1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 #include "qapi/qapi-types-common.h" 28 29 /* ARM processors have a weak memory model */ 30 #define TCG_GUEST_DEFAULT_MO (0) 31 32 #ifdef TARGET_AARCH64 33 #define KVM_HAVE_MCE_INJECTION 1 34 #endif 35 36 #define EXCP_UDEF 1 /* undefined instruction */ 37 #define EXCP_SWI 2 /* software interrupt */ 38 #define EXCP_PREFETCH_ABORT 3 39 #define EXCP_DATA_ABORT 4 40 #define EXCP_IRQ 5 41 #define EXCP_FIQ 6 42 #define EXCP_BKPT 7 43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 45 #define EXCP_HVC 11 /* HyperVisor Call */ 46 #define EXCP_HYP_TRAP 12 47 #define EXCP_SMC 13 /* Secure Monitor Call */ 48 #define EXCP_VIRQ 14 49 #define EXCP_VFIQ 15 50 #define EXCP_SEMIHOST 16 /* semihosting call */ 51 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 52 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 53 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 54 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 55 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 56 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 58 59 #define ARMV7M_EXCP_RESET 1 60 #define ARMV7M_EXCP_NMI 2 61 #define ARMV7M_EXCP_HARD 3 62 #define ARMV7M_EXCP_MEM 4 63 #define ARMV7M_EXCP_BUS 5 64 #define ARMV7M_EXCP_USAGE 6 65 #define ARMV7M_EXCP_SECURE 7 66 #define ARMV7M_EXCP_SVC 11 67 #define ARMV7M_EXCP_DEBUG 12 68 #define ARMV7M_EXCP_PENDSV 14 69 #define ARMV7M_EXCP_SYSTICK 15 70 71 /* For M profile, some registers are banked secure vs non-secure; 72 * these are represented as a 2-element array where the first element 73 * is the non-secure copy and the second is the secure copy. 74 * When the CPU does not have implement the security extension then 75 * only the first element is used. 76 * This means that the copy for the current security state can be 77 * accessed via env->registerfield[env->v7m.secure] (whether the security 78 * extension is implemented or not). 79 */ 80 enum { 81 M_REG_NS = 0, 82 M_REG_S = 1, 83 M_REG_NUM_BANKS = 2, 84 }; 85 86 /* ARM-specific interrupt pending bits. */ 87 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 88 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 89 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 90 91 /* The usual mapping for an AArch64 system register to its AArch32 92 * counterpart is for the 32 bit world to have access to the lower 93 * half only (with writes leaving the upper half untouched). It's 94 * therefore useful to be able to pass TCG the offset of the least 95 * significant half of a uint64_t struct member. 96 */ 97 #ifdef HOST_WORDS_BIGENDIAN 98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 99 #define offsetofhigh32(S, M) offsetof(S, M) 100 #else 101 #define offsetoflow32(S, M) offsetof(S, M) 102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #endif 104 105 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 106 #define ARM_CPU_IRQ 0 107 #define ARM_CPU_FIQ 1 108 #define ARM_CPU_VIRQ 2 109 #define ARM_CPU_VFIQ 3 110 111 /* ARM-specific extra insn start words: 112 * 1: Conditional execution bits 113 * 2: Partial exception syndrome for data aborts 114 */ 115 #define TARGET_INSN_START_EXTRA_WORDS 2 116 117 /* The 2nd extra word holding syndrome info for data aborts does not use 118 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 119 * help the sleb128 encoder do a better job. 120 * When restoring the CPU state, we shift it back up. 121 */ 122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 123 #define ARM_INSN_START_WORD2_SHIFT 14 124 125 /* We currently assume float and double are IEEE single and double 126 precision respectively. 127 Doing runtime conversions is tricky because VFP registers may contain 128 integer values (eg. as the result of a FTOSI instruction). 129 s<2n> maps to the least significant half of d<n> 130 s<2n+1> maps to the most significant half of d<n> 131 */ 132 133 /** 134 * DynamicGDBXMLInfo: 135 * @desc: Contains the XML descriptions. 136 * @num: Number of the registers in this XML seen by GDB. 137 * @data: A union with data specific to the set of registers 138 * @cpregs_keys: Array that contains the corresponding Key of 139 * a given cpreg with the same order of the cpreg 140 * in the XML description. 141 */ 142 typedef struct DynamicGDBXMLInfo { 143 char *desc; 144 int num; 145 union { 146 struct { 147 uint32_t *keys; 148 } cpregs; 149 } data; 150 } DynamicGDBXMLInfo; 151 152 /* CPU state for each instance of a generic timer (in cp15 c14) */ 153 typedef struct ARMGenericTimer { 154 uint64_t cval; /* Timer CompareValue register */ 155 uint64_t ctl; /* Timer Control register */ 156 } ARMGenericTimer; 157 158 #define GTIMER_PHYS 0 159 #define GTIMER_VIRT 1 160 #define GTIMER_HYP 2 161 #define GTIMER_SEC 3 162 #define GTIMER_HYPVIRT 4 163 #define NUM_GTIMERS 5 164 165 typedef struct { 166 uint64_t raw_tcr; 167 uint32_t mask; 168 uint32_t base_mask; 169 } TCR; 170 171 #define VTCR_NSW (1u << 29) 172 #define VTCR_NSA (1u << 30) 173 #define VSTCR_SW VTCR_NSW 174 #define VSTCR_SA VTCR_NSA 175 176 /* Define a maximum sized vector register. 177 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 178 * For 64-bit, this is a 2048-bit SVE register. 179 * 180 * Note that the mapping between S, D, and Q views of the register bank 181 * differs between AArch64 and AArch32. 182 * In AArch32: 183 * Qn = regs[n].d[1]:regs[n].d[0] 184 * Dn = regs[n / 2].d[n & 1] 185 * Sn = regs[n / 4].d[n % 4 / 2], 186 * bits 31..0 for even n, and bits 63..32 for odd n 187 * (and regs[16] to regs[31] are inaccessible) 188 * In AArch64: 189 * Zn = regs[n].d[*] 190 * Qn = regs[n].d[1]:regs[n].d[0] 191 * Dn = regs[n].d[0] 192 * Sn = regs[n].d[0] bits 31..0 193 * Hn = regs[n].d[0] bits 15..0 194 * 195 * This corresponds to the architecturally defined mapping between 196 * the two execution states, and means we do not need to explicitly 197 * map these registers when changing states. 198 * 199 * Align the data for use with TCG host vector operations. 200 */ 201 202 #ifdef TARGET_AARCH64 203 # define ARM_MAX_VQ 16 204 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 205 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); 206 #else 207 # define ARM_MAX_VQ 1 208 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 209 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { } 210 #endif 211 212 typedef struct ARMVectorReg { 213 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 214 } ARMVectorReg; 215 216 #ifdef TARGET_AARCH64 217 /* In AArch32 mode, predicate registers do not exist at all. */ 218 typedef struct ARMPredicateReg { 219 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 220 } ARMPredicateReg; 221 222 /* In AArch32 mode, PAC keys do not exist at all. */ 223 typedef struct ARMPACKey { 224 uint64_t lo, hi; 225 } ARMPACKey; 226 #endif 227 228 229 typedef struct CPUARMState { 230 /* Regs for current mode. */ 231 uint32_t regs[16]; 232 233 /* 32/64 switch only happens when taking and returning from 234 * exceptions so the overlap semantics are taken care of then 235 * instead of having a complicated union. 236 */ 237 /* Regs for A64 mode. */ 238 uint64_t xregs[32]; 239 uint64_t pc; 240 /* PSTATE isn't an architectural register for ARMv8. However, it is 241 * convenient for us to assemble the underlying state into a 32 bit format 242 * identical to the architectural format used for the SPSR. (This is also 243 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 244 * 'pstate' register are.) Of the PSTATE bits: 245 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 246 * semantics as for AArch32, as described in the comments on each field) 247 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 248 * DAIF (exception masks) are kept in env->daif 249 * BTYPE is kept in env->btype 250 * all other bits are stored in their correct places in env->pstate 251 */ 252 uint32_t pstate; 253 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 254 255 /* Cached TBFLAGS state. See below for which bits are included. */ 256 uint32_t hflags; 257 258 /* Frequently accessed CPSR bits are stored separately for efficiency. 259 This contains all the other bits. Use cpsr_{read,write} to access 260 the whole CPSR. */ 261 uint32_t uncached_cpsr; 262 uint32_t spsr; 263 264 /* Banked registers. */ 265 uint64_t banked_spsr[8]; 266 uint32_t banked_r13[8]; 267 uint32_t banked_r14[8]; 268 269 /* These hold r8-r12. */ 270 uint32_t usr_regs[5]; 271 uint32_t fiq_regs[5]; 272 273 /* cpsr flag cache for faster execution */ 274 uint32_t CF; /* 0 or 1 */ 275 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 276 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 277 uint32_t ZF; /* Z set if zero. */ 278 uint32_t QF; /* 0 or 1 */ 279 uint32_t GE; /* cpsr[19:16] */ 280 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 281 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 282 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 283 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 284 285 uint64_t elr_el[4]; /* AArch64 exception link regs */ 286 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 287 288 /* System control coprocessor (cp15) */ 289 struct { 290 uint32_t c0_cpuid; 291 union { /* Cache size selection */ 292 struct { 293 uint64_t _unused_csselr0; 294 uint64_t csselr_ns; 295 uint64_t _unused_csselr1; 296 uint64_t csselr_s; 297 }; 298 uint64_t csselr_el[4]; 299 }; 300 union { /* System control register. */ 301 struct { 302 uint64_t _unused_sctlr; 303 uint64_t sctlr_ns; 304 uint64_t hsctlr; 305 uint64_t sctlr_s; 306 }; 307 uint64_t sctlr_el[4]; 308 }; 309 uint64_t cpacr_el1; /* Architectural feature access control register */ 310 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 311 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 312 uint64_t sder; /* Secure debug enable register. */ 313 uint32_t nsacr; /* Non-secure access control register. */ 314 union { /* MMU translation table base 0. */ 315 struct { 316 uint64_t _unused_ttbr0_0; 317 uint64_t ttbr0_ns; 318 uint64_t _unused_ttbr0_1; 319 uint64_t ttbr0_s; 320 }; 321 uint64_t ttbr0_el[4]; 322 }; 323 union { /* MMU translation table base 1. */ 324 struct { 325 uint64_t _unused_ttbr1_0; 326 uint64_t ttbr1_ns; 327 uint64_t _unused_ttbr1_1; 328 uint64_t ttbr1_s; 329 }; 330 uint64_t ttbr1_el[4]; 331 }; 332 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 333 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ 334 /* MMU translation table base control. */ 335 TCR tcr_el[4]; 336 TCR vtcr_el2; /* Virtualization Translation Control. */ 337 TCR vstcr_el2; /* Secure Virtualization Translation Control. */ 338 uint32_t c2_data; /* MPU data cacheable bits. */ 339 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 340 union { /* MMU domain access control register 341 * MPU write buffer control. 342 */ 343 struct { 344 uint64_t dacr_ns; 345 uint64_t dacr_s; 346 }; 347 struct { 348 uint64_t dacr32_el2; 349 }; 350 }; 351 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 352 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 353 uint64_t hcr_el2; /* Hypervisor configuration register */ 354 uint64_t scr_el3; /* Secure configuration register. */ 355 union { /* Fault status registers. */ 356 struct { 357 uint64_t ifsr_ns; 358 uint64_t ifsr_s; 359 }; 360 struct { 361 uint64_t ifsr32_el2; 362 }; 363 }; 364 union { 365 struct { 366 uint64_t _unused_dfsr; 367 uint64_t dfsr_ns; 368 uint64_t hsr; 369 uint64_t dfsr_s; 370 }; 371 uint64_t esr_el[4]; 372 }; 373 uint32_t c6_region[8]; /* MPU base/size registers. */ 374 union { /* Fault address registers. */ 375 struct { 376 uint64_t _unused_far0; 377 #ifdef HOST_WORDS_BIGENDIAN 378 uint32_t ifar_ns; 379 uint32_t dfar_ns; 380 uint32_t ifar_s; 381 uint32_t dfar_s; 382 #else 383 uint32_t dfar_ns; 384 uint32_t ifar_ns; 385 uint32_t dfar_s; 386 uint32_t ifar_s; 387 #endif 388 uint64_t _unused_far3; 389 }; 390 uint64_t far_el[4]; 391 }; 392 uint64_t hpfar_el2; 393 uint64_t hstr_el2; 394 union { /* Translation result. */ 395 struct { 396 uint64_t _unused_par_0; 397 uint64_t par_ns; 398 uint64_t _unused_par_1; 399 uint64_t par_s; 400 }; 401 uint64_t par_el[4]; 402 }; 403 404 uint32_t c9_insn; /* Cache lockdown registers. */ 405 uint32_t c9_data; 406 uint64_t c9_pmcr; /* performance monitor control register */ 407 uint64_t c9_pmcnten; /* perf monitor counter enables */ 408 uint64_t c9_pmovsr; /* perf monitor overflow status */ 409 uint64_t c9_pmuserenr; /* perf monitor user enable */ 410 uint64_t c9_pmselr; /* perf monitor counter selection register */ 411 uint64_t c9_pminten; /* perf monitor interrupt enables */ 412 union { /* Memory attribute redirection */ 413 struct { 414 #ifdef HOST_WORDS_BIGENDIAN 415 uint64_t _unused_mair_0; 416 uint32_t mair1_ns; 417 uint32_t mair0_ns; 418 uint64_t _unused_mair_1; 419 uint32_t mair1_s; 420 uint32_t mair0_s; 421 #else 422 uint64_t _unused_mair_0; 423 uint32_t mair0_ns; 424 uint32_t mair1_ns; 425 uint64_t _unused_mair_1; 426 uint32_t mair0_s; 427 uint32_t mair1_s; 428 #endif 429 }; 430 uint64_t mair_el[4]; 431 }; 432 union { /* vector base address register */ 433 struct { 434 uint64_t _unused_vbar; 435 uint64_t vbar_ns; 436 uint64_t hvbar; 437 uint64_t vbar_s; 438 }; 439 uint64_t vbar_el[4]; 440 }; 441 uint32_t mvbar; /* (monitor) vector base address register */ 442 struct { /* FCSE PID. */ 443 uint32_t fcseidr_ns; 444 uint32_t fcseidr_s; 445 }; 446 union { /* Context ID. */ 447 struct { 448 uint64_t _unused_contextidr_0; 449 uint64_t contextidr_ns; 450 uint64_t _unused_contextidr_1; 451 uint64_t contextidr_s; 452 }; 453 uint64_t contextidr_el[4]; 454 }; 455 union { /* User RW Thread register. */ 456 struct { 457 uint64_t tpidrurw_ns; 458 uint64_t tpidrprw_ns; 459 uint64_t htpidr; 460 uint64_t _tpidr_el3; 461 }; 462 uint64_t tpidr_el[4]; 463 }; 464 /* The secure banks of these registers don't map anywhere */ 465 uint64_t tpidrurw_s; 466 uint64_t tpidrprw_s; 467 uint64_t tpidruro_s; 468 469 union { /* User RO Thread register. */ 470 uint64_t tpidruro_ns; 471 uint64_t tpidrro_el[1]; 472 }; 473 uint64_t c14_cntfrq; /* Counter Frequency register */ 474 uint64_t c14_cntkctl; /* Timer Control register */ 475 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 476 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 477 ARMGenericTimer c14_timer[NUM_GTIMERS]; 478 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 479 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 480 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 481 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 482 uint32_t c15_threadid; /* TI debugger thread-ID. */ 483 uint32_t c15_config_base_address; /* SCU base address. */ 484 uint32_t c15_diagnostic; /* diagnostic register */ 485 uint32_t c15_power_diagnostic; 486 uint32_t c15_power_control; /* power control */ 487 uint64_t dbgbvr[16]; /* breakpoint value registers */ 488 uint64_t dbgbcr[16]; /* breakpoint control registers */ 489 uint64_t dbgwvr[16]; /* watchpoint value registers */ 490 uint64_t dbgwcr[16]; /* watchpoint control registers */ 491 uint64_t mdscr_el1; 492 uint64_t oslsr_el1; /* OS Lock Status */ 493 uint64_t mdcr_el2; 494 uint64_t mdcr_el3; 495 /* Stores the architectural value of the counter *the last time it was 496 * updated* by pmccntr_op_start. Accesses should always be surrounded 497 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 498 * architecturally-correct value is being read/set. 499 */ 500 uint64_t c15_ccnt; 501 /* Stores the delta between the architectural value and the underlying 502 * cycle count during normal operation. It is used to update c15_ccnt 503 * to be the correct architectural value before accesses. During 504 * accesses, c15_ccnt_delta contains the underlying count being used 505 * for the access, after which it reverts to the delta value in 506 * pmccntr_op_finish. 507 */ 508 uint64_t c15_ccnt_delta; 509 uint64_t c14_pmevcntr[31]; 510 uint64_t c14_pmevcntr_delta[31]; 511 uint64_t c14_pmevtyper[31]; 512 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 513 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 514 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 515 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 516 uint64_t gcr_el1; 517 uint64_t rgsr_el1; 518 } cp15; 519 520 struct { 521 /* M profile has up to 4 stack pointers: 522 * a Main Stack Pointer and a Process Stack Pointer for each 523 * of the Secure and Non-Secure states. (If the CPU doesn't support 524 * the security extension then it has only two SPs.) 525 * In QEMU we always store the currently active SP in regs[13], 526 * and the non-active SP for the current security state in 527 * v7m.other_sp. The stack pointers for the inactive security state 528 * are stored in other_ss_msp and other_ss_psp. 529 * switch_v7m_security_state() is responsible for rearranging them 530 * when we change security state. 531 */ 532 uint32_t other_sp; 533 uint32_t other_ss_msp; 534 uint32_t other_ss_psp; 535 uint32_t vecbase[M_REG_NUM_BANKS]; 536 uint32_t basepri[M_REG_NUM_BANKS]; 537 uint32_t control[M_REG_NUM_BANKS]; 538 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 539 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 540 uint32_t hfsr; /* HardFault Status */ 541 uint32_t dfsr; /* Debug Fault Status Register */ 542 uint32_t sfsr; /* Secure Fault Status Register */ 543 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 544 uint32_t bfar; /* BusFault Address */ 545 uint32_t sfar; /* Secure Fault Address Register */ 546 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 547 int exception; 548 uint32_t primask[M_REG_NUM_BANKS]; 549 uint32_t faultmask[M_REG_NUM_BANKS]; 550 uint32_t aircr; /* only holds r/w state if security extn implemented */ 551 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 552 uint32_t csselr[M_REG_NUM_BANKS]; 553 uint32_t scr[M_REG_NUM_BANKS]; 554 uint32_t msplim[M_REG_NUM_BANKS]; 555 uint32_t psplim[M_REG_NUM_BANKS]; 556 uint32_t fpcar[M_REG_NUM_BANKS]; 557 uint32_t fpccr[M_REG_NUM_BANKS]; 558 uint32_t fpdscr[M_REG_NUM_BANKS]; 559 uint32_t cpacr[M_REG_NUM_BANKS]; 560 uint32_t nsacr; 561 int ltpsize; 562 } v7m; 563 564 /* Information associated with an exception about to be taken: 565 * code which raises an exception must set cs->exception_index and 566 * the relevant parts of this structure; the cpu_do_interrupt function 567 * will then set the guest-visible registers as part of the exception 568 * entry process. 569 */ 570 struct { 571 uint32_t syndrome; /* AArch64 format syndrome register */ 572 uint32_t fsr; /* AArch32 format fault status register info */ 573 uint64_t vaddress; /* virtual addr associated with exception, if any */ 574 uint32_t target_el; /* EL the exception should be targeted for */ 575 /* If we implement EL2 we will also need to store information 576 * about the intermediate physical address for stage 2 faults. 577 */ 578 } exception; 579 580 /* Information associated with an SError */ 581 struct { 582 uint8_t pending; 583 uint8_t has_esr; 584 uint64_t esr; 585 } serror; 586 587 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 588 589 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 590 uint32_t irq_line_state; 591 592 /* Thumb-2 EE state. */ 593 uint32_t teecr; 594 uint32_t teehbr; 595 596 /* VFP coprocessor state. */ 597 struct { 598 ARMVectorReg zregs[32]; 599 600 #ifdef TARGET_AARCH64 601 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 602 #define FFR_PRED_NUM 16 603 ARMPredicateReg pregs[17]; 604 /* Scratch space for aa64 sve predicate temporary. */ 605 ARMPredicateReg preg_tmp; 606 #endif 607 608 /* We store these fpcsr fields separately for convenience. */ 609 uint32_t qc[4] QEMU_ALIGNED(16); 610 int vec_len; 611 int vec_stride; 612 613 uint32_t xregs[16]; 614 615 /* Scratch space for aa32 neon expansion. */ 616 uint32_t scratch[8]; 617 618 /* There are a number of distinct float control structures: 619 * 620 * fp_status: is the "normal" fp status. 621 * fp_status_fp16: used for half-precision calculations 622 * standard_fp_status : the ARM "Standard FPSCR Value" 623 * standard_fp_status_fp16 : used for half-precision 624 * calculations with the ARM "Standard FPSCR Value" 625 * 626 * Half-precision operations are governed by a separate 627 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 628 * status structure to control this. 629 * 630 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 631 * round-to-nearest and is used by any operations (generally 632 * Neon) which the architecture defines as controlled by the 633 * standard FPSCR value rather than the FPSCR. 634 * 635 * The "standard FPSCR but for fp16 ops" is needed because 636 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 637 * using a fixed value for it. 638 * 639 * To avoid having to transfer exception bits around, we simply 640 * say that the FPSCR cumulative exception flags are the logical 641 * OR of the flags in the four fp statuses. This relies on the 642 * only thing which needs to read the exception flags being 643 * an explicit FPSCR read. 644 */ 645 float_status fp_status; 646 float_status fp_status_f16; 647 float_status standard_fp_status; 648 float_status standard_fp_status_f16; 649 650 /* ZCR_EL[1-3] */ 651 uint64_t zcr_el[4]; 652 } vfp; 653 uint64_t exclusive_addr; 654 uint64_t exclusive_val; 655 uint64_t exclusive_high; 656 657 /* iwMMXt coprocessor state. */ 658 struct { 659 uint64_t regs[16]; 660 uint64_t val; 661 662 uint32_t cregs[16]; 663 } iwmmxt; 664 665 #ifdef TARGET_AARCH64 666 struct { 667 ARMPACKey apia; 668 ARMPACKey apib; 669 ARMPACKey apda; 670 ARMPACKey apdb; 671 ARMPACKey apga; 672 } keys; 673 #endif 674 675 #if defined(CONFIG_USER_ONLY) 676 /* For usermode syscall translation. */ 677 int eabi; 678 #endif 679 680 struct CPUBreakpoint *cpu_breakpoint[16]; 681 struct CPUWatchpoint *cpu_watchpoint[16]; 682 683 /* Fields up to this point are cleared by a CPU reset */ 684 struct {} end_reset_fields; 685 686 /* Fields after this point are preserved across CPU reset. */ 687 688 /* Internal CPU feature flags. */ 689 uint64_t features; 690 691 /* PMSAv7 MPU */ 692 struct { 693 uint32_t *drbar; 694 uint32_t *drsr; 695 uint32_t *dracr; 696 uint32_t rnr[M_REG_NUM_BANKS]; 697 } pmsav7; 698 699 /* PMSAv8 MPU */ 700 struct { 701 /* The PMSAv8 implementation also shares some PMSAv7 config 702 * and state: 703 * pmsav7.rnr (region number register) 704 * pmsav7_dregion (number of configured regions) 705 */ 706 uint32_t *rbar[M_REG_NUM_BANKS]; 707 uint32_t *rlar[M_REG_NUM_BANKS]; 708 uint32_t mair0[M_REG_NUM_BANKS]; 709 uint32_t mair1[M_REG_NUM_BANKS]; 710 } pmsav8; 711 712 /* v8M SAU */ 713 struct { 714 uint32_t *rbar; 715 uint32_t *rlar; 716 uint32_t rnr; 717 uint32_t ctrl; 718 } sau; 719 720 void *nvic; 721 const struct arm_boot_info *boot_info; 722 /* Store GICv3CPUState to access from this struct */ 723 void *gicv3state; 724 725 #ifdef TARGET_TAGGED_ADDRESSES 726 /* Linux syscall tagged address support */ 727 bool tagged_addr_enable; 728 #endif 729 } CPUARMState; 730 731 static inline void set_feature(CPUARMState *env, int feature) 732 { 733 env->features |= 1ULL << feature; 734 } 735 736 static inline void unset_feature(CPUARMState *env, int feature) 737 { 738 env->features &= ~(1ULL << feature); 739 } 740 741 /** 742 * ARMELChangeHookFn: 743 * type of a function which can be registered via arm_register_el_change_hook() 744 * to get callbacks when the CPU changes its exception level or mode. 745 */ 746 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 747 typedef struct ARMELChangeHook ARMELChangeHook; 748 struct ARMELChangeHook { 749 ARMELChangeHookFn *hook; 750 void *opaque; 751 QLIST_ENTRY(ARMELChangeHook) node; 752 }; 753 754 /* These values map onto the return values for 755 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 756 typedef enum ARMPSCIState { 757 PSCI_ON = 0, 758 PSCI_OFF = 1, 759 PSCI_ON_PENDING = 2 760 } ARMPSCIState; 761 762 typedef struct ARMISARegisters ARMISARegisters; 763 764 /** 765 * ARMCPU: 766 * @env: #CPUARMState 767 * 768 * An ARM CPU core. 769 */ 770 struct ARMCPU { 771 /*< private >*/ 772 CPUState parent_obj; 773 /*< public >*/ 774 775 CPUNegativeOffsetState neg; 776 CPUARMState env; 777 778 /* Coprocessor information */ 779 GHashTable *cp_regs; 780 /* For marshalling (mostly coprocessor) register state between the 781 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 782 * we use these arrays. 783 */ 784 /* List of register indexes managed via these arrays; (full KVM style 785 * 64 bit indexes, not CPRegInfo 32 bit indexes) 786 */ 787 uint64_t *cpreg_indexes; 788 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 789 uint64_t *cpreg_values; 790 /* Length of the indexes, values, reset_values arrays */ 791 int32_t cpreg_array_len; 792 /* These are used only for migration: incoming data arrives in 793 * these fields and is sanity checked in post_load before copying 794 * to the working data structures above. 795 */ 796 uint64_t *cpreg_vmstate_indexes; 797 uint64_t *cpreg_vmstate_values; 798 int32_t cpreg_vmstate_array_len; 799 800 DynamicGDBXMLInfo dyn_sysreg_xml; 801 DynamicGDBXMLInfo dyn_svereg_xml; 802 803 /* Timers used by the generic (architected) timer */ 804 QEMUTimer *gt_timer[NUM_GTIMERS]; 805 /* 806 * Timer used by the PMU. Its state is restored after migration by 807 * pmu_op_finish() - it does not need other handling during migration 808 */ 809 QEMUTimer *pmu_timer; 810 /* GPIO outputs for generic timer */ 811 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 812 /* GPIO output for GICv3 maintenance interrupt signal */ 813 qemu_irq gicv3_maintenance_interrupt; 814 /* GPIO output for the PMU interrupt */ 815 qemu_irq pmu_interrupt; 816 817 /* MemoryRegion to use for secure physical accesses */ 818 MemoryRegion *secure_memory; 819 820 /* MemoryRegion to use for allocation tag accesses */ 821 MemoryRegion *tag_memory; 822 MemoryRegion *secure_tag_memory; 823 824 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 825 Object *idau; 826 827 /* 'compatible' string for this CPU for Linux device trees */ 828 const char *dtb_compatible; 829 830 /* PSCI version for this CPU 831 * Bits[31:16] = Major Version 832 * Bits[15:0] = Minor Version 833 */ 834 uint32_t psci_version; 835 836 /* Current power state, access guarded by BQL */ 837 ARMPSCIState power_state; 838 839 /* CPU has virtualization extension */ 840 bool has_el2; 841 /* CPU has security extension */ 842 bool has_el3; 843 /* CPU has PMU (Performance Monitor Unit) */ 844 bool has_pmu; 845 /* CPU has VFP */ 846 bool has_vfp; 847 /* CPU has Neon */ 848 bool has_neon; 849 /* CPU has M-profile DSP extension */ 850 bool has_dsp; 851 852 /* CPU has memory protection unit */ 853 bool has_mpu; 854 /* PMSAv7 MPU number of supported regions */ 855 uint32_t pmsav7_dregion; 856 /* v8M SAU number of supported regions */ 857 uint32_t sau_sregion; 858 859 /* PSCI conduit used to invoke PSCI methods 860 * 0 - disabled, 1 - smc, 2 - hvc 861 */ 862 uint32_t psci_conduit; 863 864 /* For v8M, initial value of the Secure VTOR */ 865 uint32_t init_svtor; 866 867 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 868 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 869 */ 870 uint32_t kvm_target; 871 872 /* KVM init features for this CPU */ 873 uint32_t kvm_init_features[7]; 874 875 /* KVM CPU state */ 876 877 /* KVM virtual time adjustment */ 878 bool kvm_adjvtime; 879 bool kvm_vtime_dirty; 880 uint64_t kvm_vtime; 881 882 /* KVM steal time */ 883 OnOffAuto kvm_steal_time; 884 885 /* Uniprocessor system with MP extensions */ 886 bool mp_is_up; 887 888 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 889 * and the probe failed (so we need to report the error in realize) 890 */ 891 bool host_cpu_probe_failed; 892 893 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 894 * register. 895 */ 896 int32_t core_count; 897 898 /* The instance init functions for implementation-specific subclasses 899 * set these fields to specify the implementation-dependent values of 900 * various constant registers and reset values of non-constant 901 * registers. 902 * Some of these might become QOM properties eventually. 903 * Field names match the official register names as defined in the 904 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 905 * is used for reset values of non-constant registers; no reset_ 906 * prefix means a constant register. 907 * Some of these registers are split out into a substructure that 908 * is shared with the translators to control the ISA. 909 * 910 * Note that if you add an ID register to the ARMISARegisters struct 911 * you need to also update the 32-bit and 64-bit versions of the 912 * kvm_arm_get_host_cpu_features() function to correctly populate the 913 * field by reading the value from the KVM vCPU. 914 */ 915 struct ARMISARegisters { 916 uint32_t id_isar0; 917 uint32_t id_isar1; 918 uint32_t id_isar2; 919 uint32_t id_isar3; 920 uint32_t id_isar4; 921 uint32_t id_isar5; 922 uint32_t id_isar6; 923 uint32_t id_mmfr0; 924 uint32_t id_mmfr1; 925 uint32_t id_mmfr2; 926 uint32_t id_mmfr3; 927 uint32_t id_mmfr4; 928 uint32_t id_pfr0; 929 uint32_t id_pfr1; 930 uint32_t id_pfr2; 931 uint32_t mvfr0; 932 uint32_t mvfr1; 933 uint32_t mvfr2; 934 uint32_t id_dfr0; 935 uint32_t dbgdidr; 936 uint64_t id_aa64isar0; 937 uint64_t id_aa64isar1; 938 uint64_t id_aa64pfr0; 939 uint64_t id_aa64pfr1; 940 uint64_t id_aa64mmfr0; 941 uint64_t id_aa64mmfr1; 942 uint64_t id_aa64mmfr2; 943 uint64_t id_aa64dfr0; 944 uint64_t id_aa64dfr1; 945 } isar; 946 uint64_t midr; 947 uint32_t revidr; 948 uint32_t reset_fpsid; 949 uint64_t ctr; 950 uint32_t reset_sctlr; 951 uint64_t pmceid0; 952 uint64_t pmceid1; 953 uint32_t id_afr0; 954 uint64_t id_aa64afr0; 955 uint64_t id_aa64afr1; 956 uint64_t clidr; 957 uint64_t mp_affinity; /* MP ID without feature bits */ 958 /* The elements of this array are the CCSIDR values for each cache, 959 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 960 */ 961 uint64_t ccsidr[16]; 962 uint64_t reset_cbar; 963 uint32_t reset_auxcr; 964 bool reset_hivecs; 965 966 /* 967 * Intermediate values used during property parsing. 968 * Once finalized, the values should be read from ID_AA64ISAR1. 969 */ 970 bool prop_pauth; 971 bool prop_pauth_impdef; 972 973 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 974 uint32_t dcz_blocksize; 975 uint64_t rvbar; 976 977 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 978 int gic_num_lrs; /* number of list registers */ 979 int gic_vpribits; /* number of virtual priority bits */ 980 int gic_vprebits; /* number of virtual preemption bits */ 981 982 /* Whether the cfgend input is high (i.e. this CPU should reset into 983 * big-endian mode). This setting isn't used directly: instead it modifies 984 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 985 * architecture version. 986 */ 987 bool cfgend; 988 989 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 990 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 991 992 int32_t node_id; /* NUMA node this CPU belongs to */ 993 994 /* Used to synchronize KVM and QEMU in-kernel device levels */ 995 uint8_t device_irq_level; 996 997 /* Used to set the maximum vector length the cpu will support. */ 998 uint32_t sve_max_vq; 999 1000 /* 1001 * In sve_vq_map each set bit is a supported vector length of 1002 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 1003 * length in quadwords. 1004 * 1005 * While processing properties during initialization, corresponding 1006 * sve_vq_init bits are set for bits in sve_vq_map that have been 1007 * set by properties. 1008 */ 1009 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 1010 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 1011 1012 /* Generic timer counter frequency, in Hz */ 1013 uint64_t gt_cntfrq_hz; 1014 }; 1015 1016 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 1017 1018 void arm_cpu_post_init(Object *obj); 1019 1020 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 1021 1022 #ifndef CONFIG_USER_ONLY 1023 extern const VMStateDescription vmstate_arm_cpu; 1024 #endif 1025 1026 void arm_cpu_do_interrupt(CPUState *cpu); 1027 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1028 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 1029 1030 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1031 MemTxAttrs *attrs); 1032 1033 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1034 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1035 1036 /* 1037 * Helpers to dynamically generates XML descriptions of the sysregs 1038 * and SVE registers. Returns the number of registers in each set. 1039 */ 1040 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1041 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1042 1043 /* Returns the dynamically generated XML for the gdb stub. 1044 * Returns a pointer to the XML contents for the specified XML file or NULL 1045 * if the XML name doesn't match the predefined one. 1046 */ 1047 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1048 1049 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1050 int cpuid, void *opaque); 1051 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1052 int cpuid, void *opaque); 1053 1054 #ifdef TARGET_AARCH64 1055 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1056 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1057 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1058 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1059 int new_el, bool el0_a64); 1060 void aarch64_add_sve_properties(Object *obj); 1061 1062 /* 1063 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1064 * The byte at offset i from the start of the in-memory representation contains 1065 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1066 * lowest offsets are stored in the lowest memory addresses, then that nearly 1067 * matches QEMU's representation, which is to use an array of host-endian 1068 * uint64_t's, where the lower offsets are at the lower indices. To complete 1069 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1070 */ 1071 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1072 { 1073 #ifdef HOST_WORDS_BIGENDIAN 1074 int i; 1075 1076 for (i = 0; i < nr; ++i) { 1077 dst[i] = bswap64(src[i]); 1078 } 1079 1080 return dst; 1081 #else 1082 return src; 1083 #endif 1084 } 1085 1086 #else 1087 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1088 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1089 int n, bool a) 1090 { } 1091 static inline void aarch64_add_sve_properties(Object *obj) { } 1092 #endif 1093 1094 void aarch64_sync_32_to_64(CPUARMState *env); 1095 void aarch64_sync_64_to_32(CPUARMState *env); 1096 1097 int fp_exception_el(CPUARMState *env, int cur_el); 1098 int sve_exception_el(CPUARMState *env, int cur_el); 1099 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1100 1101 static inline bool is_a64(CPUARMState *env) 1102 { 1103 return env->aarch64; 1104 } 1105 1106 /* you can call this signal handler from your SIGBUS and SIGSEGV 1107 signal handlers to inform the virtual CPU of exceptions. non zero 1108 is returned if the signal was handled by the virtual CPU. */ 1109 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1110 void *puc); 1111 1112 /** 1113 * pmu_op_start/finish 1114 * @env: CPUARMState 1115 * 1116 * Convert all PMU counters between their delta form (the typical mode when 1117 * they are enabled) and the guest-visible values. These two calls must 1118 * surround any action which might affect the counters. 1119 */ 1120 void pmu_op_start(CPUARMState *env); 1121 void pmu_op_finish(CPUARMState *env); 1122 1123 /* 1124 * Called when a PMU counter is due to overflow 1125 */ 1126 void arm_pmu_timer_cb(void *opaque); 1127 1128 /** 1129 * Functions to register as EL change hooks for PMU mode filtering 1130 */ 1131 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1132 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1133 1134 /* 1135 * pmu_init 1136 * @cpu: ARMCPU 1137 * 1138 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1139 * for the current configuration 1140 */ 1141 void pmu_init(ARMCPU *cpu); 1142 1143 /* SCTLR bit meanings. Several bits have been reused in newer 1144 * versions of the architecture; in that case we define constants 1145 * for both old and new bit meanings. Code which tests against those 1146 * bits should probably check or otherwise arrange that the CPU 1147 * is the architectural version it expects. 1148 */ 1149 #define SCTLR_M (1U << 0) 1150 #define SCTLR_A (1U << 1) 1151 #define SCTLR_C (1U << 2) 1152 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1153 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1154 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1155 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1156 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1157 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1158 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1159 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1160 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1161 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1162 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1163 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1164 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1165 #define SCTLR_SED (1U << 8) /* v8 onward */ 1166 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1167 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1168 #define SCTLR_F (1U << 10) /* up to v6 */ 1169 #define SCTLR_SW (1U << 10) /* v7 */ 1170 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1171 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1172 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1173 #define SCTLR_I (1U << 12) 1174 #define SCTLR_V (1U << 13) /* AArch32 only */ 1175 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1176 #define SCTLR_RR (1U << 14) /* up to v7 */ 1177 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1178 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1179 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1180 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1181 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1182 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1183 #define SCTLR_BR (1U << 17) /* PMSA only */ 1184 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1185 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1186 #define SCTLR_WXN (1U << 19) 1187 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1188 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1189 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1190 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1191 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1192 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1193 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1194 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1195 #define SCTLR_VE (1U << 24) /* up to v7 */ 1196 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1197 #define SCTLR_EE (1U << 25) 1198 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1199 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1200 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1201 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1202 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1203 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1204 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1205 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1206 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1207 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1208 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1209 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ 1210 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1211 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1212 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1213 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1214 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1215 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1216 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1217 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ 1218 1219 #define CPTR_TCPAC (1U << 31) 1220 #define CPTR_TTA (1U << 20) 1221 #define CPTR_TFP (1U << 10) 1222 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1223 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1224 1225 #define MDCR_EPMAD (1U << 21) 1226 #define MDCR_EDAD (1U << 20) 1227 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1228 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1229 #define MDCR_SDD (1U << 16) 1230 #define MDCR_SPD (3U << 14) 1231 #define MDCR_TDRA (1U << 11) 1232 #define MDCR_TDOSA (1U << 10) 1233 #define MDCR_TDA (1U << 9) 1234 #define MDCR_TDE (1U << 8) 1235 #define MDCR_HPME (1U << 7) 1236 #define MDCR_TPM (1U << 6) 1237 #define MDCR_TPMCR (1U << 5) 1238 #define MDCR_HPMN (0x1fU) 1239 1240 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1241 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1242 1243 #define CPSR_M (0x1fU) 1244 #define CPSR_T (1U << 5) 1245 #define CPSR_F (1U << 6) 1246 #define CPSR_I (1U << 7) 1247 #define CPSR_A (1U << 8) 1248 #define CPSR_E (1U << 9) 1249 #define CPSR_IT_2_7 (0xfc00U) 1250 #define CPSR_GE (0xfU << 16) 1251 #define CPSR_IL (1U << 20) 1252 #define CPSR_DIT (1U << 21) 1253 #define CPSR_PAN (1U << 22) 1254 #define CPSR_SSBS (1U << 23) 1255 #define CPSR_J (1U << 24) 1256 #define CPSR_IT_0_1 (3U << 25) 1257 #define CPSR_Q (1U << 27) 1258 #define CPSR_V (1U << 28) 1259 #define CPSR_C (1U << 29) 1260 #define CPSR_Z (1U << 30) 1261 #define CPSR_N (1U << 31) 1262 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1263 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1264 1265 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1266 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1267 | CPSR_NZCV) 1268 /* Bits writable in user mode. */ 1269 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1270 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1271 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1272 1273 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1274 #define XPSR_EXCP 0x1ffU 1275 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1276 #define XPSR_IT_2_7 CPSR_IT_2_7 1277 #define XPSR_GE CPSR_GE 1278 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1279 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1280 #define XPSR_IT_0_1 CPSR_IT_0_1 1281 #define XPSR_Q CPSR_Q 1282 #define XPSR_V CPSR_V 1283 #define XPSR_C CPSR_C 1284 #define XPSR_Z CPSR_Z 1285 #define XPSR_N CPSR_N 1286 #define XPSR_NZCV CPSR_NZCV 1287 #define XPSR_IT CPSR_IT 1288 1289 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1290 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1291 #define TTBCR_PD0 (1U << 4) 1292 #define TTBCR_PD1 (1U << 5) 1293 #define TTBCR_EPD0 (1U << 7) 1294 #define TTBCR_IRGN0 (3U << 8) 1295 #define TTBCR_ORGN0 (3U << 10) 1296 #define TTBCR_SH0 (3U << 12) 1297 #define TTBCR_T1SZ (3U << 16) 1298 #define TTBCR_A1 (1U << 22) 1299 #define TTBCR_EPD1 (1U << 23) 1300 #define TTBCR_IRGN1 (3U << 24) 1301 #define TTBCR_ORGN1 (3U << 26) 1302 #define TTBCR_SH1 (1U << 28) 1303 #define TTBCR_EAE (1U << 31) 1304 1305 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1306 * Only these are valid when in AArch64 mode; in 1307 * AArch32 mode SPSRs are basically CPSR-format. 1308 */ 1309 #define PSTATE_SP (1U) 1310 #define PSTATE_M (0xFU) 1311 #define PSTATE_nRW (1U << 4) 1312 #define PSTATE_F (1U << 6) 1313 #define PSTATE_I (1U << 7) 1314 #define PSTATE_A (1U << 8) 1315 #define PSTATE_D (1U << 9) 1316 #define PSTATE_BTYPE (3U << 10) 1317 #define PSTATE_SSBS (1U << 12) 1318 #define PSTATE_IL (1U << 20) 1319 #define PSTATE_SS (1U << 21) 1320 #define PSTATE_PAN (1U << 22) 1321 #define PSTATE_UAO (1U << 23) 1322 #define PSTATE_DIT (1U << 24) 1323 #define PSTATE_TCO (1U << 25) 1324 #define PSTATE_V (1U << 28) 1325 #define PSTATE_C (1U << 29) 1326 #define PSTATE_Z (1U << 30) 1327 #define PSTATE_N (1U << 31) 1328 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1329 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1330 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1331 /* Mode values for AArch64 */ 1332 #define PSTATE_MODE_EL3h 13 1333 #define PSTATE_MODE_EL3t 12 1334 #define PSTATE_MODE_EL2h 9 1335 #define PSTATE_MODE_EL2t 8 1336 #define PSTATE_MODE_EL1h 5 1337 #define PSTATE_MODE_EL1t 4 1338 #define PSTATE_MODE_EL0t 0 1339 1340 /* Write a new value to v7m.exception, thus transitioning into or out 1341 * of Handler mode; this may result in a change of active stack pointer. 1342 */ 1343 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1344 1345 /* Map EL and handler into a PSTATE_MODE. */ 1346 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1347 { 1348 return (el << 2) | handler; 1349 } 1350 1351 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1352 * interprocessing, so we don't attempt to sync with the cpsr state used by 1353 * the 32 bit decoder. 1354 */ 1355 static inline uint32_t pstate_read(CPUARMState *env) 1356 { 1357 int ZF; 1358 1359 ZF = (env->ZF == 0); 1360 return (env->NF & 0x80000000) | (ZF << 30) 1361 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1362 | env->pstate | env->daif | (env->btype << 10); 1363 } 1364 1365 static inline void pstate_write(CPUARMState *env, uint32_t val) 1366 { 1367 env->ZF = (~val) & PSTATE_Z; 1368 env->NF = val; 1369 env->CF = (val >> 29) & 1; 1370 env->VF = (val << 3) & 0x80000000; 1371 env->daif = val & PSTATE_DAIF; 1372 env->btype = (val >> 10) & 3; 1373 env->pstate = val & ~CACHED_PSTATE_BITS; 1374 } 1375 1376 /* Return the current CPSR value. */ 1377 uint32_t cpsr_read(CPUARMState *env); 1378 1379 typedef enum CPSRWriteType { 1380 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1381 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1382 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1383 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1384 } CPSRWriteType; 1385 1386 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1387 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1388 CPSRWriteType write_type); 1389 1390 /* Return the current xPSR value. */ 1391 static inline uint32_t xpsr_read(CPUARMState *env) 1392 { 1393 int ZF; 1394 ZF = (env->ZF == 0); 1395 return (env->NF & 0x80000000) | (ZF << 30) 1396 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1397 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1398 | ((env->condexec_bits & 0xfc) << 8) 1399 | (env->GE << 16) 1400 | env->v7m.exception; 1401 } 1402 1403 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1404 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1405 { 1406 if (mask & XPSR_NZCV) { 1407 env->ZF = (~val) & XPSR_Z; 1408 env->NF = val; 1409 env->CF = (val >> 29) & 1; 1410 env->VF = (val << 3) & 0x80000000; 1411 } 1412 if (mask & XPSR_Q) { 1413 env->QF = ((val & XPSR_Q) != 0); 1414 } 1415 if (mask & XPSR_GE) { 1416 env->GE = (val & XPSR_GE) >> 16; 1417 } 1418 #ifndef CONFIG_USER_ONLY 1419 if (mask & XPSR_T) { 1420 env->thumb = ((val & XPSR_T) != 0); 1421 } 1422 if (mask & XPSR_IT_0_1) { 1423 env->condexec_bits &= ~3; 1424 env->condexec_bits |= (val >> 25) & 3; 1425 } 1426 if (mask & XPSR_IT_2_7) { 1427 env->condexec_bits &= 3; 1428 env->condexec_bits |= (val >> 8) & 0xfc; 1429 } 1430 if (mask & XPSR_EXCP) { 1431 /* Note that this only happens on exception exit */ 1432 write_v7m_exception(env, val & XPSR_EXCP); 1433 } 1434 #endif 1435 } 1436 1437 #define HCR_VM (1ULL << 0) 1438 #define HCR_SWIO (1ULL << 1) 1439 #define HCR_PTW (1ULL << 2) 1440 #define HCR_FMO (1ULL << 3) 1441 #define HCR_IMO (1ULL << 4) 1442 #define HCR_AMO (1ULL << 5) 1443 #define HCR_VF (1ULL << 6) 1444 #define HCR_VI (1ULL << 7) 1445 #define HCR_VSE (1ULL << 8) 1446 #define HCR_FB (1ULL << 9) 1447 #define HCR_BSU_MASK (3ULL << 10) 1448 #define HCR_DC (1ULL << 12) 1449 #define HCR_TWI (1ULL << 13) 1450 #define HCR_TWE (1ULL << 14) 1451 #define HCR_TID0 (1ULL << 15) 1452 #define HCR_TID1 (1ULL << 16) 1453 #define HCR_TID2 (1ULL << 17) 1454 #define HCR_TID3 (1ULL << 18) 1455 #define HCR_TSC (1ULL << 19) 1456 #define HCR_TIDCP (1ULL << 20) 1457 #define HCR_TACR (1ULL << 21) 1458 #define HCR_TSW (1ULL << 22) 1459 #define HCR_TPCP (1ULL << 23) 1460 #define HCR_TPU (1ULL << 24) 1461 #define HCR_TTLB (1ULL << 25) 1462 #define HCR_TVM (1ULL << 26) 1463 #define HCR_TGE (1ULL << 27) 1464 #define HCR_TDZ (1ULL << 28) 1465 #define HCR_HCD (1ULL << 29) 1466 #define HCR_TRVM (1ULL << 30) 1467 #define HCR_RW (1ULL << 31) 1468 #define HCR_CD (1ULL << 32) 1469 #define HCR_ID (1ULL << 33) 1470 #define HCR_E2H (1ULL << 34) 1471 #define HCR_TLOR (1ULL << 35) 1472 #define HCR_TERR (1ULL << 36) 1473 #define HCR_TEA (1ULL << 37) 1474 #define HCR_MIOCNCE (1ULL << 38) 1475 /* RES0 bit 39 */ 1476 #define HCR_APK (1ULL << 40) 1477 #define HCR_API (1ULL << 41) 1478 #define HCR_NV (1ULL << 42) 1479 #define HCR_NV1 (1ULL << 43) 1480 #define HCR_AT (1ULL << 44) 1481 #define HCR_NV2 (1ULL << 45) 1482 #define HCR_FWB (1ULL << 46) 1483 #define HCR_FIEN (1ULL << 47) 1484 /* RES0 bit 48 */ 1485 #define HCR_TID4 (1ULL << 49) 1486 #define HCR_TICAB (1ULL << 50) 1487 #define HCR_AMVOFFEN (1ULL << 51) 1488 #define HCR_TOCU (1ULL << 52) 1489 #define HCR_ENSCXT (1ULL << 53) 1490 #define HCR_TTLBIS (1ULL << 54) 1491 #define HCR_TTLBOS (1ULL << 55) 1492 #define HCR_ATA (1ULL << 56) 1493 #define HCR_DCT (1ULL << 57) 1494 #define HCR_TID5 (1ULL << 58) 1495 #define HCR_TWEDEN (1ULL << 59) 1496 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1497 1498 #define HPFAR_NS (1ULL << 63) 1499 1500 #define SCR_NS (1U << 0) 1501 #define SCR_IRQ (1U << 1) 1502 #define SCR_FIQ (1U << 2) 1503 #define SCR_EA (1U << 3) 1504 #define SCR_FW (1U << 4) 1505 #define SCR_AW (1U << 5) 1506 #define SCR_NET (1U << 6) 1507 #define SCR_SMD (1U << 7) 1508 #define SCR_HCE (1U << 8) 1509 #define SCR_SIF (1U << 9) 1510 #define SCR_RW (1U << 10) 1511 #define SCR_ST (1U << 11) 1512 #define SCR_TWI (1U << 12) 1513 #define SCR_TWE (1U << 13) 1514 #define SCR_TLOR (1U << 14) 1515 #define SCR_TERR (1U << 15) 1516 #define SCR_APK (1U << 16) 1517 #define SCR_API (1U << 17) 1518 #define SCR_EEL2 (1U << 18) 1519 #define SCR_EASE (1U << 19) 1520 #define SCR_NMEA (1U << 20) 1521 #define SCR_FIEN (1U << 21) 1522 #define SCR_ENSCXT (1U << 25) 1523 #define SCR_ATA (1U << 26) 1524 1525 /* Return the current FPSCR value. */ 1526 uint32_t vfp_get_fpscr(CPUARMState *env); 1527 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1528 1529 /* FPCR, Floating Point Control Register 1530 * FPSR, Floating Poiht Status Register 1531 * 1532 * For A64 the FPSCR is split into two logically distinct registers, 1533 * FPCR and FPSR. However since they still use non-overlapping bits 1534 * we store the underlying state in fpscr and just mask on read/write. 1535 */ 1536 #define FPSR_MASK 0xf800009f 1537 #define FPCR_MASK 0x07ff9f00 1538 1539 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1540 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1541 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1542 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1543 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1544 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1545 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1546 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1547 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1548 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1549 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1550 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1551 #define FPCR_V (1 << 28) /* FP overflow flag */ 1552 #define FPCR_C (1 << 29) /* FP carry flag */ 1553 #define FPCR_Z (1 << 30) /* FP zero flag */ 1554 #define FPCR_N (1 << 31) /* FP negative flag */ 1555 1556 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1557 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1558 1559 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) 1560 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) 1561 1562 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1563 { 1564 return vfp_get_fpscr(env) & FPSR_MASK; 1565 } 1566 1567 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1568 { 1569 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1570 vfp_set_fpscr(env, new_fpscr); 1571 } 1572 1573 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1574 { 1575 return vfp_get_fpscr(env) & FPCR_MASK; 1576 } 1577 1578 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1579 { 1580 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1581 vfp_set_fpscr(env, new_fpscr); 1582 } 1583 1584 enum arm_cpu_mode { 1585 ARM_CPU_MODE_USR = 0x10, 1586 ARM_CPU_MODE_FIQ = 0x11, 1587 ARM_CPU_MODE_IRQ = 0x12, 1588 ARM_CPU_MODE_SVC = 0x13, 1589 ARM_CPU_MODE_MON = 0x16, 1590 ARM_CPU_MODE_ABT = 0x17, 1591 ARM_CPU_MODE_HYP = 0x1a, 1592 ARM_CPU_MODE_UND = 0x1b, 1593 ARM_CPU_MODE_SYS = 0x1f 1594 }; 1595 1596 /* VFP system registers. */ 1597 #define ARM_VFP_FPSID 0 1598 #define ARM_VFP_FPSCR 1 1599 #define ARM_VFP_MVFR2 5 1600 #define ARM_VFP_MVFR1 6 1601 #define ARM_VFP_MVFR0 7 1602 #define ARM_VFP_FPEXC 8 1603 #define ARM_VFP_FPINST 9 1604 #define ARM_VFP_FPINST2 10 1605 /* These ones are M-profile only */ 1606 #define ARM_VFP_FPSCR_NZCVQC 2 1607 #define ARM_VFP_VPR 12 1608 #define ARM_VFP_P0 13 1609 #define ARM_VFP_FPCXT_NS 14 1610 #define ARM_VFP_FPCXT_S 15 1611 1612 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1613 #define QEMU_VFP_FPSCR_NZCV 0xffff 1614 1615 /* iwMMXt coprocessor control registers. */ 1616 #define ARM_IWMMXT_wCID 0 1617 #define ARM_IWMMXT_wCon 1 1618 #define ARM_IWMMXT_wCSSF 2 1619 #define ARM_IWMMXT_wCASF 3 1620 #define ARM_IWMMXT_wCGR0 8 1621 #define ARM_IWMMXT_wCGR1 9 1622 #define ARM_IWMMXT_wCGR2 10 1623 #define ARM_IWMMXT_wCGR3 11 1624 1625 /* V7M CCR bits */ 1626 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1627 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1628 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1629 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1630 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1631 FIELD(V7M_CCR, STKALIGN, 9, 1) 1632 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1633 FIELD(V7M_CCR, DC, 16, 1) 1634 FIELD(V7M_CCR, IC, 17, 1) 1635 FIELD(V7M_CCR, BP, 18, 1) 1636 FIELD(V7M_CCR, LOB, 19, 1) 1637 FIELD(V7M_CCR, TRD, 20, 1) 1638 1639 /* V7M SCR bits */ 1640 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1641 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1642 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1643 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1644 1645 /* V7M AIRCR bits */ 1646 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1647 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1648 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1649 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1650 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1651 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1652 FIELD(V7M_AIRCR, PRIS, 14, 1) 1653 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1654 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1655 1656 /* V7M CFSR bits for MMFSR */ 1657 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1658 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1659 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1660 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1661 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1662 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1663 1664 /* V7M CFSR bits for BFSR */ 1665 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1666 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1667 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1668 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1669 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1670 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1671 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1672 1673 /* V7M CFSR bits for UFSR */ 1674 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1675 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1676 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1677 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1678 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1679 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1680 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1681 1682 /* V7M CFSR bit masks covering all of the subregister bits */ 1683 FIELD(V7M_CFSR, MMFSR, 0, 8) 1684 FIELD(V7M_CFSR, BFSR, 8, 8) 1685 FIELD(V7M_CFSR, UFSR, 16, 16) 1686 1687 /* V7M HFSR bits */ 1688 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1689 FIELD(V7M_HFSR, FORCED, 30, 1) 1690 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1691 1692 /* V7M DFSR bits */ 1693 FIELD(V7M_DFSR, HALTED, 0, 1) 1694 FIELD(V7M_DFSR, BKPT, 1, 1) 1695 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1696 FIELD(V7M_DFSR, VCATCH, 3, 1) 1697 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1698 1699 /* V7M SFSR bits */ 1700 FIELD(V7M_SFSR, INVEP, 0, 1) 1701 FIELD(V7M_SFSR, INVIS, 1, 1) 1702 FIELD(V7M_SFSR, INVER, 2, 1) 1703 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1704 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1705 FIELD(V7M_SFSR, LSPERR, 5, 1) 1706 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1707 FIELD(V7M_SFSR, LSERR, 7, 1) 1708 1709 /* v7M MPU_CTRL bits */ 1710 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1711 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1712 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1713 1714 /* v7M CLIDR bits */ 1715 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1716 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1717 FIELD(V7M_CLIDR, LOC, 24, 3) 1718 FIELD(V7M_CLIDR, LOUU, 27, 3) 1719 FIELD(V7M_CLIDR, ICB, 30, 2) 1720 1721 FIELD(V7M_CSSELR, IND, 0, 1) 1722 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1723 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1724 * define a mask for this and check that it doesn't permit running off 1725 * the end of the array. 1726 */ 1727 FIELD(V7M_CSSELR, INDEX, 0, 4) 1728 1729 /* v7M FPCCR bits */ 1730 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1731 FIELD(V7M_FPCCR, USER, 1, 1) 1732 FIELD(V7M_FPCCR, S, 2, 1) 1733 FIELD(V7M_FPCCR, THREAD, 3, 1) 1734 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1735 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1736 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1737 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1738 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1739 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1740 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1741 FIELD(V7M_FPCCR, RES0, 11, 15) 1742 FIELD(V7M_FPCCR, TS, 26, 1) 1743 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1744 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1745 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1746 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1747 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1748 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1749 #define R_V7M_FPCCR_BANKED_MASK \ 1750 (R_V7M_FPCCR_LSPACT_MASK | \ 1751 R_V7M_FPCCR_USER_MASK | \ 1752 R_V7M_FPCCR_THREAD_MASK | \ 1753 R_V7M_FPCCR_MMRDY_MASK | \ 1754 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1755 R_V7M_FPCCR_UFRDY_MASK | \ 1756 R_V7M_FPCCR_ASPEN_MASK) 1757 1758 /* 1759 * System register ID fields. 1760 */ 1761 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1762 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1763 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1764 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1765 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1766 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1767 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1768 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1769 FIELD(CLIDR_EL1, LOC, 24, 3) 1770 FIELD(CLIDR_EL1, LOUU, 27, 3) 1771 FIELD(CLIDR_EL1, ICB, 30, 3) 1772 1773 /* When FEAT_CCIDX is implemented */ 1774 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 1775 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 1776 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 1777 1778 /* When FEAT_CCIDX is not implemented */ 1779 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 1780 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 1781 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 1782 1783 FIELD(CTR_EL0, IMINLINE, 0, 4) 1784 FIELD(CTR_EL0, L1IP, 14, 2) 1785 FIELD(CTR_EL0, DMINLINE, 16, 4) 1786 FIELD(CTR_EL0, ERG, 20, 4) 1787 FIELD(CTR_EL0, CWG, 24, 4) 1788 FIELD(CTR_EL0, IDC, 28, 1) 1789 FIELD(CTR_EL0, DIC, 29, 1) 1790 FIELD(CTR_EL0, TMINLINE, 32, 6) 1791 1792 FIELD(MIDR_EL1, REVISION, 0, 4) 1793 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1794 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1795 FIELD(MIDR_EL1, VARIANT, 20, 4) 1796 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1797 1798 FIELD(ID_ISAR0, SWAP, 0, 4) 1799 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1800 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1801 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1802 FIELD(ID_ISAR0, COPROC, 16, 4) 1803 FIELD(ID_ISAR0, DEBUG, 20, 4) 1804 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1805 1806 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1807 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1808 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1809 FIELD(ID_ISAR1, EXTEND, 12, 4) 1810 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1811 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1812 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1813 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1814 1815 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1816 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1817 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1818 FIELD(ID_ISAR2, MULT, 12, 4) 1819 FIELD(ID_ISAR2, MULTS, 16, 4) 1820 FIELD(ID_ISAR2, MULTU, 20, 4) 1821 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1822 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1823 1824 FIELD(ID_ISAR3, SATURATE, 0, 4) 1825 FIELD(ID_ISAR3, SIMD, 4, 4) 1826 FIELD(ID_ISAR3, SVC, 8, 4) 1827 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1828 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1829 FIELD(ID_ISAR3, T32COPY, 20, 4) 1830 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1831 FIELD(ID_ISAR3, T32EE, 28, 4) 1832 1833 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1834 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1835 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1836 FIELD(ID_ISAR4, SMC, 12, 4) 1837 FIELD(ID_ISAR4, BARRIER, 16, 4) 1838 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1839 FIELD(ID_ISAR4, PSR_M, 24, 4) 1840 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1841 1842 FIELD(ID_ISAR5, SEVL, 0, 4) 1843 FIELD(ID_ISAR5, AES, 4, 4) 1844 FIELD(ID_ISAR5, SHA1, 8, 4) 1845 FIELD(ID_ISAR5, SHA2, 12, 4) 1846 FIELD(ID_ISAR5, CRC32, 16, 4) 1847 FIELD(ID_ISAR5, RDM, 24, 4) 1848 FIELD(ID_ISAR5, VCMA, 28, 4) 1849 1850 FIELD(ID_ISAR6, JSCVT, 0, 4) 1851 FIELD(ID_ISAR6, DP, 4, 4) 1852 FIELD(ID_ISAR6, FHM, 8, 4) 1853 FIELD(ID_ISAR6, SB, 12, 4) 1854 FIELD(ID_ISAR6, SPECRES, 16, 4) 1855 FIELD(ID_ISAR6, BF16, 20, 4) 1856 FIELD(ID_ISAR6, I8MM, 24, 4) 1857 1858 FIELD(ID_MMFR0, VMSA, 0, 4) 1859 FIELD(ID_MMFR0, PMSA, 4, 4) 1860 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 1861 FIELD(ID_MMFR0, SHARELVL, 12, 4) 1862 FIELD(ID_MMFR0, TCM, 16, 4) 1863 FIELD(ID_MMFR0, AUXREG, 20, 4) 1864 FIELD(ID_MMFR0, FCSE, 24, 4) 1865 FIELD(ID_MMFR0, INNERSHR, 28, 4) 1866 1867 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 1868 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 1869 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 1870 FIELD(ID_MMFR1, L1UNISW, 12, 4) 1871 FIELD(ID_MMFR1, L1HVD, 16, 4) 1872 FIELD(ID_MMFR1, L1UNI, 20, 4) 1873 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 1874 FIELD(ID_MMFR1, BPRED, 28, 4) 1875 1876 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 1877 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 1878 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 1879 FIELD(ID_MMFR2, HVDTLB, 12, 4) 1880 FIELD(ID_MMFR2, UNITLB, 16, 4) 1881 FIELD(ID_MMFR2, MEMBARR, 20, 4) 1882 FIELD(ID_MMFR2, WFISTALL, 24, 4) 1883 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 1884 1885 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 1886 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 1887 FIELD(ID_MMFR3, BPMAINT, 8, 4) 1888 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 1889 FIELD(ID_MMFR3, PAN, 16, 4) 1890 FIELD(ID_MMFR3, COHWALK, 20, 4) 1891 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 1892 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 1893 1894 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1895 FIELD(ID_MMFR4, AC2, 4, 4) 1896 FIELD(ID_MMFR4, XNX, 8, 4) 1897 FIELD(ID_MMFR4, CNP, 12, 4) 1898 FIELD(ID_MMFR4, HPDS, 16, 4) 1899 FIELD(ID_MMFR4, LSM, 20, 4) 1900 FIELD(ID_MMFR4, CCIDX, 24, 4) 1901 FIELD(ID_MMFR4, EVT, 28, 4) 1902 1903 FIELD(ID_MMFR5, ETS, 0, 4) 1904 1905 FIELD(ID_PFR0, STATE0, 0, 4) 1906 FIELD(ID_PFR0, STATE1, 4, 4) 1907 FIELD(ID_PFR0, STATE2, 8, 4) 1908 FIELD(ID_PFR0, STATE3, 12, 4) 1909 FIELD(ID_PFR0, CSV2, 16, 4) 1910 FIELD(ID_PFR0, AMU, 20, 4) 1911 FIELD(ID_PFR0, DIT, 24, 4) 1912 FIELD(ID_PFR0, RAS, 28, 4) 1913 1914 FIELD(ID_PFR1, PROGMOD, 0, 4) 1915 FIELD(ID_PFR1, SECURITY, 4, 4) 1916 FIELD(ID_PFR1, MPROGMOD, 8, 4) 1917 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 1918 FIELD(ID_PFR1, GENTIMER, 16, 4) 1919 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 1920 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 1921 FIELD(ID_PFR1, GIC, 28, 4) 1922 1923 FIELD(ID_PFR2, CSV3, 0, 4) 1924 FIELD(ID_PFR2, SSBS, 4, 4) 1925 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 1926 1927 FIELD(ID_AA64ISAR0, AES, 4, 4) 1928 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1929 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1930 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1931 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1932 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1933 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1934 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1935 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1936 FIELD(ID_AA64ISAR0, DP, 44, 4) 1937 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1938 FIELD(ID_AA64ISAR0, TS, 52, 4) 1939 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1940 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1941 1942 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1943 FIELD(ID_AA64ISAR1, APA, 4, 4) 1944 FIELD(ID_AA64ISAR1, API, 8, 4) 1945 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1946 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1947 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1948 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1949 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1950 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1951 FIELD(ID_AA64ISAR1, SB, 36, 4) 1952 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1953 FIELD(ID_AA64ISAR1, BF16, 44, 4) 1954 FIELD(ID_AA64ISAR1, DGH, 48, 4) 1955 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 1956 1957 FIELD(ID_AA64PFR0, EL0, 0, 4) 1958 FIELD(ID_AA64PFR0, EL1, 4, 4) 1959 FIELD(ID_AA64PFR0, EL2, 8, 4) 1960 FIELD(ID_AA64PFR0, EL3, 12, 4) 1961 FIELD(ID_AA64PFR0, FP, 16, 4) 1962 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1963 FIELD(ID_AA64PFR0, GIC, 24, 4) 1964 FIELD(ID_AA64PFR0, RAS, 28, 4) 1965 FIELD(ID_AA64PFR0, SVE, 32, 4) 1966 FIELD(ID_AA64PFR0, SEL2, 36, 4) 1967 FIELD(ID_AA64PFR0, MPAM, 40, 4) 1968 FIELD(ID_AA64PFR0, AMU, 44, 4) 1969 FIELD(ID_AA64PFR0, DIT, 48, 4) 1970 FIELD(ID_AA64PFR0, CSV2, 56, 4) 1971 FIELD(ID_AA64PFR0, CSV3, 60, 4) 1972 1973 FIELD(ID_AA64PFR1, BT, 0, 4) 1974 FIELD(ID_AA64PFR1, SSBS, 4, 4) 1975 FIELD(ID_AA64PFR1, MTE, 8, 4) 1976 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1977 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 1978 1979 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1980 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1981 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1982 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1983 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1984 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1985 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1986 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1987 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1988 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1989 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1990 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1991 FIELD(ID_AA64MMFR0, FGT, 56, 4) 1992 FIELD(ID_AA64MMFR0, ECV, 60, 4) 1993 1994 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1995 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1996 FIELD(ID_AA64MMFR1, VH, 8, 4) 1997 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1998 FIELD(ID_AA64MMFR1, LO, 16, 4) 1999 FIELD(ID_AA64MMFR1, PAN, 20, 4) 2000 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 2001 FIELD(ID_AA64MMFR1, XNX, 28, 4) 2002 FIELD(ID_AA64MMFR1, TWED, 32, 4) 2003 FIELD(ID_AA64MMFR1, ETS, 36, 4) 2004 2005 FIELD(ID_AA64MMFR2, CNP, 0, 4) 2006 FIELD(ID_AA64MMFR2, UAO, 4, 4) 2007 FIELD(ID_AA64MMFR2, LSM, 8, 4) 2008 FIELD(ID_AA64MMFR2, IESB, 12, 4) 2009 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 2010 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 2011 FIELD(ID_AA64MMFR2, NV, 24, 4) 2012 FIELD(ID_AA64MMFR2, ST, 28, 4) 2013 FIELD(ID_AA64MMFR2, AT, 32, 4) 2014 FIELD(ID_AA64MMFR2, IDS, 36, 4) 2015 FIELD(ID_AA64MMFR2, FWB, 40, 4) 2016 FIELD(ID_AA64MMFR2, TTL, 48, 4) 2017 FIELD(ID_AA64MMFR2, BBM, 52, 4) 2018 FIELD(ID_AA64MMFR2, EVT, 56, 4) 2019 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 2020 2021 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2022 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2023 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2024 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2025 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2026 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2027 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2028 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2029 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2030 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2031 2032 FIELD(ID_DFR0, COPDBG, 0, 4) 2033 FIELD(ID_DFR0, COPSDBG, 4, 4) 2034 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2035 FIELD(ID_DFR0, COPTRC, 12, 4) 2036 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2037 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2038 FIELD(ID_DFR0, PERFMON, 24, 4) 2039 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2040 2041 FIELD(ID_DFR1, MTPMU, 0, 4) 2042 2043 FIELD(DBGDIDR, SE_IMP, 12, 1) 2044 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2045 FIELD(DBGDIDR, VERSION, 16, 4) 2046 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2047 FIELD(DBGDIDR, BRPS, 24, 4) 2048 FIELD(DBGDIDR, WRPS, 28, 4) 2049 2050 FIELD(MVFR0, SIMDREG, 0, 4) 2051 FIELD(MVFR0, FPSP, 4, 4) 2052 FIELD(MVFR0, FPDP, 8, 4) 2053 FIELD(MVFR0, FPTRAP, 12, 4) 2054 FIELD(MVFR0, FPDIVIDE, 16, 4) 2055 FIELD(MVFR0, FPSQRT, 20, 4) 2056 FIELD(MVFR0, FPSHVEC, 24, 4) 2057 FIELD(MVFR0, FPROUND, 28, 4) 2058 2059 FIELD(MVFR1, FPFTZ, 0, 4) 2060 FIELD(MVFR1, FPDNAN, 4, 4) 2061 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2062 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2063 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2064 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2065 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2066 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2067 FIELD(MVFR1, FPHP, 24, 4) 2068 FIELD(MVFR1, SIMDFMAC, 28, 4) 2069 2070 FIELD(MVFR2, SIMDMISC, 0, 4) 2071 FIELD(MVFR2, FPMISC, 4, 4) 2072 2073 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2074 2075 /* If adding a feature bit which corresponds to a Linux ELF 2076 * HWCAP bit, remember to update the feature-bit-to-hwcap 2077 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2078 */ 2079 enum arm_features { 2080 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2081 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2082 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2083 ARM_FEATURE_V6, 2084 ARM_FEATURE_V6K, 2085 ARM_FEATURE_V7, 2086 ARM_FEATURE_THUMB2, 2087 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2088 ARM_FEATURE_NEON, 2089 ARM_FEATURE_M, /* Microcontroller profile. */ 2090 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2091 ARM_FEATURE_THUMB2EE, 2092 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2093 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2094 ARM_FEATURE_V4T, 2095 ARM_FEATURE_V5, 2096 ARM_FEATURE_STRONGARM, 2097 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2098 ARM_FEATURE_GENERIC_TIMER, 2099 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2100 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2101 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2102 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2103 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2104 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2105 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2106 ARM_FEATURE_V8, 2107 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2108 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2109 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2110 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2111 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2112 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2113 ARM_FEATURE_PMU, /* has PMU support */ 2114 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2115 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2116 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2117 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2118 }; 2119 2120 static inline int arm_feature(CPUARMState *env, int feature) 2121 { 2122 return (env->features & (1ULL << feature)) != 0; 2123 } 2124 2125 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2126 2127 #if !defined(CONFIG_USER_ONLY) 2128 /* Return true if exception levels below EL3 are in secure state, 2129 * or would be following an exception return to that level. 2130 * Unlike arm_is_secure() (which is always a question about the 2131 * _current_ state of the CPU) this doesn't care about the current 2132 * EL or mode. 2133 */ 2134 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2135 { 2136 if (arm_feature(env, ARM_FEATURE_EL3)) { 2137 return !(env->cp15.scr_el3 & SCR_NS); 2138 } else { 2139 /* If EL3 is not supported then the secure state is implementation 2140 * defined, in which case QEMU defaults to non-secure. 2141 */ 2142 return false; 2143 } 2144 } 2145 2146 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2147 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2148 { 2149 if (arm_feature(env, ARM_FEATURE_EL3)) { 2150 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2151 /* CPU currently in AArch64 state and EL3 */ 2152 return true; 2153 } else if (!is_a64(env) && 2154 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2155 /* CPU currently in AArch32 state and monitor mode */ 2156 return true; 2157 } 2158 } 2159 return false; 2160 } 2161 2162 /* Return true if the processor is in secure state */ 2163 static inline bool arm_is_secure(CPUARMState *env) 2164 { 2165 if (arm_is_el3_or_mon(env)) { 2166 return true; 2167 } 2168 return arm_is_secure_below_el3(env); 2169 } 2170 2171 /* 2172 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. 2173 * This corresponds to the pseudocode EL2Enabled() 2174 */ 2175 static inline bool arm_is_el2_enabled(CPUARMState *env) 2176 { 2177 if (arm_feature(env, ARM_FEATURE_EL2)) { 2178 if (arm_is_secure_below_el3(env)) { 2179 return (env->cp15.scr_el3 & SCR_EEL2) != 0; 2180 } 2181 return true; 2182 } 2183 return false; 2184 } 2185 2186 #else 2187 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2188 { 2189 return false; 2190 } 2191 2192 static inline bool arm_is_secure(CPUARMState *env) 2193 { 2194 return false; 2195 } 2196 2197 static inline bool arm_is_el2_enabled(CPUARMState *env) 2198 { 2199 return false; 2200 } 2201 #endif 2202 2203 /** 2204 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2205 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2206 * "for all purposes other than a direct read or write access of HCR_EL2." 2207 * Not included here is HCR_RW. 2208 */ 2209 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2210 2211 /* Return true if the specified exception level is running in AArch64 state. */ 2212 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2213 { 2214 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2215 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2216 */ 2217 assert(el >= 1 && el <= 3); 2218 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2219 2220 /* The highest exception level is always at the maximum supported 2221 * register width, and then lower levels have a register width controlled 2222 * by bits in the SCR or HCR registers. 2223 */ 2224 if (el == 3) { 2225 return aa64; 2226 } 2227 2228 if (arm_feature(env, ARM_FEATURE_EL3) && 2229 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { 2230 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2231 } 2232 2233 if (el == 2) { 2234 return aa64; 2235 } 2236 2237 if (arm_is_el2_enabled(env)) { 2238 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2239 } 2240 2241 return aa64; 2242 } 2243 2244 /* Function for determing whether guest cp register reads and writes should 2245 * access the secure or non-secure bank of a cp register. When EL3 is 2246 * operating in AArch32 state, the NS-bit determines whether the secure 2247 * instance of a cp register should be used. When EL3 is AArch64 (or if 2248 * it doesn't exist at all) then there is no register banking, and all 2249 * accesses are to the non-secure version. 2250 */ 2251 static inline bool access_secure_reg(CPUARMState *env) 2252 { 2253 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2254 !arm_el_is_aa64(env, 3) && 2255 !(env->cp15.scr_el3 & SCR_NS)); 2256 2257 return ret; 2258 } 2259 2260 /* Macros for accessing a specified CP register bank */ 2261 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2262 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2263 2264 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2265 do { \ 2266 if (_secure) { \ 2267 (_env)->cp15._regname##_s = (_val); \ 2268 } else { \ 2269 (_env)->cp15._regname##_ns = (_val); \ 2270 } \ 2271 } while (0) 2272 2273 /* Macros for automatically accessing a specific CP register bank depending on 2274 * the current secure state of the system. These macros are not intended for 2275 * supporting instruction translation reads/writes as these are dependent 2276 * solely on the SCR.NS bit and not the mode. 2277 */ 2278 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2279 A32_BANKED_REG_GET((_env), _regname, \ 2280 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2281 2282 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2283 A32_BANKED_REG_SET((_env), _regname, \ 2284 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2285 (_val)) 2286 2287 void arm_cpu_list(void); 2288 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2289 uint32_t cur_el, bool secure); 2290 2291 /* Interface between CPU and Interrupt controller. */ 2292 #ifndef CONFIG_USER_ONLY 2293 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2294 #else 2295 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2296 { 2297 return true; 2298 } 2299 #endif 2300 /** 2301 * armv7m_nvic_set_pending: mark the specified exception as pending 2302 * @opaque: the NVIC 2303 * @irq: the exception number to mark pending 2304 * @secure: false for non-banked exceptions or for the nonsecure 2305 * version of a banked exception, true for the secure version of a banked 2306 * exception. 2307 * 2308 * Marks the specified exception as pending. Note that we will assert() 2309 * if @secure is true and @irq does not specify one of the fixed set 2310 * of architecturally banked exceptions. 2311 */ 2312 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2313 /** 2314 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2315 * @opaque: the NVIC 2316 * @irq: the exception number to mark pending 2317 * @secure: false for non-banked exceptions or for the nonsecure 2318 * version of a banked exception, true for the secure version of a banked 2319 * exception. 2320 * 2321 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2322 * exceptions (exceptions generated in the course of trying to take 2323 * a different exception). 2324 */ 2325 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2326 /** 2327 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2328 * @opaque: the NVIC 2329 * @irq: the exception number to mark pending 2330 * @secure: false for non-banked exceptions or for the nonsecure 2331 * version of a banked exception, true for the secure version of a banked 2332 * exception. 2333 * 2334 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2335 * generated in the course of lazy stacking of FP registers. 2336 */ 2337 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2338 /** 2339 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2340 * exception, and whether it targets Secure state 2341 * @opaque: the NVIC 2342 * @pirq: set to pending exception number 2343 * @ptargets_secure: set to whether pending exception targets Secure 2344 * 2345 * This function writes the number of the highest priority pending 2346 * exception (the one which would be made active by 2347 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2348 * to true if the current highest priority pending exception should 2349 * be taken to Secure state, false for NS. 2350 */ 2351 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2352 bool *ptargets_secure); 2353 /** 2354 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2355 * @opaque: the NVIC 2356 * 2357 * Move the current highest priority pending exception from the pending 2358 * state to the active state, and update v7m.exception to indicate that 2359 * it is the exception currently being handled. 2360 */ 2361 void armv7m_nvic_acknowledge_irq(void *opaque); 2362 /** 2363 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2364 * @opaque: the NVIC 2365 * @irq: the exception number to complete 2366 * @secure: true if this exception was secure 2367 * 2368 * Returns: -1 if the irq was not active 2369 * 1 if completing this irq brought us back to base (no active irqs) 2370 * 0 if there is still an irq active after this one was completed 2371 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2372 */ 2373 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2374 /** 2375 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2376 * @opaque: the NVIC 2377 * @irq: the exception number to mark pending 2378 * @secure: false for non-banked exceptions or for the nonsecure 2379 * version of a banked exception, true for the secure version of a banked 2380 * exception. 2381 * 2382 * Return whether an exception is "ready", i.e. whether the exception is 2383 * enabled and is configured at a priority which would allow it to 2384 * interrupt the current execution priority. This controls whether the 2385 * RDY bit for it in the FPCCR is set. 2386 */ 2387 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2388 /** 2389 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2390 * @opaque: the NVIC 2391 * 2392 * Returns: the raw execution priority as defined by the v8M architecture. 2393 * This is the execution priority minus the effects of AIRCR.PRIS, 2394 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2395 * (v8M ARM ARM I_PKLD.) 2396 */ 2397 int armv7m_nvic_raw_execution_priority(void *opaque); 2398 /** 2399 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2400 * priority is negative for the specified security state. 2401 * @opaque: the NVIC 2402 * @secure: the security state to test 2403 * This corresponds to the pseudocode IsReqExecPriNeg(). 2404 */ 2405 #ifndef CONFIG_USER_ONLY 2406 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2407 #else 2408 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2409 { 2410 return false; 2411 } 2412 #endif 2413 2414 /* Interface for defining coprocessor registers. 2415 * Registers are defined in tables of arm_cp_reginfo structs 2416 * which are passed to define_arm_cp_regs(). 2417 */ 2418 2419 /* When looking up a coprocessor register we look for it 2420 * via an integer which encodes all of: 2421 * coprocessor number 2422 * Crn, Crm, opc1, opc2 fields 2423 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2424 * or via MRRC/MCRR?) 2425 * non-secure/secure bank (AArch32 only) 2426 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2427 * (In this case crn and opc2 should be zero.) 2428 * For AArch64, there is no 32/64 bit size distinction; 2429 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2430 * and 4 bit CRn and CRm. The encoding patterns are chosen 2431 * to be easy to convert to and from the KVM encodings, and also 2432 * so that the hashtable can contain both AArch32 and AArch64 2433 * registers (to allow for interprocessing where we might run 2434 * 32 bit code on a 64 bit core). 2435 */ 2436 /* This bit is private to our hashtable cpreg; in KVM register 2437 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2438 * in the upper bits of the 64 bit ID. 2439 */ 2440 #define CP_REG_AA64_SHIFT 28 2441 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2442 2443 /* To enable banking of coprocessor registers depending on ns-bit we 2444 * add a bit to distinguish between secure and non-secure cpregs in the 2445 * hashtable. 2446 */ 2447 #define CP_REG_NS_SHIFT 29 2448 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2449 2450 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2451 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2452 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2453 2454 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2455 (CP_REG_AA64_MASK | \ 2456 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2457 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2458 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2459 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2460 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2461 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2462 2463 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2464 * version used as a key for the coprocessor register hashtable 2465 */ 2466 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2467 { 2468 uint32_t cpregid = kvmid; 2469 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2470 cpregid |= CP_REG_AA64_MASK; 2471 } else { 2472 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2473 cpregid |= (1 << 15); 2474 } 2475 2476 /* KVM is always non-secure so add the NS flag on AArch32 register 2477 * entries. 2478 */ 2479 cpregid |= 1 << CP_REG_NS_SHIFT; 2480 } 2481 return cpregid; 2482 } 2483 2484 /* Convert a truncated 32 bit hashtable key into the full 2485 * 64 bit KVM register ID. 2486 */ 2487 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2488 { 2489 uint64_t kvmid; 2490 2491 if (cpregid & CP_REG_AA64_MASK) { 2492 kvmid = cpregid & ~CP_REG_AA64_MASK; 2493 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2494 } else { 2495 kvmid = cpregid & ~(1 << 15); 2496 if (cpregid & (1 << 15)) { 2497 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2498 } else { 2499 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2500 } 2501 } 2502 return kvmid; 2503 } 2504 2505 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2506 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2507 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2508 * TCG can assume the value to be constant (ie load at translate time) 2509 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2510 * indicates that the TB should not be ended after a write to this register 2511 * (the default is that the TB ends after cp writes). OVERRIDE permits 2512 * a register definition to override a previous definition for the 2513 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2514 * old must have the OVERRIDE bit set. 2515 * ALIAS indicates that this register is an alias view of some underlying 2516 * state which is also visible via another register, and that the other 2517 * register is handling migration and reset; registers marked ALIAS will not be 2518 * migrated but may have their state set by syncing of register state from KVM. 2519 * NO_RAW indicates that this register has no underlying state and does not 2520 * support raw access for state saving/loading; it will not be used for either 2521 * migration or KVM state synchronization. (Typically this is for "registers" 2522 * which are actually used as instructions for cache maintenance and so on.) 2523 * IO indicates that this register does I/O and therefore its accesses 2524 * need to be marked with gen_io_start() and also end the TB. In particular, 2525 * registers which implement clocks or timers require this. 2526 * RAISES_EXC is for when the read or write hook might raise an exception; 2527 * the generated code will synchronize the CPU state before calling the hook 2528 * so that it is safe for the hook to call raise_exception(). 2529 * NEWEL is for writes to registers that might change the exception 2530 * level - typically on older ARM chips. For those cases we need to 2531 * re-read the new el when recomputing the translation flags. 2532 */ 2533 #define ARM_CP_SPECIAL 0x0001 2534 #define ARM_CP_CONST 0x0002 2535 #define ARM_CP_64BIT 0x0004 2536 #define ARM_CP_SUPPRESS_TB_END 0x0008 2537 #define ARM_CP_OVERRIDE 0x0010 2538 #define ARM_CP_ALIAS 0x0020 2539 #define ARM_CP_IO 0x0040 2540 #define ARM_CP_NO_RAW 0x0080 2541 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2542 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2543 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2544 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2545 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2546 #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) 2547 #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) 2548 #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA 2549 #define ARM_CP_FPU 0x1000 2550 #define ARM_CP_SVE 0x2000 2551 #define ARM_CP_NO_GDB 0x4000 2552 #define ARM_CP_RAISES_EXC 0x8000 2553 #define ARM_CP_NEWEL 0x10000 2554 /* Used only as a terminator for ARMCPRegInfo lists */ 2555 #define ARM_CP_SENTINEL 0xfffff 2556 /* Mask of only the flag bits in a type field */ 2557 #define ARM_CP_FLAG_MASK 0x1f0ff 2558 2559 /* Valid values for ARMCPRegInfo state field, indicating which of 2560 * the AArch32 and AArch64 execution states this register is visible in. 2561 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2562 * If the reginfo is declared to be visible in both states then a second 2563 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2564 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2565 * Note that we rely on the values of these enums as we iterate through 2566 * the various states in some places. 2567 */ 2568 enum { 2569 ARM_CP_STATE_AA32 = 0, 2570 ARM_CP_STATE_AA64 = 1, 2571 ARM_CP_STATE_BOTH = 2, 2572 }; 2573 2574 /* ARM CP register secure state flags. These flags identify security state 2575 * attributes for a given CP register entry. 2576 * The existence of both or neither secure and non-secure flags indicates that 2577 * the register has both a secure and non-secure hash entry. A single one of 2578 * these flags causes the register to only be hashed for the specified 2579 * security state. 2580 * Although definitions may have any combination of the S/NS bits, each 2581 * registered entry will only have one to identify whether the entry is secure 2582 * or non-secure. 2583 */ 2584 enum { 2585 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2586 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2587 }; 2588 2589 /* Return true if cptype is a valid type field. This is used to try to 2590 * catch errors where the sentinel has been accidentally left off the end 2591 * of a list of registers. 2592 */ 2593 static inline bool cptype_valid(int cptype) 2594 { 2595 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2596 || ((cptype & ARM_CP_SPECIAL) && 2597 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2598 } 2599 2600 /* Access rights: 2601 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2602 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2603 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2604 * (ie any of the privileged modes in Secure state, or Monitor mode). 2605 * If a register is accessible in one privilege level it's always accessible 2606 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2607 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2608 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2609 * terminology a little and call this PL3. 2610 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2611 * with the ELx exception levels. 2612 * 2613 * If access permissions for a register are more complex than can be 2614 * described with these bits, then use a laxer set of restrictions, and 2615 * do the more restrictive/complex check inside a helper function. 2616 */ 2617 #define PL3_R 0x80 2618 #define PL3_W 0x40 2619 #define PL2_R (0x20 | PL3_R) 2620 #define PL2_W (0x10 | PL3_W) 2621 #define PL1_R (0x08 | PL2_R) 2622 #define PL1_W (0x04 | PL2_W) 2623 #define PL0_R (0x02 | PL1_R) 2624 #define PL0_W (0x01 | PL1_W) 2625 2626 /* 2627 * For user-mode some registers are accessible to EL0 via a kernel 2628 * trap-and-emulate ABI. In this case we define the read permissions 2629 * as actually being PL0_R. However some bits of any given register 2630 * may still be masked. 2631 */ 2632 #ifdef CONFIG_USER_ONLY 2633 #define PL0U_R PL0_R 2634 #else 2635 #define PL0U_R PL1_R 2636 #endif 2637 2638 #define PL3_RW (PL3_R | PL3_W) 2639 #define PL2_RW (PL2_R | PL2_W) 2640 #define PL1_RW (PL1_R | PL1_W) 2641 #define PL0_RW (PL0_R | PL0_W) 2642 2643 /* Return the highest implemented Exception Level */ 2644 static inline int arm_highest_el(CPUARMState *env) 2645 { 2646 if (arm_feature(env, ARM_FEATURE_EL3)) { 2647 return 3; 2648 } 2649 if (arm_feature(env, ARM_FEATURE_EL2)) { 2650 return 2; 2651 } 2652 return 1; 2653 } 2654 2655 /* Return true if a v7M CPU is in Handler mode */ 2656 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2657 { 2658 return env->v7m.exception != 0; 2659 } 2660 2661 /* Return the current Exception Level (as per ARMv8; note that this differs 2662 * from the ARMv7 Privilege Level). 2663 */ 2664 static inline int arm_current_el(CPUARMState *env) 2665 { 2666 if (arm_feature(env, ARM_FEATURE_M)) { 2667 return arm_v7m_is_handler_mode(env) || 2668 !(env->v7m.control[env->v7m.secure] & 1); 2669 } 2670 2671 if (is_a64(env)) { 2672 return extract32(env->pstate, 2, 2); 2673 } 2674 2675 switch (env->uncached_cpsr & 0x1f) { 2676 case ARM_CPU_MODE_USR: 2677 return 0; 2678 case ARM_CPU_MODE_HYP: 2679 return 2; 2680 case ARM_CPU_MODE_MON: 2681 return 3; 2682 default: 2683 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2684 /* If EL3 is 32-bit then all secure privileged modes run in 2685 * EL3 2686 */ 2687 return 3; 2688 } 2689 2690 return 1; 2691 } 2692 } 2693 2694 typedef struct ARMCPRegInfo ARMCPRegInfo; 2695 2696 typedef enum CPAccessResult { 2697 /* Access is permitted */ 2698 CP_ACCESS_OK = 0, 2699 /* Access fails due to a configurable trap or enable which would 2700 * result in a categorized exception syndrome giving information about 2701 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2702 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2703 * PL1 if in EL0, otherwise to the current EL). 2704 */ 2705 CP_ACCESS_TRAP = 1, 2706 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2707 * Note that this is not a catch-all case -- the set of cases which may 2708 * result in this failure is specifically defined by the architecture. 2709 */ 2710 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2711 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2712 CP_ACCESS_TRAP_EL2 = 3, 2713 CP_ACCESS_TRAP_EL3 = 4, 2714 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2715 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2716 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2717 /* Access fails and results in an exception syndrome for an FP access, 2718 * trapped directly to EL2 or EL3 2719 */ 2720 CP_ACCESS_TRAP_FP_EL2 = 7, 2721 CP_ACCESS_TRAP_FP_EL3 = 8, 2722 } CPAccessResult; 2723 2724 /* Access functions for coprocessor registers. These cannot fail and 2725 * may not raise exceptions. 2726 */ 2727 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2728 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2729 uint64_t value); 2730 /* Access permission check functions for coprocessor registers. */ 2731 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2732 const ARMCPRegInfo *opaque, 2733 bool isread); 2734 /* Hook function for register reset */ 2735 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2736 2737 #define CP_ANY 0xff 2738 2739 /* Definition of an ARM coprocessor register */ 2740 struct ARMCPRegInfo { 2741 /* Name of register (useful mainly for debugging, need not be unique) */ 2742 const char *name; 2743 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2744 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2745 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2746 * will be decoded to this register. The register read and write 2747 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2748 * used by the program, so it is possible to register a wildcard and 2749 * then behave differently on read/write if necessary. 2750 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2751 * must both be zero. 2752 * For AArch64-visible registers, opc0 is also used. 2753 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2754 * way to distinguish (for KVM's benefit) guest-visible system registers 2755 * from demuxed ones provided to preserve the "no side effects on 2756 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2757 * visible (to match KVM's encoding); cp==0 will be converted to 2758 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2759 */ 2760 uint8_t cp; 2761 uint8_t crn; 2762 uint8_t crm; 2763 uint8_t opc0; 2764 uint8_t opc1; 2765 uint8_t opc2; 2766 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2767 int state; 2768 /* Register type: ARM_CP_* bits/values */ 2769 int type; 2770 /* Access rights: PL*_[RW] */ 2771 int access; 2772 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2773 int secure; 2774 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2775 * this register was defined: can be used to hand data through to the 2776 * register read/write functions, since they are passed the ARMCPRegInfo*. 2777 */ 2778 void *opaque; 2779 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2780 * fieldoffset is non-zero, the reset value of the register. 2781 */ 2782 uint64_t resetvalue; 2783 /* Offset of the field in CPUARMState for this register. 2784 * 2785 * This is not needed if either: 2786 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2787 * 2. both readfn and writefn are specified 2788 */ 2789 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2790 2791 /* Offsets of the secure and non-secure fields in CPUARMState for the 2792 * register if it is banked. These fields are only used during the static 2793 * registration of a register. During hashing the bank associated 2794 * with a given security state is copied to fieldoffset which is used from 2795 * there on out. 2796 * 2797 * It is expected that register definitions use either fieldoffset or 2798 * bank_fieldoffsets in the definition but not both. It is also expected 2799 * that both bank offsets are set when defining a banked register. This 2800 * use indicates that a register is banked. 2801 */ 2802 ptrdiff_t bank_fieldoffsets[2]; 2803 2804 /* Function for making any access checks for this register in addition to 2805 * those specified by the 'access' permissions bits. If NULL, no extra 2806 * checks required. The access check is performed at runtime, not at 2807 * translate time. 2808 */ 2809 CPAccessFn *accessfn; 2810 /* Function for handling reads of this register. If NULL, then reads 2811 * will be done by loading from the offset into CPUARMState specified 2812 * by fieldoffset. 2813 */ 2814 CPReadFn *readfn; 2815 /* Function for handling writes of this register. If NULL, then writes 2816 * will be done by writing to the offset into CPUARMState specified 2817 * by fieldoffset. 2818 */ 2819 CPWriteFn *writefn; 2820 /* Function for doing a "raw" read; used when we need to copy 2821 * coprocessor state to the kernel for KVM or out for 2822 * migration. This only needs to be provided if there is also a 2823 * readfn and it has side effects (for instance clear-on-read bits). 2824 */ 2825 CPReadFn *raw_readfn; 2826 /* Function for doing a "raw" write; used when we need to copy KVM 2827 * kernel coprocessor state into userspace, or for inbound 2828 * migration. This only needs to be provided if there is also a 2829 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2830 * or similar behaviour. 2831 */ 2832 CPWriteFn *raw_writefn; 2833 /* Function for resetting the register. If NULL, then reset will be done 2834 * by writing resetvalue to the field specified in fieldoffset. If 2835 * fieldoffset is 0 then no reset will be done. 2836 */ 2837 CPResetFn *resetfn; 2838 2839 /* 2840 * "Original" writefn and readfn. 2841 * For ARMv8.1-VHE register aliases, we overwrite the read/write 2842 * accessor functions of various EL1/EL0 to perform the runtime 2843 * check for which sysreg should actually be modified, and then 2844 * forwards the operation. Before overwriting the accessors, 2845 * the original function is copied here, so that accesses that 2846 * really do go to the EL1/EL0 version proceed normally. 2847 * (The corresponding EL2 register is linked via opaque.) 2848 */ 2849 CPReadFn *orig_readfn; 2850 CPWriteFn *orig_writefn; 2851 }; 2852 2853 /* Macros which are lvalues for the field in CPUARMState for the 2854 * ARMCPRegInfo *ri. 2855 */ 2856 #define CPREG_FIELD32(env, ri) \ 2857 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2858 #define CPREG_FIELD64(env, ri) \ 2859 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2860 2861 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2862 2863 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2864 const ARMCPRegInfo *regs, void *opaque); 2865 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2866 const ARMCPRegInfo *regs, void *opaque); 2867 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2868 { 2869 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2870 } 2871 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2872 { 2873 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2874 } 2875 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2876 2877 /* 2878 * Definition of an ARM co-processor register as viewed from 2879 * userspace. This is used for presenting sanitised versions of 2880 * registers to userspace when emulating the Linux AArch64 CPU 2881 * ID/feature ABI (advertised as HWCAP_CPUID). 2882 */ 2883 typedef struct ARMCPRegUserSpaceInfo { 2884 /* Name of register */ 2885 const char *name; 2886 2887 /* Is the name actually a glob pattern */ 2888 bool is_glob; 2889 2890 /* Only some bits are exported to user space */ 2891 uint64_t exported_bits; 2892 2893 /* Fixed bits are applied after the mask */ 2894 uint64_t fixed_bits; 2895 } ARMCPRegUserSpaceInfo; 2896 2897 #define REGUSERINFO_SENTINEL { .name = NULL } 2898 2899 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2900 2901 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2902 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2903 uint64_t value); 2904 /* CPReadFn that can be used for read-as-zero behaviour */ 2905 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2906 2907 /* CPResetFn that does nothing, for use if no reset is required even 2908 * if fieldoffset is non zero. 2909 */ 2910 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2911 2912 /* Return true if this reginfo struct's field in the cpu state struct 2913 * is 64 bits wide. 2914 */ 2915 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2916 { 2917 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2918 } 2919 2920 static inline bool cp_access_ok(int current_el, 2921 const ARMCPRegInfo *ri, int isread) 2922 { 2923 return (ri->access >> ((current_el * 2) + isread)) & 1; 2924 } 2925 2926 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2927 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2928 2929 /** 2930 * write_list_to_cpustate 2931 * @cpu: ARMCPU 2932 * 2933 * For each register listed in the ARMCPU cpreg_indexes list, write 2934 * its value from the cpreg_values list into the ARMCPUState structure. 2935 * This updates TCG's working data structures from KVM data or 2936 * from incoming migration state. 2937 * 2938 * Returns: true if all register values were updated correctly, 2939 * false if some register was unknown or could not be written. 2940 * Note that we do not stop early on failure -- we will attempt 2941 * writing all registers in the list. 2942 */ 2943 bool write_list_to_cpustate(ARMCPU *cpu); 2944 2945 /** 2946 * write_cpustate_to_list: 2947 * @cpu: ARMCPU 2948 * @kvm_sync: true if this is for syncing back to KVM 2949 * 2950 * For each register listed in the ARMCPU cpreg_indexes list, write 2951 * its value from the ARMCPUState structure into the cpreg_values list. 2952 * This is used to copy info from TCG's working data structures into 2953 * KVM or for outbound migration. 2954 * 2955 * @kvm_sync is true if we are doing this in order to sync the 2956 * register state back to KVM. In this case we will only update 2957 * values in the list if the previous list->cpustate sync actually 2958 * successfully wrote the CPU state. Otherwise we will keep the value 2959 * that is in the list. 2960 * 2961 * Returns: true if all register values were read correctly, 2962 * false if some register was unknown or could not be read. 2963 * Note that we do not stop early on failure -- we will attempt 2964 * reading all registers in the list. 2965 */ 2966 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2967 2968 #define ARM_CPUID_TI915T 0x54029152 2969 #define ARM_CPUID_TI925T 0x54029252 2970 2971 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2972 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2973 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2974 2975 #define cpu_signal_handler cpu_arm_signal_handler 2976 #define cpu_list arm_cpu_list 2977 2978 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2979 * 2980 * If EL3 is 64-bit: 2981 * + NonSecure EL1 & 0 stage 1 2982 * + NonSecure EL1 & 0 stage 2 2983 * + NonSecure EL2 2984 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2985 * + Secure EL1 & 0 2986 * + Secure EL3 2987 * If EL3 is 32-bit: 2988 * + NonSecure PL1 & 0 stage 1 2989 * + NonSecure PL1 & 0 stage 2 2990 * + NonSecure PL2 2991 * + Secure PL0 2992 * + Secure PL1 2993 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2994 * 2995 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2996 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2997 * because they may differ in access permissions even if the VA->PA map is 2998 * the same 2999 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 3000 * translation, which means that we have one mmu_idx that deals with two 3001 * concatenated translation regimes [this sort of combined s1+2 TLB is 3002 * architecturally permitted] 3003 * 3. we don't need to allocate an mmu_idx to translations that we won't be 3004 * handling via the TLB. The only way to do a stage 1 translation without 3005 * the immediate stage 2 translation is via the ATS or AT system insns, 3006 * which can be slow-pathed and always do a page table walk. 3007 * The only use of stage 2 translations is either as part of an s1+2 3008 * lookup or when loading the descriptors during a stage 1 page table walk, 3009 * and in both those cases we don't use the TLB. 3010 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 3011 * translation regimes, because they map reasonably well to each other 3012 * and they can't both be active at the same time. 3013 * 5. we want to be able to use the TLB for accesses done as part of a 3014 * stage1 page table walk, rather than having to walk the stage2 page 3015 * table over and over. 3016 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 3017 * Never (PAN) bit within PSTATE. 3018 * 3019 * This gives us the following list of cases: 3020 * 3021 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 3022 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 3023 * NS EL1 EL1&0 stage 1+2 +PAN 3024 * NS EL0 EL2&0 3025 * NS EL2 EL2&0 3026 * NS EL2 EL2&0 +PAN 3027 * NS EL2 (aka NS PL2) 3028 * S EL0 EL1&0 (aka S PL0) 3029 * S EL1 EL1&0 (not used if EL3 is 32 bit) 3030 * S EL1 EL1&0 +PAN 3031 * S EL3 (aka S PL1) 3032 * 3033 * for a total of 11 different mmu_idx. 3034 * 3035 * R profile CPUs have an MPU, but can use the same set of MMU indexes 3036 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 3037 * NS EL2 if we ever model a Cortex-R52). 3038 * 3039 * M profile CPUs are rather different as they do not have a true MMU. 3040 * They have the following different MMU indexes: 3041 * User 3042 * Privileged 3043 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 3044 * Privileged, execution priority negative (ditto) 3045 * If the CPU supports the v8M Security Extension then there are also: 3046 * Secure User 3047 * Secure Privileged 3048 * Secure User, execution priority negative 3049 * Secure Privileged, execution priority negative 3050 * 3051 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 3052 * are not quite the same -- different CPU types (most notably M profile 3053 * vs A/R profile) would like to use MMU indexes with different semantics, 3054 * but since we don't ever need to use all of those in a single CPU we 3055 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 3056 * modes + total number of M profile MMU modes". The lower bits of 3057 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 3058 * the same for any particular CPU. 3059 * Variables of type ARMMUIdx are always full values, and the core 3060 * index values are in variables of type 'int'. 3061 * 3062 * Our enumeration includes at the end some entries which are not "true" 3063 * mmu_idx values in that they don't have corresponding TLBs and are only 3064 * valid for doing slow path page table walks. 3065 * 3066 * The constant names here are patterned after the general style of the names 3067 * of the AT/ATS operations. 3068 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 3069 * For M profile we arrange them to have a bit for priv, a bit for negpri 3070 * and a bit for secure. 3071 */ 3072 #define ARM_MMU_IDX_A 0x10 /* A profile */ 3073 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 3074 #define ARM_MMU_IDX_M 0x40 /* M profile */ 3075 3076 /* Meanings of the bits for A profile mmu idx values */ 3077 #define ARM_MMU_IDX_A_NS 0x8 3078 3079 /* Meanings of the bits for M profile mmu idx values */ 3080 #define ARM_MMU_IDX_M_PRIV 0x1 3081 #define ARM_MMU_IDX_M_NEGPRI 0x2 3082 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 3083 3084 #define ARM_MMU_IDX_TYPE_MASK \ 3085 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 3086 #define ARM_MMU_IDX_COREIDX_MASK 0xf 3087 3088 typedef enum ARMMMUIdx { 3089 /* 3090 * A-profile. 3091 */ 3092 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A, 3093 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A, 3094 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A, 3095 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A, 3096 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A, 3097 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A, 3098 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A, 3099 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A, 3100 3101 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS, 3102 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS, 3103 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS, 3104 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS, 3105 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS, 3106 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS, 3107 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS, 3108 3109 /* 3110 * These are not allocated TLBs and are used only for AT system 3111 * instructions or for the first stage of an S12 page table walk. 3112 */ 3113 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 3114 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 3115 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 3116 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB, 3117 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB, 3118 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB, 3119 /* 3120 * Not allocated a TLB: used only for second stage of an S12 page 3121 * table walk, or for descriptor loads during first stage of an S1 3122 * page table walk. Note that if we ever want to have a TLB for this 3123 * then various TLB flush insns which currently are no-ops or flush 3124 * only stage 1 MMU indexes will need to change to flush stage 2. 3125 */ 3126 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB, 3127 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB, 3128 3129 /* 3130 * M-profile. 3131 */ 3132 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 3133 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 3134 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 3135 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 3136 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 3137 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 3138 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 3139 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 3140 } ARMMMUIdx; 3141 3142 /* 3143 * Bit macros for the core-mmu-index values for each index, 3144 * for use when calling tlb_flush_by_mmuidx() and friends. 3145 */ 3146 #define TO_CORE_BIT(NAME) \ 3147 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 3148 3149 typedef enum ARMMMUIdxBit { 3150 TO_CORE_BIT(E10_0), 3151 TO_CORE_BIT(E20_0), 3152 TO_CORE_BIT(E10_1), 3153 TO_CORE_BIT(E10_1_PAN), 3154 TO_CORE_BIT(E2), 3155 TO_CORE_BIT(E20_2), 3156 TO_CORE_BIT(E20_2_PAN), 3157 TO_CORE_BIT(SE10_0), 3158 TO_CORE_BIT(SE20_0), 3159 TO_CORE_BIT(SE10_1), 3160 TO_CORE_BIT(SE20_2), 3161 TO_CORE_BIT(SE10_1_PAN), 3162 TO_CORE_BIT(SE20_2_PAN), 3163 TO_CORE_BIT(SE2), 3164 TO_CORE_BIT(SE3), 3165 3166 TO_CORE_BIT(MUser), 3167 TO_CORE_BIT(MPriv), 3168 TO_CORE_BIT(MUserNegPri), 3169 TO_CORE_BIT(MPrivNegPri), 3170 TO_CORE_BIT(MSUser), 3171 TO_CORE_BIT(MSPriv), 3172 TO_CORE_BIT(MSUserNegPri), 3173 TO_CORE_BIT(MSPrivNegPri), 3174 } ARMMMUIdxBit; 3175 3176 #undef TO_CORE_BIT 3177 3178 #define MMU_USER_IDX 0 3179 3180 /* Indexes used when registering address spaces with cpu_address_space_init */ 3181 typedef enum ARMASIdx { 3182 ARMASIdx_NS = 0, 3183 ARMASIdx_S = 1, 3184 ARMASIdx_TagNS = 2, 3185 ARMASIdx_TagS = 3, 3186 } ARMASIdx; 3187 3188 /* Return the Exception Level targeted by debug exceptions. */ 3189 static inline int arm_debug_target_el(CPUARMState *env) 3190 { 3191 bool secure = arm_is_secure(env); 3192 bool route_to_el2 = false; 3193 3194 if (arm_is_el2_enabled(env)) { 3195 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 3196 env->cp15.mdcr_el2 & MDCR_TDE; 3197 } 3198 3199 if (route_to_el2) { 3200 return 2; 3201 } else if (arm_feature(env, ARM_FEATURE_EL3) && 3202 !arm_el_is_aa64(env, 3) && secure) { 3203 return 3; 3204 } else { 3205 return 1; 3206 } 3207 } 3208 3209 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3210 { 3211 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3212 * CSSELR is RAZ/WI. 3213 */ 3214 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3215 } 3216 3217 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 3218 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 3219 { 3220 int cur_el = arm_current_el(env); 3221 int debug_el; 3222 3223 if (cur_el == 3) { 3224 return false; 3225 } 3226 3227 /* MDCR_EL3.SDD disables debug events from Secure state */ 3228 if (arm_is_secure_below_el3(env) 3229 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3230 return false; 3231 } 3232 3233 /* 3234 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3235 * while not masking the (D)ebug bit in DAIF. 3236 */ 3237 debug_el = arm_debug_target_el(env); 3238 3239 if (cur_el == debug_el) { 3240 return extract32(env->cp15.mdscr_el1, 13, 1) 3241 && !(env->daif & PSTATE_D); 3242 } 3243 3244 /* Otherwise the debug target needs to be a higher EL */ 3245 return debug_el > cur_el; 3246 } 3247 3248 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3249 { 3250 int el = arm_current_el(env); 3251 3252 if (el == 0 && arm_el_is_aa64(env, 1)) { 3253 return aa64_generate_debug_exceptions(env); 3254 } 3255 3256 if (arm_is_secure(env)) { 3257 int spd; 3258 3259 if (el == 0 && (env->cp15.sder & 1)) { 3260 /* SDER.SUIDEN means debug exceptions from Secure EL0 3261 * are always enabled. Otherwise they are controlled by 3262 * SDCR.SPD like those from other Secure ELs. 3263 */ 3264 return true; 3265 } 3266 3267 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3268 switch (spd) { 3269 case 1: 3270 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3271 case 0: 3272 /* For 0b00 we return true if external secure invasive debug 3273 * is enabled. On real hardware this is controlled by external 3274 * signals to the core. QEMU always permits debug, and behaves 3275 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3276 */ 3277 return true; 3278 case 2: 3279 return false; 3280 case 3: 3281 return true; 3282 } 3283 } 3284 3285 return el != 2; 3286 } 3287 3288 /* Return true if debugging exceptions are currently enabled. 3289 * This corresponds to what in ARM ARM pseudocode would be 3290 * if UsingAArch32() then 3291 * return AArch32.GenerateDebugExceptions() 3292 * else 3293 * return AArch64.GenerateDebugExceptions() 3294 * We choose to push the if() down into this function for clarity, 3295 * since the pseudocode has it at all callsites except for the one in 3296 * CheckSoftwareStep(), where it is elided because both branches would 3297 * always return the same value. 3298 */ 3299 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3300 { 3301 if (env->aarch64) { 3302 return aa64_generate_debug_exceptions(env); 3303 } else { 3304 return aa32_generate_debug_exceptions(env); 3305 } 3306 } 3307 3308 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3309 * implicitly means this always returns false in pre-v8 CPUs.) 3310 */ 3311 static inline bool arm_singlestep_active(CPUARMState *env) 3312 { 3313 return extract32(env->cp15.mdscr_el1, 0, 1) 3314 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3315 && arm_generate_debug_exceptions(env); 3316 } 3317 3318 static inline bool arm_sctlr_b(CPUARMState *env) 3319 { 3320 return 3321 /* We need not implement SCTLR.ITD in user-mode emulation, so 3322 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3323 * This lets people run BE32 binaries with "-cpu any". 3324 */ 3325 #ifndef CONFIG_USER_ONLY 3326 !arm_feature(env, ARM_FEATURE_V7) && 3327 #endif 3328 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3329 } 3330 3331 uint64_t arm_sctlr(CPUARMState *env, int el); 3332 3333 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3334 bool sctlr_b) 3335 { 3336 #ifdef CONFIG_USER_ONLY 3337 /* 3338 * In system mode, BE32 is modelled in line with the 3339 * architecture (as word-invariant big-endianness), where loads 3340 * and stores are done little endian but from addresses which 3341 * are adjusted by XORing with the appropriate constant. So the 3342 * endianness to use for the raw data access is not affected by 3343 * SCTLR.B. 3344 * In user mode, however, we model BE32 as byte-invariant 3345 * big-endianness (because user-only code cannot tell the 3346 * difference), and so we need to use a data access endianness 3347 * that depends on SCTLR.B. 3348 */ 3349 if (sctlr_b) { 3350 return true; 3351 } 3352 #endif 3353 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3354 return env->uncached_cpsr & CPSR_E; 3355 } 3356 3357 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3358 { 3359 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3360 } 3361 3362 /* Return true if the processor is in big-endian mode. */ 3363 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3364 { 3365 if (!is_a64(env)) { 3366 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3367 } else { 3368 int cur_el = arm_current_el(env); 3369 uint64_t sctlr = arm_sctlr(env, cur_el); 3370 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3371 } 3372 } 3373 3374 typedef CPUARMState CPUArchState; 3375 typedef ARMCPU ArchCPU; 3376 3377 #include "exec/cpu-all.h" 3378 3379 /* 3380 * Bit usage in the TB flags field: bit 31 indicates whether we are 3381 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3382 * We put flags which are shared between 32 and 64 bit mode at the top 3383 * of the word, and flags which apply to only one mode at the bottom. 3384 * 3385 * 31 20 18 14 9 0 3386 * +--------------+-----+-----+----------+--------------+ 3387 * | | | TBFLAG_A32 | | 3388 * | | +-----+----------+ TBFLAG_AM32 | 3389 * | TBFLAG_ANY | |TBFLAG_M32| | 3390 * | +-----------+----------+--------------| 3391 * | | TBFLAG_A64 | 3392 * +--------------+-------------------------------------+ 3393 * 31 20 0 3394 * 3395 * Unless otherwise noted, these bits are cached in env->hflags. 3396 */ 3397 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3398 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1) 3399 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */ 3400 FIELD(TBFLAG_ANY, BE_DATA, 28, 1) 3401 FIELD(TBFLAG_ANY, MMUIDX, 24, 4) 3402 /* Target EL if we take a floating-point-disabled exception */ 3403 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2) 3404 /* For A-profile only, target EL for debug exceptions. */ 3405 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2) 3406 3407 /* 3408 * Bit usage when in AArch32 state, both A- and M-profile. 3409 */ 3410 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */ 3411 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */ 3412 3413 /* 3414 * Bit usage when in AArch32 state, for A-profile only. 3415 */ 3416 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */ 3417 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */ 3418 /* 3419 * We store the bottom two bits of the CPAR as TB flags and handle 3420 * checks on the other bits at runtime. This shares the same bits as 3421 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3422 * Not cached, because VECLEN+VECSTRIDE are not cached. 3423 */ 3424 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2) 3425 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */ 3426 FIELD(TBFLAG_A32, SCTLR_B, 15, 1) 3427 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1) 3428 /* 3429 * Indicates whether cp register reads and writes by guest code should access 3430 * the secure or nonsecure bank of banked registers; note that this is not 3431 * the same thing as the current security state of the processor! 3432 */ 3433 FIELD(TBFLAG_A32, NS, 17, 1) 3434 3435 /* 3436 * Bit usage when in AArch32 state, for M-profile only. 3437 */ 3438 /* Handler (ie not Thread) mode */ 3439 FIELD(TBFLAG_M32, HANDLER, 9, 1) 3440 /* Whether we should generate stack-limit checks */ 3441 FIELD(TBFLAG_M32, STACKCHECK, 10, 1) 3442 /* Set if FPCCR.LSPACT is set */ 3443 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */ 3444 /* Set if we must create a new FP context */ 3445 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */ 3446 /* Set if FPCCR.S does not match current security state */ 3447 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */ 3448 3449 /* 3450 * Bit usage when in AArch64 state 3451 */ 3452 FIELD(TBFLAG_A64, TBII, 0, 2) 3453 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3454 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3455 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3456 FIELD(TBFLAG_A64, BT, 9, 1) 3457 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3458 FIELD(TBFLAG_A64, TBID, 12, 2) 3459 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3460 FIELD(TBFLAG_A64, ATA, 15, 1) 3461 FIELD(TBFLAG_A64, TCMA, 16, 2) 3462 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3463 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3464 3465 /** 3466 * cpu_mmu_index: 3467 * @env: The cpu environment 3468 * @ifetch: True for code access, false for data access. 3469 * 3470 * Return the core mmu index for the current translation regime. 3471 * This function is used by generic TCG code paths. 3472 */ 3473 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3474 { 3475 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX); 3476 } 3477 3478 static inline bool bswap_code(bool sctlr_b) 3479 { 3480 #ifdef CONFIG_USER_ONLY 3481 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3482 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3483 * would also end up as a mixed-endian mode with BE code, LE data. 3484 */ 3485 return 3486 #ifdef TARGET_WORDS_BIGENDIAN 3487 1 ^ 3488 #endif 3489 sctlr_b; 3490 #else 3491 /* All code access in ARM is little endian, and there are no loaders 3492 * doing swaps that need to be reversed 3493 */ 3494 return 0; 3495 #endif 3496 } 3497 3498 #ifdef CONFIG_USER_ONLY 3499 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3500 { 3501 return 3502 #ifdef TARGET_WORDS_BIGENDIAN 3503 1 ^ 3504 #endif 3505 arm_cpu_data_is_big_endian(env); 3506 } 3507 #endif 3508 3509 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3510 target_ulong *cs_base, uint32_t *flags); 3511 3512 enum { 3513 QEMU_PSCI_CONDUIT_DISABLED = 0, 3514 QEMU_PSCI_CONDUIT_SMC = 1, 3515 QEMU_PSCI_CONDUIT_HVC = 2, 3516 }; 3517 3518 #ifndef CONFIG_USER_ONLY 3519 /* Return the address space index to use for a memory access */ 3520 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3521 { 3522 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3523 } 3524 3525 /* Return the AddressSpace to use for a memory access 3526 * (which depends on whether the access is S or NS, and whether 3527 * the board gave us a separate AddressSpace for S accesses). 3528 */ 3529 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3530 { 3531 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3532 } 3533 #endif 3534 3535 /** 3536 * arm_register_pre_el_change_hook: 3537 * Register a hook function which will be called immediately before this 3538 * CPU changes exception level or mode. The hook function will be 3539 * passed a pointer to the ARMCPU and the opaque data pointer passed 3540 * to this function when the hook was registered. 3541 * 3542 * Note that if a pre-change hook is called, any registered post-change hooks 3543 * are guaranteed to subsequently be called. 3544 */ 3545 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3546 void *opaque); 3547 /** 3548 * arm_register_el_change_hook: 3549 * Register a hook function which will be called immediately after this 3550 * CPU changes exception level or mode. The hook function will be 3551 * passed a pointer to the ARMCPU and the opaque data pointer passed 3552 * to this function when the hook was registered. 3553 * 3554 * Note that any registered hooks registered here are guaranteed to be called 3555 * if pre-change hooks have been. 3556 */ 3557 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3558 *opaque); 3559 3560 /** 3561 * arm_rebuild_hflags: 3562 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3563 */ 3564 void arm_rebuild_hflags(CPUARMState *env); 3565 3566 /** 3567 * aa32_vfp_dreg: 3568 * Return a pointer to the Dn register within env in 32-bit mode. 3569 */ 3570 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3571 { 3572 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3573 } 3574 3575 /** 3576 * aa32_vfp_qreg: 3577 * Return a pointer to the Qn register within env in 32-bit mode. 3578 */ 3579 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3580 { 3581 return &env->vfp.zregs[regno].d[0]; 3582 } 3583 3584 /** 3585 * aa64_vfp_qreg: 3586 * Return a pointer to the Qn register within env in 64-bit mode. 3587 */ 3588 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3589 { 3590 return &env->vfp.zregs[regno].d[0]; 3591 } 3592 3593 /* Shared between translate-sve.c and sve_helper.c. */ 3594 extern const uint64_t pred_esz_masks[4]; 3595 3596 /* Helper for the macros below, validating the argument type. */ 3597 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) 3598 { 3599 return x; 3600 } 3601 3602 /* 3603 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. 3604 * Using these should be a bit more self-documenting than using the 3605 * generic target bits directly. 3606 */ 3607 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) 3608 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) 3609 3610 /* 3611 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3612 */ 3613 #define PAGE_BTI PAGE_TARGET_1 3614 #define PAGE_MTE PAGE_TARGET_2 3615 3616 #ifdef TARGET_TAGGED_ADDRESSES 3617 /** 3618 * cpu_untagged_addr: 3619 * @cs: CPU context 3620 * @x: tagged address 3621 * 3622 * Remove any address tag from @x. This is explicitly related to the 3623 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. 3624 * 3625 * There should be a better place to put this, but we need this in 3626 * include/exec/cpu_ldst.h, and not some place linux-user specific. 3627 */ 3628 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) 3629 { 3630 ARMCPU *cpu = ARM_CPU(cs); 3631 if (cpu->env.tagged_addr_enable) { 3632 /* 3633 * TBI is enabled for userspace but not kernelspace addresses. 3634 * Only clear the tag if bit 55 is clear. 3635 */ 3636 x &= sextract64(x, 0, 56); 3637 } 3638 return x; 3639 } 3640 #endif 3641 3642 /* 3643 * Naming convention for isar_feature functions: 3644 * Functions which test 32-bit ID registers should have _aa32_ in 3645 * their name. Functions which test 64-bit ID registers should have 3646 * _aa64_ in their name. These must only be used in code where we 3647 * know for certain that the CPU has AArch32 or AArch64 respectively 3648 * or where the correct answer for a CPU which doesn't implement that 3649 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3650 * system registers that are specific to that CPU state, for "should 3651 * we let this system register bit be set" tests where the 32-bit 3652 * flavour of the register doesn't have the bit, and so on). 3653 * Functions which simply ask "does this feature exist at all" have 3654 * _any_ in their name, and always return the logical OR of the _aa64_ 3655 * and the _aa32_ function. 3656 */ 3657 3658 /* 3659 * 32-bit feature tests via id registers. 3660 */ 3661 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3662 { 3663 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3664 } 3665 3666 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3667 { 3668 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3669 } 3670 3671 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) 3672 { 3673 /* (M-profile) low-overhead loops and branch future */ 3674 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; 3675 } 3676 3677 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3678 { 3679 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3680 } 3681 3682 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3683 { 3684 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3685 } 3686 3687 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3688 { 3689 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3690 } 3691 3692 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3693 { 3694 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3695 } 3696 3697 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3698 { 3699 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3700 } 3701 3702 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3703 { 3704 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3705 } 3706 3707 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3708 { 3709 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3710 } 3711 3712 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3713 { 3714 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3715 } 3716 3717 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3718 { 3719 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3720 } 3721 3722 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3723 { 3724 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3725 } 3726 3727 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3728 { 3729 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3730 } 3731 3732 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3733 { 3734 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3735 } 3736 3737 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3738 { 3739 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3740 } 3741 3742 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) 3743 { 3744 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; 3745 } 3746 3747 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3748 { 3749 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3750 } 3751 3752 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) 3753 { 3754 /* 3755 * Return true if M-profile state handling insns 3756 * (VSCCLRM, CLRM, FPCTX access insns) are implemented 3757 */ 3758 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; 3759 } 3760 3761 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3762 { 3763 /* Sadly this is encoded differently for A-profile and M-profile */ 3764 if (isar_feature_aa32_mprofile(id)) { 3765 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3766 } else { 3767 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3768 } 3769 } 3770 3771 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3772 { 3773 /* 3774 * Return true if either VFP or SIMD is implemented. 3775 * In this case, a minimum of VFP w/ D0-D15. 3776 */ 3777 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3778 } 3779 3780 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3781 { 3782 /* Return true if D16-D31 are implemented */ 3783 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3784 } 3785 3786 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3787 { 3788 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3789 } 3790 3791 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3792 { 3793 /* Return true if CPU supports single precision floating point, VFPv2 */ 3794 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3795 } 3796 3797 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3798 { 3799 /* Return true if CPU supports single precision floating point, VFPv3 */ 3800 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3801 } 3802 3803 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3804 { 3805 /* Return true if CPU supports double precision floating point, VFPv2 */ 3806 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3807 } 3808 3809 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3810 { 3811 /* Return true if CPU supports double precision floating point, VFPv3 */ 3812 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3813 } 3814 3815 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3816 { 3817 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3818 } 3819 3820 /* 3821 * We always set the FP and SIMD FP16 fields to indicate identical 3822 * levels of support (assuming SIMD is implemented at all), so 3823 * we only need one set of accessors. 3824 */ 3825 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3826 { 3827 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3828 } 3829 3830 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3831 { 3832 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3833 } 3834 3835 /* 3836 * Note that this ID register field covers both VFP and Neon FMAC, 3837 * so should usually be tested in combination with some other 3838 * check that confirms the presence of whichever of VFP or Neon is 3839 * relevant, to avoid accidentally enabling a Neon feature on 3840 * a VFP-no-Neon core or vice-versa. 3841 */ 3842 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3843 { 3844 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3845 } 3846 3847 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3848 { 3849 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3850 } 3851 3852 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3853 { 3854 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3855 } 3856 3857 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3858 { 3859 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3860 } 3861 3862 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3863 { 3864 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3865 } 3866 3867 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3868 { 3869 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3870 } 3871 3872 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3873 { 3874 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3875 } 3876 3877 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3878 { 3879 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3880 } 3881 3882 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3883 { 3884 /* 0xf means "non-standard IMPDEF PMU" */ 3885 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3886 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3887 } 3888 3889 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3890 { 3891 /* 0xf means "non-standard IMPDEF PMU" */ 3892 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3893 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3894 } 3895 3896 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3897 { 3898 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3899 } 3900 3901 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3902 { 3903 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3904 } 3905 3906 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3907 { 3908 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3909 } 3910 3911 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3912 { 3913 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3914 } 3915 3916 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id) 3917 { 3918 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0; 3919 } 3920 3921 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id) 3922 { 3923 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0; 3924 } 3925 3926 /* 3927 * 64-bit feature tests via id registers. 3928 */ 3929 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3930 { 3931 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3932 } 3933 3934 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3935 { 3936 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3937 } 3938 3939 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3940 { 3941 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3942 } 3943 3944 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3945 { 3946 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3947 } 3948 3949 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3950 { 3951 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3952 } 3953 3954 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3955 { 3956 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3957 } 3958 3959 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3960 { 3961 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3962 } 3963 3964 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3965 { 3966 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3967 } 3968 3969 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3970 { 3971 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3972 } 3973 3974 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3975 { 3976 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3977 } 3978 3979 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3980 { 3981 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3982 } 3983 3984 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3985 { 3986 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3987 } 3988 3989 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3990 { 3991 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3992 } 3993 3994 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3995 { 3996 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3997 } 3998 3999 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 4000 { 4001 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 4002 } 4003 4004 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 4005 { 4006 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 4007 } 4008 4009 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 4010 { 4011 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 4012 } 4013 4014 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 4015 { 4016 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 4017 } 4018 4019 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 4020 { 4021 /* 4022 * Return true if any form of pauth is enabled, as this 4023 * predicate controls migration of the 128-bit keys. 4024 */ 4025 return (id->id_aa64isar1 & 4026 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 4027 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 4028 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 4029 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 4030 } 4031 4032 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id) 4033 { 4034 /* 4035 * Return true if pauth is enabled with the architected QARMA algorithm. 4036 * QEMU will always set APA+GPA to the same value. 4037 */ 4038 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0; 4039 } 4040 4041 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 4042 { 4043 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 4044 } 4045 4046 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 4047 { 4048 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 4049 } 4050 4051 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 4052 { 4053 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 4054 } 4055 4056 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 4057 { 4058 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 4059 } 4060 4061 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 4062 { 4063 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 4064 } 4065 4066 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 4067 { 4068 /* We always set the AdvSIMD and FP fields identically. */ 4069 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 4070 } 4071 4072 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 4073 { 4074 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 4075 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 4076 } 4077 4078 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 4079 { 4080 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 4081 } 4082 4083 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id) 4084 { 4085 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2; 4086 } 4087 4088 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 4089 { 4090 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 4091 } 4092 4093 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id) 4094 { 4095 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0; 4096 } 4097 4098 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 4099 { 4100 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 4101 } 4102 4103 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 4104 { 4105 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 4106 } 4107 4108 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 4109 { 4110 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 4111 } 4112 4113 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 4114 { 4115 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 4116 } 4117 4118 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 4119 { 4120 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 4121 } 4122 4123 static inline bool isar_feature_aa64_st(const ARMISARegisters *id) 4124 { 4125 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; 4126 } 4127 4128 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 4129 { 4130 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 4131 } 4132 4133 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 4134 { 4135 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 4136 } 4137 4138 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 4139 { 4140 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 4141 } 4142 4143 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 4144 { 4145 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 4146 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4147 } 4148 4149 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 4150 { 4151 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 4152 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4153 } 4154 4155 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 4156 { 4157 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 4158 } 4159 4160 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 4161 { 4162 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 4163 } 4164 4165 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 4166 { 4167 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 4168 } 4169 4170 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 4171 { 4172 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 4173 } 4174 4175 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id) 4176 { 4177 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0; 4178 } 4179 4180 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id) 4181 { 4182 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0; 4183 } 4184 4185 /* 4186 * Feature tests for "does this exist in either 32-bit or 64-bit?" 4187 */ 4188 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 4189 { 4190 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 4191 } 4192 4193 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 4194 { 4195 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 4196 } 4197 4198 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 4199 { 4200 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 4201 } 4202 4203 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 4204 { 4205 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 4206 } 4207 4208 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 4209 { 4210 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 4211 } 4212 4213 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 4214 { 4215 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 4216 } 4217 4218 /* 4219 * Forward to the above feature tests given an ARMCPU pointer. 4220 */ 4221 #define cpu_isar_feature(name, cpu) \ 4222 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 4223 4224 #endif 4225