xref: /openbmc/qemu/target/arm/cpu.h (revision bed079da04dd9e0e249b9bc22bca8dce58b67f40)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SECURE  7
70 #define ARMV7M_EXCP_SVC     11
71 #define ARMV7M_EXCP_DEBUG   12
72 #define ARMV7M_EXCP_PENDSV  14
73 #define ARMV7M_EXCP_SYSTICK 15
74 
75 /* For M profile, some registers are banked secure vs non-secure;
76  * these are represented as a 2-element array where the first element
77  * is the non-secure copy and the second is the secure copy.
78  * When the CPU does not have implement the security extension then
79  * only the first element is used.
80  * This means that the copy for the current security state can be
81  * accessed via env->registerfield[env->v7m.secure] (whether the security
82  * extension is implemented or not).
83  */
84 enum {
85     M_REG_NS = 0,
86     M_REG_S = 1,
87     M_REG_NUM_BANKS = 2,
88 };
89 
90 /* ARM-specific interrupt pending bits.  */
91 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #ifdef HOST_WORDS_BIGENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 #define NB_MMU_MODES 7
116 /* ARM-specific extra insn start words:
117  * 1: Conditional execution bits
118  * 2: Partial exception syndrome for data aborts
119  */
120 #define TARGET_INSN_START_EXTRA_WORDS 2
121 
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124  * help the sleb128 encoder do a better job.
125  * When restoring the CPU state, we shift it back up.
126  */
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
129 
130 /* We currently assume float and double are IEEE single and double
131    precision respectively.
132    Doing runtime conversions is tricky because VFP registers may contain
133    integer values (eg. as the result of a FTOSI instruction).
134    s<2n> maps to the least significant half of d<n>
135    s<2n+1> maps to the most significant half of d<n>
136  */
137 
138 /* CPU state for each instance of a generic timer (in cp15 c14) */
139 typedef struct ARMGenericTimer {
140     uint64_t cval; /* Timer CompareValue register */
141     uint64_t ctl; /* Timer Control register */
142 } ARMGenericTimer;
143 
144 #define GTIMER_PHYS 0
145 #define GTIMER_VIRT 1
146 #define GTIMER_HYP  2
147 #define GTIMER_SEC  3
148 #define NUM_GTIMERS 4
149 
150 typedef struct {
151     uint64_t raw_tcr;
152     uint32_t mask;
153     uint32_t base_mask;
154 } TCR;
155 
156 typedef struct CPUARMState {
157     /* Regs for current mode.  */
158     uint32_t regs[16];
159 
160     /* 32/64 switch only happens when taking and returning from
161      * exceptions so the overlap semantics are taken care of then
162      * instead of having a complicated union.
163      */
164     /* Regs for A64 mode.  */
165     uint64_t xregs[32];
166     uint64_t pc;
167     /* PSTATE isn't an architectural register for ARMv8. However, it is
168      * convenient for us to assemble the underlying state into a 32 bit format
169      * identical to the architectural format used for the SPSR. (This is also
170      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
171      * 'pstate' register are.) Of the PSTATE bits:
172      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
173      *    semantics as for AArch32, as described in the comments on each field)
174      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
175      *  DAIF (exception masks) are kept in env->daif
176      *  all other bits are stored in their correct places in env->pstate
177      */
178     uint32_t pstate;
179     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
180 
181     /* Frequently accessed CPSR bits are stored separately for efficiency.
182        This contains all the other bits.  Use cpsr_{read,write} to access
183        the whole CPSR.  */
184     uint32_t uncached_cpsr;
185     uint32_t spsr;
186 
187     /* Banked registers.  */
188     uint64_t banked_spsr[8];
189     uint32_t banked_r13[8];
190     uint32_t banked_r14[8];
191 
192     /* These hold r8-r12.  */
193     uint32_t usr_regs[5];
194     uint32_t fiq_regs[5];
195 
196     /* cpsr flag cache for faster execution */
197     uint32_t CF; /* 0 or 1 */
198     uint32_t VF; /* V is the bit 31. All other bits are undefined */
199     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
200     uint32_t ZF; /* Z set if zero.  */
201     uint32_t QF; /* 0 or 1 */
202     uint32_t GE; /* cpsr[19:16] */
203     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
204     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
205     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
206 
207     uint64_t elr_el[4]; /* AArch64 exception link regs  */
208     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
209 
210     /* System control coprocessor (cp15) */
211     struct {
212         uint32_t c0_cpuid;
213         union { /* Cache size selection */
214             struct {
215                 uint64_t _unused_csselr0;
216                 uint64_t csselr_ns;
217                 uint64_t _unused_csselr1;
218                 uint64_t csselr_s;
219             };
220             uint64_t csselr_el[4];
221         };
222         union { /* System control register. */
223             struct {
224                 uint64_t _unused_sctlr;
225                 uint64_t sctlr_ns;
226                 uint64_t hsctlr;
227                 uint64_t sctlr_s;
228             };
229             uint64_t sctlr_el[4];
230         };
231         uint64_t cpacr_el1; /* Architectural feature access control register */
232         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
233         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
234         uint64_t sder; /* Secure debug enable register. */
235         uint32_t nsacr; /* Non-secure access control register. */
236         union { /* MMU translation table base 0. */
237             struct {
238                 uint64_t _unused_ttbr0_0;
239                 uint64_t ttbr0_ns;
240                 uint64_t _unused_ttbr0_1;
241                 uint64_t ttbr0_s;
242             };
243             uint64_t ttbr0_el[4];
244         };
245         union { /* MMU translation table base 1. */
246             struct {
247                 uint64_t _unused_ttbr1_0;
248                 uint64_t ttbr1_ns;
249                 uint64_t _unused_ttbr1_1;
250                 uint64_t ttbr1_s;
251             };
252             uint64_t ttbr1_el[4];
253         };
254         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
255         /* MMU translation table base control. */
256         TCR tcr_el[4];
257         TCR vtcr_el2; /* Virtualization Translation Control.  */
258         uint32_t c2_data; /* MPU data cacheable bits.  */
259         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
260         union { /* MMU domain access control register
261                  * MPU write buffer control.
262                  */
263             struct {
264                 uint64_t dacr_ns;
265                 uint64_t dacr_s;
266             };
267             struct {
268                 uint64_t dacr32_el2;
269             };
270         };
271         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
272         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
273         uint64_t hcr_el2; /* Hypervisor configuration register */
274         uint64_t scr_el3; /* Secure configuration register.  */
275         union { /* Fault status registers.  */
276             struct {
277                 uint64_t ifsr_ns;
278                 uint64_t ifsr_s;
279             };
280             struct {
281                 uint64_t ifsr32_el2;
282             };
283         };
284         union {
285             struct {
286                 uint64_t _unused_dfsr;
287                 uint64_t dfsr_ns;
288                 uint64_t hsr;
289                 uint64_t dfsr_s;
290             };
291             uint64_t esr_el[4];
292         };
293         uint32_t c6_region[8]; /* MPU base/size registers.  */
294         union { /* Fault address registers. */
295             struct {
296                 uint64_t _unused_far0;
297 #ifdef HOST_WORDS_BIGENDIAN
298                 uint32_t ifar_ns;
299                 uint32_t dfar_ns;
300                 uint32_t ifar_s;
301                 uint32_t dfar_s;
302 #else
303                 uint32_t dfar_ns;
304                 uint32_t ifar_ns;
305                 uint32_t dfar_s;
306                 uint32_t ifar_s;
307 #endif
308                 uint64_t _unused_far3;
309             };
310             uint64_t far_el[4];
311         };
312         uint64_t hpfar_el2;
313         uint64_t hstr_el2;
314         union { /* Translation result. */
315             struct {
316                 uint64_t _unused_par_0;
317                 uint64_t par_ns;
318                 uint64_t _unused_par_1;
319                 uint64_t par_s;
320             };
321             uint64_t par_el[4];
322         };
323 
324         uint32_t c9_insn; /* Cache lockdown registers.  */
325         uint32_t c9_data;
326         uint64_t c9_pmcr; /* performance monitor control register */
327         uint64_t c9_pmcnten; /* perf monitor counter enables */
328         uint32_t c9_pmovsr; /* perf monitor overflow status */
329         uint32_t c9_pmuserenr; /* perf monitor user enable */
330         uint64_t c9_pmselr; /* perf monitor counter selection register */
331         uint64_t c9_pminten; /* perf monitor interrupt enables */
332         union { /* Memory attribute redirection */
333             struct {
334 #ifdef HOST_WORDS_BIGENDIAN
335                 uint64_t _unused_mair_0;
336                 uint32_t mair1_ns;
337                 uint32_t mair0_ns;
338                 uint64_t _unused_mair_1;
339                 uint32_t mair1_s;
340                 uint32_t mair0_s;
341 #else
342                 uint64_t _unused_mair_0;
343                 uint32_t mair0_ns;
344                 uint32_t mair1_ns;
345                 uint64_t _unused_mair_1;
346                 uint32_t mair0_s;
347                 uint32_t mair1_s;
348 #endif
349             };
350             uint64_t mair_el[4];
351         };
352         union { /* vector base address register */
353             struct {
354                 uint64_t _unused_vbar;
355                 uint64_t vbar_ns;
356                 uint64_t hvbar;
357                 uint64_t vbar_s;
358             };
359             uint64_t vbar_el[4];
360         };
361         uint32_t mvbar; /* (monitor) vector base address register */
362         struct { /* FCSE PID. */
363             uint32_t fcseidr_ns;
364             uint32_t fcseidr_s;
365         };
366         union { /* Context ID. */
367             struct {
368                 uint64_t _unused_contextidr_0;
369                 uint64_t contextidr_ns;
370                 uint64_t _unused_contextidr_1;
371                 uint64_t contextidr_s;
372             };
373             uint64_t contextidr_el[4];
374         };
375         union { /* User RW Thread register. */
376             struct {
377                 uint64_t tpidrurw_ns;
378                 uint64_t tpidrprw_ns;
379                 uint64_t htpidr;
380                 uint64_t _tpidr_el3;
381             };
382             uint64_t tpidr_el[4];
383         };
384         /* The secure banks of these registers don't map anywhere */
385         uint64_t tpidrurw_s;
386         uint64_t tpidrprw_s;
387         uint64_t tpidruro_s;
388 
389         union { /* User RO Thread register. */
390             uint64_t tpidruro_ns;
391             uint64_t tpidrro_el[1];
392         };
393         uint64_t c14_cntfrq; /* Counter Frequency register */
394         uint64_t c14_cntkctl; /* Timer Control register */
395         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
396         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
397         ARMGenericTimer c14_timer[NUM_GTIMERS];
398         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
399         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
400         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
401         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
402         uint32_t c15_threadid; /* TI debugger thread-ID.  */
403         uint32_t c15_config_base_address; /* SCU base address.  */
404         uint32_t c15_diagnostic; /* diagnostic register */
405         uint32_t c15_power_diagnostic;
406         uint32_t c15_power_control; /* power control */
407         uint64_t dbgbvr[16]; /* breakpoint value registers */
408         uint64_t dbgbcr[16]; /* breakpoint control registers */
409         uint64_t dbgwvr[16]; /* watchpoint value registers */
410         uint64_t dbgwcr[16]; /* watchpoint control registers */
411         uint64_t mdscr_el1;
412         uint64_t oslsr_el1; /* OS Lock Status */
413         uint64_t mdcr_el2;
414         uint64_t mdcr_el3;
415         /* If the counter is enabled, this stores the last time the counter
416          * was reset. Otherwise it stores the counter value
417          */
418         uint64_t c15_ccnt;
419         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
420         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
421         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
422     } cp15;
423 
424     struct {
425         /* M profile has up to 4 stack pointers:
426          * a Main Stack Pointer and a Process Stack Pointer for each
427          * of the Secure and Non-Secure states. (If the CPU doesn't support
428          * the security extension then it has only two SPs.)
429          * In QEMU we always store the currently active SP in regs[13],
430          * and the non-active SP for the current security state in
431          * v7m.other_sp. The stack pointers for the inactive security state
432          * are stored in other_ss_msp and other_ss_psp.
433          * switch_v7m_security_state() is responsible for rearranging them
434          * when we change security state.
435          */
436         uint32_t other_sp;
437         uint32_t other_ss_msp;
438         uint32_t other_ss_psp;
439         uint32_t vecbase[M_REG_NUM_BANKS];
440         uint32_t basepri[M_REG_NUM_BANKS];
441         uint32_t control[M_REG_NUM_BANKS];
442         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
443         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
444         uint32_t hfsr; /* HardFault Status */
445         uint32_t dfsr; /* Debug Fault Status Register */
446         uint32_t sfsr; /* Secure Fault Status Register */
447         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
448         uint32_t bfar; /* BusFault Address */
449         uint32_t sfar; /* Secure Fault Address Register */
450         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
451         int exception;
452         uint32_t primask[M_REG_NUM_BANKS];
453         uint32_t faultmask[M_REG_NUM_BANKS];
454         uint32_t aircr; /* only holds r/w state if security extn implemented */
455         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
456     } v7m;
457 
458     /* Information associated with an exception about to be taken:
459      * code which raises an exception must set cs->exception_index and
460      * the relevant parts of this structure; the cpu_do_interrupt function
461      * will then set the guest-visible registers as part of the exception
462      * entry process.
463      */
464     struct {
465         uint32_t syndrome; /* AArch64 format syndrome register */
466         uint32_t fsr; /* AArch32 format fault status register info */
467         uint64_t vaddress; /* virtual addr associated with exception, if any */
468         uint32_t target_el; /* EL the exception should be targeted for */
469         /* If we implement EL2 we will also need to store information
470          * about the intermediate physical address for stage 2 faults.
471          */
472     } exception;
473 
474     /* Thumb-2 EE state.  */
475     uint32_t teecr;
476     uint32_t teehbr;
477 
478     /* VFP coprocessor state.  */
479     struct {
480         /* VFP/Neon register state. Note that the mapping between S, D and Q
481          * views of the register bank differs between AArch64 and AArch32:
482          * In AArch32:
483          *  Qn = regs[2n+1]:regs[2n]
484          *  Dn = regs[n]
485          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
486          * (and regs[32] to regs[63] are inaccessible)
487          * In AArch64:
488          *  Qn = regs[2n+1]:regs[2n]
489          *  Dn = regs[2n]
490          *  Sn = regs[2n] bits 31..0
491          * This corresponds to the architecturally defined mapping between
492          * the two execution states, and means we do not need to explicitly
493          * map these registers when changing states.
494          */
495         float64 regs[64];
496 
497         uint32_t xregs[16];
498         /* We store these fpcsr fields separately for convenience.  */
499         int vec_len;
500         int vec_stride;
501 
502         /* scratch space when Tn are not sufficient.  */
503         uint32_t scratch[8];
504 
505         /* fp_status is the "normal" fp status. standard_fp_status retains
506          * values corresponding to the ARM "Standard FPSCR Value", ie
507          * default-NaN, flush-to-zero, round-to-nearest and is used by
508          * any operations (generally Neon) which the architecture defines
509          * as controlled by the standard FPSCR value rather than the FPSCR.
510          *
511          * To avoid having to transfer exception bits around, we simply
512          * say that the FPSCR cumulative exception flags are the logical
513          * OR of the flags in the two fp statuses. This relies on the
514          * only thing which needs to read the exception flags being
515          * an explicit FPSCR read.
516          */
517         float_status fp_status;
518         float_status standard_fp_status;
519     } vfp;
520     uint64_t exclusive_addr;
521     uint64_t exclusive_val;
522     uint64_t exclusive_high;
523 
524     /* iwMMXt coprocessor state.  */
525     struct {
526         uint64_t regs[16];
527         uint64_t val;
528 
529         uint32_t cregs[16];
530     } iwmmxt;
531 
532 #if defined(CONFIG_USER_ONLY)
533     /* For usermode syscall translation.  */
534     int eabi;
535 #endif
536 
537     struct CPUBreakpoint *cpu_breakpoint[16];
538     struct CPUWatchpoint *cpu_watchpoint[16];
539 
540     /* Fields up to this point are cleared by a CPU reset */
541     struct {} end_reset_fields;
542 
543     CPU_COMMON
544 
545     /* Fields after CPU_COMMON are preserved across CPU reset. */
546 
547     /* Internal CPU feature flags.  */
548     uint64_t features;
549 
550     /* PMSAv7 MPU */
551     struct {
552         uint32_t *drbar;
553         uint32_t *drsr;
554         uint32_t *dracr;
555         uint32_t rnr[M_REG_NUM_BANKS];
556     } pmsav7;
557 
558     /* PMSAv8 MPU */
559     struct {
560         /* The PMSAv8 implementation also shares some PMSAv7 config
561          * and state:
562          *  pmsav7.rnr (region number register)
563          *  pmsav7_dregion (number of configured regions)
564          */
565         uint32_t *rbar[M_REG_NUM_BANKS];
566         uint32_t *rlar[M_REG_NUM_BANKS];
567         uint32_t mair0[M_REG_NUM_BANKS];
568         uint32_t mair1[M_REG_NUM_BANKS];
569     } pmsav8;
570 
571     void *nvic;
572     const struct arm_boot_info *boot_info;
573     /* Store GICv3CPUState to access from this struct */
574     void *gicv3state;
575 } CPUARMState;
576 
577 /**
578  * ARMELChangeHook:
579  * type of a function which can be registered via arm_register_el_change_hook()
580  * to get callbacks when the CPU changes its exception level or mode.
581  */
582 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
583 
584 
585 /* These values map onto the return values for
586  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
587 typedef enum ARMPSCIState {
588     PSCI_ON = 0,
589     PSCI_OFF = 1,
590     PSCI_ON_PENDING = 2
591 } ARMPSCIState;
592 
593 /**
594  * ARMCPU:
595  * @env: #CPUARMState
596  *
597  * An ARM CPU core.
598  */
599 struct ARMCPU {
600     /*< private >*/
601     CPUState parent_obj;
602     /*< public >*/
603 
604     CPUARMState env;
605 
606     /* Coprocessor information */
607     GHashTable *cp_regs;
608     /* For marshalling (mostly coprocessor) register state between the
609      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
610      * we use these arrays.
611      */
612     /* List of register indexes managed via these arrays; (full KVM style
613      * 64 bit indexes, not CPRegInfo 32 bit indexes)
614      */
615     uint64_t *cpreg_indexes;
616     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
617     uint64_t *cpreg_values;
618     /* Length of the indexes, values, reset_values arrays */
619     int32_t cpreg_array_len;
620     /* These are used only for migration: incoming data arrives in
621      * these fields and is sanity checked in post_load before copying
622      * to the working data structures above.
623      */
624     uint64_t *cpreg_vmstate_indexes;
625     uint64_t *cpreg_vmstate_values;
626     int32_t cpreg_vmstate_array_len;
627 
628     /* Timers used by the generic (architected) timer */
629     QEMUTimer *gt_timer[NUM_GTIMERS];
630     /* GPIO outputs for generic timer */
631     qemu_irq gt_timer_outputs[NUM_GTIMERS];
632     /* GPIO output for GICv3 maintenance interrupt signal */
633     qemu_irq gicv3_maintenance_interrupt;
634     /* GPIO output for the PMU interrupt */
635     qemu_irq pmu_interrupt;
636 
637     /* MemoryRegion to use for secure physical accesses */
638     MemoryRegion *secure_memory;
639 
640     /* 'compatible' string for this CPU for Linux device trees */
641     const char *dtb_compatible;
642 
643     /* PSCI version for this CPU
644      * Bits[31:16] = Major Version
645      * Bits[15:0] = Minor Version
646      */
647     uint32_t psci_version;
648 
649     /* Should CPU start in PSCI powered-off state? */
650     bool start_powered_off;
651 
652     /* Current power state, access guarded by BQL */
653     ARMPSCIState power_state;
654 
655     /* CPU has virtualization extension */
656     bool has_el2;
657     /* CPU has security extension */
658     bool has_el3;
659     /* CPU has PMU (Performance Monitor Unit) */
660     bool has_pmu;
661 
662     /* CPU has memory protection unit */
663     bool has_mpu;
664     /* PMSAv7 MPU number of supported regions */
665     uint32_t pmsav7_dregion;
666 
667     /* PSCI conduit used to invoke PSCI methods
668      * 0 - disabled, 1 - smc, 2 - hvc
669      */
670     uint32_t psci_conduit;
671 
672     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
673      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
674      */
675     uint32_t kvm_target;
676 
677     /* KVM init features for this CPU */
678     uint32_t kvm_init_features[7];
679 
680     /* Uniprocessor system with MP extensions */
681     bool mp_is_up;
682 
683     /* The instance init functions for implementation-specific subclasses
684      * set these fields to specify the implementation-dependent values of
685      * various constant registers and reset values of non-constant
686      * registers.
687      * Some of these might become QOM properties eventually.
688      * Field names match the official register names as defined in the
689      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
690      * is used for reset values of non-constant registers; no reset_
691      * prefix means a constant register.
692      */
693     uint32_t midr;
694     uint32_t revidr;
695     uint32_t reset_fpsid;
696     uint32_t mvfr0;
697     uint32_t mvfr1;
698     uint32_t mvfr2;
699     uint32_t ctr;
700     uint32_t reset_sctlr;
701     uint32_t id_pfr0;
702     uint32_t id_pfr1;
703     uint32_t id_dfr0;
704     uint32_t pmceid0;
705     uint32_t pmceid1;
706     uint32_t id_afr0;
707     uint32_t id_mmfr0;
708     uint32_t id_mmfr1;
709     uint32_t id_mmfr2;
710     uint32_t id_mmfr3;
711     uint32_t id_mmfr4;
712     uint32_t id_isar0;
713     uint32_t id_isar1;
714     uint32_t id_isar2;
715     uint32_t id_isar3;
716     uint32_t id_isar4;
717     uint32_t id_isar5;
718     uint64_t id_aa64pfr0;
719     uint64_t id_aa64pfr1;
720     uint64_t id_aa64dfr0;
721     uint64_t id_aa64dfr1;
722     uint64_t id_aa64afr0;
723     uint64_t id_aa64afr1;
724     uint64_t id_aa64isar0;
725     uint64_t id_aa64isar1;
726     uint64_t id_aa64mmfr0;
727     uint64_t id_aa64mmfr1;
728     uint32_t dbgdidr;
729     uint32_t clidr;
730     uint64_t mp_affinity; /* MP ID without feature bits */
731     /* The elements of this array are the CCSIDR values for each cache,
732      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
733      */
734     uint32_t ccsidr[16];
735     uint64_t reset_cbar;
736     uint32_t reset_auxcr;
737     bool reset_hivecs;
738     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
739     uint32_t dcz_blocksize;
740     uint64_t rvbar;
741 
742     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
743     int gic_num_lrs; /* number of list registers */
744     int gic_vpribits; /* number of virtual priority bits */
745     int gic_vprebits; /* number of virtual preemption bits */
746 
747     /* Whether the cfgend input is high (i.e. this CPU should reset into
748      * big-endian mode).  This setting isn't used directly: instead it modifies
749      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
750      * architecture version.
751      */
752     bool cfgend;
753 
754     ARMELChangeHook *el_change_hook;
755     void *el_change_hook_opaque;
756 
757     int32_t node_id; /* NUMA node this CPU belongs to */
758 
759     /* Used to synchronize KVM and QEMU in-kernel device levels */
760     uint8_t device_irq_level;
761 };
762 
763 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
764 {
765     return container_of(env, ARMCPU, env);
766 }
767 
768 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
769 
770 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
771 
772 #define ENV_OFFSET offsetof(ARMCPU, env)
773 
774 #ifndef CONFIG_USER_ONLY
775 extern const struct VMStateDescription vmstate_arm_cpu;
776 #endif
777 
778 void arm_cpu_do_interrupt(CPUState *cpu);
779 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
780 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
781 
782 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
783                         int flags);
784 
785 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
786                                          MemTxAttrs *attrs);
787 
788 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
789 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
790 
791 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
792                              int cpuid, void *opaque);
793 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
794                              int cpuid, void *opaque);
795 
796 #ifdef TARGET_AARCH64
797 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
798 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
799 #endif
800 
801 target_ulong do_arm_semihosting(CPUARMState *env);
802 void aarch64_sync_32_to_64(CPUARMState *env);
803 void aarch64_sync_64_to_32(CPUARMState *env);
804 
805 static inline bool is_a64(CPUARMState *env)
806 {
807     return env->aarch64;
808 }
809 
810 /* you can call this signal handler from your SIGBUS and SIGSEGV
811    signal handlers to inform the virtual CPU of exceptions. non zero
812    is returned if the signal was handled by the virtual CPU.  */
813 int cpu_arm_signal_handler(int host_signum, void *pinfo,
814                            void *puc);
815 
816 /**
817  * pmccntr_sync
818  * @env: CPUARMState
819  *
820  * Synchronises the counter in the PMCCNTR. This must always be called twice,
821  * once before any action that might affect the timer and again afterwards.
822  * The function is used to swap the state of the register if required.
823  * This only happens when not in user mode (!CONFIG_USER_ONLY)
824  */
825 void pmccntr_sync(CPUARMState *env);
826 
827 /* SCTLR bit meanings. Several bits have been reused in newer
828  * versions of the architecture; in that case we define constants
829  * for both old and new bit meanings. Code which tests against those
830  * bits should probably check or otherwise arrange that the CPU
831  * is the architectural version it expects.
832  */
833 #define SCTLR_M       (1U << 0)
834 #define SCTLR_A       (1U << 1)
835 #define SCTLR_C       (1U << 2)
836 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
837 #define SCTLR_SA      (1U << 3)
838 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
839 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
840 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
841 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
842 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
843 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
844 #define SCTLR_ITD     (1U << 7) /* v8 onward */
845 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
846 #define SCTLR_SED     (1U << 8) /* v8 onward */
847 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
848 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
849 #define SCTLR_F       (1U << 10) /* up to v6 */
850 #define SCTLR_SW      (1U << 10) /* v7 onward */
851 #define SCTLR_Z       (1U << 11)
852 #define SCTLR_I       (1U << 12)
853 #define SCTLR_V       (1U << 13)
854 #define SCTLR_RR      (1U << 14) /* up to v7 */
855 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
856 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
857 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
858 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
859 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
860 #define SCTLR_HA      (1U << 17)
861 #define SCTLR_BR      (1U << 17) /* PMSA only */
862 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
863 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
864 #define SCTLR_WXN     (1U << 19)
865 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
866 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
867 #define SCTLR_FI      (1U << 21)
868 #define SCTLR_U       (1U << 22)
869 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
870 #define SCTLR_VE      (1U << 24) /* up to v7 */
871 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
872 #define SCTLR_EE      (1U << 25)
873 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
874 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
875 #define SCTLR_NMFI    (1U << 27)
876 #define SCTLR_TRE     (1U << 28)
877 #define SCTLR_AFE     (1U << 29)
878 #define SCTLR_TE      (1U << 30)
879 
880 #define CPTR_TCPAC    (1U << 31)
881 #define CPTR_TTA      (1U << 20)
882 #define CPTR_TFP      (1U << 10)
883 
884 #define MDCR_EPMAD    (1U << 21)
885 #define MDCR_EDAD     (1U << 20)
886 #define MDCR_SPME     (1U << 17)
887 #define MDCR_SDD      (1U << 16)
888 #define MDCR_SPD      (3U << 14)
889 #define MDCR_TDRA     (1U << 11)
890 #define MDCR_TDOSA    (1U << 10)
891 #define MDCR_TDA      (1U << 9)
892 #define MDCR_TDE      (1U << 8)
893 #define MDCR_HPME     (1U << 7)
894 #define MDCR_TPM      (1U << 6)
895 #define MDCR_TPMCR    (1U << 5)
896 
897 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
898 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
899 
900 #define CPSR_M (0x1fU)
901 #define CPSR_T (1U << 5)
902 #define CPSR_F (1U << 6)
903 #define CPSR_I (1U << 7)
904 #define CPSR_A (1U << 8)
905 #define CPSR_E (1U << 9)
906 #define CPSR_IT_2_7 (0xfc00U)
907 #define CPSR_GE (0xfU << 16)
908 #define CPSR_IL (1U << 20)
909 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
910  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
911  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
912  * where it is live state but not accessible to the AArch32 code.
913  */
914 #define CPSR_RESERVED (0x7U << 21)
915 #define CPSR_J (1U << 24)
916 #define CPSR_IT_0_1 (3U << 25)
917 #define CPSR_Q (1U << 27)
918 #define CPSR_V (1U << 28)
919 #define CPSR_C (1U << 29)
920 #define CPSR_Z (1U << 30)
921 #define CPSR_N (1U << 31)
922 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
923 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
924 
925 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
926 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
927     | CPSR_NZCV)
928 /* Bits writable in user mode.  */
929 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
930 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
931 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
932 /* Mask of bits which may be set by exception return copying them from SPSR */
933 #define CPSR_ERET_MASK (~CPSR_RESERVED)
934 
935 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
936 #define XPSR_EXCP 0x1ffU
937 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
938 #define XPSR_IT_2_7 CPSR_IT_2_7
939 #define XPSR_GE CPSR_GE
940 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
941 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
942 #define XPSR_IT_0_1 CPSR_IT_0_1
943 #define XPSR_Q CPSR_Q
944 #define XPSR_V CPSR_V
945 #define XPSR_C CPSR_C
946 #define XPSR_Z CPSR_Z
947 #define XPSR_N CPSR_N
948 #define XPSR_NZCV CPSR_NZCV
949 #define XPSR_IT CPSR_IT
950 
951 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
952 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
953 #define TTBCR_PD0    (1U << 4)
954 #define TTBCR_PD1    (1U << 5)
955 #define TTBCR_EPD0   (1U << 7)
956 #define TTBCR_IRGN0  (3U << 8)
957 #define TTBCR_ORGN0  (3U << 10)
958 #define TTBCR_SH0    (3U << 12)
959 #define TTBCR_T1SZ   (3U << 16)
960 #define TTBCR_A1     (1U << 22)
961 #define TTBCR_EPD1   (1U << 23)
962 #define TTBCR_IRGN1  (3U << 24)
963 #define TTBCR_ORGN1  (3U << 26)
964 #define TTBCR_SH1    (1U << 28)
965 #define TTBCR_EAE    (1U << 31)
966 
967 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
968  * Only these are valid when in AArch64 mode; in
969  * AArch32 mode SPSRs are basically CPSR-format.
970  */
971 #define PSTATE_SP (1U)
972 #define PSTATE_M (0xFU)
973 #define PSTATE_nRW (1U << 4)
974 #define PSTATE_F (1U << 6)
975 #define PSTATE_I (1U << 7)
976 #define PSTATE_A (1U << 8)
977 #define PSTATE_D (1U << 9)
978 #define PSTATE_IL (1U << 20)
979 #define PSTATE_SS (1U << 21)
980 #define PSTATE_V (1U << 28)
981 #define PSTATE_C (1U << 29)
982 #define PSTATE_Z (1U << 30)
983 #define PSTATE_N (1U << 31)
984 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
985 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
986 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
987 /* Mode values for AArch64 */
988 #define PSTATE_MODE_EL3h 13
989 #define PSTATE_MODE_EL3t 12
990 #define PSTATE_MODE_EL2h 9
991 #define PSTATE_MODE_EL2t 8
992 #define PSTATE_MODE_EL1h 5
993 #define PSTATE_MODE_EL1t 4
994 #define PSTATE_MODE_EL0t 0
995 
996 /* Write a new value to v7m.exception, thus transitioning into or out
997  * of Handler mode; this may result in a change of active stack pointer.
998  */
999 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1000 
1001 /* Map EL and handler into a PSTATE_MODE.  */
1002 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1003 {
1004     return (el << 2) | handler;
1005 }
1006 
1007 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1008  * interprocessing, so we don't attempt to sync with the cpsr state used by
1009  * the 32 bit decoder.
1010  */
1011 static inline uint32_t pstate_read(CPUARMState *env)
1012 {
1013     int ZF;
1014 
1015     ZF = (env->ZF == 0);
1016     return (env->NF & 0x80000000) | (ZF << 30)
1017         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1018         | env->pstate | env->daif;
1019 }
1020 
1021 static inline void pstate_write(CPUARMState *env, uint32_t val)
1022 {
1023     env->ZF = (~val) & PSTATE_Z;
1024     env->NF = val;
1025     env->CF = (val >> 29) & 1;
1026     env->VF = (val << 3) & 0x80000000;
1027     env->daif = val & PSTATE_DAIF;
1028     env->pstate = val & ~CACHED_PSTATE_BITS;
1029 }
1030 
1031 /* Return the current CPSR value.  */
1032 uint32_t cpsr_read(CPUARMState *env);
1033 
1034 typedef enum CPSRWriteType {
1035     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1036     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1037     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1038     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1039 } CPSRWriteType;
1040 
1041 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1042 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1043                 CPSRWriteType write_type);
1044 
1045 /* Return the current xPSR value.  */
1046 static inline uint32_t xpsr_read(CPUARMState *env)
1047 {
1048     int ZF;
1049     ZF = (env->ZF == 0);
1050     return (env->NF & 0x80000000) | (ZF << 30)
1051         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1052         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1053         | ((env->condexec_bits & 0xfc) << 8)
1054         | env->v7m.exception;
1055 }
1056 
1057 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1058 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1059 {
1060     if (mask & XPSR_NZCV) {
1061         env->ZF = (~val) & XPSR_Z;
1062         env->NF = val;
1063         env->CF = (val >> 29) & 1;
1064         env->VF = (val << 3) & 0x80000000;
1065     }
1066     if (mask & XPSR_Q) {
1067         env->QF = ((val & XPSR_Q) != 0);
1068     }
1069     if (mask & XPSR_T) {
1070         env->thumb = ((val & XPSR_T) != 0);
1071     }
1072     if (mask & XPSR_IT_0_1) {
1073         env->condexec_bits &= ~3;
1074         env->condexec_bits |= (val >> 25) & 3;
1075     }
1076     if (mask & XPSR_IT_2_7) {
1077         env->condexec_bits &= 3;
1078         env->condexec_bits |= (val >> 8) & 0xfc;
1079     }
1080     if (mask & XPSR_EXCP) {
1081         /* Note that this only happens on exception exit */
1082         write_v7m_exception(env, val & XPSR_EXCP);
1083     }
1084 }
1085 
1086 #define HCR_VM        (1ULL << 0)
1087 #define HCR_SWIO      (1ULL << 1)
1088 #define HCR_PTW       (1ULL << 2)
1089 #define HCR_FMO       (1ULL << 3)
1090 #define HCR_IMO       (1ULL << 4)
1091 #define HCR_AMO       (1ULL << 5)
1092 #define HCR_VF        (1ULL << 6)
1093 #define HCR_VI        (1ULL << 7)
1094 #define HCR_VSE       (1ULL << 8)
1095 #define HCR_FB        (1ULL << 9)
1096 #define HCR_BSU_MASK  (3ULL << 10)
1097 #define HCR_DC        (1ULL << 12)
1098 #define HCR_TWI       (1ULL << 13)
1099 #define HCR_TWE       (1ULL << 14)
1100 #define HCR_TID0      (1ULL << 15)
1101 #define HCR_TID1      (1ULL << 16)
1102 #define HCR_TID2      (1ULL << 17)
1103 #define HCR_TID3      (1ULL << 18)
1104 #define HCR_TSC       (1ULL << 19)
1105 #define HCR_TIDCP     (1ULL << 20)
1106 #define HCR_TACR      (1ULL << 21)
1107 #define HCR_TSW       (1ULL << 22)
1108 #define HCR_TPC       (1ULL << 23)
1109 #define HCR_TPU       (1ULL << 24)
1110 #define HCR_TTLB      (1ULL << 25)
1111 #define HCR_TVM       (1ULL << 26)
1112 #define HCR_TGE       (1ULL << 27)
1113 #define HCR_TDZ       (1ULL << 28)
1114 #define HCR_HCD       (1ULL << 29)
1115 #define HCR_TRVM      (1ULL << 30)
1116 #define HCR_RW        (1ULL << 31)
1117 #define HCR_CD        (1ULL << 32)
1118 #define HCR_ID        (1ULL << 33)
1119 #define HCR_MASK      ((1ULL << 34) - 1)
1120 
1121 #define SCR_NS                (1U << 0)
1122 #define SCR_IRQ               (1U << 1)
1123 #define SCR_FIQ               (1U << 2)
1124 #define SCR_EA                (1U << 3)
1125 #define SCR_FW                (1U << 4)
1126 #define SCR_AW                (1U << 5)
1127 #define SCR_NET               (1U << 6)
1128 #define SCR_SMD               (1U << 7)
1129 #define SCR_HCE               (1U << 8)
1130 #define SCR_SIF               (1U << 9)
1131 #define SCR_RW                (1U << 10)
1132 #define SCR_ST                (1U << 11)
1133 #define SCR_TWI               (1U << 12)
1134 #define SCR_TWE               (1U << 13)
1135 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1136 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1137 
1138 /* Return the current FPSCR value.  */
1139 uint32_t vfp_get_fpscr(CPUARMState *env);
1140 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1141 
1142 /* For A64 the FPSCR is split into two logically distinct registers,
1143  * FPCR and FPSR. However since they still use non-overlapping bits
1144  * we store the underlying state in fpscr and just mask on read/write.
1145  */
1146 #define FPSR_MASK 0xf800009f
1147 #define FPCR_MASK 0x07f79f00
1148 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1149 {
1150     return vfp_get_fpscr(env) & FPSR_MASK;
1151 }
1152 
1153 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1154 {
1155     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1156     vfp_set_fpscr(env, new_fpscr);
1157 }
1158 
1159 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1160 {
1161     return vfp_get_fpscr(env) & FPCR_MASK;
1162 }
1163 
1164 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1165 {
1166     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1167     vfp_set_fpscr(env, new_fpscr);
1168 }
1169 
1170 enum arm_cpu_mode {
1171   ARM_CPU_MODE_USR = 0x10,
1172   ARM_CPU_MODE_FIQ = 0x11,
1173   ARM_CPU_MODE_IRQ = 0x12,
1174   ARM_CPU_MODE_SVC = 0x13,
1175   ARM_CPU_MODE_MON = 0x16,
1176   ARM_CPU_MODE_ABT = 0x17,
1177   ARM_CPU_MODE_HYP = 0x1a,
1178   ARM_CPU_MODE_UND = 0x1b,
1179   ARM_CPU_MODE_SYS = 0x1f
1180 };
1181 
1182 /* VFP system registers.  */
1183 #define ARM_VFP_FPSID   0
1184 #define ARM_VFP_FPSCR   1
1185 #define ARM_VFP_MVFR2   5
1186 #define ARM_VFP_MVFR1   6
1187 #define ARM_VFP_MVFR0   7
1188 #define ARM_VFP_FPEXC   8
1189 #define ARM_VFP_FPINST  9
1190 #define ARM_VFP_FPINST2 10
1191 
1192 /* iwMMXt coprocessor control registers.  */
1193 #define ARM_IWMMXT_wCID		0
1194 #define ARM_IWMMXT_wCon		1
1195 #define ARM_IWMMXT_wCSSF	2
1196 #define ARM_IWMMXT_wCASF	3
1197 #define ARM_IWMMXT_wCGR0	8
1198 #define ARM_IWMMXT_wCGR1	9
1199 #define ARM_IWMMXT_wCGR2	10
1200 #define ARM_IWMMXT_wCGR3	11
1201 
1202 /* V7M CCR bits */
1203 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1204 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1205 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1206 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1207 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1208 FIELD(V7M_CCR, STKALIGN, 9, 1)
1209 FIELD(V7M_CCR, DC, 16, 1)
1210 FIELD(V7M_CCR, IC, 17, 1)
1211 
1212 /* V7M AIRCR bits */
1213 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1214 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1215 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1216 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1217 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1218 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1219 FIELD(V7M_AIRCR, PRIS, 14, 1)
1220 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1221 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1222 
1223 /* V7M CFSR bits for MMFSR */
1224 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1225 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1226 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1227 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1228 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1229 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1230 
1231 /* V7M CFSR bits for BFSR */
1232 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1233 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1234 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1235 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1236 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1237 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1238 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1239 
1240 /* V7M CFSR bits for UFSR */
1241 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1242 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1243 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1244 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1245 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1246 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1247 
1248 /* V7M CFSR bit masks covering all of the subregister bits */
1249 FIELD(V7M_CFSR, MMFSR, 0, 8)
1250 FIELD(V7M_CFSR, BFSR, 8, 8)
1251 FIELD(V7M_CFSR, UFSR, 16, 16)
1252 
1253 /* V7M HFSR bits */
1254 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1255 FIELD(V7M_HFSR, FORCED, 30, 1)
1256 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1257 
1258 /* V7M DFSR bits */
1259 FIELD(V7M_DFSR, HALTED, 0, 1)
1260 FIELD(V7M_DFSR, BKPT, 1, 1)
1261 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1262 FIELD(V7M_DFSR, VCATCH, 3, 1)
1263 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1264 
1265 /* V7M SFSR bits */
1266 FIELD(V7M_SFSR, INVEP, 0, 1)
1267 FIELD(V7M_SFSR, INVIS, 1, 1)
1268 FIELD(V7M_SFSR, INVER, 2, 1)
1269 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1270 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1271 FIELD(V7M_SFSR, LSPERR, 5, 1)
1272 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1273 FIELD(V7M_SFSR, LSERR, 7, 1)
1274 
1275 /* v7M MPU_CTRL bits */
1276 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1277 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1278 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1279 
1280 /* If adding a feature bit which corresponds to a Linux ELF
1281  * HWCAP bit, remember to update the feature-bit-to-hwcap
1282  * mapping in linux-user/elfload.c:get_elf_hwcap().
1283  */
1284 enum arm_features {
1285     ARM_FEATURE_VFP,
1286     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1287     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1288     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1289     ARM_FEATURE_V6,
1290     ARM_FEATURE_V6K,
1291     ARM_FEATURE_V7,
1292     ARM_FEATURE_THUMB2,
1293     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1294     ARM_FEATURE_VFP3,
1295     ARM_FEATURE_VFP_FP16,
1296     ARM_FEATURE_NEON,
1297     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1298     ARM_FEATURE_M, /* Microcontroller profile.  */
1299     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1300     ARM_FEATURE_THUMB2EE,
1301     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1302     ARM_FEATURE_V4T,
1303     ARM_FEATURE_V5,
1304     ARM_FEATURE_STRONGARM,
1305     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1306     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1307     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1308     ARM_FEATURE_GENERIC_TIMER,
1309     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1310     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1311     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1312     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1313     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1314     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1315     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1316     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1317     ARM_FEATURE_V8,
1318     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1319     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1320     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1321     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1322     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1323     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1324     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1325     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1326     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1327     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1328     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1329     ARM_FEATURE_PMU, /* has PMU support */
1330     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1331     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1332     ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1333 };
1334 
1335 static inline int arm_feature(CPUARMState *env, int feature)
1336 {
1337     return (env->features & (1ULL << feature)) != 0;
1338 }
1339 
1340 #if !defined(CONFIG_USER_ONLY)
1341 /* Return true if exception levels below EL3 are in secure state,
1342  * or would be following an exception return to that level.
1343  * Unlike arm_is_secure() (which is always a question about the
1344  * _current_ state of the CPU) this doesn't care about the current
1345  * EL or mode.
1346  */
1347 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1348 {
1349     if (arm_feature(env, ARM_FEATURE_EL3)) {
1350         return !(env->cp15.scr_el3 & SCR_NS);
1351     } else {
1352         /* If EL3 is not supported then the secure state is implementation
1353          * defined, in which case QEMU defaults to non-secure.
1354          */
1355         return false;
1356     }
1357 }
1358 
1359 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1360 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1361 {
1362     if (arm_feature(env, ARM_FEATURE_EL3)) {
1363         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1364             /* CPU currently in AArch64 state and EL3 */
1365             return true;
1366         } else if (!is_a64(env) &&
1367                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1368             /* CPU currently in AArch32 state and monitor mode */
1369             return true;
1370         }
1371     }
1372     return false;
1373 }
1374 
1375 /* Return true if the processor is in secure state */
1376 static inline bool arm_is_secure(CPUARMState *env)
1377 {
1378     if (arm_is_el3_or_mon(env)) {
1379         return true;
1380     }
1381     return arm_is_secure_below_el3(env);
1382 }
1383 
1384 #else
1385 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1386 {
1387     return false;
1388 }
1389 
1390 static inline bool arm_is_secure(CPUARMState *env)
1391 {
1392     return false;
1393 }
1394 #endif
1395 
1396 /* Return true if the specified exception level is running in AArch64 state. */
1397 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1398 {
1399     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1400      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1401      */
1402     assert(el >= 1 && el <= 3);
1403     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1404 
1405     /* The highest exception level is always at the maximum supported
1406      * register width, and then lower levels have a register width controlled
1407      * by bits in the SCR or HCR registers.
1408      */
1409     if (el == 3) {
1410         return aa64;
1411     }
1412 
1413     if (arm_feature(env, ARM_FEATURE_EL3)) {
1414         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1415     }
1416 
1417     if (el == 2) {
1418         return aa64;
1419     }
1420 
1421     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1422         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1423     }
1424 
1425     return aa64;
1426 }
1427 
1428 /* Function for determing whether guest cp register reads and writes should
1429  * access the secure or non-secure bank of a cp register.  When EL3 is
1430  * operating in AArch32 state, the NS-bit determines whether the secure
1431  * instance of a cp register should be used. When EL3 is AArch64 (or if
1432  * it doesn't exist at all) then there is no register banking, and all
1433  * accesses are to the non-secure version.
1434  */
1435 static inline bool access_secure_reg(CPUARMState *env)
1436 {
1437     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1438                 !arm_el_is_aa64(env, 3) &&
1439                 !(env->cp15.scr_el3 & SCR_NS));
1440 
1441     return ret;
1442 }
1443 
1444 /* Macros for accessing a specified CP register bank */
1445 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1446     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1447 
1448 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1449     do {                                                \
1450         if (_secure) {                                   \
1451             (_env)->cp15._regname##_s = (_val);            \
1452         } else {                                        \
1453             (_env)->cp15._regname##_ns = (_val);           \
1454         }                                               \
1455     } while (0)
1456 
1457 /* Macros for automatically accessing a specific CP register bank depending on
1458  * the current secure state of the system.  These macros are not intended for
1459  * supporting instruction translation reads/writes as these are dependent
1460  * solely on the SCR.NS bit and not the mode.
1461  */
1462 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1463     A32_BANKED_REG_GET((_env), _regname,                \
1464                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1465 
1466 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1467     A32_BANKED_REG_SET((_env), _regname,                                    \
1468                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1469                        (_val))
1470 
1471 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1472 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1473                                  uint32_t cur_el, bool secure);
1474 
1475 /* Interface between CPU and Interrupt controller.  */
1476 #ifndef CONFIG_USER_ONLY
1477 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1478 #else
1479 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1480 {
1481     return true;
1482 }
1483 #endif
1484 /**
1485  * armv7m_nvic_set_pending: mark the specified exception as pending
1486  * @opaque: the NVIC
1487  * @irq: the exception number to mark pending
1488  * @secure: false for non-banked exceptions or for the nonsecure
1489  * version of a banked exception, true for the secure version of a banked
1490  * exception.
1491  *
1492  * Marks the specified exception as pending. Note that we will assert()
1493  * if @secure is true and @irq does not specify one of the fixed set
1494  * of architecturally banked exceptions.
1495  */
1496 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1497 /**
1498  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1499  * @opaque: the NVIC
1500  *
1501  * Move the current highest priority pending exception from the pending
1502  * state to the active state, and update v7m.exception to indicate that
1503  * it is the exception currently being handled.
1504  *
1505  * Returns: true if exception should be taken to Secure state, false for NS
1506  */
1507 bool armv7m_nvic_acknowledge_irq(void *opaque);
1508 /**
1509  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1510  * @opaque: the NVIC
1511  * @irq: the exception number to complete
1512  * @secure: true if this exception was secure
1513  *
1514  * Returns: -1 if the irq was not active
1515  *           1 if completing this irq brought us back to base (no active irqs)
1516  *           0 if there is still an irq active after this one was completed
1517  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1518  */
1519 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1520 /**
1521  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1522  * @opaque: the NVIC
1523  *
1524  * Returns: the raw execution priority as defined by the v8M architecture.
1525  * This is the execution priority minus the effects of AIRCR.PRIS,
1526  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1527  * (v8M ARM ARM I_PKLD.)
1528  */
1529 int armv7m_nvic_raw_execution_priority(void *opaque);
1530 /**
1531  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1532  * priority is negative for the specified security state.
1533  * @opaque: the NVIC
1534  * @secure: the security state to test
1535  * This corresponds to the pseudocode IsReqExecPriNeg().
1536  */
1537 #ifndef CONFIG_USER_ONLY
1538 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1539 #else
1540 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1541 {
1542     return false;
1543 }
1544 #endif
1545 
1546 /* Interface for defining coprocessor registers.
1547  * Registers are defined in tables of arm_cp_reginfo structs
1548  * which are passed to define_arm_cp_regs().
1549  */
1550 
1551 /* When looking up a coprocessor register we look for it
1552  * via an integer which encodes all of:
1553  *  coprocessor number
1554  *  Crn, Crm, opc1, opc2 fields
1555  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1556  *    or via MRRC/MCRR?)
1557  *  non-secure/secure bank (AArch32 only)
1558  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1559  * (In this case crn and opc2 should be zero.)
1560  * For AArch64, there is no 32/64 bit size distinction;
1561  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1562  * and 4 bit CRn and CRm. The encoding patterns are chosen
1563  * to be easy to convert to and from the KVM encodings, and also
1564  * so that the hashtable can contain both AArch32 and AArch64
1565  * registers (to allow for interprocessing where we might run
1566  * 32 bit code on a 64 bit core).
1567  */
1568 /* This bit is private to our hashtable cpreg; in KVM register
1569  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1570  * in the upper bits of the 64 bit ID.
1571  */
1572 #define CP_REG_AA64_SHIFT 28
1573 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1574 
1575 /* To enable banking of coprocessor registers depending on ns-bit we
1576  * add a bit to distinguish between secure and non-secure cpregs in the
1577  * hashtable.
1578  */
1579 #define CP_REG_NS_SHIFT 29
1580 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1581 
1582 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1583     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1584      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1585 
1586 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1587     (CP_REG_AA64_MASK |                                 \
1588      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1589      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1590      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1591      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1592      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1593      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1594 
1595 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1596  * version used as a key for the coprocessor register hashtable
1597  */
1598 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1599 {
1600     uint32_t cpregid = kvmid;
1601     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1602         cpregid |= CP_REG_AA64_MASK;
1603     } else {
1604         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1605             cpregid |= (1 << 15);
1606         }
1607 
1608         /* KVM is always non-secure so add the NS flag on AArch32 register
1609          * entries.
1610          */
1611          cpregid |= 1 << CP_REG_NS_SHIFT;
1612     }
1613     return cpregid;
1614 }
1615 
1616 /* Convert a truncated 32 bit hashtable key into the full
1617  * 64 bit KVM register ID.
1618  */
1619 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1620 {
1621     uint64_t kvmid;
1622 
1623     if (cpregid & CP_REG_AA64_MASK) {
1624         kvmid = cpregid & ~CP_REG_AA64_MASK;
1625         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1626     } else {
1627         kvmid = cpregid & ~(1 << 15);
1628         if (cpregid & (1 << 15)) {
1629             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1630         } else {
1631             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1632         }
1633     }
1634     return kvmid;
1635 }
1636 
1637 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1638  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1639  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1640  * TCG can assume the value to be constant (ie load at translate time)
1641  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1642  * indicates that the TB should not be ended after a write to this register
1643  * (the default is that the TB ends after cp writes). OVERRIDE permits
1644  * a register definition to override a previous definition for the
1645  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1646  * old must have the OVERRIDE bit set.
1647  * ALIAS indicates that this register is an alias view of some underlying
1648  * state which is also visible via another register, and that the other
1649  * register is handling migration and reset; registers marked ALIAS will not be
1650  * migrated but may have their state set by syncing of register state from KVM.
1651  * NO_RAW indicates that this register has no underlying state and does not
1652  * support raw access for state saving/loading; it will not be used for either
1653  * migration or KVM state synchronization. (Typically this is for "registers"
1654  * which are actually used as instructions for cache maintenance and so on.)
1655  * IO indicates that this register does I/O and therefore its accesses
1656  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1657  * registers which implement clocks or timers require this.
1658  */
1659 #define ARM_CP_SPECIAL 1
1660 #define ARM_CP_CONST 2
1661 #define ARM_CP_64BIT 4
1662 #define ARM_CP_SUPPRESS_TB_END 8
1663 #define ARM_CP_OVERRIDE 16
1664 #define ARM_CP_ALIAS 32
1665 #define ARM_CP_IO 64
1666 #define ARM_CP_NO_RAW 128
1667 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1668 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1669 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1670 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1671 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1672 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1673 /* Used only as a terminator for ARMCPRegInfo lists */
1674 #define ARM_CP_SENTINEL 0xffff
1675 /* Mask of only the flag bits in a type field */
1676 #define ARM_CP_FLAG_MASK 0xff
1677 
1678 /* Valid values for ARMCPRegInfo state field, indicating which of
1679  * the AArch32 and AArch64 execution states this register is visible in.
1680  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1681  * If the reginfo is declared to be visible in both states then a second
1682  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1683  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1684  * Note that we rely on the values of these enums as we iterate through
1685  * the various states in some places.
1686  */
1687 enum {
1688     ARM_CP_STATE_AA32 = 0,
1689     ARM_CP_STATE_AA64 = 1,
1690     ARM_CP_STATE_BOTH = 2,
1691 };
1692 
1693 /* ARM CP register secure state flags.  These flags identify security state
1694  * attributes for a given CP register entry.
1695  * The existence of both or neither secure and non-secure flags indicates that
1696  * the register has both a secure and non-secure hash entry.  A single one of
1697  * these flags causes the register to only be hashed for the specified
1698  * security state.
1699  * Although definitions may have any combination of the S/NS bits, each
1700  * registered entry will only have one to identify whether the entry is secure
1701  * or non-secure.
1702  */
1703 enum {
1704     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1705     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1706 };
1707 
1708 /* Return true if cptype is a valid type field. This is used to try to
1709  * catch errors where the sentinel has been accidentally left off the end
1710  * of a list of registers.
1711  */
1712 static inline bool cptype_valid(int cptype)
1713 {
1714     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1715         || ((cptype & ARM_CP_SPECIAL) &&
1716             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1717 }
1718 
1719 /* Access rights:
1720  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1721  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1722  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1723  * (ie any of the privileged modes in Secure state, or Monitor mode).
1724  * If a register is accessible in one privilege level it's always accessible
1725  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1726  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1727  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1728  * terminology a little and call this PL3.
1729  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1730  * with the ELx exception levels.
1731  *
1732  * If access permissions for a register are more complex than can be
1733  * described with these bits, then use a laxer set of restrictions, and
1734  * do the more restrictive/complex check inside a helper function.
1735  */
1736 #define PL3_R 0x80
1737 #define PL3_W 0x40
1738 #define PL2_R (0x20 | PL3_R)
1739 #define PL2_W (0x10 | PL3_W)
1740 #define PL1_R (0x08 | PL2_R)
1741 #define PL1_W (0x04 | PL2_W)
1742 #define PL0_R (0x02 | PL1_R)
1743 #define PL0_W (0x01 | PL1_W)
1744 
1745 #define PL3_RW (PL3_R | PL3_W)
1746 #define PL2_RW (PL2_R | PL2_W)
1747 #define PL1_RW (PL1_R | PL1_W)
1748 #define PL0_RW (PL0_R | PL0_W)
1749 
1750 /* Return the highest implemented Exception Level */
1751 static inline int arm_highest_el(CPUARMState *env)
1752 {
1753     if (arm_feature(env, ARM_FEATURE_EL3)) {
1754         return 3;
1755     }
1756     if (arm_feature(env, ARM_FEATURE_EL2)) {
1757         return 2;
1758     }
1759     return 1;
1760 }
1761 
1762 /* Return true if a v7M CPU is in Handler mode */
1763 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1764 {
1765     return env->v7m.exception != 0;
1766 }
1767 
1768 /* Return the current Exception Level (as per ARMv8; note that this differs
1769  * from the ARMv7 Privilege Level).
1770  */
1771 static inline int arm_current_el(CPUARMState *env)
1772 {
1773     if (arm_feature(env, ARM_FEATURE_M)) {
1774         return arm_v7m_is_handler_mode(env) ||
1775             !(env->v7m.control[env->v7m.secure] & 1);
1776     }
1777 
1778     if (is_a64(env)) {
1779         return extract32(env->pstate, 2, 2);
1780     }
1781 
1782     switch (env->uncached_cpsr & 0x1f) {
1783     case ARM_CPU_MODE_USR:
1784         return 0;
1785     case ARM_CPU_MODE_HYP:
1786         return 2;
1787     case ARM_CPU_MODE_MON:
1788         return 3;
1789     default:
1790         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1791             /* If EL3 is 32-bit then all secure privileged modes run in
1792              * EL3
1793              */
1794             return 3;
1795         }
1796 
1797         return 1;
1798     }
1799 }
1800 
1801 typedef struct ARMCPRegInfo ARMCPRegInfo;
1802 
1803 typedef enum CPAccessResult {
1804     /* Access is permitted */
1805     CP_ACCESS_OK = 0,
1806     /* Access fails due to a configurable trap or enable which would
1807      * result in a categorized exception syndrome giving information about
1808      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1809      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1810      * PL1 if in EL0, otherwise to the current EL).
1811      */
1812     CP_ACCESS_TRAP = 1,
1813     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1814      * Note that this is not a catch-all case -- the set of cases which may
1815      * result in this failure is specifically defined by the architecture.
1816      */
1817     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1818     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1819     CP_ACCESS_TRAP_EL2 = 3,
1820     CP_ACCESS_TRAP_EL3 = 4,
1821     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1822     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1823     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1824     /* Access fails and results in an exception syndrome for an FP access,
1825      * trapped directly to EL2 or EL3
1826      */
1827     CP_ACCESS_TRAP_FP_EL2 = 7,
1828     CP_ACCESS_TRAP_FP_EL3 = 8,
1829 } CPAccessResult;
1830 
1831 /* Access functions for coprocessor registers. These cannot fail and
1832  * may not raise exceptions.
1833  */
1834 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1835 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1836                        uint64_t value);
1837 /* Access permission check functions for coprocessor registers. */
1838 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1839                                   const ARMCPRegInfo *opaque,
1840                                   bool isread);
1841 /* Hook function for register reset */
1842 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1843 
1844 #define CP_ANY 0xff
1845 
1846 /* Definition of an ARM coprocessor register */
1847 struct ARMCPRegInfo {
1848     /* Name of register (useful mainly for debugging, need not be unique) */
1849     const char *name;
1850     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1851      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1852      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1853      * will be decoded to this register. The register read and write
1854      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1855      * used by the program, so it is possible to register a wildcard and
1856      * then behave differently on read/write if necessary.
1857      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1858      * must both be zero.
1859      * For AArch64-visible registers, opc0 is also used.
1860      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1861      * way to distinguish (for KVM's benefit) guest-visible system registers
1862      * from demuxed ones provided to preserve the "no side effects on
1863      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1864      * visible (to match KVM's encoding); cp==0 will be converted to
1865      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1866      */
1867     uint8_t cp;
1868     uint8_t crn;
1869     uint8_t crm;
1870     uint8_t opc0;
1871     uint8_t opc1;
1872     uint8_t opc2;
1873     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1874     int state;
1875     /* Register type: ARM_CP_* bits/values */
1876     int type;
1877     /* Access rights: PL*_[RW] */
1878     int access;
1879     /* Security state: ARM_CP_SECSTATE_* bits/values */
1880     int secure;
1881     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1882      * this register was defined: can be used to hand data through to the
1883      * register read/write functions, since they are passed the ARMCPRegInfo*.
1884      */
1885     void *opaque;
1886     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1887      * fieldoffset is non-zero, the reset value of the register.
1888      */
1889     uint64_t resetvalue;
1890     /* Offset of the field in CPUARMState for this register.
1891      *
1892      * This is not needed if either:
1893      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1894      *  2. both readfn and writefn are specified
1895      */
1896     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1897 
1898     /* Offsets of the secure and non-secure fields in CPUARMState for the
1899      * register if it is banked.  These fields are only used during the static
1900      * registration of a register.  During hashing the bank associated
1901      * with a given security state is copied to fieldoffset which is used from
1902      * there on out.
1903      *
1904      * It is expected that register definitions use either fieldoffset or
1905      * bank_fieldoffsets in the definition but not both.  It is also expected
1906      * that both bank offsets are set when defining a banked register.  This
1907      * use indicates that a register is banked.
1908      */
1909     ptrdiff_t bank_fieldoffsets[2];
1910 
1911     /* Function for making any access checks for this register in addition to
1912      * those specified by the 'access' permissions bits. If NULL, no extra
1913      * checks required. The access check is performed at runtime, not at
1914      * translate time.
1915      */
1916     CPAccessFn *accessfn;
1917     /* Function for handling reads of this register. If NULL, then reads
1918      * will be done by loading from the offset into CPUARMState specified
1919      * by fieldoffset.
1920      */
1921     CPReadFn *readfn;
1922     /* Function for handling writes of this register. If NULL, then writes
1923      * will be done by writing to the offset into CPUARMState specified
1924      * by fieldoffset.
1925      */
1926     CPWriteFn *writefn;
1927     /* Function for doing a "raw" read; used when we need to copy
1928      * coprocessor state to the kernel for KVM or out for
1929      * migration. This only needs to be provided if there is also a
1930      * readfn and it has side effects (for instance clear-on-read bits).
1931      */
1932     CPReadFn *raw_readfn;
1933     /* Function for doing a "raw" write; used when we need to copy KVM
1934      * kernel coprocessor state into userspace, or for inbound
1935      * migration. This only needs to be provided if there is also a
1936      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1937      * or similar behaviour.
1938      */
1939     CPWriteFn *raw_writefn;
1940     /* Function for resetting the register. If NULL, then reset will be done
1941      * by writing resetvalue to the field specified in fieldoffset. If
1942      * fieldoffset is 0 then no reset will be done.
1943      */
1944     CPResetFn *resetfn;
1945 };
1946 
1947 /* Macros which are lvalues for the field in CPUARMState for the
1948  * ARMCPRegInfo *ri.
1949  */
1950 #define CPREG_FIELD32(env, ri) \
1951     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1952 #define CPREG_FIELD64(env, ri) \
1953     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1954 
1955 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1956 
1957 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1958                                     const ARMCPRegInfo *regs, void *opaque);
1959 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1960                                        const ARMCPRegInfo *regs, void *opaque);
1961 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1962 {
1963     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1964 }
1965 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1966 {
1967     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1968 }
1969 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1970 
1971 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1972 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1973                          uint64_t value);
1974 /* CPReadFn that can be used for read-as-zero behaviour */
1975 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1976 
1977 /* CPResetFn that does nothing, for use if no reset is required even
1978  * if fieldoffset is non zero.
1979  */
1980 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1981 
1982 /* Return true if this reginfo struct's field in the cpu state struct
1983  * is 64 bits wide.
1984  */
1985 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1986 {
1987     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1988 }
1989 
1990 static inline bool cp_access_ok(int current_el,
1991                                 const ARMCPRegInfo *ri, int isread)
1992 {
1993     return (ri->access >> ((current_el * 2) + isread)) & 1;
1994 }
1995 
1996 /* Raw read of a coprocessor register (as needed for migration, etc) */
1997 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1998 
1999 /**
2000  * write_list_to_cpustate
2001  * @cpu: ARMCPU
2002  *
2003  * For each register listed in the ARMCPU cpreg_indexes list, write
2004  * its value from the cpreg_values list into the ARMCPUState structure.
2005  * This updates TCG's working data structures from KVM data or
2006  * from incoming migration state.
2007  *
2008  * Returns: true if all register values were updated correctly,
2009  * false if some register was unknown or could not be written.
2010  * Note that we do not stop early on failure -- we will attempt
2011  * writing all registers in the list.
2012  */
2013 bool write_list_to_cpustate(ARMCPU *cpu);
2014 
2015 /**
2016  * write_cpustate_to_list:
2017  * @cpu: ARMCPU
2018  *
2019  * For each register listed in the ARMCPU cpreg_indexes list, write
2020  * its value from the ARMCPUState structure into the cpreg_values list.
2021  * This is used to copy info from TCG's working data structures into
2022  * KVM or for outbound migration.
2023  *
2024  * Returns: true if all register values were read correctly,
2025  * false if some register was unknown or could not be read.
2026  * Note that we do not stop early on failure -- we will attempt
2027  * reading all registers in the list.
2028  */
2029 bool write_cpustate_to_list(ARMCPU *cpu);
2030 
2031 #define ARM_CPUID_TI915T      0x54029152
2032 #define ARM_CPUID_TI925T      0x54029252
2033 
2034 #if defined(CONFIG_USER_ONLY)
2035 #define TARGET_PAGE_BITS 12
2036 #else
2037 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2038  * have to support 1K tiny pages.
2039  */
2040 #define TARGET_PAGE_BITS_VARY
2041 #define TARGET_PAGE_BITS_MIN 10
2042 #endif
2043 
2044 #if defined(TARGET_AARCH64)
2045 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2046 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2047 #else
2048 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2049 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2050 #endif
2051 
2052 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2053                                      unsigned int target_el)
2054 {
2055     CPUARMState *env = cs->env_ptr;
2056     unsigned int cur_el = arm_current_el(env);
2057     bool secure = arm_is_secure(env);
2058     bool pstate_unmasked;
2059     int8_t unmasked = 0;
2060 
2061     /* Don't take exceptions if they target a lower EL.
2062      * This check should catch any exceptions that would not be taken but left
2063      * pending.
2064      */
2065     if (cur_el > target_el) {
2066         return false;
2067     }
2068 
2069     switch (excp_idx) {
2070     case EXCP_FIQ:
2071         pstate_unmasked = !(env->daif & PSTATE_F);
2072         break;
2073 
2074     case EXCP_IRQ:
2075         pstate_unmasked = !(env->daif & PSTATE_I);
2076         break;
2077 
2078     case EXCP_VFIQ:
2079         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2080             /* VFIQs are only taken when hypervized and non-secure.  */
2081             return false;
2082         }
2083         return !(env->daif & PSTATE_F);
2084     case EXCP_VIRQ:
2085         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2086             /* VIRQs are only taken when hypervized and non-secure.  */
2087             return false;
2088         }
2089         return !(env->daif & PSTATE_I);
2090     default:
2091         g_assert_not_reached();
2092     }
2093 
2094     /* Use the target EL, current execution state and SCR/HCR settings to
2095      * determine whether the corresponding CPSR bit is used to mask the
2096      * interrupt.
2097      */
2098     if ((target_el > cur_el) && (target_el != 1)) {
2099         /* Exceptions targeting a higher EL may not be maskable */
2100         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2101             /* 64-bit masking rules are simple: exceptions to EL3
2102              * can't be masked, and exceptions to EL2 can only be
2103              * masked from Secure state. The HCR and SCR settings
2104              * don't affect the masking logic, only the interrupt routing.
2105              */
2106             if (target_el == 3 || !secure) {
2107                 unmasked = 1;
2108             }
2109         } else {
2110             /* The old 32-bit-only environment has a more complicated
2111              * masking setup. HCR and SCR bits not only affect interrupt
2112              * routing but also change the behaviour of masking.
2113              */
2114             bool hcr, scr;
2115 
2116             switch (excp_idx) {
2117             case EXCP_FIQ:
2118                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2119                  * we override the CPSR.F in determining if the exception is
2120                  * masked or not. If neither of these are set then we fall back
2121                  * to the CPSR.F setting otherwise we further assess the state
2122                  * below.
2123                  */
2124                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2125                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2126 
2127                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2128                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2129                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2130                  * when non-secure but only when FIQs are only routed to EL3.
2131                  */
2132                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2133                 break;
2134             case EXCP_IRQ:
2135                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2136                  * we may override the CPSR.I masking when in non-secure state.
2137                  * The SCR.IRQ setting has already been taken into consideration
2138                  * when setting the target EL, so it does not have a further
2139                  * affect here.
2140                  */
2141                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2142                 scr = false;
2143                 break;
2144             default:
2145                 g_assert_not_reached();
2146             }
2147 
2148             if ((scr || hcr) && !secure) {
2149                 unmasked = 1;
2150             }
2151         }
2152     }
2153 
2154     /* The PSTATE bits only mask the interrupt if we have not overriden the
2155      * ability above.
2156      */
2157     return unmasked || pstate_unmasked;
2158 }
2159 
2160 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2161 
2162 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2163 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2164 
2165 #define cpu_signal_handler cpu_arm_signal_handler
2166 #define cpu_list arm_cpu_list
2167 
2168 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2169  *
2170  * If EL3 is 64-bit:
2171  *  + NonSecure EL1 & 0 stage 1
2172  *  + NonSecure EL1 & 0 stage 2
2173  *  + NonSecure EL2
2174  *  + Secure EL1 & EL0
2175  *  + Secure EL3
2176  * If EL3 is 32-bit:
2177  *  + NonSecure PL1 & 0 stage 1
2178  *  + NonSecure PL1 & 0 stage 2
2179  *  + NonSecure PL2
2180  *  + Secure PL0 & PL1
2181  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2182  *
2183  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2184  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2185  *     may differ in access permissions even if the VA->PA map is the same
2186  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2187  *     translation, which means that we have one mmu_idx that deals with two
2188  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2189  *     architecturally permitted]
2190  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2191  *     handling via the TLB. The only way to do a stage 1 translation without
2192  *     the immediate stage 2 translation is via the ATS or AT system insns,
2193  *     which can be slow-pathed and always do a page table walk.
2194  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2195  *     translation regimes, because they map reasonably well to each other
2196  *     and they can't both be active at the same time.
2197  * This gives us the following list of mmu_idx values:
2198  *
2199  * NS EL0 (aka NS PL0) stage 1+2
2200  * NS EL1 (aka NS PL1) stage 1+2
2201  * NS EL2 (aka NS PL2)
2202  * S EL3 (aka S PL1)
2203  * S EL0 (aka S PL0)
2204  * S EL1 (not used if EL3 is 32 bit)
2205  * NS EL0+1 stage 2
2206  *
2207  * (The last of these is an mmu_idx because we want to be able to use the TLB
2208  * for the accesses done as part of a stage 1 page table walk, rather than
2209  * having to walk the stage 2 page table over and over.)
2210  *
2211  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2212  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2213  * NS EL2 if we ever model a Cortex-R52).
2214  *
2215  * M profile CPUs are rather different as they do not have a true MMU.
2216  * They have the following different MMU indexes:
2217  *  User
2218  *  Privileged
2219  *  Execution priority negative (this is like privileged, but the
2220  *  MPU HFNMIENA bit means that it may have different access permission
2221  *  check results to normal privileged code, so can't share a TLB).
2222  * If the CPU supports the v8M Security Extension then there are also:
2223  *  Secure User
2224  *  Secure Privileged
2225  *  Secure, execution priority negative
2226  *
2227  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2228  * are not quite the same -- different CPU types (most notably M profile
2229  * vs A/R profile) would like to use MMU indexes with different semantics,
2230  * but since we don't ever need to use all of those in a single CPU we
2231  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2232  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2233  * the same for any particular CPU.
2234  * Variables of type ARMMUIdx are always full values, and the core
2235  * index values are in variables of type 'int'.
2236  *
2237  * Our enumeration includes at the end some entries which are not "true"
2238  * mmu_idx values in that they don't have corresponding TLBs and are only
2239  * valid for doing slow path page table walks.
2240  *
2241  * The constant names here are patterned after the general style of the names
2242  * of the AT/ATS operations.
2243  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2244  */
2245 #define ARM_MMU_IDX_A 0x10 /* A profile */
2246 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2247 #define ARM_MMU_IDX_M 0x40 /* M profile */
2248 
2249 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2250 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2251 
2252 typedef enum ARMMMUIdx {
2253     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2254     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2255     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2256     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2257     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2258     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2259     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2260     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2261     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2262     ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2263     ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M,
2264     ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M,
2265     ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M,
2266     /* Indexes below here don't have TLBs and are used only for AT system
2267      * instructions or for the first stage of an S12 page table walk.
2268      */
2269     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2270     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2271 } ARMMMUIdx;
2272 
2273 /* Bit macros for the core-mmu-index values for each index,
2274  * for use when calling tlb_flush_by_mmuidx() and friends.
2275  */
2276 typedef enum ARMMMUIdxBit {
2277     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2278     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2279     ARMMMUIdxBit_S1E2 = 1 << 2,
2280     ARMMMUIdxBit_S1E3 = 1 << 3,
2281     ARMMMUIdxBit_S1SE0 = 1 << 4,
2282     ARMMMUIdxBit_S1SE1 = 1 << 5,
2283     ARMMMUIdxBit_S2NS = 1 << 6,
2284     ARMMMUIdxBit_MUser = 1 << 0,
2285     ARMMMUIdxBit_MPriv = 1 << 1,
2286     ARMMMUIdxBit_MNegPri = 1 << 2,
2287     ARMMMUIdxBit_MSUser = 1 << 3,
2288     ARMMMUIdxBit_MSPriv = 1 << 4,
2289     ARMMMUIdxBit_MSNegPri = 1 << 5,
2290 } ARMMMUIdxBit;
2291 
2292 #define MMU_USER_IDX 0
2293 
2294 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2295 {
2296     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2297 }
2298 
2299 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2300 {
2301     if (arm_feature(env, ARM_FEATURE_M)) {
2302         return mmu_idx | ARM_MMU_IDX_M;
2303     } else {
2304         return mmu_idx | ARM_MMU_IDX_A;
2305     }
2306 }
2307 
2308 /* Return the exception level we're running at if this is our mmu_idx */
2309 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2310 {
2311     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2312     case ARM_MMU_IDX_A:
2313         return mmu_idx & 3;
2314     case ARM_MMU_IDX_M:
2315         return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser)
2316             ? 0 : 1;
2317     default:
2318         g_assert_not_reached();
2319     }
2320 }
2321 
2322 /* Determine the current mmu_idx to use for normal loads/stores */
2323 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2324 {
2325     int el = arm_current_el(env);
2326 
2327     if (arm_feature(env, ARM_FEATURE_M)) {
2328         ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2329 
2330         if (armv7m_nvic_neg_prio_requested(env->nvic, env->v7m.secure)) {
2331             mmu_idx = ARMMMUIdx_MNegPri;
2332         }
2333 
2334         if (env->v7m.secure) {
2335             mmu_idx += ARMMMUIdx_MSUser;
2336         }
2337 
2338         return arm_to_core_mmu_idx(mmu_idx);
2339     }
2340 
2341     if (el < 2 && arm_is_secure_below_el3(env)) {
2342         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2343     }
2344     return el;
2345 }
2346 
2347 /* Indexes used when registering address spaces with cpu_address_space_init */
2348 typedef enum ARMASIdx {
2349     ARMASIdx_NS = 0,
2350     ARMASIdx_S = 1,
2351 } ARMASIdx;
2352 
2353 /* Return the Exception Level targeted by debug exceptions. */
2354 static inline int arm_debug_target_el(CPUARMState *env)
2355 {
2356     bool secure = arm_is_secure(env);
2357     bool route_to_el2 = false;
2358 
2359     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2360         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2361                        env->cp15.mdcr_el2 & (1 << 8);
2362     }
2363 
2364     if (route_to_el2) {
2365         return 2;
2366     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2367                !arm_el_is_aa64(env, 3) && secure) {
2368         return 3;
2369     } else {
2370         return 1;
2371     }
2372 }
2373 
2374 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2375 {
2376     if (arm_is_secure(env)) {
2377         /* MDCR_EL3.SDD disables debug events from Secure state */
2378         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2379             || arm_current_el(env) == 3) {
2380             return false;
2381         }
2382     }
2383 
2384     if (arm_current_el(env) == arm_debug_target_el(env)) {
2385         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2386             || (env->daif & PSTATE_D)) {
2387             return false;
2388         }
2389     }
2390     return true;
2391 }
2392 
2393 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2394 {
2395     int el = arm_current_el(env);
2396 
2397     if (el == 0 && arm_el_is_aa64(env, 1)) {
2398         return aa64_generate_debug_exceptions(env);
2399     }
2400 
2401     if (arm_is_secure(env)) {
2402         int spd;
2403 
2404         if (el == 0 && (env->cp15.sder & 1)) {
2405             /* SDER.SUIDEN means debug exceptions from Secure EL0
2406              * are always enabled. Otherwise they are controlled by
2407              * SDCR.SPD like those from other Secure ELs.
2408              */
2409             return true;
2410         }
2411 
2412         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2413         switch (spd) {
2414         case 1:
2415             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2416         case 0:
2417             /* For 0b00 we return true if external secure invasive debug
2418              * is enabled. On real hardware this is controlled by external
2419              * signals to the core. QEMU always permits debug, and behaves
2420              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2421              */
2422             return true;
2423         case 2:
2424             return false;
2425         case 3:
2426             return true;
2427         }
2428     }
2429 
2430     return el != 2;
2431 }
2432 
2433 /* Return true if debugging exceptions are currently enabled.
2434  * This corresponds to what in ARM ARM pseudocode would be
2435  *    if UsingAArch32() then
2436  *        return AArch32.GenerateDebugExceptions()
2437  *    else
2438  *        return AArch64.GenerateDebugExceptions()
2439  * We choose to push the if() down into this function for clarity,
2440  * since the pseudocode has it at all callsites except for the one in
2441  * CheckSoftwareStep(), where it is elided because both branches would
2442  * always return the same value.
2443  *
2444  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2445  * don't yet implement those exception levels or their associated trap bits.
2446  */
2447 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2448 {
2449     if (env->aarch64) {
2450         return aa64_generate_debug_exceptions(env);
2451     } else {
2452         return aa32_generate_debug_exceptions(env);
2453     }
2454 }
2455 
2456 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2457  * implicitly means this always returns false in pre-v8 CPUs.)
2458  */
2459 static inline bool arm_singlestep_active(CPUARMState *env)
2460 {
2461     return extract32(env->cp15.mdscr_el1, 0, 1)
2462         && arm_el_is_aa64(env, arm_debug_target_el(env))
2463         && arm_generate_debug_exceptions(env);
2464 }
2465 
2466 static inline bool arm_sctlr_b(CPUARMState *env)
2467 {
2468     return
2469         /* We need not implement SCTLR.ITD in user-mode emulation, so
2470          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2471          * This lets people run BE32 binaries with "-cpu any".
2472          */
2473 #ifndef CONFIG_USER_ONLY
2474         !arm_feature(env, ARM_FEATURE_V7) &&
2475 #endif
2476         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2477 }
2478 
2479 /* Return true if the processor is in big-endian mode. */
2480 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2481 {
2482     int cur_el;
2483 
2484     /* In 32bit endianness is determined by looking at CPSR's E bit */
2485     if (!is_a64(env)) {
2486         return
2487 #ifdef CONFIG_USER_ONLY
2488             /* In system mode, BE32 is modelled in line with the
2489              * architecture (as word-invariant big-endianness), where loads
2490              * and stores are done little endian but from addresses which
2491              * are adjusted by XORing with the appropriate constant. So the
2492              * endianness to use for the raw data access is not affected by
2493              * SCTLR.B.
2494              * In user mode, however, we model BE32 as byte-invariant
2495              * big-endianness (because user-only code cannot tell the
2496              * difference), and so we need to use a data access endianness
2497              * that depends on SCTLR.B.
2498              */
2499             arm_sctlr_b(env) ||
2500 #endif
2501                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2502     }
2503 
2504     cur_el = arm_current_el(env);
2505 
2506     if (cur_el == 0) {
2507         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2508     }
2509 
2510     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2511 }
2512 
2513 #include "exec/cpu-all.h"
2514 
2515 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2516  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2517  * We put flags which are shared between 32 and 64 bit mode at the top
2518  * of the word, and flags which apply to only one mode at the bottom.
2519  */
2520 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2521 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2522 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2523 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2524 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2525 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2526 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2527 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2528 /* Target EL if we take a floating-point-disabled exception */
2529 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2530 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2531 
2532 /* Bit usage when in AArch32 state: */
2533 #define ARM_TBFLAG_THUMB_SHIFT      0
2534 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2535 #define ARM_TBFLAG_VECLEN_SHIFT     1
2536 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2537 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2538 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2539 #define ARM_TBFLAG_VFPEN_SHIFT      7
2540 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2541 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2542 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2543 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2544 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2545 /* We store the bottom two bits of the CPAR as TB flags and handle
2546  * checks on the other bits at runtime
2547  */
2548 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2549 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2550 /* Indicates whether cp register reads and writes by guest code should access
2551  * the secure or nonsecure bank of banked registers; note that this is not
2552  * the same thing as the current security state of the processor!
2553  */
2554 #define ARM_TBFLAG_NS_SHIFT         19
2555 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2556 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2557 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2558 /* For M profile only, Handler (ie not Thread) mode */
2559 #define ARM_TBFLAG_HANDLER_SHIFT    21
2560 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2561 
2562 /* Bit usage when in AArch64 state */
2563 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2564 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2565 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2566 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2567 
2568 /* some convenience accessor macros */
2569 #define ARM_TBFLAG_AARCH64_STATE(F) \
2570     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2571 #define ARM_TBFLAG_MMUIDX(F) \
2572     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2573 #define ARM_TBFLAG_SS_ACTIVE(F) \
2574     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2575 #define ARM_TBFLAG_PSTATE_SS(F) \
2576     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2577 #define ARM_TBFLAG_FPEXC_EL(F) \
2578     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2579 #define ARM_TBFLAG_THUMB(F) \
2580     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2581 #define ARM_TBFLAG_VECLEN(F) \
2582     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2583 #define ARM_TBFLAG_VECSTRIDE(F) \
2584     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2585 #define ARM_TBFLAG_VFPEN(F) \
2586     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2587 #define ARM_TBFLAG_CONDEXEC(F) \
2588     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2589 #define ARM_TBFLAG_SCTLR_B(F) \
2590     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2591 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2592     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2593 #define ARM_TBFLAG_NS(F) \
2594     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2595 #define ARM_TBFLAG_BE_DATA(F) \
2596     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2597 #define ARM_TBFLAG_HANDLER(F) \
2598     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2599 #define ARM_TBFLAG_TBI0(F) \
2600     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2601 #define ARM_TBFLAG_TBI1(F) \
2602     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2603 
2604 static inline bool bswap_code(bool sctlr_b)
2605 {
2606 #ifdef CONFIG_USER_ONLY
2607     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2608      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2609      * would also end up as a mixed-endian mode with BE code, LE data.
2610      */
2611     return
2612 #ifdef TARGET_WORDS_BIGENDIAN
2613         1 ^
2614 #endif
2615         sctlr_b;
2616 #else
2617     /* All code access in ARM is little endian, and there are no loaders
2618      * doing swaps that need to be reversed
2619      */
2620     return 0;
2621 #endif
2622 }
2623 
2624 /* Return the exception level to which FP-disabled exceptions should
2625  * be taken, or 0 if FP is enabled.
2626  */
2627 static inline int fp_exception_el(CPUARMState *env)
2628 {
2629     int fpen;
2630     int cur_el = arm_current_el(env);
2631 
2632     /* CPACR and the CPTR registers don't exist before v6, so FP is
2633      * always accessible
2634      */
2635     if (!arm_feature(env, ARM_FEATURE_V6)) {
2636         return 0;
2637     }
2638 
2639     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2640      * 0, 2 : trap EL0 and EL1/PL1 accesses
2641      * 1    : trap only EL0 accesses
2642      * 3    : trap no accesses
2643      */
2644     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2645     switch (fpen) {
2646     case 0:
2647     case 2:
2648         if (cur_el == 0 || cur_el == 1) {
2649             /* Trap to PL1, which might be EL1 or EL3 */
2650             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2651                 return 3;
2652             }
2653             return 1;
2654         }
2655         if (cur_el == 3 && !is_a64(env)) {
2656             /* Secure PL1 running at EL3 */
2657             return 3;
2658         }
2659         break;
2660     case 1:
2661         if (cur_el == 0) {
2662             return 1;
2663         }
2664         break;
2665     case 3:
2666         break;
2667     }
2668 
2669     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2670      * check because zero bits in the registers mean "don't trap".
2671      */
2672 
2673     /* CPTR_EL2 : present in v7VE or v8 */
2674     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2675         && !arm_is_secure_below_el3(env)) {
2676         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2677         return 2;
2678     }
2679 
2680     /* CPTR_EL3 : present in v8 */
2681     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2682         /* Trap all FP ops to EL3 */
2683         return 3;
2684     }
2685 
2686     return 0;
2687 }
2688 
2689 #ifdef CONFIG_USER_ONLY
2690 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2691 {
2692     return
2693 #ifdef TARGET_WORDS_BIGENDIAN
2694        1 ^
2695 #endif
2696        arm_cpu_data_is_big_endian(env);
2697 }
2698 #endif
2699 
2700 #ifndef CONFIG_USER_ONLY
2701 /**
2702  * arm_regime_tbi0:
2703  * @env: CPUARMState
2704  * @mmu_idx: MMU index indicating required translation regime
2705  *
2706  * Extracts the TBI0 value from the appropriate TCR for the current EL
2707  *
2708  * Returns: the TBI0 value.
2709  */
2710 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2711 
2712 /**
2713  * arm_regime_tbi1:
2714  * @env: CPUARMState
2715  * @mmu_idx: MMU index indicating required translation regime
2716  *
2717  * Extracts the TBI1 value from the appropriate TCR for the current EL
2718  *
2719  * Returns: the TBI1 value.
2720  */
2721 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2722 #else
2723 /* We can't handle tagged addresses properly in user-only mode */
2724 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2725 {
2726     return 0;
2727 }
2728 
2729 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2730 {
2731     return 0;
2732 }
2733 #endif
2734 
2735 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2736                                         target_ulong *cs_base, uint32_t *flags)
2737 {
2738     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2739     if (is_a64(env)) {
2740         *pc = env->pc;
2741         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2742         /* Get control bits for tagged addresses */
2743         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2744         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2745     } else {
2746         *pc = env->regs[15];
2747         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2748             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2749             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2750             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2751             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2752         if (!(access_secure_reg(env))) {
2753             *flags |= ARM_TBFLAG_NS_MASK;
2754         }
2755         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2756             || arm_el_is_aa64(env, 1)) {
2757             *flags |= ARM_TBFLAG_VFPEN_MASK;
2758         }
2759         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2760                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2761     }
2762 
2763     *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2764 
2765     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2766      * states defined in the ARM ARM for software singlestep:
2767      *  SS_ACTIVE   PSTATE.SS   State
2768      *     0            x       Inactive (the TB flag for SS is always 0)
2769      *     1            0       Active-pending
2770      *     1            1       Active-not-pending
2771      */
2772     if (arm_singlestep_active(env)) {
2773         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2774         if (is_a64(env)) {
2775             if (env->pstate & PSTATE_SS) {
2776                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2777             }
2778         } else {
2779             if (env->uncached_cpsr & PSTATE_SS) {
2780                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2781             }
2782         }
2783     }
2784     if (arm_cpu_data_is_big_endian(env)) {
2785         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2786     }
2787     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2788 
2789     if (arm_v7m_is_handler_mode(env)) {
2790         *flags |= ARM_TBFLAG_HANDLER_MASK;
2791     }
2792 
2793     *cs_base = 0;
2794 }
2795 
2796 enum {
2797     QEMU_PSCI_CONDUIT_DISABLED = 0,
2798     QEMU_PSCI_CONDUIT_SMC = 1,
2799     QEMU_PSCI_CONDUIT_HVC = 2,
2800 };
2801 
2802 #ifndef CONFIG_USER_ONLY
2803 /* Return the address space index to use for a memory access */
2804 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2805 {
2806     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2807 }
2808 
2809 /* Return the AddressSpace to use for a memory access
2810  * (which depends on whether the access is S or NS, and whether
2811  * the board gave us a separate AddressSpace for S accesses).
2812  */
2813 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2814 {
2815     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2816 }
2817 #endif
2818 
2819 /**
2820  * arm_register_el_change_hook:
2821  * Register a hook function which will be called back whenever this
2822  * CPU changes exception level or mode. The hook function will be
2823  * passed a pointer to the ARMCPU and the opaque data pointer passed
2824  * to this function when the hook was registered.
2825  *
2826  * Note that we currently only support registering a single hook function,
2827  * and will assert if this function is called twice.
2828  * This facility is intended for the use of the GICv3 emulation.
2829  */
2830 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2831                                  void *opaque);
2832 
2833 /**
2834  * arm_get_el_change_hook_opaque:
2835  * Return the opaque data that will be used by the el_change_hook
2836  * for this CPU.
2837  */
2838 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2839 {
2840     return cpu->el_change_hook_opaque;
2841 }
2842 
2843 #endif
2844