xref: /openbmc/qemu/target/arm/cpu.h (revision b846ab7c9593197367361fb1110586ba4d311c23)
1  /*
2   * ARM virtual CPU header
3   *
4   *  Copyright (c) 2003 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #ifndef ARM_CPU_H
21  #define ARM_CPU_H
22  
23  #include "kvm-consts.h"
24  #include "hw/registerfields.h"
25  #include "cpu-qom.h"
26  #include "exec/cpu-defs.h"
27  #include "qapi/qapi-types-common.h"
28  
29  /* ARM processors have a weak memory model */
30  #define TCG_GUEST_DEFAULT_MO      (0)
31  
32  #ifdef TARGET_AARCH64
33  #define KVM_HAVE_MCE_INJECTION 1
34  #endif
35  
36  #define EXCP_UDEF            1   /* undefined instruction */
37  #define EXCP_SWI             2   /* software interrupt */
38  #define EXCP_PREFETCH_ABORT  3
39  #define EXCP_DATA_ABORT      4
40  #define EXCP_IRQ             5
41  #define EXCP_FIQ             6
42  #define EXCP_BKPT            7
43  #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44  #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45  #define EXCP_HVC            11   /* HyperVisor Call */
46  #define EXCP_HYP_TRAP       12
47  #define EXCP_SMC            13   /* Secure Monitor Call */
48  #define EXCP_VIRQ           14
49  #define EXCP_VFIQ           15
50  #define EXCP_SEMIHOST       16   /* semihosting call */
51  #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52  #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53  #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54  #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55  #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56  #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57  /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
58  
59  #define ARMV7M_EXCP_RESET   1
60  #define ARMV7M_EXCP_NMI     2
61  #define ARMV7M_EXCP_HARD    3
62  #define ARMV7M_EXCP_MEM     4
63  #define ARMV7M_EXCP_BUS     5
64  #define ARMV7M_EXCP_USAGE   6
65  #define ARMV7M_EXCP_SECURE  7
66  #define ARMV7M_EXCP_SVC     11
67  #define ARMV7M_EXCP_DEBUG   12
68  #define ARMV7M_EXCP_PENDSV  14
69  #define ARMV7M_EXCP_SYSTICK 15
70  
71  /* For M profile, some registers are banked secure vs non-secure;
72   * these are represented as a 2-element array where the first element
73   * is the non-secure copy and the second is the secure copy.
74   * When the CPU does not have implement the security extension then
75   * only the first element is used.
76   * This means that the copy for the current security state can be
77   * accessed via env->registerfield[env->v7m.secure] (whether the security
78   * extension is implemented or not).
79   */
80  enum {
81      M_REG_NS = 0,
82      M_REG_S = 1,
83      M_REG_NUM_BANKS = 2,
84  };
85  
86  /* ARM-specific interrupt pending bits.  */
87  #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
88  #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
89  #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
90  
91  /* The usual mapping for an AArch64 system register to its AArch32
92   * counterpart is for the 32 bit world to have access to the lower
93   * half only (with writes leaving the upper half untouched). It's
94   * therefore useful to be able to pass TCG the offset of the least
95   * significant half of a uint64_t struct member.
96   */
97  #ifdef HOST_WORDS_BIGENDIAN
98  #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99  #define offsetofhigh32(S, M) offsetof(S, M)
100  #else
101  #define offsetoflow32(S, M) offsetof(S, M)
102  #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103  #endif
104  
105  /* Meanings of the ARMCPU object's four inbound GPIO lines */
106  #define ARM_CPU_IRQ 0
107  #define ARM_CPU_FIQ 1
108  #define ARM_CPU_VIRQ 2
109  #define ARM_CPU_VFIQ 3
110  
111  /* ARM-specific extra insn start words:
112   * 1: Conditional execution bits
113   * 2: Partial exception syndrome for data aborts
114   */
115  #define TARGET_INSN_START_EXTRA_WORDS 2
116  
117  /* The 2nd extra word holding syndrome info for data aborts does not use
118   * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119   * help the sleb128 encoder do a better job.
120   * When restoring the CPU state, we shift it back up.
121   */
122  #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123  #define ARM_INSN_START_WORD2_SHIFT 14
124  
125  /* We currently assume float and double are IEEE single and double
126     precision respectively.
127     Doing runtime conversions is tricky because VFP registers may contain
128     integer values (eg. as the result of a FTOSI instruction).
129     s<2n> maps to the least significant half of d<n>
130     s<2n+1> maps to the most significant half of d<n>
131   */
132  
133  /**
134   * DynamicGDBXMLInfo:
135   * @desc: Contains the XML descriptions.
136   * @num: Number of the registers in this XML seen by GDB.
137   * @data: A union with data specific to the set of registers
138   *    @cpregs_keys: Array that contains the corresponding Key of
139   *                  a given cpreg with the same order of the cpreg
140   *                  in the XML description.
141   */
142  typedef struct DynamicGDBXMLInfo {
143      char *desc;
144      int num;
145      union {
146          struct {
147              uint32_t *keys;
148          } cpregs;
149      } data;
150  } DynamicGDBXMLInfo;
151  
152  /* CPU state for each instance of a generic timer (in cp15 c14) */
153  typedef struct ARMGenericTimer {
154      uint64_t cval; /* Timer CompareValue register */
155      uint64_t ctl; /* Timer Control register */
156  } ARMGenericTimer;
157  
158  #define GTIMER_PHYS     0
159  #define GTIMER_VIRT     1
160  #define GTIMER_HYP      2
161  #define GTIMER_SEC      3
162  #define GTIMER_HYPVIRT  4
163  #define NUM_GTIMERS     5
164  
165  typedef struct {
166      uint64_t raw_tcr;
167      uint32_t mask;
168      uint32_t base_mask;
169  } TCR;
170  
171  #define VTCR_NSW (1u << 29)
172  #define VTCR_NSA (1u << 30)
173  #define VSTCR_SW VTCR_NSW
174  #define VSTCR_SA VTCR_NSA
175  
176  /* Define a maximum sized vector register.
177   * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
178   * For 64-bit, this is a 2048-bit SVE register.
179   *
180   * Note that the mapping between S, D, and Q views of the register bank
181   * differs between AArch64 and AArch32.
182   * In AArch32:
183   *  Qn = regs[n].d[1]:regs[n].d[0]
184   *  Dn = regs[n / 2].d[n & 1]
185   *  Sn = regs[n / 4].d[n % 4 / 2],
186   *       bits 31..0 for even n, and bits 63..32 for odd n
187   *       (and regs[16] to regs[31] are inaccessible)
188   * In AArch64:
189   *  Zn = regs[n].d[*]
190   *  Qn = regs[n].d[1]:regs[n].d[0]
191   *  Dn = regs[n].d[0]
192   *  Sn = regs[n].d[0] bits 31..0
193   *  Hn = regs[n].d[0] bits 15..0
194   *
195   * This corresponds to the architecturally defined mapping between
196   * the two execution states, and means we do not need to explicitly
197   * map these registers when changing states.
198   *
199   * Align the data for use with TCG host vector operations.
200   */
201  
202  #ifdef TARGET_AARCH64
203  # define ARM_MAX_VQ    16
204  void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
205  void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
206  #else
207  # define ARM_MAX_VQ    1
208  static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
209  static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
210  #endif
211  
212  typedef struct ARMVectorReg {
213      uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214  } ARMVectorReg;
215  
216  #ifdef TARGET_AARCH64
217  /* In AArch32 mode, predicate registers do not exist at all.  */
218  typedef struct ARMPredicateReg {
219      uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
220  } ARMPredicateReg;
221  
222  /* In AArch32 mode, PAC keys do not exist at all.  */
223  typedef struct ARMPACKey {
224      uint64_t lo, hi;
225  } ARMPACKey;
226  #endif
227  
228  
229  typedef struct CPUARMState {
230      /* Regs for current mode.  */
231      uint32_t regs[16];
232  
233      /* 32/64 switch only happens when taking and returning from
234       * exceptions so the overlap semantics are taken care of then
235       * instead of having a complicated union.
236       */
237      /* Regs for A64 mode.  */
238      uint64_t xregs[32];
239      uint64_t pc;
240      /* PSTATE isn't an architectural register for ARMv8. However, it is
241       * convenient for us to assemble the underlying state into a 32 bit format
242       * identical to the architectural format used for the SPSR. (This is also
243       * what the Linux kernel's 'pstate' field in signal handlers and KVM's
244       * 'pstate' register are.) Of the PSTATE bits:
245       *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
246       *    semantics as for AArch32, as described in the comments on each field)
247       *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
248       *  DAIF (exception masks) are kept in env->daif
249       *  BTYPE is kept in env->btype
250       *  all other bits are stored in their correct places in env->pstate
251       */
252      uint32_t pstate;
253      uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
254  
255      /* Cached TBFLAGS state.  See below for which bits are included.  */
256      uint32_t hflags;
257  
258      /* Frequently accessed CPSR bits are stored separately for efficiency.
259         This contains all the other bits.  Use cpsr_{read,write} to access
260         the whole CPSR.  */
261      uint32_t uncached_cpsr;
262      uint32_t spsr;
263  
264      /* Banked registers.  */
265      uint64_t banked_spsr[8];
266      uint32_t banked_r13[8];
267      uint32_t banked_r14[8];
268  
269      /* These hold r8-r12.  */
270      uint32_t usr_regs[5];
271      uint32_t fiq_regs[5];
272  
273      /* cpsr flag cache for faster execution */
274      uint32_t CF; /* 0 or 1 */
275      uint32_t VF; /* V is the bit 31. All other bits are undefined */
276      uint32_t NF; /* N is bit 31. All other bits are undefined.  */
277      uint32_t ZF; /* Z set if zero.  */
278      uint32_t QF; /* 0 or 1 */
279      uint32_t GE; /* cpsr[19:16] */
280      uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
281      uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
282      uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
283      uint64_t daif; /* exception masks, in the bits they are in PSTATE */
284  
285      uint64_t elr_el[4]; /* AArch64 exception link regs  */
286      uint64_t sp_el[4]; /* AArch64 banked stack pointers */
287  
288      /* System control coprocessor (cp15) */
289      struct {
290          uint32_t c0_cpuid;
291          union { /* Cache size selection */
292              struct {
293                  uint64_t _unused_csselr0;
294                  uint64_t csselr_ns;
295                  uint64_t _unused_csselr1;
296                  uint64_t csselr_s;
297              };
298              uint64_t csselr_el[4];
299          };
300          union { /* System control register. */
301              struct {
302                  uint64_t _unused_sctlr;
303                  uint64_t sctlr_ns;
304                  uint64_t hsctlr;
305                  uint64_t sctlr_s;
306              };
307              uint64_t sctlr_el[4];
308          };
309          uint64_t cpacr_el1; /* Architectural feature access control register */
310          uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
311          uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
312          uint64_t sder; /* Secure debug enable register. */
313          uint32_t nsacr; /* Non-secure access control register. */
314          union { /* MMU translation table base 0. */
315              struct {
316                  uint64_t _unused_ttbr0_0;
317                  uint64_t ttbr0_ns;
318                  uint64_t _unused_ttbr0_1;
319                  uint64_t ttbr0_s;
320              };
321              uint64_t ttbr0_el[4];
322          };
323          union { /* MMU translation table base 1. */
324              struct {
325                  uint64_t _unused_ttbr1_0;
326                  uint64_t ttbr1_ns;
327                  uint64_t _unused_ttbr1_1;
328                  uint64_t ttbr1_s;
329              };
330              uint64_t ttbr1_el[4];
331          };
332          uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
333          uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
334          /* MMU translation table base control. */
335          TCR tcr_el[4];
336          TCR vtcr_el2; /* Virtualization Translation Control.  */
337          TCR vstcr_el2; /* Secure Virtualization Translation Control. */
338          uint32_t c2_data; /* MPU data cacheable bits.  */
339          uint32_t c2_insn; /* MPU instruction cacheable bits.  */
340          union { /* MMU domain access control register
341                   * MPU write buffer control.
342                   */
343              struct {
344                  uint64_t dacr_ns;
345                  uint64_t dacr_s;
346              };
347              struct {
348                  uint64_t dacr32_el2;
349              };
350          };
351          uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
352          uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
353          uint64_t hcr_el2; /* Hypervisor configuration register */
354          uint64_t scr_el3; /* Secure configuration register.  */
355          union { /* Fault status registers.  */
356              struct {
357                  uint64_t ifsr_ns;
358                  uint64_t ifsr_s;
359              };
360              struct {
361                  uint64_t ifsr32_el2;
362              };
363          };
364          union {
365              struct {
366                  uint64_t _unused_dfsr;
367                  uint64_t dfsr_ns;
368                  uint64_t hsr;
369                  uint64_t dfsr_s;
370              };
371              uint64_t esr_el[4];
372          };
373          uint32_t c6_region[8]; /* MPU base/size registers.  */
374          union { /* Fault address registers. */
375              struct {
376                  uint64_t _unused_far0;
377  #ifdef HOST_WORDS_BIGENDIAN
378                  uint32_t ifar_ns;
379                  uint32_t dfar_ns;
380                  uint32_t ifar_s;
381                  uint32_t dfar_s;
382  #else
383                  uint32_t dfar_ns;
384                  uint32_t ifar_ns;
385                  uint32_t dfar_s;
386                  uint32_t ifar_s;
387  #endif
388                  uint64_t _unused_far3;
389              };
390              uint64_t far_el[4];
391          };
392          uint64_t hpfar_el2;
393          uint64_t hstr_el2;
394          union { /* Translation result. */
395              struct {
396                  uint64_t _unused_par_0;
397                  uint64_t par_ns;
398                  uint64_t _unused_par_1;
399                  uint64_t par_s;
400              };
401              uint64_t par_el[4];
402          };
403  
404          uint32_t c9_insn; /* Cache lockdown registers.  */
405          uint32_t c9_data;
406          uint64_t c9_pmcr; /* performance monitor control register */
407          uint64_t c9_pmcnten; /* perf monitor counter enables */
408          uint64_t c9_pmovsr; /* perf monitor overflow status */
409          uint64_t c9_pmuserenr; /* perf monitor user enable */
410          uint64_t c9_pmselr; /* perf monitor counter selection register */
411          uint64_t c9_pminten; /* perf monitor interrupt enables */
412          union { /* Memory attribute redirection */
413              struct {
414  #ifdef HOST_WORDS_BIGENDIAN
415                  uint64_t _unused_mair_0;
416                  uint32_t mair1_ns;
417                  uint32_t mair0_ns;
418                  uint64_t _unused_mair_1;
419                  uint32_t mair1_s;
420                  uint32_t mair0_s;
421  #else
422                  uint64_t _unused_mair_0;
423                  uint32_t mair0_ns;
424                  uint32_t mair1_ns;
425                  uint64_t _unused_mair_1;
426                  uint32_t mair0_s;
427                  uint32_t mair1_s;
428  #endif
429              };
430              uint64_t mair_el[4];
431          };
432          union { /* vector base address register */
433              struct {
434                  uint64_t _unused_vbar;
435                  uint64_t vbar_ns;
436                  uint64_t hvbar;
437                  uint64_t vbar_s;
438              };
439              uint64_t vbar_el[4];
440          };
441          uint32_t mvbar; /* (monitor) vector base address register */
442          struct { /* FCSE PID. */
443              uint32_t fcseidr_ns;
444              uint32_t fcseidr_s;
445          };
446          union { /* Context ID. */
447              struct {
448                  uint64_t _unused_contextidr_0;
449                  uint64_t contextidr_ns;
450                  uint64_t _unused_contextidr_1;
451                  uint64_t contextidr_s;
452              };
453              uint64_t contextidr_el[4];
454          };
455          union { /* User RW Thread register. */
456              struct {
457                  uint64_t tpidrurw_ns;
458                  uint64_t tpidrprw_ns;
459                  uint64_t htpidr;
460                  uint64_t _tpidr_el3;
461              };
462              uint64_t tpidr_el[4];
463          };
464          /* The secure banks of these registers don't map anywhere */
465          uint64_t tpidrurw_s;
466          uint64_t tpidrprw_s;
467          uint64_t tpidruro_s;
468  
469          union { /* User RO Thread register. */
470              uint64_t tpidruro_ns;
471              uint64_t tpidrro_el[1];
472          };
473          uint64_t c14_cntfrq; /* Counter Frequency register */
474          uint64_t c14_cntkctl; /* Timer Control register */
475          uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
476          uint64_t cntvoff_el2; /* Counter Virtual Offset register */
477          ARMGenericTimer c14_timer[NUM_GTIMERS];
478          uint32_t c15_cpar; /* XScale Coprocessor Access Register */
479          uint32_t c15_ticonfig; /* TI925T configuration byte.  */
480          uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
481          uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
482          uint32_t c15_threadid; /* TI debugger thread-ID.  */
483          uint32_t c15_config_base_address; /* SCU base address.  */
484          uint32_t c15_diagnostic; /* diagnostic register */
485          uint32_t c15_power_diagnostic;
486          uint32_t c15_power_control; /* power control */
487          uint64_t dbgbvr[16]; /* breakpoint value registers */
488          uint64_t dbgbcr[16]; /* breakpoint control registers */
489          uint64_t dbgwvr[16]; /* watchpoint value registers */
490          uint64_t dbgwcr[16]; /* watchpoint control registers */
491          uint64_t mdscr_el1;
492          uint64_t oslsr_el1; /* OS Lock Status */
493          uint64_t mdcr_el2;
494          uint64_t mdcr_el3;
495          /* Stores the architectural value of the counter *the last time it was
496           * updated* by pmccntr_op_start. Accesses should always be surrounded
497           * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
498           * architecturally-correct value is being read/set.
499           */
500          uint64_t c15_ccnt;
501          /* Stores the delta between the architectural value and the underlying
502           * cycle count during normal operation. It is used to update c15_ccnt
503           * to be the correct architectural value before accesses. During
504           * accesses, c15_ccnt_delta contains the underlying count being used
505           * for the access, after which it reverts to the delta value in
506           * pmccntr_op_finish.
507           */
508          uint64_t c15_ccnt_delta;
509          uint64_t c14_pmevcntr[31];
510          uint64_t c14_pmevcntr_delta[31];
511          uint64_t c14_pmevtyper[31];
512          uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
513          uint64_t vpidr_el2; /* Virtualization Processor ID Register */
514          uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
515          uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
516          uint64_t gcr_el1;
517          uint64_t rgsr_el1;
518      } cp15;
519  
520      struct {
521          /* M profile has up to 4 stack pointers:
522           * a Main Stack Pointer and a Process Stack Pointer for each
523           * of the Secure and Non-Secure states. (If the CPU doesn't support
524           * the security extension then it has only two SPs.)
525           * In QEMU we always store the currently active SP in regs[13],
526           * and the non-active SP for the current security state in
527           * v7m.other_sp. The stack pointers for the inactive security state
528           * are stored in other_ss_msp and other_ss_psp.
529           * switch_v7m_security_state() is responsible for rearranging them
530           * when we change security state.
531           */
532          uint32_t other_sp;
533          uint32_t other_ss_msp;
534          uint32_t other_ss_psp;
535          uint32_t vecbase[M_REG_NUM_BANKS];
536          uint32_t basepri[M_REG_NUM_BANKS];
537          uint32_t control[M_REG_NUM_BANKS];
538          uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
539          uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
540          uint32_t hfsr; /* HardFault Status */
541          uint32_t dfsr; /* Debug Fault Status Register */
542          uint32_t sfsr; /* Secure Fault Status Register */
543          uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
544          uint32_t bfar; /* BusFault Address */
545          uint32_t sfar; /* Secure Fault Address Register */
546          unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
547          int exception;
548          uint32_t primask[M_REG_NUM_BANKS];
549          uint32_t faultmask[M_REG_NUM_BANKS];
550          uint32_t aircr; /* only holds r/w state if security extn implemented */
551          uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
552          uint32_t csselr[M_REG_NUM_BANKS];
553          uint32_t scr[M_REG_NUM_BANKS];
554          uint32_t msplim[M_REG_NUM_BANKS];
555          uint32_t psplim[M_REG_NUM_BANKS];
556          uint32_t fpcar[M_REG_NUM_BANKS];
557          uint32_t fpccr[M_REG_NUM_BANKS];
558          uint32_t fpdscr[M_REG_NUM_BANKS];
559          uint32_t cpacr[M_REG_NUM_BANKS];
560          uint32_t nsacr;
561          int ltpsize;
562      } v7m;
563  
564      /* Information associated with an exception about to be taken:
565       * code which raises an exception must set cs->exception_index and
566       * the relevant parts of this structure; the cpu_do_interrupt function
567       * will then set the guest-visible registers as part of the exception
568       * entry process.
569       */
570      struct {
571          uint32_t syndrome; /* AArch64 format syndrome register */
572          uint32_t fsr; /* AArch32 format fault status register info */
573          uint64_t vaddress; /* virtual addr associated with exception, if any */
574          uint32_t target_el; /* EL the exception should be targeted for */
575          /* If we implement EL2 we will also need to store information
576           * about the intermediate physical address for stage 2 faults.
577           */
578      } exception;
579  
580      /* Information associated with an SError */
581      struct {
582          uint8_t pending;
583          uint8_t has_esr;
584          uint64_t esr;
585      } serror;
586  
587      uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
588  
589      /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
590      uint32_t irq_line_state;
591  
592      /* Thumb-2 EE state.  */
593      uint32_t teecr;
594      uint32_t teehbr;
595  
596      /* VFP coprocessor state.  */
597      struct {
598          ARMVectorReg zregs[32];
599  
600  #ifdef TARGET_AARCH64
601          /* Store FFR as pregs[16] to make it easier to treat as any other.  */
602  #define FFR_PRED_NUM 16
603          ARMPredicateReg pregs[17];
604          /* Scratch space for aa64 sve predicate temporary.  */
605          ARMPredicateReg preg_tmp;
606  #endif
607  
608          /* We store these fpcsr fields separately for convenience.  */
609          uint32_t qc[4] QEMU_ALIGNED(16);
610          int vec_len;
611          int vec_stride;
612  
613          uint32_t xregs[16];
614  
615          /* Scratch space for aa32 neon expansion.  */
616          uint32_t scratch[8];
617  
618          /* There are a number of distinct float control structures:
619           *
620           *  fp_status: is the "normal" fp status.
621           *  fp_status_fp16: used for half-precision calculations
622           *  standard_fp_status : the ARM "Standard FPSCR Value"
623           *  standard_fp_status_fp16 : used for half-precision
624           *       calculations with the ARM "Standard FPSCR Value"
625           *
626           * Half-precision operations are governed by a separate
627           * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
628           * status structure to control this.
629           *
630           * The "Standard FPSCR", ie default-NaN, flush-to-zero,
631           * round-to-nearest and is used by any operations (generally
632           * Neon) which the architecture defines as controlled by the
633           * standard FPSCR value rather than the FPSCR.
634           *
635           * The "standard FPSCR but for fp16 ops" is needed because
636           * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
637           * using a fixed value for it.
638           *
639           * To avoid having to transfer exception bits around, we simply
640           * say that the FPSCR cumulative exception flags are the logical
641           * OR of the flags in the four fp statuses. This relies on the
642           * only thing which needs to read the exception flags being
643           * an explicit FPSCR read.
644           */
645          float_status fp_status;
646          float_status fp_status_f16;
647          float_status standard_fp_status;
648          float_status standard_fp_status_f16;
649  
650          /* ZCR_EL[1-3] */
651          uint64_t zcr_el[4];
652      } vfp;
653      uint64_t exclusive_addr;
654      uint64_t exclusive_val;
655      uint64_t exclusive_high;
656  
657      /* iwMMXt coprocessor state.  */
658      struct {
659          uint64_t regs[16];
660          uint64_t val;
661  
662          uint32_t cregs[16];
663      } iwmmxt;
664  
665  #ifdef TARGET_AARCH64
666      struct {
667          ARMPACKey apia;
668          ARMPACKey apib;
669          ARMPACKey apda;
670          ARMPACKey apdb;
671          ARMPACKey apga;
672      } keys;
673  #endif
674  
675  #if defined(CONFIG_USER_ONLY)
676      /* For usermode syscall translation.  */
677      int eabi;
678  #endif
679  
680      struct CPUBreakpoint *cpu_breakpoint[16];
681      struct CPUWatchpoint *cpu_watchpoint[16];
682  
683      /* Fields up to this point are cleared by a CPU reset */
684      struct {} end_reset_fields;
685  
686      /* Fields after this point are preserved across CPU reset. */
687  
688      /* Internal CPU feature flags.  */
689      uint64_t features;
690  
691      /* PMSAv7 MPU */
692      struct {
693          uint32_t *drbar;
694          uint32_t *drsr;
695          uint32_t *dracr;
696          uint32_t rnr[M_REG_NUM_BANKS];
697      } pmsav7;
698  
699      /* PMSAv8 MPU */
700      struct {
701          /* The PMSAv8 implementation also shares some PMSAv7 config
702           * and state:
703           *  pmsav7.rnr (region number register)
704           *  pmsav7_dregion (number of configured regions)
705           */
706          uint32_t *rbar[M_REG_NUM_BANKS];
707          uint32_t *rlar[M_REG_NUM_BANKS];
708          uint32_t mair0[M_REG_NUM_BANKS];
709          uint32_t mair1[M_REG_NUM_BANKS];
710      } pmsav8;
711  
712      /* v8M SAU */
713      struct {
714          uint32_t *rbar;
715          uint32_t *rlar;
716          uint32_t rnr;
717          uint32_t ctrl;
718      } sau;
719  
720      void *nvic;
721      const struct arm_boot_info *boot_info;
722      /* Store GICv3CPUState to access from this struct */
723      void *gicv3state;
724  } CPUARMState;
725  
726  static inline void set_feature(CPUARMState *env, int feature)
727  {
728      env->features |= 1ULL << feature;
729  }
730  
731  static inline void unset_feature(CPUARMState *env, int feature)
732  {
733      env->features &= ~(1ULL << feature);
734  }
735  
736  /**
737   * ARMELChangeHookFn:
738   * type of a function which can be registered via arm_register_el_change_hook()
739   * to get callbacks when the CPU changes its exception level or mode.
740   */
741  typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
742  typedef struct ARMELChangeHook ARMELChangeHook;
743  struct ARMELChangeHook {
744      ARMELChangeHookFn *hook;
745      void *opaque;
746      QLIST_ENTRY(ARMELChangeHook) node;
747  };
748  
749  /* These values map onto the return values for
750   * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
751  typedef enum ARMPSCIState {
752      PSCI_ON = 0,
753      PSCI_OFF = 1,
754      PSCI_ON_PENDING = 2
755  } ARMPSCIState;
756  
757  typedef struct ARMISARegisters ARMISARegisters;
758  
759  /**
760   * ARMCPU:
761   * @env: #CPUARMState
762   *
763   * An ARM CPU core.
764   */
765  struct ARMCPU {
766      /*< private >*/
767      CPUState parent_obj;
768      /*< public >*/
769  
770      CPUNegativeOffsetState neg;
771      CPUARMState env;
772  
773      /* Coprocessor information */
774      GHashTable *cp_regs;
775      /* For marshalling (mostly coprocessor) register state between the
776       * kernel and QEMU (for KVM) and between two QEMUs (for migration),
777       * we use these arrays.
778       */
779      /* List of register indexes managed via these arrays; (full KVM style
780       * 64 bit indexes, not CPRegInfo 32 bit indexes)
781       */
782      uint64_t *cpreg_indexes;
783      /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
784      uint64_t *cpreg_values;
785      /* Length of the indexes, values, reset_values arrays */
786      int32_t cpreg_array_len;
787      /* These are used only for migration: incoming data arrives in
788       * these fields and is sanity checked in post_load before copying
789       * to the working data structures above.
790       */
791      uint64_t *cpreg_vmstate_indexes;
792      uint64_t *cpreg_vmstate_values;
793      int32_t cpreg_vmstate_array_len;
794  
795      DynamicGDBXMLInfo dyn_sysreg_xml;
796      DynamicGDBXMLInfo dyn_svereg_xml;
797  
798      /* Timers used by the generic (architected) timer */
799      QEMUTimer *gt_timer[NUM_GTIMERS];
800      /*
801       * Timer used by the PMU. Its state is restored after migration by
802       * pmu_op_finish() - it does not need other handling during migration
803       */
804      QEMUTimer *pmu_timer;
805      /* GPIO outputs for generic timer */
806      qemu_irq gt_timer_outputs[NUM_GTIMERS];
807      /* GPIO output for GICv3 maintenance interrupt signal */
808      qemu_irq gicv3_maintenance_interrupt;
809      /* GPIO output for the PMU interrupt */
810      qemu_irq pmu_interrupt;
811  
812      /* MemoryRegion to use for secure physical accesses */
813      MemoryRegion *secure_memory;
814  
815      /* MemoryRegion to use for allocation tag accesses */
816      MemoryRegion *tag_memory;
817      MemoryRegion *secure_tag_memory;
818  
819      /* For v8M, pointer to the IDAU interface provided by board/SoC */
820      Object *idau;
821  
822      /* 'compatible' string for this CPU for Linux device trees */
823      const char *dtb_compatible;
824  
825      /* PSCI version for this CPU
826       * Bits[31:16] = Major Version
827       * Bits[15:0] = Minor Version
828       */
829      uint32_t psci_version;
830  
831      /* Current power state, access guarded by BQL */
832      ARMPSCIState power_state;
833  
834      /* CPU has virtualization extension */
835      bool has_el2;
836      /* CPU has security extension */
837      bool has_el3;
838      /* CPU has PMU (Performance Monitor Unit) */
839      bool has_pmu;
840      /* CPU has VFP */
841      bool has_vfp;
842      /* CPU has Neon */
843      bool has_neon;
844      /* CPU has M-profile DSP extension */
845      bool has_dsp;
846  
847      /* CPU has memory protection unit */
848      bool has_mpu;
849      /* PMSAv7 MPU number of supported regions */
850      uint32_t pmsav7_dregion;
851      /* v8M SAU number of supported regions */
852      uint32_t sau_sregion;
853  
854      /* PSCI conduit used to invoke PSCI methods
855       * 0 - disabled, 1 - smc, 2 - hvc
856       */
857      uint32_t psci_conduit;
858  
859      /* For v8M, initial value of the Secure VTOR */
860      uint32_t init_svtor;
861  
862      /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
863       * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
864       */
865      uint32_t kvm_target;
866  
867      /* KVM init features for this CPU */
868      uint32_t kvm_init_features[7];
869  
870      /* KVM CPU state */
871  
872      /* KVM virtual time adjustment */
873      bool kvm_adjvtime;
874      bool kvm_vtime_dirty;
875      uint64_t kvm_vtime;
876  
877      /* KVM steal time */
878      OnOffAuto kvm_steal_time;
879  
880      /* Uniprocessor system with MP extensions */
881      bool mp_is_up;
882  
883      /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
884       * and the probe failed (so we need to report the error in realize)
885       */
886      bool host_cpu_probe_failed;
887  
888      /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
889       * register.
890       */
891      int32_t core_count;
892  
893      /* The instance init functions for implementation-specific subclasses
894       * set these fields to specify the implementation-dependent values of
895       * various constant registers and reset values of non-constant
896       * registers.
897       * Some of these might become QOM properties eventually.
898       * Field names match the official register names as defined in the
899       * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
900       * is used for reset values of non-constant registers; no reset_
901       * prefix means a constant register.
902       * Some of these registers are split out into a substructure that
903       * is shared with the translators to control the ISA.
904       *
905       * Note that if you add an ID register to the ARMISARegisters struct
906       * you need to also update the 32-bit and 64-bit versions of the
907       * kvm_arm_get_host_cpu_features() function to correctly populate the
908       * field by reading the value from the KVM vCPU.
909       */
910      struct ARMISARegisters {
911          uint32_t id_isar0;
912          uint32_t id_isar1;
913          uint32_t id_isar2;
914          uint32_t id_isar3;
915          uint32_t id_isar4;
916          uint32_t id_isar5;
917          uint32_t id_isar6;
918          uint32_t id_mmfr0;
919          uint32_t id_mmfr1;
920          uint32_t id_mmfr2;
921          uint32_t id_mmfr3;
922          uint32_t id_mmfr4;
923          uint32_t id_pfr0;
924          uint32_t id_pfr1;
925          uint32_t mvfr0;
926          uint32_t mvfr1;
927          uint32_t mvfr2;
928          uint32_t id_dfr0;
929          uint32_t dbgdidr;
930          uint64_t id_aa64isar0;
931          uint64_t id_aa64isar1;
932          uint64_t id_aa64pfr0;
933          uint64_t id_aa64pfr1;
934          uint64_t id_aa64mmfr0;
935          uint64_t id_aa64mmfr1;
936          uint64_t id_aa64mmfr2;
937          uint64_t id_aa64dfr0;
938          uint64_t id_aa64dfr1;
939      } isar;
940      uint64_t midr;
941      uint32_t revidr;
942      uint32_t reset_fpsid;
943      uint64_t ctr;
944      uint32_t reset_sctlr;
945      uint64_t pmceid0;
946      uint64_t pmceid1;
947      uint32_t id_afr0;
948      uint64_t id_aa64afr0;
949      uint64_t id_aa64afr1;
950      uint64_t clidr;
951      uint64_t mp_affinity; /* MP ID without feature bits */
952      /* The elements of this array are the CCSIDR values for each cache,
953       * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
954       */
955      uint64_t ccsidr[16];
956      uint64_t reset_cbar;
957      uint32_t reset_auxcr;
958      bool reset_hivecs;
959  
960      /*
961       * Intermediate values used during property parsing.
962       * Once finalized, the values should be read from ID_AA64ISAR1.
963       */
964      bool prop_pauth;
965      bool prop_pauth_impdef;
966  
967      /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
968      uint32_t dcz_blocksize;
969      uint64_t rvbar;
970  
971      /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
972      int gic_num_lrs; /* number of list registers */
973      int gic_vpribits; /* number of virtual priority bits */
974      int gic_vprebits; /* number of virtual preemption bits */
975  
976      /* Whether the cfgend input is high (i.e. this CPU should reset into
977       * big-endian mode).  This setting isn't used directly: instead it modifies
978       * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
979       * architecture version.
980       */
981      bool cfgend;
982  
983      QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
984      QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
985  
986      int32_t node_id; /* NUMA node this CPU belongs to */
987  
988      /* Used to synchronize KVM and QEMU in-kernel device levels */
989      uint8_t device_irq_level;
990  
991      /* Used to set the maximum vector length the cpu will support.  */
992      uint32_t sve_max_vq;
993  
994      /*
995       * In sve_vq_map each set bit is a supported vector length of
996       * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
997       * length in quadwords.
998       *
999       * While processing properties during initialization, corresponding
1000       * sve_vq_init bits are set for bits in sve_vq_map that have been
1001       * set by properties.
1002       */
1003      DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1004      DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1005  
1006      /* Generic timer counter frequency, in Hz */
1007      uint64_t gt_cntfrq_hz;
1008  };
1009  
1010  unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1011  
1012  void arm_cpu_post_init(Object *obj);
1013  
1014  uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1015  
1016  #ifndef CONFIG_USER_ONLY
1017  extern const VMStateDescription vmstate_arm_cpu;
1018  #endif
1019  
1020  void arm_cpu_do_interrupt(CPUState *cpu);
1021  void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1022  bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1023  
1024  hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1025                                           MemTxAttrs *attrs);
1026  
1027  int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1028  int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1029  
1030  /*
1031   * Helpers to dynamically generates XML descriptions of the sysregs
1032   * and SVE registers. Returns the number of registers in each set.
1033   */
1034  int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1035  int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1036  
1037  /* Returns the dynamically generated XML for the gdb stub.
1038   * Returns a pointer to the XML contents for the specified XML file or NULL
1039   * if the XML name doesn't match the predefined one.
1040   */
1041  const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1042  
1043  int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1044                               int cpuid, void *opaque);
1045  int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1046                               int cpuid, void *opaque);
1047  
1048  #ifdef TARGET_AARCH64
1049  int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1050  int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1051  void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1052  void aarch64_sve_change_el(CPUARMState *env, int old_el,
1053                             int new_el, bool el0_a64);
1054  void aarch64_add_sve_properties(Object *obj);
1055  
1056  /*
1057   * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1058   * The byte at offset i from the start of the in-memory representation contains
1059   * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1060   * lowest offsets are stored in the lowest memory addresses, then that nearly
1061   * matches QEMU's representation, which is to use an array of host-endian
1062   * uint64_t's, where the lower offsets are at the lower indices. To complete
1063   * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1064   */
1065  static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1066  {
1067  #ifdef HOST_WORDS_BIGENDIAN
1068      int i;
1069  
1070      for (i = 0; i < nr; ++i) {
1071          dst[i] = bswap64(src[i]);
1072      }
1073  
1074      return dst;
1075  #else
1076      return src;
1077  #endif
1078  }
1079  
1080  #else
1081  static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1082  static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1083                                           int n, bool a)
1084  { }
1085  static inline void aarch64_add_sve_properties(Object *obj) { }
1086  #endif
1087  
1088  void aarch64_sync_32_to_64(CPUARMState *env);
1089  void aarch64_sync_64_to_32(CPUARMState *env);
1090  
1091  int fp_exception_el(CPUARMState *env, int cur_el);
1092  int sve_exception_el(CPUARMState *env, int cur_el);
1093  uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1094  
1095  static inline bool is_a64(CPUARMState *env)
1096  {
1097      return env->aarch64;
1098  }
1099  
1100  /* you can call this signal handler from your SIGBUS and SIGSEGV
1101     signal handlers to inform the virtual CPU of exceptions. non zero
1102     is returned if the signal was handled by the virtual CPU.  */
1103  int cpu_arm_signal_handler(int host_signum, void *pinfo,
1104                             void *puc);
1105  
1106  /**
1107   * pmu_op_start/finish
1108   * @env: CPUARMState
1109   *
1110   * Convert all PMU counters between their delta form (the typical mode when
1111   * they are enabled) and the guest-visible values. These two calls must
1112   * surround any action which might affect the counters.
1113   */
1114  void pmu_op_start(CPUARMState *env);
1115  void pmu_op_finish(CPUARMState *env);
1116  
1117  /*
1118   * Called when a PMU counter is due to overflow
1119   */
1120  void arm_pmu_timer_cb(void *opaque);
1121  
1122  /**
1123   * Functions to register as EL change hooks for PMU mode filtering
1124   */
1125  void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1126  void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1127  
1128  /*
1129   * pmu_init
1130   * @cpu: ARMCPU
1131   *
1132   * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1133   * for the current configuration
1134   */
1135  void pmu_init(ARMCPU *cpu);
1136  
1137  /* SCTLR bit meanings. Several bits have been reused in newer
1138   * versions of the architecture; in that case we define constants
1139   * for both old and new bit meanings. Code which tests against those
1140   * bits should probably check or otherwise arrange that the CPU
1141   * is the architectural version it expects.
1142   */
1143  #define SCTLR_M       (1U << 0)
1144  #define SCTLR_A       (1U << 1)
1145  #define SCTLR_C       (1U << 2)
1146  #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1147  #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1148  #define SCTLR_SA      (1U << 3) /* AArch64 only */
1149  #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1150  #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1151  #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1152  #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1153  #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1154  #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1155  #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1156  #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1157  #define SCTLR_ITD     (1U << 7) /* v8 onward */
1158  #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1159  #define SCTLR_SED     (1U << 8) /* v8 onward */
1160  #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1161  #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1162  #define SCTLR_F       (1U << 10) /* up to v6 */
1163  #define SCTLR_SW      (1U << 10) /* v7 */
1164  #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1165  #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1166  #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1167  #define SCTLR_I       (1U << 12)
1168  #define SCTLR_V       (1U << 13) /* AArch32 only */
1169  #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1170  #define SCTLR_RR      (1U << 14) /* up to v7 */
1171  #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1172  #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1173  #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1174  #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1175  #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1176  #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1177  #define SCTLR_BR      (1U << 17) /* PMSA only */
1178  #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1179  #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1180  #define SCTLR_WXN     (1U << 19)
1181  #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1182  #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1183  #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1184  #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1185  #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1186  #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1187  #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1188  #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1189  #define SCTLR_VE      (1U << 24) /* up to v7 */
1190  #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1191  #define SCTLR_EE      (1U << 25)
1192  #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1193  #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1194  #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1195  #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1196  #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1197  #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1198  #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1199  #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1200  #define SCTLR_TE      (1U << 30) /* AArch32 only */
1201  #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1202  #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1203  #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1204  #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1205  #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1206  #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1207  #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1208  #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1209  #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1210  #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1211  
1212  #define CPTR_TCPAC    (1U << 31)
1213  #define CPTR_TTA      (1U << 20)
1214  #define CPTR_TFP      (1U << 10)
1215  #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1216  #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1217  
1218  #define MDCR_EPMAD    (1U << 21)
1219  #define MDCR_EDAD     (1U << 20)
1220  #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1221  #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1222  #define MDCR_SDD      (1U << 16)
1223  #define MDCR_SPD      (3U << 14)
1224  #define MDCR_TDRA     (1U << 11)
1225  #define MDCR_TDOSA    (1U << 10)
1226  #define MDCR_TDA      (1U << 9)
1227  #define MDCR_TDE      (1U << 8)
1228  #define MDCR_HPME     (1U << 7)
1229  #define MDCR_TPM      (1U << 6)
1230  #define MDCR_TPMCR    (1U << 5)
1231  #define MDCR_HPMN     (0x1fU)
1232  
1233  /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1234  #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1235  
1236  #define CPSR_M (0x1fU)
1237  #define CPSR_T (1U << 5)
1238  #define CPSR_F (1U << 6)
1239  #define CPSR_I (1U << 7)
1240  #define CPSR_A (1U << 8)
1241  #define CPSR_E (1U << 9)
1242  #define CPSR_IT_2_7 (0xfc00U)
1243  #define CPSR_GE (0xfU << 16)
1244  #define CPSR_IL (1U << 20)
1245  #define CPSR_PAN (1U << 22)
1246  #define CPSR_J (1U << 24)
1247  #define CPSR_IT_0_1 (3U << 25)
1248  #define CPSR_Q (1U << 27)
1249  #define CPSR_V (1U << 28)
1250  #define CPSR_C (1U << 29)
1251  #define CPSR_Z (1U << 30)
1252  #define CPSR_N (1U << 31)
1253  #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1254  #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1255  
1256  #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1257  #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1258      | CPSR_NZCV)
1259  /* Bits writable in user mode.  */
1260  #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1261  /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1262  #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1263  
1264  /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1265  #define XPSR_EXCP 0x1ffU
1266  #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1267  #define XPSR_IT_2_7 CPSR_IT_2_7
1268  #define XPSR_GE CPSR_GE
1269  #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1270  #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1271  #define XPSR_IT_0_1 CPSR_IT_0_1
1272  #define XPSR_Q CPSR_Q
1273  #define XPSR_V CPSR_V
1274  #define XPSR_C CPSR_C
1275  #define XPSR_Z CPSR_Z
1276  #define XPSR_N CPSR_N
1277  #define XPSR_NZCV CPSR_NZCV
1278  #define XPSR_IT CPSR_IT
1279  
1280  #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1281  #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1282  #define TTBCR_PD0    (1U << 4)
1283  #define TTBCR_PD1    (1U << 5)
1284  #define TTBCR_EPD0   (1U << 7)
1285  #define TTBCR_IRGN0  (3U << 8)
1286  #define TTBCR_ORGN0  (3U << 10)
1287  #define TTBCR_SH0    (3U << 12)
1288  #define TTBCR_T1SZ   (3U << 16)
1289  #define TTBCR_A1     (1U << 22)
1290  #define TTBCR_EPD1   (1U << 23)
1291  #define TTBCR_IRGN1  (3U << 24)
1292  #define TTBCR_ORGN1  (3U << 26)
1293  #define TTBCR_SH1    (1U << 28)
1294  #define TTBCR_EAE    (1U << 31)
1295  
1296  /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1297   * Only these are valid when in AArch64 mode; in
1298   * AArch32 mode SPSRs are basically CPSR-format.
1299   */
1300  #define PSTATE_SP (1U)
1301  #define PSTATE_M (0xFU)
1302  #define PSTATE_nRW (1U << 4)
1303  #define PSTATE_F (1U << 6)
1304  #define PSTATE_I (1U << 7)
1305  #define PSTATE_A (1U << 8)
1306  #define PSTATE_D (1U << 9)
1307  #define PSTATE_BTYPE (3U << 10)
1308  #define PSTATE_IL (1U << 20)
1309  #define PSTATE_SS (1U << 21)
1310  #define PSTATE_PAN (1U << 22)
1311  #define PSTATE_UAO (1U << 23)
1312  #define PSTATE_TCO (1U << 25)
1313  #define PSTATE_V (1U << 28)
1314  #define PSTATE_C (1U << 29)
1315  #define PSTATE_Z (1U << 30)
1316  #define PSTATE_N (1U << 31)
1317  #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1318  #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1319  #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1320  /* Mode values for AArch64 */
1321  #define PSTATE_MODE_EL3h 13
1322  #define PSTATE_MODE_EL3t 12
1323  #define PSTATE_MODE_EL2h 9
1324  #define PSTATE_MODE_EL2t 8
1325  #define PSTATE_MODE_EL1h 5
1326  #define PSTATE_MODE_EL1t 4
1327  #define PSTATE_MODE_EL0t 0
1328  
1329  /* Write a new value to v7m.exception, thus transitioning into or out
1330   * of Handler mode; this may result in a change of active stack pointer.
1331   */
1332  void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1333  
1334  /* Map EL and handler into a PSTATE_MODE.  */
1335  static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1336  {
1337      return (el << 2) | handler;
1338  }
1339  
1340  /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1341   * interprocessing, so we don't attempt to sync with the cpsr state used by
1342   * the 32 bit decoder.
1343   */
1344  static inline uint32_t pstate_read(CPUARMState *env)
1345  {
1346      int ZF;
1347  
1348      ZF = (env->ZF == 0);
1349      return (env->NF & 0x80000000) | (ZF << 30)
1350          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1351          | env->pstate | env->daif | (env->btype << 10);
1352  }
1353  
1354  static inline void pstate_write(CPUARMState *env, uint32_t val)
1355  {
1356      env->ZF = (~val) & PSTATE_Z;
1357      env->NF = val;
1358      env->CF = (val >> 29) & 1;
1359      env->VF = (val << 3) & 0x80000000;
1360      env->daif = val & PSTATE_DAIF;
1361      env->btype = (val >> 10) & 3;
1362      env->pstate = val & ~CACHED_PSTATE_BITS;
1363  }
1364  
1365  /* Return the current CPSR value.  */
1366  uint32_t cpsr_read(CPUARMState *env);
1367  
1368  typedef enum CPSRWriteType {
1369      CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1370      CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1371      CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1372      CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1373  } CPSRWriteType;
1374  
1375  /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1376  void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1377                  CPSRWriteType write_type);
1378  
1379  /* Return the current xPSR value.  */
1380  static inline uint32_t xpsr_read(CPUARMState *env)
1381  {
1382      int ZF;
1383      ZF = (env->ZF == 0);
1384      return (env->NF & 0x80000000) | (ZF << 30)
1385          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1386          | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1387          | ((env->condexec_bits & 0xfc) << 8)
1388          | (env->GE << 16)
1389          | env->v7m.exception;
1390  }
1391  
1392  /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1393  static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1394  {
1395      if (mask & XPSR_NZCV) {
1396          env->ZF = (~val) & XPSR_Z;
1397          env->NF = val;
1398          env->CF = (val >> 29) & 1;
1399          env->VF = (val << 3) & 0x80000000;
1400      }
1401      if (mask & XPSR_Q) {
1402          env->QF = ((val & XPSR_Q) != 0);
1403      }
1404      if (mask & XPSR_GE) {
1405          env->GE = (val & XPSR_GE) >> 16;
1406      }
1407  #ifndef CONFIG_USER_ONLY
1408      if (mask & XPSR_T) {
1409          env->thumb = ((val & XPSR_T) != 0);
1410      }
1411      if (mask & XPSR_IT_0_1) {
1412          env->condexec_bits &= ~3;
1413          env->condexec_bits |= (val >> 25) & 3;
1414      }
1415      if (mask & XPSR_IT_2_7) {
1416          env->condexec_bits &= 3;
1417          env->condexec_bits |= (val >> 8) & 0xfc;
1418      }
1419      if (mask & XPSR_EXCP) {
1420          /* Note that this only happens on exception exit */
1421          write_v7m_exception(env, val & XPSR_EXCP);
1422      }
1423  #endif
1424  }
1425  
1426  #define HCR_VM        (1ULL << 0)
1427  #define HCR_SWIO      (1ULL << 1)
1428  #define HCR_PTW       (1ULL << 2)
1429  #define HCR_FMO       (1ULL << 3)
1430  #define HCR_IMO       (1ULL << 4)
1431  #define HCR_AMO       (1ULL << 5)
1432  #define HCR_VF        (1ULL << 6)
1433  #define HCR_VI        (1ULL << 7)
1434  #define HCR_VSE       (1ULL << 8)
1435  #define HCR_FB        (1ULL << 9)
1436  #define HCR_BSU_MASK  (3ULL << 10)
1437  #define HCR_DC        (1ULL << 12)
1438  #define HCR_TWI       (1ULL << 13)
1439  #define HCR_TWE       (1ULL << 14)
1440  #define HCR_TID0      (1ULL << 15)
1441  #define HCR_TID1      (1ULL << 16)
1442  #define HCR_TID2      (1ULL << 17)
1443  #define HCR_TID3      (1ULL << 18)
1444  #define HCR_TSC       (1ULL << 19)
1445  #define HCR_TIDCP     (1ULL << 20)
1446  #define HCR_TACR      (1ULL << 21)
1447  #define HCR_TSW       (1ULL << 22)
1448  #define HCR_TPCP      (1ULL << 23)
1449  #define HCR_TPU       (1ULL << 24)
1450  #define HCR_TTLB      (1ULL << 25)
1451  #define HCR_TVM       (1ULL << 26)
1452  #define HCR_TGE       (1ULL << 27)
1453  #define HCR_TDZ       (1ULL << 28)
1454  #define HCR_HCD       (1ULL << 29)
1455  #define HCR_TRVM      (1ULL << 30)
1456  #define HCR_RW        (1ULL << 31)
1457  #define HCR_CD        (1ULL << 32)
1458  #define HCR_ID        (1ULL << 33)
1459  #define HCR_E2H       (1ULL << 34)
1460  #define HCR_TLOR      (1ULL << 35)
1461  #define HCR_TERR      (1ULL << 36)
1462  #define HCR_TEA       (1ULL << 37)
1463  #define HCR_MIOCNCE   (1ULL << 38)
1464  /* RES0 bit 39 */
1465  #define HCR_APK       (1ULL << 40)
1466  #define HCR_API       (1ULL << 41)
1467  #define HCR_NV        (1ULL << 42)
1468  #define HCR_NV1       (1ULL << 43)
1469  #define HCR_AT        (1ULL << 44)
1470  #define HCR_NV2       (1ULL << 45)
1471  #define HCR_FWB       (1ULL << 46)
1472  #define HCR_FIEN      (1ULL << 47)
1473  /* RES0 bit 48 */
1474  #define HCR_TID4      (1ULL << 49)
1475  #define HCR_TICAB     (1ULL << 50)
1476  #define HCR_AMVOFFEN  (1ULL << 51)
1477  #define HCR_TOCU      (1ULL << 52)
1478  #define HCR_ENSCXT    (1ULL << 53)
1479  #define HCR_TTLBIS    (1ULL << 54)
1480  #define HCR_TTLBOS    (1ULL << 55)
1481  #define HCR_ATA       (1ULL << 56)
1482  #define HCR_DCT       (1ULL << 57)
1483  #define HCR_TID5      (1ULL << 58)
1484  #define HCR_TWEDEN    (1ULL << 59)
1485  #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1486  
1487  #define HPFAR_NS      (1ULL << 63)
1488  
1489  #define SCR_NS                (1U << 0)
1490  #define SCR_IRQ               (1U << 1)
1491  #define SCR_FIQ               (1U << 2)
1492  #define SCR_EA                (1U << 3)
1493  #define SCR_FW                (1U << 4)
1494  #define SCR_AW                (1U << 5)
1495  #define SCR_NET               (1U << 6)
1496  #define SCR_SMD               (1U << 7)
1497  #define SCR_HCE               (1U << 8)
1498  #define SCR_SIF               (1U << 9)
1499  #define SCR_RW                (1U << 10)
1500  #define SCR_ST                (1U << 11)
1501  #define SCR_TWI               (1U << 12)
1502  #define SCR_TWE               (1U << 13)
1503  #define SCR_TLOR              (1U << 14)
1504  #define SCR_TERR              (1U << 15)
1505  #define SCR_APK               (1U << 16)
1506  #define SCR_API               (1U << 17)
1507  #define SCR_EEL2              (1U << 18)
1508  #define SCR_EASE              (1U << 19)
1509  #define SCR_NMEA              (1U << 20)
1510  #define SCR_FIEN              (1U << 21)
1511  #define SCR_ENSCXT            (1U << 25)
1512  #define SCR_ATA               (1U << 26)
1513  
1514  /* Return the current FPSCR value.  */
1515  uint32_t vfp_get_fpscr(CPUARMState *env);
1516  void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1517  
1518  /* FPCR, Floating Point Control Register
1519   * FPSR, Floating Poiht Status Register
1520   *
1521   * For A64 the FPSCR is split into two logically distinct registers,
1522   * FPCR and FPSR. However since they still use non-overlapping bits
1523   * we store the underlying state in fpscr and just mask on read/write.
1524   */
1525  #define FPSR_MASK 0xf800009f
1526  #define FPCR_MASK 0x07ff9f00
1527  
1528  #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1529  #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1530  #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1531  #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1532  #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1533  #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1534  #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1535  #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1536  #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1537  #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1538  #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1539  #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1540  #define FPCR_V      (1 << 28)   /* FP overflow flag */
1541  #define FPCR_C      (1 << 29)   /* FP carry flag */
1542  #define FPCR_Z      (1 << 30)   /* FP zero flag */
1543  #define FPCR_N      (1 << 31)   /* FP negative flag */
1544  
1545  #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1546  #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1547  
1548  #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1549  #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1550  
1551  static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1552  {
1553      return vfp_get_fpscr(env) & FPSR_MASK;
1554  }
1555  
1556  static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1557  {
1558      uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1559      vfp_set_fpscr(env, new_fpscr);
1560  }
1561  
1562  static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1563  {
1564      return vfp_get_fpscr(env) & FPCR_MASK;
1565  }
1566  
1567  static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1568  {
1569      uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1570      vfp_set_fpscr(env, new_fpscr);
1571  }
1572  
1573  enum arm_cpu_mode {
1574    ARM_CPU_MODE_USR = 0x10,
1575    ARM_CPU_MODE_FIQ = 0x11,
1576    ARM_CPU_MODE_IRQ = 0x12,
1577    ARM_CPU_MODE_SVC = 0x13,
1578    ARM_CPU_MODE_MON = 0x16,
1579    ARM_CPU_MODE_ABT = 0x17,
1580    ARM_CPU_MODE_HYP = 0x1a,
1581    ARM_CPU_MODE_UND = 0x1b,
1582    ARM_CPU_MODE_SYS = 0x1f
1583  };
1584  
1585  /* VFP system registers.  */
1586  #define ARM_VFP_FPSID   0
1587  #define ARM_VFP_FPSCR   1
1588  #define ARM_VFP_MVFR2   5
1589  #define ARM_VFP_MVFR1   6
1590  #define ARM_VFP_MVFR0   7
1591  #define ARM_VFP_FPEXC   8
1592  #define ARM_VFP_FPINST  9
1593  #define ARM_VFP_FPINST2 10
1594  /* These ones are M-profile only */
1595  #define ARM_VFP_FPSCR_NZCVQC 2
1596  #define ARM_VFP_VPR 12
1597  #define ARM_VFP_P0 13
1598  #define ARM_VFP_FPCXT_NS 14
1599  #define ARM_VFP_FPCXT_S 15
1600  
1601  /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1602  #define QEMU_VFP_FPSCR_NZCV 0xffff
1603  
1604  /* iwMMXt coprocessor control registers.  */
1605  #define ARM_IWMMXT_wCID  0
1606  #define ARM_IWMMXT_wCon  1
1607  #define ARM_IWMMXT_wCSSF 2
1608  #define ARM_IWMMXT_wCASF 3
1609  #define ARM_IWMMXT_wCGR0 8
1610  #define ARM_IWMMXT_wCGR1 9
1611  #define ARM_IWMMXT_wCGR2 10
1612  #define ARM_IWMMXT_wCGR3 11
1613  
1614  /* V7M CCR bits */
1615  FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1616  FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1617  FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1618  FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1619  FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1620  FIELD(V7M_CCR, STKALIGN, 9, 1)
1621  FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1622  FIELD(V7M_CCR, DC, 16, 1)
1623  FIELD(V7M_CCR, IC, 17, 1)
1624  FIELD(V7M_CCR, BP, 18, 1)
1625  FIELD(V7M_CCR, LOB, 19, 1)
1626  FIELD(V7M_CCR, TRD, 20, 1)
1627  
1628  /* V7M SCR bits */
1629  FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1630  FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1631  FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1632  FIELD(V7M_SCR, SEVONPEND, 4, 1)
1633  
1634  /* V7M AIRCR bits */
1635  FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1636  FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1637  FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1638  FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1639  FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1640  FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1641  FIELD(V7M_AIRCR, PRIS, 14, 1)
1642  FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1643  FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1644  
1645  /* V7M CFSR bits for MMFSR */
1646  FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1647  FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1648  FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1649  FIELD(V7M_CFSR, MSTKERR, 4, 1)
1650  FIELD(V7M_CFSR, MLSPERR, 5, 1)
1651  FIELD(V7M_CFSR, MMARVALID, 7, 1)
1652  
1653  /* V7M CFSR bits for BFSR */
1654  FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1655  FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1656  FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1657  FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1658  FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1659  FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1660  FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1661  
1662  /* V7M CFSR bits for UFSR */
1663  FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1664  FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1665  FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1666  FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1667  FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1668  FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1669  FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1670  
1671  /* V7M CFSR bit masks covering all of the subregister bits */
1672  FIELD(V7M_CFSR, MMFSR, 0, 8)
1673  FIELD(V7M_CFSR, BFSR, 8, 8)
1674  FIELD(V7M_CFSR, UFSR, 16, 16)
1675  
1676  /* V7M HFSR bits */
1677  FIELD(V7M_HFSR, VECTTBL, 1, 1)
1678  FIELD(V7M_HFSR, FORCED, 30, 1)
1679  FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1680  
1681  /* V7M DFSR bits */
1682  FIELD(V7M_DFSR, HALTED, 0, 1)
1683  FIELD(V7M_DFSR, BKPT, 1, 1)
1684  FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1685  FIELD(V7M_DFSR, VCATCH, 3, 1)
1686  FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1687  
1688  /* V7M SFSR bits */
1689  FIELD(V7M_SFSR, INVEP, 0, 1)
1690  FIELD(V7M_SFSR, INVIS, 1, 1)
1691  FIELD(V7M_SFSR, INVER, 2, 1)
1692  FIELD(V7M_SFSR, AUVIOL, 3, 1)
1693  FIELD(V7M_SFSR, INVTRAN, 4, 1)
1694  FIELD(V7M_SFSR, LSPERR, 5, 1)
1695  FIELD(V7M_SFSR, SFARVALID, 6, 1)
1696  FIELD(V7M_SFSR, LSERR, 7, 1)
1697  
1698  /* v7M MPU_CTRL bits */
1699  FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1700  FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1701  FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1702  
1703  /* v7M CLIDR bits */
1704  FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1705  FIELD(V7M_CLIDR, LOUIS, 21, 3)
1706  FIELD(V7M_CLIDR, LOC, 24, 3)
1707  FIELD(V7M_CLIDR, LOUU, 27, 3)
1708  FIELD(V7M_CLIDR, ICB, 30, 2)
1709  
1710  FIELD(V7M_CSSELR, IND, 0, 1)
1711  FIELD(V7M_CSSELR, LEVEL, 1, 3)
1712  /* We use the combination of InD and Level to index into cpu->ccsidr[];
1713   * define a mask for this and check that it doesn't permit running off
1714   * the end of the array.
1715   */
1716  FIELD(V7M_CSSELR, INDEX, 0, 4)
1717  
1718  /* v7M FPCCR bits */
1719  FIELD(V7M_FPCCR, LSPACT, 0, 1)
1720  FIELD(V7M_FPCCR, USER, 1, 1)
1721  FIELD(V7M_FPCCR, S, 2, 1)
1722  FIELD(V7M_FPCCR, THREAD, 3, 1)
1723  FIELD(V7M_FPCCR, HFRDY, 4, 1)
1724  FIELD(V7M_FPCCR, MMRDY, 5, 1)
1725  FIELD(V7M_FPCCR, BFRDY, 6, 1)
1726  FIELD(V7M_FPCCR, SFRDY, 7, 1)
1727  FIELD(V7M_FPCCR, MONRDY, 8, 1)
1728  FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1729  FIELD(V7M_FPCCR, UFRDY, 10, 1)
1730  FIELD(V7M_FPCCR, RES0, 11, 15)
1731  FIELD(V7M_FPCCR, TS, 26, 1)
1732  FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1733  FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1734  FIELD(V7M_FPCCR, LSPENS, 29, 1)
1735  FIELD(V7M_FPCCR, LSPEN, 30, 1)
1736  FIELD(V7M_FPCCR, ASPEN, 31, 1)
1737  /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1738  #define R_V7M_FPCCR_BANKED_MASK                 \
1739      (R_V7M_FPCCR_LSPACT_MASK |                  \
1740       R_V7M_FPCCR_USER_MASK |                    \
1741       R_V7M_FPCCR_THREAD_MASK |                  \
1742       R_V7M_FPCCR_MMRDY_MASK |                   \
1743       R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1744       R_V7M_FPCCR_UFRDY_MASK |                   \
1745       R_V7M_FPCCR_ASPEN_MASK)
1746  
1747  /*
1748   * System register ID fields.
1749   */
1750  FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1751  FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1752  FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1753  FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1754  FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1755  FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1756  FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1757  FIELD(CLIDR_EL1, LOUIS, 21, 3)
1758  FIELD(CLIDR_EL1, LOC, 24, 3)
1759  FIELD(CLIDR_EL1, LOUU, 27, 3)
1760  FIELD(CLIDR_EL1, ICB, 30, 3)
1761  
1762  /* When FEAT_CCIDX is implemented */
1763  FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1764  FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1765  FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1766  
1767  /* When FEAT_CCIDX is not implemented */
1768  FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1769  FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1770  FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1771  
1772  FIELD(CTR_EL0,  IMINLINE, 0, 4)
1773  FIELD(CTR_EL0,  L1IP, 14, 2)
1774  FIELD(CTR_EL0,  DMINLINE, 16, 4)
1775  FIELD(CTR_EL0,  ERG, 20, 4)
1776  FIELD(CTR_EL0,  CWG, 24, 4)
1777  FIELD(CTR_EL0,  IDC, 28, 1)
1778  FIELD(CTR_EL0,  DIC, 29, 1)
1779  FIELD(CTR_EL0,  TMINLINE, 32, 6)
1780  
1781  FIELD(MIDR_EL1, REVISION, 0, 4)
1782  FIELD(MIDR_EL1, PARTNUM, 4, 12)
1783  FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1784  FIELD(MIDR_EL1, VARIANT, 20, 4)
1785  FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1786  
1787  FIELD(ID_ISAR0, SWAP, 0, 4)
1788  FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1789  FIELD(ID_ISAR0, BITFIELD, 8, 4)
1790  FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1791  FIELD(ID_ISAR0, COPROC, 16, 4)
1792  FIELD(ID_ISAR0, DEBUG, 20, 4)
1793  FIELD(ID_ISAR0, DIVIDE, 24, 4)
1794  
1795  FIELD(ID_ISAR1, ENDIAN, 0, 4)
1796  FIELD(ID_ISAR1, EXCEPT, 4, 4)
1797  FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1798  FIELD(ID_ISAR1, EXTEND, 12, 4)
1799  FIELD(ID_ISAR1, IFTHEN, 16, 4)
1800  FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1801  FIELD(ID_ISAR1, INTERWORK, 24, 4)
1802  FIELD(ID_ISAR1, JAZELLE, 28, 4)
1803  
1804  FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1805  FIELD(ID_ISAR2, MEMHINT, 4, 4)
1806  FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1807  FIELD(ID_ISAR2, MULT, 12, 4)
1808  FIELD(ID_ISAR2, MULTS, 16, 4)
1809  FIELD(ID_ISAR2, MULTU, 20, 4)
1810  FIELD(ID_ISAR2, PSR_AR, 24, 4)
1811  FIELD(ID_ISAR2, REVERSAL, 28, 4)
1812  
1813  FIELD(ID_ISAR3, SATURATE, 0, 4)
1814  FIELD(ID_ISAR3, SIMD, 4, 4)
1815  FIELD(ID_ISAR3, SVC, 8, 4)
1816  FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1817  FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1818  FIELD(ID_ISAR3, T32COPY, 20, 4)
1819  FIELD(ID_ISAR3, TRUENOP, 24, 4)
1820  FIELD(ID_ISAR3, T32EE, 28, 4)
1821  
1822  FIELD(ID_ISAR4, UNPRIV, 0, 4)
1823  FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1824  FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1825  FIELD(ID_ISAR4, SMC, 12, 4)
1826  FIELD(ID_ISAR4, BARRIER, 16, 4)
1827  FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1828  FIELD(ID_ISAR4, PSR_M, 24, 4)
1829  FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1830  
1831  FIELD(ID_ISAR5, SEVL, 0, 4)
1832  FIELD(ID_ISAR5, AES, 4, 4)
1833  FIELD(ID_ISAR5, SHA1, 8, 4)
1834  FIELD(ID_ISAR5, SHA2, 12, 4)
1835  FIELD(ID_ISAR5, CRC32, 16, 4)
1836  FIELD(ID_ISAR5, RDM, 24, 4)
1837  FIELD(ID_ISAR5, VCMA, 28, 4)
1838  
1839  FIELD(ID_ISAR6, JSCVT, 0, 4)
1840  FIELD(ID_ISAR6, DP, 4, 4)
1841  FIELD(ID_ISAR6, FHM, 8, 4)
1842  FIELD(ID_ISAR6, SB, 12, 4)
1843  FIELD(ID_ISAR6, SPECRES, 16, 4)
1844  FIELD(ID_ISAR6, BF16, 20, 4)
1845  FIELD(ID_ISAR6, I8MM, 24, 4)
1846  
1847  FIELD(ID_MMFR0, VMSA, 0, 4)
1848  FIELD(ID_MMFR0, PMSA, 4, 4)
1849  FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1850  FIELD(ID_MMFR0, SHARELVL, 12, 4)
1851  FIELD(ID_MMFR0, TCM, 16, 4)
1852  FIELD(ID_MMFR0, AUXREG, 20, 4)
1853  FIELD(ID_MMFR0, FCSE, 24, 4)
1854  FIELD(ID_MMFR0, INNERSHR, 28, 4)
1855  
1856  FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1857  FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1858  FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1859  FIELD(ID_MMFR1, L1UNISW, 12, 4)
1860  FIELD(ID_MMFR1, L1HVD, 16, 4)
1861  FIELD(ID_MMFR1, L1UNI, 20, 4)
1862  FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1863  FIELD(ID_MMFR1, BPRED, 28, 4)
1864  
1865  FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1866  FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1867  FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1868  FIELD(ID_MMFR2, HVDTLB, 12, 4)
1869  FIELD(ID_MMFR2, UNITLB, 16, 4)
1870  FIELD(ID_MMFR2, MEMBARR, 20, 4)
1871  FIELD(ID_MMFR2, WFISTALL, 24, 4)
1872  FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1873  
1874  FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1875  FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1876  FIELD(ID_MMFR3, BPMAINT, 8, 4)
1877  FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1878  FIELD(ID_MMFR3, PAN, 16, 4)
1879  FIELD(ID_MMFR3, COHWALK, 20, 4)
1880  FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1881  FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1882  
1883  FIELD(ID_MMFR4, SPECSEI, 0, 4)
1884  FIELD(ID_MMFR4, AC2, 4, 4)
1885  FIELD(ID_MMFR4, XNX, 8, 4)
1886  FIELD(ID_MMFR4, CNP, 12, 4)
1887  FIELD(ID_MMFR4, HPDS, 16, 4)
1888  FIELD(ID_MMFR4, LSM, 20, 4)
1889  FIELD(ID_MMFR4, CCIDX, 24, 4)
1890  FIELD(ID_MMFR4, EVT, 28, 4)
1891  
1892  FIELD(ID_MMFR5, ETS, 0, 4)
1893  
1894  FIELD(ID_PFR0, STATE0, 0, 4)
1895  FIELD(ID_PFR0, STATE1, 4, 4)
1896  FIELD(ID_PFR0, STATE2, 8, 4)
1897  FIELD(ID_PFR0, STATE3, 12, 4)
1898  FIELD(ID_PFR0, CSV2, 16, 4)
1899  FIELD(ID_PFR0, AMU, 20, 4)
1900  FIELD(ID_PFR0, DIT, 24, 4)
1901  FIELD(ID_PFR0, RAS, 28, 4)
1902  
1903  FIELD(ID_PFR1, PROGMOD, 0, 4)
1904  FIELD(ID_PFR1, SECURITY, 4, 4)
1905  FIELD(ID_PFR1, MPROGMOD, 8, 4)
1906  FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1907  FIELD(ID_PFR1, GENTIMER, 16, 4)
1908  FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1909  FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1910  FIELD(ID_PFR1, GIC, 28, 4)
1911  
1912  FIELD(ID_PFR2, CSV3, 0, 4)
1913  FIELD(ID_PFR2, SSBS, 4, 4)
1914  FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1915  
1916  FIELD(ID_AA64ISAR0, AES, 4, 4)
1917  FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1918  FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1919  FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1920  FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1921  FIELD(ID_AA64ISAR0, RDM, 28, 4)
1922  FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1923  FIELD(ID_AA64ISAR0, SM3, 36, 4)
1924  FIELD(ID_AA64ISAR0, SM4, 40, 4)
1925  FIELD(ID_AA64ISAR0, DP, 44, 4)
1926  FIELD(ID_AA64ISAR0, FHM, 48, 4)
1927  FIELD(ID_AA64ISAR0, TS, 52, 4)
1928  FIELD(ID_AA64ISAR0, TLB, 56, 4)
1929  FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1930  
1931  FIELD(ID_AA64ISAR1, DPB, 0, 4)
1932  FIELD(ID_AA64ISAR1, APA, 4, 4)
1933  FIELD(ID_AA64ISAR1, API, 8, 4)
1934  FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1935  FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1936  FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1937  FIELD(ID_AA64ISAR1, GPA, 24, 4)
1938  FIELD(ID_AA64ISAR1, GPI, 28, 4)
1939  FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1940  FIELD(ID_AA64ISAR1, SB, 36, 4)
1941  FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1942  FIELD(ID_AA64ISAR1, BF16, 44, 4)
1943  FIELD(ID_AA64ISAR1, DGH, 48, 4)
1944  FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1945  
1946  FIELD(ID_AA64PFR0, EL0, 0, 4)
1947  FIELD(ID_AA64PFR0, EL1, 4, 4)
1948  FIELD(ID_AA64PFR0, EL2, 8, 4)
1949  FIELD(ID_AA64PFR0, EL3, 12, 4)
1950  FIELD(ID_AA64PFR0, FP, 16, 4)
1951  FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1952  FIELD(ID_AA64PFR0, GIC, 24, 4)
1953  FIELD(ID_AA64PFR0, RAS, 28, 4)
1954  FIELD(ID_AA64PFR0, SVE, 32, 4)
1955  FIELD(ID_AA64PFR0, SEL2, 36, 4)
1956  FIELD(ID_AA64PFR0, MPAM, 40, 4)
1957  FIELD(ID_AA64PFR0, AMU, 44, 4)
1958  FIELD(ID_AA64PFR0, DIT, 48, 4)
1959  FIELD(ID_AA64PFR0, CSV2, 56, 4)
1960  FIELD(ID_AA64PFR0, CSV3, 60, 4)
1961  
1962  FIELD(ID_AA64PFR1, BT, 0, 4)
1963  FIELD(ID_AA64PFR1, SSBS, 4, 4)
1964  FIELD(ID_AA64PFR1, MTE, 8, 4)
1965  FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1966  FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1967  
1968  FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1969  FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1970  FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1971  FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1972  FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1973  FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1974  FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1975  FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1976  FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1977  FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1978  FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1979  FIELD(ID_AA64MMFR0, EXS, 44, 4)
1980  FIELD(ID_AA64MMFR0, FGT, 56, 4)
1981  FIELD(ID_AA64MMFR0, ECV, 60, 4)
1982  
1983  FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1984  FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1985  FIELD(ID_AA64MMFR1, VH, 8, 4)
1986  FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1987  FIELD(ID_AA64MMFR1, LO, 16, 4)
1988  FIELD(ID_AA64MMFR1, PAN, 20, 4)
1989  FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1990  FIELD(ID_AA64MMFR1, XNX, 28, 4)
1991  FIELD(ID_AA64MMFR1, TWED, 32, 4)
1992  FIELD(ID_AA64MMFR1, ETS, 36, 4)
1993  
1994  FIELD(ID_AA64MMFR2, CNP, 0, 4)
1995  FIELD(ID_AA64MMFR2, UAO, 4, 4)
1996  FIELD(ID_AA64MMFR2, LSM, 8, 4)
1997  FIELD(ID_AA64MMFR2, IESB, 12, 4)
1998  FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1999  FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2000  FIELD(ID_AA64MMFR2, NV, 24, 4)
2001  FIELD(ID_AA64MMFR2, ST, 28, 4)
2002  FIELD(ID_AA64MMFR2, AT, 32, 4)
2003  FIELD(ID_AA64MMFR2, IDS, 36, 4)
2004  FIELD(ID_AA64MMFR2, FWB, 40, 4)
2005  FIELD(ID_AA64MMFR2, TTL, 48, 4)
2006  FIELD(ID_AA64MMFR2, BBM, 52, 4)
2007  FIELD(ID_AA64MMFR2, EVT, 56, 4)
2008  FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2009  
2010  FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2011  FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2012  FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2013  FIELD(ID_AA64DFR0, BRPS, 12, 4)
2014  FIELD(ID_AA64DFR0, WRPS, 20, 4)
2015  FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2016  FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2017  FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2018  FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2019  FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2020  
2021  FIELD(ID_DFR0, COPDBG, 0, 4)
2022  FIELD(ID_DFR0, COPSDBG, 4, 4)
2023  FIELD(ID_DFR0, MMAPDBG, 8, 4)
2024  FIELD(ID_DFR0, COPTRC, 12, 4)
2025  FIELD(ID_DFR0, MMAPTRC, 16, 4)
2026  FIELD(ID_DFR0, MPROFDBG, 20, 4)
2027  FIELD(ID_DFR0, PERFMON, 24, 4)
2028  FIELD(ID_DFR0, TRACEFILT, 28, 4)
2029  
2030  FIELD(ID_DFR1, MTPMU, 0, 4)
2031  
2032  FIELD(DBGDIDR, SE_IMP, 12, 1)
2033  FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2034  FIELD(DBGDIDR, VERSION, 16, 4)
2035  FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2036  FIELD(DBGDIDR, BRPS, 24, 4)
2037  FIELD(DBGDIDR, WRPS, 28, 4)
2038  
2039  FIELD(MVFR0, SIMDREG, 0, 4)
2040  FIELD(MVFR0, FPSP, 4, 4)
2041  FIELD(MVFR0, FPDP, 8, 4)
2042  FIELD(MVFR0, FPTRAP, 12, 4)
2043  FIELD(MVFR0, FPDIVIDE, 16, 4)
2044  FIELD(MVFR0, FPSQRT, 20, 4)
2045  FIELD(MVFR0, FPSHVEC, 24, 4)
2046  FIELD(MVFR0, FPROUND, 28, 4)
2047  
2048  FIELD(MVFR1, FPFTZ, 0, 4)
2049  FIELD(MVFR1, FPDNAN, 4, 4)
2050  FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2051  FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2052  FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2053  FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2054  FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2055  FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2056  FIELD(MVFR1, FPHP, 24, 4)
2057  FIELD(MVFR1, SIMDFMAC, 28, 4)
2058  
2059  FIELD(MVFR2, SIMDMISC, 0, 4)
2060  FIELD(MVFR2, FPMISC, 4, 4)
2061  
2062  QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2063  
2064  /* If adding a feature bit which corresponds to a Linux ELF
2065   * HWCAP bit, remember to update the feature-bit-to-hwcap
2066   * mapping in linux-user/elfload.c:get_elf_hwcap().
2067   */
2068  enum arm_features {
2069      ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2070      ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2071      ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2072      ARM_FEATURE_V6,
2073      ARM_FEATURE_V6K,
2074      ARM_FEATURE_V7,
2075      ARM_FEATURE_THUMB2,
2076      ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2077      ARM_FEATURE_NEON,
2078      ARM_FEATURE_M, /* Microcontroller profile.  */
2079      ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2080      ARM_FEATURE_THUMB2EE,
2081      ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2082      ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2083      ARM_FEATURE_V4T,
2084      ARM_FEATURE_V5,
2085      ARM_FEATURE_STRONGARM,
2086      ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2087      ARM_FEATURE_GENERIC_TIMER,
2088      ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2089      ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2090      ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2091      ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2092      ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2093      ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2094      ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2095      ARM_FEATURE_V8,
2096      ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2097      ARM_FEATURE_CBAR, /* has cp15 CBAR */
2098      ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2099      ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2100      ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2101      ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2102      ARM_FEATURE_PMU, /* has PMU support */
2103      ARM_FEATURE_VBAR, /* has cp15 VBAR */
2104      ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2105      ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2106      ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2107  };
2108  
2109  static inline int arm_feature(CPUARMState *env, int feature)
2110  {
2111      return (env->features & (1ULL << feature)) != 0;
2112  }
2113  
2114  void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2115  
2116  #if !defined(CONFIG_USER_ONLY)
2117  /* Return true if exception levels below EL3 are in secure state,
2118   * or would be following an exception return to that level.
2119   * Unlike arm_is_secure() (which is always a question about the
2120   * _current_ state of the CPU) this doesn't care about the current
2121   * EL or mode.
2122   */
2123  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2124  {
2125      if (arm_feature(env, ARM_FEATURE_EL3)) {
2126          return !(env->cp15.scr_el3 & SCR_NS);
2127      } else {
2128          /* If EL3 is not supported then the secure state is implementation
2129           * defined, in which case QEMU defaults to non-secure.
2130           */
2131          return false;
2132      }
2133  }
2134  
2135  /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2136  static inline bool arm_is_el3_or_mon(CPUARMState *env)
2137  {
2138      if (arm_feature(env, ARM_FEATURE_EL3)) {
2139          if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2140              /* CPU currently in AArch64 state and EL3 */
2141              return true;
2142          } else if (!is_a64(env) &&
2143                  (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2144              /* CPU currently in AArch32 state and monitor mode */
2145              return true;
2146          }
2147      }
2148      return false;
2149  }
2150  
2151  /* Return true if the processor is in secure state */
2152  static inline bool arm_is_secure(CPUARMState *env)
2153  {
2154      if (arm_is_el3_or_mon(env)) {
2155          return true;
2156      }
2157      return arm_is_secure_below_el3(env);
2158  }
2159  
2160  /*
2161   * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2162   * This corresponds to the pseudocode EL2Enabled()
2163   */
2164  static inline bool arm_is_el2_enabled(CPUARMState *env)
2165  {
2166      if (arm_feature(env, ARM_FEATURE_EL2)) {
2167          if (arm_is_secure_below_el3(env)) {
2168              return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2169          }
2170          return true;
2171      }
2172      return false;
2173  }
2174  
2175  #else
2176  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2177  {
2178      return false;
2179  }
2180  
2181  static inline bool arm_is_secure(CPUARMState *env)
2182  {
2183      return false;
2184  }
2185  
2186  static inline bool arm_is_el2_enabled(CPUARMState *env)
2187  {
2188      return false;
2189  }
2190  #endif
2191  
2192  /**
2193   * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2194   * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2195   * "for all purposes other than a direct read or write access of HCR_EL2."
2196   * Not included here is HCR_RW.
2197   */
2198  uint64_t arm_hcr_el2_eff(CPUARMState *env);
2199  
2200  /* Return true if the specified exception level is running in AArch64 state. */
2201  static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2202  {
2203      /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2204       * and if we're not in EL0 then the state of EL0 isn't well defined.)
2205       */
2206      assert(el >= 1 && el <= 3);
2207      bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2208  
2209      /* The highest exception level is always at the maximum supported
2210       * register width, and then lower levels have a register width controlled
2211       * by bits in the SCR or HCR registers.
2212       */
2213      if (el == 3) {
2214          return aa64;
2215      }
2216  
2217      if (arm_feature(env, ARM_FEATURE_EL3) &&
2218          ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2219          aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2220      }
2221  
2222      if (el == 2) {
2223          return aa64;
2224      }
2225  
2226      if (arm_is_el2_enabled(env)) {
2227          aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2228      }
2229  
2230      return aa64;
2231  }
2232  
2233  /* Function for determing whether guest cp register reads and writes should
2234   * access the secure or non-secure bank of a cp register.  When EL3 is
2235   * operating in AArch32 state, the NS-bit determines whether the secure
2236   * instance of a cp register should be used. When EL3 is AArch64 (or if
2237   * it doesn't exist at all) then there is no register banking, and all
2238   * accesses are to the non-secure version.
2239   */
2240  static inline bool access_secure_reg(CPUARMState *env)
2241  {
2242      bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2243                  !arm_el_is_aa64(env, 3) &&
2244                  !(env->cp15.scr_el3 & SCR_NS));
2245  
2246      return ret;
2247  }
2248  
2249  /* Macros for accessing a specified CP register bank */
2250  #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2251      ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2252  
2253  #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2254      do {                                                \
2255          if (_secure) {                                   \
2256              (_env)->cp15._regname##_s = (_val);            \
2257          } else {                                        \
2258              (_env)->cp15._regname##_ns = (_val);           \
2259          }                                               \
2260      } while (0)
2261  
2262  /* Macros for automatically accessing a specific CP register bank depending on
2263   * the current secure state of the system.  These macros are not intended for
2264   * supporting instruction translation reads/writes as these are dependent
2265   * solely on the SCR.NS bit and not the mode.
2266   */
2267  #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2268      A32_BANKED_REG_GET((_env), _regname,                \
2269                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2270  
2271  #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2272      A32_BANKED_REG_SET((_env), _regname,                                    \
2273                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2274                         (_val))
2275  
2276  void arm_cpu_list(void);
2277  uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2278                                   uint32_t cur_el, bool secure);
2279  
2280  /* Interface between CPU and Interrupt controller.  */
2281  #ifndef CONFIG_USER_ONLY
2282  bool armv7m_nvic_can_take_pending_exception(void *opaque);
2283  #else
2284  static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2285  {
2286      return true;
2287  }
2288  #endif
2289  /**
2290   * armv7m_nvic_set_pending: mark the specified exception as pending
2291   * @opaque: the NVIC
2292   * @irq: the exception number to mark pending
2293   * @secure: false for non-banked exceptions or for the nonsecure
2294   * version of a banked exception, true for the secure version of a banked
2295   * exception.
2296   *
2297   * Marks the specified exception as pending. Note that we will assert()
2298   * if @secure is true and @irq does not specify one of the fixed set
2299   * of architecturally banked exceptions.
2300   */
2301  void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2302  /**
2303   * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2304   * @opaque: the NVIC
2305   * @irq: the exception number to mark pending
2306   * @secure: false for non-banked exceptions or for the nonsecure
2307   * version of a banked exception, true for the secure version of a banked
2308   * exception.
2309   *
2310   * Similar to armv7m_nvic_set_pending(), but specifically for derived
2311   * exceptions (exceptions generated in the course of trying to take
2312   * a different exception).
2313   */
2314  void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2315  /**
2316   * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2317   * @opaque: the NVIC
2318   * @irq: the exception number to mark pending
2319   * @secure: false for non-banked exceptions or for the nonsecure
2320   * version of a banked exception, true for the secure version of a banked
2321   * exception.
2322   *
2323   * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2324   * generated in the course of lazy stacking of FP registers.
2325   */
2326  void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2327  /**
2328   * armv7m_nvic_get_pending_irq_info: return highest priority pending
2329   *    exception, and whether it targets Secure state
2330   * @opaque: the NVIC
2331   * @pirq: set to pending exception number
2332   * @ptargets_secure: set to whether pending exception targets Secure
2333   *
2334   * This function writes the number of the highest priority pending
2335   * exception (the one which would be made active by
2336   * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2337   * to true if the current highest priority pending exception should
2338   * be taken to Secure state, false for NS.
2339   */
2340  void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2341                                        bool *ptargets_secure);
2342  /**
2343   * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2344   * @opaque: the NVIC
2345   *
2346   * Move the current highest priority pending exception from the pending
2347   * state to the active state, and update v7m.exception to indicate that
2348   * it is the exception currently being handled.
2349   */
2350  void armv7m_nvic_acknowledge_irq(void *opaque);
2351  /**
2352   * armv7m_nvic_complete_irq: complete specified interrupt or exception
2353   * @opaque: the NVIC
2354   * @irq: the exception number to complete
2355   * @secure: true if this exception was secure
2356   *
2357   * Returns: -1 if the irq was not active
2358   *           1 if completing this irq brought us back to base (no active irqs)
2359   *           0 if there is still an irq active after this one was completed
2360   * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2361   */
2362  int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2363  /**
2364   * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2365   * @opaque: the NVIC
2366   * @irq: the exception number to mark pending
2367   * @secure: false for non-banked exceptions or for the nonsecure
2368   * version of a banked exception, true for the secure version of a banked
2369   * exception.
2370   *
2371   * Return whether an exception is "ready", i.e. whether the exception is
2372   * enabled and is configured at a priority which would allow it to
2373   * interrupt the current execution priority. This controls whether the
2374   * RDY bit for it in the FPCCR is set.
2375   */
2376  bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2377  /**
2378   * armv7m_nvic_raw_execution_priority: return the raw execution priority
2379   * @opaque: the NVIC
2380   *
2381   * Returns: the raw execution priority as defined by the v8M architecture.
2382   * This is the execution priority minus the effects of AIRCR.PRIS,
2383   * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2384   * (v8M ARM ARM I_PKLD.)
2385   */
2386  int armv7m_nvic_raw_execution_priority(void *opaque);
2387  /**
2388   * armv7m_nvic_neg_prio_requested: return true if the requested execution
2389   * priority is negative for the specified security state.
2390   * @opaque: the NVIC
2391   * @secure: the security state to test
2392   * This corresponds to the pseudocode IsReqExecPriNeg().
2393   */
2394  #ifndef CONFIG_USER_ONLY
2395  bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2396  #else
2397  static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2398  {
2399      return false;
2400  }
2401  #endif
2402  
2403  /* Interface for defining coprocessor registers.
2404   * Registers are defined in tables of arm_cp_reginfo structs
2405   * which are passed to define_arm_cp_regs().
2406   */
2407  
2408  /* When looking up a coprocessor register we look for it
2409   * via an integer which encodes all of:
2410   *  coprocessor number
2411   *  Crn, Crm, opc1, opc2 fields
2412   *  32 or 64 bit register (ie is it accessed via MRC/MCR
2413   *    or via MRRC/MCRR?)
2414   *  non-secure/secure bank (AArch32 only)
2415   * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2416   * (In this case crn and opc2 should be zero.)
2417   * For AArch64, there is no 32/64 bit size distinction;
2418   * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2419   * and 4 bit CRn and CRm. The encoding patterns are chosen
2420   * to be easy to convert to and from the KVM encodings, and also
2421   * so that the hashtable can contain both AArch32 and AArch64
2422   * registers (to allow for interprocessing where we might run
2423   * 32 bit code on a 64 bit core).
2424   */
2425  /* This bit is private to our hashtable cpreg; in KVM register
2426   * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2427   * in the upper bits of the 64 bit ID.
2428   */
2429  #define CP_REG_AA64_SHIFT 28
2430  #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2431  
2432  /* To enable banking of coprocessor registers depending on ns-bit we
2433   * add a bit to distinguish between secure and non-secure cpregs in the
2434   * hashtable.
2435   */
2436  #define CP_REG_NS_SHIFT 29
2437  #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2438  
2439  #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2440      ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2441       ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2442  
2443  #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2444      (CP_REG_AA64_MASK |                                 \
2445       ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2446       ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2447       ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2448       ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2449       ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2450       ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2451  
2452  /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2453   * version used as a key for the coprocessor register hashtable
2454   */
2455  static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2456  {
2457      uint32_t cpregid = kvmid;
2458      if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2459          cpregid |= CP_REG_AA64_MASK;
2460      } else {
2461          if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2462              cpregid |= (1 << 15);
2463          }
2464  
2465          /* KVM is always non-secure so add the NS flag on AArch32 register
2466           * entries.
2467           */
2468           cpregid |= 1 << CP_REG_NS_SHIFT;
2469      }
2470      return cpregid;
2471  }
2472  
2473  /* Convert a truncated 32 bit hashtable key into the full
2474   * 64 bit KVM register ID.
2475   */
2476  static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2477  {
2478      uint64_t kvmid;
2479  
2480      if (cpregid & CP_REG_AA64_MASK) {
2481          kvmid = cpregid & ~CP_REG_AA64_MASK;
2482          kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2483      } else {
2484          kvmid = cpregid & ~(1 << 15);
2485          if (cpregid & (1 << 15)) {
2486              kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2487          } else {
2488              kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2489          }
2490      }
2491      return kvmid;
2492  }
2493  
2494  /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2495   * special-behaviour cp reg and bits [11..8] indicate what behaviour
2496   * it has. Otherwise it is a simple cp reg, where CONST indicates that
2497   * TCG can assume the value to be constant (ie load at translate time)
2498   * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2499   * indicates that the TB should not be ended after a write to this register
2500   * (the default is that the TB ends after cp writes). OVERRIDE permits
2501   * a register definition to override a previous definition for the
2502   * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2503   * old must have the OVERRIDE bit set.
2504   * ALIAS indicates that this register is an alias view of some underlying
2505   * state which is also visible via another register, and that the other
2506   * register is handling migration and reset; registers marked ALIAS will not be
2507   * migrated but may have their state set by syncing of register state from KVM.
2508   * NO_RAW indicates that this register has no underlying state and does not
2509   * support raw access for state saving/loading; it will not be used for either
2510   * migration or KVM state synchronization. (Typically this is for "registers"
2511   * which are actually used as instructions for cache maintenance and so on.)
2512   * IO indicates that this register does I/O and therefore its accesses
2513   * need to be marked with gen_io_start() and also end the TB. In particular,
2514   * registers which implement clocks or timers require this.
2515   * RAISES_EXC is for when the read or write hook might raise an exception;
2516   * the generated code will synchronize the CPU state before calling the hook
2517   * so that it is safe for the hook to call raise_exception().
2518   * NEWEL is for writes to registers that might change the exception
2519   * level - typically on older ARM chips. For those cases we need to
2520   * re-read the new el when recomputing the translation flags.
2521   */
2522  #define ARM_CP_SPECIAL           0x0001
2523  #define ARM_CP_CONST             0x0002
2524  #define ARM_CP_64BIT             0x0004
2525  #define ARM_CP_SUPPRESS_TB_END   0x0008
2526  #define ARM_CP_OVERRIDE          0x0010
2527  #define ARM_CP_ALIAS             0x0020
2528  #define ARM_CP_IO                0x0040
2529  #define ARM_CP_NO_RAW            0x0080
2530  #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2531  #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2532  #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2533  #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2534  #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2535  #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2536  #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2537  #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2538  #define ARM_CP_FPU               0x1000
2539  #define ARM_CP_SVE               0x2000
2540  #define ARM_CP_NO_GDB            0x4000
2541  #define ARM_CP_RAISES_EXC        0x8000
2542  #define ARM_CP_NEWEL             0x10000
2543  /* Used only as a terminator for ARMCPRegInfo lists */
2544  #define ARM_CP_SENTINEL          0xfffff
2545  /* Mask of only the flag bits in a type field */
2546  #define ARM_CP_FLAG_MASK         0x1f0ff
2547  
2548  /* Valid values for ARMCPRegInfo state field, indicating which of
2549   * the AArch32 and AArch64 execution states this register is visible in.
2550   * If the reginfo doesn't explicitly specify then it is AArch32 only.
2551   * If the reginfo is declared to be visible in both states then a second
2552   * reginfo is synthesised for the AArch32 view of the AArch64 register,
2553   * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2554   * Note that we rely on the values of these enums as we iterate through
2555   * the various states in some places.
2556   */
2557  enum {
2558      ARM_CP_STATE_AA32 = 0,
2559      ARM_CP_STATE_AA64 = 1,
2560      ARM_CP_STATE_BOTH = 2,
2561  };
2562  
2563  /* ARM CP register secure state flags.  These flags identify security state
2564   * attributes for a given CP register entry.
2565   * The existence of both or neither secure and non-secure flags indicates that
2566   * the register has both a secure and non-secure hash entry.  A single one of
2567   * these flags causes the register to only be hashed for the specified
2568   * security state.
2569   * Although definitions may have any combination of the S/NS bits, each
2570   * registered entry will only have one to identify whether the entry is secure
2571   * or non-secure.
2572   */
2573  enum {
2574      ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2575      ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2576  };
2577  
2578  /* Return true if cptype is a valid type field. This is used to try to
2579   * catch errors where the sentinel has been accidentally left off the end
2580   * of a list of registers.
2581   */
2582  static inline bool cptype_valid(int cptype)
2583  {
2584      return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2585          || ((cptype & ARM_CP_SPECIAL) &&
2586              ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2587  }
2588  
2589  /* Access rights:
2590   * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2591   * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2592   * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2593   * (ie any of the privileged modes in Secure state, or Monitor mode).
2594   * If a register is accessible in one privilege level it's always accessible
2595   * in higher privilege levels too. Since "Secure PL1" also follows this rule
2596   * (ie anything visible in PL2 is visible in S-PL1, some things are only
2597   * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2598   * terminology a little and call this PL3.
2599   * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2600   * with the ELx exception levels.
2601   *
2602   * If access permissions for a register are more complex than can be
2603   * described with these bits, then use a laxer set of restrictions, and
2604   * do the more restrictive/complex check inside a helper function.
2605   */
2606  #define PL3_R 0x80
2607  #define PL3_W 0x40
2608  #define PL2_R (0x20 | PL3_R)
2609  #define PL2_W (0x10 | PL3_W)
2610  #define PL1_R (0x08 | PL2_R)
2611  #define PL1_W (0x04 | PL2_W)
2612  #define PL0_R (0x02 | PL1_R)
2613  #define PL0_W (0x01 | PL1_W)
2614  
2615  /*
2616   * For user-mode some registers are accessible to EL0 via a kernel
2617   * trap-and-emulate ABI. In this case we define the read permissions
2618   * as actually being PL0_R. However some bits of any given register
2619   * may still be masked.
2620   */
2621  #ifdef CONFIG_USER_ONLY
2622  #define PL0U_R PL0_R
2623  #else
2624  #define PL0U_R PL1_R
2625  #endif
2626  
2627  #define PL3_RW (PL3_R | PL3_W)
2628  #define PL2_RW (PL2_R | PL2_W)
2629  #define PL1_RW (PL1_R | PL1_W)
2630  #define PL0_RW (PL0_R | PL0_W)
2631  
2632  /* Return the highest implemented Exception Level */
2633  static inline int arm_highest_el(CPUARMState *env)
2634  {
2635      if (arm_feature(env, ARM_FEATURE_EL3)) {
2636          return 3;
2637      }
2638      if (arm_feature(env, ARM_FEATURE_EL2)) {
2639          return 2;
2640      }
2641      return 1;
2642  }
2643  
2644  /* Return true if a v7M CPU is in Handler mode */
2645  static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2646  {
2647      return env->v7m.exception != 0;
2648  }
2649  
2650  /* Return the current Exception Level (as per ARMv8; note that this differs
2651   * from the ARMv7 Privilege Level).
2652   */
2653  static inline int arm_current_el(CPUARMState *env)
2654  {
2655      if (arm_feature(env, ARM_FEATURE_M)) {
2656          return arm_v7m_is_handler_mode(env) ||
2657              !(env->v7m.control[env->v7m.secure] & 1);
2658      }
2659  
2660      if (is_a64(env)) {
2661          return extract32(env->pstate, 2, 2);
2662      }
2663  
2664      switch (env->uncached_cpsr & 0x1f) {
2665      case ARM_CPU_MODE_USR:
2666          return 0;
2667      case ARM_CPU_MODE_HYP:
2668          return 2;
2669      case ARM_CPU_MODE_MON:
2670          return 3;
2671      default:
2672          if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2673              /* If EL3 is 32-bit then all secure privileged modes run in
2674               * EL3
2675               */
2676              return 3;
2677          }
2678  
2679          return 1;
2680      }
2681  }
2682  
2683  typedef struct ARMCPRegInfo ARMCPRegInfo;
2684  
2685  typedef enum CPAccessResult {
2686      /* Access is permitted */
2687      CP_ACCESS_OK = 0,
2688      /* Access fails due to a configurable trap or enable which would
2689       * result in a categorized exception syndrome giving information about
2690       * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2691       * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2692       * PL1 if in EL0, otherwise to the current EL).
2693       */
2694      CP_ACCESS_TRAP = 1,
2695      /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2696       * Note that this is not a catch-all case -- the set of cases which may
2697       * result in this failure is specifically defined by the architecture.
2698       */
2699      CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2700      /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2701      CP_ACCESS_TRAP_EL2 = 3,
2702      CP_ACCESS_TRAP_EL3 = 4,
2703      /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2704      CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2705      CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2706      /* Access fails and results in an exception syndrome for an FP access,
2707       * trapped directly to EL2 or EL3
2708       */
2709      CP_ACCESS_TRAP_FP_EL2 = 7,
2710      CP_ACCESS_TRAP_FP_EL3 = 8,
2711  } CPAccessResult;
2712  
2713  /* Access functions for coprocessor registers. These cannot fail and
2714   * may not raise exceptions.
2715   */
2716  typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2717  typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2718                         uint64_t value);
2719  /* Access permission check functions for coprocessor registers. */
2720  typedef CPAccessResult CPAccessFn(CPUARMState *env,
2721                                    const ARMCPRegInfo *opaque,
2722                                    bool isread);
2723  /* Hook function for register reset */
2724  typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2725  
2726  #define CP_ANY 0xff
2727  
2728  /* Definition of an ARM coprocessor register */
2729  struct ARMCPRegInfo {
2730      /* Name of register (useful mainly for debugging, need not be unique) */
2731      const char *name;
2732      /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2733       * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2734       * 'wildcard' field -- any value of that field in the MRC/MCR insn
2735       * will be decoded to this register. The register read and write
2736       * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2737       * used by the program, so it is possible to register a wildcard and
2738       * then behave differently on read/write if necessary.
2739       * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2740       * must both be zero.
2741       * For AArch64-visible registers, opc0 is also used.
2742       * Since there are no "coprocessors" in AArch64, cp is purely used as a
2743       * way to distinguish (for KVM's benefit) guest-visible system registers
2744       * from demuxed ones provided to preserve the "no side effects on
2745       * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2746       * visible (to match KVM's encoding); cp==0 will be converted to
2747       * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2748       */
2749      uint8_t cp;
2750      uint8_t crn;
2751      uint8_t crm;
2752      uint8_t opc0;
2753      uint8_t opc1;
2754      uint8_t opc2;
2755      /* Execution state in which this register is visible: ARM_CP_STATE_* */
2756      int state;
2757      /* Register type: ARM_CP_* bits/values */
2758      int type;
2759      /* Access rights: PL*_[RW] */
2760      int access;
2761      /* Security state: ARM_CP_SECSTATE_* bits/values */
2762      int secure;
2763      /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2764       * this register was defined: can be used to hand data through to the
2765       * register read/write functions, since they are passed the ARMCPRegInfo*.
2766       */
2767      void *opaque;
2768      /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2769       * fieldoffset is non-zero, the reset value of the register.
2770       */
2771      uint64_t resetvalue;
2772      /* Offset of the field in CPUARMState for this register.
2773       *
2774       * This is not needed if either:
2775       *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2776       *  2. both readfn and writefn are specified
2777       */
2778      ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2779  
2780      /* Offsets of the secure and non-secure fields in CPUARMState for the
2781       * register if it is banked.  These fields are only used during the static
2782       * registration of a register.  During hashing the bank associated
2783       * with a given security state is copied to fieldoffset which is used from
2784       * there on out.
2785       *
2786       * It is expected that register definitions use either fieldoffset or
2787       * bank_fieldoffsets in the definition but not both.  It is also expected
2788       * that both bank offsets are set when defining a banked register.  This
2789       * use indicates that a register is banked.
2790       */
2791      ptrdiff_t bank_fieldoffsets[2];
2792  
2793      /* Function for making any access checks for this register in addition to
2794       * those specified by the 'access' permissions bits. If NULL, no extra
2795       * checks required. The access check is performed at runtime, not at
2796       * translate time.
2797       */
2798      CPAccessFn *accessfn;
2799      /* Function for handling reads of this register. If NULL, then reads
2800       * will be done by loading from the offset into CPUARMState specified
2801       * by fieldoffset.
2802       */
2803      CPReadFn *readfn;
2804      /* Function for handling writes of this register. If NULL, then writes
2805       * will be done by writing to the offset into CPUARMState specified
2806       * by fieldoffset.
2807       */
2808      CPWriteFn *writefn;
2809      /* Function for doing a "raw" read; used when we need to copy
2810       * coprocessor state to the kernel for KVM or out for
2811       * migration. This only needs to be provided if there is also a
2812       * readfn and it has side effects (for instance clear-on-read bits).
2813       */
2814      CPReadFn *raw_readfn;
2815      /* Function for doing a "raw" write; used when we need to copy KVM
2816       * kernel coprocessor state into userspace, or for inbound
2817       * migration. This only needs to be provided if there is also a
2818       * writefn and it masks out "unwritable" bits or has write-one-to-clear
2819       * or similar behaviour.
2820       */
2821      CPWriteFn *raw_writefn;
2822      /* Function for resetting the register. If NULL, then reset will be done
2823       * by writing resetvalue to the field specified in fieldoffset. If
2824       * fieldoffset is 0 then no reset will be done.
2825       */
2826      CPResetFn *resetfn;
2827  
2828      /*
2829       * "Original" writefn and readfn.
2830       * For ARMv8.1-VHE register aliases, we overwrite the read/write
2831       * accessor functions of various EL1/EL0 to perform the runtime
2832       * check for which sysreg should actually be modified, and then
2833       * forwards the operation.  Before overwriting the accessors,
2834       * the original function is copied here, so that accesses that
2835       * really do go to the EL1/EL0 version proceed normally.
2836       * (The corresponding EL2 register is linked via opaque.)
2837       */
2838      CPReadFn *orig_readfn;
2839      CPWriteFn *orig_writefn;
2840  };
2841  
2842  /* Macros which are lvalues for the field in CPUARMState for the
2843   * ARMCPRegInfo *ri.
2844   */
2845  #define CPREG_FIELD32(env, ri) \
2846      (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2847  #define CPREG_FIELD64(env, ri) \
2848      (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2849  
2850  #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2851  
2852  void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2853                                      const ARMCPRegInfo *regs, void *opaque);
2854  void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2855                                         const ARMCPRegInfo *regs, void *opaque);
2856  static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2857  {
2858      define_arm_cp_regs_with_opaque(cpu, regs, 0);
2859  }
2860  static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2861  {
2862      define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2863  }
2864  const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2865  
2866  /*
2867   * Definition of an ARM co-processor register as viewed from
2868   * userspace. This is used for presenting sanitised versions of
2869   * registers to userspace when emulating the Linux AArch64 CPU
2870   * ID/feature ABI (advertised as HWCAP_CPUID).
2871   */
2872  typedef struct ARMCPRegUserSpaceInfo {
2873      /* Name of register */
2874      const char *name;
2875  
2876      /* Is the name actually a glob pattern */
2877      bool is_glob;
2878  
2879      /* Only some bits are exported to user space */
2880      uint64_t exported_bits;
2881  
2882      /* Fixed bits are applied after the mask */
2883      uint64_t fixed_bits;
2884  } ARMCPRegUserSpaceInfo;
2885  
2886  #define REGUSERINFO_SENTINEL { .name = NULL }
2887  
2888  void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2889  
2890  /* CPWriteFn that can be used to implement writes-ignored behaviour */
2891  void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2892                           uint64_t value);
2893  /* CPReadFn that can be used for read-as-zero behaviour */
2894  uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2895  
2896  /* CPResetFn that does nothing, for use if no reset is required even
2897   * if fieldoffset is non zero.
2898   */
2899  void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2900  
2901  /* Return true if this reginfo struct's field in the cpu state struct
2902   * is 64 bits wide.
2903   */
2904  static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2905  {
2906      return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2907  }
2908  
2909  static inline bool cp_access_ok(int current_el,
2910                                  const ARMCPRegInfo *ri, int isread)
2911  {
2912      return (ri->access >> ((current_el * 2) + isread)) & 1;
2913  }
2914  
2915  /* Raw read of a coprocessor register (as needed for migration, etc) */
2916  uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2917  
2918  /**
2919   * write_list_to_cpustate
2920   * @cpu: ARMCPU
2921   *
2922   * For each register listed in the ARMCPU cpreg_indexes list, write
2923   * its value from the cpreg_values list into the ARMCPUState structure.
2924   * This updates TCG's working data structures from KVM data or
2925   * from incoming migration state.
2926   *
2927   * Returns: true if all register values were updated correctly,
2928   * false if some register was unknown or could not be written.
2929   * Note that we do not stop early on failure -- we will attempt
2930   * writing all registers in the list.
2931   */
2932  bool write_list_to_cpustate(ARMCPU *cpu);
2933  
2934  /**
2935   * write_cpustate_to_list:
2936   * @cpu: ARMCPU
2937   * @kvm_sync: true if this is for syncing back to KVM
2938   *
2939   * For each register listed in the ARMCPU cpreg_indexes list, write
2940   * its value from the ARMCPUState structure into the cpreg_values list.
2941   * This is used to copy info from TCG's working data structures into
2942   * KVM or for outbound migration.
2943   *
2944   * @kvm_sync is true if we are doing this in order to sync the
2945   * register state back to KVM. In this case we will only update
2946   * values in the list if the previous list->cpustate sync actually
2947   * successfully wrote the CPU state. Otherwise we will keep the value
2948   * that is in the list.
2949   *
2950   * Returns: true if all register values were read correctly,
2951   * false if some register was unknown or could not be read.
2952   * Note that we do not stop early on failure -- we will attempt
2953   * reading all registers in the list.
2954   */
2955  bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2956  
2957  #define ARM_CPUID_TI915T      0x54029152
2958  #define ARM_CPUID_TI925T      0x54029252
2959  
2960  #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2961  #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2962  #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2963  
2964  #define cpu_signal_handler cpu_arm_signal_handler
2965  #define cpu_list arm_cpu_list
2966  
2967  /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2968   *
2969   * If EL3 is 64-bit:
2970   *  + NonSecure EL1 & 0 stage 1
2971   *  + NonSecure EL1 & 0 stage 2
2972   *  + NonSecure EL2
2973   *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2974   *  + Secure EL1 & 0
2975   *  + Secure EL3
2976   * If EL3 is 32-bit:
2977   *  + NonSecure PL1 & 0 stage 1
2978   *  + NonSecure PL1 & 0 stage 2
2979   *  + NonSecure PL2
2980   *  + Secure PL0
2981   *  + Secure PL1
2982   * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2983   *
2984   * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2985   *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2986   *     because they may differ in access permissions even if the VA->PA map is
2987   *     the same
2988   *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2989   *     translation, which means that we have one mmu_idx that deals with two
2990   *     concatenated translation regimes [this sort of combined s1+2 TLB is
2991   *     architecturally permitted]
2992   *  3. we don't need to allocate an mmu_idx to translations that we won't be
2993   *     handling via the TLB. The only way to do a stage 1 translation without
2994   *     the immediate stage 2 translation is via the ATS or AT system insns,
2995   *     which can be slow-pathed and always do a page table walk.
2996   *     The only use of stage 2 translations is either as part of an s1+2
2997   *     lookup or when loading the descriptors during a stage 1 page table walk,
2998   *     and in both those cases we don't use the TLB.
2999   *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3000   *     translation regimes, because they map reasonably well to each other
3001   *     and they can't both be active at the same time.
3002   *  5. we want to be able to use the TLB for accesses done as part of a
3003   *     stage1 page table walk, rather than having to walk the stage2 page
3004   *     table over and over.
3005   *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3006   *     Never (PAN) bit within PSTATE.
3007   *
3008   * This gives us the following list of cases:
3009   *
3010   * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3011   * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3012   * NS EL1 EL1&0 stage 1+2 +PAN
3013   * NS EL0 EL2&0
3014   * NS EL2 EL2&0
3015   * NS EL2 EL2&0 +PAN
3016   * NS EL2 (aka NS PL2)
3017   * S EL0 EL1&0 (aka S PL0)
3018   * S EL1 EL1&0 (not used if EL3 is 32 bit)
3019   * S EL1 EL1&0 +PAN
3020   * S EL3 (aka S PL1)
3021   *
3022   * for a total of 11 different mmu_idx.
3023   *
3024   * R profile CPUs have an MPU, but can use the same set of MMU indexes
3025   * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3026   * NS EL2 if we ever model a Cortex-R52).
3027   *
3028   * M profile CPUs are rather different as they do not have a true MMU.
3029   * They have the following different MMU indexes:
3030   *  User
3031   *  Privileged
3032   *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3033   *  Privileged, execution priority negative (ditto)
3034   * If the CPU supports the v8M Security Extension then there are also:
3035   *  Secure User
3036   *  Secure Privileged
3037   *  Secure User, execution priority negative
3038   *  Secure Privileged, execution priority negative
3039   *
3040   * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3041   * are not quite the same -- different CPU types (most notably M profile
3042   * vs A/R profile) would like to use MMU indexes with different semantics,
3043   * but since we don't ever need to use all of those in a single CPU we
3044   * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3045   * modes + total number of M profile MMU modes". The lower bits of
3046   * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3047   * the same for any particular CPU.
3048   * Variables of type ARMMUIdx are always full values, and the core
3049   * index values are in variables of type 'int'.
3050   *
3051   * Our enumeration includes at the end some entries which are not "true"
3052   * mmu_idx values in that they don't have corresponding TLBs and are only
3053   * valid for doing slow path page table walks.
3054   *
3055   * The constant names here are patterned after the general style of the names
3056   * of the AT/ATS operations.
3057   * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3058   * For M profile we arrange them to have a bit for priv, a bit for negpri
3059   * and a bit for secure.
3060   */
3061  #define ARM_MMU_IDX_A     0x10  /* A profile */
3062  #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3063  #define ARM_MMU_IDX_M     0x40  /* M profile */
3064  
3065  /* Meanings of the bits for A profile mmu idx values */
3066  #define ARM_MMU_IDX_A_NS     0x8
3067  
3068  /* Meanings of the bits for M profile mmu idx values */
3069  #define ARM_MMU_IDX_M_PRIV   0x1
3070  #define ARM_MMU_IDX_M_NEGPRI 0x2
3071  #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3072  
3073  #define ARM_MMU_IDX_TYPE_MASK \
3074      (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3075  #define ARM_MMU_IDX_COREIDX_MASK 0xf
3076  
3077  typedef enum ARMMMUIdx {
3078      /*
3079       * A-profile.
3080       */
3081      ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3082      ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3083      ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3084      ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3085      ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3086      ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3087      ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3088      ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3089  
3090      ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3091      ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3092      ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3093      ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3094      ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3095      ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3096      ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3097  
3098      /*
3099       * These are not allocated TLBs and are used only for AT system
3100       * instructions or for the first stage of an S12 page table walk.
3101       */
3102      ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3103      ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3104      ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3105      ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3106      ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3107      ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3108      /*
3109       * Not allocated a TLB: used only for second stage of an S12 page
3110       * table walk, or for descriptor loads during first stage of an S1
3111       * page table walk. Note that if we ever want to have a TLB for this
3112       * then various TLB flush insns which currently are no-ops or flush
3113       * only stage 1 MMU indexes will need to change to flush stage 2.
3114       */
3115      ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3116      ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3117  
3118      /*
3119       * M-profile.
3120       */
3121      ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3122      ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3123      ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3124      ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3125      ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3126      ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3127      ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3128      ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3129  } ARMMMUIdx;
3130  
3131  /*
3132   * Bit macros for the core-mmu-index values for each index,
3133   * for use when calling tlb_flush_by_mmuidx() and friends.
3134   */
3135  #define TO_CORE_BIT(NAME) \
3136      ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3137  
3138  typedef enum ARMMMUIdxBit {
3139      TO_CORE_BIT(E10_0),
3140      TO_CORE_BIT(E20_0),
3141      TO_CORE_BIT(E10_1),
3142      TO_CORE_BIT(E10_1_PAN),
3143      TO_CORE_BIT(E2),
3144      TO_CORE_BIT(E20_2),
3145      TO_CORE_BIT(E20_2_PAN),
3146      TO_CORE_BIT(SE10_0),
3147      TO_CORE_BIT(SE20_0),
3148      TO_CORE_BIT(SE10_1),
3149      TO_CORE_BIT(SE20_2),
3150      TO_CORE_BIT(SE10_1_PAN),
3151      TO_CORE_BIT(SE20_2_PAN),
3152      TO_CORE_BIT(SE2),
3153      TO_CORE_BIT(SE3),
3154  
3155      TO_CORE_BIT(MUser),
3156      TO_CORE_BIT(MPriv),
3157      TO_CORE_BIT(MUserNegPri),
3158      TO_CORE_BIT(MPrivNegPri),
3159      TO_CORE_BIT(MSUser),
3160      TO_CORE_BIT(MSPriv),
3161      TO_CORE_BIT(MSUserNegPri),
3162      TO_CORE_BIT(MSPrivNegPri),
3163  } ARMMMUIdxBit;
3164  
3165  #undef TO_CORE_BIT
3166  
3167  #define MMU_USER_IDX 0
3168  
3169  /* Indexes used when registering address spaces with cpu_address_space_init */
3170  typedef enum ARMASIdx {
3171      ARMASIdx_NS = 0,
3172      ARMASIdx_S = 1,
3173      ARMASIdx_TagNS = 2,
3174      ARMASIdx_TagS = 3,
3175  } ARMASIdx;
3176  
3177  /* Return the Exception Level targeted by debug exceptions. */
3178  static inline int arm_debug_target_el(CPUARMState *env)
3179  {
3180      bool secure = arm_is_secure(env);
3181      bool route_to_el2 = false;
3182  
3183      if (arm_is_el2_enabled(env)) {
3184          route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3185                         env->cp15.mdcr_el2 & MDCR_TDE;
3186      }
3187  
3188      if (route_to_el2) {
3189          return 2;
3190      } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3191                 !arm_el_is_aa64(env, 3) && secure) {
3192          return 3;
3193      } else {
3194          return 1;
3195      }
3196  }
3197  
3198  static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3199  {
3200      /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3201       * CSSELR is RAZ/WI.
3202       */
3203      return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3204  }
3205  
3206  /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3207  static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3208  {
3209      int cur_el = arm_current_el(env);
3210      int debug_el;
3211  
3212      if (cur_el == 3) {
3213          return false;
3214      }
3215  
3216      /* MDCR_EL3.SDD disables debug events from Secure state */
3217      if (arm_is_secure_below_el3(env)
3218          && extract32(env->cp15.mdcr_el3, 16, 1)) {
3219          return false;
3220      }
3221  
3222      /*
3223       * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3224       * while not masking the (D)ebug bit in DAIF.
3225       */
3226      debug_el = arm_debug_target_el(env);
3227  
3228      if (cur_el == debug_el) {
3229          return extract32(env->cp15.mdscr_el1, 13, 1)
3230              && !(env->daif & PSTATE_D);
3231      }
3232  
3233      /* Otherwise the debug target needs to be a higher EL */
3234      return debug_el > cur_el;
3235  }
3236  
3237  static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3238  {
3239      int el = arm_current_el(env);
3240  
3241      if (el == 0 && arm_el_is_aa64(env, 1)) {
3242          return aa64_generate_debug_exceptions(env);
3243      }
3244  
3245      if (arm_is_secure(env)) {
3246          int spd;
3247  
3248          if (el == 0 && (env->cp15.sder & 1)) {
3249              /* SDER.SUIDEN means debug exceptions from Secure EL0
3250               * are always enabled. Otherwise they are controlled by
3251               * SDCR.SPD like those from other Secure ELs.
3252               */
3253              return true;
3254          }
3255  
3256          spd = extract32(env->cp15.mdcr_el3, 14, 2);
3257          switch (spd) {
3258          case 1:
3259              /* SPD == 0b01 is reserved, but behaves as 0b00. */
3260          case 0:
3261              /* For 0b00 we return true if external secure invasive debug
3262               * is enabled. On real hardware this is controlled by external
3263               * signals to the core. QEMU always permits debug, and behaves
3264               * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3265               */
3266              return true;
3267          case 2:
3268              return false;
3269          case 3:
3270              return true;
3271          }
3272      }
3273  
3274      return el != 2;
3275  }
3276  
3277  /* Return true if debugging exceptions are currently enabled.
3278   * This corresponds to what in ARM ARM pseudocode would be
3279   *    if UsingAArch32() then
3280   *        return AArch32.GenerateDebugExceptions()
3281   *    else
3282   *        return AArch64.GenerateDebugExceptions()
3283   * We choose to push the if() down into this function for clarity,
3284   * since the pseudocode has it at all callsites except for the one in
3285   * CheckSoftwareStep(), where it is elided because both branches would
3286   * always return the same value.
3287   */
3288  static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3289  {
3290      if (env->aarch64) {
3291          return aa64_generate_debug_exceptions(env);
3292      } else {
3293          return aa32_generate_debug_exceptions(env);
3294      }
3295  }
3296  
3297  /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3298   * implicitly means this always returns false in pre-v8 CPUs.)
3299   */
3300  static inline bool arm_singlestep_active(CPUARMState *env)
3301  {
3302      return extract32(env->cp15.mdscr_el1, 0, 1)
3303          && arm_el_is_aa64(env, arm_debug_target_el(env))
3304          && arm_generate_debug_exceptions(env);
3305  }
3306  
3307  static inline bool arm_sctlr_b(CPUARMState *env)
3308  {
3309      return
3310          /* We need not implement SCTLR.ITD in user-mode emulation, so
3311           * let linux-user ignore the fact that it conflicts with SCTLR_B.
3312           * This lets people run BE32 binaries with "-cpu any".
3313           */
3314  #ifndef CONFIG_USER_ONLY
3315          !arm_feature(env, ARM_FEATURE_V7) &&
3316  #endif
3317          (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3318  }
3319  
3320  uint64_t arm_sctlr(CPUARMState *env, int el);
3321  
3322  static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3323                                                    bool sctlr_b)
3324  {
3325  #ifdef CONFIG_USER_ONLY
3326      /*
3327       * In system mode, BE32 is modelled in line with the
3328       * architecture (as word-invariant big-endianness), where loads
3329       * and stores are done little endian but from addresses which
3330       * are adjusted by XORing with the appropriate constant. So the
3331       * endianness to use for the raw data access is not affected by
3332       * SCTLR.B.
3333       * In user mode, however, we model BE32 as byte-invariant
3334       * big-endianness (because user-only code cannot tell the
3335       * difference), and so we need to use a data access endianness
3336       * that depends on SCTLR.B.
3337       */
3338      if (sctlr_b) {
3339          return true;
3340      }
3341  #endif
3342      /* In 32bit endianness is determined by looking at CPSR's E bit */
3343      return env->uncached_cpsr & CPSR_E;
3344  }
3345  
3346  static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3347  {
3348      return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3349  }
3350  
3351  /* Return true if the processor is in big-endian mode. */
3352  static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3353  {
3354      if (!is_a64(env)) {
3355          return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3356      } else {
3357          int cur_el = arm_current_el(env);
3358          uint64_t sctlr = arm_sctlr(env, cur_el);
3359          return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3360      }
3361  }
3362  
3363  typedef CPUARMState CPUArchState;
3364  typedef ARMCPU ArchCPU;
3365  
3366  #include "exec/cpu-all.h"
3367  
3368  /*
3369   * Bit usage in the TB flags field: bit 31 indicates whether we are
3370   * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3371   * We put flags which are shared between 32 and 64 bit mode at the top
3372   * of the word, and flags which apply to only one mode at the bottom.
3373   *
3374   *  31          20    18    14          9              0
3375   * +--------------+-----+-----+----------+--------------+
3376   * |              |     |   TBFLAG_A32   |              |
3377   * |              |     +-----+----------+  TBFLAG_AM32 |
3378   * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3379   * |              +-----------+----------+--------------|
3380   * |              |            TBFLAG_A64               |
3381   * +--------------+-------------------------------------+
3382   *  31          20                                     0
3383   *
3384   * Unless otherwise noted, these bits are cached in env->hflags.
3385   */
3386  FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3387  FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3388  FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3389  FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3390  FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3391  /* Target EL if we take a floating-point-disabled exception */
3392  FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3393  /* For A-profile only, target EL for debug exceptions.  */
3394  FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3395  
3396  /*
3397   * Bit usage when in AArch32 state, both A- and M-profile.
3398   */
3399  FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3400  FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3401  
3402  /*
3403   * Bit usage when in AArch32 state, for A-profile only.
3404   */
3405  FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3406  FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3407  /*
3408   * We store the bottom two bits of the CPAR as TB flags and handle
3409   * checks on the other bits at runtime. This shares the same bits as
3410   * VECSTRIDE, which is OK as no XScale CPU has VFP.
3411   * Not cached, because VECLEN+VECSTRIDE are not cached.
3412   */
3413  FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3414  FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3415  FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3416  FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3417  /*
3418   * Indicates whether cp register reads and writes by guest code should access
3419   * the secure or nonsecure bank of banked registers; note that this is not
3420   * the same thing as the current security state of the processor!
3421   */
3422  FIELD(TBFLAG_A32, NS, 17, 1)
3423  
3424  /*
3425   * Bit usage when in AArch32 state, for M-profile only.
3426   */
3427  /* Handler (ie not Thread) mode */
3428  FIELD(TBFLAG_M32, HANDLER, 9, 1)
3429  /* Whether we should generate stack-limit checks */
3430  FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3431  /* Set if FPCCR.LSPACT is set */
3432  FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3433  /* Set if we must create a new FP context */
3434  FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3435  /* Set if FPCCR.S does not match current security state */
3436  FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3437  
3438  /*
3439   * Bit usage when in AArch64 state
3440   */
3441  FIELD(TBFLAG_A64, TBII, 0, 2)
3442  FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3443  FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3444  FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3445  FIELD(TBFLAG_A64, BT, 9, 1)
3446  FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3447  FIELD(TBFLAG_A64, TBID, 12, 2)
3448  FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3449  FIELD(TBFLAG_A64, ATA, 15, 1)
3450  FIELD(TBFLAG_A64, TCMA, 16, 2)
3451  FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3452  FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3453  
3454  /**
3455   * cpu_mmu_index:
3456   * @env: The cpu environment
3457   * @ifetch: True for code access, false for data access.
3458   *
3459   * Return the core mmu index for the current translation regime.
3460   * This function is used by generic TCG code paths.
3461   */
3462  static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3463  {
3464      return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3465  }
3466  
3467  static inline bool bswap_code(bool sctlr_b)
3468  {
3469  #ifdef CONFIG_USER_ONLY
3470      /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3471       * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3472       * would also end up as a mixed-endian mode with BE code, LE data.
3473       */
3474      return
3475  #ifdef TARGET_WORDS_BIGENDIAN
3476          1 ^
3477  #endif
3478          sctlr_b;
3479  #else
3480      /* All code access in ARM is little endian, and there are no loaders
3481       * doing swaps that need to be reversed
3482       */
3483      return 0;
3484  #endif
3485  }
3486  
3487  #ifdef CONFIG_USER_ONLY
3488  static inline bool arm_cpu_bswap_data(CPUARMState *env)
3489  {
3490      return
3491  #ifdef TARGET_WORDS_BIGENDIAN
3492         1 ^
3493  #endif
3494         arm_cpu_data_is_big_endian(env);
3495  }
3496  #endif
3497  
3498  void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3499                            target_ulong *cs_base, uint32_t *flags);
3500  
3501  enum {
3502      QEMU_PSCI_CONDUIT_DISABLED = 0,
3503      QEMU_PSCI_CONDUIT_SMC = 1,
3504      QEMU_PSCI_CONDUIT_HVC = 2,
3505  };
3506  
3507  #ifndef CONFIG_USER_ONLY
3508  /* Return the address space index to use for a memory access */
3509  static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3510  {
3511      return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3512  }
3513  
3514  /* Return the AddressSpace to use for a memory access
3515   * (which depends on whether the access is S or NS, and whether
3516   * the board gave us a separate AddressSpace for S accesses).
3517   */
3518  static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3519  {
3520      return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3521  }
3522  #endif
3523  
3524  /**
3525   * arm_register_pre_el_change_hook:
3526   * Register a hook function which will be called immediately before this
3527   * CPU changes exception level or mode. The hook function will be
3528   * passed a pointer to the ARMCPU and the opaque data pointer passed
3529   * to this function when the hook was registered.
3530   *
3531   * Note that if a pre-change hook is called, any registered post-change hooks
3532   * are guaranteed to subsequently be called.
3533   */
3534  void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3535                                   void *opaque);
3536  /**
3537   * arm_register_el_change_hook:
3538   * Register a hook function which will be called immediately after this
3539   * CPU changes exception level or mode. The hook function will be
3540   * passed a pointer to the ARMCPU and the opaque data pointer passed
3541   * to this function when the hook was registered.
3542   *
3543   * Note that any registered hooks registered here are guaranteed to be called
3544   * if pre-change hooks have been.
3545   */
3546  void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3547          *opaque);
3548  
3549  /**
3550   * arm_rebuild_hflags:
3551   * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3552   */
3553  void arm_rebuild_hflags(CPUARMState *env);
3554  
3555  /**
3556   * aa32_vfp_dreg:
3557   * Return a pointer to the Dn register within env in 32-bit mode.
3558   */
3559  static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3560  {
3561      return &env->vfp.zregs[regno >> 1].d[regno & 1];
3562  }
3563  
3564  /**
3565   * aa32_vfp_qreg:
3566   * Return a pointer to the Qn register within env in 32-bit mode.
3567   */
3568  static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3569  {
3570      return &env->vfp.zregs[regno].d[0];
3571  }
3572  
3573  /**
3574   * aa64_vfp_qreg:
3575   * Return a pointer to the Qn register within env in 64-bit mode.
3576   */
3577  static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3578  {
3579      return &env->vfp.zregs[regno].d[0];
3580  }
3581  
3582  /* Shared between translate-sve.c and sve_helper.c.  */
3583  extern const uint64_t pred_esz_masks[4];
3584  
3585  /* Helper for the macros below, validating the argument type. */
3586  static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3587  {
3588      return x;
3589  }
3590  
3591  /*
3592   * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3593   * Using these should be a bit more self-documenting than using the
3594   * generic target bits directly.
3595   */
3596  #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3597  #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3598  
3599  /*
3600   * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3601   */
3602  #define PAGE_BTI  PAGE_TARGET_1
3603  
3604  /*
3605   * Naming convention for isar_feature functions:
3606   * Functions which test 32-bit ID registers should have _aa32_ in
3607   * their name. Functions which test 64-bit ID registers should have
3608   * _aa64_ in their name. These must only be used in code where we
3609   * know for certain that the CPU has AArch32 or AArch64 respectively
3610   * or where the correct answer for a CPU which doesn't implement that
3611   * CPU state is "false" (eg when generating A32 or A64 code, if adding
3612   * system registers that are specific to that CPU state, for "should
3613   * we let this system register bit be set" tests where the 32-bit
3614   * flavour of the register doesn't have the bit, and so on).
3615   * Functions which simply ask "does this feature exist at all" have
3616   * _any_ in their name, and always return the logical OR of the _aa64_
3617   * and the _aa32_ function.
3618   */
3619  
3620  /*
3621   * 32-bit feature tests via id registers.
3622   */
3623  static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3624  {
3625      return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3626  }
3627  
3628  static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3629  {
3630      return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3631  }
3632  
3633  static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3634  {
3635      /* (M-profile) low-overhead loops and branch future */
3636      return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3637  }
3638  
3639  static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3640  {
3641      return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3642  }
3643  
3644  static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3645  {
3646      return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3647  }
3648  
3649  static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3650  {
3651      return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3652  }
3653  
3654  static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3655  {
3656      return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3657  }
3658  
3659  static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3660  {
3661      return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3662  }
3663  
3664  static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3665  {
3666      return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3667  }
3668  
3669  static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3670  {
3671      return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3672  }
3673  
3674  static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3675  {
3676      return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3677  }
3678  
3679  static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3680  {
3681      return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3682  }
3683  
3684  static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3685  {
3686      return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3687  }
3688  
3689  static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3690  {
3691      return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3692  }
3693  
3694  static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3695  {
3696      return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3697  }
3698  
3699  static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3700  {
3701      return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3702  }
3703  
3704  static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3705  {
3706      return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3707  }
3708  
3709  static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3710  {
3711      return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3712  }
3713  
3714  static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3715  {
3716      /*
3717       * Return true if M-profile state handling insns
3718       * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3719       */
3720      return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3721  }
3722  
3723  static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3724  {
3725      /* Sadly this is encoded differently for A-profile and M-profile */
3726      if (isar_feature_aa32_mprofile(id)) {
3727          return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3728      } else {
3729          return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3730      }
3731  }
3732  
3733  static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3734  {
3735      /*
3736       * Return true if either VFP or SIMD is implemented.
3737       * In this case, a minimum of VFP w/ D0-D15.
3738       */
3739      return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3740  }
3741  
3742  static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3743  {
3744      /* Return true if D16-D31 are implemented */
3745      return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3746  }
3747  
3748  static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3749  {
3750      return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3751  }
3752  
3753  static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3754  {
3755      /* Return true if CPU supports single precision floating point, VFPv2 */
3756      return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3757  }
3758  
3759  static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3760  {
3761      /* Return true if CPU supports single precision floating point, VFPv3 */
3762      return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3763  }
3764  
3765  static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3766  {
3767      /* Return true if CPU supports double precision floating point, VFPv2 */
3768      return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3769  }
3770  
3771  static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3772  {
3773      /* Return true if CPU supports double precision floating point, VFPv3 */
3774      return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3775  }
3776  
3777  static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3778  {
3779      return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3780  }
3781  
3782  /*
3783   * We always set the FP and SIMD FP16 fields to indicate identical
3784   * levels of support (assuming SIMD is implemented at all), so
3785   * we only need one set of accessors.
3786   */
3787  static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3788  {
3789      return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3790  }
3791  
3792  static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3793  {
3794      return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3795  }
3796  
3797  /*
3798   * Note that this ID register field covers both VFP and Neon FMAC,
3799   * so should usually be tested in combination with some other
3800   * check that confirms the presence of whichever of VFP or Neon is
3801   * relevant, to avoid accidentally enabling a Neon feature on
3802   * a VFP-no-Neon core or vice-versa.
3803   */
3804  static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3805  {
3806      return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3807  }
3808  
3809  static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3810  {
3811      return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3812  }
3813  
3814  static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3815  {
3816      return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3817  }
3818  
3819  static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3820  {
3821      return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3822  }
3823  
3824  static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3825  {
3826      return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3827  }
3828  
3829  static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3830  {
3831      return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3832  }
3833  
3834  static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3835  {
3836      return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3837  }
3838  
3839  static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3840  {
3841      return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3842  }
3843  
3844  static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3845  {
3846      /* 0xf means "non-standard IMPDEF PMU" */
3847      return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3848          FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3849  }
3850  
3851  static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3852  {
3853      /* 0xf means "non-standard IMPDEF PMU" */
3854      return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3855          FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3856  }
3857  
3858  static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3859  {
3860      return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3861  }
3862  
3863  static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3864  {
3865      return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3866  }
3867  
3868  static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3869  {
3870      return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3871  }
3872  
3873  static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3874  {
3875      return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3876  }
3877  
3878  /*
3879   * 64-bit feature tests via id registers.
3880   */
3881  static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3882  {
3883      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3884  }
3885  
3886  static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3887  {
3888      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3889  }
3890  
3891  static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3892  {
3893      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3894  }
3895  
3896  static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3897  {
3898      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3899  }
3900  
3901  static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3902  {
3903      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3904  }
3905  
3906  static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3907  {
3908      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3909  }
3910  
3911  static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3912  {
3913      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3914  }
3915  
3916  static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3917  {
3918      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3919  }
3920  
3921  static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3922  {
3923      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3924  }
3925  
3926  static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3927  {
3928      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3929  }
3930  
3931  static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3932  {
3933      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3934  }
3935  
3936  static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3937  {
3938      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3939  }
3940  
3941  static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3942  {
3943      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3944  }
3945  
3946  static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3947  {
3948      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3949  }
3950  
3951  static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3952  {
3953      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3954  }
3955  
3956  static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3957  {
3958      return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3959  }
3960  
3961  static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3962  {
3963      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3964  }
3965  
3966  static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3967  {
3968      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3969  }
3970  
3971  static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3972  {
3973      /*
3974       * Return true if any form of pauth is enabled, as this
3975       * predicate controls migration of the 128-bit keys.
3976       */
3977      return (id->id_aa64isar1 &
3978              (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3979               FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3980               FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3981               FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3982  }
3983  
3984  static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3985  {
3986      /*
3987       * Return true if pauth is enabled with the architected QARMA algorithm.
3988       * QEMU will always set APA+GPA to the same value.
3989       */
3990      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3991  }
3992  
3993  static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3994  {
3995      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3996  }
3997  
3998  static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3999  {
4000      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4001  }
4002  
4003  static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4004  {
4005      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4006  }
4007  
4008  static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4009  {
4010      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4011  }
4012  
4013  static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4014  {
4015      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4016  }
4017  
4018  static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4019  {
4020      /* We always set the AdvSIMD and FP fields identically.  */
4021      return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4022  }
4023  
4024  static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4025  {
4026      /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4027      return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4028  }
4029  
4030  static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4031  {
4032      return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4033  }
4034  
4035  static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4036  {
4037      return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4038  }
4039  
4040  static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4041  {
4042      return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4043  }
4044  
4045  static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4046  {
4047      return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4048  }
4049  
4050  static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4051  {
4052      return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4053  }
4054  
4055  static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4056  {
4057      return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4058  }
4059  
4060  static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4061  {
4062      return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4063  }
4064  
4065  static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4066  {
4067      return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4068  }
4069  
4070  static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4071  {
4072      return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4073  }
4074  
4075  static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4076  {
4077      return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4078  }
4079  
4080  static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4081  {
4082      return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4083  }
4084  
4085  static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4086  {
4087      return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4088  }
4089  
4090  static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4091  {
4092      return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4093          FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4094  }
4095  
4096  static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4097  {
4098      return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4099          FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4100  }
4101  
4102  static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4103  {
4104      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4105  }
4106  
4107  static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4108  {
4109      return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4110  }
4111  
4112  static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4113  {
4114      return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4115  }
4116  
4117  static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4118  {
4119      return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4120  }
4121  
4122  /*
4123   * Feature tests for "does this exist in either 32-bit or 64-bit?"
4124   */
4125  static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4126  {
4127      return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4128  }
4129  
4130  static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4131  {
4132      return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4133  }
4134  
4135  static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4136  {
4137      return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4138  }
4139  
4140  static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4141  {
4142      return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4143  }
4144  
4145  static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4146  {
4147      return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4148  }
4149  
4150  static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4151  {
4152      return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4153  }
4154  
4155  /*
4156   * Forward to the above feature tests given an ARMCPU pointer.
4157   */
4158  #define cpu_isar_feature(name, cpu) \
4159      ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4160  
4161  #endif
4162