xref: /openbmc/qemu/target/arm/cpu.h (revision da1849c1)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SECURE  7
70 #define ARMV7M_EXCP_SVC     11
71 #define ARMV7M_EXCP_DEBUG   12
72 #define ARMV7M_EXCP_PENDSV  14
73 #define ARMV7M_EXCP_SYSTICK 15
74 
75 /* For M profile, some registers are banked secure vs non-secure;
76  * these are represented as a 2-element array where the first element
77  * is the non-secure copy and the second is the secure copy.
78  * When the CPU does not have implement the security extension then
79  * only the first element is used.
80  * This means that the copy for the current security state can be
81  * accessed via env->registerfield[env->v7m.secure] (whether the security
82  * extension is implemented or not).
83  */
84 enum {
85     M_REG_NS = 0,
86     M_REG_S = 1,
87     M_REG_NUM_BANKS = 2,
88 };
89 
90 /* ARM-specific interrupt pending bits.  */
91 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #ifdef HOST_WORDS_BIGENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 #define NB_MMU_MODES 7
116 /* ARM-specific extra insn start words:
117  * 1: Conditional execution bits
118  * 2: Partial exception syndrome for data aborts
119  */
120 #define TARGET_INSN_START_EXTRA_WORDS 2
121 
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124  * help the sleb128 encoder do a better job.
125  * When restoring the CPU state, we shift it back up.
126  */
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
129 
130 /* We currently assume float and double are IEEE single and double
131    precision respectively.
132    Doing runtime conversions is tricky because VFP registers may contain
133    integer values (eg. as the result of a FTOSI instruction).
134    s<2n> maps to the least significant half of d<n>
135    s<2n+1> maps to the most significant half of d<n>
136  */
137 
138 /* CPU state for each instance of a generic timer (in cp15 c14) */
139 typedef struct ARMGenericTimer {
140     uint64_t cval; /* Timer CompareValue register */
141     uint64_t ctl; /* Timer Control register */
142 } ARMGenericTimer;
143 
144 #define GTIMER_PHYS 0
145 #define GTIMER_VIRT 1
146 #define GTIMER_HYP  2
147 #define GTIMER_SEC  3
148 #define NUM_GTIMERS 4
149 
150 typedef struct {
151     uint64_t raw_tcr;
152     uint32_t mask;
153     uint32_t base_mask;
154 } TCR;
155 
156 typedef struct CPUARMState {
157     /* Regs for current mode.  */
158     uint32_t regs[16];
159 
160     /* 32/64 switch only happens when taking and returning from
161      * exceptions so the overlap semantics are taken care of then
162      * instead of having a complicated union.
163      */
164     /* Regs for A64 mode.  */
165     uint64_t xregs[32];
166     uint64_t pc;
167     /* PSTATE isn't an architectural register for ARMv8. However, it is
168      * convenient for us to assemble the underlying state into a 32 bit format
169      * identical to the architectural format used for the SPSR. (This is also
170      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
171      * 'pstate' register are.) Of the PSTATE bits:
172      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
173      *    semantics as for AArch32, as described in the comments on each field)
174      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
175      *  DAIF (exception masks) are kept in env->daif
176      *  all other bits are stored in their correct places in env->pstate
177      */
178     uint32_t pstate;
179     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
180 
181     /* Frequently accessed CPSR bits are stored separately for efficiency.
182        This contains all the other bits.  Use cpsr_{read,write} to access
183        the whole CPSR.  */
184     uint32_t uncached_cpsr;
185     uint32_t spsr;
186 
187     /* Banked registers.  */
188     uint64_t banked_spsr[8];
189     uint32_t banked_r13[8];
190     uint32_t banked_r14[8];
191 
192     /* These hold r8-r12.  */
193     uint32_t usr_regs[5];
194     uint32_t fiq_regs[5];
195 
196     /* cpsr flag cache for faster execution */
197     uint32_t CF; /* 0 or 1 */
198     uint32_t VF; /* V is the bit 31. All other bits are undefined */
199     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
200     uint32_t ZF; /* Z set if zero.  */
201     uint32_t QF; /* 0 or 1 */
202     uint32_t GE; /* cpsr[19:16] */
203     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
204     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
205     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
206 
207     uint64_t elr_el[4]; /* AArch64 exception link regs  */
208     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
209 
210     /* System control coprocessor (cp15) */
211     struct {
212         uint32_t c0_cpuid;
213         union { /* Cache size selection */
214             struct {
215                 uint64_t _unused_csselr0;
216                 uint64_t csselr_ns;
217                 uint64_t _unused_csselr1;
218                 uint64_t csselr_s;
219             };
220             uint64_t csselr_el[4];
221         };
222         union { /* System control register. */
223             struct {
224                 uint64_t _unused_sctlr;
225                 uint64_t sctlr_ns;
226                 uint64_t hsctlr;
227                 uint64_t sctlr_s;
228             };
229             uint64_t sctlr_el[4];
230         };
231         uint64_t cpacr_el1; /* Architectural feature access control register */
232         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
233         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
234         uint64_t sder; /* Secure debug enable register. */
235         uint32_t nsacr; /* Non-secure access control register. */
236         union { /* MMU translation table base 0. */
237             struct {
238                 uint64_t _unused_ttbr0_0;
239                 uint64_t ttbr0_ns;
240                 uint64_t _unused_ttbr0_1;
241                 uint64_t ttbr0_s;
242             };
243             uint64_t ttbr0_el[4];
244         };
245         union { /* MMU translation table base 1. */
246             struct {
247                 uint64_t _unused_ttbr1_0;
248                 uint64_t ttbr1_ns;
249                 uint64_t _unused_ttbr1_1;
250                 uint64_t ttbr1_s;
251             };
252             uint64_t ttbr1_el[4];
253         };
254         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
255         /* MMU translation table base control. */
256         TCR tcr_el[4];
257         TCR vtcr_el2; /* Virtualization Translation Control.  */
258         uint32_t c2_data; /* MPU data cacheable bits.  */
259         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
260         union { /* MMU domain access control register
261                  * MPU write buffer control.
262                  */
263             struct {
264                 uint64_t dacr_ns;
265                 uint64_t dacr_s;
266             };
267             struct {
268                 uint64_t dacr32_el2;
269             };
270         };
271         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
272         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
273         uint64_t hcr_el2; /* Hypervisor configuration register */
274         uint64_t scr_el3; /* Secure configuration register.  */
275         union { /* Fault status registers.  */
276             struct {
277                 uint64_t ifsr_ns;
278                 uint64_t ifsr_s;
279             };
280             struct {
281                 uint64_t ifsr32_el2;
282             };
283         };
284         union {
285             struct {
286                 uint64_t _unused_dfsr;
287                 uint64_t dfsr_ns;
288                 uint64_t hsr;
289                 uint64_t dfsr_s;
290             };
291             uint64_t esr_el[4];
292         };
293         uint32_t c6_region[8]; /* MPU base/size registers.  */
294         union { /* Fault address registers. */
295             struct {
296                 uint64_t _unused_far0;
297 #ifdef HOST_WORDS_BIGENDIAN
298                 uint32_t ifar_ns;
299                 uint32_t dfar_ns;
300                 uint32_t ifar_s;
301                 uint32_t dfar_s;
302 #else
303                 uint32_t dfar_ns;
304                 uint32_t ifar_ns;
305                 uint32_t dfar_s;
306                 uint32_t ifar_s;
307 #endif
308                 uint64_t _unused_far3;
309             };
310             uint64_t far_el[4];
311         };
312         uint64_t hpfar_el2;
313         uint64_t hstr_el2;
314         union { /* Translation result. */
315             struct {
316                 uint64_t _unused_par_0;
317                 uint64_t par_ns;
318                 uint64_t _unused_par_1;
319                 uint64_t par_s;
320             };
321             uint64_t par_el[4];
322         };
323 
324         uint32_t c9_insn; /* Cache lockdown registers.  */
325         uint32_t c9_data;
326         uint64_t c9_pmcr; /* performance monitor control register */
327         uint64_t c9_pmcnten; /* perf monitor counter enables */
328         uint32_t c9_pmovsr; /* perf monitor overflow status */
329         uint32_t c9_pmuserenr; /* perf monitor user enable */
330         uint64_t c9_pmselr; /* perf monitor counter selection register */
331         uint64_t c9_pminten; /* perf monitor interrupt enables */
332         union { /* Memory attribute redirection */
333             struct {
334 #ifdef HOST_WORDS_BIGENDIAN
335                 uint64_t _unused_mair_0;
336                 uint32_t mair1_ns;
337                 uint32_t mair0_ns;
338                 uint64_t _unused_mair_1;
339                 uint32_t mair1_s;
340                 uint32_t mair0_s;
341 #else
342                 uint64_t _unused_mair_0;
343                 uint32_t mair0_ns;
344                 uint32_t mair1_ns;
345                 uint64_t _unused_mair_1;
346                 uint32_t mair0_s;
347                 uint32_t mair1_s;
348 #endif
349             };
350             uint64_t mair_el[4];
351         };
352         union { /* vector base address register */
353             struct {
354                 uint64_t _unused_vbar;
355                 uint64_t vbar_ns;
356                 uint64_t hvbar;
357                 uint64_t vbar_s;
358             };
359             uint64_t vbar_el[4];
360         };
361         uint32_t mvbar; /* (monitor) vector base address register */
362         struct { /* FCSE PID. */
363             uint32_t fcseidr_ns;
364             uint32_t fcseidr_s;
365         };
366         union { /* Context ID. */
367             struct {
368                 uint64_t _unused_contextidr_0;
369                 uint64_t contextidr_ns;
370                 uint64_t _unused_contextidr_1;
371                 uint64_t contextidr_s;
372             };
373             uint64_t contextidr_el[4];
374         };
375         union { /* User RW Thread register. */
376             struct {
377                 uint64_t tpidrurw_ns;
378                 uint64_t tpidrprw_ns;
379                 uint64_t htpidr;
380                 uint64_t _tpidr_el3;
381             };
382             uint64_t tpidr_el[4];
383         };
384         /* The secure banks of these registers don't map anywhere */
385         uint64_t tpidrurw_s;
386         uint64_t tpidrprw_s;
387         uint64_t tpidruro_s;
388 
389         union { /* User RO Thread register. */
390             uint64_t tpidruro_ns;
391             uint64_t tpidrro_el[1];
392         };
393         uint64_t c14_cntfrq; /* Counter Frequency register */
394         uint64_t c14_cntkctl; /* Timer Control register */
395         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
396         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
397         ARMGenericTimer c14_timer[NUM_GTIMERS];
398         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
399         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
400         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
401         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
402         uint32_t c15_threadid; /* TI debugger thread-ID.  */
403         uint32_t c15_config_base_address; /* SCU base address.  */
404         uint32_t c15_diagnostic; /* diagnostic register */
405         uint32_t c15_power_diagnostic;
406         uint32_t c15_power_control; /* power control */
407         uint64_t dbgbvr[16]; /* breakpoint value registers */
408         uint64_t dbgbcr[16]; /* breakpoint control registers */
409         uint64_t dbgwvr[16]; /* watchpoint value registers */
410         uint64_t dbgwcr[16]; /* watchpoint control registers */
411         uint64_t mdscr_el1;
412         uint64_t oslsr_el1; /* OS Lock Status */
413         uint64_t mdcr_el2;
414         uint64_t mdcr_el3;
415         /* If the counter is enabled, this stores the last time the counter
416          * was reset. Otherwise it stores the counter value
417          */
418         uint64_t c15_ccnt;
419         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
420         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
421         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
422     } cp15;
423 
424     struct {
425         /* M profile has up to 4 stack pointers:
426          * a Main Stack Pointer and a Process Stack Pointer for each
427          * of the Secure and Non-Secure states. (If the CPU doesn't support
428          * the security extension then it has only two SPs.)
429          * In QEMU we always store the currently active SP in regs[13],
430          * and the non-active SP for the current security state in
431          * v7m.other_sp. The stack pointers for the inactive security state
432          * are stored in other_ss_msp and other_ss_psp.
433          * switch_v7m_security_state() is responsible for rearranging them
434          * when we change security state.
435          */
436         uint32_t other_sp;
437         uint32_t other_ss_msp;
438         uint32_t other_ss_psp;
439         uint32_t vecbase[M_REG_NUM_BANKS];
440         uint32_t basepri[M_REG_NUM_BANKS];
441         uint32_t control[M_REG_NUM_BANKS];
442         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
443         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
444         uint32_t hfsr; /* HardFault Status */
445         uint32_t dfsr; /* Debug Fault Status Register */
446         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
447         uint32_t bfar; /* BusFault Address */
448         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
449         int exception;
450         uint32_t primask[M_REG_NUM_BANKS];
451         uint32_t faultmask[M_REG_NUM_BANKS];
452         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
453     } v7m;
454 
455     /* Information associated with an exception about to be taken:
456      * code which raises an exception must set cs->exception_index and
457      * the relevant parts of this structure; the cpu_do_interrupt function
458      * will then set the guest-visible registers as part of the exception
459      * entry process.
460      */
461     struct {
462         uint32_t syndrome; /* AArch64 format syndrome register */
463         uint32_t fsr; /* AArch32 format fault status register info */
464         uint64_t vaddress; /* virtual addr associated with exception, if any */
465         uint32_t target_el; /* EL the exception should be targeted for */
466         /* If we implement EL2 we will also need to store information
467          * about the intermediate physical address for stage 2 faults.
468          */
469     } exception;
470 
471     /* Thumb-2 EE state.  */
472     uint32_t teecr;
473     uint32_t teehbr;
474 
475     /* VFP coprocessor state.  */
476     struct {
477         /* VFP/Neon register state. Note that the mapping between S, D and Q
478          * views of the register bank differs between AArch64 and AArch32:
479          * In AArch32:
480          *  Qn = regs[2n+1]:regs[2n]
481          *  Dn = regs[n]
482          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
483          * (and regs[32] to regs[63] are inaccessible)
484          * In AArch64:
485          *  Qn = regs[2n+1]:regs[2n]
486          *  Dn = regs[2n]
487          *  Sn = regs[2n] bits 31..0
488          * This corresponds to the architecturally defined mapping between
489          * the two execution states, and means we do not need to explicitly
490          * map these registers when changing states.
491          */
492         float64 regs[64];
493 
494         uint32_t xregs[16];
495         /* We store these fpcsr fields separately for convenience.  */
496         int vec_len;
497         int vec_stride;
498 
499         /* scratch space when Tn are not sufficient.  */
500         uint32_t scratch[8];
501 
502         /* fp_status is the "normal" fp status. standard_fp_status retains
503          * values corresponding to the ARM "Standard FPSCR Value", ie
504          * default-NaN, flush-to-zero, round-to-nearest and is used by
505          * any operations (generally Neon) which the architecture defines
506          * as controlled by the standard FPSCR value rather than the FPSCR.
507          *
508          * To avoid having to transfer exception bits around, we simply
509          * say that the FPSCR cumulative exception flags are the logical
510          * OR of the flags in the two fp statuses. This relies on the
511          * only thing which needs to read the exception flags being
512          * an explicit FPSCR read.
513          */
514         float_status fp_status;
515         float_status standard_fp_status;
516     } vfp;
517     uint64_t exclusive_addr;
518     uint64_t exclusive_val;
519     uint64_t exclusive_high;
520 
521     /* iwMMXt coprocessor state.  */
522     struct {
523         uint64_t regs[16];
524         uint64_t val;
525 
526         uint32_t cregs[16];
527     } iwmmxt;
528 
529 #if defined(CONFIG_USER_ONLY)
530     /* For usermode syscall translation.  */
531     int eabi;
532 #endif
533 
534     struct CPUBreakpoint *cpu_breakpoint[16];
535     struct CPUWatchpoint *cpu_watchpoint[16];
536 
537     /* Fields up to this point are cleared by a CPU reset */
538     struct {} end_reset_fields;
539 
540     CPU_COMMON
541 
542     /* Fields after CPU_COMMON are preserved across CPU reset. */
543 
544     /* Internal CPU feature flags.  */
545     uint64_t features;
546 
547     /* PMSAv7 MPU */
548     struct {
549         uint32_t *drbar;
550         uint32_t *drsr;
551         uint32_t *dracr;
552         uint32_t rnr[M_REG_NUM_BANKS];
553     } pmsav7;
554 
555     /* PMSAv8 MPU */
556     struct {
557         /* The PMSAv8 implementation also shares some PMSAv7 config
558          * and state:
559          *  pmsav7.rnr (region number register)
560          *  pmsav7_dregion (number of configured regions)
561          */
562         uint32_t *rbar[M_REG_NUM_BANKS];
563         uint32_t *rlar[M_REG_NUM_BANKS];
564         uint32_t mair0[M_REG_NUM_BANKS];
565         uint32_t mair1[M_REG_NUM_BANKS];
566     } pmsav8;
567 
568     void *nvic;
569     const struct arm_boot_info *boot_info;
570     /* Store GICv3CPUState to access from this struct */
571     void *gicv3state;
572 } CPUARMState;
573 
574 /**
575  * ARMELChangeHook:
576  * type of a function which can be registered via arm_register_el_change_hook()
577  * to get callbacks when the CPU changes its exception level or mode.
578  */
579 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
580 
581 
582 /* These values map onto the return values for
583  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
584 typedef enum ARMPSCIState {
585     PSCI_ON = 0,
586     PSCI_OFF = 1,
587     PSCI_ON_PENDING = 2
588 } ARMPSCIState;
589 
590 /**
591  * ARMCPU:
592  * @env: #CPUARMState
593  *
594  * An ARM CPU core.
595  */
596 struct ARMCPU {
597     /*< private >*/
598     CPUState parent_obj;
599     /*< public >*/
600 
601     CPUARMState env;
602 
603     /* Coprocessor information */
604     GHashTable *cp_regs;
605     /* For marshalling (mostly coprocessor) register state between the
606      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
607      * we use these arrays.
608      */
609     /* List of register indexes managed via these arrays; (full KVM style
610      * 64 bit indexes, not CPRegInfo 32 bit indexes)
611      */
612     uint64_t *cpreg_indexes;
613     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
614     uint64_t *cpreg_values;
615     /* Length of the indexes, values, reset_values arrays */
616     int32_t cpreg_array_len;
617     /* These are used only for migration: incoming data arrives in
618      * these fields and is sanity checked in post_load before copying
619      * to the working data structures above.
620      */
621     uint64_t *cpreg_vmstate_indexes;
622     uint64_t *cpreg_vmstate_values;
623     int32_t cpreg_vmstate_array_len;
624 
625     /* Timers used by the generic (architected) timer */
626     QEMUTimer *gt_timer[NUM_GTIMERS];
627     /* GPIO outputs for generic timer */
628     qemu_irq gt_timer_outputs[NUM_GTIMERS];
629     /* GPIO output for GICv3 maintenance interrupt signal */
630     qemu_irq gicv3_maintenance_interrupt;
631     /* GPIO output for the PMU interrupt */
632     qemu_irq pmu_interrupt;
633 
634     /* MemoryRegion to use for secure physical accesses */
635     MemoryRegion *secure_memory;
636 
637     /* 'compatible' string for this CPU for Linux device trees */
638     const char *dtb_compatible;
639 
640     /* PSCI version for this CPU
641      * Bits[31:16] = Major Version
642      * Bits[15:0] = Minor Version
643      */
644     uint32_t psci_version;
645 
646     /* Should CPU start in PSCI powered-off state? */
647     bool start_powered_off;
648 
649     /* Current power state, access guarded by BQL */
650     ARMPSCIState power_state;
651 
652     /* CPU has virtualization extension */
653     bool has_el2;
654     /* CPU has security extension */
655     bool has_el3;
656     /* CPU has PMU (Performance Monitor Unit) */
657     bool has_pmu;
658 
659     /* CPU has memory protection unit */
660     bool has_mpu;
661     /* PMSAv7 MPU number of supported regions */
662     uint32_t pmsav7_dregion;
663 
664     /* PSCI conduit used to invoke PSCI methods
665      * 0 - disabled, 1 - smc, 2 - hvc
666      */
667     uint32_t psci_conduit;
668 
669     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
670      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
671      */
672     uint32_t kvm_target;
673 
674     /* KVM init features for this CPU */
675     uint32_t kvm_init_features[7];
676 
677     /* Uniprocessor system with MP extensions */
678     bool mp_is_up;
679 
680     /* The instance init functions for implementation-specific subclasses
681      * set these fields to specify the implementation-dependent values of
682      * various constant registers and reset values of non-constant
683      * registers.
684      * Some of these might become QOM properties eventually.
685      * Field names match the official register names as defined in the
686      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
687      * is used for reset values of non-constant registers; no reset_
688      * prefix means a constant register.
689      */
690     uint32_t midr;
691     uint32_t revidr;
692     uint32_t reset_fpsid;
693     uint32_t mvfr0;
694     uint32_t mvfr1;
695     uint32_t mvfr2;
696     uint32_t ctr;
697     uint32_t reset_sctlr;
698     uint32_t id_pfr0;
699     uint32_t id_pfr1;
700     uint32_t id_dfr0;
701     uint32_t pmceid0;
702     uint32_t pmceid1;
703     uint32_t id_afr0;
704     uint32_t id_mmfr0;
705     uint32_t id_mmfr1;
706     uint32_t id_mmfr2;
707     uint32_t id_mmfr3;
708     uint32_t id_mmfr4;
709     uint32_t id_isar0;
710     uint32_t id_isar1;
711     uint32_t id_isar2;
712     uint32_t id_isar3;
713     uint32_t id_isar4;
714     uint32_t id_isar5;
715     uint64_t id_aa64pfr0;
716     uint64_t id_aa64pfr1;
717     uint64_t id_aa64dfr0;
718     uint64_t id_aa64dfr1;
719     uint64_t id_aa64afr0;
720     uint64_t id_aa64afr1;
721     uint64_t id_aa64isar0;
722     uint64_t id_aa64isar1;
723     uint64_t id_aa64mmfr0;
724     uint64_t id_aa64mmfr1;
725     uint32_t dbgdidr;
726     uint32_t clidr;
727     uint64_t mp_affinity; /* MP ID without feature bits */
728     /* The elements of this array are the CCSIDR values for each cache,
729      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
730      */
731     uint32_t ccsidr[16];
732     uint64_t reset_cbar;
733     uint32_t reset_auxcr;
734     bool reset_hivecs;
735     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
736     uint32_t dcz_blocksize;
737     uint64_t rvbar;
738 
739     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
740     int gic_num_lrs; /* number of list registers */
741     int gic_vpribits; /* number of virtual priority bits */
742     int gic_vprebits; /* number of virtual preemption bits */
743 
744     /* Whether the cfgend input is high (i.e. this CPU should reset into
745      * big-endian mode).  This setting isn't used directly: instead it modifies
746      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
747      * architecture version.
748      */
749     bool cfgend;
750 
751     ARMELChangeHook *el_change_hook;
752     void *el_change_hook_opaque;
753 
754     int32_t node_id; /* NUMA node this CPU belongs to */
755 
756     /* Used to synchronize KVM and QEMU in-kernel device levels */
757     uint8_t device_irq_level;
758 };
759 
760 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
761 {
762     return container_of(env, ARMCPU, env);
763 }
764 
765 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
766 
767 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
768 
769 #define ENV_OFFSET offsetof(ARMCPU, env)
770 
771 #ifndef CONFIG_USER_ONLY
772 extern const struct VMStateDescription vmstate_arm_cpu;
773 #endif
774 
775 void arm_cpu_do_interrupt(CPUState *cpu);
776 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
777 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
778 
779 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
780                         int flags);
781 
782 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
783                                          MemTxAttrs *attrs);
784 
785 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
786 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
787 
788 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
789                              int cpuid, void *opaque);
790 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
791                              int cpuid, void *opaque);
792 
793 #ifdef TARGET_AARCH64
794 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
795 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
796 #endif
797 
798 target_ulong do_arm_semihosting(CPUARMState *env);
799 void aarch64_sync_32_to_64(CPUARMState *env);
800 void aarch64_sync_64_to_32(CPUARMState *env);
801 
802 static inline bool is_a64(CPUARMState *env)
803 {
804     return env->aarch64;
805 }
806 
807 /* you can call this signal handler from your SIGBUS and SIGSEGV
808    signal handlers to inform the virtual CPU of exceptions. non zero
809    is returned if the signal was handled by the virtual CPU.  */
810 int cpu_arm_signal_handler(int host_signum, void *pinfo,
811                            void *puc);
812 
813 /**
814  * pmccntr_sync
815  * @env: CPUARMState
816  *
817  * Synchronises the counter in the PMCCNTR. This must always be called twice,
818  * once before any action that might affect the timer and again afterwards.
819  * The function is used to swap the state of the register if required.
820  * This only happens when not in user mode (!CONFIG_USER_ONLY)
821  */
822 void pmccntr_sync(CPUARMState *env);
823 
824 /* SCTLR bit meanings. Several bits have been reused in newer
825  * versions of the architecture; in that case we define constants
826  * for both old and new bit meanings. Code which tests against those
827  * bits should probably check or otherwise arrange that the CPU
828  * is the architectural version it expects.
829  */
830 #define SCTLR_M       (1U << 0)
831 #define SCTLR_A       (1U << 1)
832 #define SCTLR_C       (1U << 2)
833 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
834 #define SCTLR_SA      (1U << 3)
835 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
836 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
837 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
838 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
839 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
840 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
841 #define SCTLR_ITD     (1U << 7) /* v8 onward */
842 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
843 #define SCTLR_SED     (1U << 8) /* v8 onward */
844 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
845 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
846 #define SCTLR_F       (1U << 10) /* up to v6 */
847 #define SCTLR_SW      (1U << 10) /* v7 onward */
848 #define SCTLR_Z       (1U << 11)
849 #define SCTLR_I       (1U << 12)
850 #define SCTLR_V       (1U << 13)
851 #define SCTLR_RR      (1U << 14) /* up to v7 */
852 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
853 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
854 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
855 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
856 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
857 #define SCTLR_HA      (1U << 17)
858 #define SCTLR_BR      (1U << 17) /* PMSA only */
859 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
860 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
861 #define SCTLR_WXN     (1U << 19)
862 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
863 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
864 #define SCTLR_FI      (1U << 21)
865 #define SCTLR_U       (1U << 22)
866 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
867 #define SCTLR_VE      (1U << 24) /* up to v7 */
868 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
869 #define SCTLR_EE      (1U << 25)
870 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
871 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
872 #define SCTLR_NMFI    (1U << 27)
873 #define SCTLR_TRE     (1U << 28)
874 #define SCTLR_AFE     (1U << 29)
875 #define SCTLR_TE      (1U << 30)
876 
877 #define CPTR_TCPAC    (1U << 31)
878 #define CPTR_TTA      (1U << 20)
879 #define CPTR_TFP      (1U << 10)
880 
881 #define MDCR_EPMAD    (1U << 21)
882 #define MDCR_EDAD     (1U << 20)
883 #define MDCR_SPME     (1U << 17)
884 #define MDCR_SDD      (1U << 16)
885 #define MDCR_SPD      (3U << 14)
886 #define MDCR_TDRA     (1U << 11)
887 #define MDCR_TDOSA    (1U << 10)
888 #define MDCR_TDA      (1U << 9)
889 #define MDCR_TDE      (1U << 8)
890 #define MDCR_HPME     (1U << 7)
891 #define MDCR_TPM      (1U << 6)
892 #define MDCR_TPMCR    (1U << 5)
893 
894 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
895 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
896 
897 #define CPSR_M (0x1fU)
898 #define CPSR_T (1U << 5)
899 #define CPSR_F (1U << 6)
900 #define CPSR_I (1U << 7)
901 #define CPSR_A (1U << 8)
902 #define CPSR_E (1U << 9)
903 #define CPSR_IT_2_7 (0xfc00U)
904 #define CPSR_GE (0xfU << 16)
905 #define CPSR_IL (1U << 20)
906 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
907  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
908  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
909  * where it is live state but not accessible to the AArch32 code.
910  */
911 #define CPSR_RESERVED (0x7U << 21)
912 #define CPSR_J (1U << 24)
913 #define CPSR_IT_0_1 (3U << 25)
914 #define CPSR_Q (1U << 27)
915 #define CPSR_V (1U << 28)
916 #define CPSR_C (1U << 29)
917 #define CPSR_Z (1U << 30)
918 #define CPSR_N (1U << 31)
919 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
920 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
921 
922 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
923 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
924     | CPSR_NZCV)
925 /* Bits writable in user mode.  */
926 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
927 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
928 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
929 /* Mask of bits which may be set by exception return copying them from SPSR */
930 #define CPSR_ERET_MASK (~CPSR_RESERVED)
931 
932 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
933 #define XPSR_EXCP 0x1ffU
934 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
935 #define XPSR_IT_2_7 CPSR_IT_2_7
936 #define XPSR_GE CPSR_GE
937 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
938 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
939 #define XPSR_IT_0_1 CPSR_IT_0_1
940 #define XPSR_Q CPSR_Q
941 #define XPSR_V CPSR_V
942 #define XPSR_C CPSR_C
943 #define XPSR_Z CPSR_Z
944 #define XPSR_N CPSR_N
945 #define XPSR_NZCV CPSR_NZCV
946 #define XPSR_IT CPSR_IT
947 
948 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
949 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
950 #define TTBCR_PD0    (1U << 4)
951 #define TTBCR_PD1    (1U << 5)
952 #define TTBCR_EPD0   (1U << 7)
953 #define TTBCR_IRGN0  (3U << 8)
954 #define TTBCR_ORGN0  (3U << 10)
955 #define TTBCR_SH0    (3U << 12)
956 #define TTBCR_T1SZ   (3U << 16)
957 #define TTBCR_A1     (1U << 22)
958 #define TTBCR_EPD1   (1U << 23)
959 #define TTBCR_IRGN1  (3U << 24)
960 #define TTBCR_ORGN1  (3U << 26)
961 #define TTBCR_SH1    (1U << 28)
962 #define TTBCR_EAE    (1U << 31)
963 
964 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
965  * Only these are valid when in AArch64 mode; in
966  * AArch32 mode SPSRs are basically CPSR-format.
967  */
968 #define PSTATE_SP (1U)
969 #define PSTATE_M (0xFU)
970 #define PSTATE_nRW (1U << 4)
971 #define PSTATE_F (1U << 6)
972 #define PSTATE_I (1U << 7)
973 #define PSTATE_A (1U << 8)
974 #define PSTATE_D (1U << 9)
975 #define PSTATE_IL (1U << 20)
976 #define PSTATE_SS (1U << 21)
977 #define PSTATE_V (1U << 28)
978 #define PSTATE_C (1U << 29)
979 #define PSTATE_Z (1U << 30)
980 #define PSTATE_N (1U << 31)
981 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
982 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
983 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
984 /* Mode values for AArch64 */
985 #define PSTATE_MODE_EL3h 13
986 #define PSTATE_MODE_EL3t 12
987 #define PSTATE_MODE_EL2h 9
988 #define PSTATE_MODE_EL2t 8
989 #define PSTATE_MODE_EL1h 5
990 #define PSTATE_MODE_EL1t 4
991 #define PSTATE_MODE_EL0t 0
992 
993 /* Map EL and handler into a PSTATE_MODE.  */
994 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
995 {
996     return (el << 2) | handler;
997 }
998 
999 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1000  * interprocessing, so we don't attempt to sync with the cpsr state used by
1001  * the 32 bit decoder.
1002  */
1003 static inline uint32_t pstate_read(CPUARMState *env)
1004 {
1005     int ZF;
1006 
1007     ZF = (env->ZF == 0);
1008     return (env->NF & 0x80000000) | (ZF << 30)
1009         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1010         | env->pstate | env->daif;
1011 }
1012 
1013 static inline void pstate_write(CPUARMState *env, uint32_t val)
1014 {
1015     env->ZF = (~val) & PSTATE_Z;
1016     env->NF = val;
1017     env->CF = (val >> 29) & 1;
1018     env->VF = (val << 3) & 0x80000000;
1019     env->daif = val & PSTATE_DAIF;
1020     env->pstate = val & ~CACHED_PSTATE_BITS;
1021 }
1022 
1023 /* Return the current CPSR value.  */
1024 uint32_t cpsr_read(CPUARMState *env);
1025 
1026 typedef enum CPSRWriteType {
1027     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1028     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1029     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1030     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1031 } CPSRWriteType;
1032 
1033 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1034 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1035                 CPSRWriteType write_type);
1036 
1037 /* Return the current xPSR value.  */
1038 static inline uint32_t xpsr_read(CPUARMState *env)
1039 {
1040     int ZF;
1041     ZF = (env->ZF == 0);
1042     return (env->NF & 0x80000000) | (ZF << 30)
1043         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1044         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1045         | ((env->condexec_bits & 0xfc) << 8)
1046         | env->v7m.exception;
1047 }
1048 
1049 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1050 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1051 {
1052     if (mask & XPSR_NZCV) {
1053         env->ZF = (~val) & XPSR_Z;
1054         env->NF = val;
1055         env->CF = (val >> 29) & 1;
1056         env->VF = (val << 3) & 0x80000000;
1057     }
1058     if (mask & XPSR_Q) {
1059         env->QF = ((val & XPSR_Q) != 0);
1060     }
1061     if (mask & XPSR_T) {
1062         env->thumb = ((val & XPSR_T) != 0);
1063     }
1064     if (mask & XPSR_IT_0_1) {
1065         env->condexec_bits &= ~3;
1066         env->condexec_bits |= (val >> 25) & 3;
1067     }
1068     if (mask & XPSR_IT_2_7) {
1069         env->condexec_bits &= 3;
1070         env->condexec_bits |= (val >> 8) & 0xfc;
1071     }
1072     if (mask & XPSR_EXCP) {
1073         env->v7m.exception = val & XPSR_EXCP;
1074     }
1075 }
1076 
1077 #define HCR_VM        (1ULL << 0)
1078 #define HCR_SWIO      (1ULL << 1)
1079 #define HCR_PTW       (1ULL << 2)
1080 #define HCR_FMO       (1ULL << 3)
1081 #define HCR_IMO       (1ULL << 4)
1082 #define HCR_AMO       (1ULL << 5)
1083 #define HCR_VF        (1ULL << 6)
1084 #define HCR_VI        (1ULL << 7)
1085 #define HCR_VSE       (1ULL << 8)
1086 #define HCR_FB        (1ULL << 9)
1087 #define HCR_BSU_MASK  (3ULL << 10)
1088 #define HCR_DC        (1ULL << 12)
1089 #define HCR_TWI       (1ULL << 13)
1090 #define HCR_TWE       (1ULL << 14)
1091 #define HCR_TID0      (1ULL << 15)
1092 #define HCR_TID1      (1ULL << 16)
1093 #define HCR_TID2      (1ULL << 17)
1094 #define HCR_TID3      (1ULL << 18)
1095 #define HCR_TSC       (1ULL << 19)
1096 #define HCR_TIDCP     (1ULL << 20)
1097 #define HCR_TACR      (1ULL << 21)
1098 #define HCR_TSW       (1ULL << 22)
1099 #define HCR_TPC       (1ULL << 23)
1100 #define HCR_TPU       (1ULL << 24)
1101 #define HCR_TTLB      (1ULL << 25)
1102 #define HCR_TVM       (1ULL << 26)
1103 #define HCR_TGE       (1ULL << 27)
1104 #define HCR_TDZ       (1ULL << 28)
1105 #define HCR_HCD       (1ULL << 29)
1106 #define HCR_TRVM      (1ULL << 30)
1107 #define HCR_RW        (1ULL << 31)
1108 #define HCR_CD        (1ULL << 32)
1109 #define HCR_ID        (1ULL << 33)
1110 #define HCR_MASK      ((1ULL << 34) - 1)
1111 
1112 #define SCR_NS                (1U << 0)
1113 #define SCR_IRQ               (1U << 1)
1114 #define SCR_FIQ               (1U << 2)
1115 #define SCR_EA                (1U << 3)
1116 #define SCR_FW                (1U << 4)
1117 #define SCR_AW                (1U << 5)
1118 #define SCR_NET               (1U << 6)
1119 #define SCR_SMD               (1U << 7)
1120 #define SCR_HCE               (1U << 8)
1121 #define SCR_SIF               (1U << 9)
1122 #define SCR_RW                (1U << 10)
1123 #define SCR_ST                (1U << 11)
1124 #define SCR_TWI               (1U << 12)
1125 #define SCR_TWE               (1U << 13)
1126 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1127 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1128 
1129 /* Return the current FPSCR value.  */
1130 uint32_t vfp_get_fpscr(CPUARMState *env);
1131 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1132 
1133 /* For A64 the FPSCR is split into two logically distinct registers,
1134  * FPCR and FPSR. However since they still use non-overlapping bits
1135  * we store the underlying state in fpscr and just mask on read/write.
1136  */
1137 #define FPSR_MASK 0xf800009f
1138 #define FPCR_MASK 0x07f79f00
1139 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1140 {
1141     return vfp_get_fpscr(env) & FPSR_MASK;
1142 }
1143 
1144 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1145 {
1146     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1147     vfp_set_fpscr(env, new_fpscr);
1148 }
1149 
1150 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1151 {
1152     return vfp_get_fpscr(env) & FPCR_MASK;
1153 }
1154 
1155 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1156 {
1157     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1158     vfp_set_fpscr(env, new_fpscr);
1159 }
1160 
1161 enum arm_cpu_mode {
1162   ARM_CPU_MODE_USR = 0x10,
1163   ARM_CPU_MODE_FIQ = 0x11,
1164   ARM_CPU_MODE_IRQ = 0x12,
1165   ARM_CPU_MODE_SVC = 0x13,
1166   ARM_CPU_MODE_MON = 0x16,
1167   ARM_CPU_MODE_ABT = 0x17,
1168   ARM_CPU_MODE_HYP = 0x1a,
1169   ARM_CPU_MODE_UND = 0x1b,
1170   ARM_CPU_MODE_SYS = 0x1f
1171 };
1172 
1173 /* VFP system registers.  */
1174 #define ARM_VFP_FPSID   0
1175 #define ARM_VFP_FPSCR   1
1176 #define ARM_VFP_MVFR2   5
1177 #define ARM_VFP_MVFR1   6
1178 #define ARM_VFP_MVFR0   7
1179 #define ARM_VFP_FPEXC   8
1180 #define ARM_VFP_FPINST  9
1181 #define ARM_VFP_FPINST2 10
1182 
1183 /* iwMMXt coprocessor control registers.  */
1184 #define ARM_IWMMXT_wCID		0
1185 #define ARM_IWMMXT_wCon		1
1186 #define ARM_IWMMXT_wCSSF	2
1187 #define ARM_IWMMXT_wCASF	3
1188 #define ARM_IWMMXT_wCGR0	8
1189 #define ARM_IWMMXT_wCGR1	9
1190 #define ARM_IWMMXT_wCGR2	10
1191 #define ARM_IWMMXT_wCGR3	11
1192 
1193 /* V7M CCR bits */
1194 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1195 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1196 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1197 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1198 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1199 FIELD(V7M_CCR, STKALIGN, 9, 1)
1200 FIELD(V7M_CCR, DC, 16, 1)
1201 FIELD(V7M_CCR, IC, 17, 1)
1202 
1203 /* V7M CFSR bits for MMFSR */
1204 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1205 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1206 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1207 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1208 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1209 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1210 
1211 /* V7M CFSR bits for BFSR */
1212 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1213 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1214 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1215 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1216 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1217 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1218 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1219 
1220 /* V7M CFSR bits for UFSR */
1221 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1222 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1223 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1224 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1225 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1226 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1227 
1228 /* V7M CFSR bit masks covering all of the subregister bits */
1229 FIELD(V7M_CFSR, MMFSR, 0, 8)
1230 FIELD(V7M_CFSR, BFSR, 8, 8)
1231 FIELD(V7M_CFSR, UFSR, 16, 16)
1232 
1233 /* V7M HFSR bits */
1234 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1235 FIELD(V7M_HFSR, FORCED, 30, 1)
1236 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1237 
1238 /* V7M DFSR bits */
1239 FIELD(V7M_DFSR, HALTED, 0, 1)
1240 FIELD(V7M_DFSR, BKPT, 1, 1)
1241 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1242 FIELD(V7M_DFSR, VCATCH, 3, 1)
1243 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1244 
1245 /* v7M MPU_CTRL bits */
1246 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1247 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1248 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1249 
1250 /* If adding a feature bit which corresponds to a Linux ELF
1251  * HWCAP bit, remember to update the feature-bit-to-hwcap
1252  * mapping in linux-user/elfload.c:get_elf_hwcap().
1253  */
1254 enum arm_features {
1255     ARM_FEATURE_VFP,
1256     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1257     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1258     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1259     ARM_FEATURE_V6,
1260     ARM_FEATURE_V6K,
1261     ARM_FEATURE_V7,
1262     ARM_FEATURE_THUMB2,
1263     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1264     ARM_FEATURE_VFP3,
1265     ARM_FEATURE_VFP_FP16,
1266     ARM_FEATURE_NEON,
1267     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1268     ARM_FEATURE_M, /* Microcontroller profile.  */
1269     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1270     ARM_FEATURE_THUMB2EE,
1271     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1272     ARM_FEATURE_V4T,
1273     ARM_FEATURE_V5,
1274     ARM_FEATURE_STRONGARM,
1275     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1276     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1277     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1278     ARM_FEATURE_GENERIC_TIMER,
1279     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1280     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1281     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1282     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1283     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1284     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1285     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1286     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1287     ARM_FEATURE_V8,
1288     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1289     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1290     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1291     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1292     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1293     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1294     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1295     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1296     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1297     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1298     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1299     ARM_FEATURE_PMU, /* has PMU support */
1300     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1301     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1302     ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1303 };
1304 
1305 static inline int arm_feature(CPUARMState *env, int feature)
1306 {
1307     return (env->features & (1ULL << feature)) != 0;
1308 }
1309 
1310 #if !defined(CONFIG_USER_ONLY)
1311 /* Return true if exception levels below EL3 are in secure state,
1312  * or would be following an exception return to that level.
1313  * Unlike arm_is_secure() (which is always a question about the
1314  * _current_ state of the CPU) this doesn't care about the current
1315  * EL or mode.
1316  */
1317 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1318 {
1319     if (arm_feature(env, ARM_FEATURE_EL3)) {
1320         return !(env->cp15.scr_el3 & SCR_NS);
1321     } else {
1322         /* If EL3 is not supported then the secure state is implementation
1323          * defined, in which case QEMU defaults to non-secure.
1324          */
1325         return false;
1326     }
1327 }
1328 
1329 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1330 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1331 {
1332     if (arm_feature(env, ARM_FEATURE_EL3)) {
1333         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1334             /* CPU currently in AArch64 state and EL3 */
1335             return true;
1336         } else if (!is_a64(env) &&
1337                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1338             /* CPU currently in AArch32 state and monitor mode */
1339             return true;
1340         }
1341     }
1342     return false;
1343 }
1344 
1345 /* Return true if the processor is in secure state */
1346 static inline bool arm_is_secure(CPUARMState *env)
1347 {
1348     if (arm_is_el3_or_mon(env)) {
1349         return true;
1350     }
1351     return arm_is_secure_below_el3(env);
1352 }
1353 
1354 #else
1355 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1356 {
1357     return false;
1358 }
1359 
1360 static inline bool arm_is_secure(CPUARMState *env)
1361 {
1362     return false;
1363 }
1364 #endif
1365 
1366 /* Return true if the specified exception level is running in AArch64 state. */
1367 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1368 {
1369     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1370      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1371      */
1372     assert(el >= 1 && el <= 3);
1373     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1374 
1375     /* The highest exception level is always at the maximum supported
1376      * register width, and then lower levels have a register width controlled
1377      * by bits in the SCR or HCR registers.
1378      */
1379     if (el == 3) {
1380         return aa64;
1381     }
1382 
1383     if (arm_feature(env, ARM_FEATURE_EL3)) {
1384         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1385     }
1386 
1387     if (el == 2) {
1388         return aa64;
1389     }
1390 
1391     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1392         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1393     }
1394 
1395     return aa64;
1396 }
1397 
1398 /* Function for determing whether guest cp register reads and writes should
1399  * access the secure or non-secure bank of a cp register.  When EL3 is
1400  * operating in AArch32 state, the NS-bit determines whether the secure
1401  * instance of a cp register should be used. When EL3 is AArch64 (or if
1402  * it doesn't exist at all) then there is no register banking, and all
1403  * accesses are to the non-secure version.
1404  */
1405 static inline bool access_secure_reg(CPUARMState *env)
1406 {
1407     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1408                 !arm_el_is_aa64(env, 3) &&
1409                 !(env->cp15.scr_el3 & SCR_NS));
1410 
1411     return ret;
1412 }
1413 
1414 /* Macros for accessing a specified CP register bank */
1415 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1416     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1417 
1418 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1419     do {                                                \
1420         if (_secure) {                                   \
1421             (_env)->cp15._regname##_s = (_val);            \
1422         } else {                                        \
1423             (_env)->cp15._regname##_ns = (_val);           \
1424         }                                               \
1425     } while (0)
1426 
1427 /* Macros for automatically accessing a specific CP register bank depending on
1428  * the current secure state of the system.  These macros are not intended for
1429  * supporting instruction translation reads/writes as these are dependent
1430  * solely on the SCR.NS bit and not the mode.
1431  */
1432 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1433     A32_BANKED_REG_GET((_env), _regname,                \
1434                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1435 
1436 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1437     A32_BANKED_REG_SET((_env), _regname,                                    \
1438                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1439                        (_val))
1440 
1441 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1442 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1443                                  uint32_t cur_el, bool secure);
1444 
1445 /* Interface between CPU and Interrupt controller.  */
1446 #ifndef CONFIG_USER_ONLY
1447 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1448 #else
1449 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1450 {
1451     return true;
1452 }
1453 #endif
1454 void armv7m_nvic_set_pending(void *opaque, int irq);
1455 void armv7m_nvic_acknowledge_irq(void *opaque);
1456 /**
1457  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1458  * @opaque: the NVIC
1459  * @irq: the exception number to complete
1460  *
1461  * Returns: -1 if the irq was not active
1462  *           1 if completing this irq brought us back to base (no active irqs)
1463  *           0 if there is still an irq active after this one was completed
1464  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1465  */
1466 int armv7m_nvic_complete_irq(void *opaque, int irq);
1467 /**
1468  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1469  * @opaque: the NVIC
1470  *
1471  * Returns: the raw execution priority as defined by the v8M architecture.
1472  * This is the execution priority minus the effects of AIRCR.PRIS,
1473  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1474  * (v8M ARM ARM I_PKLD.)
1475  */
1476 int armv7m_nvic_raw_execution_priority(void *opaque);
1477 
1478 /* Interface for defining coprocessor registers.
1479  * Registers are defined in tables of arm_cp_reginfo structs
1480  * which are passed to define_arm_cp_regs().
1481  */
1482 
1483 /* When looking up a coprocessor register we look for it
1484  * via an integer which encodes all of:
1485  *  coprocessor number
1486  *  Crn, Crm, opc1, opc2 fields
1487  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1488  *    or via MRRC/MCRR?)
1489  *  non-secure/secure bank (AArch32 only)
1490  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1491  * (In this case crn and opc2 should be zero.)
1492  * For AArch64, there is no 32/64 bit size distinction;
1493  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1494  * and 4 bit CRn and CRm. The encoding patterns are chosen
1495  * to be easy to convert to and from the KVM encodings, and also
1496  * so that the hashtable can contain both AArch32 and AArch64
1497  * registers (to allow for interprocessing where we might run
1498  * 32 bit code on a 64 bit core).
1499  */
1500 /* This bit is private to our hashtable cpreg; in KVM register
1501  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1502  * in the upper bits of the 64 bit ID.
1503  */
1504 #define CP_REG_AA64_SHIFT 28
1505 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1506 
1507 /* To enable banking of coprocessor registers depending on ns-bit we
1508  * add a bit to distinguish between secure and non-secure cpregs in the
1509  * hashtable.
1510  */
1511 #define CP_REG_NS_SHIFT 29
1512 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1513 
1514 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1515     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1516      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1517 
1518 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1519     (CP_REG_AA64_MASK |                                 \
1520      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1521      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1522      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1523      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1524      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1525      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1526 
1527 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1528  * version used as a key for the coprocessor register hashtable
1529  */
1530 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1531 {
1532     uint32_t cpregid = kvmid;
1533     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1534         cpregid |= CP_REG_AA64_MASK;
1535     } else {
1536         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1537             cpregid |= (1 << 15);
1538         }
1539 
1540         /* KVM is always non-secure so add the NS flag on AArch32 register
1541          * entries.
1542          */
1543          cpregid |= 1 << CP_REG_NS_SHIFT;
1544     }
1545     return cpregid;
1546 }
1547 
1548 /* Convert a truncated 32 bit hashtable key into the full
1549  * 64 bit KVM register ID.
1550  */
1551 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1552 {
1553     uint64_t kvmid;
1554 
1555     if (cpregid & CP_REG_AA64_MASK) {
1556         kvmid = cpregid & ~CP_REG_AA64_MASK;
1557         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1558     } else {
1559         kvmid = cpregid & ~(1 << 15);
1560         if (cpregid & (1 << 15)) {
1561             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1562         } else {
1563             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1564         }
1565     }
1566     return kvmid;
1567 }
1568 
1569 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1570  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1571  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1572  * TCG can assume the value to be constant (ie load at translate time)
1573  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1574  * indicates that the TB should not be ended after a write to this register
1575  * (the default is that the TB ends after cp writes). OVERRIDE permits
1576  * a register definition to override a previous definition for the
1577  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1578  * old must have the OVERRIDE bit set.
1579  * ALIAS indicates that this register is an alias view of some underlying
1580  * state which is also visible via another register, and that the other
1581  * register is handling migration and reset; registers marked ALIAS will not be
1582  * migrated but may have their state set by syncing of register state from KVM.
1583  * NO_RAW indicates that this register has no underlying state and does not
1584  * support raw access for state saving/loading; it will not be used for either
1585  * migration or KVM state synchronization. (Typically this is for "registers"
1586  * which are actually used as instructions for cache maintenance and so on.)
1587  * IO indicates that this register does I/O and therefore its accesses
1588  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1589  * registers which implement clocks or timers require this.
1590  */
1591 #define ARM_CP_SPECIAL 1
1592 #define ARM_CP_CONST 2
1593 #define ARM_CP_64BIT 4
1594 #define ARM_CP_SUPPRESS_TB_END 8
1595 #define ARM_CP_OVERRIDE 16
1596 #define ARM_CP_ALIAS 32
1597 #define ARM_CP_IO 64
1598 #define ARM_CP_NO_RAW 128
1599 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1600 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1601 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1602 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1603 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1604 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1605 /* Used only as a terminator for ARMCPRegInfo lists */
1606 #define ARM_CP_SENTINEL 0xffff
1607 /* Mask of only the flag bits in a type field */
1608 #define ARM_CP_FLAG_MASK 0xff
1609 
1610 /* Valid values for ARMCPRegInfo state field, indicating which of
1611  * the AArch32 and AArch64 execution states this register is visible in.
1612  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1613  * If the reginfo is declared to be visible in both states then a second
1614  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1615  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1616  * Note that we rely on the values of these enums as we iterate through
1617  * the various states in some places.
1618  */
1619 enum {
1620     ARM_CP_STATE_AA32 = 0,
1621     ARM_CP_STATE_AA64 = 1,
1622     ARM_CP_STATE_BOTH = 2,
1623 };
1624 
1625 /* ARM CP register secure state flags.  These flags identify security state
1626  * attributes for a given CP register entry.
1627  * The existence of both or neither secure and non-secure flags indicates that
1628  * the register has both a secure and non-secure hash entry.  A single one of
1629  * these flags causes the register to only be hashed for the specified
1630  * security state.
1631  * Although definitions may have any combination of the S/NS bits, each
1632  * registered entry will only have one to identify whether the entry is secure
1633  * or non-secure.
1634  */
1635 enum {
1636     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1637     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1638 };
1639 
1640 /* Return true if cptype is a valid type field. This is used to try to
1641  * catch errors where the sentinel has been accidentally left off the end
1642  * of a list of registers.
1643  */
1644 static inline bool cptype_valid(int cptype)
1645 {
1646     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1647         || ((cptype & ARM_CP_SPECIAL) &&
1648             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1649 }
1650 
1651 /* Access rights:
1652  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1653  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1654  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1655  * (ie any of the privileged modes in Secure state, or Monitor mode).
1656  * If a register is accessible in one privilege level it's always accessible
1657  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1658  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1659  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1660  * terminology a little and call this PL3.
1661  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1662  * with the ELx exception levels.
1663  *
1664  * If access permissions for a register are more complex than can be
1665  * described with these bits, then use a laxer set of restrictions, and
1666  * do the more restrictive/complex check inside a helper function.
1667  */
1668 #define PL3_R 0x80
1669 #define PL3_W 0x40
1670 #define PL2_R (0x20 | PL3_R)
1671 #define PL2_W (0x10 | PL3_W)
1672 #define PL1_R (0x08 | PL2_R)
1673 #define PL1_W (0x04 | PL2_W)
1674 #define PL0_R (0x02 | PL1_R)
1675 #define PL0_W (0x01 | PL1_W)
1676 
1677 #define PL3_RW (PL3_R | PL3_W)
1678 #define PL2_RW (PL2_R | PL2_W)
1679 #define PL1_RW (PL1_R | PL1_W)
1680 #define PL0_RW (PL0_R | PL0_W)
1681 
1682 /* Return the highest implemented Exception Level */
1683 static inline int arm_highest_el(CPUARMState *env)
1684 {
1685     if (arm_feature(env, ARM_FEATURE_EL3)) {
1686         return 3;
1687     }
1688     if (arm_feature(env, ARM_FEATURE_EL2)) {
1689         return 2;
1690     }
1691     return 1;
1692 }
1693 
1694 /* Return true if a v7M CPU is in Handler mode */
1695 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1696 {
1697     return env->v7m.exception != 0;
1698 }
1699 
1700 /* Return the current Exception Level (as per ARMv8; note that this differs
1701  * from the ARMv7 Privilege Level).
1702  */
1703 static inline int arm_current_el(CPUARMState *env)
1704 {
1705     if (arm_feature(env, ARM_FEATURE_M)) {
1706         return arm_v7m_is_handler_mode(env) ||
1707             !(env->v7m.control[env->v7m.secure] & 1);
1708     }
1709 
1710     if (is_a64(env)) {
1711         return extract32(env->pstate, 2, 2);
1712     }
1713 
1714     switch (env->uncached_cpsr & 0x1f) {
1715     case ARM_CPU_MODE_USR:
1716         return 0;
1717     case ARM_CPU_MODE_HYP:
1718         return 2;
1719     case ARM_CPU_MODE_MON:
1720         return 3;
1721     default:
1722         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1723             /* If EL3 is 32-bit then all secure privileged modes run in
1724              * EL3
1725              */
1726             return 3;
1727         }
1728 
1729         return 1;
1730     }
1731 }
1732 
1733 typedef struct ARMCPRegInfo ARMCPRegInfo;
1734 
1735 typedef enum CPAccessResult {
1736     /* Access is permitted */
1737     CP_ACCESS_OK = 0,
1738     /* Access fails due to a configurable trap or enable which would
1739      * result in a categorized exception syndrome giving information about
1740      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1741      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1742      * PL1 if in EL0, otherwise to the current EL).
1743      */
1744     CP_ACCESS_TRAP = 1,
1745     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1746      * Note that this is not a catch-all case -- the set of cases which may
1747      * result in this failure is specifically defined by the architecture.
1748      */
1749     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1750     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1751     CP_ACCESS_TRAP_EL2 = 3,
1752     CP_ACCESS_TRAP_EL3 = 4,
1753     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1754     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1755     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1756     /* Access fails and results in an exception syndrome for an FP access,
1757      * trapped directly to EL2 or EL3
1758      */
1759     CP_ACCESS_TRAP_FP_EL2 = 7,
1760     CP_ACCESS_TRAP_FP_EL3 = 8,
1761 } CPAccessResult;
1762 
1763 /* Access functions for coprocessor registers. These cannot fail and
1764  * may not raise exceptions.
1765  */
1766 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1767 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1768                        uint64_t value);
1769 /* Access permission check functions for coprocessor registers. */
1770 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1771                                   const ARMCPRegInfo *opaque,
1772                                   bool isread);
1773 /* Hook function for register reset */
1774 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1775 
1776 #define CP_ANY 0xff
1777 
1778 /* Definition of an ARM coprocessor register */
1779 struct ARMCPRegInfo {
1780     /* Name of register (useful mainly for debugging, need not be unique) */
1781     const char *name;
1782     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1783      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1784      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1785      * will be decoded to this register. The register read and write
1786      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1787      * used by the program, so it is possible to register a wildcard and
1788      * then behave differently on read/write if necessary.
1789      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1790      * must both be zero.
1791      * For AArch64-visible registers, opc0 is also used.
1792      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1793      * way to distinguish (for KVM's benefit) guest-visible system registers
1794      * from demuxed ones provided to preserve the "no side effects on
1795      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1796      * visible (to match KVM's encoding); cp==0 will be converted to
1797      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1798      */
1799     uint8_t cp;
1800     uint8_t crn;
1801     uint8_t crm;
1802     uint8_t opc0;
1803     uint8_t opc1;
1804     uint8_t opc2;
1805     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1806     int state;
1807     /* Register type: ARM_CP_* bits/values */
1808     int type;
1809     /* Access rights: PL*_[RW] */
1810     int access;
1811     /* Security state: ARM_CP_SECSTATE_* bits/values */
1812     int secure;
1813     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1814      * this register was defined: can be used to hand data through to the
1815      * register read/write functions, since they are passed the ARMCPRegInfo*.
1816      */
1817     void *opaque;
1818     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1819      * fieldoffset is non-zero, the reset value of the register.
1820      */
1821     uint64_t resetvalue;
1822     /* Offset of the field in CPUARMState for this register.
1823      *
1824      * This is not needed if either:
1825      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1826      *  2. both readfn and writefn are specified
1827      */
1828     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1829 
1830     /* Offsets of the secure and non-secure fields in CPUARMState for the
1831      * register if it is banked.  These fields are only used during the static
1832      * registration of a register.  During hashing the bank associated
1833      * with a given security state is copied to fieldoffset which is used from
1834      * there on out.
1835      *
1836      * It is expected that register definitions use either fieldoffset or
1837      * bank_fieldoffsets in the definition but not both.  It is also expected
1838      * that both bank offsets are set when defining a banked register.  This
1839      * use indicates that a register is banked.
1840      */
1841     ptrdiff_t bank_fieldoffsets[2];
1842 
1843     /* Function for making any access checks for this register in addition to
1844      * those specified by the 'access' permissions bits. If NULL, no extra
1845      * checks required. The access check is performed at runtime, not at
1846      * translate time.
1847      */
1848     CPAccessFn *accessfn;
1849     /* Function for handling reads of this register. If NULL, then reads
1850      * will be done by loading from the offset into CPUARMState specified
1851      * by fieldoffset.
1852      */
1853     CPReadFn *readfn;
1854     /* Function for handling writes of this register. If NULL, then writes
1855      * will be done by writing to the offset into CPUARMState specified
1856      * by fieldoffset.
1857      */
1858     CPWriteFn *writefn;
1859     /* Function for doing a "raw" read; used when we need to copy
1860      * coprocessor state to the kernel for KVM or out for
1861      * migration. This only needs to be provided if there is also a
1862      * readfn and it has side effects (for instance clear-on-read bits).
1863      */
1864     CPReadFn *raw_readfn;
1865     /* Function for doing a "raw" write; used when we need to copy KVM
1866      * kernel coprocessor state into userspace, or for inbound
1867      * migration. This only needs to be provided if there is also a
1868      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1869      * or similar behaviour.
1870      */
1871     CPWriteFn *raw_writefn;
1872     /* Function for resetting the register. If NULL, then reset will be done
1873      * by writing resetvalue to the field specified in fieldoffset. If
1874      * fieldoffset is 0 then no reset will be done.
1875      */
1876     CPResetFn *resetfn;
1877 };
1878 
1879 /* Macros which are lvalues for the field in CPUARMState for the
1880  * ARMCPRegInfo *ri.
1881  */
1882 #define CPREG_FIELD32(env, ri) \
1883     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1884 #define CPREG_FIELD64(env, ri) \
1885     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1886 
1887 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1888 
1889 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1890                                     const ARMCPRegInfo *regs, void *opaque);
1891 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1892                                        const ARMCPRegInfo *regs, void *opaque);
1893 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1894 {
1895     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1896 }
1897 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1898 {
1899     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1900 }
1901 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1902 
1903 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1904 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1905                          uint64_t value);
1906 /* CPReadFn that can be used for read-as-zero behaviour */
1907 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1908 
1909 /* CPResetFn that does nothing, for use if no reset is required even
1910  * if fieldoffset is non zero.
1911  */
1912 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1913 
1914 /* Return true if this reginfo struct's field in the cpu state struct
1915  * is 64 bits wide.
1916  */
1917 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1918 {
1919     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1920 }
1921 
1922 static inline bool cp_access_ok(int current_el,
1923                                 const ARMCPRegInfo *ri, int isread)
1924 {
1925     return (ri->access >> ((current_el * 2) + isread)) & 1;
1926 }
1927 
1928 /* Raw read of a coprocessor register (as needed for migration, etc) */
1929 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1930 
1931 /**
1932  * write_list_to_cpustate
1933  * @cpu: ARMCPU
1934  *
1935  * For each register listed in the ARMCPU cpreg_indexes list, write
1936  * its value from the cpreg_values list into the ARMCPUState structure.
1937  * This updates TCG's working data structures from KVM data or
1938  * from incoming migration state.
1939  *
1940  * Returns: true if all register values were updated correctly,
1941  * false if some register was unknown or could not be written.
1942  * Note that we do not stop early on failure -- we will attempt
1943  * writing all registers in the list.
1944  */
1945 bool write_list_to_cpustate(ARMCPU *cpu);
1946 
1947 /**
1948  * write_cpustate_to_list:
1949  * @cpu: ARMCPU
1950  *
1951  * For each register listed in the ARMCPU cpreg_indexes list, write
1952  * its value from the ARMCPUState structure into the cpreg_values list.
1953  * This is used to copy info from TCG's working data structures into
1954  * KVM or for outbound migration.
1955  *
1956  * Returns: true if all register values were read correctly,
1957  * false if some register was unknown or could not be read.
1958  * Note that we do not stop early on failure -- we will attempt
1959  * reading all registers in the list.
1960  */
1961 bool write_cpustate_to_list(ARMCPU *cpu);
1962 
1963 #define ARM_CPUID_TI915T      0x54029152
1964 #define ARM_CPUID_TI925T      0x54029252
1965 
1966 #if defined(CONFIG_USER_ONLY)
1967 #define TARGET_PAGE_BITS 12
1968 #else
1969 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1970  * have to support 1K tiny pages.
1971  */
1972 #define TARGET_PAGE_BITS_VARY
1973 #define TARGET_PAGE_BITS_MIN 10
1974 #endif
1975 
1976 #if defined(TARGET_AARCH64)
1977 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1978 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1979 #else
1980 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1981 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1982 #endif
1983 
1984 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1985                                      unsigned int target_el)
1986 {
1987     CPUARMState *env = cs->env_ptr;
1988     unsigned int cur_el = arm_current_el(env);
1989     bool secure = arm_is_secure(env);
1990     bool pstate_unmasked;
1991     int8_t unmasked = 0;
1992 
1993     /* Don't take exceptions if they target a lower EL.
1994      * This check should catch any exceptions that would not be taken but left
1995      * pending.
1996      */
1997     if (cur_el > target_el) {
1998         return false;
1999     }
2000 
2001     switch (excp_idx) {
2002     case EXCP_FIQ:
2003         pstate_unmasked = !(env->daif & PSTATE_F);
2004         break;
2005 
2006     case EXCP_IRQ:
2007         pstate_unmasked = !(env->daif & PSTATE_I);
2008         break;
2009 
2010     case EXCP_VFIQ:
2011         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2012             /* VFIQs are only taken when hypervized and non-secure.  */
2013             return false;
2014         }
2015         return !(env->daif & PSTATE_F);
2016     case EXCP_VIRQ:
2017         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2018             /* VIRQs are only taken when hypervized and non-secure.  */
2019             return false;
2020         }
2021         return !(env->daif & PSTATE_I);
2022     default:
2023         g_assert_not_reached();
2024     }
2025 
2026     /* Use the target EL, current execution state and SCR/HCR settings to
2027      * determine whether the corresponding CPSR bit is used to mask the
2028      * interrupt.
2029      */
2030     if ((target_el > cur_el) && (target_el != 1)) {
2031         /* Exceptions targeting a higher EL may not be maskable */
2032         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2033             /* 64-bit masking rules are simple: exceptions to EL3
2034              * can't be masked, and exceptions to EL2 can only be
2035              * masked from Secure state. The HCR and SCR settings
2036              * don't affect the masking logic, only the interrupt routing.
2037              */
2038             if (target_el == 3 || !secure) {
2039                 unmasked = 1;
2040             }
2041         } else {
2042             /* The old 32-bit-only environment has a more complicated
2043              * masking setup. HCR and SCR bits not only affect interrupt
2044              * routing but also change the behaviour of masking.
2045              */
2046             bool hcr, scr;
2047 
2048             switch (excp_idx) {
2049             case EXCP_FIQ:
2050                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2051                  * we override the CPSR.F in determining if the exception is
2052                  * masked or not. If neither of these are set then we fall back
2053                  * to the CPSR.F setting otherwise we further assess the state
2054                  * below.
2055                  */
2056                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2057                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2058 
2059                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2060                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2061                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2062                  * when non-secure but only when FIQs are only routed to EL3.
2063                  */
2064                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2065                 break;
2066             case EXCP_IRQ:
2067                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2068                  * we may override the CPSR.I masking when in non-secure state.
2069                  * The SCR.IRQ setting has already been taken into consideration
2070                  * when setting the target EL, so it does not have a further
2071                  * affect here.
2072                  */
2073                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2074                 scr = false;
2075                 break;
2076             default:
2077                 g_assert_not_reached();
2078             }
2079 
2080             if ((scr || hcr) && !secure) {
2081                 unmasked = 1;
2082             }
2083         }
2084     }
2085 
2086     /* The PSTATE bits only mask the interrupt if we have not overriden the
2087      * ability above.
2088      */
2089     return unmasked || pstate_unmasked;
2090 }
2091 
2092 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2093 
2094 #define cpu_signal_handler cpu_arm_signal_handler
2095 #define cpu_list arm_cpu_list
2096 
2097 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2098  *
2099  * If EL3 is 64-bit:
2100  *  + NonSecure EL1 & 0 stage 1
2101  *  + NonSecure EL1 & 0 stage 2
2102  *  + NonSecure EL2
2103  *  + Secure EL1 & EL0
2104  *  + Secure EL3
2105  * If EL3 is 32-bit:
2106  *  + NonSecure PL1 & 0 stage 1
2107  *  + NonSecure PL1 & 0 stage 2
2108  *  + NonSecure PL2
2109  *  + Secure PL0 & PL1
2110  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2111  *
2112  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2113  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2114  *     may differ in access permissions even if the VA->PA map is the same
2115  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2116  *     translation, which means that we have one mmu_idx that deals with two
2117  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2118  *     architecturally permitted]
2119  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2120  *     handling via the TLB. The only way to do a stage 1 translation without
2121  *     the immediate stage 2 translation is via the ATS or AT system insns,
2122  *     which can be slow-pathed and always do a page table walk.
2123  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2124  *     translation regimes, because they map reasonably well to each other
2125  *     and they can't both be active at the same time.
2126  * This gives us the following list of mmu_idx values:
2127  *
2128  * NS EL0 (aka NS PL0) stage 1+2
2129  * NS EL1 (aka NS PL1) stage 1+2
2130  * NS EL2 (aka NS PL2)
2131  * S EL3 (aka S PL1)
2132  * S EL0 (aka S PL0)
2133  * S EL1 (not used if EL3 is 32 bit)
2134  * NS EL0+1 stage 2
2135  *
2136  * (The last of these is an mmu_idx because we want to be able to use the TLB
2137  * for the accesses done as part of a stage 1 page table walk, rather than
2138  * having to walk the stage 2 page table over and over.)
2139  *
2140  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2141  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2142  * NS EL2 if we ever model a Cortex-R52).
2143  *
2144  * M profile CPUs are rather different as they do not have a true MMU.
2145  * They have the following different MMU indexes:
2146  *  User
2147  *  Privileged
2148  *  Execution priority negative (this is like privileged, but the
2149  *  MPU HFNMIENA bit means that it may have different access permission
2150  *  check results to normal privileged code, so can't share a TLB).
2151  * If the CPU supports the v8M Security Extension then there are also:
2152  *  Secure User
2153  *  Secure Privileged
2154  *  Secure, execution priority negative
2155  *
2156  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2157  * are not quite the same -- different CPU types (most notably M profile
2158  * vs A/R profile) would like to use MMU indexes with different semantics,
2159  * but since we don't ever need to use all of those in a single CPU we
2160  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2161  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2162  * the same for any particular CPU.
2163  * Variables of type ARMMUIdx are always full values, and the core
2164  * index values are in variables of type 'int'.
2165  *
2166  * Our enumeration includes at the end some entries which are not "true"
2167  * mmu_idx values in that they don't have corresponding TLBs and are only
2168  * valid for doing slow path page table walks.
2169  *
2170  * The constant names here are patterned after the general style of the names
2171  * of the AT/ATS operations.
2172  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2173  */
2174 #define ARM_MMU_IDX_A 0x10 /* A profile */
2175 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2176 #define ARM_MMU_IDX_M 0x40 /* M profile */
2177 
2178 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2179 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2180 
2181 typedef enum ARMMMUIdx {
2182     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2183     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2184     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2185     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2186     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2187     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2188     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2189     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2190     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2191     ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2192     ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M,
2193     ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M,
2194     ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M,
2195     /* Indexes below here don't have TLBs and are used only for AT system
2196      * instructions or for the first stage of an S12 page table walk.
2197      */
2198     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2199     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2200 } ARMMMUIdx;
2201 
2202 /* Bit macros for the core-mmu-index values for each index,
2203  * for use when calling tlb_flush_by_mmuidx() and friends.
2204  */
2205 typedef enum ARMMMUIdxBit {
2206     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2207     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2208     ARMMMUIdxBit_S1E2 = 1 << 2,
2209     ARMMMUIdxBit_S1E3 = 1 << 3,
2210     ARMMMUIdxBit_S1SE0 = 1 << 4,
2211     ARMMMUIdxBit_S1SE1 = 1 << 5,
2212     ARMMMUIdxBit_S2NS = 1 << 6,
2213     ARMMMUIdxBit_MUser = 1 << 0,
2214     ARMMMUIdxBit_MPriv = 1 << 1,
2215     ARMMMUIdxBit_MNegPri = 1 << 2,
2216     ARMMMUIdxBit_MSUser = 1 << 3,
2217     ARMMMUIdxBit_MSPriv = 1 << 4,
2218     ARMMMUIdxBit_MSNegPri = 1 << 5,
2219 } ARMMMUIdxBit;
2220 
2221 #define MMU_USER_IDX 0
2222 
2223 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2224 {
2225     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2226 }
2227 
2228 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2229 {
2230     if (arm_feature(env, ARM_FEATURE_M)) {
2231         return mmu_idx | ARM_MMU_IDX_M;
2232     } else {
2233         return mmu_idx | ARM_MMU_IDX_A;
2234     }
2235 }
2236 
2237 /* Return the exception level we're running at if this is our mmu_idx */
2238 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2239 {
2240     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2241     case ARM_MMU_IDX_A:
2242         return mmu_idx & 3;
2243     case ARM_MMU_IDX_M:
2244         return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser)
2245             ? 0 : 1;
2246     default:
2247         g_assert_not_reached();
2248     }
2249 }
2250 
2251 /* Determine the current mmu_idx to use for normal loads/stores */
2252 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2253 {
2254     int el = arm_current_el(env);
2255 
2256     if (arm_feature(env, ARM_FEATURE_M)) {
2257         ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2258 
2259         /* Execution priority is negative if FAULTMASK is set or
2260          * we're in a HardFault or NMI handler.
2261          */
2262         if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2263             || env->v7m.faultmask[env->v7m.secure]) {
2264             mmu_idx = ARMMMUIdx_MNegPri;
2265         }
2266 
2267         if (env->v7m.secure) {
2268             mmu_idx += ARMMMUIdx_MSUser;
2269         }
2270 
2271         return arm_to_core_mmu_idx(mmu_idx);
2272     }
2273 
2274     if (el < 2 && arm_is_secure_below_el3(env)) {
2275         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2276     }
2277     return el;
2278 }
2279 
2280 /* Indexes used when registering address spaces with cpu_address_space_init */
2281 typedef enum ARMASIdx {
2282     ARMASIdx_NS = 0,
2283     ARMASIdx_S = 1,
2284 } ARMASIdx;
2285 
2286 /* Return the Exception Level targeted by debug exceptions. */
2287 static inline int arm_debug_target_el(CPUARMState *env)
2288 {
2289     bool secure = arm_is_secure(env);
2290     bool route_to_el2 = false;
2291 
2292     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2293         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2294                        env->cp15.mdcr_el2 & (1 << 8);
2295     }
2296 
2297     if (route_to_el2) {
2298         return 2;
2299     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2300                !arm_el_is_aa64(env, 3) && secure) {
2301         return 3;
2302     } else {
2303         return 1;
2304     }
2305 }
2306 
2307 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2308 {
2309     if (arm_is_secure(env)) {
2310         /* MDCR_EL3.SDD disables debug events from Secure state */
2311         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2312             || arm_current_el(env) == 3) {
2313             return false;
2314         }
2315     }
2316 
2317     if (arm_current_el(env) == arm_debug_target_el(env)) {
2318         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2319             || (env->daif & PSTATE_D)) {
2320             return false;
2321         }
2322     }
2323     return true;
2324 }
2325 
2326 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2327 {
2328     int el = arm_current_el(env);
2329 
2330     if (el == 0 && arm_el_is_aa64(env, 1)) {
2331         return aa64_generate_debug_exceptions(env);
2332     }
2333 
2334     if (arm_is_secure(env)) {
2335         int spd;
2336 
2337         if (el == 0 && (env->cp15.sder & 1)) {
2338             /* SDER.SUIDEN means debug exceptions from Secure EL0
2339              * are always enabled. Otherwise they are controlled by
2340              * SDCR.SPD like those from other Secure ELs.
2341              */
2342             return true;
2343         }
2344 
2345         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2346         switch (spd) {
2347         case 1:
2348             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2349         case 0:
2350             /* For 0b00 we return true if external secure invasive debug
2351              * is enabled. On real hardware this is controlled by external
2352              * signals to the core. QEMU always permits debug, and behaves
2353              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2354              */
2355             return true;
2356         case 2:
2357             return false;
2358         case 3:
2359             return true;
2360         }
2361     }
2362 
2363     return el != 2;
2364 }
2365 
2366 /* Return true if debugging exceptions are currently enabled.
2367  * This corresponds to what in ARM ARM pseudocode would be
2368  *    if UsingAArch32() then
2369  *        return AArch32.GenerateDebugExceptions()
2370  *    else
2371  *        return AArch64.GenerateDebugExceptions()
2372  * We choose to push the if() down into this function for clarity,
2373  * since the pseudocode has it at all callsites except for the one in
2374  * CheckSoftwareStep(), where it is elided because both branches would
2375  * always return the same value.
2376  *
2377  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2378  * don't yet implement those exception levels or their associated trap bits.
2379  */
2380 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2381 {
2382     if (env->aarch64) {
2383         return aa64_generate_debug_exceptions(env);
2384     } else {
2385         return aa32_generate_debug_exceptions(env);
2386     }
2387 }
2388 
2389 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2390  * implicitly means this always returns false in pre-v8 CPUs.)
2391  */
2392 static inline bool arm_singlestep_active(CPUARMState *env)
2393 {
2394     return extract32(env->cp15.mdscr_el1, 0, 1)
2395         && arm_el_is_aa64(env, arm_debug_target_el(env))
2396         && arm_generate_debug_exceptions(env);
2397 }
2398 
2399 static inline bool arm_sctlr_b(CPUARMState *env)
2400 {
2401     return
2402         /* We need not implement SCTLR.ITD in user-mode emulation, so
2403          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2404          * This lets people run BE32 binaries with "-cpu any".
2405          */
2406 #ifndef CONFIG_USER_ONLY
2407         !arm_feature(env, ARM_FEATURE_V7) &&
2408 #endif
2409         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2410 }
2411 
2412 /* Return true if the processor is in big-endian mode. */
2413 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2414 {
2415     int cur_el;
2416 
2417     /* In 32bit endianness is determined by looking at CPSR's E bit */
2418     if (!is_a64(env)) {
2419         return
2420 #ifdef CONFIG_USER_ONLY
2421             /* In system mode, BE32 is modelled in line with the
2422              * architecture (as word-invariant big-endianness), where loads
2423              * and stores are done little endian but from addresses which
2424              * are adjusted by XORing with the appropriate constant. So the
2425              * endianness to use for the raw data access is not affected by
2426              * SCTLR.B.
2427              * In user mode, however, we model BE32 as byte-invariant
2428              * big-endianness (because user-only code cannot tell the
2429              * difference), and so we need to use a data access endianness
2430              * that depends on SCTLR.B.
2431              */
2432             arm_sctlr_b(env) ||
2433 #endif
2434                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2435     }
2436 
2437     cur_el = arm_current_el(env);
2438 
2439     if (cur_el == 0) {
2440         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2441     }
2442 
2443     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2444 }
2445 
2446 #include "exec/cpu-all.h"
2447 
2448 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2449  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2450  * We put flags which are shared between 32 and 64 bit mode at the top
2451  * of the word, and flags which apply to only one mode at the bottom.
2452  */
2453 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2454 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2455 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2456 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2457 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2458 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2459 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2460 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2461 /* Target EL if we take a floating-point-disabled exception */
2462 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2463 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2464 
2465 /* Bit usage when in AArch32 state: */
2466 #define ARM_TBFLAG_THUMB_SHIFT      0
2467 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2468 #define ARM_TBFLAG_VECLEN_SHIFT     1
2469 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2470 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2471 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2472 #define ARM_TBFLAG_VFPEN_SHIFT      7
2473 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2474 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2475 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2476 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2477 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2478 /* We store the bottom two bits of the CPAR as TB flags and handle
2479  * checks on the other bits at runtime
2480  */
2481 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2482 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2483 /* Indicates whether cp register reads and writes by guest code should access
2484  * the secure or nonsecure bank of banked registers; note that this is not
2485  * the same thing as the current security state of the processor!
2486  */
2487 #define ARM_TBFLAG_NS_SHIFT         19
2488 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2489 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2490 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2491 /* For M profile only, Handler (ie not Thread) mode */
2492 #define ARM_TBFLAG_HANDLER_SHIFT    21
2493 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2494 
2495 /* Bit usage when in AArch64 state */
2496 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2497 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2498 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2499 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2500 
2501 /* some convenience accessor macros */
2502 #define ARM_TBFLAG_AARCH64_STATE(F) \
2503     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2504 #define ARM_TBFLAG_MMUIDX(F) \
2505     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2506 #define ARM_TBFLAG_SS_ACTIVE(F) \
2507     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2508 #define ARM_TBFLAG_PSTATE_SS(F) \
2509     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2510 #define ARM_TBFLAG_FPEXC_EL(F) \
2511     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2512 #define ARM_TBFLAG_THUMB(F) \
2513     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2514 #define ARM_TBFLAG_VECLEN(F) \
2515     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2516 #define ARM_TBFLAG_VECSTRIDE(F) \
2517     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2518 #define ARM_TBFLAG_VFPEN(F) \
2519     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2520 #define ARM_TBFLAG_CONDEXEC(F) \
2521     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2522 #define ARM_TBFLAG_SCTLR_B(F) \
2523     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2524 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2525     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2526 #define ARM_TBFLAG_NS(F) \
2527     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2528 #define ARM_TBFLAG_BE_DATA(F) \
2529     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2530 #define ARM_TBFLAG_HANDLER(F) \
2531     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2532 #define ARM_TBFLAG_TBI0(F) \
2533     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2534 #define ARM_TBFLAG_TBI1(F) \
2535     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2536 
2537 static inline bool bswap_code(bool sctlr_b)
2538 {
2539 #ifdef CONFIG_USER_ONLY
2540     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2541      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2542      * would also end up as a mixed-endian mode with BE code, LE data.
2543      */
2544     return
2545 #ifdef TARGET_WORDS_BIGENDIAN
2546         1 ^
2547 #endif
2548         sctlr_b;
2549 #else
2550     /* All code access in ARM is little endian, and there are no loaders
2551      * doing swaps that need to be reversed
2552      */
2553     return 0;
2554 #endif
2555 }
2556 
2557 /* Return the exception level to which FP-disabled exceptions should
2558  * be taken, or 0 if FP is enabled.
2559  */
2560 static inline int fp_exception_el(CPUARMState *env)
2561 {
2562     int fpen;
2563     int cur_el = arm_current_el(env);
2564 
2565     /* CPACR and the CPTR registers don't exist before v6, so FP is
2566      * always accessible
2567      */
2568     if (!arm_feature(env, ARM_FEATURE_V6)) {
2569         return 0;
2570     }
2571 
2572     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2573      * 0, 2 : trap EL0 and EL1/PL1 accesses
2574      * 1    : trap only EL0 accesses
2575      * 3    : trap no accesses
2576      */
2577     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2578     switch (fpen) {
2579     case 0:
2580     case 2:
2581         if (cur_el == 0 || cur_el == 1) {
2582             /* Trap to PL1, which might be EL1 or EL3 */
2583             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2584                 return 3;
2585             }
2586             return 1;
2587         }
2588         if (cur_el == 3 && !is_a64(env)) {
2589             /* Secure PL1 running at EL3 */
2590             return 3;
2591         }
2592         break;
2593     case 1:
2594         if (cur_el == 0) {
2595             return 1;
2596         }
2597         break;
2598     case 3:
2599         break;
2600     }
2601 
2602     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2603      * check because zero bits in the registers mean "don't trap".
2604      */
2605 
2606     /* CPTR_EL2 : present in v7VE or v8 */
2607     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2608         && !arm_is_secure_below_el3(env)) {
2609         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2610         return 2;
2611     }
2612 
2613     /* CPTR_EL3 : present in v8 */
2614     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2615         /* Trap all FP ops to EL3 */
2616         return 3;
2617     }
2618 
2619     return 0;
2620 }
2621 
2622 #ifdef CONFIG_USER_ONLY
2623 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2624 {
2625     return
2626 #ifdef TARGET_WORDS_BIGENDIAN
2627        1 ^
2628 #endif
2629        arm_cpu_data_is_big_endian(env);
2630 }
2631 #endif
2632 
2633 #ifndef CONFIG_USER_ONLY
2634 /**
2635  * arm_regime_tbi0:
2636  * @env: CPUARMState
2637  * @mmu_idx: MMU index indicating required translation regime
2638  *
2639  * Extracts the TBI0 value from the appropriate TCR for the current EL
2640  *
2641  * Returns: the TBI0 value.
2642  */
2643 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2644 
2645 /**
2646  * arm_regime_tbi1:
2647  * @env: CPUARMState
2648  * @mmu_idx: MMU index indicating required translation regime
2649  *
2650  * Extracts the TBI1 value from the appropriate TCR for the current EL
2651  *
2652  * Returns: the TBI1 value.
2653  */
2654 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2655 #else
2656 /* We can't handle tagged addresses properly in user-only mode */
2657 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2658 {
2659     return 0;
2660 }
2661 
2662 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2663 {
2664     return 0;
2665 }
2666 #endif
2667 
2668 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2669                                         target_ulong *cs_base, uint32_t *flags)
2670 {
2671     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2672     if (is_a64(env)) {
2673         *pc = env->pc;
2674         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2675         /* Get control bits for tagged addresses */
2676         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2677         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2678     } else {
2679         *pc = env->regs[15];
2680         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2681             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2682             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2683             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2684             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2685         if (!(access_secure_reg(env))) {
2686             *flags |= ARM_TBFLAG_NS_MASK;
2687         }
2688         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2689             || arm_el_is_aa64(env, 1)) {
2690             *flags |= ARM_TBFLAG_VFPEN_MASK;
2691         }
2692         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2693                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2694     }
2695 
2696     *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2697 
2698     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2699      * states defined in the ARM ARM for software singlestep:
2700      *  SS_ACTIVE   PSTATE.SS   State
2701      *     0            x       Inactive (the TB flag for SS is always 0)
2702      *     1            0       Active-pending
2703      *     1            1       Active-not-pending
2704      */
2705     if (arm_singlestep_active(env)) {
2706         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2707         if (is_a64(env)) {
2708             if (env->pstate & PSTATE_SS) {
2709                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2710             }
2711         } else {
2712             if (env->uncached_cpsr & PSTATE_SS) {
2713                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2714             }
2715         }
2716     }
2717     if (arm_cpu_data_is_big_endian(env)) {
2718         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2719     }
2720     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2721 
2722     if (arm_v7m_is_handler_mode(env)) {
2723         *flags |= ARM_TBFLAG_HANDLER_MASK;
2724     }
2725 
2726     *cs_base = 0;
2727 }
2728 
2729 enum {
2730     QEMU_PSCI_CONDUIT_DISABLED = 0,
2731     QEMU_PSCI_CONDUIT_SMC = 1,
2732     QEMU_PSCI_CONDUIT_HVC = 2,
2733 };
2734 
2735 #ifndef CONFIG_USER_ONLY
2736 /* Return the address space index to use for a memory access */
2737 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2738 {
2739     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2740 }
2741 
2742 /* Return the AddressSpace to use for a memory access
2743  * (which depends on whether the access is S or NS, and whether
2744  * the board gave us a separate AddressSpace for S accesses).
2745  */
2746 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2747 {
2748     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2749 }
2750 #endif
2751 
2752 /**
2753  * arm_register_el_change_hook:
2754  * Register a hook function which will be called back whenever this
2755  * CPU changes exception level or mode. The hook function will be
2756  * passed a pointer to the ARMCPU and the opaque data pointer passed
2757  * to this function when the hook was registered.
2758  *
2759  * Note that we currently only support registering a single hook function,
2760  * and will assert if this function is called twice.
2761  * This facility is intended for the use of the GICv3 emulation.
2762  */
2763 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2764                                  void *opaque);
2765 
2766 /**
2767  * arm_get_el_change_hook_opaque:
2768  * Return the opaque data that will be used by the el_change_hook
2769  * for this CPU.
2770  */
2771 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2772 {
2773     return cpu->el_change_hook_opaque;
2774 }
2775 
2776 #endif
2777