1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 26 #if defined(TARGET_AARCH64) 27 /* AArch64 definitions */ 28 # define TARGET_LONG_BITS 64 29 #else 30 # define TARGET_LONG_BITS 32 31 #endif 32 33 /* ARM processors have a weak memory model */ 34 #define TCG_GUEST_DEFAULT_MO (0) 35 36 #define CPUArchState struct CPUARMState 37 38 #include "qemu-common.h" 39 #include "cpu-qom.h" 40 #include "exec/cpu-defs.h" 41 42 #include "fpu/softfloat.h" 43 44 #define EXCP_UDEF 1 /* undefined instruction */ 45 #define EXCP_SWI 2 /* software interrupt */ 46 #define EXCP_PREFETCH_ABORT 3 47 #define EXCP_DATA_ABORT 4 48 #define EXCP_IRQ 5 49 #define EXCP_FIQ 6 50 #define EXCP_BKPT 7 51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 53 #define EXCP_HVC 11 /* HyperVisor Call */ 54 #define EXCP_HYP_TRAP 12 55 #define EXCP_SMC 13 /* Secure Monitor Call */ 56 #define EXCP_VIRQ 14 57 #define EXCP_VFIQ 15 58 #define EXCP_SEMIHOST 16 /* semihosting call */ 59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 62 63 #define ARMV7M_EXCP_RESET 1 64 #define ARMV7M_EXCP_NMI 2 65 #define ARMV7M_EXCP_HARD 3 66 #define ARMV7M_EXCP_MEM 4 67 #define ARMV7M_EXCP_BUS 5 68 #define ARMV7M_EXCP_USAGE 6 69 #define ARMV7M_EXCP_SECURE 7 70 #define ARMV7M_EXCP_SVC 11 71 #define ARMV7M_EXCP_DEBUG 12 72 #define ARMV7M_EXCP_PENDSV 14 73 #define ARMV7M_EXCP_SYSTICK 15 74 75 /* For M profile, some registers are banked secure vs non-secure; 76 * these are represented as a 2-element array where the first element 77 * is the non-secure copy and the second is the secure copy. 78 * When the CPU does not have implement the security extension then 79 * only the first element is used. 80 * This means that the copy for the current security state can be 81 * accessed via env->registerfield[env->v7m.secure] (whether the security 82 * extension is implemented or not). 83 */ 84 enum { 85 M_REG_NS = 0, 86 M_REG_S = 1, 87 M_REG_NUM_BANKS = 2, 88 }; 89 90 /* ARM-specific interrupt pending bits. */ 91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 94 95 /* The usual mapping for an AArch64 system register to its AArch32 96 * counterpart is for the 32 bit world to have access to the lower 97 * half only (with writes leaving the upper half untouched). It's 98 * therefore useful to be able to pass TCG the offset of the least 99 * significant half of a uint64_t struct member. 100 */ 101 #ifdef HOST_WORDS_BIGENDIAN 102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #define offsetofhigh32(S, M) offsetof(S, M) 104 #else 105 #define offsetoflow32(S, M) offsetof(S, M) 106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 107 #endif 108 109 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 110 #define ARM_CPU_IRQ 0 111 #define ARM_CPU_FIQ 1 112 #define ARM_CPU_VIRQ 2 113 #define ARM_CPU_VFIQ 3 114 115 #define NB_MMU_MODES 7 116 /* ARM-specific extra insn start words: 117 * 1: Conditional execution bits 118 * 2: Partial exception syndrome for data aborts 119 */ 120 #define TARGET_INSN_START_EXTRA_WORDS 2 121 122 /* The 2nd extra word holding syndrome info for data aborts does not use 123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 124 * help the sleb128 encoder do a better job. 125 * When restoring the CPU state, we shift it back up. 126 */ 127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 128 #define ARM_INSN_START_WORD2_SHIFT 14 129 130 /* We currently assume float and double are IEEE single and double 131 precision respectively. 132 Doing runtime conversions is tricky because VFP registers may contain 133 integer values (eg. as the result of a FTOSI instruction). 134 s<2n> maps to the least significant half of d<n> 135 s<2n+1> maps to the most significant half of d<n> 136 */ 137 138 /* CPU state for each instance of a generic timer (in cp15 c14) */ 139 typedef struct ARMGenericTimer { 140 uint64_t cval; /* Timer CompareValue register */ 141 uint64_t ctl; /* Timer Control register */ 142 } ARMGenericTimer; 143 144 #define GTIMER_PHYS 0 145 #define GTIMER_VIRT 1 146 #define GTIMER_HYP 2 147 #define GTIMER_SEC 3 148 #define NUM_GTIMERS 4 149 150 typedef struct { 151 uint64_t raw_tcr; 152 uint32_t mask; 153 uint32_t base_mask; 154 } TCR; 155 156 typedef struct CPUARMState { 157 /* Regs for current mode. */ 158 uint32_t regs[16]; 159 160 /* 32/64 switch only happens when taking and returning from 161 * exceptions so the overlap semantics are taken care of then 162 * instead of having a complicated union. 163 */ 164 /* Regs for A64 mode. */ 165 uint64_t xregs[32]; 166 uint64_t pc; 167 /* PSTATE isn't an architectural register for ARMv8. However, it is 168 * convenient for us to assemble the underlying state into a 32 bit format 169 * identical to the architectural format used for the SPSR. (This is also 170 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 171 * 'pstate' register are.) Of the PSTATE bits: 172 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 173 * semantics as for AArch32, as described in the comments on each field) 174 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 175 * DAIF (exception masks) are kept in env->daif 176 * all other bits are stored in their correct places in env->pstate 177 */ 178 uint32_t pstate; 179 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 180 181 /* Frequently accessed CPSR bits are stored separately for efficiency. 182 This contains all the other bits. Use cpsr_{read,write} to access 183 the whole CPSR. */ 184 uint32_t uncached_cpsr; 185 uint32_t spsr; 186 187 /* Banked registers. */ 188 uint64_t banked_spsr[8]; 189 uint32_t banked_r13[8]; 190 uint32_t banked_r14[8]; 191 192 /* These hold r8-r12. */ 193 uint32_t usr_regs[5]; 194 uint32_t fiq_regs[5]; 195 196 /* cpsr flag cache for faster execution */ 197 uint32_t CF; /* 0 or 1 */ 198 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 199 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 200 uint32_t ZF; /* Z set if zero. */ 201 uint32_t QF; /* 0 or 1 */ 202 uint32_t GE; /* cpsr[19:16] */ 203 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 204 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 205 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 206 207 uint64_t elr_el[4]; /* AArch64 exception link regs */ 208 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 209 210 /* System control coprocessor (cp15) */ 211 struct { 212 uint32_t c0_cpuid; 213 union { /* Cache size selection */ 214 struct { 215 uint64_t _unused_csselr0; 216 uint64_t csselr_ns; 217 uint64_t _unused_csselr1; 218 uint64_t csselr_s; 219 }; 220 uint64_t csselr_el[4]; 221 }; 222 union { /* System control register. */ 223 struct { 224 uint64_t _unused_sctlr; 225 uint64_t sctlr_ns; 226 uint64_t hsctlr; 227 uint64_t sctlr_s; 228 }; 229 uint64_t sctlr_el[4]; 230 }; 231 uint64_t cpacr_el1; /* Architectural feature access control register */ 232 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 233 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 234 uint64_t sder; /* Secure debug enable register. */ 235 uint32_t nsacr; /* Non-secure access control register. */ 236 union { /* MMU translation table base 0. */ 237 struct { 238 uint64_t _unused_ttbr0_0; 239 uint64_t ttbr0_ns; 240 uint64_t _unused_ttbr0_1; 241 uint64_t ttbr0_s; 242 }; 243 uint64_t ttbr0_el[4]; 244 }; 245 union { /* MMU translation table base 1. */ 246 struct { 247 uint64_t _unused_ttbr1_0; 248 uint64_t ttbr1_ns; 249 uint64_t _unused_ttbr1_1; 250 uint64_t ttbr1_s; 251 }; 252 uint64_t ttbr1_el[4]; 253 }; 254 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 255 /* MMU translation table base control. */ 256 TCR tcr_el[4]; 257 TCR vtcr_el2; /* Virtualization Translation Control. */ 258 uint32_t c2_data; /* MPU data cacheable bits. */ 259 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 260 union { /* MMU domain access control register 261 * MPU write buffer control. 262 */ 263 struct { 264 uint64_t dacr_ns; 265 uint64_t dacr_s; 266 }; 267 struct { 268 uint64_t dacr32_el2; 269 }; 270 }; 271 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 272 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 273 uint64_t hcr_el2; /* Hypervisor configuration register */ 274 uint64_t scr_el3; /* Secure configuration register. */ 275 union { /* Fault status registers. */ 276 struct { 277 uint64_t ifsr_ns; 278 uint64_t ifsr_s; 279 }; 280 struct { 281 uint64_t ifsr32_el2; 282 }; 283 }; 284 union { 285 struct { 286 uint64_t _unused_dfsr; 287 uint64_t dfsr_ns; 288 uint64_t hsr; 289 uint64_t dfsr_s; 290 }; 291 uint64_t esr_el[4]; 292 }; 293 uint32_t c6_region[8]; /* MPU base/size registers. */ 294 union { /* Fault address registers. */ 295 struct { 296 uint64_t _unused_far0; 297 #ifdef HOST_WORDS_BIGENDIAN 298 uint32_t ifar_ns; 299 uint32_t dfar_ns; 300 uint32_t ifar_s; 301 uint32_t dfar_s; 302 #else 303 uint32_t dfar_ns; 304 uint32_t ifar_ns; 305 uint32_t dfar_s; 306 uint32_t ifar_s; 307 #endif 308 uint64_t _unused_far3; 309 }; 310 uint64_t far_el[4]; 311 }; 312 uint64_t hpfar_el2; 313 uint64_t hstr_el2; 314 union { /* Translation result. */ 315 struct { 316 uint64_t _unused_par_0; 317 uint64_t par_ns; 318 uint64_t _unused_par_1; 319 uint64_t par_s; 320 }; 321 uint64_t par_el[4]; 322 }; 323 324 uint32_t c9_insn; /* Cache lockdown registers. */ 325 uint32_t c9_data; 326 uint64_t c9_pmcr; /* performance monitor control register */ 327 uint64_t c9_pmcnten; /* perf monitor counter enables */ 328 uint32_t c9_pmovsr; /* perf monitor overflow status */ 329 uint32_t c9_pmuserenr; /* perf monitor user enable */ 330 uint64_t c9_pmselr; /* perf monitor counter selection register */ 331 uint64_t c9_pminten; /* perf monitor interrupt enables */ 332 union { /* Memory attribute redirection */ 333 struct { 334 #ifdef HOST_WORDS_BIGENDIAN 335 uint64_t _unused_mair_0; 336 uint32_t mair1_ns; 337 uint32_t mair0_ns; 338 uint64_t _unused_mair_1; 339 uint32_t mair1_s; 340 uint32_t mair0_s; 341 #else 342 uint64_t _unused_mair_0; 343 uint32_t mair0_ns; 344 uint32_t mair1_ns; 345 uint64_t _unused_mair_1; 346 uint32_t mair0_s; 347 uint32_t mair1_s; 348 #endif 349 }; 350 uint64_t mair_el[4]; 351 }; 352 union { /* vector base address register */ 353 struct { 354 uint64_t _unused_vbar; 355 uint64_t vbar_ns; 356 uint64_t hvbar; 357 uint64_t vbar_s; 358 }; 359 uint64_t vbar_el[4]; 360 }; 361 uint32_t mvbar; /* (monitor) vector base address register */ 362 struct { /* FCSE PID. */ 363 uint32_t fcseidr_ns; 364 uint32_t fcseidr_s; 365 }; 366 union { /* Context ID. */ 367 struct { 368 uint64_t _unused_contextidr_0; 369 uint64_t contextidr_ns; 370 uint64_t _unused_contextidr_1; 371 uint64_t contextidr_s; 372 }; 373 uint64_t contextidr_el[4]; 374 }; 375 union { /* User RW Thread register. */ 376 struct { 377 uint64_t tpidrurw_ns; 378 uint64_t tpidrprw_ns; 379 uint64_t htpidr; 380 uint64_t _tpidr_el3; 381 }; 382 uint64_t tpidr_el[4]; 383 }; 384 /* The secure banks of these registers don't map anywhere */ 385 uint64_t tpidrurw_s; 386 uint64_t tpidrprw_s; 387 uint64_t tpidruro_s; 388 389 union { /* User RO Thread register. */ 390 uint64_t tpidruro_ns; 391 uint64_t tpidrro_el[1]; 392 }; 393 uint64_t c14_cntfrq; /* Counter Frequency register */ 394 uint64_t c14_cntkctl; /* Timer Control register */ 395 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 396 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 397 ARMGenericTimer c14_timer[NUM_GTIMERS]; 398 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 399 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 400 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 401 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 402 uint32_t c15_threadid; /* TI debugger thread-ID. */ 403 uint32_t c15_config_base_address; /* SCU base address. */ 404 uint32_t c15_diagnostic; /* diagnostic register */ 405 uint32_t c15_power_diagnostic; 406 uint32_t c15_power_control; /* power control */ 407 uint64_t dbgbvr[16]; /* breakpoint value registers */ 408 uint64_t dbgbcr[16]; /* breakpoint control registers */ 409 uint64_t dbgwvr[16]; /* watchpoint value registers */ 410 uint64_t dbgwcr[16]; /* watchpoint control registers */ 411 uint64_t mdscr_el1; 412 uint64_t oslsr_el1; /* OS Lock Status */ 413 uint64_t mdcr_el2; 414 uint64_t mdcr_el3; 415 /* If the counter is enabled, this stores the last time the counter 416 * was reset. Otherwise it stores the counter value 417 */ 418 uint64_t c15_ccnt; 419 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 420 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 421 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 422 } cp15; 423 424 struct { 425 /* M profile has up to 4 stack pointers: 426 * a Main Stack Pointer and a Process Stack Pointer for each 427 * of the Secure and Non-Secure states. (If the CPU doesn't support 428 * the security extension then it has only two SPs.) 429 * In QEMU we always store the currently active SP in regs[13], 430 * and the non-active SP for the current security state in 431 * v7m.other_sp. The stack pointers for the inactive security state 432 * are stored in other_ss_msp and other_ss_psp. 433 * switch_v7m_security_state() is responsible for rearranging them 434 * when we change security state. 435 */ 436 uint32_t other_sp; 437 uint32_t other_ss_msp; 438 uint32_t other_ss_psp; 439 uint32_t vecbase[M_REG_NUM_BANKS]; 440 uint32_t basepri[M_REG_NUM_BANKS]; 441 uint32_t control[M_REG_NUM_BANKS]; 442 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 443 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 444 uint32_t hfsr; /* HardFault Status */ 445 uint32_t dfsr; /* Debug Fault Status Register */ 446 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 447 uint32_t bfar; /* BusFault Address */ 448 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 449 int exception; 450 uint32_t primask[M_REG_NUM_BANKS]; 451 uint32_t faultmask[M_REG_NUM_BANKS]; 452 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 453 } v7m; 454 455 /* Information associated with an exception about to be taken: 456 * code which raises an exception must set cs->exception_index and 457 * the relevant parts of this structure; the cpu_do_interrupt function 458 * will then set the guest-visible registers as part of the exception 459 * entry process. 460 */ 461 struct { 462 uint32_t syndrome; /* AArch64 format syndrome register */ 463 uint32_t fsr; /* AArch32 format fault status register info */ 464 uint64_t vaddress; /* virtual addr associated with exception, if any */ 465 uint32_t target_el; /* EL the exception should be targeted for */ 466 /* If we implement EL2 we will also need to store information 467 * about the intermediate physical address for stage 2 faults. 468 */ 469 } exception; 470 471 /* Thumb-2 EE state. */ 472 uint32_t teecr; 473 uint32_t teehbr; 474 475 /* VFP coprocessor state. */ 476 struct { 477 /* VFP/Neon register state. Note that the mapping between S, D and Q 478 * views of the register bank differs between AArch64 and AArch32: 479 * In AArch32: 480 * Qn = regs[2n+1]:regs[2n] 481 * Dn = regs[n] 482 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n 483 * (and regs[32] to regs[63] are inaccessible) 484 * In AArch64: 485 * Qn = regs[2n+1]:regs[2n] 486 * Dn = regs[2n] 487 * Sn = regs[2n] bits 31..0 488 * This corresponds to the architecturally defined mapping between 489 * the two execution states, and means we do not need to explicitly 490 * map these registers when changing states. 491 */ 492 float64 regs[64]; 493 494 uint32_t xregs[16]; 495 /* We store these fpcsr fields separately for convenience. */ 496 int vec_len; 497 int vec_stride; 498 499 /* scratch space when Tn are not sufficient. */ 500 uint32_t scratch[8]; 501 502 /* fp_status is the "normal" fp status. standard_fp_status retains 503 * values corresponding to the ARM "Standard FPSCR Value", ie 504 * default-NaN, flush-to-zero, round-to-nearest and is used by 505 * any operations (generally Neon) which the architecture defines 506 * as controlled by the standard FPSCR value rather than the FPSCR. 507 * 508 * To avoid having to transfer exception bits around, we simply 509 * say that the FPSCR cumulative exception flags are the logical 510 * OR of the flags in the two fp statuses. This relies on the 511 * only thing which needs to read the exception flags being 512 * an explicit FPSCR read. 513 */ 514 float_status fp_status; 515 float_status standard_fp_status; 516 } vfp; 517 uint64_t exclusive_addr; 518 uint64_t exclusive_val; 519 uint64_t exclusive_high; 520 521 /* iwMMXt coprocessor state. */ 522 struct { 523 uint64_t regs[16]; 524 uint64_t val; 525 526 uint32_t cregs[16]; 527 } iwmmxt; 528 529 #if defined(CONFIG_USER_ONLY) 530 /* For usermode syscall translation. */ 531 int eabi; 532 #endif 533 534 struct CPUBreakpoint *cpu_breakpoint[16]; 535 struct CPUWatchpoint *cpu_watchpoint[16]; 536 537 /* Fields up to this point are cleared by a CPU reset */ 538 struct {} end_reset_fields; 539 540 CPU_COMMON 541 542 /* Fields after CPU_COMMON are preserved across CPU reset. */ 543 544 /* Internal CPU feature flags. */ 545 uint64_t features; 546 547 /* PMSAv7 MPU */ 548 struct { 549 uint32_t *drbar; 550 uint32_t *drsr; 551 uint32_t *dracr; 552 uint32_t rnr[M_REG_NUM_BANKS]; 553 } pmsav7; 554 555 /* PMSAv8 MPU */ 556 struct { 557 /* The PMSAv8 implementation also shares some PMSAv7 config 558 * and state: 559 * pmsav7.rnr (region number register) 560 * pmsav7_dregion (number of configured regions) 561 */ 562 uint32_t *rbar[M_REG_NUM_BANKS]; 563 uint32_t *rlar[M_REG_NUM_BANKS]; 564 uint32_t mair0[M_REG_NUM_BANKS]; 565 uint32_t mair1[M_REG_NUM_BANKS]; 566 } pmsav8; 567 568 void *nvic; 569 const struct arm_boot_info *boot_info; 570 /* Store GICv3CPUState to access from this struct */ 571 void *gicv3state; 572 } CPUARMState; 573 574 /** 575 * ARMELChangeHook: 576 * type of a function which can be registered via arm_register_el_change_hook() 577 * to get callbacks when the CPU changes its exception level or mode. 578 */ 579 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque); 580 581 582 /* These values map onto the return values for 583 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 584 typedef enum ARMPSCIState { 585 PSCI_ON = 0, 586 PSCI_OFF = 1, 587 PSCI_ON_PENDING = 2 588 } ARMPSCIState; 589 590 /** 591 * ARMCPU: 592 * @env: #CPUARMState 593 * 594 * An ARM CPU core. 595 */ 596 struct ARMCPU { 597 /*< private >*/ 598 CPUState parent_obj; 599 /*< public >*/ 600 601 CPUARMState env; 602 603 /* Coprocessor information */ 604 GHashTable *cp_regs; 605 /* For marshalling (mostly coprocessor) register state between the 606 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 607 * we use these arrays. 608 */ 609 /* List of register indexes managed via these arrays; (full KVM style 610 * 64 bit indexes, not CPRegInfo 32 bit indexes) 611 */ 612 uint64_t *cpreg_indexes; 613 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 614 uint64_t *cpreg_values; 615 /* Length of the indexes, values, reset_values arrays */ 616 int32_t cpreg_array_len; 617 /* These are used only for migration: incoming data arrives in 618 * these fields and is sanity checked in post_load before copying 619 * to the working data structures above. 620 */ 621 uint64_t *cpreg_vmstate_indexes; 622 uint64_t *cpreg_vmstate_values; 623 int32_t cpreg_vmstate_array_len; 624 625 /* Timers used by the generic (architected) timer */ 626 QEMUTimer *gt_timer[NUM_GTIMERS]; 627 /* GPIO outputs for generic timer */ 628 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 629 /* GPIO output for GICv3 maintenance interrupt signal */ 630 qemu_irq gicv3_maintenance_interrupt; 631 /* GPIO output for the PMU interrupt */ 632 qemu_irq pmu_interrupt; 633 634 /* MemoryRegion to use for secure physical accesses */ 635 MemoryRegion *secure_memory; 636 637 /* 'compatible' string for this CPU for Linux device trees */ 638 const char *dtb_compatible; 639 640 /* PSCI version for this CPU 641 * Bits[31:16] = Major Version 642 * Bits[15:0] = Minor Version 643 */ 644 uint32_t psci_version; 645 646 /* Should CPU start in PSCI powered-off state? */ 647 bool start_powered_off; 648 649 /* Current power state, access guarded by BQL */ 650 ARMPSCIState power_state; 651 652 /* CPU has virtualization extension */ 653 bool has_el2; 654 /* CPU has security extension */ 655 bool has_el3; 656 /* CPU has PMU (Performance Monitor Unit) */ 657 bool has_pmu; 658 659 /* CPU has memory protection unit */ 660 bool has_mpu; 661 /* PMSAv7 MPU number of supported regions */ 662 uint32_t pmsav7_dregion; 663 664 /* PSCI conduit used to invoke PSCI methods 665 * 0 - disabled, 1 - smc, 2 - hvc 666 */ 667 uint32_t psci_conduit; 668 669 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 670 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 671 */ 672 uint32_t kvm_target; 673 674 /* KVM init features for this CPU */ 675 uint32_t kvm_init_features[7]; 676 677 /* Uniprocessor system with MP extensions */ 678 bool mp_is_up; 679 680 /* The instance init functions for implementation-specific subclasses 681 * set these fields to specify the implementation-dependent values of 682 * various constant registers and reset values of non-constant 683 * registers. 684 * Some of these might become QOM properties eventually. 685 * Field names match the official register names as defined in the 686 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 687 * is used for reset values of non-constant registers; no reset_ 688 * prefix means a constant register. 689 */ 690 uint32_t midr; 691 uint32_t revidr; 692 uint32_t reset_fpsid; 693 uint32_t mvfr0; 694 uint32_t mvfr1; 695 uint32_t mvfr2; 696 uint32_t ctr; 697 uint32_t reset_sctlr; 698 uint32_t id_pfr0; 699 uint32_t id_pfr1; 700 uint32_t id_dfr0; 701 uint32_t pmceid0; 702 uint32_t pmceid1; 703 uint32_t id_afr0; 704 uint32_t id_mmfr0; 705 uint32_t id_mmfr1; 706 uint32_t id_mmfr2; 707 uint32_t id_mmfr3; 708 uint32_t id_mmfr4; 709 uint32_t id_isar0; 710 uint32_t id_isar1; 711 uint32_t id_isar2; 712 uint32_t id_isar3; 713 uint32_t id_isar4; 714 uint32_t id_isar5; 715 uint64_t id_aa64pfr0; 716 uint64_t id_aa64pfr1; 717 uint64_t id_aa64dfr0; 718 uint64_t id_aa64dfr1; 719 uint64_t id_aa64afr0; 720 uint64_t id_aa64afr1; 721 uint64_t id_aa64isar0; 722 uint64_t id_aa64isar1; 723 uint64_t id_aa64mmfr0; 724 uint64_t id_aa64mmfr1; 725 uint32_t dbgdidr; 726 uint32_t clidr; 727 uint64_t mp_affinity; /* MP ID without feature bits */ 728 /* The elements of this array are the CCSIDR values for each cache, 729 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 730 */ 731 uint32_t ccsidr[16]; 732 uint64_t reset_cbar; 733 uint32_t reset_auxcr; 734 bool reset_hivecs; 735 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 736 uint32_t dcz_blocksize; 737 uint64_t rvbar; 738 739 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 740 int gic_num_lrs; /* number of list registers */ 741 int gic_vpribits; /* number of virtual priority bits */ 742 int gic_vprebits; /* number of virtual preemption bits */ 743 744 /* Whether the cfgend input is high (i.e. this CPU should reset into 745 * big-endian mode). This setting isn't used directly: instead it modifies 746 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 747 * architecture version. 748 */ 749 bool cfgend; 750 751 ARMELChangeHook *el_change_hook; 752 void *el_change_hook_opaque; 753 754 int32_t node_id; /* NUMA node this CPU belongs to */ 755 756 /* Used to synchronize KVM and QEMU in-kernel device levels */ 757 uint8_t device_irq_level; 758 }; 759 760 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) 761 { 762 return container_of(env, ARMCPU, env); 763 } 764 765 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 766 767 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) 768 769 #define ENV_OFFSET offsetof(ARMCPU, env) 770 771 #ifndef CONFIG_USER_ONLY 772 extern const struct VMStateDescription vmstate_arm_cpu; 773 #endif 774 775 void arm_cpu_do_interrupt(CPUState *cpu); 776 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 777 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 778 779 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, 780 int flags); 781 782 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 783 MemTxAttrs *attrs); 784 785 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 786 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 787 788 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 789 int cpuid, void *opaque); 790 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 791 int cpuid, void *opaque); 792 793 #ifdef TARGET_AARCH64 794 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 795 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 796 #endif 797 798 target_ulong do_arm_semihosting(CPUARMState *env); 799 void aarch64_sync_32_to_64(CPUARMState *env); 800 void aarch64_sync_64_to_32(CPUARMState *env); 801 802 static inline bool is_a64(CPUARMState *env) 803 { 804 return env->aarch64; 805 } 806 807 /* you can call this signal handler from your SIGBUS and SIGSEGV 808 signal handlers to inform the virtual CPU of exceptions. non zero 809 is returned if the signal was handled by the virtual CPU. */ 810 int cpu_arm_signal_handler(int host_signum, void *pinfo, 811 void *puc); 812 813 /** 814 * pmccntr_sync 815 * @env: CPUARMState 816 * 817 * Synchronises the counter in the PMCCNTR. This must always be called twice, 818 * once before any action that might affect the timer and again afterwards. 819 * The function is used to swap the state of the register if required. 820 * This only happens when not in user mode (!CONFIG_USER_ONLY) 821 */ 822 void pmccntr_sync(CPUARMState *env); 823 824 /* SCTLR bit meanings. Several bits have been reused in newer 825 * versions of the architecture; in that case we define constants 826 * for both old and new bit meanings. Code which tests against those 827 * bits should probably check or otherwise arrange that the CPU 828 * is the architectural version it expects. 829 */ 830 #define SCTLR_M (1U << 0) 831 #define SCTLR_A (1U << 1) 832 #define SCTLR_C (1U << 2) 833 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 834 #define SCTLR_SA (1U << 3) 835 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 836 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 837 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 838 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 839 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 840 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 841 #define SCTLR_ITD (1U << 7) /* v8 onward */ 842 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 843 #define SCTLR_SED (1U << 8) /* v8 onward */ 844 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 845 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 846 #define SCTLR_F (1U << 10) /* up to v6 */ 847 #define SCTLR_SW (1U << 10) /* v7 onward */ 848 #define SCTLR_Z (1U << 11) 849 #define SCTLR_I (1U << 12) 850 #define SCTLR_V (1U << 13) 851 #define SCTLR_RR (1U << 14) /* up to v7 */ 852 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 853 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 854 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 855 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 856 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 857 #define SCTLR_HA (1U << 17) 858 #define SCTLR_BR (1U << 17) /* PMSA only */ 859 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 860 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 861 #define SCTLR_WXN (1U << 19) 862 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 863 #define SCTLR_UWXN (1U << 20) /* v7 onward */ 864 #define SCTLR_FI (1U << 21) 865 #define SCTLR_U (1U << 22) 866 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 867 #define SCTLR_VE (1U << 24) /* up to v7 */ 868 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 869 #define SCTLR_EE (1U << 25) 870 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 871 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 872 #define SCTLR_NMFI (1U << 27) 873 #define SCTLR_TRE (1U << 28) 874 #define SCTLR_AFE (1U << 29) 875 #define SCTLR_TE (1U << 30) 876 877 #define CPTR_TCPAC (1U << 31) 878 #define CPTR_TTA (1U << 20) 879 #define CPTR_TFP (1U << 10) 880 881 #define MDCR_EPMAD (1U << 21) 882 #define MDCR_EDAD (1U << 20) 883 #define MDCR_SPME (1U << 17) 884 #define MDCR_SDD (1U << 16) 885 #define MDCR_SPD (3U << 14) 886 #define MDCR_TDRA (1U << 11) 887 #define MDCR_TDOSA (1U << 10) 888 #define MDCR_TDA (1U << 9) 889 #define MDCR_TDE (1U << 8) 890 #define MDCR_HPME (1U << 7) 891 #define MDCR_TPM (1U << 6) 892 #define MDCR_TPMCR (1U << 5) 893 894 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 895 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 896 897 #define CPSR_M (0x1fU) 898 #define CPSR_T (1U << 5) 899 #define CPSR_F (1U << 6) 900 #define CPSR_I (1U << 7) 901 #define CPSR_A (1U << 8) 902 #define CPSR_E (1U << 9) 903 #define CPSR_IT_2_7 (0xfc00U) 904 #define CPSR_GE (0xfU << 16) 905 #define CPSR_IL (1U << 20) 906 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 907 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 908 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 909 * where it is live state but not accessible to the AArch32 code. 910 */ 911 #define CPSR_RESERVED (0x7U << 21) 912 #define CPSR_J (1U << 24) 913 #define CPSR_IT_0_1 (3U << 25) 914 #define CPSR_Q (1U << 27) 915 #define CPSR_V (1U << 28) 916 #define CPSR_C (1U << 29) 917 #define CPSR_Z (1U << 30) 918 #define CPSR_N (1U << 31) 919 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 920 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 921 922 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 923 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 924 | CPSR_NZCV) 925 /* Bits writable in user mode. */ 926 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 927 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 928 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 929 /* Mask of bits which may be set by exception return copying them from SPSR */ 930 #define CPSR_ERET_MASK (~CPSR_RESERVED) 931 932 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 933 #define XPSR_EXCP 0x1ffU 934 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 935 #define XPSR_IT_2_7 CPSR_IT_2_7 936 #define XPSR_GE CPSR_GE 937 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 938 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 939 #define XPSR_IT_0_1 CPSR_IT_0_1 940 #define XPSR_Q CPSR_Q 941 #define XPSR_V CPSR_V 942 #define XPSR_C CPSR_C 943 #define XPSR_Z CPSR_Z 944 #define XPSR_N CPSR_N 945 #define XPSR_NZCV CPSR_NZCV 946 #define XPSR_IT CPSR_IT 947 948 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 949 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 950 #define TTBCR_PD0 (1U << 4) 951 #define TTBCR_PD1 (1U << 5) 952 #define TTBCR_EPD0 (1U << 7) 953 #define TTBCR_IRGN0 (3U << 8) 954 #define TTBCR_ORGN0 (3U << 10) 955 #define TTBCR_SH0 (3U << 12) 956 #define TTBCR_T1SZ (3U << 16) 957 #define TTBCR_A1 (1U << 22) 958 #define TTBCR_EPD1 (1U << 23) 959 #define TTBCR_IRGN1 (3U << 24) 960 #define TTBCR_ORGN1 (3U << 26) 961 #define TTBCR_SH1 (1U << 28) 962 #define TTBCR_EAE (1U << 31) 963 964 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 965 * Only these are valid when in AArch64 mode; in 966 * AArch32 mode SPSRs are basically CPSR-format. 967 */ 968 #define PSTATE_SP (1U) 969 #define PSTATE_M (0xFU) 970 #define PSTATE_nRW (1U << 4) 971 #define PSTATE_F (1U << 6) 972 #define PSTATE_I (1U << 7) 973 #define PSTATE_A (1U << 8) 974 #define PSTATE_D (1U << 9) 975 #define PSTATE_IL (1U << 20) 976 #define PSTATE_SS (1U << 21) 977 #define PSTATE_V (1U << 28) 978 #define PSTATE_C (1U << 29) 979 #define PSTATE_Z (1U << 30) 980 #define PSTATE_N (1U << 31) 981 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 982 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 983 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) 984 /* Mode values for AArch64 */ 985 #define PSTATE_MODE_EL3h 13 986 #define PSTATE_MODE_EL3t 12 987 #define PSTATE_MODE_EL2h 9 988 #define PSTATE_MODE_EL2t 8 989 #define PSTATE_MODE_EL1h 5 990 #define PSTATE_MODE_EL1t 4 991 #define PSTATE_MODE_EL0t 0 992 993 /* Map EL and handler into a PSTATE_MODE. */ 994 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 995 { 996 return (el << 2) | handler; 997 } 998 999 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1000 * interprocessing, so we don't attempt to sync with the cpsr state used by 1001 * the 32 bit decoder. 1002 */ 1003 static inline uint32_t pstate_read(CPUARMState *env) 1004 { 1005 int ZF; 1006 1007 ZF = (env->ZF == 0); 1008 return (env->NF & 0x80000000) | (ZF << 30) 1009 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1010 | env->pstate | env->daif; 1011 } 1012 1013 static inline void pstate_write(CPUARMState *env, uint32_t val) 1014 { 1015 env->ZF = (~val) & PSTATE_Z; 1016 env->NF = val; 1017 env->CF = (val >> 29) & 1; 1018 env->VF = (val << 3) & 0x80000000; 1019 env->daif = val & PSTATE_DAIF; 1020 env->pstate = val & ~CACHED_PSTATE_BITS; 1021 } 1022 1023 /* Return the current CPSR value. */ 1024 uint32_t cpsr_read(CPUARMState *env); 1025 1026 typedef enum CPSRWriteType { 1027 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1028 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1029 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1030 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1031 } CPSRWriteType; 1032 1033 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1034 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1035 CPSRWriteType write_type); 1036 1037 /* Return the current xPSR value. */ 1038 static inline uint32_t xpsr_read(CPUARMState *env) 1039 { 1040 int ZF; 1041 ZF = (env->ZF == 0); 1042 return (env->NF & 0x80000000) | (ZF << 30) 1043 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1044 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1045 | ((env->condexec_bits & 0xfc) << 8) 1046 | env->v7m.exception; 1047 } 1048 1049 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1050 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1051 { 1052 if (mask & XPSR_NZCV) { 1053 env->ZF = (~val) & XPSR_Z; 1054 env->NF = val; 1055 env->CF = (val >> 29) & 1; 1056 env->VF = (val << 3) & 0x80000000; 1057 } 1058 if (mask & XPSR_Q) { 1059 env->QF = ((val & XPSR_Q) != 0); 1060 } 1061 if (mask & XPSR_T) { 1062 env->thumb = ((val & XPSR_T) != 0); 1063 } 1064 if (mask & XPSR_IT_0_1) { 1065 env->condexec_bits &= ~3; 1066 env->condexec_bits |= (val >> 25) & 3; 1067 } 1068 if (mask & XPSR_IT_2_7) { 1069 env->condexec_bits &= 3; 1070 env->condexec_bits |= (val >> 8) & 0xfc; 1071 } 1072 if (mask & XPSR_EXCP) { 1073 env->v7m.exception = val & XPSR_EXCP; 1074 } 1075 } 1076 1077 #define HCR_VM (1ULL << 0) 1078 #define HCR_SWIO (1ULL << 1) 1079 #define HCR_PTW (1ULL << 2) 1080 #define HCR_FMO (1ULL << 3) 1081 #define HCR_IMO (1ULL << 4) 1082 #define HCR_AMO (1ULL << 5) 1083 #define HCR_VF (1ULL << 6) 1084 #define HCR_VI (1ULL << 7) 1085 #define HCR_VSE (1ULL << 8) 1086 #define HCR_FB (1ULL << 9) 1087 #define HCR_BSU_MASK (3ULL << 10) 1088 #define HCR_DC (1ULL << 12) 1089 #define HCR_TWI (1ULL << 13) 1090 #define HCR_TWE (1ULL << 14) 1091 #define HCR_TID0 (1ULL << 15) 1092 #define HCR_TID1 (1ULL << 16) 1093 #define HCR_TID2 (1ULL << 17) 1094 #define HCR_TID3 (1ULL << 18) 1095 #define HCR_TSC (1ULL << 19) 1096 #define HCR_TIDCP (1ULL << 20) 1097 #define HCR_TACR (1ULL << 21) 1098 #define HCR_TSW (1ULL << 22) 1099 #define HCR_TPC (1ULL << 23) 1100 #define HCR_TPU (1ULL << 24) 1101 #define HCR_TTLB (1ULL << 25) 1102 #define HCR_TVM (1ULL << 26) 1103 #define HCR_TGE (1ULL << 27) 1104 #define HCR_TDZ (1ULL << 28) 1105 #define HCR_HCD (1ULL << 29) 1106 #define HCR_TRVM (1ULL << 30) 1107 #define HCR_RW (1ULL << 31) 1108 #define HCR_CD (1ULL << 32) 1109 #define HCR_ID (1ULL << 33) 1110 #define HCR_MASK ((1ULL << 34) - 1) 1111 1112 #define SCR_NS (1U << 0) 1113 #define SCR_IRQ (1U << 1) 1114 #define SCR_FIQ (1U << 2) 1115 #define SCR_EA (1U << 3) 1116 #define SCR_FW (1U << 4) 1117 #define SCR_AW (1U << 5) 1118 #define SCR_NET (1U << 6) 1119 #define SCR_SMD (1U << 7) 1120 #define SCR_HCE (1U << 8) 1121 #define SCR_SIF (1U << 9) 1122 #define SCR_RW (1U << 10) 1123 #define SCR_ST (1U << 11) 1124 #define SCR_TWI (1U << 12) 1125 #define SCR_TWE (1U << 13) 1126 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) 1127 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) 1128 1129 /* Return the current FPSCR value. */ 1130 uint32_t vfp_get_fpscr(CPUARMState *env); 1131 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1132 1133 /* For A64 the FPSCR is split into two logically distinct registers, 1134 * FPCR and FPSR. However since they still use non-overlapping bits 1135 * we store the underlying state in fpscr and just mask on read/write. 1136 */ 1137 #define FPSR_MASK 0xf800009f 1138 #define FPCR_MASK 0x07f79f00 1139 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1140 { 1141 return vfp_get_fpscr(env) & FPSR_MASK; 1142 } 1143 1144 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1145 { 1146 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1147 vfp_set_fpscr(env, new_fpscr); 1148 } 1149 1150 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1151 { 1152 return vfp_get_fpscr(env) & FPCR_MASK; 1153 } 1154 1155 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1156 { 1157 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1158 vfp_set_fpscr(env, new_fpscr); 1159 } 1160 1161 enum arm_cpu_mode { 1162 ARM_CPU_MODE_USR = 0x10, 1163 ARM_CPU_MODE_FIQ = 0x11, 1164 ARM_CPU_MODE_IRQ = 0x12, 1165 ARM_CPU_MODE_SVC = 0x13, 1166 ARM_CPU_MODE_MON = 0x16, 1167 ARM_CPU_MODE_ABT = 0x17, 1168 ARM_CPU_MODE_HYP = 0x1a, 1169 ARM_CPU_MODE_UND = 0x1b, 1170 ARM_CPU_MODE_SYS = 0x1f 1171 }; 1172 1173 /* VFP system registers. */ 1174 #define ARM_VFP_FPSID 0 1175 #define ARM_VFP_FPSCR 1 1176 #define ARM_VFP_MVFR2 5 1177 #define ARM_VFP_MVFR1 6 1178 #define ARM_VFP_MVFR0 7 1179 #define ARM_VFP_FPEXC 8 1180 #define ARM_VFP_FPINST 9 1181 #define ARM_VFP_FPINST2 10 1182 1183 /* iwMMXt coprocessor control registers. */ 1184 #define ARM_IWMMXT_wCID 0 1185 #define ARM_IWMMXT_wCon 1 1186 #define ARM_IWMMXT_wCSSF 2 1187 #define ARM_IWMMXT_wCASF 3 1188 #define ARM_IWMMXT_wCGR0 8 1189 #define ARM_IWMMXT_wCGR1 9 1190 #define ARM_IWMMXT_wCGR2 10 1191 #define ARM_IWMMXT_wCGR3 11 1192 1193 /* V7M CCR bits */ 1194 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1195 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1196 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1197 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1198 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1199 FIELD(V7M_CCR, STKALIGN, 9, 1) 1200 FIELD(V7M_CCR, DC, 16, 1) 1201 FIELD(V7M_CCR, IC, 17, 1) 1202 1203 /* V7M CFSR bits for MMFSR */ 1204 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1205 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1206 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1207 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1208 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1209 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1210 1211 /* V7M CFSR bits for BFSR */ 1212 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1213 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1214 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1215 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1216 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1217 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1218 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1219 1220 /* V7M CFSR bits for UFSR */ 1221 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1222 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1223 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1224 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1225 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1226 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1227 1228 /* V7M CFSR bit masks covering all of the subregister bits */ 1229 FIELD(V7M_CFSR, MMFSR, 0, 8) 1230 FIELD(V7M_CFSR, BFSR, 8, 8) 1231 FIELD(V7M_CFSR, UFSR, 16, 16) 1232 1233 /* V7M HFSR bits */ 1234 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1235 FIELD(V7M_HFSR, FORCED, 30, 1) 1236 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1237 1238 /* V7M DFSR bits */ 1239 FIELD(V7M_DFSR, HALTED, 0, 1) 1240 FIELD(V7M_DFSR, BKPT, 1, 1) 1241 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1242 FIELD(V7M_DFSR, VCATCH, 3, 1) 1243 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1244 1245 /* v7M MPU_CTRL bits */ 1246 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1247 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1248 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1249 1250 /* If adding a feature bit which corresponds to a Linux ELF 1251 * HWCAP bit, remember to update the feature-bit-to-hwcap 1252 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1253 */ 1254 enum arm_features { 1255 ARM_FEATURE_VFP, 1256 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1257 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1258 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1259 ARM_FEATURE_V6, 1260 ARM_FEATURE_V6K, 1261 ARM_FEATURE_V7, 1262 ARM_FEATURE_THUMB2, 1263 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1264 ARM_FEATURE_VFP3, 1265 ARM_FEATURE_VFP_FP16, 1266 ARM_FEATURE_NEON, 1267 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ 1268 ARM_FEATURE_M, /* Microcontroller profile. */ 1269 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1270 ARM_FEATURE_THUMB2EE, 1271 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1272 ARM_FEATURE_V4T, 1273 ARM_FEATURE_V5, 1274 ARM_FEATURE_STRONGARM, 1275 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1276 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ 1277 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1278 ARM_FEATURE_GENERIC_TIMER, 1279 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1280 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1281 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1282 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1283 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1284 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1285 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1286 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1287 ARM_FEATURE_V8, 1288 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1289 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ 1290 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1291 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1292 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1293 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1294 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1295 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ 1296 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ 1297 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ 1298 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1299 ARM_FEATURE_PMU, /* has PMU support */ 1300 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1301 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1302 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */ 1303 }; 1304 1305 static inline int arm_feature(CPUARMState *env, int feature) 1306 { 1307 return (env->features & (1ULL << feature)) != 0; 1308 } 1309 1310 #if !defined(CONFIG_USER_ONLY) 1311 /* Return true if exception levels below EL3 are in secure state, 1312 * or would be following an exception return to that level. 1313 * Unlike arm_is_secure() (which is always a question about the 1314 * _current_ state of the CPU) this doesn't care about the current 1315 * EL or mode. 1316 */ 1317 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1318 { 1319 if (arm_feature(env, ARM_FEATURE_EL3)) { 1320 return !(env->cp15.scr_el3 & SCR_NS); 1321 } else { 1322 /* If EL3 is not supported then the secure state is implementation 1323 * defined, in which case QEMU defaults to non-secure. 1324 */ 1325 return false; 1326 } 1327 } 1328 1329 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1330 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1331 { 1332 if (arm_feature(env, ARM_FEATURE_EL3)) { 1333 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1334 /* CPU currently in AArch64 state and EL3 */ 1335 return true; 1336 } else if (!is_a64(env) && 1337 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1338 /* CPU currently in AArch32 state and monitor mode */ 1339 return true; 1340 } 1341 } 1342 return false; 1343 } 1344 1345 /* Return true if the processor is in secure state */ 1346 static inline bool arm_is_secure(CPUARMState *env) 1347 { 1348 if (arm_is_el3_or_mon(env)) { 1349 return true; 1350 } 1351 return arm_is_secure_below_el3(env); 1352 } 1353 1354 #else 1355 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1356 { 1357 return false; 1358 } 1359 1360 static inline bool arm_is_secure(CPUARMState *env) 1361 { 1362 return false; 1363 } 1364 #endif 1365 1366 /* Return true if the specified exception level is running in AArch64 state. */ 1367 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1368 { 1369 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1370 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1371 */ 1372 assert(el >= 1 && el <= 3); 1373 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1374 1375 /* The highest exception level is always at the maximum supported 1376 * register width, and then lower levels have a register width controlled 1377 * by bits in the SCR or HCR registers. 1378 */ 1379 if (el == 3) { 1380 return aa64; 1381 } 1382 1383 if (arm_feature(env, ARM_FEATURE_EL3)) { 1384 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1385 } 1386 1387 if (el == 2) { 1388 return aa64; 1389 } 1390 1391 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1392 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1393 } 1394 1395 return aa64; 1396 } 1397 1398 /* Function for determing whether guest cp register reads and writes should 1399 * access the secure or non-secure bank of a cp register. When EL3 is 1400 * operating in AArch32 state, the NS-bit determines whether the secure 1401 * instance of a cp register should be used. When EL3 is AArch64 (or if 1402 * it doesn't exist at all) then there is no register banking, and all 1403 * accesses are to the non-secure version. 1404 */ 1405 static inline bool access_secure_reg(CPUARMState *env) 1406 { 1407 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1408 !arm_el_is_aa64(env, 3) && 1409 !(env->cp15.scr_el3 & SCR_NS)); 1410 1411 return ret; 1412 } 1413 1414 /* Macros for accessing a specified CP register bank */ 1415 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 1416 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 1417 1418 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 1419 do { \ 1420 if (_secure) { \ 1421 (_env)->cp15._regname##_s = (_val); \ 1422 } else { \ 1423 (_env)->cp15._regname##_ns = (_val); \ 1424 } \ 1425 } while (0) 1426 1427 /* Macros for automatically accessing a specific CP register bank depending on 1428 * the current secure state of the system. These macros are not intended for 1429 * supporting instruction translation reads/writes as these are dependent 1430 * solely on the SCR.NS bit and not the mode. 1431 */ 1432 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 1433 A32_BANKED_REG_GET((_env), _regname, \ 1434 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 1435 1436 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 1437 A32_BANKED_REG_SET((_env), _regname, \ 1438 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 1439 (_val)) 1440 1441 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); 1442 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 1443 uint32_t cur_el, bool secure); 1444 1445 /* Interface between CPU and Interrupt controller. */ 1446 #ifndef CONFIG_USER_ONLY 1447 bool armv7m_nvic_can_take_pending_exception(void *opaque); 1448 #else 1449 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 1450 { 1451 return true; 1452 } 1453 #endif 1454 void armv7m_nvic_set_pending(void *opaque, int irq); 1455 void armv7m_nvic_acknowledge_irq(void *opaque); 1456 /** 1457 * armv7m_nvic_complete_irq: complete specified interrupt or exception 1458 * @opaque: the NVIC 1459 * @irq: the exception number to complete 1460 * 1461 * Returns: -1 if the irq was not active 1462 * 1 if completing this irq brought us back to base (no active irqs) 1463 * 0 if there is still an irq active after this one was completed 1464 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 1465 */ 1466 int armv7m_nvic_complete_irq(void *opaque, int irq); 1467 /** 1468 * armv7m_nvic_raw_execution_priority: return the raw execution priority 1469 * @opaque: the NVIC 1470 * 1471 * Returns: the raw execution priority as defined by the v8M architecture. 1472 * This is the execution priority minus the effects of AIRCR.PRIS, 1473 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 1474 * (v8M ARM ARM I_PKLD.) 1475 */ 1476 int armv7m_nvic_raw_execution_priority(void *opaque); 1477 1478 /* Interface for defining coprocessor registers. 1479 * Registers are defined in tables of arm_cp_reginfo structs 1480 * which are passed to define_arm_cp_regs(). 1481 */ 1482 1483 /* When looking up a coprocessor register we look for it 1484 * via an integer which encodes all of: 1485 * coprocessor number 1486 * Crn, Crm, opc1, opc2 fields 1487 * 32 or 64 bit register (ie is it accessed via MRC/MCR 1488 * or via MRRC/MCRR?) 1489 * non-secure/secure bank (AArch32 only) 1490 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 1491 * (In this case crn and opc2 should be zero.) 1492 * For AArch64, there is no 32/64 bit size distinction; 1493 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 1494 * and 4 bit CRn and CRm. The encoding patterns are chosen 1495 * to be easy to convert to and from the KVM encodings, and also 1496 * so that the hashtable can contain both AArch32 and AArch64 1497 * registers (to allow for interprocessing where we might run 1498 * 32 bit code on a 64 bit core). 1499 */ 1500 /* This bit is private to our hashtable cpreg; in KVM register 1501 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 1502 * in the upper bits of the 64 bit ID. 1503 */ 1504 #define CP_REG_AA64_SHIFT 28 1505 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 1506 1507 /* To enable banking of coprocessor registers depending on ns-bit we 1508 * add a bit to distinguish between secure and non-secure cpregs in the 1509 * hashtable. 1510 */ 1511 #define CP_REG_NS_SHIFT 29 1512 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 1513 1514 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 1515 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 1516 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 1517 1518 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 1519 (CP_REG_AA64_MASK | \ 1520 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 1521 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 1522 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 1523 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 1524 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 1525 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 1526 1527 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 1528 * version used as a key for the coprocessor register hashtable 1529 */ 1530 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 1531 { 1532 uint32_t cpregid = kvmid; 1533 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 1534 cpregid |= CP_REG_AA64_MASK; 1535 } else { 1536 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 1537 cpregid |= (1 << 15); 1538 } 1539 1540 /* KVM is always non-secure so add the NS flag on AArch32 register 1541 * entries. 1542 */ 1543 cpregid |= 1 << CP_REG_NS_SHIFT; 1544 } 1545 return cpregid; 1546 } 1547 1548 /* Convert a truncated 32 bit hashtable key into the full 1549 * 64 bit KVM register ID. 1550 */ 1551 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 1552 { 1553 uint64_t kvmid; 1554 1555 if (cpregid & CP_REG_AA64_MASK) { 1556 kvmid = cpregid & ~CP_REG_AA64_MASK; 1557 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 1558 } else { 1559 kvmid = cpregid & ~(1 << 15); 1560 if (cpregid & (1 << 15)) { 1561 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 1562 } else { 1563 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 1564 } 1565 } 1566 return kvmid; 1567 } 1568 1569 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 1570 * special-behaviour cp reg and bits [15..8] indicate what behaviour 1571 * it has. Otherwise it is a simple cp reg, where CONST indicates that 1572 * TCG can assume the value to be constant (ie load at translate time) 1573 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 1574 * indicates that the TB should not be ended after a write to this register 1575 * (the default is that the TB ends after cp writes). OVERRIDE permits 1576 * a register definition to override a previous definition for the 1577 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 1578 * old must have the OVERRIDE bit set. 1579 * ALIAS indicates that this register is an alias view of some underlying 1580 * state which is also visible via another register, and that the other 1581 * register is handling migration and reset; registers marked ALIAS will not be 1582 * migrated but may have their state set by syncing of register state from KVM. 1583 * NO_RAW indicates that this register has no underlying state and does not 1584 * support raw access for state saving/loading; it will not be used for either 1585 * migration or KVM state synchronization. (Typically this is for "registers" 1586 * which are actually used as instructions for cache maintenance and so on.) 1587 * IO indicates that this register does I/O and therefore its accesses 1588 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 1589 * registers which implement clocks or timers require this. 1590 */ 1591 #define ARM_CP_SPECIAL 1 1592 #define ARM_CP_CONST 2 1593 #define ARM_CP_64BIT 4 1594 #define ARM_CP_SUPPRESS_TB_END 8 1595 #define ARM_CP_OVERRIDE 16 1596 #define ARM_CP_ALIAS 32 1597 #define ARM_CP_IO 64 1598 #define ARM_CP_NO_RAW 128 1599 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) 1600 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) 1601 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) 1602 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) 1603 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) 1604 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 1605 /* Used only as a terminator for ARMCPRegInfo lists */ 1606 #define ARM_CP_SENTINEL 0xffff 1607 /* Mask of only the flag bits in a type field */ 1608 #define ARM_CP_FLAG_MASK 0xff 1609 1610 /* Valid values for ARMCPRegInfo state field, indicating which of 1611 * the AArch32 and AArch64 execution states this register is visible in. 1612 * If the reginfo doesn't explicitly specify then it is AArch32 only. 1613 * If the reginfo is declared to be visible in both states then a second 1614 * reginfo is synthesised for the AArch32 view of the AArch64 register, 1615 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 1616 * Note that we rely on the values of these enums as we iterate through 1617 * the various states in some places. 1618 */ 1619 enum { 1620 ARM_CP_STATE_AA32 = 0, 1621 ARM_CP_STATE_AA64 = 1, 1622 ARM_CP_STATE_BOTH = 2, 1623 }; 1624 1625 /* ARM CP register secure state flags. These flags identify security state 1626 * attributes for a given CP register entry. 1627 * The existence of both or neither secure and non-secure flags indicates that 1628 * the register has both a secure and non-secure hash entry. A single one of 1629 * these flags causes the register to only be hashed for the specified 1630 * security state. 1631 * Although definitions may have any combination of the S/NS bits, each 1632 * registered entry will only have one to identify whether the entry is secure 1633 * or non-secure. 1634 */ 1635 enum { 1636 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 1637 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 1638 }; 1639 1640 /* Return true if cptype is a valid type field. This is used to try to 1641 * catch errors where the sentinel has been accidentally left off the end 1642 * of a list of registers. 1643 */ 1644 static inline bool cptype_valid(int cptype) 1645 { 1646 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 1647 || ((cptype & ARM_CP_SPECIAL) && 1648 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 1649 } 1650 1651 /* Access rights: 1652 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 1653 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 1654 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 1655 * (ie any of the privileged modes in Secure state, or Monitor mode). 1656 * If a register is accessible in one privilege level it's always accessible 1657 * in higher privilege levels too. Since "Secure PL1" also follows this rule 1658 * (ie anything visible in PL2 is visible in S-PL1, some things are only 1659 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 1660 * terminology a little and call this PL3. 1661 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 1662 * with the ELx exception levels. 1663 * 1664 * If access permissions for a register are more complex than can be 1665 * described with these bits, then use a laxer set of restrictions, and 1666 * do the more restrictive/complex check inside a helper function. 1667 */ 1668 #define PL3_R 0x80 1669 #define PL3_W 0x40 1670 #define PL2_R (0x20 | PL3_R) 1671 #define PL2_W (0x10 | PL3_W) 1672 #define PL1_R (0x08 | PL2_R) 1673 #define PL1_W (0x04 | PL2_W) 1674 #define PL0_R (0x02 | PL1_R) 1675 #define PL0_W (0x01 | PL1_W) 1676 1677 #define PL3_RW (PL3_R | PL3_W) 1678 #define PL2_RW (PL2_R | PL2_W) 1679 #define PL1_RW (PL1_R | PL1_W) 1680 #define PL0_RW (PL0_R | PL0_W) 1681 1682 /* Return the highest implemented Exception Level */ 1683 static inline int arm_highest_el(CPUARMState *env) 1684 { 1685 if (arm_feature(env, ARM_FEATURE_EL3)) { 1686 return 3; 1687 } 1688 if (arm_feature(env, ARM_FEATURE_EL2)) { 1689 return 2; 1690 } 1691 return 1; 1692 } 1693 1694 /* Return true if a v7M CPU is in Handler mode */ 1695 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 1696 { 1697 return env->v7m.exception != 0; 1698 } 1699 1700 /* Return the current Exception Level (as per ARMv8; note that this differs 1701 * from the ARMv7 Privilege Level). 1702 */ 1703 static inline int arm_current_el(CPUARMState *env) 1704 { 1705 if (arm_feature(env, ARM_FEATURE_M)) { 1706 return arm_v7m_is_handler_mode(env) || 1707 !(env->v7m.control[env->v7m.secure] & 1); 1708 } 1709 1710 if (is_a64(env)) { 1711 return extract32(env->pstate, 2, 2); 1712 } 1713 1714 switch (env->uncached_cpsr & 0x1f) { 1715 case ARM_CPU_MODE_USR: 1716 return 0; 1717 case ARM_CPU_MODE_HYP: 1718 return 2; 1719 case ARM_CPU_MODE_MON: 1720 return 3; 1721 default: 1722 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 1723 /* If EL3 is 32-bit then all secure privileged modes run in 1724 * EL3 1725 */ 1726 return 3; 1727 } 1728 1729 return 1; 1730 } 1731 } 1732 1733 typedef struct ARMCPRegInfo ARMCPRegInfo; 1734 1735 typedef enum CPAccessResult { 1736 /* Access is permitted */ 1737 CP_ACCESS_OK = 0, 1738 /* Access fails due to a configurable trap or enable which would 1739 * result in a categorized exception syndrome giving information about 1740 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 1741 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 1742 * PL1 if in EL0, otherwise to the current EL). 1743 */ 1744 CP_ACCESS_TRAP = 1, 1745 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 1746 * Note that this is not a catch-all case -- the set of cases which may 1747 * result in this failure is specifically defined by the architecture. 1748 */ 1749 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 1750 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 1751 CP_ACCESS_TRAP_EL2 = 3, 1752 CP_ACCESS_TRAP_EL3 = 4, 1753 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 1754 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 1755 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 1756 /* Access fails and results in an exception syndrome for an FP access, 1757 * trapped directly to EL2 or EL3 1758 */ 1759 CP_ACCESS_TRAP_FP_EL2 = 7, 1760 CP_ACCESS_TRAP_FP_EL3 = 8, 1761 } CPAccessResult; 1762 1763 /* Access functions for coprocessor registers. These cannot fail and 1764 * may not raise exceptions. 1765 */ 1766 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1767 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 1768 uint64_t value); 1769 /* Access permission check functions for coprocessor registers. */ 1770 typedef CPAccessResult CPAccessFn(CPUARMState *env, 1771 const ARMCPRegInfo *opaque, 1772 bool isread); 1773 /* Hook function for register reset */ 1774 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1775 1776 #define CP_ANY 0xff 1777 1778 /* Definition of an ARM coprocessor register */ 1779 struct ARMCPRegInfo { 1780 /* Name of register (useful mainly for debugging, need not be unique) */ 1781 const char *name; 1782 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 1783 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 1784 * 'wildcard' field -- any value of that field in the MRC/MCR insn 1785 * will be decoded to this register. The register read and write 1786 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 1787 * used by the program, so it is possible to register a wildcard and 1788 * then behave differently on read/write if necessary. 1789 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 1790 * must both be zero. 1791 * For AArch64-visible registers, opc0 is also used. 1792 * Since there are no "coprocessors" in AArch64, cp is purely used as a 1793 * way to distinguish (for KVM's benefit) guest-visible system registers 1794 * from demuxed ones provided to preserve the "no side effects on 1795 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 1796 * visible (to match KVM's encoding); cp==0 will be converted to 1797 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 1798 */ 1799 uint8_t cp; 1800 uint8_t crn; 1801 uint8_t crm; 1802 uint8_t opc0; 1803 uint8_t opc1; 1804 uint8_t opc2; 1805 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 1806 int state; 1807 /* Register type: ARM_CP_* bits/values */ 1808 int type; 1809 /* Access rights: PL*_[RW] */ 1810 int access; 1811 /* Security state: ARM_CP_SECSTATE_* bits/values */ 1812 int secure; 1813 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 1814 * this register was defined: can be used to hand data through to the 1815 * register read/write functions, since they are passed the ARMCPRegInfo*. 1816 */ 1817 void *opaque; 1818 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 1819 * fieldoffset is non-zero, the reset value of the register. 1820 */ 1821 uint64_t resetvalue; 1822 /* Offset of the field in CPUARMState for this register. 1823 * 1824 * This is not needed if either: 1825 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 1826 * 2. both readfn and writefn are specified 1827 */ 1828 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 1829 1830 /* Offsets of the secure and non-secure fields in CPUARMState for the 1831 * register if it is banked. These fields are only used during the static 1832 * registration of a register. During hashing the bank associated 1833 * with a given security state is copied to fieldoffset which is used from 1834 * there on out. 1835 * 1836 * It is expected that register definitions use either fieldoffset or 1837 * bank_fieldoffsets in the definition but not both. It is also expected 1838 * that both bank offsets are set when defining a banked register. This 1839 * use indicates that a register is banked. 1840 */ 1841 ptrdiff_t bank_fieldoffsets[2]; 1842 1843 /* Function for making any access checks for this register in addition to 1844 * those specified by the 'access' permissions bits. If NULL, no extra 1845 * checks required. The access check is performed at runtime, not at 1846 * translate time. 1847 */ 1848 CPAccessFn *accessfn; 1849 /* Function for handling reads of this register. If NULL, then reads 1850 * will be done by loading from the offset into CPUARMState specified 1851 * by fieldoffset. 1852 */ 1853 CPReadFn *readfn; 1854 /* Function for handling writes of this register. If NULL, then writes 1855 * will be done by writing to the offset into CPUARMState specified 1856 * by fieldoffset. 1857 */ 1858 CPWriteFn *writefn; 1859 /* Function for doing a "raw" read; used when we need to copy 1860 * coprocessor state to the kernel for KVM or out for 1861 * migration. This only needs to be provided if there is also a 1862 * readfn and it has side effects (for instance clear-on-read bits). 1863 */ 1864 CPReadFn *raw_readfn; 1865 /* Function for doing a "raw" write; used when we need to copy KVM 1866 * kernel coprocessor state into userspace, or for inbound 1867 * migration. This only needs to be provided if there is also a 1868 * writefn and it masks out "unwritable" bits or has write-one-to-clear 1869 * or similar behaviour. 1870 */ 1871 CPWriteFn *raw_writefn; 1872 /* Function for resetting the register. If NULL, then reset will be done 1873 * by writing resetvalue to the field specified in fieldoffset. If 1874 * fieldoffset is 0 then no reset will be done. 1875 */ 1876 CPResetFn *resetfn; 1877 }; 1878 1879 /* Macros which are lvalues for the field in CPUARMState for the 1880 * ARMCPRegInfo *ri. 1881 */ 1882 #define CPREG_FIELD32(env, ri) \ 1883 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 1884 #define CPREG_FIELD64(env, ri) \ 1885 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 1886 1887 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 1888 1889 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 1890 const ARMCPRegInfo *regs, void *opaque); 1891 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 1892 const ARMCPRegInfo *regs, void *opaque); 1893 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 1894 { 1895 define_arm_cp_regs_with_opaque(cpu, regs, 0); 1896 } 1897 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 1898 { 1899 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 1900 } 1901 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 1902 1903 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 1904 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 1905 uint64_t value); 1906 /* CPReadFn that can be used for read-as-zero behaviour */ 1907 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 1908 1909 /* CPResetFn that does nothing, for use if no reset is required even 1910 * if fieldoffset is non zero. 1911 */ 1912 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 1913 1914 /* Return true if this reginfo struct's field in the cpu state struct 1915 * is 64 bits wide. 1916 */ 1917 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 1918 { 1919 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 1920 } 1921 1922 static inline bool cp_access_ok(int current_el, 1923 const ARMCPRegInfo *ri, int isread) 1924 { 1925 return (ri->access >> ((current_el * 2) + isread)) & 1; 1926 } 1927 1928 /* Raw read of a coprocessor register (as needed for migration, etc) */ 1929 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 1930 1931 /** 1932 * write_list_to_cpustate 1933 * @cpu: ARMCPU 1934 * 1935 * For each register listed in the ARMCPU cpreg_indexes list, write 1936 * its value from the cpreg_values list into the ARMCPUState structure. 1937 * This updates TCG's working data structures from KVM data or 1938 * from incoming migration state. 1939 * 1940 * Returns: true if all register values were updated correctly, 1941 * false if some register was unknown or could not be written. 1942 * Note that we do not stop early on failure -- we will attempt 1943 * writing all registers in the list. 1944 */ 1945 bool write_list_to_cpustate(ARMCPU *cpu); 1946 1947 /** 1948 * write_cpustate_to_list: 1949 * @cpu: ARMCPU 1950 * 1951 * For each register listed in the ARMCPU cpreg_indexes list, write 1952 * its value from the ARMCPUState structure into the cpreg_values list. 1953 * This is used to copy info from TCG's working data structures into 1954 * KVM or for outbound migration. 1955 * 1956 * Returns: true if all register values were read correctly, 1957 * false if some register was unknown or could not be read. 1958 * Note that we do not stop early on failure -- we will attempt 1959 * reading all registers in the list. 1960 */ 1961 bool write_cpustate_to_list(ARMCPU *cpu); 1962 1963 #define ARM_CPUID_TI915T 0x54029152 1964 #define ARM_CPUID_TI925T 0x54029252 1965 1966 #if defined(CONFIG_USER_ONLY) 1967 #define TARGET_PAGE_BITS 12 1968 #else 1969 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6 1970 * have to support 1K tiny pages. 1971 */ 1972 #define TARGET_PAGE_BITS_VARY 1973 #define TARGET_PAGE_BITS_MIN 10 1974 #endif 1975 1976 #if defined(TARGET_AARCH64) 1977 # define TARGET_PHYS_ADDR_SPACE_BITS 48 1978 # define TARGET_VIRT_ADDR_SPACE_BITS 64 1979 #else 1980 # define TARGET_PHYS_ADDR_SPACE_BITS 40 1981 # define TARGET_VIRT_ADDR_SPACE_BITS 32 1982 #endif 1983 1984 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 1985 unsigned int target_el) 1986 { 1987 CPUARMState *env = cs->env_ptr; 1988 unsigned int cur_el = arm_current_el(env); 1989 bool secure = arm_is_secure(env); 1990 bool pstate_unmasked; 1991 int8_t unmasked = 0; 1992 1993 /* Don't take exceptions if they target a lower EL. 1994 * This check should catch any exceptions that would not be taken but left 1995 * pending. 1996 */ 1997 if (cur_el > target_el) { 1998 return false; 1999 } 2000 2001 switch (excp_idx) { 2002 case EXCP_FIQ: 2003 pstate_unmasked = !(env->daif & PSTATE_F); 2004 break; 2005 2006 case EXCP_IRQ: 2007 pstate_unmasked = !(env->daif & PSTATE_I); 2008 break; 2009 2010 case EXCP_VFIQ: 2011 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { 2012 /* VFIQs are only taken when hypervized and non-secure. */ 2013 return false; 2014 } 2015 return !(env->daif & PSTATE_F); 2016 case EXCP_VIRQ: 2017 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { 2018 /* VIRQs are only taken when hypervized and non-secure. */ 2019 return false; 2020 } 2021 return !(env->daif & PSTATE_I); 2022 default: 2023 g_assert_not_reached(); 2024 } 2025 2026 /* Use the target EL, current execution state and SCR/HCR settings to 2027 * determine whether the corresponding CPSR bit is used to mask the 2028 * interrupt. 2029 */ 2030 if ((target_el > cur_el) && (target_el != 1)) { 2031 /* Exceptions targeting a higher EL may not be maskable */ 2032 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 2033 /* 64-bit masking rules are simple: exceptions to EL3 2034 * can't be masked, and exceptions to EL2 can only be 2035 * masked from Secure state. The HCR and SCR settings 2036 * don't affect the masking logic, only the interrupt routing. 2037 */ 2038 if (target_el == 3 || !secure) { 2039 unmasked = 1; 2040 } 2041 } else { 2042 /* The old 32-bit-only environment has a more complicated 2043 * masking setup. HCR and SCR bits not only affect interrupt 2044 * routing but also change the behaviour of masking. 2045 */ 2046 bool hcr, scr; 2047 2048 switch (excp_idx) { 2049 case EXCP_FIQ: 2050 /* If FIQs are routed to EL3 or EL2 then there are cases where 2051 * we override the CPSR.F in determining if the exception is 2052 * masked or not. If neither of these are set then we fall back 2053 * to the CPSR.F setting otherwise we further assess the state 2054 * below. 2055 */ 2056 hcr = (env->cp15.hcr_el2 & HCR_FMO); 2057 scr = (env->cp15.scr_el3 & SCR_FIQ); 2058 2059 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 2060 * CPSR.F bit masks FIQ interrupts when taken in non-secure 2061 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 2062 * when non-secure but only when FIQs are only routed to EL3. 2063 */ 2064 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 2065 break; 2066 case EXCP_IRQ: 2067 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 2068 * we may override the CPSR.I masking when in non-secure state. 2069 * The SCR.IRQ setting has already been taken into consideration 2070 * when setting the target EL, so it does not have a further 2071 * affect here. 2072 */ 2073 hcr = (env->cp15.hcr_el2 & HCR_IMO); 2074 scr = false; 2075 break; 2076 default: 2077 g_assert_not_reached(); 2078 } 2079 2080 if ((scr || hcr) && !secure) { 2081 unmasked = 1; 2082 } 2083 } 2084 } 2085 2086 /* The PSTATE bits only mask the interrupt if we have not overriden the 2087 * ability above. 2088 */ 2089 return unmasked || pstate_unmasked; 2090 } 2091 2092 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model) 2093 2094 #define cpu_signal_handler cpu_arm_signal_handler 2095 #define cpu_list arm_cpu_list 2096 2097 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2098 * 2099 * If EL3 is 64-bit: 2100 * + NonSecure EL1 & 0 stage 1 2101 * + NonSecure EL1 & 0 stage 2 2102 * + NonSecure EL2 2103 * + Secure EL1 & EL0 2104 * + Secure EL3 2105 * If EL3 is 32-bit: 2106 * + NonSecure PL1 & 0 stage 1 2107 * + NonSecure PL1 & 0 stage 2 2108 * + NonSecure PL2 2109 * + Secure PL0 & PL1 2110 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2111 * 2112 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2113 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2114 * may differ in access permissions even if the VA->PA map is the same 2115 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2116 * translation, which means that we have one mmu_idx that deals with two 2117 * concatenated translation regimes [this sort of combined s1+2 TLB is 2118 * architecturally permitted] 2119 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2120 * handling via the TLB. The only way to do a stage 1 translation without 2121 * the immediate stage 2 translation is via the ATS or AT system insns, 2122 * which can be slow-pathed and always do a page table walk. 2123 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2124 * translation regimes, because they map reasonably well to each other 2125 * and they can't both be active at the same time. 2126 * This gives us the following list of mmu_idx values: 2127 * 2128 * NS EL0 (aka NS PL0) stage 1+2 2129 * NS EL1 (aka NS PL1) stage 1+2 2130 * NS EL2 (aka NS PL2) 2131 * S EL3 (aka S PL1) 2132 * S EL0 (aka S PL0) 2133 * S EL1 (not used if EL3 is 32 bit) 2134 * NS EL0+1 stage 2 2135 * 2136 * (The last of these is an mmu_idx because we want to be able to use the TLB 2137 * for the accesses done as part of a stage 1 page table walk, rather than 2138 * having to walk the stage 2 page table over and over.) 2139 * 2140 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2141 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2142 * NS EL2 if we ever model a Cortex-R52). 2143 * 2144 * M profile CPUs are rather different as they do not have a true MMU. 2145 * They have the following different MMU indexes: 2146 * User 2147 * Privileged 2148 * Execution priority negative (this is like privileged, but the 2149 * MPU HFNMIENA bit means that it may have different access permission 2150 * check results to normal privileged code, so can't share a TLB). 2151 * If the CPU supports the v8M Security Extension then there are also: 2152 * Secure User 2153 * Secure Privileged 2154 * Secure, execution priority negative 2155 * 2156 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2157 * are not quite the same -- different CPU types (most notably M profile 2158 * vs A/R profile) would like to use MMU indexes with different semantics, 2159 * but since we don't ever need to use all of those in a single CPU we 2160 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2161 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2162 * the same for any particular CPU. 2163 * Variables of type ARMMUIdx are always full values, and the core 2164 * index values are in variables of type 'int'. 2165 * 2166 * Our enumeration includes at the end some entries which are not "true" 2167 * mmu_idx values in that they don't have corresponding TLBs and are only 2168 * valid for doing slow path page table walks. 2169 * 2170 * The constant names here are patterned after the general style of the names 2171 * of the AT/ATS operations. 2172 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2173 */ 2174 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2175 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2176 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2177 2178 #define ARM_MMU_IDX_TYPE_MASK (~0x7) 2179 #define ARM_MMU_IDX_COREIDX_MASK 0x7 2180 2181 typedef enum ARMMMUIdx { 2182 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, 2183 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, 2184 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, 2185 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, 2186 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, 2187 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, 2188 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, 2189 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, 2190 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, 2191 ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M, 2192 ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M, 2193 ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M, 2194 ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M, 2195 /* Indexes below here don't have TLBs and are used only for AT system 2196 * instructions or for the first stage of an S12 page table walk. 2197 */ 2198 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, 2199 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, 2200 } ARMMMUIdx; 2201 2202 /* Bit macros for the core-mmu-index values for each index, 2203 * for use when calling tlb_flush_by_mmuidx() and friends. 2204 */ 2205 typedef enum ARMMMUIdxBit { 2206 ARMMMUIdxBit_S12NSE0 = 1 << 0, 2207 ARMMMUIdxBit_S12NSE1 = 1 << 1, 2208 ARMMMUIdxBit_S1E2 = 1 << 2, 2209 ARMMMUIdxBit_S1E3 = 1 << 3, 2210 ARMMMUIdxBit_S1SE0 = 1 << 4, 2211 ARMMMUIdxBit_S1SE1 = 1 << 5, 2212 ARMMMUIdxBit_S2NS = 1 << 6, 2213 ARMMMUIdxBit_MUser = 1 << 0, 2214 ARMMMUIdxBit_MPriv = 1 << 1, 2215 ARMMMUIdxBit_MNegPri = 1 << 2, 2216 ARMMMUIdxBit_MSUser = 1 << 3, 2217 ARMMMUIdxBit_MSPriv = 1 << 4, 2218 ARMMMUIdxBit_MSNegPri = 1 << 5, 2219 } ARMMMUIdxBit; 2220 2221 #define MMU_USER_IDX 0 2222 2223 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 2224 { 2225 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 2226 } 2227 2228 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 2229 { 2230 if (arm_feature(env, ARM_FEATURE_M)) { 2231 return mmu_idx | ARM_MMU_IDX_M; 2232 } else { 2233 return mmu_idx | ARM_MMU_IDX_A; 2234 } 2235 } 2236 2237 /* Return the exception level we're running at if this is our mmu_idx */ 2238 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2239 { 2240 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { 2241 case ARM_MMU_IDX_A: 2242 return mmu_idx & 3; 2243 case ARM_MMU_IDX_M: 2244 return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser) 2245 ? 0 : 1; 2246 default: 2247 g_assert_not_reached(); 2248 } 2249 } 2250 2251 /* Determine the current mmu_idx to use for normal loads/stores */ 2252 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 2253 { 2254 int el = arm_current_el(env); 2255 2256 if (arm_feature(env, ARM_FEATURE_M)) { 2257 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv; 2258 2259 /* Execution priority is negative if FAULTMASK is set or 2260 * we're in a HardFault or NMI handler. 2261 */ 2262 if ((env->v7m.exception > 0 && env->v7m.exception <= 3) 2263 || env->v7m.faultmask[env->v7m.secure]) { 2264 mmu_idx = ARMMMUIdx_MNegPri; 2265 } 2266 2267 if (env->v7m.secure) { 2268 mmu_idx += ARMMMUIdx_MSUser; 2269 } 2270 2271 return arm_to_core_mmu_idx(mmu_idx); 2272 } 2273 2274 if (el < 2 && arm_is_secure_below_el3(env)) { 2275 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el); 2276 } 2277 return el; 2278 } 2279 2280 /* Indexes used when registering address spaces with cpu_address_space_init */ 2281 typedef enum ARMASIdx { 2282 ARMASIdx_NS = 0, 2283 ARMASIdx_S = 1, 2284 } ARMASIdx; 2285 2286 /* Return the Exception Level targeted by debug exceptions. */ 2287 static inline int arm_debug_target_el(CPUARMState *env) 2288 { 2289 bool secure = arm_is_secure(env); 2290 bool route_to_el2 = false; 2291 2292 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2293 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2294 env->cp15.mdcr_el2 & (1 << 8); 2295 } 2296 2297 if (route_to_el2) { 2298 return 2; 2299 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2300 !arm_el_is_aa64(env, 3) && secure) { 2301 return 3; 2302 } else { 2303 return 1; 2304 } 2305 } 2306 2307 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2308 { 2309 if (arm_is_secure(env)) { 2310 /* MDCR_EL3.SDD disables debug events from Secure state */ 2311 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 2312 || arm_current_el(env) == 3) { 2313 return false; 2314 } 2315 } 2316 2317 if (arm_current_el(env) == arm_debug_target_el(env)) { 2318 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) 2319 || (env->daif & PSTATE_D)) { 2320 return false; 2321 } 2322 } 2323 return true; 2324 } 2325 2326 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 2327 { 2328 int el = arm_current_el(env); 2329 2330 if (el == 0 && arm_el_is_aa64(env, 1)) { 2331 return aa64_generate_debug_exceptions(env); 2332 } 2333 2334 if (arm_is_secure(env)) { 2335 int spd; 2336 2337 if (el == 0 && (env->cp15.sder & 1)) { 2338 /* SDER.SUIDEN means debug exceptions from Secure EL0 2339 * are always enabled. Otherwise they are controlled by 2340 * SDCR.SPD like those from other Secure ELs. 2341 */ 2342 return true; 2343 } 2344 2345 spd = extract32(env->cp15.mdcr_el3, 14, 2); 2346 switch (spd) { 2347 case 1: 2348 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 2349 case 0: 2350 /* For 0b00 we return true if external secure invasive debug 2351 * is enabled. On real hardware this is controlled by external 2352 * signals to the core. QEMU always permits debug, and behaves 2353 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 2354 */ 2355 return true; 2356 case 2: 2357 return false; 2358 case 3: 2359 return true; 2360 } 2361 } 2362 2363 return el != 2; 2364 } 2365 2366 /* Return true if debugging exceptions are currently enabled. 2367 * This corresponds to what in ARM ARM pseudocode would be 2368 * if UsingAArch32() then 2369 * return AArch32.GenerateDebugExceptions() 2370 * else 2371 * return AArch64.GenerateDebugExceptions() 2372 * We choose to push the if() down into this function for clarity, 2373 * since the pseudocode has it at all callsites except for the one in 2374 * CheckSoftwareStep(), where it is elided because both branches would 2375 * always return the same value. 2376 * 2377 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we 2378 * don't yet implement those exception levels or their associated trap bits. 2379 */ 2380 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 2381 { 2382 if (env->aarch64) { 2383 return aa64_generate_debug_exceptions(env); 2384 } else { 2385 return aa32_generate_debug_exceptions(env); 2386 } 2387 } 2388 2389 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 2390 * implicitly means this always returns false in pre-v8 CPUs.) 2391 */ 2392 static inline bool arm_singlestep_active(CPUARMState *env) 2393 { 2394 return extract32(env->cp15.mdscr_el1, 0, 1) 2395 && arm_el_is_aa64(env, arm_debug_target_el(env)) 2396 && arm_generate_debug_exceptions(env); 2397 } 2398 2399 static inline bool arm_sctlr_b(CPUARMState *env) 2400 { 2401 return 2402 /* We need not implement SCTLR.ITD in user-mode emulation, so 2403 * let linux-user ignore the fact that it conflicts with SCTLR_B. 2404 * This lets people run BE32 binaries with "-cpu any". 2405 */ 2406 #ifndef CONFIG_USER_ONLY 2407 !arm_feature(env, ARM_FEATURE_V7) && 2408 #endif 2409 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 2410 } 2411 2412 /* Return true if the processor is in big-endian mode. */ 2413 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 2414 { 2415 int cur_el; 2416 2417 /* In 32bit endianness is determined by looking at CPSR's E bit */ 2418 if (!is_a64(env)) { 2419 return 2420 #ifdef CONFIG_USER_ONLY 2421 /* In system mode, BE32 is modelled in line with the 2422 * architecture (as word-invariant big-endianness), where loads 2423 * and stores are done little endian but from addresses which 2424 * are adjusted by XORing with the appropriate constant. So the 2425 * endianness to use for the raw data access is not affected by 2426 * SCTLR.B. 2427 * In user mode, however, we model BE32 as byte-invariant 2428 * big-endianness (because user-only code cannot tell the 2429 * difference), and so we need to use a data access endianness 2430 * that depends on SCTLR.B. 2431 */ 2432 arm_sctlr_b(env) || 2433 #endif 2434 ((env->uncached_cpsr & CPSR_E) ? 1 : 0); 2435 } 2436 2437 cur_el = arm_current_el(env); 2438 2439 if (cur_el == 0) { 2440 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; 2441 } 2442 2443 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; 2444 } 2445 2446 #include "exec/cpu-all.h" 2447 2448 /* Bit usage in the TB flags field: bit 31 indicates whether we are 2449 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 2450 * We put flags which are shared between 32 and 64 bit mode at the top 2451 * of the word, and flags which apply to only one mode at the bottom. 2452 */ 2453 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 2454 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) 2455 #define ARM_TBFLAG_MMUIDX_SHIFT 28 2456 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) 2457 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 2458 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) 2459 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26 2460 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) 2461 /* Target EL if we take a floating-point-disabled exception */ 2462 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24 2463 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) 2464 2465 /* Bit usage when in AArch32 state: */ 2466 #define ARM_TBFLAG_THUMB_SHIFT 0 2467 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) 2468 #define ARM_TBFLAG_VECLEN_SHIFT 1 2469 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) 2470 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4 2471 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) 2472 #define ARM_TBFLAG_VFPEN_SHIFT 7 2473 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) 2474 #define ARM_TBFLAG_CONDEXEC_SHIFT 8 2475 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) 2476 #define ARM_TBFLAG_SCTLR_B_SHIFT 16 2477 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) 2478 /* We store the bottom two bits of the CPAR as TB flags and handle 2479 * checks on the other bits at runtime 2480 */ 2481 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 2482 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2483 /* Indicates whether cp register reads and writes by guest code should access 2484 * the secure or nonsecure bank of banked registers; note that this is not 2485 * the same thing as the current security state of the processor! 2486 */ 2487 #define ARM_TBFLAG_NS_SHIFT 19 2488 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) 2489 #define ARM_TBFLAG_BE_DATA_SHIFT 20 2490 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) 2491 /* For M profile only, Handler (ie not Thread) mode */ 2492 #define ARM_TBFLAG_HANDLER_SHIFT 21 2493 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT) 2494 2495 /* Bit usage when in AArch64 state */ 2496 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */ 2497 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT) 2498 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */ 2499 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT) 2500 2501 /* some convenience accessor macros */ 2502 #define ARM_TBFLAG_AARCH64_STATE(F) \ 2503 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) 2504 #define ARM_TBFLAG_MMUIDX(F) \ 2505 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) 2506 #define ARM_TBFLAG_SS_ACTIVE(F) \ 2507 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) 2508 #define ARM_TBFLAG_PSTATE_SS(F) \ 2509 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) 2510 #define ARM_TBFLAG_FPEXC_EL(F) \ 2511 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) 2512 #define ARM_TBFLAG_THUMB(F) \ 2513 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) 2514 #define ARM_TBFLAG_VECLEN(F) \ 2515 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) 2516 #define ARM_TBFLAG_VECSTRIDE(F) \ 2517 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) 2518 #define ARM_TBFLAG_VFPEN(F) \ 2519 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) 2520 #define ARM_TBFLAG_CONDEXEC(F) \ 2521 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) 2522 #define ARM_TBFLAG_SCTLR_B(F) \ 2523 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) 2524 #define ARM_TBFLAG_XSCALE_CPAR(F) \ 2525 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2526 #define ARM_TBFLAG_NS(F) \ 2527 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) 2528 #define ARM_TBFLAG_BE_DATA(F) \ 2529 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) 2530 #define ARM_TBFLAG_HANDLER(F) \ 2531 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT) 2532 #define ARM_TBFLAG_TBI0(F) \ 2533 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT) 2534 #define ARM_TBFLAG_TBI1(F) \ 2535 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT) 2536 2537 static inline bool bswap_code(bool sctlr_b) 2538 { 2539 #ifdef CONFIG_USER_ONLY 2540 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 2541 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 2542 * would also end up as a mixed-endian mode with BE code, LE data. 2543 */ 2544 return 2545 #ifdef TARGET_WORDS_BIGENDIAN 2546 1 ^ 2547 #endif 2548 sctlr_b; 2549 #else 2550 /* All code access in ARM is little endian, and there are no loaders 2551 * doing swaps that need to be reversed 2552 */ 2553 return 0; 2554 #endif 2555 } 2556 2557 /* Return the exception level to which FP-disabled exceptions should 2558 * be taken, or 0 if FP is enabled. 2559 */ 2560 static inline int fp_exception_el(CPUARMState *env) 2561 { 2562 int fpen; 2563 int cur_el = arm_current_el(env); 2564 2565 /* CPACR and the CPTR registers don't exist before v6, so FP is 2566 * always accessible 2567 */ 2568 if (!arm_feature(env, ARM_FEATURE_V6)) { 2569 return 0; 2570 } 2571 2572 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 2573 * 0, 2 : trap EL0 and EL1/PL1 accesses 2574 * 1 : trap only EL0 accesses 2575 * 3 : trap no accesses 2576 */ 2577 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 2578 switch (fpen) { 2579 case 0: 2580 case 2: 2581 if (cur_el == 0 || cur_el == 1) { 2582 /* Trap to PL1, which might be EL1 or EL3 */ 2583 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2584 return 3; 2585 } 2586 return 1; 2587 } 2588 if (cur_el == 3 && !is_a64(env)) { 2589 /* Secure PL1 running at EL3 */ 2590 return 3; 2591 } 2592 break; 2593 case 1: 2594 if (cur_el == 0) { 2595 return 1; 2596 } 2597 break; 2598 case 3: 2599 break; 2600 } 2601 2602 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 2603 * check because zero bits in the registers mean "don't trap". 2604 */ 2605 2606 /* CPTR_EL2 : present in v7VE or v8 */ 2607 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 2608 && !arm_is_secure_below_el3(env)) { 2609 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 2610 return 2; 2611 } 2612 2613 /* CPTR_EL3 : present in v8 */ 2614 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 2615 /* Trap all FP ops to EL3 */ 2616 return 3; 2617 } 2618 2619 return 0; 2620 } 2621 2622 #ifdef CONFIG_USER_ONLY 2623 static inline bool arm_cpu_bswap_data(CPUARMState *env) 2624 { 2625 return 2626 #ifdef TARGET_WORDS_BIGENDIAN 2627 1 ^ 2628 #endif 2629 arm_cpu_data_is_big_endian(env); 2630 } 2631 #endif 2632 2633 #ifndef CONFIG_USER_ONLY 2634 /** 2635 * arm_regime_tbi0: 2636 * @env: CPUARMState 2637 * @mmu_idx: MMU index indicating required translation regime 2638 * 2639 * Extracts the TBI0 value from the appropriate TCR for the current EL 2640 * 2641 * Returns: the TBI0 value. 2642 */ 2643 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx); 2644 2645 /** 2646 * arm_regime_tbi1: 2647 * @env: CPUARMState 2648 * @mmu_idx: MMU index indicating required translation regime 2649 * 2650 * Extracts the TBI1 value from the appropriate TCR for the current EL 2651 * 2652 * Returns: the TBI1 value. 2653 */ 2654 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx); 2655 #else 2656 /* We can't handle tagged addresses properly in user-only mode */ 2657 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 2658 { 2659 return 0; 2660 } 2661 2662 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 2663 { 2664 return 0; 2665 } 2666 #endif 2667 2668 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 2669 target_ulong *cs_base, uint32_t *flags) 2670 { 2671 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 2672 if (is_a64(env)) { 2673 *pc = env->pc; 2674 *flags = ARM_TBFLAG_AARCH64_STATE_MASK; 2675 /* Get control bits for tagged addresses */ 2676 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 2677 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 2678 } else { 2679 *pc = env->regs[15]; 2680 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 2681 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 2682 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 2683 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 2684 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 2685 if (!(access_secure_reg(env))) { 2686 *flags |= ARM_TBFLAG_NS_MASK; 2687 } 2688 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 2689 || arm_el_is_aa64(env, 1)) { 2690 *flags |= ARM_TBFLAG_VFPEN_MASK; 2691 } 2692 *flags |= (extract32(env->cp15.c15_cpar, 0, 2) 2693 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 2694 } 2695 2696 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 2697 2698 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 2699 * states defined in the ARM ARM for software singlestep: 2700 * SS_ACTIVE PSTATE.SS State 2701 * 0 x Inactive (the TB flag for SS is always 0) 2702 * 1 0 Active-pending 2703 * 1 1 Active-not-pending 2704 */ 2705 if (arm_singlestep_active(env)) { 2706 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 2707 if (is_a64(env)) { 2708 if (env->pstate & PSTATE_SS) { 2709 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2710 } 2711 } else { 2712 if (env->uncached_cpsr & PSTATE_SS) { 2713 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2714 } 2715 } 2716 } 2717 if (arm_cpu_data_is_big_endian(env)) { 2718 *flags |= ARM_TBFLAG_BE_DATA_MASK; 2719 } 2720 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; 2721 2722 if (arm_v7m_is_handler_mode(env)) { 2723 *flags |= ARM_TBFLAG_HANDLER_MASK; 2724 } 2725 2726 *cs_base = 0; 2727 } 2728 2729 enum { 2730 QEMU_PSCI_CONDUIT_DISABLED = 0, 2731 QEMU_PSCI_CONDUIT_SMC = 1, 2732 QEMU_PSCI_CONDUIT_HVC = 2, 2733 }; 2734 2735 #ifndef CONFIG_USER_ONLY 2736 /* Return the address space index to use for a memory access */ 2737 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 2738 { 2739 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 2740 } 2741 2742 /* Return the AddressSpace to use for a memory access 2743 * (which depends on whether the access is S or NS, and whether 2744 * the board gave us a separate AddressSpace for S accesses). 2745 */ 2746 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 2747 { 2748 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 2749 } 2750 #endif 2751 2752 /** 2753 * arm_register_el_change_hook: 2754 * Register a hook function which will be called back whenever this 2755 * CPU changes exception level or mode. The hook function will be 2756 * passed a pointer to the ARMCPU and the opaque data pointer passed 2757 * to this function when the hook was registered. 2758 * 2759 * Note that we currently only support registering a single hook function, 2760 * and will assert if this function is called twice. 2761 * This facility is intended for the use of the GICv3 emulation. 2762 */ 2763 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 2764 void *opaque); 2765 2766 /** 2767 * arm_get_el_change_hook_opaque: 2768 * Return the opaque data that will be used by the el_change_hook 2769 * for this CPU. 2770 */ 2771 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu) 2772 { 2773 return cpu->el_change_hook_opaque; 2774 } 2775 2776 #endif 2777