xref: /openbmc/qemu/target/arm/cpu.h (revision c7b95171)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 
94 /* The usual mapping for an AArch64 system register to its AArch32
95  * counterpart is for the 32 bit world to have access to the lower
96  * half only (with writes leaving the upper half untouched). It's
97  * therefore useful to be able to pass TCG the offset of the least
98  * significant half of a uint64_t struct member.
99  */
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
107 
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
113 
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141  * @cpregs_keys: Array that contains the corresponding Key of
142  * a given cpreg with the same order of the cpreg in the XML description.
143  */
144 typedef struct DynamicGDBXMLInfo {
145     char *desc;
146     int num_cpregs;
147     uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
149 
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152     uint64_t cval; /* Timer CompareValue register */
153     uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
155 
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP  2
159 #define GTIMER_SEC  3
160 #define NUM_GTIMERS 4
161 
162 typedef struct {
163     uint64_t raw_tcr;
164     uint32_t mask;
165     uint32_t base_mask;
166 } TCR;
167 
168 /* Define a maximum sized vector register.
169  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170  * For 64-bit, this is a 2048-bit SVE register.
171  *
172  * Note that the mapping between S, D, and Q views of the register bank
173  * differs between AArch64 and AArch32.
174  * In AArch32:
175  *  Qn = regs[n].d[1]:regs[n].d[0]
176  *  Dn = regs[n / 2].d[n & 1]
177  *  Sn = regs[n / 4].d[n % 4 / 2],
178  *       bits 31..0 for even n, and bits 63..32 for odd n
179  *       (and regs[16] to regs[31] are inaccessible)
180  * In AArch64:
181  *  Zn = regs[n].d[*]
182  *  Qn = regs[n].d[1]:regs[n].d[0]
183  *  Dn = regs[n].d[0]
184  *  Sn = regs[n].d[0] bits 31..0
185  *  Hn = regs[n].d[0] bits 15..0
186  *
187  * This corresponds to the architecturally defined mapping between
188  * the two execution states, and means we do not need to explicitly
189  * map these registers when changing states.
190  *
191  * Align the data for use with TCG host vector operations.
192  */
193 
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ    16
196 #else
197 # define ARM_MAX_VQ    1
198 #endif
199 
200 typedef struct ARMVectorReg {
201     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
203 
204 /* In AArch32 mode, predicate registers do not exist at all.  */
205 #ifdef TARGET_AARCH64
206 typedef struct ARMPredicateReg {
207     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
209 #endif
210 
211 
212 typedef struct CPUARMState {
213     /* Regs for current mode.  */
214     uint32_t regs[16];
215 
216     /* 32/64 switch only happens when taking and returning from
217      * exceptions so the overlap semantics are taken care of then
218      * instead of having a complicated union.
219      */
220     /* Regs for A64 mode.  */
221     uint64_t xregs[32];
222     uint64_t pc;
223     /* PSTATE isn't an architectural register for ARMv8. However, it is
224      * convenient for us to assemble the underlying state into a 32 bit format
225      * identical to the architectural format used for the SPSR. (This is also
226      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227      * 'pstate' register are.) Of the PSTATE bits:
228      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229      *    semantics as for AArch32, as described in the comments on each field)
230      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
231      *  DAIF (exception masks) are kept in env->daif
232      *  all other bits are stored in their correct places in env->pstate
233      */
234     uint32_t pstate;
235     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236 
237     /* Frequently accessed CPSR bits are stored separately for efficiency.
238        This contains all the other bits.  Use cpsr_{read,write} to access
239        the whole CPSR.  */
240     uint32_t uncached_cpsr;
241     uint32_t spsr;
242 
243     /* Banked registers.  */
244     uint64_t banked_spsr[8];
245     uint32_t banked_r13[8];
246     uint32_t banked_r14[8];
247 
248     /* These hold r8-r12.  */
249     uint32_t usr_regs[5];
250     uint32_t fiq_regs[5];
251 
252     /* cpsr flag cache for faster execution */
253     uint32_t CF; /* 0 or 1 */
254     uint32_t VF; /* V is the bit 31. All other bits are undefined */
255     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
256     uint32_t ZF; /* Z set if zero.  */
257     uint32_t QF; /* 0 or 1 */
258     uint32_t GE; /* cpsr[19:16] */
259     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
260     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
261     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
262 
263     uint64_t elr_el[4]; /* AArch64 exception link regs  */
264     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265 
266     /* System control coprocessor (cp15) */
267     struct {
268         uint32_t c0_cpuid;
269         union { /* Cache size selection */
270             struct {
271                 uint64_t _unused_csselr0;
272                 uint64_t csselr_ns;
273                 uint64_t _unused_csselr1;
274                 uint64_t csselr_s;
275             };
276             uint64_t csselr_el[4];
277         };
278         union { /* System control register. */
279             struct {
280                 uint64_t _unused_sctlr;
281                 uint64_t sctlr_ns;
282                 uint64_t hsctlr;
283                 uint64_t sctlr_s;
284             };
285             uint64_t sctlr_el[4];
286         };
287         uint64_t cpacr_el1; /* Architectural feature access control register */
288         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
289         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
290         uint64_t sder; /* Secure debug enable register. */
291         uint32_t nsacr; /* Non-secure access control register. */
292         union { /* MMU translation table base 0. */
293             struct {
294                 uint64_t _unused_ttbr0_0;
295                 uint64_t ttbr0_ns;
296                 uint64_t _unused_ttbr0_1;
297                 uint64_t ttbr0_s;
298             };
299             uint64_t ttbr0_el[4];
300         };
301         union { /* MMU translation table base 1. */
302             struct {
303                 uint64_t _unused_ttbr1_0;
304                 uint64_t ttbr1_ns;
305                 uint64_t _unused_ttbr1_1;
306                 uint64_t ttbr1_s;
307             };
308             uint64_t ttbr1_el[4];
309         };
310         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
311         /* MMU translation table base control. */
312         TCR tcr_el[4];
313         TCR vtcr_el2; /* Virtualization Translation Control.  */
314         uint32_t c2_data; /* MPU data cacheable bits.  */
315         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
316         union { /* MMU domain access control register
317                  * MPU write buffer control.
318                  */
319             struct {
320                 uint64_t dacr_ns;
321                 uint64_t dacr_s;
322             };
323             struct {
324                 uint64_t dacr32_el2;
325             };
326         };
327         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
328         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
329         uint64_t hcr_el2; /* Hypervisor configuration register */
330         uint64_t scr_el3; /* Secure configuration register.  */
331         union { /* Fault status registers.  */
332             struct {
333                 uint64_t ifsr_ns;
334                 uint64_t ifsr_s;
335             };
336             struct {
337                 uint64_t ifsr32_el2;
338             };
339         };
340         union {
341             struct {
342                 uint64_t _unused_dfsr;
343                 uint64_t dfsr_ns;
344                 uint64_t hsr;
345                 uint64_t dfsr_s;
346             };
347             uint64_t esr_el[4];
348         };
349         uint32_t c6_region[8]; /* MPU base/size registers.  */
350         union { /* Fault address registers. */
351             struct {
352                 uint64_t _unused_far0;
353 #ifdef HOST_WORDS_BIGENDIAN
354                 uint32_t ifar_ns;
355                 uint32_t dfar_ns;
356                 uint32_t ifar_s;
357                 uint32_t dfar_s;
358 #else
359                 uint32_t dfar_ns;
360                 uint32_t ifar_ns;
361                 uint32_t dfar_s;
362                 uint32_t ifar_s;
363 #endif
364                 uint64_t _unused_far3;
365             };
366             uint64_t far_el[4];
367         };
368         uint64_t hpfar_el2;
369         uint64_t hstr_el2;
370         union { /* Translation result. */
371             struct {
372                 uint64_t _unused_par_0;
373                 uint64_t par_ns;
374                 uint64_t _unused_par_1;
375                 uint64_t par_s;
376             };
377             uint64_t par_el[4];
378         };
379 
380         uint32_t c9_insn; /* Cache lockdown registers.  */
381         uint32_t c9_data;
382         uint64_t c9_pmcr; /* performance monitor control register */
383         uint64_t c9_pmcnten; /* perf monitor counter enables */
384         uint64_t c9_pmovsr; /* perf monitor overflow status */
385         uint64_t c9_pmuserenr; /* perf monitor user enable */
386         uint64_t c9_pmselr; /* perf monitor counter selection register */
387         uint64_t c9_pminten; /* perf monitor interrupt enables */
388         union { /* Memory attribute redirection */
389             struct {
390 #ifdef HOST_WORDS_BIGENDIAN
391                 uint64_t _unused_mair_0;
392                 uint32_t mair1_ns;
393                 uint32_t mair0_ns;
394                 uint64_t _unused_mair_1;
395                 uint32_t mair1_s;
396                 uint32_t mair0_s;
397 #else
398                 uint64_t _unused_mair_0;
399                 uint32_t mair0_ns;
400                 uint32_t mair1_ns;
401                 uint64_t _unused_mair_1;
402                 uint32_t mair0_s;
403                 uint32_t mair1_s;
404 #endif
405             };
406             uint64_t mair_el[4];
407         };
408         union { /* vector base address register */
409             struct {
410                 uint64_t _unused_vbar;
411                 uint64_t vbar_ns;
412                 uint64_t hvbar;
413                 uint64_t vbar_s;
414             };
415             uint64_t vbar_el[4];
416         };
417         uint32_t mvbar; /* (monitor) vector base address register */
418         struct { /* FCSE PID. */
419             uint32_t fcseidr_ns;
420             uint32_t fcseidr_s;
421         };
422         union { /* Context ID. */
423             struct {
424                 uint64_t _unused_contextidr_0;
425                 uint64_t contextidr_ns;
426                 uint64_t _unused_contextidr_1;
427                 uint64_t contextidr_s;
428             };
429             uint64_t contextidr_el[4];
430         };
431         union { /* User RW Thread register. */
432             struct {
433                 uint64_t tpidrurw_ns;
434                 uint64_t tpidrprw_ns;
435                 uint64_t htpidr;
436                 uint64_t _tpidr_el3;
437             };
438             uint64_t tpidr_el[4];
439         };
440         /* The secure banks of these registers don't map anywhere */
441         uint64_t tpidrurw_s;
442         uint64_t tpidrprw_s;
443         uint64_t tpidruro_s;
444 
445         union { /* User RO Thread register. */
446             uint64_t tpidruro_ns;
447             uint64_t tpidrro_el[1];
448         };
449         uint64_t c14_cntfrq; /* Counter Frequency register */
450         uint64_t c14_cntkctl; /* Timer Control register */
451         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
452         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
453         ARMGenericTimer c14_timer[NUM_GTIMERS];
454         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
455         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
456         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
457         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
458         uint32_t c15_threadid; /* TI debugger thread-ID.  */
459         uint32_t c15_config_base_address; /* SCU base address.  */
460         uint32_t c15_diagnostic; /* diagnostic register */
461         uint32_t c15_power_diagnostic;
462         uint32_t c15_power_control; /* power control */
463         uint64_t dbgbvr[16]; /* breakpoint value registers */
464         uint64_t dbgbcr[16]; /* breakpoint control registers */
465         uint64_t dbgwvr[16]; /* watchpoint value registers */
466         uint64_t dbgwcr[16]; /* watchpoint control registers */
467         uint64_t mdscr_el1;
468         uint64_t oslsr_el1; /* OS Lock Status */
469         uint64_t mdcr_el2;
470         uint64_t mdcr_el3;
471         /* If the counter is enabled, this stores the last time the counter
472          * was reset. Otherwise it stores the counter value
473          */
474         uint64_t c15_ccnt;
475         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
476         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
477         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
478     } cp15;
479 
480     struct {
481         /* M profile has up to 4 stack pointers:
482          * a Main Stack Pointer and a Process Stack Pointer for each
483          * of the Secure and Non-Secure states. (If the CPU doesn't support
484          * the security extension then it has only two SPs.)
485          * In QEMU we always store the currently active SP in regs[13],
486          * and the non-active SP for the current security state in
487          * v7m.other_sp. The stack pointers for the inactive security state
488          * are stored in other_ss_msp and other_ss_psp.
489          * switch_v7m_security_state() is responsible for rearranging them
490          * when we change security state.
491          */
492         uint32_t other_sp;
493         uint32_t other_ss_msp;
494         uint32_t other_ss_psp;
495         uint32_t vecbase[M_REG_NUM_BANKS];
496         uint32_t basepri[M_REG_NUM_BANKS];
497         uint32_t control[M_REG_NUM_BANKS];
498         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
499         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
500         uint32_t hfsr; /* HardFault Status */
501         uint32_t dfsr; /* Debug Fault Status Register */
502         uint32_t sfsr; /* Secure Fault Status Register */
503         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
504         uint32_t bfar; /* BusFault Address */
505         uint32_t sfar; /* Secure Fault Address Register */
506         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
507         int exception;
508         uint32_t primask[M_REG_NUM_BANKS];
509         uint32_t faultmask[M_REG_NUM_BANKS];
510         uint32_t aircr; /* only holds r/w state if security extn implemented */
511         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
512         uint32_t csselr[M_REG_NUM_BANKS];
513         uint32_t scr[M_REG_NUM_BANKS];
514         uint32_t msplim[M_REG_NUM_BANKS];
515         uint32_t psplim[M_REG_NUM_BANKS];
516     } v7m;
517 
518     /* Information associated with an exception about to be taken:
519      * code which raises an exception must set cs->exception_index and
520      * the relevant parts of this structure; the cpu_do_interrupt function
521      * will then set the guest-visible registers as part of the exception
522      * entry process.
523      */
524     struct {
525         uint32_t syndrome; /* AArch64 format syndrome register */
526         uint32_t fsr; /* AArch32 format fault status register info */
527         uint64_t vaddress; /* virtual addr associated with exception, if any */
528         uint32_t target_el; /* EL the exception should be targeted for */
529         /* If we implement EL2 we will also need to store information
530          * about the intermediate physical address for stage 2 faults.
531          */
532     } exception;
533 
534     /* Information associated with an SError */
535     struct {
536         uint8_t pending;
537         uint8_t has_esr;
538         uint64_t esr;
539     } serror;
540 
541     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
542     uint32_t irq_line_state;
543 
544     /* Thumb-2 EE state.  */
545     uint32_t teecr;
546     uint32_t teehbr;
547 
548     /* VFP coprocessor state.  */
549     struct {
550         ARMVectorReg zregs[32];
551 
552 #ifdef TARGET_AARCH64
553         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
554 #define FFR_PRED_NUM 16
555         ARMPredicateReg pregs[17];
556         /* Scratch space for aa64 sve predicate temporary.  */
557         ARMPredicateReg preg_tmp;
558 #endif
559 
560         uint32_t xregs[16];
561         /* We store these fpcsr fields separately for convenience.  */
562         int vec_len;
563         int vec_stride;
564 
565         /* Scratch space for aa32 neon expansion.  */
566         uint32_t scratch[8];
567 
568         /* There are a number of distinct float control structures:
569          *
570          *  fp_status: is the "normal" fp status.
571          *  fp_status_fp16: used for half-precision calculations
572          *  standard_fp_status : the ARM "Standard FPSCR Value"
573          *
574          * Half-precision operations are governed by a separate
575          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
576          * status structure to control this.
577          *
578          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
579          * round-to-nearest and is used by any operations (generally
580          * Neon) which the architecture defines as controlled by the
581          * standard FPSCR value rather than the FPSCR.
582          *
583          * To avoid having to transfer exception bits around, we simply
584          * say that the FPSCR cumulative exception flags are the logical
585          * OR of the flags in the three fp statuses. This relies on the
586          * only thing which needs to read the exception flags being
587          * an explicit FPSCR read.
588          */
589         float_status fp_status;
590         float_status fp_status_f16;
591         float_status standard_fp_status;
592 
593         /* ZCR_EL[1-3] */
594         uint64_t zcr_el[4];
595     } vfp;
596     uint64_t exclusive_addr;
597     uint64_t exclusive_val;
598     uint64_t exclusive_high;
599 
600     /* iwMMXt coprocessor state.  */
601     struct {
602         uint64_t regs[16];
603         uint64_t val;
604 
605         uint32_t cregs[16];
606     } iwmmxt;
607 
608 #if defined(CONFIG_USER_ONLY)
609     /* For usermode syscall translation.  */
610     int eabi;
611 #endif
612 
613     struct CPUBreakpoint *cpu_breakpoint[16];
614     struct CPUWatchpoint *cpu_watchpoint[16];
615 
616     /* Fields up to this point are cleared by a CPU reset */
617     struct {} end_reset_fields;
618 
619     CPU_COMMON
620 
621     /* Fields after CPU_COMMON are preserved across CPU reset. */
622 
623     /* Internal CPU feature flags.  */
624     uint64_t features;
625 
626     /* PMSAv7 MPU */
627     struct {
628         uint32_t *drbar;
629         uint32_t *drsr;
630         uint32_t *dracr;
631         uint32_t rnr[M_REG_NUM_BANKS];
632     } pmsav7;
633 
634     /* PMSAv8 MPU */
635     struct {
636         /* The PMSAv8 implementation also shares some PMSAv7 config
637          * and state:
638          *  pmsav7.rnr (region number register)
639          *  pmsav7_dregion (number of configured regions)
640          */
641         uint32_t *rbar[M_REG_NUM_BANKS];
642         uint32_t *rlar[M_REG_NUM_BANKS];
643         uint32_t mair0[M_REG_NUM_BANKS];
644         uint32_t mair1[M_REG_NUM_BANKS];
645     } pmsav8;
646 
647     /* v8M SAU */
648     struct {
649         uint32_t *rbar;
650         uint32_t *rlar;
651         uint32_t rnr;
652         uint32_t ctrl;
653     } sau;
654 
655     void *nvic;
656     const struct arm_boot_info *boot_info;
657     /* Store GICv3CPUState to access from this struct */
658     void *gicv3state;
659 } CPUARMState;
660 
661 /**
662  * ARMELChangeHookFn:
663  * type of a function which can be registered via arm_register_el_change_hook()
664  * to get callbacks when the CPU changes its exception level or mode.
665  */
666 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
667 typedef struct ARMELChangeHook ARMELChangeHook;
668 struct ARMELChangeHook {
669     ARMELChangeHookFn *hook;
670     void *opaque;
671     QLIST_ENTRY(ARMELChangeHook) node;
672 };
673 
674 /* These values map onto the return values for
675  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
676 typedef enum ARMPSCIState {
677     PSCI_ON = 0,
678     PSCI_OFF = 1,
679     PSCI_ON_PENDING = 2
680 } ARMPSCIState;
681 
682 typedef struct ARMISARegisters ARMISARegisters;
683 
684 /**
685  * ARMCPU:
686  * @env: #CPUARMState
687  *
688  * An ARM CPU core.
689  */
690 struct ARMCPU {
691     /*< private >*/
692     CPUState parent_obj;
693     /*< public >*/
694 
695     CPUARMState env;
696 
697     /* Coprocessor information */
698     GHashTable *cp_regs;
699     /* For marshalling (mostly coprocessor) register state between the
700      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
701      * we use these arrays.
702      */
703     /* List of register indexes managed via these arrays; (full KVM style
704      * 64 bit indexes, not CPRegInfo 32 bit indexes)
705      */
706     uint64_t *cpreg_indexes;
707     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
708     uint64_t *cpreg_values;
709     /* Length of the indexes, values, reset_values arrays */
710     int32_t cpreg_array_len;
711     /* These are used only for migration: incoming data arrives in
712      * these fields and is sanity checked in post_load before copying
713      * to the working data structures above.
714      */
715     uint64_t *cpreg_vmstate_indexes;
716     uint64_t *cpreg_vmstate_values;
717     int32_t cpreg_vmstate_array_len;
718 
719     DynamicGDBXMLInfo dyn_xml;
720 
721     /* Timers used by the generic (architected) timer */
722     QEMUTimer *gt_timer[NUM_GTIMERS];
723     /* GPIO outputs for generic timer */
724     qemu_irq gt_timer_outputs[NUM_GTIMERS];
725     /* GPIO output for GICv3 maintenance interrupt signal */
726     qemu_irq gicv3_maintenance_interrupt;
727     /* GPIO output for the PMU interrupt */
728     qemu_irq pmu_interrupt;
729 
730     /* MemoryRegion to use for secure physical accesses */
731     MemoryRegion *secure_memory;
732 
733     /* For v8M, pointer to the IDAU interface provided by board/SoC */
734     Object *idau;
735 
736     /* 'compatible' string for this CPU for Linux device trees */
737     const char *dtb_compatible;
738 
739     /* PSCI version for this CPU
740      * Bits[31:16] = Major Version
741      * Bits[15:0] = Minor Version
742      */
743     uint32_t psci_version;
744 
745     /* Should CPU start in PSCI powered-off state? */
746     bool start_powered_off;
747 
748     /* Current power state, access guarded by BQL */
749     ARMPSCIState power_state;
750 
751     /* CPU has virtualization extension */
752     bool has_el2;
753     /* CPU has security extension */
754     bool has_el3;
755     /* CPU has PMU (Performance Monitor Unit) */
756     bool has_pmu;
757 
758     /* CPU has memory protection unit */
759     bool has_mpu;
760     /* PMSAv7 MPU number of supported regions */
761     uint32_t pmsav7_dregion;
762     /* v8M SAU number of supported regions */
763     uint32_t sau_sregion;
764 
765     /* PSCI conduit used to invoke PSCI methods
766      * 0 - disabled, 1 - smc, 2 - hvc
767      */
768     uint32_t psci_conduit;
769 
770     /* For v8M, initial value of the Secure VTOR */
771     uint32_t init_svtor;
772 
773     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
774      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
775      */
776     uint32_t kvm_target;
777 
778     /* KVM init features for this CPU */
779     uint32_t kvm_init_features[7];
780 
781     /* Uniprocessor system with MP extensions */
782     bool mp_is_up;
783 
784     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
785      * and the probe failed (so we need to report the error in realize)
786      */
787     bool host_cpu_probe_failed;
788 
789     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
790      * register.
791      */
792     int32_t core_count;
793 
794     /* The instance init functions for implementation-specific subclasses
795      * set these fields to specify the implementation-dependent values of
796      * various constant registers and reset values of non-constant
797      * registers.
798      * Some of these might become QOM properties eventually.
799      * Field names match the official register names as defined in the
800      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
801      * is used for reset values of non-constant registers; no reset_
802      * prefix means a constant register.
803      * Some of these registers are split out into a substructure that
804      * is shared with the translators to control the ISA.
805      */
806     struct ARMISARegisters {
807         uint32_t id_isar0;
808         uint32_t id_isar1;
809         uint32_t id_isar2;
810         uint32_t id_isar3;
811         uint32_t id_isar4;
812         uint32_t id_isar5;
813         uint32_t id_isar6;
814         uint32_t mvfr0;
815         uint32_t mvfr1;
816         uint32_t mvfr2;
817         uint64_t id_aa64isar0;
818         uint64_t id_aa64isar1;
819         uint64_t id_aa64pfr0;
820         uint64_t id_aa64pfr1;
821         uint64_t id_aa64mmfr0;
822         uint64_t id_aa64mmfr1;
823     } isar;
824     uint32_t midr;
825     uint32_t revidr;
826     uint32_t reset_fpsid;
827     uint32_t ctr;
828     uint32_t reset_sctlr;
829     uint32_t id_pfr0;
830     uint32_t id_pfr1;
831     uint32_t id_dfr0;
832     uint32_t pmceid0;
833     uint32_t pmceid1;
834     uint32_t id_afr0;
835     uint32_t id_mmfr0;
836     uint32_t id_mmfr1;
837     uint32_t id_mmfr2;
838     uint32_t id_mmfr3;
839     uint32_t id_mmfr4;
840     uint64_t id_aa64dfr0;
841     uint64_t id_aa64dfr1;
842     uint64_t id_aa64afr0;
843     uint64_t id_aa64afr1;
844     uint32_t dbgdidr;
845     uint32_t clidr;
846     uint64_t mp_affinity; /* MP ID without feature bits */
847     /* The elements of this array are the CCSIDR values for each cache,
848      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
849      */
850     uint32_t ccsidr[16];
851     uint64_t reset_cbar;
852     uint32_t reset_auxcr;
853     bool reset_hivecs;
854     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
855     uint32_t dcz_blocksize;
856     uint64_t rvbar;
857 
858     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
859     int gic_num_lrs; /* number of list registers */
860     int gic_vpribits; /* number of virtual priority bits */
861     int gic_vprebits; /* number of virtual preemption bits */
862 
863     /* Whether the cfgend input is high (i.e. this CPU should reset into
864      * big-endian mode).  This setting isn't used directly: instead it modifies
865      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
866      * architecture version.
867      */
868     bool cfgend;
869 
870     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
871     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
872 
873     int32_t node_id; /* NUMA node this CPU belongs to */
874 
875     /* Used to synchronize KVM and QEMU in-kernel device levels */
876     uint8_t device_irq_level;
877 
878     /* Used to set the maximum vector length the cpu will support.  */
879     uint32_t sve_max_vq;
880 };
881 
882 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
883 {
884     return container_of(env, ARMCPU, env);
885 }
886 
887 void arm_cpu_post_init(Object *obj);
888 
889 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
890 
891 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
892 
893 #define ENV_OFFSET offsetof(ARMCPU, env)
894 
895 #ifndef CONFIG_USER_ONLY
896 extern const struct VMStateDescription vmstate_arm_cpu;
897 #endif
898 
899 void arm_cpu_do_interrupt(CPUState *cpu);
900 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
901 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
902 
903 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
904                         int flags);
905 
906 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
907                                          MemTxAttrs *attrs);
908 
909 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
910 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
911 
912 /* Dynamically generates for gdb stub an XML description of the sysregs from
913  * the cp_regs hashtable. Returns the registered sysregs number.
914  */
915 int arm_gen_dynamic_xml(CPUState *cpu);
916 
917 /* Returns the dynamically generated XML for the gdb stub.
918  * Returns a pointer to the XML contents for the specified XML file or NULL
919  * if the XML name doesn't match the predefined one.
920  */
921 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
922 
923 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
924                              int cpuid, void *opaque);
925 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
926                              int cpuid, void *opaque);
927 
928 #ifdef TARGET_AARCH64
929 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
930 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
931 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
932 void aarch64_sve_change_el(CPUARMState *env, int old_el,
933                            int new_el, bool el0_a64);
934 #else
935 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
936 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
937                                          int n, bool a)
938 { }
939 #endif
940 
941 target_ulong do_arm_semihosting(CPUARMState *env);
942 void aarch64_sync_32_to_64(CPUARMState *env);
943 void aarch64_sync_64_to_32(CPUARMState *env);
944 
945 int fp_exception_el(CPUARMState *env, int cur_el);
946 int sve_exception_el(CPUARMState *env, int cur_el);
947 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
948 
949 static inline bool is_a64(CPUARMState *env)
950 {
951     return env->aarch64;
952 }
953 
954 /* you can call this signal handler from your SIGBUS and SIGSEGV
955    signal handlers to inform the virtual CPU of exceptions. non zero
956    is returned if the signal was handled by the virtual CPU.  */
957 int cpu_arm_signal_handler(int host_signum, void *pinfo,
958                            void *puc);
959 
960 /**
961  * pmccntr_sync
962  * @env: CPUARMState
963  *
964  * Synchronises the counter in the PMCCNTR. This must always be called twice,
965  * once before any action that might affect the timer and again afterwards.
966  * The function is used to swap the state of the register if required.
967  * This only happens when not in user mode (!CONFIG_USER_ONLY)
968  */
969 void pmccntr_sync(CPUARMState *env);
970 
971 /* SCTLR bit meanings. Several bits have been reused in newer
972  * versions of the architecture; in that case we define constants
973  * for both old and new bit meanings. Code which tests against those
974  * bits should probably check or otherwise arrange that the CPU
975  * is the architectural version it expects.
976  */
977 #define SCTLR_M       (1U << 0)
978 #define SCTLR_A       (1U << 1)
979 #define SCTLR_C       (1U << 2)
980 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
981 #define SCTLR_SA      (1U << 3)
982 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
983 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
984 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
985 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
986 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
987 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
988 #define SCTLR_ITD     (1U << 7) /* v8 onward */
989 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
990 #define SCTLR_SED     (1U << 8) /* v8 onward */
991 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
992 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
993 #define SCTLR_F       (1U << 10) /* up to v6 */
994 #define SCTLR_SW      (1U << 10) /* v7 onward */
995 #define SCTLR_Z       (1U << 11)
996 #define SCTLR_I       (1U << 12)
997 #define SCTLR_V       (1U << 13)
998 #define SCTLR_RR      (1U << 14) /* up to v7 */
999 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1000 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1001 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1002 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1003 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1004 #define SCTLR_HA      (1U << 17)
1005 #define SCTLR_BR      (1U << 17) /* PMSA only */
1006 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1007 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1008 #define SCTLR_WXN     (1U << 19)
1009 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1010 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
1011 #define SCTLR_FI      (1U << 21)
1012 #define SCTLR_U       (1U << 22)
1013 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1014 #define SCTLR_VE      (1U << 24) /* up to v7 */
1015 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1016 #define SCTLR_EE      (1U << 25)
1017 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1018 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1019 #define SCTLR_NMFI    (1U << 27)
1020 #define SCTLR_TRE     (1U << 28)
1021 #define SCTLR_AFE     (1U << 29)
1022 #define SCTLR_TE      (1U << 30)
1023 
1024 #define CPTR_TCPAC    (1U << 31)
1025 #define CPTR_TTA      (1U << 20)
1026 #define CPTR_TFP      (1U << 10)
1027 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1028 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1029 
1030 #define MDCR_EPMAD    (1U << 21)
1031 #define MDCR_EDAD     (1U << 20)
1032 #define MDCR_SPME     (1U << 17)
1033 #define MDCR_SDD      (1U << 16)
1034 #define MDCR_SPD      (3U << 14)
1035 #define MDCR_TDRA     (1U << 11)
1036 #define MDCR_TDOSA    (1U << 10)
1037 #define MDCR_TDA      (1U << 9)
1038 #define MDCR_TDE      (1U << 8)
1039 #define MDCR_HPME     (1U << 7)
1040 #define MDCR_TPM      (1U << 6)
1041 #define MDCR_TPMCR    (1U << 5)
1042 
1043 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1044 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1045 
1046 #define CPSR_M (0x1fU)
1047 #define CPSR_T (1U << 5)
1048 #define CPSR_F (1U << 6)
1049 #define CPSR_I (1U << 7)
1050 #define CPSR_A (1U << 8)
1051 #define CPSR_E (1U << 9)
1052 #define CPSR_IT_2_7 (0xfc00U)
1053 #define CPSR_GE (0xfU << 16)
1054 #define CPSR_IL (1U << 20)
1055 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1056  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1057  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1058  * where it is live state but not accessible to the AArch32 code.
1059  */
1060 #define CPSR_RESERVED (0x7U << 21)
1061 #define CPSR_J (1U << 24)
1062 #define CPSR_IT_0_1 (3U << 25)
1063 #define CPSR_Q (1U << 27)
1064 #define CPSR_V (1U << 28)
1065 #define CPSR_C (1U << 29)
1066 #define CPSR_Z (1U << 30)
1067 #define CPSR_N (1U << 31)
1068 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1069 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1070 
1071 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1072 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1073     | CPSR_NZCV)
1074 /* Bits writable in user mode.  */
1075 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1076 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1077 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1078 /* Mask of bits which may be set by exception return copying them from SPSR */
1079 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1080 
1081 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1082 #define XPSR_EXCP 0x1ffU
1083 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1084 #define XPSR_IT_2_7 CPSR_IT_2_7
1085 #define XPSR_GE CPSR_GE
1086 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1087 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1088 #define XPSR_IT_0_1 CPSR_IT_0_1
1089 #define XPSR_Q CPSR_Q
1090 #define XPSR_V CPSR_V
1091 #define XPSR_C CPSR_C
1092 #define XPSR_Z CPSR_Z
1093 #define XPSR_N CPSR_N
1094 #define XPSR_NZCV CPSR_NZCV
1095 #define XPSR_IT CPSR_IT
1096 
1097 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1098 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1099 #define TTBCR_PD0    (1U << 4)
1100 #define TTBCR_PD1    (1U << 5)
1101 #define TTBCR_EPD0   (1U << 7)
1102 #define TTBCR_IRGN0  (3U << 8)
1103 #define TTBCR_ORGN0  (3U << 10)
1104 #define TTBCR_SH0    (3U << 12)
1105 #define TTBCR_T1SZ   (3U << 16)
1106 #define TTBCR_A1     (1U << 22)
1107 #define TTBCR_EPD1   (1U << 23)
1108 #define TTBCR_IRGN1  (3U << 24)
1109 #define TTBCR_ORGN1  (3U << 26)
1110 #define TTBCR_SH1    (1U << 28)
1111 #define TTBCR_EAE    (1U << 31)
1112 
1113 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1114  * Only these are valid when in AArch64 mode; in
1115  * AArch32 mode SPSRs are basically CPSR-format.
1116  */
1117 #define PSTATE_SP (1U)
1118 #define PSTATE_M (0xFU)
1119 #define PSTATE_nRW (1U << 4)
1120 #define PSTATE_F (1U << 6)
1121 #define PSTATE_I (1U << 7)
1122 #define PSTATE_A (1U << 8)
1123 #define PSTATE_D (1U << 9)
1124 #define PSTATE_IL (1U << 20)
1125 #define PSTATE_SS (1U << 21)
1126 #define PSTATE_V (1U << 28)
1127 #define PSTATE_C (1U << 29)
1128 #define PSTATE_Z (1U << 30)
1129 #define PSTATE_N (1U << 31)
1130 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1131 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1132 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1133 /* Mode values for AArch64 */
1134 #define PSTATE_MODE_EL3h 13
1135 #define PSTATE_MODE_EL3t 12
1136 #define PSTATE_MODE_EL2h 9
1137 #define PSTATE_MODE_EL2t 8
1138 #define PSTATE_MODE_EL1h 5
1139 #define PSTATE_MODE_EL1t 4
1140 #define PSTATE_MODE_EL0t 0
1141 
1142 /* Write a new value to v7m.exception, thus transitioning into or out
1143  * of Handler mode; this may result in a change of active stack pointer.
1144  */
1145 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1146 
1147 /* Map EL and handler into a PSTATE_MODE.  */
1148 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1149 {
1150     return (el << 2) | handler;
1151 }
1152 
1153 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1154  * interprocessing, so we don't attempt to sync with the cpsr state used by
1155  * the 32 bit decoder.
1156  */
1157 static inline uint32_t pstate_read(CPUARMState *env)
1158 {
1159     int ZF;
1160 
1161     ZF = (env->ZF == 0);
1162     return (env->NF & 0x80000000) | (ZF << 30)
1163         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1164         | env->pstate | env->daif;
1165 }
1166 
1167 static inline void pstate_write(CPUARMState *env, uint32_t val)
1168 {
1169     env->ZF = (~val) & PSTATE_Z;
1170     env->NF = val;
1171     env->CF = (val >> 29) & 1;
1172     env->VF = (val << 3) & 0x80000000;
1173     env->daif = val & PSTATE_DAIF;
1174     env->pstate = val & ~CACHED_PSTATE_BITS;
1175 }
1176 
1177 /* Return the current CPSR value.  */
1178 uint32_t cpsr_read(CPUARMState *env);
1179 
1180 typedef enum CPSRWriteType {
1181     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1182     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1183     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1184     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1185 } CPSRWriteType;
1186 
1187 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1188 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1189                 CPSRWriteType write_type);
1190 
1191 /* Return the current xPSR value.  */
1192 static inline uint32_t xpsr_read(CPUARMState *env)
1193 {
1194     int ZF;
1195     ZF = (env->ZF == 0);
1196     return (env->NF & 0x80000000) | (ZF << 30)
1197         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1198         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1199         | ((env->condexec_bits & 0xfc) << 8)
1200         | env->v7m.exception;
1201 }
1202 
1203 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1204 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1205 {
1206     if (mask & XPSR_NZCV) {
1207         env->ZF = (~val) & XPSR_Z;
1208         env->NF = val;
1209         env->CF = (val >> 29) & 1;
1210         env->VF = (val << 3) & 0x80000000;
1211     }
1212     if (mask & XPSR_Q) {
1213         env->QF = ((val & XPSR_Q) != 0);
1214     }
1215     if (mask & XPSR_T) {
1216         env->thumb = ((val & XPSR_T) != 0);
1217     }
1218     if (mask & XPSR_IT_0_1) {
1219         env->condexec_bits &= ~3;
1220         env->condexec_bits |= (val >> 25) & 3;
1221     }
1222     if (mask & XPSR_IT_2_7) {
1223         env->condexec_bits &= 3;
1224         env->condexec_bits |= (val >> 8) & 0xfc;
1225     }
1226     if (mask & XPSR_EXCP) {
1227         /* Note that this only happens on exception exit */
1228         write_v7m_exception(env, val & XPSR_EXCP);
1229     }
1230 }
1231 
1232 #define HCR_VM        (1ULL << 0)
1233 #define HCR_SWIO      (1ULL << 1)
1234 #define HCR_PTW       (1ULL << 2)
1235 #define HCR_FMO       (1ULL << 3)
1236 #define HCR_IMO       (1ULL << 4)
1237 #define HCR_AMO       (1ULL << 5)
1238 #define HCR_VF        (1ULL << 6)
1239 #define HCR_VI        (1ULL << 7)
1240 #define HCR_VSE       (1ULL << 8)
1241 #define HCR_FB        (1ULL << 9)
1242 #define HCR_BSU_MASK  (3ULL << 10)
1243 #define HCR_DC        (1ULL << 12)
1244 #define HCR_TWI       (1ULL << 13)
1245 #define HCR_TWE       (1ULL << 14)
1246 #define HCR_TID0      (1ULL << 15)
1247 #define HCR_TID1      (1ULL << 16)
1248 #define HCR_TID2      (1ULL << 17)
1249 #define HCR_TID3      (1ULL << 18)
1250 #define HCR_TSC       (1ULL << 19)
1251 #define HCR_TIDCP     (1ULL << 20)
1252 #define HCR_TACR      (1ULL << 21)
1253 #define HCR_TSW       (1ULL << 22)
1254 #define HCR_TPCP      (1ULL << 23)
1255 #define HCR_TPU       (1ULL << 24)
1256 #define HCR_TTLB      (1ULL << 25)
1257 #define HCR_TVM       (1ULL << 26)
1258 #define HCR_TGE       (1ULL << 27)
1259 #define HCR_TDZ       (1ULL << 28)
1260 #define HCR_HCD       (1ULL << 29)
1261 #define HCR_TRVM      (1ULL << 30)
1262 #define HCR_RW        (1ULL << 31)
1263 #define HCR_CD        (1ULL << 32)
1264 #define HCR_ID        (1ULL << 33)
1265 #define HCR_E2H       (1ULL << 34)
1266 #define HCR_TLOR      (1ULL << 35)
1267 #define HCR_TERR      (1ULL << 36)
1268 #define HCR_TEA       (1ULL << 37)
1269 #define HCR_MIOCNCE   (1ULL << 38)
1270 #define HCR_APK       (1ULL << 40)
1271 #define HCR_API       (1ULL << 41)
1272 #define HCR_NV        (1ULL << 42)
1273 #define HCR_NV1       (1ULL << 43)
1274 #define HCR_AT        (1ULL << 44)
1275 #define HCR_NV2       (1ULL << 45)
1276 #define HCR_FWB       (1ULL << 46)
1277 #define HCR_FIEN      (1ULL << 47)
1278 #define HCR_TID4      (1ULL << 49)
1279 #define HCR_TICAB     (1ULL << 50)
1280 #define HCR_TOCU      (1ULL << 52)
1281 #define HCR_TTLBIS    (1ULL << 54)
1282 #define HCR_TTLBOS    (1ULL << 55)
1283 #define HCR_ATA       (1ULL << 56)
1284 #define HCR_DCT       (1ULL << 57)
1285 
1286 /*
1287  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1288  * HCR_MASK and then clear it again if the feature bit is not set in
1289  * hcr_write().
1290  */
1291 #define HCR_MASK      ((1ULL << 34) - 1)
1292 
1293 #define SCR_NS                (1U << 0)
1294 #define SCR_IRQ               (1U << 1)
1295 #define SCR_FIQ               (1U << 2)
1296 #define SCR_EA                (1U << 3)
1297 #define SCR_FW                (1U << 4)
1298 #define SCR_AW                (1U << 5)
1299 #define SCR_NET               (1U << 6)
1300 #define SCR_SMD               (1U << 7)
1301 #define SCR_HCE               (1U << 8)
1302 #define SCR_SIF               (1U << 9)
1303 #define SCR_RW                (1U << 10)
1304 #define SCR_ST                (1U << 11)
1305 #define SCR_TWI               (1U << 12)
1306 #define SCR_TWE               (1U << 13)
1307 #define SCR_TLOR              (1U << 14)
1308 #define SCR_TERR              (1U << 15)
1309 #define SCR_APK               (1U << 16)
1310 #define SCR_API               (1U << 17)
1311 #define SCR_EEL2              (1U << 18)
1312 #define SCR_EASE              (1U << 19)
1313 #define SCR_NMEA              (1U << 20)
1314 #define SCR_FIEN              (1U << 21)
1315 #define SCR_ENSCXT            (1U << 25)
1316 #define SCR_ATA               (1U << 26)
1317 
1318 /* Return the current FPSCR value.  */
1319 uint32_t vfp_get_fpscr(CPUARMState *env);
1320 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1321 
1322 /* FPCR, Floating Point Control Register
1323  * FPSR, Floating Poiht Status Register
1324  *
1325  * For A64 the FPSCR is split into two logically distinct registers,
1326  * FPCR and FPSR. However since they still use non-overlapping bits
1327  * we store the underlying state in fpscr and just mask on read/write.
1328  */
1329 #define FPSR_MASK 0xf800009f
1330 #define FPCR_MASK 0x07ff9f00
1331 
1332 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1333 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1334 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1335 
1336 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1337 {
1338     return vfp_get_fpscr(env) & FPSR_MASK;
1339 }
1340 
1341 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1342 {
1343     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1344     vfp_set_fpscr(env, new_fpscr);
1345 }
1346 
1347 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1348 {
1349     return vfp_get_fpscr(env) & FPCR_MASK;
1350 }
1351 
1352 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1353 {
1354     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1355     vfp_set_fpscr(env, new_fpscr);
1356 }
1357 
1358 enum arm_cpu_mode {
1359   ARM_CPU_MODE_USR = 0x10,
1360   ARM_CPU_MODE_FIQ = 0x11,
1361   ARM_CPU_MODE_IRQ = 0x12,
1362   ARM_CPU_MODE_SVC = 0x13,
1363   ARM_CPU_MODE_MON = 0x16,
1364   ARM_CPU_MODE_ABT = 0x17,
1365   ARM_CPU_MODE_HYP = 0x1a,
1366   ARM_CPU_MODE_UND = 0x1b,
1367   ARM_CPU_MODE_SYS = 0x1f
1368 };
1369 
1370 /* VFP system registers.  */
1371 #define ARM_VFP_FPSID   0
1372 #define ARM_VFP_FPSCR   1
1373 #define ARM_VFP_MVFR2   5
1374 #define ARM_VFP_MVFR1   6
1375 #define ARM_VFP_MVFR0   7
1376 #define ARM_VFP_FPEXC   8
1377 #define ARM_VFP_FPINST  9
1378 #define ARM_VFP_FPINST2 10
1379 
1380 /* iwMMXt coprocessor control registers.  */
1381 #define ARM_IWMMXT_wCID  0
1382 #define ARM_IWMMXT_wCon  1
1383 #define ARM_IWMMXT_wCSSF 2
1384 #define ARM_IWMMXT_wCASF 3
1385 #define ARM_IWMMXT_wCGR0 8
1386 #define ARM_IWMMXT_wCGR1 9
1387 #define ARM_IWMMXT_wCGR2 10
1388 #define ARM_IWMMXT_wCGR3 11
1389 
1390 /* V7M CCR bits */
1391 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1392 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1393 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1394 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1395 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1396 FIELD(V7M_CCR, STKALIGN, 9, 1)
1397 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1398 FIELD(V7M_CCR, DC, 16, 1)
1399 FIELD(V7M_CCR, IC, 17, 1)
1400 FIELD(V7M_CCR, BP, 18, 1)
1401 
1402 /* V7M SCR bits */
1403 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1404 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1405 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1406 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1407 
1408 /* V7M AIRCR bits */
1409 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1410 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1411 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1412 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1413 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1414 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1415 FIELD(V7M_AIRCR, PRIS, 14, 1)
1416 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1417 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1418 
1419 /* V7M CFSR bits for MMFSR */
1420 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1421 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1422 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1423 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1424 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1425 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1426 
1427 /* V7M CFSR bits for BFSR */
1428 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1429 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1430 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1431 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1432 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1433 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1434 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1435 
1436 /* V7M CFSR bits for UFSR */
1437 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1438 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1439 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1440 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1441 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1442 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1443 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1444 
1445 /* V7M CFSR bit masks covering all of the subregister bits */
1446 FIELD(V7M_CFSR, MMFSR, 0, 8)
1447 FIELD(V7M_CFSR, BFSR, 8, 8)
1448 FIELD(V7M_CFSR, UFSR, 16, 16)
1449 
1450 /* V7M HFSR bits */
1451 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1452 FIELD(V7M_HFSR, FORCED, 30, 1)
1453 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1454 
1455 /* V7M DFSR bits */
1456 FIELD(V7M_DFSR, HALTED, 0, 1)
1457 FIELD(V7M_DFSR, BKPT, 1, 1)
1458 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1459 FIELD(V7M_DFSR, VCATCH, 3, 1)
1460 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1461 
1462 /* V7M SFSR bits */
1463 FIELD(V7M_SFSR, INVEP, 0, 1)
1464 FIELD(V7M_SFSR, INVIS, 1, 1)
1465 FIELD(V7M_SFSR, INVER, 2, 1)
1466 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1467 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1468 FIELD(V7M_SFSR, LSPERR, 5, 1)
1469 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1470 FIELD(V7M_SFSR, LSERR, 7, 1)
1471 
1472 /* v7M MPU_CTRL bits */
1473 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1474 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1475 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1476 
1477 /* v7M CLIDR bits */
1478 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1479 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1480 FIELD(V7M_CLIDR, LOC, 24, 3)
1481 FIELD(V7M_CLIDR, LOUU, 27, 3)
1482 FIELD(V7M_CLIDR, ICB, 30, 2)
1483 
1484 FIELD(V7M_CSSELR, IND, 0, 1)
1485 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1486 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1487  * define a mask for this and check that it doesn't permit running off
1488  * the end of the array.
1489  */
1490 FIELD(V7M_CSSELR, INDEX, 0, 4)
1491 
1492 /*
1493  * System register ID fields.
1494  */
1495 FIELD(ID_ISAR0, SWAP, 0, 4)
1496 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1497 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1498 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1499 FIELD(ID_ISAR0, COPROC, 16, 4)
1500 FIELD(ID_ISAR0, DEBUG, 20, 4)
1501 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1502 
1503 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1504 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1505 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1506 FIELD(ID_ISAR1, EXTEND, 12, 4)
1507 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1508 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1509 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1510 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1511 
1512 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1513 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1514 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1515 FIELD(ID_ISAR2, MULT, 12, 4)
1516 FIELD(ID_ISAR2, MULTS, 16, 4)
1517 FIELD(ID_ISAR2, MULTU, 20, 4)
1518 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1519 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1520 
1521 FIELD(ID_ISAR3, SATURATE, 0, 4)
1522 FIELD(ID_ISAR3, SIMD, 4, 4)
1523 FIELD(ID_ISAR3, SVC, 8, 4)
1524 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1525 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1526 FIELD(ID_ISAR3, T32COPY, 20, 4)
1527 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1528 FIELD(ID_ISAR3, T32EE, 28, 4)
1529 
1530 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1531 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1532 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1533 FIELD(ID_ISAR4, SMC, 12, 4)
1534 FIELD(ID_ISAR4, BARRIER, 16, 4)
1535 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1536 FIELD(ID_ISAR4, PSR_M, 24, 4)
1537 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1538 
1539 FIELD(ID_ISAR5, SEVL, 0, 4)
1540 FIELD(ID_ISAR5, AES, 4, 4)
1541 FIELD(ID_ISAR5, SHA1, 8, 4)
1542 FIELD(ID_ISAR5, SHA2, 12, 4)
1543 FIELD(ID_ISAR5, CRC32, 16, 4)
1544 FIELD(ID_ISAR5, RDM, 24, 4)
1545 FIELD(ID_ISAR5, VCMA, 28, 4)
1546 
1547 FIELD(ID_ISAR6, JSCVT, 0, 4)
1548 FIELD(ID_ISAR6, DP, 4, 4)
1549 FIELD(ID_ISAR6, FHM, 8, 4)
1550 FIELD(ID_ISAR6, SB, 12, 4)
1551 FIELD(ID_ISAR6, SPECRES, 16, 4)
1552 
1553 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1554 FIELD(ID_MMFR4, AC2, 4, 4)
1555 FIELD(ID_MMFR4, XNX, 8, 4)
1556 FIELD(ID_MMFR4, CNP, 12, 4)
1557 FIELD(ID_MMFR4, HPDS, 16, 4)
1558 FIELD(ID_MMFR4, LSM, 20, 4)
1559 FIELD(ID_MMFR4, CCIDX, 24, 4)
1560 FIELD(ID_MMFR4, EVT, 28, 4)
1561 
1562 FIELD(ID_AA64ISAR0, AES, 4, 4)
1563 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1564 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1565 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1566 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1567 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1568 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1569 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1570 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1571 FIELD(ID_AA64ISAR0, DP, 44, 4)
1572 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1573 FIELD(ID_AA64ISAR0, TS, 52, 4)
1574 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1575 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1576 
1577 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1578 FIELD(ID_AA64ISAR1, APA, 4, 4)
1579 FIELD(ID_AA64ISAR1, API, 8, 4)
1580 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1581 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1582 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1583 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1584 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1585 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1586 FIELD(ID_AA64ISAR1, SB, 36, 4)
1587 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1588 
1589 FIELD(ID_AA64PFR0, EL0, 0, 4)
1590 FIELD(ID_AA64PFR0, EL1, 4, 4)
1591 FIELD(ID_AA64PFR0, EL2, 8, 4)
1592 FIELD(ID_AA64PFR0, EL3, 12, 4)
1593 FIELD(ID_AA64PFR0, FP, 16, 4)
1594 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1595 FIELD(ID_AA64PFR0, GIC, 24, 4)
1596 FIELD(ID_AA64PFR0, RAS, 28, 4)
1597 FIELD(ID_AA64PFR0, SVE, 32, 4)
1598 
1599 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1600 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1601 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1602 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1603 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1604 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1605 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1606 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1607 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1608 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1609 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1610 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1611 
1612 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1613 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1614 FIELD(ID_AA64MMFR1, VH, 8, 4)
1615 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1616 FIELD(ID_AA64MMFR1, LO, 16, 4)
1617 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1618 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1619 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1620 
1621 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1622 
1623 /* If adding a feature bit which corresponds to a Linux ELF
1624  * HWCAP bit, remember to update the feature-bit-to-hwcap
1625  * mapping in linux-user/elfload.c:get_elf_hwcap().
1626  */
1627 enum arm_features {
1628     ARM_FEATURE_VFP,
1629     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1630     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1631     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1632     ARM_FEATURE_V6,
1633     ARM_FEATURE_V6K,
1634     ARM_FEATURE_V7,
1635     ARM_FEATURE_THUMB2,
1636     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1637     ARM_FEATURE_VFP3,
1638     ARM_FEATURE_VFP_FP16,
1639     ARM_FEATURE_NEON,
1640     ARM_FEATURE_M, /* Microcontroller profile.  */
1641     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1642     ARM_FEATURE_THUMB2EE,
1643     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1644     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1645     ARM_FEATURE_V4T,
1646     ARM_FEATURE_V5,
1647     ARM_FEATURE_STRONGARM,
1648     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1649     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1650     ARM_FEATURE_GENERIC_TIMER,
1651     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1652     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1653     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1654     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1655     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1656     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1657     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1658     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1659     ARM_FEATURE_V8,
1660     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1661     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1662     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1663     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1664     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1665     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1666     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1667     ARM_FEATURE_PMU, /* has PMU support */
1668     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1669     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1670     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1671 };
1672 
1673 static inline int arm_feature(CPUARMState *env, int feature)
1674 {
1675     return (env->features & (1ULL << feature)) != 0;
1676 }
1677 
1678 #if !defined(CONFIG_USER_ONLY)
1679 /* Return true if exception levels below EL3 are in secure state,
1680  * or would be following an exception return to that level.
1681  * Unlike arm_is_secure() (which is always a question about the
1682  * _current_ state of the CPU) this doesn't care about the current
1683  * EL or mode.
1684  */
1685 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1686 {
1687     if (arm_feature(env, ARM_FEATURE_EL3)) {
1688         return !(env->cp15.scr_el3 & SCR_NS);
1689     } else {
1690         /* If EL3 is not supported then the secure state is implementation
1691          * defined, in which case QEMU defaults to non-secure.
1692          */
1693         return false;
1694     }
1695 }
1696 
1697 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1698 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1699 {
1700     if (arm_feature(env, ARM_FEATURE_EL3)) {
1701         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1702             /* CPU currently in AArch64 state and EL3 */
1703             return true;
1704         } else if (!is_a64(env) &&
1705                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1706             /* CPU currently in AArch32 state and monitor mode */
1707             return true;
1708         }
1709     }
1710     return false;
1711 }
1712 
1713 /* Return true if the processor is in secure state */
1714 static inline bool arm_is_secure(CPUARMState *env)
1715 {
1716     if (arm_is_el3_or_mon(env)) {
1717         return true;
1718     }
1719     return arm_is_secure_below_el3(env);
1720 }
1721 
1722 #else
1723 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1724 {
1725     return false;
1726 }
1727 
1728 static inline bool arm_is_secure(CPUARMState *env)
1729 {
1730     return false;
1731 }
1732 #endif
1733 
1734 /**
1735  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1736  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1737  * "for all purposes other than a direct read or write access of HCR_EL2."
1738  * Not included here is HCR_RW.
1739  */
1740 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1741 
1742 /* Return true if the specified exception level is running in AArch64 state. */
1743 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1744 {
1745     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1746      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1747      */
1748     assert(el >= 1 && el <= 3);
1749     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1750 
1751     /* The highest exception level is always at the maximum supported
1752      * register width, and then lower levels have a register width controlled
1753      * by bits in the SCR or HCR registers.
1754      */
1755     if (el == 3) {
1756         return aa64;
1757     }
1758 
1759     if (arm_feature(env, ARM_FEATURE_EL3)) {
1760         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1761     }
1762 
1763     if (el == 2) {
1764         return aa64;
1765     }
1766 
1767     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1768         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1769     }
1770 
1771     return aa64;
1772 }
1773 
1774 /* Function for determing whether guest cp register reads and writes should
1775  * access the secure or non-secure bank of a cp register.  When EL3 is
1776  * operating in AArch32 state, the NS-bit determines whether the secure
1777  * instance of a cp register should be used. When EL3 is AArch64 (or if
1778  * it doesn't exist at all) then there is no register banking, and all
1779  * accesses are to the non-secure version.
1780  */
1781 static inline bool access_secure_reg(CPUARMState *env)
1782 {
1783     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1784                 !arm_el_is_aa64(env, 3) &&
1785                 !(env->cp15.scr_el3 & SCR_NS));
1786 
1787     return ret;
1788 }
1789 
1790 /* Macros for accessing a specified CP register bank */
1791 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1792     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1793 
1794 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1795     do {                                                \
1796         if (_secure) {                                   \
1797             (_env)->cp15._regname##_s = (_val);            \
1798         } else {                                        \
1799             (_env)->cp15._regname##_ns = (_val);           \
1800         }                                               \
1801     } while (0)
1802 
1803 /* Macros for automatically accessing a specific CP register bank depending on
1804  * the current secure state of the system.  These macros are not intended for
1805  * supporting instruction translation reads/writes as these are dependent
1806  * solely on the SCR.NS bit and not the mode.
1807  */
1808 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1809     A32_BANKED_REG_GET((_env), _regname,                \
1810                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1811 
1812 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1813     A32_BANKED_REG_SET((_env), _regname,                                    \
1814                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1815                        (_val))
1816 
1817 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1818 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1819                                  uint32_t cur_el, bool secure);
1820 
1821 /* Interface between CPU and Interrupt controller.  */
1822 #ifndef CONFIG_USER_ONLY
1823 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1824 #else
1825 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1826 {
1827     return true;
1828 }
1829 #endif
1830 /**
1831  * armv7m_nvic_set_pending: mark the specified exception as pending
1832  * @opaque: the NVIC
1833  * @irq: the exception number to mark pending
1834  * @secure: false for non-banked exceptions or for the nonsecure
1835  * version of a banked exception, true for the secure version of a banked
1836  * exception.
1837  *
1838  * Marks the specified exception as pending. Note that we will assert()
1839  * if @secure is true and @irq does not specify one of the fixed set
1840  * of architecturally banked exceptions.
1841  */
1842 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1843 /**
1844  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1845  * @opaque: the NVIC
1846  * @irq: the exception number to mark pending
1847  * @secure: false for non-banked exceptions or for the nonsecure
1848  * version of a banked exception, true for the secure version of a banked
1849  * exception.
1850  *
1851  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1852  * exceptions (exceptions generated in the course of trying to take
1853  * a different exception).
1854  */
1855 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1856 /**
1857  * armv7m_nvic_get_pending_irq_info: return highest priority pending
1858  *    exception, and whether it targets Secure state
1859  * @opaque: the NVIC
1860  * @pirq: set to pending exception number
1861  * @ptargets_secure: set to whether pending exception targets Secure
1862  *
1863  * This function writes the number of the highest priority pending
1864  * exception (the one which would be made active by
1865  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1866  * to true if the current highest priority pending exception should
1867  * be taken to Secure state, false for NS.
1868  */
1869 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1870                                       bool *ptargets_secure);
1871 /**
1872  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1873  * @opaque: the NVIC
1874  *
1875  * Move the current highest priority pending exception from the pending
1876  * state to the active state, and update v7m.exception to indicate that
1877  * it is the exception currently being handled.
1878  */
1879 void armv7m_nvic_acknowledge_irq(void *opaque);
1880 /**
1881  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1882  * @opaque: the NVIC
1883  * @irq: the exception number to complete
1884  * @secure: true if this exception was secure
1885  *
1886  * Returns: -1 if the irq was not active
1887  *           1 if completing this irq brought us back to base (no active irqs)
1888  *           0 if there is still an irq active after this one was completed
1889  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1890  */
1891 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1892 /**
1893  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1894  * @opaque: the NVIC
1895  *
1896  * Returns: the raw execution priority as defined by the v8M architecture.
1897  * This is the execution priority minus the effects of AIRCR.PRIS,
1898  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1899  * (v8M ARM ARM I_PKLD.)
1900  */
1901 int armv7m_nvic_raw_execution_priority(void *opaque);
1902 /**
1903  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1904  * priority is negative for the specified security state.
1905  * @opaque: the NVIC
1906  * @secure: the security state to test
1907  * This corresponds to the pseudocode IsReqExecPriNeg().
1908  */
1909 #ifndef CONFIG_USER_ONLY
1910 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1911 #else
1912 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1913 {
1914     return false;
1915 }
1916 #endif
1917 
1918 /* Interface for defining coprocessor registers.
1919  * Registers are defined in tables of arm_cp_reginfo structs
1920  * which are passed to define_arm_cp_regs().
1921  */
1922 
1923 /* When looking up a coprocessor register we look for it
1924  * via an integer which encodes all of:
1925  *  coprocessor number
1926  *  Crn, Crm, opc1, opc2 fields
1927  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1928  *    or via MRRC/MCRR?)
1929  *  non-secure/secure bank (AArch32 only)
1930  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1931  * (In this case crn and opc2 should be zero.)
1932  * For AArch64, there is no 32/64 bit size distinction;
1933  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1934  * and 4 bit CRn and CRm. The encoding patterns are chosen
1935  * to be easy to convert to and from the KVM encodings, and also
1936  * so that the hashtable can contain both AArch32 and AArch64
1937  * registers (to allow for interprocessing where we might run
1938  * 32 bit code on a 64 bit core).
1939  */
1940 /* This bit is private to our hashtable cpreg; in KVM register
1941  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1942  * in the upper bits of the 64 bit ID.
1943  */
1944 #define CP_REG_AA64_SHIFT 28
1945 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1946 
1947 /* To enable banking of coprocessor registers depending on ns-bit we
1948  * add a bit to distinguish between secure and non-secure cpregs in the
1949  * hashtable.
1950  */
1951 #define CP_REG_NS_SHIFT 29
1952 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1953 
1954 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1955     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1956      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1957 
1958 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1959     (CP_REG_AA64_MASK |                                 \
1960      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1961      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1962      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1963      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1964      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1965      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1966 
1967 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1968  * version used as a key for the coprocessor register hashtable
1969  */
1970 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1971 {
1972     uint32_t cpregid = kvmid;
1973     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1974         cpregid |= CP_REG_AA64_MASK;
1975     } else {
1976         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1977             cpregid |= (1 << 15);
1978         }
1979 
1980         /* KVM is always non-secure so add the NS flag on AArch32 register
1981          * entries.
1982          */
1983          cpregid |= 1 << CP_REG_NS_SHIFT;
1984     }
1985     return cpregid;
1986 }
1987 
1988 /* Convert a truncated 32 bit hashtable key into the full
1989  * 64 bit KVM register ID.
1990  */
1991 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1992 {
1993     uint64_t kvmid;
1994 
1995     if (cpregid & CP_REG_AA64_MASK) {
1996         kvmid = cpregid & ~CP_REG_AA64_MASK;
1997         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1998     } else {
1999         kvmid = cpregid & ~(1 << 15);
2000         if (cpregid & (1 << 15)) {
2001             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2002         } else {
2003             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2004         }
2005     }
2006     return kvmid;
2007 }
2008 
2009 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2010  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2011  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2012  * TCG can assume the value to be constant (ie load at translate time)
2013  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2014  * indicates that the TB should not be ended after a write to this register
2015  * (the default is that the TB ends after cp writes). OVERRIDE permits
2016  * a register definition to override a previous definition for the
2017  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2018  * old must have the OVERRIDE bit set.
2019  * ALIAS indicates that this register is an alias view of some underlying
2020  * state which is also visible via another register, and that the other
2021  * register is handling migration and reset; registers marked ALIAS will not be
2022  * migrated but may have their state set by syncing of register state from KVM.
2023  * NO_RAW indicates that this register has no underlying state and does not
2024  * support raw access for state saving/loading; it will not be used for either
2025  * migration or KVM state synchronization. (Typically this is for "registers"
2026  * which are actually used as instructions for cache maintenance and so on.)
2027  * IO indicates that this register does I/O and therefore its accesses
2028  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2029  * registers which implement clocks or timers require this.
2030  */
2031 #define ARM_CP_SPECIAL           0x0001
2032 #define ARM_CP_CONST             0x0002
2033 #define ARM_CP_64BIT             0x0004
2034 #define ARM_CP_SUPPRESS_TB_END   0x0008
2035 #define ARM_CP_OVERRIDE          0x0010
2036 #define ARM_CP_ALIAS             0x0020
2037 #define ARM_CP_IO                0x0040
2038 #define ARM_CP_NO_RAW            0x0080
2039 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2040 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2041 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2042 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2043 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2044 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2045 #define ARM_CP_FPU               0x1000
2046 #define ARM_CP_SVE               0x2000
2047 #define ARM_CP_NO_GDB            0x4000
2048 /* Used only as a terminator for ARMCPRegInfo lists */
2049 #define ARM_CP_SENTINEL          0xffff
2050 /* Mask of only the flag bits in a type field */
2051 #define ARM_CP_FLAG_MASK         0x70ff
2052 
2053 /* Valid values for ARMCPRegInfo state field, indicating which of
2054  * the AArch32 and AArch64 execution states this register is visible in.
2055  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2056  * If the reginfo is declared to be visible in both states then a second
2057  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2058  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2059  * Note that we rely on the values of these enums as we iterate through
2060  * the various states in some places.
2061  */
2062 enum {
2063     ARM_CP_STATE_AA32 = 0,
2064     ARM_CP_STATE_AA64 = 1,
2065     ARM_CP_STATE_BOTH = 2,
2066 };
2067 
2068 /* ARM CP register secure state flags.  These flags identify security state
2069  * attributes for a given CP register entry.
2070  * The existence of both or neither secure and non-secure flags indicates that
2071  * the register has both a secure and non-secure hash entry.  A single one of
2072  * these flags causes the register to only be hashed for the specified
2073  * security state.
2074  * Although definitions may have any combination of the S/NS bits, each
2075  * registered entry will only have one to identify whether the entry is secure
2076  * or non-secure.
2077  */
2078 enum {
2079     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2080     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2081 };
2082 
2083 /* Return true if cptype is a valid type field. This is used to try to
2084  * catch errors where the sentinel has been accidentally left off the end
2085  * of a list of registers.
2086  */
2087 static inline bool cptype_valid(int cptype)
2088 {
2089     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2090         || ((cptype & ARM_CP_SPECIAL) &&
2091             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2092 }
2093 
2094 /* Access rights:
2095  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2096  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2097  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2098  * (ie any of the privileged modes in Secure state, or Monitor mode).
2099  * If a register is accessible in one privilege level it's always accessible
2100  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2101  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2102  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2103  * terminology a little and call this PL3.
2104  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2105  * with the ELx exception levels.
2106  *
2107  * If access permissions for a register are more complex than can be
2108  * described with these bits, then use a laxer set of restrictions, and
2109  * do the more restrictive/complex check inside a helper function.
2110  */
2111 #define PL3_R 0x80
2112 #define PL3_W 0x40
2113 #define PL2_R (0x20 | PL3_R)
2114 #define PL2_W (0x10 | PL3_W)
2115 #define PL1_R (0x08 | PL2_R)
2116 #define PL1_W (0x04 | PL2_W)
2117 #define PL0_R (0x02 | PL1_R)
2118 #define PL0_W (0x01 | PL1_W)
2119 
2120 #define PL3_RW (PL3_R | PL3_W)
2121 #define PL2_RW (PL2_R | PL2_W)
2122 #define PL1_RW (PL1_R | PL1_W)
2123 #define PL0_RW (PL0_R | PL0_W)
2124 
2125 /* Return the highest implemented Exception Level */
2126 static inline int arm_highest_el(CPUARMState *env)
2127 {
2128     if (arm_feature(env, ARM_FEATURE_EL3)) {
2129         return 3;
2130     }
2131     if (arm_feature(env, ARM_FEATURE_EL2)) {
2132         return 2;
2133     }
2134     return 1;
2135 }
2136 
2137 /* Return true if a v7M CPU is in Handler mode */
2138 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2139 {
2140     return env->v7m.exception != 0;
2141 }
2142 
2143 /* Return the current Exception Level (as per ARMv8; note that this differs
2144  * from the ARMv7 Privilege Level).
2145  */
2146 static inline int arm_current_el(CPUARMState *env)
2147 {
2148     if (arm_feature(env, ARM_FEATURE_M)) {
2149         return arm_v7m_is_handler_mode(env) ||
2150             !(env->v7m.control[env->v7m.secure] & 1);
2151     }
2152 
2153     if (is_a64(env)) {
2154         return extract32(env->pstate, 2, 2);
2155     }
2156 
2157     switch (env->uncached_cpsr & 0x1f) {
2158     case ARM_CPU_MODE_USR:
2159         return 0;
2160     case ARM_CPU_MODE_HYP:
2161         return 2;
2162     case ARM_CPU_MODE_MON:
2163         return 3;
2164     default:
2165         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2166             /* If EL3 is 32-bit then all secure privileged modes run in
2167              * EL3
2168              */
2169             return 3;
2170         }
2171 
2172         return 1;
2173     }
2174 }
2175 
2176 typedef struct ARMCPRegInfo ARMCPRegInfo;
2177 
2178 typedef enum CPAccessResult {
2179     /* Access is permitted */
2180     CP_ACCESS_OK = 0,
2181     /* Access fails due to a configurable trap or enable which would
2182      * result in a categorized exception syndrome giving information about
2183      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2184      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2185      * PL1 if in EL0, otherwise to the current EL).
2186      */
2187     CP_ACCESS_TRAP = 1,
2188     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2189      * Note that this is not a catch-all case -- the set of cases which may
2190      * result in this failure is specifically defined by the architecture.
2191      */
2192     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2193     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2194     CP_ACCESS_TRAP_EL2 = 3,
2195     CP_ACCESS_TRAP_EL3 = 4,
2196     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2197     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2198     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2199     /* Access fails and results in an exception syndrome for an FP access,
2200      * trapped directly to EL2 or EL3
2201      */
2202     CP_ACCESS_TRAP_FP_EL2 = 7,
2203     CP_ACCESS_TRAP_FP_EL3 = 8,
2204 } CPAccessResult;
2205 
2206 /* Access functions for coprocessor registers. These cannot fail and
2207  * may not raise exceptions.
2208  */
2209 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2210 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2211                        uint64_t value);
2212 /* Access permission check functions for coprocessor registers. */
2213 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2214                                   const ARMCPRegInfo *opaque,
2215                                   bool isread);
2216 /* Hook function for register reset */
2217 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2218 
2219 #define CP_ANY 0xff
2220 
2221 /* Definition of an ARM coprocessor register */
2222 struct ARMCPRegInfo {
2223     /* Name of register (useful mainly for debugging, need not be unique) */
2224     const char *name;
2225     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2226      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2227      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2228      * will be decoded to this register. The register read and write
2229      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2230      * used by the program, so it is possible to register a wildcard and
2231      * then behave differently on read/write if necessary.
2232      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2233      * must both be zero.
2234      * For AArch64-visible registers, opc0 is also used.
2235      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2236      * way to distinguish (for KVM's benefit) guest-visible system registers
2237      * from demuxed ones provided to preserve the "no side effects on
2238      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2239      * visible (to match KVM's encoding); cp==0 will be converted to
2240      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2241      */
2242     uint8_t cp;
2243     uint8_t crn;
2244     uint8_t crm;
2245     uint8_t opc0;
2246     uint8_t opc1;
2247     uint8_t opc2;
2248     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2249     int state;
2250     /* Register type: ARM_CP_* bits/values */
2251     int type;
2252     /* Access rights: PL*_[RW] */
2253     int access;
2254     /* Security state: ARM_CP_SECSTATE_* bits/values */
2255     int secure;
2256     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2257      * this register was defined: can be used to hand data through to the
2258      * register read/write functions, since they are passed the ARMCPRegInfo*.
2259      */
2260     void *opaque;
2261     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2262      * fieldoffset is non-zero, the reset value of the register.
2263      */
2264     uint64_t resetvalue;
2265     /* Offset of the field in CPUARMState for this register.
2266      *
2267      * This is not needed if either:
2268      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2269      *  2. both readfn and writefn are specified
2270      */
2271     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2272 
2273     /* Offsets of the secure and non-secure fields in CPUARMState for the
2274      * register if it is banked.  These fields are only used during the static
2275      * registration of a register.  During hashing the bank associated
2276      * with a given security state is copied to fieldoffset which is used from
2277      * there on out.
2278      *
2279      * It is expected that register definitions use either fieldoffset or
2280      * bank_fieldoffsets in the definition but not both.  It is also expected
2281      * that both bank offsets are set when defining a banked register.  This
2282      * use indicates that a register is banked.
2283      */
2284     ptrdiff_t bank_fieldoffsets[2];
2285 
2286     /* Function for making any access checks for this register in addition to
2287      * those specified by the 'access' permissions bits. If NULL, no extra
2288      * checks required. The access check is performed at runtime, not at
2289      * translate time.
2290      */
2291     CPAccessFn *accessfn;
2292     /* Function for handling reads of this register. If NULL, then reads
2293      * will be done by loading from the offset into CPUARMState specified
2294      * by fieldoffset.
2295      */
2296     CPReadFn *readfn;
2297     /* Function for handling writes of this register. If NULL, then writes
2298      * will be done by writing to the offset into CPUARMState specified
2299      * by fieldoffset.
2300      */
2301     CPWriteFn *writefn;
2302     /* Function for doing a "raw" read; used when we need to copy
2303      * coprocessor state to the kernel for KVM or out for
2304      * migration. This only needs to be provided if there is also a
2305      * readfn and it has side effects (for instance clear-on-read bits).
2306      */
2307     CPReadFn *raw_readfn;
2308     /* Function for doing a "raw" write; used when we need to copy KVM
2309      * kernel coprocessor state into userspace, or for inbound
2310      * migration. This only needs to be provided if there is also a
2311      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2312      * or similar behaviour.
2313      */
2314     CPWriteFn *raw_writefn;
2315     /* Function for resetting the register. If NULL, then reset will be done
2316      * by writing resetvalue to the field specified in fieldoffset. If
2317      * fieldoffset is 0 then no reset will be done.
2318      */
2319     CPResetFn *resetfn;
2320 };
2321 
2322 /* Macros which are lvalues for the field in CPUARMState for the
2323  * ARMCPRegInfo *ri.
2324  */
2325 #define CPREG_FIELD32(env, ri) \
2326     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2327 #define CPREG_FIELD64(env, ri) \
2328     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2329 
2330 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2331 
2332 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2333                                     const ARMCPRegInfo *regs, void *opaque);
2334 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2335                                        const ARMCPRegInfo *regs, void *opaque);
2336 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2337 {
2338     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2339 }
2340 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2341 {
2342     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2343 }
2344 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2345 
2346 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2347 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2348                          uint64_t value);
2349 /* CPReadFn that can be used for read-as-zero behaviour */
2350 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2351 
2352 /* CPResetFn that does nothing, for use if no reset is required even
2353  * if fieldoffset is non zero.
2354  */
2355 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2356 
2357 /* Return true if this reginfo struct's field in the cpu state struct
2358  * is 64 bits wide.
2359  */
2360 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2361 {
2362     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2363 }
2364 
2365 static inline bool cp_access_ok(int current_el,
2366                                 const ARMCPRegInfo *ri, int isread)
2367 {
2368     return (ri->access >> ((current_el * 2) + isread)) & 1;
2369 }
2370 
2371 /* Raw read of a coprocessor register (as needed for migration, etc) */
2372 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2373 
2374 /**
2375  * write_list_to_cpustate
2376  * @cpu: ARMCPU
2377  *
2378  * For each register listed in the ARMCPU cpreg_indexes list, write
2379  * its value from the cpreg_values list into the ARMCPUState structure.
2380  * This updates TCG's working data structures from KVM data or
2381  * from incoming migration state.
2382  *
2383  * Returns: true if all register values were updated correctly,
2384  * false if some register was unknown or could not be written.
2385  * Note that we do not stop early on failure -- we will attempt
2386  * writing all registers in the list.
2387  */
2388 bool write_list_to_cpustate(ARMCPU *cpu);
2389 
2390 /**
2391  * write_cpustate_to_list:
2392  * @cpu: ARMCPU
2393  *
2394  * For each register listed in the ARMCPU cpreg_indexes list, write
2395  * its value from the ARMCPUState structure into the cpreg_values list.
2396  * This is used to copy info from TCG's working data structures into
2397  * KVM or for outbound migration.
2398  *
2399  * Returns: true if all register values were read correctly,
2400  * false if some register was unknown or could not be read.
2401  * Note that we do not stop early on failure -- we will attempt
2402  * reading all registers in the list.
2403  */
2404 bool write_cpustate_to_list(ARMCPU *cpu);
2405 
2406 #define ARM_CPUID_TI915T      0x54029152
2407 #define ARM_CPUID_TI925T      0x54029252
2408 
2409 #if defined(CONFIG_USER_ONLY)
2410 #define TARGET_PAGE_BITS 12
2411 #else
2412 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2413  * have to support 1K tiny pages.
2414  */
2415 #define TARGET_PAGE_BITS_VARY
2416 #define TARGET_PAGE_BITS_MIN 10
2417 #endif
2418 
2419 #if defined(TARGET_AARCH64)
2420 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2421 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2422 #else
2423 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2424 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2425 #endif
2426 
2427 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2428                                      unsigned int target_el)
2429 {
2430     CPUARMState *env = cs->env_ptr;
2431     unsigned int cur_el = arm_current_el(env);
2432     bool secure = arm_is_secure(env);
2433     bool pstate_unmasked;
2434     int8_t unmasked = 0;
2435     uint64_t hcr_el2;
2436 
2437     /* Don't take exceptions if they target a lower EL.
2438      * This check should catch any exceptions that would not be taken but left
2439      * pending.
2440      */
2441     if (cur_el > target_el) {
2442         return false;
2443     }
2444 
2445     hcr_el2 = arm_hcr_el2_eff(env);
2446 
2447     switch (excp_idx) {
2448     case EXCP_FIQ:
2449         pstate_unmasked = !(env->daif & PSTATE_F);
2450         break;
2451 
2452     case EXCP_IRQ:
2453         pstate_unmasked = !(env->daif & PSTATE_I);
2454         break;
2455 
2456     case EXCP_VFIQ:
2457         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2458             /* VFIQs are only taken when hypervized and non-secure.  */
2459             return false;
2460         }
2461         return !(env->daif & PSTATE_F);
2462     case EXCP_VIRQ:
2463         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2464             /* VIRQs are only taken when hypervized and non-secure.  */
2465             return false;
2466         }
2467         return !(env->daif & PSTATE_I);
2468     default:
2469         g_assert_not_reached();
2470     }
2471 
2472     /* Use the target EL, current execution state and SCR/HCR settings to
2473      * determine whether the corresponding CPSR bit is used to mask the
2474      * interrupt.
2475      */
2476     if ((target_el > cur_el) && (target_el != 1)) {
2477         /* Exceptions targeting a higher EL may not be maskable */
2478         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2479             /* 64-bit masking rules are simple: exceptions to EL3
2480              * can't be masked, and exceptions to EL2 can only be
2481              * masked from Secure state. The HCR and SCR settings
2482              * don't affect the masking logic, only the interrupt routing.
2483              */
2484             if (target_el == 3 || !secure) {
2485                 unmasked = 1;
2486             }
2487         } else {
2488             /* The old 32-bit-only environment has a more complicated
2489              * masking setup. HCR and SCR bits not only affect interrupt
2490              * routing but also change the behaviour of masking.
2491              */
2492             bool hcr, scr;
2493 
2494             switch (excp_idx) {
2495             case EXCP_FIQ:
2496                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2497                  * we override the CPSR.F in determining if the exception is
2498                  * masked or not. If neither of these are set then we fall back
2499                  * to the CPSR.F setting otherwise we further assess the state
2500                  * below.
2501                  */
2502                 hcr = hcr_el2 & HCR_FMO;
2503                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2504 
2505                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2506                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2507                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2508                  * when non-secure but only when FIQs are only routed to EL3.
2509                  */
2510                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2511                 break;
2512             case EXCP_IRQ:
2513                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2514                  * we may override the CPSR.I masking when in non-secure state.
2515                  * The SCR.IRQ setting has already been taken into consideration
2516                  * when setting the target EL, so it does not have a further
2517                  * affect here.
2518                  */
2519                 hcr = hcr_el2 & HCR_IMO;
2520                 scr = false;
2521                 break;
2522             default:
2523                 g_assert_not_reached();
2524             }
2525 
2526             if ((scr || hcr) && !secure) {
2527                 unmasked = 1;
2528             }
2529         }
2530     }
2531 
2532     /* The PSTATE bits only mask the interrupt if we have not overriden the
2533      * ability above.
2534      */
2535     return unmasked || pstate_unmasked;
2536 }
2537 
2538 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2539 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2540 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2541 
2542 #define cpu_signal_handler cpu_arm_signal_handler
2543 #define cpu_list arm_cpu_list
2544 
2545 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2546  *
2547  * If EL3 is 64-bit:
2548  *  + NonSecure EL1 & 0 stage 1
2549  *  + NonSecure EL1 & 0 stage 2
2550  *  + NonSecure EL2
2551  *  + Secure EL1 & EL0
2552  *  + Secure EL3
2553  * If EL3 is 32-bit:
2554  *  + NonSecure PL1 & 0 stage 1
2555  *  + NonSecure PL1 & 0 stage 2
2556  *  + NonSecure PL2
2557  *  + Secure PL0 & PL1
2558  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2559  *
2560  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2561  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2562  *     may differ in access permissions even if the VA->PA map is the same
2563  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2564  *     translation, which means that we have one mmu_idx that deals with two
2565  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2566  *     architecturally permitted]
2567  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2568  *     handling via the TLB. The only way to do a stage 1 translation without
2569  *     the immediate stage 2 translation is via the ATS or AT system insns,
2570  *     which can be slow-pathed and always do a page table walk.
2571  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2572  *     translation regimes, because they map reasonably well to each other
2573  *     and they can't both be active at the same time.
2574  * This gives us the following list of mmu_idx values:
2575  *
2576  * NS EL0 (aka NS PL0) stage 1+2
2577  * NS EL1 (aka NS PL1) stage 1+2
2578  * NS EL2 (aka NS PL2)
2579  * S EL3 (aka S PL1)
2580  * S EL0 (aka S PL0)
2581  * S EL1 (not used if EL3 is 32 bit)
2582  * NS EL0+1 stage 2
2583  *
2584  * (The last of these is an mmu_idx because we want to be able to use the TLB
2585  * for the accesses done as part of a stage 1 page table walk, rather than
2586  * having to walk the stage 2 page table over and over.)
2587  *
2588  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2589  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2590  * NS EL2 if we ever model a Cortex-R52).
2591  *
2592  * M profile CPUs are rather different as they do not have a true MMU.
2593  * They have the following different MMU indexes:
2594  *  User
2595  *  Privileged
2596  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2597  *  Privileged, execution priority negative (ditto)
2598  * If the CPU supports the v8M Security Extension then there are also:
2599  *  Secure User
2600  *  Secure Privileged
2601  *  Secure User, execution priority negative
2602  *  Secure Privileged, execution priority negative
2603  *
2604  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2605  * are not quite the same -- different CPU types (most notably M profile
2606  * vs A/R profile) would like to use MMU indexes with different semantics,
2607  * but since we don't ever need to use all of those in a single CPU we
2608  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2609  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2610  * the same for any particular CPU.
2611  * Variables of type ARMMUIdx are always full values, and the core
2612  * index values are in variables of type 'int'.
2613  *
2614  * Our enumeration includes at the end some entries which are not "true"
2615  * mmu_idx values in that they don't have corresponding TLBs and are only
2616  * valid for doing slow path page table walks.
2617  *
2618  * The constant names here are patterned after the general style of the names
2619  * of the AT/ATS operations.
2620  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2621  * For M profile we arrange them to have a bit for priv, a bit for negpri
2622  * and a bit for secure.
2623  */
2624 #define ARM_MMU_IDX_A 0x10 /* A profile */
2625 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2626 #define ARM_MMU_IDX_M 0x40 /* M profile */
2627 
2628 /* meanings of the bits for M profile mmu idx values */
2629 #define ARM_MMU_IDX_M_PRIV 0x1
2630 #define ARM_MMU_IDX_M_NEGPRI 0x2
2631 #define ARM_MMU_IDX_M_S 0x4
2632 
2633 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2634 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2635 
2636 typedef enum ARMMMUIdx {
2637     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2638     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2639     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2640     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2641     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2642     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2643     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2644     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2645     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2646     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2647     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2648     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2649     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2650     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2651     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2652     /* Indexes below here don't have TLBs and are used only for AT system
2653      * instructions or for the first stage of an S12 page table walk.
2654      */
2655     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2656     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2657 } ARMMMUIdx;
2658 
2659 /* Bit macros for the core-mmu-index values for each index,
2660  * for use when calling tlb_flush_by_mmuidx() and friends.
2661  */
2662 typedef enum ARMMMUIdxBit {
2663     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2664     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2665     ARMMMUIdxBit_S1E2 = 1 << 2,
2666     ARMMMUIdxBit_S1E3 = 1 << 3,
2667     ARMMMUIdxBit_S1SE0 = 1 << 4,
2668     ARMMMUIdxBit_S1SE1 = 1 << 5,
2669     ARMMMUIdxBit_S2NS = 1 << 6,
2670     ARMMMUIdxBit_MUser = 1 << 0,
2671     ARMMMUIdxBit_MPriv = 1 << 1,
2672     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2673     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2674     ARMMMUIdxBit_MSUser = 1 << 4,
2675     ARMMMUIdxBit_MSPriv = 1 << 5,
2676     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2677     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2678 } ARMMMUIdxBit;
2679 
2680 #define MMU_USER_IDX 0
2681 
2682 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2683 {
2684     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2685 }
2686 
2687 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2688 {
2689     if (arm_feature(env, ARM_FEATURE_M)) {
2690         return mmu_idx | ARM_MMU_IDX_M;
2691     } else {
2692         return mmu_idx | ARM_MMU_IDX_A;
2693     }
2694 }
2695 
2696 /* Return the exception level we're running at if this is our mmu_idx */
2697 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2698 {
2699     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2700     case ARM_MMU_IDX_A:
2701         return mmu_idx & 3;
2702     case ARM_MMU_IDX_M:
2703         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2704     default:
2705         g_assert_not_reached();
2706     }
2707 }
2708 
2709 /* Return the MMU index for a v7M CPU in the specified security and
2710  * privilege state
2711  */
2712 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2713                                                               bool secstate,
2714                                                               bool priv)
2715 {
2716     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2717 
2718     if (priv) {
2719         mmu_idx |= ARM_MMU_IDX_M_PRIV;
2720     }
2721 
2722     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2723         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2724     }
2725 
2726     if (secstate) {
2727         mmu_idx |= ARM_MMU_IDX_M_S;
2728     }
2729 
2730     return mmu_idx;
2731 }
2732 
2733 /* Return the MMU index for a v7M CPU in the specified security state */
2734 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2735                                                      bool secstate)
2736 {
2737     bool priv = arm_current_el(env) != 0;
2738 
2739     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2740 }
2741 
2742 /* Determine the current mmu_idx to use for normal loads/stores */
2743 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2744 {
2745     int el = arm_current_el(env);
2746 
2747     if (arm_feature(env, ARM_FEATURE_M)) {
2748         ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2749 
2750         return arm_to_core_mmu_idx(mmu_idx);
2751     }
2752 
2753     if (el < 2 && arm_is_secure_below_el3(env)) {
2754         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2755     }
2756     return el;
2757 }
2758 
2759 /* Indexes used when registering address spaces with cpu_address_space_init */
2760 typedef enum ARMASIdx {
2761     ARMASIdx_NS = 0,
2762     ARMASIdx_S = 1,
2763 } ARMASIdx;
2764 
2765 /* Return the Exception Level targeted by debug exceptions. */
2766 static inline int arm_debug_target_el(CPUARMState *env)
2767 {
2768     bool secure = arm_is_secure(env);
2769     bool route_to_el2 = false;
2770 
2771     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2772         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2773                        env->cp15.mdcr_el2 & MDCR_TDE;
2774     }
2775 
2776     if (route_to_el2) {
2777         return 2;
2778     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2779                !arm_el_is_aa64(env, 3) && secure) {
2780         return 3;
2781     } else {
2782         return 1;
2783     }
2784 }
2785 
2786 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2787 {
2788     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2789      * CSSELR is RAZ/WI.
2790      */
2791     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2792 }
2793 
2794 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2795 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2796 {
2797     int cur_el = arm_current_el(env);
2798     int debug_el;
2799 
2800     if (cur_el == 3) {
2801         return false;
2802     }
2803 
2804     /* MDCR_EL3.SDD disables debug events from Secure state */
2805     if (arm_is_secure_below_el3(env)
2806         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2807         return false;
2808     }
2809 
2810     /*
2811      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2812      * while not masking the (D)ebug bit in DAIF.
2813      */
2814     debug_el = arm_debug_target_el(env);
2815 
2816     if (cur_el == debug_el) {
2817         return extract32(env->cp15.mdscr_el1, 13, 1)
2818             && !(env->daif & PSTATE_D);
2819     }
2820 
2821     /* Otherwise the debug target needs to be a higher EL */
2822     return debug_el > cur_el;
2823 }
2824 
2825 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2826 {
2827     int el = arm_current_el(env);
2828 
2829     if (el == 0 && arm_el_is_aa64(env, 1)) {
2830         return aa64_generate_debug_exceptions(env);
2831     }
2832 
2833     if (arm_is_secure(env)) {
2834         int spd;
2835 
2836         if (el == 0 && (env->cp15.sder & 1)) {
2837             /* SDER.SUIDEN means debug exceptions from Secure EL0
2838              * are always enabled. Otherwise they are controlled by
2839              * SDCR.SPD like those from other Secure ELs.
2840              */
2841             return true;
2842         }
2843 
2844         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2845         switch (spd) {
2846         case 1:
2847             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2848         case 0:
2849             /* For 0b00 we return true if external secure invasive debug
2850              * is enabled. On real hardware this is controlled by external
2851              * signals to the core. QEMU always permits debug, and behaves
2852              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2853              */
2854             return true;
2855         case 2:
2856             return false;
2857         case 3:
2858             return true;
2859         }
2860     }
2861 
2862     return el != 2;
2863 }
2864 
2865 /* Return true if debugging exceptions are currently enabled.
2866  * This corresponds to what in ARM ARM pseudocode would be
2867  *    if UsingAArch32() then
2868  *        return AArch32.GenerateDebugExceptions()
2869  *    else
2870  *        return AArch64.GenerateDebugExceptions()
2871  * We choose to push the if() down into this function for clarity,
2872  * since the pseudocode has it at all callsites except for the one in
2873  * CheckSoftwareStep(), where it is elided because both branches would
2874  * always return the same value.
2875  */
2876 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2877 {
2878     if (env->aarch64) {
2879         return aa64_generate_debug_exceptions(env);
2880     } else {
2881         return aa32_generate_debug_exceptions(env);
2882     }
2883 }
2884 
2885 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2886  * implicitly means this always returns false in pre-v8 CPUs.)
2887  */
2888 static inline bool arm_singlestep_active(CPUARMState *env)
2889 {
2890     return extract32(env->cp15.mdscr_el1, 0, 1)
2891         && arm_el_is_aa64(env, arm_debug_target_el(env))
2892         && arm_generate_debug_exceptions(env);
2893 }
2894 
2895 static inline bool arm_sctlr_b(CPUARMState *env)
2896 {
2897     return
2898         /* We need not implement SCTLR.ITD in user-mode emulation, so
2899          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2900          * This lets people run BE32 binaries with "-cpu any".
2901          */
2902 #ifndef CONFIG_USER_ONLY
2903         !arm_feature(env, ARM_FEATURE_V7) &&
2904 #endif
2905         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2906 }
2907 
2908 /* Return true if the processor is in big-endian mode. */
2909 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2910 {
2911     int cur_el;
2912 
2913     /* In 32bit endianness is determined by looking at CPSR's E bit */
2914     if (!is_a64(env)) {
2915         return
2916 #ifdef CONFIG_USER_ONLY
2917             /* In system mode, BE32 is modelled in line with the
2918              * architecture (as word-invariant big-endianness), where loads
2919              * and stores are done little endian but from addresses which
2920              * are adjusted by XORing with the appropriate constant. So the
2921              * endianness to use for the raw data access is not affected by
2922              * SCTLR.B.
2923              * In user mode, however, we model BE32 as byte-invariant
2924              * big-endianness (because user-only code cannot tell the
2925              * difference), and so we need to use a data access endianness
2926              * that depends on SCTLR.B.
2927              */
2928             arm_sctlr_b(env) ||
2929 #endif
2930                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2931     }
2932 
2933     cur_el = arm_current_el(env);
2934 
2935     if (cur_el == 0) {
2936         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2937     }
2938 
2939     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2940 }
2941 
2942 #include "exec/cpu-all.h"
2943 
2944 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2945  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2946  * We put flags which are shared between 32 and 64 bit mode at the top
2947  * of the word, and flags which apply to only one mode at the bottom.
2948  */
2949 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
2950 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
2951 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
2952 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
2953 /* Target EL if we take a floating-point-disabled exception */
2954 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
2955 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
2956 
2957 /* Bit usage when in AArch32 state: */
2958 FIELD(TBFLAG_A32, THUMB, 0, 1)
2959 FIELD(TBFLAG_A32, VECLEN, 1, 3)
2960 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
2961 FIELD(TBFLAG_A32, VFPEN, 7, 1)
2962 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
2963 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
2964 /* We store the bottom two bits of the CPAR as TB flags and handle
2965  * checks on the other bits at runtime
2966  */
2967 FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
2968 /* Indicates whether cp register reads and writes by guest code should access
2969  * the secure or nonsecure bank of banked registers; note that this is not
2970  * the same thing as the current security state of the processor!
2971  */
2972 FIELD(TBFLAG_A32, NS, 19, 1)
2973 /* For M profile only, Handler (ie not Thread) mode */
2974 FIELD(TBFLAG_A32, HANDLER, 21, 1)
2975 /* For M profile only, whether we should generate stack-limit checks */
2976 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
2977 
2978 /* Bit usage when in AArch64 state */
2979 FIELD(TBFLAG_A64, TBI0, 0, 1)
2980 FIELD(TBFLAG_A64, TBI1, 1, 1)
2981 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
2982 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
2983 
2984 static inline bool bswap_code(bool sctlr_b)
2985 {
2986 #ifdef CONFIG_USER_ONLY
2987     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2988      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2989      * would also end up as a mixed-endian mode with BE code, LE data.
2990      */
2991     return
2992 #ifdef TARGET_WORDS_BIGENDIAN
2993         1 ^
2994 #endif
2995         sctlr_b;
2996 #else
2997     /* All code access in ARM is little endian, and there are no loaders
2998      * doing swaps that need to be reversed
2999      */
3000     return 0;
3001 #endif
3002 }
3003 
3004 #ifdef CONFIG_USER_ONLY
3005 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3006 {
3007     return
3008 #ifdef TARGET_WORDS_BIGENDIAN
3009        1 ^
3010 #endif
3011        arm_cpu_data_is_big_endian(env);
3012 }
3013 #endif
3014 
3015 #ifndef CONFIG_USER_ONLY
3016 /**
3017  * arm_regime_tbi0:
3018  * @env: CPUARMState
3019  * @mmu_idx: MMU index indicating required translation regime
3020  *
3021  * Extracts the TBI0 value from the appropriate TCR for the current EL
3022  *
3023  * Returns: the TBI0 value.
3024  */
3025 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
3026 
3027 /**
3028  * arm_regime_tbi1:
3029  * @env: CPUARMState
3030  * @mmu_idx: MMU index indicating required translation regime
3031  *
3032  * Extracts the TBI1 value from the appropriate TCR for the current EL
3033  *
3034  * Returns: the TBI1 value.
3035  */
3036 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
3037 #else
3038 /* We can't handle tagged addresses properly in user-only mode */
3039 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
3040 {
3041     return 0;
3042 }
3043 
3044 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
3045 {
3046     return 0;
3047 }
3048 #endif
3049 
3050 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3051                           target_ulong *cs_base, uint32_t *flags);
3052 
3053 enum {
3054     QEMU_PSCI_CONDUIT_DISABLED = 0,
3055     QEMU_PSCI_CONDUIT_SMC = 1,
3056     QEMU_PSCI_CONDUIT_HVC = 2,
3057 };
3058 
3059 #ifndef CONFIG_USER_ONLY
3060 /* Return the address space index to use for a memory access */
3061 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3062 {
3063     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3064 }
3065 
3066 /* Return the AddressSpace to use for a memory access
3067  * (which depends on whether the access is S or NS, and whether
3068  * the board gave us a separate AddressSpace for S accesses).
3069  */
3070 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3071 {
3072     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3073 }
3074 #endif
3075 
3076 /**
3077  * arm_register_pre_el_change_hook:
3078  * Register a hook function which will be called immediately before this
3079  * CPU changes exception level or mode. The hook function will be
3080  * passed a pointer to the ARMCPU and the opaque data pointer passed
3081  * to this function when the hook was registered.
3082  *
3083  * Note that if a pre-change hook is called, any registered post-change hooks
3084  * are guaranteed to subsequently be called.
3085  */
3086 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3087                                  void *opaque);
3088 /**
3089  * arm_register_el_change_hook:
3090  * Register a hook function which will be called immediately after this
3091  * CPU changes exception level or mode. The hook function will be
3092  * passed a pointer to the ARMCPU and the opaque data pointer passed
3093  * to this function when the hook was registered.
3094  *
3095  * Note that any registered hooks registered here are guaranteed to be called
3096  * if pre-change hooks have been.
3097  */
3098 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3099         *opaque);
3100 
3101 /**
3102  * aa32_vfp_dreg:
3103  * Return a pointer to the Dn register within env in 32-bit mode.
3104  */
3105 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3106 {
3107     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3108 }
3109 
3110 /**
3111  * aa32_vfp_qreg:
3112  * Return a pointer to the Qn register within env in 32-bit mode.
3113  */
3114 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3115 {
3116     return &env->vfp.zregs[regno].d[0];
3117 }
3118 
3119 /**
3120  * aa64_vfp_qreg:
3121  * Return a pointer to the Qn register within env in 64-bit mode.
3122  */
3123 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3124 {
3125     return &env->vfp.zregs[regno].d[0];
3126 }
3127 
3128 /* Shared between translate-sve.c and sve_helper.c.  */
3129 extern const uint64_t pred_esz_masks[4];
3130 
3131 /*
3132  * 32-bit feature tests via id registers.
3133  */
3134 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3135 {
3136     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3137 }
3138 
3139 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3140 {
3141     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3142 }
3143 
3144 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3145 {
3146     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3147 }
3148 
3149 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3150 {
3151     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3152 }
3153 
3154 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3155 {
3156     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3157 }
3158 
3159 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3160 {
3161     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3162 }
3163 
3164 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3165 {
3166     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3167 }
3168 
3169 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3170 {
3171     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3172 }
3173 
3174 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3175 {
3176     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3177 }
3178 
3179 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3180 {
3181     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3182 }
3183 
3184 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3185 {
3186     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3187 }
3188 
3189 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3190 {
3191     /*
3192      * This is a placeholder for use by VCMA until the rest of
3193      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3194      * At which point we can properly set and check MVFR1.FPHP.
3195      */
3196     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3197 }
3198 
3199 /*
3200  * 64-bit feature tests via id registers.
3201  */
3202 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3203 {
3204     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3205 }
3206 
3207 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3208 {
3209     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3210 }
3211 
3212 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3213 {
3214     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3215 }
3216 
3217 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3218 {
3219     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3220 }
3221 
3222 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3223 {
3224     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3225 }
3226 
3227 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3228 {
3229     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3230 }
3231 
3232 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3233 {
3234     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3235 }
3236 
3237 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3238 {
3239     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3240 }
3241 
3242 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3243 {
3244     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3245 }
3246 
3247 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3248 {
3249     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3250 }
3251 
3252 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3253 {
3254     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3255 }
3256 
3257 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3258 {
3259     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3260 }
3261 
3262 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3263 {
3264     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3265 }
3266 
3267 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3268 {
3269     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3270     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3271 }
3272 
3273 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3274 {
3275     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3276 }
3277 
3278 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3279 {
3280     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3281 }
3282 
3283 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3284 {
3285     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3286 }
3287 
3288 /*
3289  * Forward to the above feature tests given an ARMCPU pointer.
3290  */
3291 #define cpu_isar_feature(name, cpu) \
3292     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3293 
3294 #endif
3295