2718 * 2719 * @kvm_sync is true if we are doing this in order to sync the 2720 * register state back to KVM. In this case we will only update 2721 * values in the list if the previous list->cpustate sync actually 2722 * successfully wrote the CPU state. Otherwise we will keep the value 2723 * that is in the list. 2724 * 2725 * Returns: true if all register values were read correctly, 2726 * false if some register was unknown or could not be read. 2727 * Note that we do not stop early on failure -- we will attempt 2728 * reading all registers in the list. 2729 */ 2730 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2731 2732 #define ARM_CPUID_TI915T 0x54029152 2733 #define ARM_CPUID_TI925T 0x54029252 2734 2735 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2736 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2737 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2738 2739 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU 2740 2741 #define cpu_list arm_cpu_list 2742 2743 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2744 * 2745 * If EL3 is 64-bit: 2746 * + NonSecure EL1 & 0 stage 1 2747 * + NonSecure EL1 & 0 stage 2 2748 * + NonSecure EL2 2749 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2750 * + Secure EL1 & 0 2751 * + Secure EL3 2752 * If EL3 is 32-bit: 2753 * + NonSecure PL1 & 0 stage 1 2754 * + NonSecure PL1 & 0 stage 2 2755 * + NonSecure PL2 2756 * + Secure PL0 2757 * + Secure PL1 2758 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2759 * 2760 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2761 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2762 * because they may differ in access permissions even if the VA->PA map is 2763 * the same 2764 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2765 * translation, which means that we have one mmu_idx that deals with two 2766 * concatenated translation regimes [this sort of combined s1+2 TLB is 2767 * architecturally permitted] 2768 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2769 * handling via the TLB. The only way to do a stage 1 translation without 2770 * the immediate stage 2 translation is via the ATS or AT system insns, 2771 * which can be slow-pathed and always do a page table walk. 2772 * The only use of stage 2 translations is either as part of an s1+2 2773 * lookup or when loading the descriptors during a stage 1 page table walk, 2774 * and in both those cases we don't use the TLB. 2775 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2776 * translation regimes, because they map reasonably well to each other 2777 * and they can't both be active at the same time. 2778 * 5. we want to be able to use the TLB for accesses done as part of a 2779 * stage1 page table walk, rather than having to walk the stage2 page 2780 * table over and over. 2781 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2782 * Never (PAN) bit within PSTATE. 2783 * 7. we fold together the secure and non-secure regimes for A-profile, 2784 * because there are no banked system registers for aarch64, so the 2785 * process of switching between secure and non-secure is 2786 * already heavyweight. 2787 * 2788 * This gives us the following list of cases: 2789 * 2790 * EL0 EL1&0 stage 1+2 (aka NS PL0) 2791 * EL1 EL1&0 stage 1+2 (aka NS PL1) 2792 * EL1 EL1&0 stage 1+2 +PAN 2793 * EL0 EL2&0 2794 * EL2 EL2&0 2795 * EL2 EL2&0 +PAN 2796 * EL2 (aka NS PL2) 2797 * EL3 (aka S PL1) 2798 * Physical (NS & S) 2799 * Stage2 (NS & S) 2800 * 2801 * for a total of 12 different mmu_idx. 2802 * 2803 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2804 * as A profile. They only need to distinguish EL0 and EL1 (and 2805 * EL2 if we ever model a Cortex-R52). 2806 * 2807 * M profile CPUs are rather different as they do not have a true MMU. 2808 * They have the following different MMU indexes: 2809 * User 2810 * Privileged 2811 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2812 * Privileged, execution priority negative (ditto) 2813 * If the CPU supports the v8M Security Extension then there are also: 2814 * Secure User 2815 * Secure Privileged 2816 * Secure User, execution priority negative 2817 * Secure Privileged, execution priority negative 2818 * 2819 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2820 * are not quite the same -- different CPU types (most notably M profile 2821 * vs A/R profile) would like to use MMU indexes with different semantics, 2822 * but since we don't ever need to use all of those in a single CPU we 2823 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2824 * modes + total number of M profile MMU modes". The lower bits of 2825 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2826 * the same for any particular CPU. 2827 * Variables of type ARMMUIdx are always full values, and the core 2828 * index values are in variables of type 'int'. 2829 * 2830 * Our enumeration includes at the end some entries which are not "true" 2831 * mmu_idx values in that they don't have corresponding TLBs and are only 2832 * valid for doing slow path page table walks. 2833 * 2834 * The constant names here are patterned after the general style of the names 2835 * of the AT/ATS operations. 2836 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2837 * For M profile we arrange them to have a bit for priv, a bit for negpri 2838 * and a bit for secure. 2839 */ 2840 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2841 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2842 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2843 2844 /* Meanings of the bits for M profile mmu idx values */ 2845 #define ARM_MMU_IDX_M_PRIV 0x1 2846 #define ARM_MMU_IDX_M_NEGPRI 0x2 2847 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2848 2849 #define ARM_MMU_IDX_TYPE_MASK \ 2850 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2851 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2852 2853 typedef enum ARMMMUIdx { 2854 /* 2855 * A-profile. 2856 */ 2857 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2858 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2859 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2860 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A, 2861 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A, 2862 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A, 2863 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A, 2864 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A, 2865 2866 /* 2867 * Used for second stage of an S12 page table walk, or for descriptor 2868 * loads during first stage of an S1 page table walk. Note that both 2869 * are in use simultaneously for SecureEL2: the security state for 2870 * the S2 ptw is selected by the NS bit from the S1 ptw. 2871 */ 2872 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A, 2873 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A, 2874 2875 /* TLBs with 1-1 mapping to the physical address spaces. */ 2876 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A, 2877 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A, 2878 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A, 2879 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A, 2880 2881 /* 2882 * These are not allocated TLBs and are used only for AT system 2883 * instructions or for the first stage of an S12 page table walk. 2884 */ 2885 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2886 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2887 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2888 2889 /* 2890 * M-profile. 2891 */ 2892 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2893 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2894 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2895 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2896 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2897 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2898 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2899 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2900 } ARMMMUIdx; 2901 2902 /* 2903 * Bit macros for the core-mmu-index values for each index, 2904 * for use when calling tlb_flush_by_mmuidx() and friends. 2905 */ 2906 #define TO_CORE_BIT(NAME) \ 2907 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2908 2909 typedef enum ARMMMUIdxBit { 2910 TO_CORE_BIT(E10_0), 2911 TO_CORE_BIT(E20_0), 2912 TO_CORE_BIT(E10_1), 2913 TO_CORE_BIT(E10_1_PAN), 2914 TO_CORE_BIT(E2), 2915 TO_CORE_BIT(E20_2), 2916 TO_CORE_BIT(E20_2_PAN), 2917 TO_CORE_BIT(E3), 2918 TO_CORE_BIT(Stage2), 2919 TO_CORE_BIT(Stage2_S), 2920 2921 TO_CORE_BIT(MUser), 2922 TO_CORE_BIT(MPriv), 2923 TO_CORE_BIT(MUserNegPri), 2924 TO_CORE_BIT(MPrivNegPri), 2925 TO_CORE_BIT(MSUser), 2926 TO_CORE_BIT(MSPriv), 2927 TO_CORE_BIT(MSUserNegPri), 2928 TO_CORE_BIT(MSPrivNegPri), 2929 } ARMMMUIdxBit; 2930 2931 #undef TO_CORE_BIT 2932 2933 #define MMU_USER_IDX 0 2934 2935 /* Indexes used when registering address spaces with cpu_address_space_init */ 2936 typedef enum ARMASIdx { 2937 ARMASIdx_NS = 0, 2938 ARMASIdx_S = 1, 2939 ARMASIdx_TagNS = 2, 2940 ARMASIdx_TagS = 3, 2941 } ARMASIdx; 2942 2943 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space) 2944 { 2945 /* Assert the relative order of the physical mmu indexes. */ 2946 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0); 2947 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure); 2948 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root); 2949 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm); 2950 2951 return ARMMMUIdx_Phys_S + space; 2952 } 2953 2954 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx) 2955 { 2956 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm); 2957 return idx - ARMMMUIdx_Phys_S; 2958 } 2959 2960 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 2961 { 2962 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 2963 * CSSELR is RAZ/WI. 2964 */ 2965 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 2966 } 2967 2968 static inline bool arm_sctlr_b(CPUARMState *env) 2969 { 2970 return 2971 /* We need not implement SCTLR.ITD in user-mode emulation, so 2972 * let linux-user ignore the fact that it conflicts with SCTLR_B. 2973 * This lets people run BE32 binaries with "-cpu any". 2974 */ 2975 #ifndef CONFIG_USER_ONLY 2976 !arm_feature(env, ARM_FEATURE_V7) && 2977 #endif 2978 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 2979 } 2980 2981 uint64_t arm_sctlr(CPUARMState *env, int el); 2982 2983 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 2984 bool sctlr_b) 2985 { 2986 #ifdef CONFIG_USER_ONLY 2987 /* 2988 * In system mode, BE32 is modelled in line with the 2989 * architecture (as word-invariant big-endianness), where loads 2990 * and stores are done little endian but from addresses which 2991 * are adjusted by XORing with the appropriate constant. So the 2992 * endianness to use for the raw data access is not affected by 2993 * SCTLR.B. 2994 * In user mode, however, we model BE32 as byte-invariant 2995 * big-endianness (because user-only code cannot tell the 2996 * difference), and so we need to use a data access endianness 2997 * that depends on SCTLR.B. 2998 */ 2999 if (sctlr_b) { 3000 return true; 3001 } 3002 #endif 3003 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3004 return env->uncached_cpsr & CPSR_E; 3005 } 3006 3007 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3008 { 3009 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3010 } 3011 3012 /* Return true if the processor is in big-endian mode. */ 3013 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3014 { 3015 if (!is_a64(env)) { 3016 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3017 } else { 3018 int cur_el = arm_current_el(env); 3019 uint64_t sctlr = arm_sctlr(env, cur_el); 3020 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3021 } 3022 } 3023 3024 #include "exec/cpu-all.h" 3025 3026 /* 3027 * We have more than 32-bits worth of state per TB, so we split the data 3028 * between tb->flags and tb->cs_base, which is otherwise unused for ARM. 3029 * We collect these two parts in CPUARMTBFlags where they are named 3030 * flags and flags2 respectively. 3031 * 3032 * The flags that are shared between all execution modes, TBFLAG_ANY, 3033 * are stored in flags. The flags that are specific to a given mode 3034 * are stores in flags2. Since cs_base is sized on the configured 3035 * address size, flags2 always has 64-bits for A64, and a minimum of 3036 * 32-bits for A32 and M32. 3037 * 3038 * The bits for 32-bit A-profile and M-profile partially overlap: 3039 * 3040 * 31 23 11 10 0 3041 * +-------------+----------+----------------+ 3042 * | | | TBFLAG_A32 | 3043 * | TBFLAG_AM32 | +-----+----------+ 3044 * | | |TBFLAG_M32| 3045 * +-------------+----------------+----------+ 3046 * 31 23 6 5 0 3047 * 3048 * Unless otherwise noted, these bits are cached in env->hflags. 3049 */ 3050 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) 3051 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) 3052 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ 3053 FIELD(TBFLAG_ANY, BE_DATA, 3, 1) 3054 FIELD(TBFLAG_ANY, MMUIDX, 4, 4) 3055 /* Target EL if we take a floating-point-disabled exception */ 3056 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) 3057 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ 3058 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1) 3059 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1) 3060 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1) 3061 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1) 3062 3063 /* 3064 * Bit usage when in AArch32 state, both A- and M-profile. 3065 */ 3066 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ 3067 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ 3068 3069 /* 3070 * Bit usage when in AArch32 state, for A-profile only. 3071 */ 3072 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ 3073 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ 3074 /* 3075 * We store the bottom two bits of the CPAR as TB flags and handle 3076 * checks on the other bits at runtime. This shares the same bits as 3077 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3078 * Not cached, because VECLEN+VECSTRIDE are not cached. 3079 */ 3080 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) 3081 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 3082 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ 3083 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) 3084 /* 3085 * Indicates whether cp register reads and writes by guest code should access 3086 * the secure or nonsecure bank of banked registers; note that this is not 3087 * the same thing as the current security state of the processor! 3088 */ 3089 FIELD(TBFLAG_A32, NS, 10, 1) 3090 /* 3091 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. 3092 * This requires an SME trap from AArch32 mode when using NEON. 3093 */ 3094 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1) 3095 3096 /* 3097 * Bit usage when in AArch32 state, for M-profile only. 3098 */ 3099 /* Handler (ie not Thread) mode */ 3100 FIELD(TBFLAG_M32, HANDLER, 0, 1) 3101 /* Whether we should generate stack-limit checks */ 3102 FIELD(TBFLAG_M32, STACKCHECK, 1, 1) 3103 /* Set if FPCCR.LSPACT is set */ 3104 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ 3105 /* Set if we must create a new FP context */ 3106 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ 3107 /* Set if FPCCR.S does not match current security state */ 3108 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ 3109 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ 3110 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ 3111 /* Set if in secure mode */ 3112 FIELD(TBFLAG_M32, SECURE, 6, 1) 3113 3114 /* 3115 * Bit usage when in AArch64 state 3116 */ 3117 FIELD(TBFLAG_A64, TBII, 0, 2) 3118 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3119 /* The current vector length, either NVL or SVL. */ 3120 FIELD(TBFLAG_A64, VL, 4, 4) 3121 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3122 FIELD(TBFLAG_A64, BT, 9, 1) 3123 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3124 FIELD(TBFLAG_A64, TBID, 12, 2) 3125 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3126 FIELD(TBFLAG_A64, ATA, 15, 1) 3127 FIELD(TBFLAG_A64, TCMA, 16, 2) 3128 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3129 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3130 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2) 3131 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1) 3132 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1) 3133 FIELD(TBFLAG_A64, SVL, 24, 4) 3134 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */ 3135 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1) 3136 FIELD(TBFLAG_A64, FGT_ERET, 29, 1) 3137 FIELD(TBFLAG_A64, NAA, 30, 1) 3138 3139 /* 3140 * Helpers for using the above. 3141 */ 3142 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ 3143 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) 3144 #define DP_TBFLAG_A64(DST, WHICH, VAL) \ 3145 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL)) 3146 #define DP_TBFLAG_A32(DST, WHICH, VAL) \ 3147 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) 3148 #define DP_TBFLAG_M32(DST, WHICH, VAL) \ 3149 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) 3150 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ 3151 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) 3152 3153 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) 3154 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH) 3155 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) 3156 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) 3157 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) 3158 3159 /** 3160 * cpu_mmu_index: 3161 * @env: The cpu environment 3162 * @ifetch: True for code access, false for data access. 3163 * 3164 * Return the core mmu index for the current translation regime. 3165 * This function is used by generic TCG code paths. 3166 */ 3167 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3168 { 3169 return EX_TBFLAG_ANY(env->hflags, MMUIDX); 3170 } 3171 3172 /** 3173 * sve_vq 3174 * @env: the cpu context 3175 * 3176 * Return the VL cached within env->hflags, in units of quadwords. 3177 */ 3178 static inline int sve_vq(CPUARMState *env) 3179 { 3180 return EX_TBFLAG_A64(env->hflags, VL) + 1; 3181 } 3182 3183 /** 3184 * sme_vq 3185 * @env: the cpu context 3186 * 3187 * Return the SVL cached within env->hflags, in units of quadwords. 3188 */ 3189 static inline int sme_vq(CPUARMState *env) 3190 { 3191 return EX_TBFLAG_A64(env->hflags, SVL) + 1; 3192 } 3193 3194 static inline bool bswap_code(bool sctlr_b) 3195 { 3196 #ifdef CONFIG_USER_ONLY 3197 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian. 3198 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0 3199 * would also end up as a mixed-endian mode with BE code, LE data. 3200 */ 3201 return 3202 #if TARGET_BIG_ENDIAN 3203 1 ^ 3204 #endif 3205 sctlr_b; 3206 #else 3207 /* All code access in ARM is little endian, and there are no loaders 3208 * doing swaps that need to be reversed 3209 */ 3210 return 0; 3211 #endif 3212 } 3213 3214 #ifdef CONFIG_USER_ONLY 3215 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3216 { 3217 return 3218 #if TARGET_BIG_ENDIAN 3219 1 ^ 3220 #endif 3221 arm_cpu_data_is_big_endian(env); 3222 } 3223 #endif 3224 3225 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 3226 uint64_t *cs_base, uint32_t *flags); 3227 3228 enum { 3229 QEMU_PSCI_CONDUIT_DISABLED = 0, 3230 QEMU_PSCI_CONDUIT_SMC = 1, 3231 QEMU_PSCI_CONDUIT_HVC = 2, 3232 }; 3233 3234 #ifndef CONFIG_USER_ONLY 3235 /* Return the address space index to use for a memory access */ 3236 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3237 { 3238 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3239 } 3240 3241 /* Return the AddressSpace to use for a memory access 3242 * (which depends on whether the access is S or NS, and whether 3243 * the board gave us a separate AddressSpace for S accesses). 3244 */ 3245 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3246 { 3247 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3248 } 3249 #endif 3250 3251 /** 3252 * arm_register_pre_el_change_hook: 3253 * Register a hook function which will be called immediately before this 3254 * CPU changes exception level or mode. The hook function will be 3255 * passed a pointer to the ARMCPU and the opaque data pointer passed 3256 * to this function when the hook was registered. 3257 * 3258 * Note that if a pre-change hook is called, any registered post-change hooks 3259 * are guaranteed to subsequently be called. 3260 */ 3261 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3262 void *opaque); 3263 /** 3264 * arm_register_el_change_hook: 3265 * Register a hook function which will be called immediately after this 3266 * CPU changes exception level or mode. The hook function will be 3267 * passed a pointer to the ARMCPU and the opaque data pointer passed 3268 * to this function when the hook was registered. 3269 * 3270 * Note that any registered hooks registered here are guaranteed to be called 3271 * if pre-change hooks have been. 3272 */ 3273 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3274 *opaque); 3275 3276 /** 3277 * arm_rebuild_hflags: 3278 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3279 */ 3280 void arm_rebuild_hflags(CPUARMState *env); 3281 3282 /** 3283 * aa32_vfp_dreg: 3284 * Return a pointer to the Dn register within env in 32-bit mode. 3285 */ 3286 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3287 { 3288 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3289 } 3290 3291 /** 3292 * aa32_vfp_qreg: 3293 * Return a pointer to the Qn register within env in 32-bit mode. 3294 */ 3295 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3296 { 3297 return &env->vfp.zregs[regno].d[0]; 3298 } 3299 3300 /** 3301 * aa64_vfp_qreg: 3302 * Return a pointer to the Qn register within env in 64-bit mode. 3303 */ 3304 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3305 { 3306 return &env->vfp.zregs[regno].d[0]; 3307 } 3308 3309 /* Shared between translate-sve.c and sve_helper.c. */ 3310 extern const uint64_t pred_esz_masks[5]; 3311 3312 /* 3313 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3314 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect 3315 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR. 3316 */ 3317 #define PAGE_BTI PAGE_TARGET_1 3318 #define PAGE_MTE PAGE_TARGET_2 3319 #define PAGE_TARGET_STICKY PAGE_MTE 3320 3321 /* We associate one allocation tag per 16 bytes, the minimum. */ 3322 #define LOG2_TAG_GRANULE 4 3323 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 3324 3325 #ifdef CONFIG_USER_ONLY 3326 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1)) 3327 #endif 3328 3329 #ifdef TARGET_TAGGED_ADDRESSES 3330 /** 3331 * cpu_untagged_addr: 3332 * @cs: CPU context 3333 * @x: tagged address 3334 * 3335 * Remove any address tag from @x. This is explicitly related to the 3336 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. 3337 * 3338 * There should be a better place to put this, but we need this in 3339 * include/exec/cpu_ldst.h, and not some place linux-user specific. 3340 */ 3341 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) 3342 { 3343 ARMCPU *cpu = ARM_CPU(cs); 3344 if (cpu->env.tagged_addr_enable) { 3345 /* 3346 * TBI is enabled for userspace but not kernelspace addresses. 3347 * Only clear the tag if bit 55 is clear. 3348 */ 3349 x &= sextract64(x, 0, 56); 3350 } 3351 return x; 3352 } 3353 #endif 3354 3355 /* 3356 * Naming convention for isar_feature functions: 3357 * Functions which test 32-bit ID registers should have _aa32_ in 3358 * their name. Functions which test 64-bit ID registers should have 3359 * _aa64_ in their name. These must only be used in code where we 3360 * know for certain that the CPU has AArch32 or AArch64 respectively 3361 * or where the correct answer for a CPU which doesn't implement that 3362 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3363 * system registers that are specific to that CPU state, for "should 3364 * we let this system register bit be set" tests where the 32-bit 3365 * flavour of the register doesn't have the bit, and so on). 3366 * Functions which simply ask "does this feature exist at all" have 3367 * _any_ in their name, and always return the logical OR of the _aa64_ 3368 * and the _aa32_ function. 3369 */ 3370 3371 /* 3372 * 32-bit feature tests via id registers. 3373 */ 3374 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3375 { 3376 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3377 } 3378 3379 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3380 { 3381 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3382 } 3383 3384 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) 3385 { 3386 /* (M-profile) low-overhead loops and branch future */ 3387 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; 3388 } 3389 3390 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3391 { 3392 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3393 } 3394 3395 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3396 { 3397 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3398 } 3399 3400 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3401 { 3402 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3403 } 3404 3405 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3406 { 3407 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3408 } 3409 3410 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3411 { 3412 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3413 } 3414 3415 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3416 { 3417 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3418 } 3419 3420 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3421 { 3422 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3423 } 3424 3425 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3426 { 3427 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3428 } 3429 3430 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3431 { 3432 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3433 } 3434 3435 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3436 { 3437 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3438 } 3439 3440 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3441 { 3442 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3443 } 3444 3445 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3446 { 3447 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3448 } 3449 3450 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3451 { 3452 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3453 } 3454 3455 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id) 3456 { 3457 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0; 3458 } 3459 3460 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id) 3461 { 3462 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0; 3463 } 3464 3465 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) 3466 { 3467 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; 3468 } 3469 3470 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3471 { 3472 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3473 } 3474 3475 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) 3476 { 3477 /* 3478 * Return true if M-profile state handling insns 3479 * (VSCCLRM, CLRM, FPCTX access insns) are implemented 3480 */ 3481 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; 3482 } 3483 3484 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3485 { 3486 /* Sadly this is encoded differently for A-profile and M-profile */ 3487 if (isar_feature_aa32_mprofile(id)) { 3488 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3489 } else { 3490 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3491 } 3492 } 3493 3494 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id) 3495 { 3496 /* 3497 * Return true if MVE is supported (either integer or floating point). 3498 * We must check for M-profile as the MVFR1 field means something 3499 * else for A-profile. 3500 */ 3501 return isar_feature_aa32_mprofile(id) && 3502 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0; 3503 } 3504 3505 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id) 3506 { 3507 /* 3508 * Return true if MVE is supported (either integer or floating point). 3509 * We must check for M-profile as the MVFR1 field means something 3510 * else for A-profile. 3511 */ 3512 return isar_feature_aa32_mprofile(id) && 3513 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2; 3514 } 3515 3516 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3517 { 3518 /* 3519 * Return true if either VFP or SIMD is implemented. 3520 * In this case, a minimum of VFP w/ D0-D15. 3521 */ 3522 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3523 } 3524 3525 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3526 { 3527 /* Return true if D16-D31 are implemented */ 3528 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3529 } 3530 3531 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3532 { 3533 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3534 } 3535 3536 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3537 { 3538 /* Return true if CPU supports single precision floating point, VFPv2 */ 3539 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3540 } 3541 3542 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3543 { 3544 /* Return true if CPU supports single precision floating point, VFPv3 */ 3545 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3546 } 3547 3548 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3549 { 3550 /* Return true if CPU supports double precision floating point, VFPv2 */ 3551 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3552 } 3553 3554 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3555 { 3556 /* Return true if CPU supports double precision floating point, VFPv3 */ 3557 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3558 } 3559 3560 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3561 { 3562 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3563 } 3564 3565 /* 3566 * We always set the FP and SIMD FP16 fields to indicate identical 3567 * levels of support (assuming SIMD is implemented at all), so 3568 * we only need one set of accessors. 3569 */ 3570 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3571 { 3572 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3573 } 3574 3575 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3576 { 3577 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3578 } 3579 3580 /* 3581 * Note that this ID register field covers both VFP and Neon FMAC, 3582 * so should usually be tested in combination with some other 3583 * check that confirms the presence of whichever of VFP or Neon is 3584 * relevant, to avoid accidentally enabling a Neon feature on 3585 * a VFP-no-Neon core or vice-versa. 3586 */ 3587 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3588 { 3589 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3590 } 3591 3592 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3593 { 3594 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3595 } 3596 3597 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3598 { 3599 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3600 } 3601 3602 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3603 { 3604 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3605 } 3606 3607 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3608 { 3609 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3610 } 3611 3612 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3613 { 3614 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3615 } 3616 3617 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3618 { 3619 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3620 } 3621 3622 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3623 { 3624 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3625 } 3626 3627 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id) 3628 { 3629 /* 0xf means "non-standard IMPDEF PMU" */ 3630 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3631 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3632 } 3633 3634 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id) 3635 { 3636 /* 0xf means "non-standard IMPDEF PMU" */ 3637 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3638 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3639 } 3640 3641 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id) 3642 { 3643 /* 0xf means "non-standard IMPDEF PMU" */ 3644 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 && 3645 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3646 } 3647 3648 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3649 { 3650 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3651 } 3652 3653 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3654 { 3655 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3656 } 3657 3658 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3659 { 3660 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3661 } 3662 3663 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3664 { 3665 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3666 } 3667 3668 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id) 3669 { 3670 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1; 3671 } 3672 3673 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id) 3674 { 3675 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2; 3676 } 3677 3678 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id) 3679 { 3680 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0; 3681 } 3682 3683 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id) 3684 { 3685 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0; 3686 } 3687 3688 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id) 3689 { 3690 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5; 3691 } 3692 3693 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id) 3694 { 3695 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8; 3696 } 3697 3698 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id) 3699 { 3700 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0; 3701 } 3702 3703 /* 3704 * 64-bit feature tests via id registers. 3705 */ 3706 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3707 { 3708 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3709 } 3710 3711 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3712 { 3713 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3714 } 3715 3716 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3717 { 3718 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3719 } 3720 3721 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3722 { 3723 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3724 } 3725 3726 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3727 { 3728 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3729 } 3730 3731 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3732 { 3733 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3734 } 3735 3736 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3737 { 3738 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3739 } 3740 3741 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3742 { 3743 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3744 } 3745 3746 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3747 { 3748 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3749 } 3750 3751 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3752 { 3753 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3754 } 3755 3756 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3757 { 3758 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3759 } 3760 3761 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3762 { 3763 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3764 } 3765 3766 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3767 { 3768 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3769 } 3770 3771 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3772 { 3773 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3774 } 3775 3776 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3777 { 3778 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3779 } 3780 3781 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3782 { 3783 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3784 } 3785 3786 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3787 { 3788 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3789 } 3790 3791 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3792 { 3793 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3794 } 3795 3796 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3797 { 3798 /* 3799 * Return true if any form of pauth is enabled, as this 3800 * predicate controls migration of the 128-bit keys. 3801 */ 3802 return (id->id_aa64isar1 & 3803 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3804 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3805 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3806 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3807 } 3808 3809 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id) 3810 { 3811 /* 3812 * Return true if pauth is enabled with the architected QARMA algorithm. 3813 * QEMU will always set APA+GPA to the same value. 3814 */ 3815 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0; 3816 } 3817 3818 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id) 3819 { 3820 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2; 3821 } 3822 3823 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id) 3824 { 3825 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0; 3826 } 3827 3828 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3829 { 3830 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3831 } 3832 3833 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3834 { 3835 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3836 } 3837 3838 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3839 { 3840 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3841 } 3842 3843 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3844 { 3845 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3846 } 3847 3848 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3849 { 3850 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3851 } 3852 3853 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id) 3854 { 3855 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0; 3856 } 3857 3858 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3859 { 3860 /* We always set the AdvSIMD and FP fields identically. */ 3861 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3862 } 3863 3864 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3865 { 3866 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3867 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3868 } 3869 3870 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3871 { 3872 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3873 } 3874 3875 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id) 3876 { 3877 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2; 3878 } 3879 3880 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id) 3881 { 3882 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2; 3883 } 3884 3885 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id) 3886 { 3887 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0; 3888 } 3889 3890 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id) 3891 { 3892 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2; 3893 } 3894 3895 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3896 { 3897 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3898 } 3899 3900 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id) 3901 { 3902 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0; 3903 } 3904 3905 static inline bool isar_feature_aa64_rme(const ARMISARegisters *id) 3906 { 3907 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0; 3908 } 3909 3910 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3911 { 3912 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3913 } 3914 3915 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3916 { 3917 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3918 } 3919 3920 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3921 { 3922 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3923 } 3924 3925 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3926 { 3927 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3928 } 3929 3930 static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id) 3931 { 3932 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3; 3933 } 3934 3935 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id) 3936 { 3937 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0; 3938 } 3939 3940 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 3941 { 3942 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 3943 } 3944 3945 static inline bool isar_feature_aa64_st(const ARMISARegisters *id) 3946 { 3947 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; 3948 } 3949 3950 static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id) 3951 { 3952 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0; 3953 } 3954 3955 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id) 3956 { 3957 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0; 3958 } 3959 3960 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id) 3961 { 3962 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0; 3963 } 3964 3965 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id) 3966 { 3967 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1; 3968 } 3969 3970 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id) 3971 { 3972 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2; 3973 } 3974 3975 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3976 { 3977 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3978 } 3979 3980 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 3981 { 3982 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 3983 } 3984 3985 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 3986 { 3987 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 3988 } 3989 3990 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id) 3991 { 3992 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0; 3993 } 3994 3995 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id) 3996 { 3997 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 3998 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3999 } 4000 4001 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id) 4002 { 4003 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 4004 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4005 } 4006 4007 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id) 4008 { 4009 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 && 4010 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4011 } 4012 4013 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 4014 { 4015 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 4016 } 4017 4018 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 4019 { 4020 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 4021 } 4022 4023 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id) 4024 { 4025 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0; 4026 } 4027 4028 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id) 4029 { 4030 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1; 4031 } 4032 4033 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id) 4034 { 4035 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); 4036 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id)); 4037 } 4038 4039 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id) 4040 { 4041 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2; 4042 } 4043 4044 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id) 4045 { 4046 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); 4047 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id)); 4048 } 4049 4050 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id) 4051 { 4052 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0; 4053 } 4054 4055 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id) 4056 { 4057 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1; 4058 } 4059 4060 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id) 4061 { 4062 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0; 4063 } 4064 4065 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id) 4066 { 4067 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); 4068 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id)); 4069 } 4070 4071 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id) 4072 { 4073 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); 4074 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id)); 4075 } 4076 4077 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id) 4078 { 4079 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2); 4080 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id)); 4081 } 4082 4083 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id) 4084 { 4085 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0; 4086 } 4087 4088 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 4089 { 4090 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 4091 } 4092 4093 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id) 4094 { 4095 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0; 4096 } 4097 4098 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id) 4099 { 4100 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0; 4101 } 4102 4103 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id) 4104 { 4105 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0; 4106 } 4107 4108 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id) 4109 { 4110 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2; 4111 } 4112 4113 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 4114 { 4115 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 4116 } 4117 4118 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id) 4119 { 4120 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0; 4121 } 4122 4123 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id) 4124 { 4125 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2); 4126 if (key >= 2) { 4127 return true; /* FEAT_CSV2_2 */ 4128 } 4129 if (key == 1) { 4130 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC); 4131 return key >= 2; /* FEAT_CSV2_1p2 */ 4132 } 4133 return false; 4134 } 4135 4136 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id) 4137 { 4138 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0; 4139 } 4140 4141 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id) 4142 { 4143 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8; 4144 } 4145 4146 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id) 4147 { 4148 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0; 4149 } 4150 4151 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id) 4152 { 4153 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0; 4154 } 4155 4156 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id) 4157 { 4158 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2; 4159 } 4160 4161 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id) 4162 { 4163 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0; 4164 } 4165 4166 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id) 4167 { 4168 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0; 4169 } 4170 4171 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id) 4172 { 4173 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0; 4174 } 4175 4176 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id) 4177 { 4178 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0; 4179 } 4180 4181 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id) 4182 { 4183 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0; 4184 } 4185 4186 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id) 4187 { 4188 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0; 4189 } 4190 4191 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id) 4192 { 4193 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0; 4194 } 4195 4196 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id) 4197 { 4198 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64); 4199 } 4200 4201 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id) 4202 { 4203 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf; 4204 } 4205 4206 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id) 4207 { 4208 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64); 4209 } 4210 4211 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id) 4212 { 4213 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0; 4214 } 4215 4216 /* 4217 * Feature tests for "does this exist in either 32-bit or 64-bit?" 4218 */ 4219 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 4220 { 4221 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 4222 } 4223 4224 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 4225 { 4226 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 4227 } 4228 4229 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id) 4230 { 4231 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id); 4232 } 4233 4234 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id) 4235 { 4236 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id); 4237 } 4238 4239 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id) 4240 { 4241 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id); 4242 } 4243 4244 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 4245 { 4246 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 4247 } 4248 4249 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 4250 { 4251 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 4252 } 4253 4254 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id) 4255 { 4256 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id); 4257 } 4258 4259 static inline bool isar_feature_any_ras(const ARMISARegisters *id) 4260 { 4261 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id); 4262 } 4263 4264 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id) 4265 { 4266 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id); 4267 } 4268 4269 static inline bool isar_feature_any_evt(const ARMISARegisters *id) 4270 { 4271 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id); 4272 } 4273 4274 /* 4275 * Forward to the above feature tests given an ARMCPU pointer. 4276 */ 4277 #define cpu_isar_feature(name, cpu) \ 4278 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 4279 4280 #endif 4281