xref: /openbmc/qemu/target/arm/cpu.h (revision b593c2b81287040ab6f452afec6281e2f7ee487b)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 
94 /* The usual mapping for an AArch64 system register to its AArch32
95  * counterpart is for the 32 bit world to have access to the lower
96  * half only (with writes leaving the upper half untouched). It's
97  * therefore useful to be able to pass TCG the offset of the least
98  * significant half of a uint64_t struct member.
99  */
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
107 
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
113 
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141  * @cpregs_keys: Array that contains the corresponding Key of
142  * a given cpreg with the same order of the cpreg in the XML description.
143  */
144 typedef struct DynamicGDBXMLInfo {
145     char *desc;
146     int num_cpregs;
147     uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
149 
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152     uint64_t cval; /* Timer CompareValue register */
153     uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
155 
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP  2
159 #define GTIMER_SEC  3
160 #define NUM_GTIMERS 4
161 
162 typedef struct {
163     uint64_t raw_tcr;
164     uint32_t mask;
165     uint32_t base_mask;
166 } TCR;
167 
168 /* Define a maximum sized vector register.
169  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170  * For 64-bit, this is a 2048-bit SVE register.
171  *
172  * Note that the mapping between S, D, and Q views of the register bank
173  * differs between AArch64 and AArch32.
174  * In AArch32:
175  *  Qn = regs[n].d[1]:regs[n].d[0]
176  *  Dn = regs[n / 2].d[n & 1]
177  *  Sn = regs[n / 4].d[n % 4 / 2],
178  *       bits 31..0 for even n, and bits 63..32 for odd n
179  *       (and regs[16] to regs[31] are inaccessible)
180  * In AArch64:
181  *  Zn = regs[n].d[*]
182  *  Qn = regs[n].d[1]:regs[n].d[0]
183  *  Dn = regs[n].d[0]
184  *  Sn = regs[n].d[0] bits 31..0
185  *  Hn = regs[n].d[0] bits 15..0
186  *
187  * This corresponds to the architecturally defined mapping between
188  * the two execution states, and means we do not need to explicitly
189  * map these registers when changing states.
190  *
191  * Align the data for use with TCG host vector operations.
192  */
193 
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ    16
196 #else
197 # define ARM_MAX_VQ    1
198 #endif
199 
200 typedef struct ARMVectorReg {
201     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
203 
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all.  */
206 typedef struct ARMPredicateReg {
207     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
209 
210 /* In AArch32 mode, PAC keys do not exist at all.  */
211 typedef struct ARMPACKey {
212     uint64_t lo, hi;
213 } ARMPACKey;
214 #endif
215 
216 
217 typedef struct CPUARMState {
218     /* Regs for current mode.  */
219     uint32_t regs[16];
220 
221     /* 32/64 switch only happens when taking and returning from
222      * exceptions so the overlap semantics are taken care of then
223      * instead of having a complicated union.
224      */
225     /* Regs for A64 mode.  */
226     uint64_t xregs[32];
227     uint64_t pc;
228     /* PSTATE isn't an architectural register for ARMv8. However, it is
229      * convenient for us to assemble the underlying state into a 32 bit format
230      * identical to the architectural format used for the SPSR. (This is also
231      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232      * 'pstate' register are.) Of the PSTATE bits:
233      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234      *    semantics as for AArch32, as described in the comments on each field)
235      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
236      *  DAIF (exception masks) are kept in env->daif
237      *  BTYPE is kept in env->btype
238      *  all other bits are stored in their correct places in env->pstate
239      */
240     uint32_t pstate;
241     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242 
243     /* Frequently accessed CPSR bits are stored separately for efficiency.
244        This contains all the other bits.  Use cpsr_{read,write} to access
245        the whole CPSR.  */
246     uint32_t uncached_cpsr;
247     uint32_t spsr;
248 
249     /* Banked registers.  */
250     uint64_t banked_spsr[8];
251     uint32_t banked_r13[8];
252     uint32_t banked_r14[8];
253 
254     /* These hold r8-r12.  */
255     uint32_t usr_regs[5];
256     uint32_t fiq_regs[5];
257 
258     /* cpsr flag cache for faster execution */
259     uint32_t CF; /* 0 or 1 */
260     uint32_t VF; /* V is the bit 31. All other bits are undefined */
261     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
262     uint32_t ZF; /* Z set if zero.  */
263     uint32_t QF; /* 0 or 1 */
264     uint32_t GE; /* cpsr[19:16] */
265     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
266     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
267     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
268     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
269 
270     uint64_t elr_el[4]; /* AArch64 exception link regs  */
271     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
272 
273     /* System control coprocessor (cp15) */
274     struct {
275         uint32_t c0_cpuid;
276         union { /* Cache size selection */
277             struct {
278                 uint64_t _unused_csselr0;
279                 uint64_t csselr_ns;
280                 uint64_t _unused_csselr1;
281                 uint64_t csselr_s;
282             };
283             uint64_t csselr_el[4];
284         };
285         union { /* System control register. */
286             struct {
287                 uint64_t _unused_sctlr;
288                 uint64_t sctlr_ns;
289                 uint64_t hsctlr;
290                 uint64_t sctlr_s;
291             };
292             uint64_t sctlr_el[4];
293         };
294         uint64_t cpacr_el1; /* Architectural feature access control register */
295         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
296         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
297         uint64_t sder; /* Secure debug enable register. */
298         uint32_t nsacr; /* Non-secure access control register. */
299         union { /* MMU translation table base 0. */
300             struct {
301                 uint64_t _unused_ttbr0_0;
302                 uint64_t ttbr0_ns;
303                 uint64_t _unused_ttbr0_1;
304                 uint64_t ttbr0_s;
305             };
306             uint64_t ttbr0_el[4];
307         };
308         union { /* MMU translation table base 1. */
309             struct {
310                 uint64_t _unused_ttbr1_0;
311                 uint64_t ttbr1_ns;
312                 uint64_t _unused_ttbr1_1;
313                 uint64_t ttbr1_s;
314             };
315             uint64_t ttbr1_el[4];
316         };
317         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
318         /* MMU translation table base control. */
319         TCR tcr_el[4];
320         TCR vtcr_el2; /* Virtualization Translation Control.  */
321         uint32_t c2_data; /* MPU data cacheable bits.  */
322         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
323         union { /* MMU domain access control register
324                  * MPU write buffer control.
325                  */
326             struct {
327                 uint64_t dacr_ns;
328                 uint64_t dacr_s;
329             };
330             struct {
331                 uint64_t dacr32_el2;
332             };
333         };
334         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
336         uint64_t hcr_el2; /* Hypervisor configuration register */
337         uint64_t scr_el3; /* Secure configuration register.  */
338         union { /* Fault status registers.  */
339             struct {
340                 uint64_t ifsr_ns;
341                 uint64_t ifsr_s;
342             };
343             struct {
344                 uint64_t ifsr32_el2;
345             };
346         };
347         union {
348             struct {
349                 uint64_t _unused_dfsr;
350                 uint64_t dfsr_ns;
351                 uint64_t hsr;
352                 uint64_t dfsr_s;
353             };
354             uint64_t esr_el[4];
355         };
356         uint32_t c6_region[8]; /* MPU base/size registers.  */
357         union { /* Fault address registers. */
358             struct {
359                 uint64_t _unused_far0;
360 #ifdef HOST_WORDS_BIGENDIAN
361                 uint32_t ifar_ns;
362                 uint32_t dfar_ns;
363                 uint32_t ifar_s;
364                 uint32_t dfar_s;
365 #else
366                 uint32_t dfar_ns;
367                 uint32_t ifar_ns;
368                 uint32_t dfar_s;
369                 uint32_t ifar_s;
370 #endif
371                 uint64_t _unused_far3;
372             };
373             uint64_t far_el[4];
374         };
375         uint64_t hpfar_el2;
376         uint64_t hstr_el2;
377         union { /* Translation result. */
378             struct {
379                 uint64_t _unused_par_0;
380                 uint64_t par_ns;
381                 uint64_t _unused_par_1;
382                 uint64_t par_s;
383             };
384             uint64_t par_el[4];
385         };
386 
387         uint32_t c9_insn; /* Cache lockdown registers.  */
388         uint32_t c9_data;
389         uint64_t c9_pmcr; /* performance monitor control register */
390         uint64_t c9_pmcnten; /* perf monitor counter enables */
391         uint64_t c9_pmovsr; /* perf monitor overflow status */
392         uint64_t c9_pmuserenr; /* perf monitor user enable */
393         uint64_t c9_pmselr; /* perf monitor counter selection register */
394         uint64_t c9_pminten; /* perf monitor interrupt enables */
395         union { /* Memory attribute redirection */
396             struct {
397 #ifdef HOST_WORDS_BIGENDIAN
398                 uint64_t _unused_mair_0;
399                 uint32_t mair1_ns;
400                 uint32_t mair0_ns;
401                 uint64_t _unused_mair_1;
402                 uint32_t mair1_s;
403                 uint32_t mair0_s;
404 #else
405                 uint64_t _unused_mair_0;
406                 uint32_t mair0_ns;
407                 uint32_t mair1_ns;
408                 uint64_t _unused_mair_1;
409                 uint32_t mair0_s;
410                 uint32_t mair1_s;
411 #endif
412             };
413             uint64_t mair_el[4];
414         };
415         union { /* vector base address register */
416             struct {
417                 uint64_t _unused_vbar;
418                 uint64_t vbar_ns;
419                 uint64_t hvbar;
420                 uint64_t vbar_s;
421             };
422             uint64_t vbar_el[4];
423         };
424         uint32_t mvbar; /* (monitor) vector base address register */
425         struct { /* FCSE PID. */
426             uint32_t fcseidr_ns;
427             uint32_t fcseidr_s;
428         };
429         union { /* Context ID. */
430             struct {
431                 uint64_t _unused_contextidr_0;
432                 uint64_t contextidr_ns;
433                 uint64_t _unused_contextidr_1;
434                 uint64_t contextidr_s;
435             };
436             uint64_t contextidr_el[4];
437         };
438         union { /* User RW Thread register. */
439             struct {
440                 uint64_t tpidrurw_ns;
441                 uint64_t tpidrprw_ns;
442                 uint64_t htpidr;
443                 uint64_t _tpidr_el3;
444             };
445             uint64_t tpidr_el[4];
446         };
447         /* The secure banks of these registers don't map anywhere */
448         uint64_t tpidrurw_s;
449         uint64_t tpidrprw_s;
450         uint64_t tpidruro_s;
451 
452         union { /* User RO Thread register. */
453             uint64_t tpidruro_ns;
454             uint64_t tpidrro_el[1];
455         };
456         uint64_t c14_cntfrq; /* Counter Frequency register */
457         uint64_t c14_cntkctl; /* Timer Control register */
458         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
459         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
460         ARMGenericTimer c14_timer[NUM_GTIMERS];
461         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465         uint32_t c15_threadid; /* TI debugger thread-ID.  */
466         uint32_t c15_config_base_address; /* SCU base address.  */
467         uint32_t c15_diagnostic; /* diagnostic register */
468         uint32_t c15_power_diagnostic;
469         uint32_t c15_power_control; /* power control */
470         uint64_t dbgbvr[16]; /* breakpoint value registers */
471         uint64_t dbgbcr[16]; /* breakpoint control registers */
472         uint64_t dbgwvr[16]; /* watchpoint value registers */
473         uint64_t dbgwcr[16]; /* watchpoint control registers */
474         uint64_t mdscr_el1;
475         uint64_t oslsr_el1; /* OS Lock Status */
476         uint64_t mdcr_el2;
477         uint64_t mdcr_el3;
478         /* Stores the architectural value of the counter *the last time it was
479          * updated* by pmccntr_op_start. Accesses should always be surrounded
480          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481          * architecturally-correct value is being read/set.
482          */
483         uint64_t c15_ccnt;
484         /* Stores the delta between the architectural value and the underlying
485          * cycle count during normal operation. It is used to update c15_ccnt
486          * to be the correct architectural value before accesses. During
487          * accesses, c15_ccnt_delta contains the underlying count being used
488          * for the access, after which it reverts to the delta value in
489          * pmccntr_op_finish.
490          */
491         uint64_t c15_ccnt_delta;
492         uint64_t c14_pmevcntr[31];
493         uint64_t c14_pmevcntr_delta[31];
494         uint64_t c14_pmevtyper[31];
495         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
496         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
497         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
498     } cp15;
499 
500     struct {
501         /* M profile has up to 4 stack pointers:
502          * a Main Stack Pointer and a Process Stack Pointer for each
503          * of the Secure and Non-Secure states. (If the CPU doesn't support
504          * the security extension then it has only two SPs.)
505          * In QEMU we always store the currently active SP in regs[13],
506          * and the non-active SP for the current security state in
507          * v7m.other_sp. The stack pointers for the inactive security state
508          * are stored in other_ss_msp and other_ss_psp.
509          * switch_v7m_security_state() is responsible for rearranging them
510          * when we change security state.
511          */
512         uint32_t other_sp;
513         uint32_t other_ss_msp;
514         uint32_t other_ss_psp;
515         uint32_t vecbase[M_REG_NUM_BANKS];
516         uint32_t basepri[M_REG_NUM_BANKS];
517         uint32_t control[M_REG_NUM_BANKS];
518         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
520         uint32_t hfsr; /* HardFault Status */
521         uint32_t dfsr; /* Debug Fault Status Register */
522         uint32_t sfsr; /* Secure Fault Status Register */
523         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
524         uint32_t bfar; /* BusFault Address */
525         uint32_t sfar; /* Secure Fault Address Register */
526         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
527         int exception;
528         uint32_t primask[M_REG_NUM_BANKS];
529         uint32_t faultmask[M_REG_NUM_BANKS];
530         uint32_t aircr; /* only holds r/w state if security extn implemented */
531         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
532         uint32_t csselr[M_REG_NUM_BANKS];
533         uint32_t scr[M_REG_NUM_BANKS];
534         uint32_t msplim[M_REG_NUM_BANKS];
535         uint32_t psplim[M_REG_NUM_BANKS];
536         uint32_t fpcar[M_REG_NUM_BANKS];
537         uint32_t fpccr[M_REG_NUM_BANKS];
538         uint32_t fpdscr[M_REG_NUM_BANKS];
539         uint32_t cpacr[M_REG_NUM_BANKS];
540         uint32_t nsacr;
541     } v7m;
542 
543     /* Information associated with an exception about to be taken:
544      * code which raises an exception must set cs->exception_index and
545      * the relevant parts of this structure; the cpu_do_interrupt function
546      * will then set the guest-visible registers as part of the exception
547      * entry process.
548      */
549     struct {
550         uint32_t syndrome; /* AArch64 format syndrome register */
551         uint32_t fsr; /* AArch32 format fault status register info */
552         uint64_t vaddress; /* virtual addr associated with exception, if any */
553         uint32_t target_el; /* EL the exception should be targeted for */
554         /* If we implement EL2 we will also need to store information
555          * about the intermediate physical address for stage 2 faults.
556          */
557     } exception;
558 
559     /* Information associated with an SError */
560     struct {
561         uint8_t pending;
562         uint8_t has_esr;
563         uint64_t esr;
564     } serror;
565 
566     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
567     uint32_t irq_line_state;
568 
569     /* Thumb-2 EE state.  */
570     uint32_t teecr;
571     uint32_t teehbr;
572 
573     /* VFP coprocessor state.  */
574     struct {
575         ARMVectorReg zregs[32];
576 
577 #ifdef TARGET_AARCH64
578         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
579 #define FFR_PRED_NUM 16
580         ARMPredicateReg pregs[17];
581         /* Scratch space for aa64 sve predicate temporary.  */
582         ARMPredicateReg preg_tmp;
583 #endif
584 
585         /* We store these fpcsr fields separately for convenience.  */
586         uint32_t qc[4] QEMU_ALIGNED(16);
587         int vec_len;
588         int vec_stride;
589 
590         uint32_t xregs[16];
591 
592         /* Scratch space for aa32 neon expansion.  */
593         uint32_t scratch[8];
594 
595         /* There are a number of distinct float control structures:
596          *
597          *  fp_status: is the "normal" fp status.
598          *  fp_status_fp16: used for half-precision calculations
599          *  standard_fp_status : the ARM "Standard FPSCR Value"
600          *
601          * Half-precision operations are governed by a separate
602          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
603          * status structure to control this.
604          *
605          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
606          * round-to-nearest and is used by any operations (generally
607          * Neon) which the architecture defines as controlled by the
608          * standard FPSCR value rather than the FPSCR.
609          *
610          * To avoid having to transfer exception bits around, we simply
611          * say that the FPSCR cumulative exception flags are the logical
612          * OR of the flags in the three fp statuses. This relies on the
613          * only thing which needs to read the exception flags being
614          * an explicit FPSCR read.
615          */
616         float_status fp_status;
617         float_status fp_status_f16;
618         float_status standard_fp_status;
619 
620         /* ZCR_EL[1-3] */
621         uint64_t zcr_el[4];
622     } vfp;
623     uint64_t exclusive_addr;
624     uint64_t exclusive_val;
625     uint64_t exclusive_high;
626 
627     /* iwMMXt coprocessor state.  */
628     struct {
629         uint64_t regs[16];
630         uint64_t val;
631 
632         uint32_t cregs[16];
633     } iwmmxt;
634 
635 #ifdef TARGET_AARCH64
636     ARMPACKey apia_key;
637     ARMPACKey apib_key;
638     ARMPACKey apda_key;
639     ARMPACKey apdb_key;
640     ARMPACKey apga_key;
641 #endif
642 
643 #if defined(CONFIG_USER_ONLY)
644     /* For usermode syscall translation.  */
645     int eabi;
646 #endif
647 
648     struct CPUBreakpoint *cpu_breakpoint[16];
649     struct CPUWatchpoint *cpu_watchpoint[16];
650 
651     /* Fields up to this point are cleared by a CPU reset */
652     struct {} end_reset_fields;
653 
654     CPU_COMMON
655 
656     /* Fields after CPU_COMMON are preserved across CPU reset. */
657 
658     /* Internal CPU feature flags.  */
659     uint64_t features;
660 
661     /* PMSAv7 MPU */
662     struct {
663         uint32_t *drbar;
664         uint32_t *drsr;
665         uint32_t *dracr;
666         uint32_t rnr[M_REG_NUM_BANKS];
667     } pmsav7;
668 
669     /* PMSAv8 MPU */
670     struct {
671         /* The PMSAv8 implementation also shares some PMSAv7 config
672          * and state:
673          *  pmsav7.rnr (region number register)
674          *  pmsav7_dregion (number of configured regions)
675          */
676         uint32_t *rbar[M_REG_NUM_BANKS];
677         uint32_t *rlar[M_REG_NUM_BANKS];
678         uint32_t mair0[M_REG_NUM_BANKS];
679         uint32_t mair1[M_REG_NUM_BANKS];
680     } pmsav8;
681 
682     /* v8M SAU */
683     struct {
684         uint32_t *rbar;
685         uint32_t *rlar;
686         uint32_t rnr;
687         uint32_t ctrl;
688     } sau;
689 
690     void *nvic;
691     const struct arm_boot_info *boot_info;
692     /* Store GICv3CPUState to access from this struct */
693     void *gicv3state;
694 } CPUARMState;
695 
696 /**
697  * ARMELChangeHookFn:
698  * type of a function which can be registered via arm_register_el_change_hook()
699  * to get callbacks when the CPU changes its exception level or mode.
700  */
701 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
702 typedef struct ARMELChangeHook ARMELChangeHook;
703 struct ARMELChangeHook {
704     ARMELChangeHookFn *hook;
705     void *opaque;
706     QLIST_ENTRY(ARMELChangeHook) node;
707 };
708 
709 /* These values map onto the return values for
710  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
711 typedef enum ARMPSCIState {
712     PSCI_ON = 0,
713     PSCI_OFF = 1,
714     PSCI_ON_PENDING = 2
715 } ARMPSCIState;
716 
717 typedef struct ARMISARegisters ARMISARegisters;
718 
719 /**
720  * ARMCPU:
721  * @env: #CPUARMState
722  *
723  * An ARM CPU core.
724  */
725 struct ARMCPU {
726     /*< private >*/
727     CPUState parent_obj;
728     /*< public >*/
729 
730     CPUARMState env;
731 
732     /* Coprocessor information */
733     GHashTable *cp_regs;
734     /* For marshalling (mostly coprocessor) register state between the
735      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
736      * we use these arrays.
737      */
738     /* List of register indexes managed via these arrays; (full KVM style
739      * 64 bit indexes, not CPRegInfo 32 bit indexes)
740      */
741     uint64_t *cpreg_indexes;
742     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
743     uint64_t *cpreg_values;
744     /* Length of the indexes, values, reset_values arrays */
745     int32_t cpreg_array_len;
746     /* These are used only for migration: incoming data arrives in
747      * these fields and is sanity checked in post_load before copying
748      * to the working data structures above.
749      */
750     uint64_t *cpreg_vmstate_indexes;
751     uint64_t *cpreg_vmstate_values;
752     int32_t cpreg_vmstate_array_len;
753 
754     DynamicGDBXMLInfo dyn_xml;
755 
756     /* Timers used by the generic (architected) timer */
757     QEMUTimer *gt_timer[NUM_GTIMERS];
758     /*
759      * Timer used by the PMU. Its state is restored after migration by
760      * pmu_op_finish() - it does not need other handling during migration
761      */
762     QEMUTimer *pmu_timer;
763     /* GPIO outputs for generic timer */
764     qemu_irq gt_timer_outputs[NUM_GTIMERS];
765     /* GPIO output for GICv3 maintenance interrupt signal */
766     qemu_irq gicv3_maintenance_interrupt;
767     /* GPIO output for the PMU interrupt */
768     qemu_irq pmu_interrupt;
769 
770     /* MemoryRegion to use for secure physical accesses */
771     MemoryRegion *secure_memory;
772 
773     /* For v8M, pointer to the IDAU interface provided by board/SoC */
774     Object *idau;
775 
776     /* 'compatible' string for this CPU for Linux device trees */
777     const char *dtb_compatible;
778 
779     /* PSCI version for this CPU
780      * Bits[31:16] = Major Version
781      * Bits[15:0] = Minor Version
782      */
783     uint32_t psci_version;
784 
785     /* Should CPU start in PSCI powered-off state? */
786     bool start_powered_off;
787 
788     /* Current power state, access guarded by BQL */
789     ARMPSCIState power_state;
790 
791     /* CPU has virtualization extension */
792     bool has_el2;
793     /* CPU has security extension */
794     bool has_el3;
795     /* CPU has PMU (Performance Monitor Unit) */
796     bool has_pmu;
797 
798     /* CPU has memory protection unit */
799     bool has_mpu;
800     /* PMSAv7 MPU number of supported regions */
801     uint32_t pmsav7_dregion;
802     /* v8M SAU number of supported regions */
803     uint32_t sau_sregion;
804 
805     /* PSCI conduit used to invoke PSCI methods
806      * 0 - disabled, 1 - smc, 2 - hvc
807      */
808     uint32_t psci_conduit;
809 
810     /* For v8M, initial value of the Secure VTOR */
811     uint32_t init_svtor;
812 
813     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
814      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
815      */
816     uint32_t kvm_target;
817 
818     /* KVM init features for this CPU */
819     uint32_t kvm_init_features[7];
820 
821     /* Uniprocessor system with MP extensions */
822     bool mp_is_up;
823 
824     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
825      * and the probe failed (so we need to report the error in realize)
826      */
827     bool host_cpu_probe_failed;
828 
829     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
830      * register.
831      */
832     int32_t core_count;
833 
834     /* The instance init functions for implementation-specific subclasses
835      * set these fields to specify the implementation-dependent values of
836      * various constant registers and reset values of non-constant
837      * registers.
838      * Some of these might become QOM properties eventually.
839      * Field names match the official register names as defined in the
840      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
841      * is used for reset values of non-constant registers; no reset_
842      * prefix means a constant register.
843      * Some of these registers are split out into a substructure that
844      * is shared with the translators to control the ISA.
845      */
846     struct ARMISARegisters {
847         uint32_t id_isar0;
848         uint32_t id_isar1;
849         uint32_t id_isar2;
850         uint32_t id_isar3;
851         uint32_t id_isar4;
852         uint32_t id_isar5;
853         uint32_t id_isar6;
854         uint32_t mvfr0;
855         uint32_t mvfr1;
856         uint32_t mvfr2;
857         uint64_t id_aa64isar0;
858         uint64_t id_aa64isar1;
859         uint64_t id_aa64pfr0;
860         uint64_t id_aa64pfr1;
861         uint64_t id_aa64mmfr0;
862         uint64_t id_aa64mmfr1;
863     } isar;
864     uint32_t midr;
865     uint32_t revidr;
866     uint32_t reset_fpsid;
867     uint32_t ctr;
868     uint32_t reset_sctlr;
869     uint32_t id_pfr0;
870     uint32_t id_pfr1;
871     uint32_t id_dfr0;
872     uint64_t pmceid0;
873     uint64_t pmceid1;
874     uint32_t id_afr0;
875     uint32_t id_mmfr0;
876     uint32_t id_mmfr1;
877     uint32_t id_mmfr2;
878     uint32_t id_mmfr3;
879     uint32_t id_mmfr4;
880     uint64_t id_aa64dfr0;
881     uint64_t id_aa64dfr1;
882     uint64_t id_aa64afr0;
883     uint64_t id_aa64afr1;
884     uint32_t dbgdidr;
885     uint32_t clidr;
886     uint64_t mp_affinity; /* MP ID without feature bits */
887     /* The elements of this array are the CCSIDR values for each cache,
888      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
889      */
890     uint32_t ccsidr[16];
891     uint64_t reset_cbar;
892     uint32_t reset_auxcr;
893     bool reset_hivecs;
894     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
895     uint32_t dcz_blocksize;
896     uint64_t rvbar;
897 
898     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
899     int gic_num_lrs; /* number of list registers */
900     int gic_vpribits; /* number of virtual priority bits */
901     int gic_vprebits; /* number of virtual preemption bits */
902 
903     /* Whether the cfgend input is high (i.e. this CPU should reset into
904      * big-endian mode).  This setting isn't used directly: instead it modifies
905      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
906      * architecture version.
907      */
908     bool cfgend;
909 
910     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
911     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
912 
913     int32_t node_id; /* NUMA node this CPU belongs to */
914 
915     /* Used to synchronize KVM and QEMU in-kernel device levels */
916     uint8_t device_irq_level;
917 
918     /* Used to set the maximum vector length the cpu will support.  */
919     uint32_t sve_max_vq;
920 };
921 
922 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
923 {
924     return container_of(env, ARMCPU, env);
925 }
926 
927 void arm_cpu_post_init(Object *obj);
928 
929 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
930 
931 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
932 
933 #define ENV_OFFSET offsetof(ARMCPU, env)
934 
935 #ifndef CONFIG_USER_ONLY
936 extern const struct VMStateDescription vmstate_arm_cpu;
937 #endif
938 
939 void arm_cpu_do_interrupt(CPUState *cpu);
940 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
941 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
942 
943 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
944 
945 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
946                                          MemTxAttrs *attrs);
947 
948 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
949 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
950 
951 /* Dynamically generates for gdb stub an XML description of the sysregs from
952  * the cp_regs hashtable. Returns the registered sysregs number.
953  */
954 int arm_gen_dynamic_xml(CPUState *cpu);
955 
956 /* Returns the dynamically generated XML for the gdb stub.
957  * Returns a pointer to the XML contents for the specified XML file or NULL
958  * if the XML name doesn't match the predefined one.
959  */
960 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
961 
962 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
963                              int cpuid, void *opaque);
964 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
965                              int cpuid, void *opaque);
966 
967 #ifdef TARGET_AARCH64
968 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
969 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
970 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
971 void aarch64_sve_change_el(CPUARMState *env, int old_el,
972                            int new_el, bool el0_a64);
973 #else
974 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
975 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
976                                          int n, bool a)
977 { }
978 #endif
979 
980 target_ulong do_arm_semihosting(CPUARMState *env);
981 void aarch64_sync_32_to_64(CPUARMState *env);
982 void aarch64_sync_64_to_32(CPUARMState *env);
983 
984 int fp_exception_el(CPUARMState *env, int cur_el);
985 int sve_exception_el(CPUARMState *env, int cur_el);
986 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
987 
988 static inline bool is_a64(CPUARMState *env)
989 {
990     return env->aarch64;
991 }
992 
993 /* you can call this signal handler from your SIGBUS and SIGSEGV
994    signal handlers to inform the virtual CPU of exceptions. non zero
995    is returned if the signal was handled by the virtual CPU.  */
996 int cpu_arm_signal_handler(int host_signum, void *pinfo,
997                            void *puc);
998 
999 /**
1000  * pmu_op_start/finish
1001  * @env: CPUARMState
1002  *
1003  * Convert all PMU counters between their delta form (the typical mode when
1004  * they are enabled) and the guest-visible values. These two calls must
1005  * surround any action which might affect the counters.
1006  */
1007 void pmu_op_start(CPUARMState *env);
1008 void pmu_op_finish(CPUARMState *env);
1009 
1010 /*
1011  * Called when a PMU counter is due to overflow
1012  */
1013 void arm_pmu_timer_cb(void *opaque);
1014 
1015 /**
1016  * Functions to register as EL change hooks for PMU mode filtering
1017  */
1018 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1019 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1020 
1021 /*
1022  * pmu_init
1023  * @cpu: ARMCPU
1024  *
1025  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1026  * for the current configuration
1027  */
1028 void pmu_init(ARMCPU *cpu);
1029 
1030 /* SCTLR bit meanings. Several bits have been reused in newer
1031  * versions of the architecture; in that case we define constants
1032  * for both old and new bit meanings. Code which tests against those
1033  * bits should probably check or otherwise arrange that the CPU
1034  * is the architectural version it expects.
1035  */
1036 #define SCTLR_M       (1U << 0)
1037 #define SCTLR_A       (1U << 1)
1038 #define SCTLR_C       (1U << 2)
1039 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1040 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1041 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1042 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1043 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1044 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1045 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1046 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1047 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1048 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1049 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1050 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1051 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1052 #define SCTLR_SED     (1U << 8) /* v8 onward */
1053 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1054 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1055 #define SCTLR_F       (1U << 10) /* up to v6 */
1056 #define SCTLR_SW      (1U << 10) /* v7 */
1057 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1058 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1059 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1060 #define SCTLR_I       (1U << 12)
1061 #define SCTLR_V       (1U << 13) /* AArch32 only */
1062 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1063 #define SCTLR_RR      (1U << 14) /* up to v7 */
1064 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1065 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1066 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1067 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1068 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1069 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1070 #define SCTLR_BR      (1U << 17) /* PMSA only */
1071 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1072 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1073 #define SCTLR_WXN     (1U << 19)
1074 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1075 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1076 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1077 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1078 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1079 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1080 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1081 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1082 #define SCTLR_VE      (1U << 24) /* up to v7 */
1083 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1084 #define SCTLR_EE      (1U << 25)
1085 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1086 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1087 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1088 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1089 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1090 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1091 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1092 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1093 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1094 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1095 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1096 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1097 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1098 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1099 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1100 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1101 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1102 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1103 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1104 
1105 #define CPTR_TCPAC    (1U << 31)
1106 #define CPTR_TTA      (1U << 20)
1107 #define CPTR_TFP      (1U << 10)
1108 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1109 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1110 
1111 #define MDCR_EPMAD    (1U << 21)
1112 #define MDCR_EDAD     (1U << 20)
1113 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1114 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1115 #define MDCR_SDD      (1U << 16)
1116 #define MDCR_SPD      (3U << 14)
1117 #define MDCR_TDRA     (1U << 11)
1118 #define MDCR_TDOSA    (1U << 10)
1119 #define MDCR_TDA      (1U << 9)
1120 #define MDCR_TDE      (1U << 8)
1121 #define MDCR_HPME     (1U << 7)
1122 #define MDCR_TPM      (1U << 6)
1123 #define MDCR_TPMCR    (1U << 5)
1124 #define MDCR_HPMN     (0x1fU)
1125 
1126 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1127 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1128 
1129 #define CPSR_M (0x1fU)
1130 #define CPSR_T (1U << 5)
1131 #define CPSR_F (1U << 6)
1132 #define CPSR_I (1U << 7)
1133 #define CPSR_A (1U << 8)
1134 #define CPSR_E (1U << 9)
1135 #define CPSR_IT_2_7 (0xfc00U)
1136 #define CPSR_GE (0xfU << 16)
1137 #define CPSR_IL (1U << 20)
1138 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1139  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1140  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1141  * where it is live state but not accessible to the AArch32 code.
1142  */
1143 #define CPSR_RESERVED (0x7U << 21)
1144 #define CPSR_J (1U << 24)
1145 #define CPSR_IT_0_1 (3U << 25)
1146 #define CPSR_Q (1U << 27)
1147 #define CPSR_V (1U << 28)
1148 #define CPSR_C (1U << 29)
1149 #define CPSR_Z (1U << 30)
1150 #define CPSR_N (1U << 31)
1151 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1152 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1153 
1154 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1155 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1156     | CPSR_NZCV)
1157 /* Bits writable in user mode.  */
1158 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1159 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1160 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1161 /* Mask of bits which may be set by exception return copying them from SPSR */
1162 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1163 
1164 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1165 #define XPSR_EXCP 0x1ffU
1166 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1167 #define XPSR_IT_2_7 CPSR_IT_2_7
1168 #define XPSR_GE CPSR_GE
1169 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1170 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1171 #define XPSR_IT_0_1 CPSR_IT_0_1
1172 #define XPSR_Q CPSR_Q
1173 #define XPSR_V CPSR_V
1174 #define XPSR_C CPSR_C
1175 #define XPSR_Z CPSR_Z
1176 #define XPSR_N CPSR_N
1177 #define XPSR_NZCV CPSR_NZCV
1178 #define XPSR_IT CPSR_IT
1179 
1180 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1181 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1182 #define TTBCR_PD0    (1U << 4)
1183 #define TTBCR_PD1    (1U << 5)
1184 #define TTBCR_EPD0   (1U << 7)
1185 #define TTBCR_IRGN0  (3U << 8)
1186 #define TTBCR_ORGN0  (3U << 10)
1187 #define TTBCR_SH0    (3U << 12)
1188 #define TTBCR_T1SZ   (3U << 16)
1189 #define TTBCR_A1     (1U << 22)
1190 #define TTBCR_EPD1   (1U << 23)
1191 #define TTBCR_IRGN1  (3U << 24)
1192 #define TTBCR_ORGN1  (3U << 26)
1193 #define TTBCR_SH1    (1U << 28)
1194 #define TTBCR_EAE    (1U << 31)
1195 
1196 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1197  * Only these are valid when in AArch64 mode; in
1198  * AArch32 mode SPSRs are basically CPSR-format.
1199  */
1200 #define PSTATE_SP (1U)
1201 #define PSTATE_M (0xFU)
1202 #define PSTATE_nRW (1U << 4)
1203 #define PSTATE_F (1U << 6)
1204 #define PSTATE_I (1U << 7)
1205 #define PSTATE_A (1U << 8)
1206 #define PSTATE_D (1U << 9)
1207 #define PSTATE_BTYPE (3U << 10)
1208 #define PSTATE_IL (1U << 20)
1209 #define PSTATE_SS (1U << 21)
1210 #define PSTATE_V (1U << 28)
1211 #define PSTATE_C (1U << 29)
1212 #define PSTATE_Z (1U << 30)
1213 #define PSTATE_N (1U << 31)
1214 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1215 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1216 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1217 /* Mode values for AArch64 */
1218 #define PSTATE_MODE_EL3h 13
1219 #define PSTATE_MODE_EL3t 12
1220 #define PSTATE_MODE_EL2h 9
1221 #define PSTATE_MODE_EL2t 8
1222 #define PSTATE_MODE_EL1h 5
1223 #define PSTATE_MODE_EL1t 4
1224 #define PSTATE_MODE_EL0t 0
1225 
1226 /* Write a new value to v7m.exception, thus transitioning into or out
1227  * of Handler mode; this may result in a change of active stack pointer.
1228  */
1229 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1230 
1231 /* Map EL and handler into a PSTATE_MODE.  */
1232 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1233 {
1234     return (el << 2) | handler;
1235 }
1236 
1237 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1238  * interprocessing, so we don't attempt to sync with the cpsr state used by
1239  * the 32 bit decoder.
1240  */
1241 static inline uint32_t pstate_read(CPUARMState *env)
1242 {
1243     int ZF;
1244 
1245     ZF = (env->ZF == 0);
1246     return (env->NF & 0x80000000) | (ZF << 30)
1247         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1248         | env->pstate | env->daif | (env->btype << 10);
1249 }
1250 
1251 static inline void pstate_write(CPUARMState *env, uint32_t val)
1252 {
1253     env->ZF = (~val) & PSTATE_Z;
1254     env->NF = val;
1255     env->CF = (val >> 29) & 1;
1256     env->VF = (val << 3) & 0x80000000;
1257     env->daif = val & PSTATE_DAIF;
1258     env->btype = (val >> 10) & 3;
1259     env->pstate = val & ~CACHED_PSTATE_BITS;
1260 }
1261 
1262 /* Return the current CPSR value.  */
1263 uint32_t cpsr_read(CPUARMState *env);
1264 
1265 typedef enum CPSRWriteType {
1266     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1267     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1268     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1269     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1270 } CPSRWriteType;
1271 
1272 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1273 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1274                 CPSRWriteType write_type);
1275 
1276 /* Return the current xPSR value.  */
1277 static inline uint32_t xpsr_read(CPUARMState *env)
1278 {
1279     int ZF;
1280     ZF = (env->ZF == 0);
1281     return (env->NF & 0x80000000) | (ZF << 30)
1282         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1283         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1284         | ((env->condexec_bits & 0xfc) << 8)
1285         | env->v7m.exception;
1286 }
1287 
1288 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1289 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1290 {
1291     if (mask & XPSR_NZCV) {
1292         env->ZF = (~val) & XPSR_Z;
1293         env->NF = val;
1294         env->CF = (val >> 29) & 1;
1295         env->VF = (val << 3) & 0x80000000;
1296     }
1297     if (mask & XPSR_Q) {
1298         env->QF = ((val & XPSR_Q) != 0);
1299     }
1300     if (mask & XPSR_T) {
1301         env->thumb = ((val & XPSR_T) != 0);
1302     }
1303     if (mask & XPSR_IT_0_1) {
1304         env->condexec_bits &= ~3;
1305         env->condexec_bits |= (val >> 25) & 3;
1306     }
1307     if (mask & XPSR_IT_2_7) {
1308         env->condexec_bits &= 3;
1309         env->condexec_bits |= (val >> 8) & 0xfc;
1310     }
1311     if (mask & XPSR_EXCP) {
1312         /* Note that this only happens on exception exit */
1313         write_v7m_exception(env, val & XPSR_EXCP);
1314     }
1315 }
1316 
1317 #define HCR_VM        (1ULL << 0)
1318 #define HCR_SWIO      (1ULL << 1)
1319 #define HCR_PTW       (1ULL << 2)
1320 #define HCR_FMO       (1ULL << 3)
1321 #define HCR_IMO       (1ULL << 4)
1322 #define HCR_AMO       (1ULL << 5)
1323 #define HCR_VF        (1ULL << 6)
1324 #define HCR_VI        (1ULL << 7)
1325 #define HCR_VSE       (1ULL << 8)
1326 #define HCR_FB        (1ULL << 9)
1327 #define HCR_BSU_MASK  (3ULL << 10)
1328 #define HCR_DC        (1ULL << 12)
1329 #define HCR_TWI       (1ULL << 13)
1330 #define HCR_TWE       (1ULL << 14)
1331 #define HCR_TID0      (1ULL << 15)
1332 #define HCR_TID1      (1ULL << 16)
1333 #define HCR_TID2      (1ULL << 17)
1334 #define HCR_TID3      (1ULL << 18)
1335 #define HCR_TSC       (1ULL << 19)
1336 #define HCR_TIDCP     (1ULL << 20)
1337 #define HCR_TACR      (1ULL << 21)
1338 #define HCR_TSW       (1ULL << 22)
1339 #define HCR_TPCP      (1ULL << 23)
1340 #define HCR_TPU       (1ULL << 24)
1341 #define HCR_TTLB      (1ULL << 25)
1342 #define HCR_TVM       (1ULL << 26)
1343 #define HCR_TGE       (1ULL << 27)
1344 #define HCR_TDZ       (1ULL << 28)
1345 #define HCR_HCD       (1ULL << 29)
1346 #define HCR_TRVM      (1ULL << 30)
1347 #define HCR_RW        (1ULL << 31)
1348 #define HCR_CD        (1ULL << 32)
1349 #define HCR_ID        (1ULL << 33)
1350 #define HCR_E2H       (1ULL << 34)
1351 #define HCR_TLOR      (1ULL << 35)
1352 #define HCR_TERR      (1ULL << 36)
1353 #define HCR_TEA       (1ULL << 37)
1354 #define HCR_MIOCNCE   (1ULL << 38)
1355 #define HCR_APK       (1ULL << 40)
1356 #define HCR_API       (1ULL << 41)
1357 #define HCR_NV        (1ULL << 42)
1358 #define HCR_NV1       (1ULL << 43)
1359 #define HCR_AT        (1ULL << 44)
1360 #define HCR_NV2       (1ULL << 45)
1361 #define HCR_FWB       (1ULL << 46)
1362 #define HCR_FIEN      (1ULL << 47)
1363 #define HCR_TID4      (1ULL << 49)
1364 #define HCR_TICAB     (1ULL << 50)
1365 #define HCR_TOCU      (1ULL << 52)
1366 #define HCR_TTLBIS    (1ULL << 54)
1367 #define HCR_TTLBOS    (1ULL << 55)
1368 #define HCR_ATA       (1ULL << 56)
1369 #define HCR_DCT       (1ULL << 57)
1370 
1371 /*
1372  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1373  * HCR_MASK and then clear it again if the feature bit is not set in
1374  * hcr_write().
1375  */
1376 #define HCR_MASK      ((1ULL << 34) - 1)
1377 
1378 #define SCR_NS                (1U << 0)
1379 #define SCR_IRQ               (1U << 1)
1380 #define SCR_FIQ               (1U << 2)
1381 #define SCR_EA                (1U << 3)
1382 #define SCR_FW                (1U << 4)
1383 #define SCR_AW                (1U << 5)
1384 #define SCR_NET               (1U << 6)
1385 #define SCR_SMD               (1U << 7)
1386 #define SCR_HCE               (1U << 8)
1387 #define SCR_SIF               (1U << 9)
1388 #define SCR_RW                (1U << 10)
1389 #define SCR_ST                (1U << 11)
1390 #define SCR_TWI               (1U << 12)
1391 #define SCR_TWE               (1U << 13)
1392 #define SCR_TLOR              (1U << 14)
1393 #define SCR_TERR              (1U << 15)
1394 #define SCR_APK               (1U << 16)
1395 #define SCR_API               (1U << 17)
1396 #define SCR_EEL2              (1U << 18)
1397 #define SCR_EASE              (1U << 19)
1398 #define SCR_NMEA              (1U << 20)
1399 #define SCR_FIEN              (1U << 21)
1400 #define SCR_ENSCXT            (1U << 25)
1401 #define SCR_ATA               (1U << 26)
1402 
1403 /* Return the current FPSCR value.  */
1404 uint32_t vfp_get_fpscr(CPUARMState *env);
1405 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1406 
1407 /* FPCR, Floating Point Control Register
1408  * FPSR, Floating Poiht Status Register
1409  *
1410  * For A64 the FPSCR is split into two logically distinct registers,
1411  * FPCR and FPSR. However since they still use non-overlapping bits
1412  * we store the underlying state in fpscr and just mask on read/write.
1413  */
1414 #define FPSR_MASK 0xf800009f
1415 #define FPCR_MASK 0x07ff9f00
1416 
1417 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1418 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1419 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1420 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1421 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1422 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1423 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1424 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1425 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1426 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1427 
1428 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1429 {
1430     return vfp_get_fpscr(env) & FPSR_MASK;
1431 }
1432 
1433 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1434 {
1435     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1436     vfp_set_fpscr(env, new_fpscr);
1437 }
1438 
1439 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1440 {
1441     return vfp_get_fpscr(env) & FPCR_MASK;
1442 }
1443 
1444 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1445 {
1446     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1447     vfp_set_fpscr(env, new_fpscr);
1448 }
1449 
1450 enum arm_cpu_mode {
1451   ARM_CPU_MODE_USR = 0x10,
1452   ARM_CPU_MODE_FIQ = 0x11,
1453   ARM_CPU_MODE_IRQ = 0x12,
1454   ARM_CPU_MODE_SVC = 0x13,
1455   ARM_CPU_MODE_MON = 0x16,
1456   ARM_CPU_MODE_ABT = 0x17,
1457   ARM_CPU_MODE_HYP = 0x1a,
1458   ARM_CPU_MODE_UND = 0x1b,
1459   ARM_CPU_MODE_SYS = 0x1f
1460 };
1461 
1462 /* VFP system registers.  */
1463 #define ARM_VFP_FPSID   0
1464 #define ARM_VFP_FPSCR   1
1465 #define ARM_VFP_MVFR2   5
1466 #define ARM_VFP_MVFR1   6
1467 #define ARM_VFP_MVFR0   7
1468 #define ARM_VFP_FPEXC   8
1469 #define ARM_VFP_FPINST  9
1470 #define ARM_VFP_FPINST2 10
1471 
1472 /* iwMMXt coprocessor control registers.  */
1473 #define ARM_IWMMXT_wCID  0
1474 #define ARM_IWMMXT_wCon  1
1475 #define ARM_IWMMXT_wCSSF 2
1476 #define ARM_IWMMXT_wCASF 3
1477 #define ARM_IWMMXT_wCGR0 8
1478 #define ARM_IWMMXT_wCGR1 9
1479 #define ARM_IWMMXT_wCGR2 10
1480 #define ARM_IWMMXT_wCGR3 11
1481 
1482 /* V7M CCR bits */
1483 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1484 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1485 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1486 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1487 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1488 FIELD(V7M_CCR, STKALIGN, 9, 1)
1489 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1490 FIELD(V7M_CCR, DC, 16, 1)
1491 FIELD(V7M_CCR, IC, 17, 1)
1492 FIELD(V7M_CCR, BP, 18, 1)
1493 
1494 /* V7M SCR bits */
1495 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1496 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1497 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1498 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1499 
1500 /* V7M AIRCR bits */
1501 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1502 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1503 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1504 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1505 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1506 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1507 FIELD(V7M_AIRCR, PRIS, 14, 1)
1508 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1509 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1510 
1511 /* V7M CFSR bits for MMFSR */
1512 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1513 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1514 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1515 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1516 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1517 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1518 
1519 /* V7M CFSR bits for BFSR */
1520 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1521 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1522 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1523 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1524 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1525 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1526 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1527 
1528 /* V7M CFSR bits for UFSR */
1529 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1530 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1531 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1532 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1533 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1534 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1535 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1536 
1537 /* V7M CFSR bit masks covering all of the subregister bits */
1538 FIELD(V7M_CFSR, MMFSR, 0, 8)
1539 FIELD(V7M_CFSR, BFSR, 8, 8)
1540 FIELD(V7M_CFSR, UFSR, 16, 16)
1541 
1542 /* V7M HFSR bits */
1543 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1544 FIELD(V7M_HFSR, FORCED, 30, 1)
1545 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1546 
1547 /* V7M DFSR bits */
1548 FIELD(V7M_DFSR, HALTED, 0, 1)
1549 FIELD(V7M_DFSR, BKPT, 1, 1)
1550 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1551 FIELD(V7M_DFSR, VCATCH, 3, 1)
1552 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1553 
1554 /* V7M SFSR bits */
1555 FIELD(V7M_SFSR, INVEP, 0, 1)
1556 FIELD(V7M_SFSR, INVIS, 1, 1)
1557 FIELD(V7M_SFSR, INVER, 2, 1)
1558 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1559 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1560 FIELD(V7M_SFSR, LSPERR, 5, 1)
1561 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1562 FIELD(V7M_SFSR, LSERR, 7, 1)
1563 
1564 /* v7M MPU_CTRL bits */
1565 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1566 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1567 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1568 
1569 /* v7M CLIDR bits */
1570 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1571 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1572 FIELD(V7M_CLIDR, LOC, 24, 3)
1573 FIELD(V7M_CLIDR, LOUU, 27, 3)
1574 FIELD(V7M_CLIDR, ICB, 30, 2)
1575 
1576 FIELD(V7M_CSSELR, IND, 0, 1)
1577 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1578 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1579  * define a mask for this and check that it doesn't permit running off
1580  * the end of the array.
1581  */
1582 FIELD(V7M_CSSELR, INDEX, 0, 4)
1583 
1584 /* v7M FPCCR bits */
1585 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1586 FIELD(V7M_FPCCR, USER, 1, 1)
1587 FIELD(V7M_FPCCR, S, 2, 1)
1588 FIELD(V7M_FPCCR, THREAD, 3, 1)
1589 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1590 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1591 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1592 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1593 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1594 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1595 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1596 FIELD(V7M_FPCCR, RES0, 11, 15)
1597 FIELD(V7M_FPCCR, TS, 26, 1)
1598 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1599 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1600 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1601 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1602 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1603 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1604 #define R_V7M_FPCCR_BANKED_MASK                 \
1605     (R_V7M_FPCCR_LSPACT_MASK |                  \
1606      R_V7M_FPCCR_USER_MASK |                    \
1607      R_V7M_FPCCR_THREAD_MASK |                  \
1608      R_V7M_FPCCR_MMRDY_MASK |                   \
1609      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1610      R_V7M_FPCCR_UFRDY_MASK |                   \
1611      R_V7M_FPCCR_ASPEN_MASK)
1612 
1613 /*
1614  * System register ID fields.
1615  */
1616 FIELD(ID_ISAR0, SWAP, 0, 4)
1617 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1618 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1619 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1620 FIELD(ID_ISAR0, COPROC, 16, 4)
1621 FIELD(ID_ISAR0, DEBUG, 20, 4)
1622 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1623 
1624 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1625 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1626 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1627 FIELD(ID_ISAR1, EXTEND, 12, 4)
1628 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1629 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1630 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1631 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1632 
1633 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1634 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1635 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1636 FIELD(ID_ISAR2, MULT, 12, 4)
1637 FIELD(ID_ISAR2, MULTS, 16, 4)
1638 FIELD(ID_ISAR2, MULTU, 20, 4)
1639 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1640 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1641 
1642 FIELD(ID_ISAR3, SATURATE, 0, 4)
1643 FIELD(ID_ISAR3, SIMD, 4, 4)
1644 FIELD(ID_ISAR3, SVC, 8, 4)
1645 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1646 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1647 FIELD(ID_ISAR3, T32COPY, 20, 4)
1648 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1649 FIELD(ID_ISAR3, T32EE, 28, 4)
1650 
1651 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1652 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1653 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1654 FIELD(ID_ISAR4, SMC, 12, 4)
1655 FIELD(ID_ISAR4, BARRIER, 16, 4)
1656 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1657 FIELD(ID_ISAR4, PSR_M, 24, 4)
1658 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1659 
1660 FIELD(ID_ISAR5, SEVL, 0, 4)
1661 FIELD(ID_ISAR5, AES, 4, 4)
1662 FIELD(ID_ISAR5, SHA1, 8, 4)
1663 FIELD(ID_ISAR5, SHA2, 12, 4)
1664 FIELD(ID_ISAR5, CRC32, 16, 4)
1665 FIELD(ID_ISAR5, RDM, 24, 4)
1666 FIELD(ID_ISAR5, VCMA, 28, 4)
1667 
1668 FIELD(ID_ISAR6, JSCVT, 0, 4)
1669 FIELD(ID_ISAR6, DP, 4, 4)
1670 FIELD(ID_ISAR6, FHM, 8, 4)
1671 FIELD(ID_ISAR6, SB, 12, 4)
1672 FIELD(ID_ISAR6, SPECRES, 16, 4)
1673 
1674 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1675 FIELD(ID_MMFR4, AC2, 4, 4)
1676 FIELD(ID_MMFR4, XNX, 8, 4)
1677 FIELD(ID_MMFR4, CNP, 12, 4)
1678 FIELD(ID_MMFR4, HPDS, 16, 4)
1679 FIELD(ID_MMFR4, LSM, 20, 4)
1680 FIELD(ID_MMFR4, CCIDX, 24, 4)
1681 FIELD(ID_MMFR4, EVT, 28, 4)
1682 
1683 FIELD(ID_AA64ISAR0, AES, 4, 4)
1684 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1685 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1686 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1687 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1688 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1689 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1690 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1691 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1692 FIELD(ID_AA64ISAR0, DP, 44, 4)
1693 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1694 FIELD(ID_AA64ISAR0, TS, 52, 4)
1695 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1696 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1697 
1698 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1699 FIELD(ID_AA64ISAR1, APA, 4, 4)
1700 FIELD(ID_AA64ISAR1, API, 8, 4)
1701 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1702 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1703 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1704 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1705 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1706 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1707 FIELD(ID_AA64ISAR1, SB, 36, 4)
1708 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1709 
1710 FIELD(ID_AA64PFR0, EL0, 0, 4)
1711 FIELD(ID_AA64PFR0, EL1, 4, 4)
1712 FIELD(ID_AA64PFR0, EL2, 8, 4)
1713 FIELD(ID_AA64PFR0, EL3, 12, 4)
1714 FIELD(ID_AA64PFR0, FP, 16, 4)
1715 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1716 FIELD(ID_AA64PFR0, GIC, 24, 4)
1717 FIELD(ID_AA64PFR0, RAS, 28, 4)
1718 FIELD(ID_AA64PFR0, SVE, 32, 4)
1719 
1720 FIELD(ID_AA64PFR1, BT, 0, 4)
1721 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1722 FIELD(ID_AA64PFR1, MTE, 8, 4)
1723 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1724 
1725 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1726 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1727 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1728 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1729 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1730 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1731 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1732 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1733 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1734 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1735 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1736 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1737 
1738 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1739 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1740 FIELD(ID_AA64MMFR1, VH, 8, 4)
1741 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1742 FIELD(ID_AA64MMFR1, LO, 16, 4)
1743 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1744 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1745 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1746 
1747 FIELD(ID_DFR0, COPDBG, 0, 4)
1748 FIELD(ID_DFR0, COPSDBG, 4, 4)
1749 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1750 FIELD(ID_DFR0, COPTRC, 12, 4)
1751 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1752 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1753 FIELD(ID_DFR0, PERFMON, 24, 4)
1754 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1755 
1756 FIELD(MVFR0, SIMDREG, 0, 4)
1757 FIELD(MVFR0, FPSP, 4, 4)
1758 FIELD(MVFR0, FPDP, 8, 4)
1759 FIELD(MVFR0, FPTRAP, 12, 4)
1760 FIELD(MVFR0, FPDIVIDE, 16, 4)
1761 FIELD(MVFR0, FPSQRT, 20, 4)
1762 FIELD(MVFR0, FPSHVEC, 24, 4)
1763 FIELD(MVFR0, FPROUND, 28, 4)
1764 
1765 FIELD(MVFR1, FPFTZ, 0, 4)
1766 FIELD(MVFR1, FPDNAN, 4, 4)
1767 FIELD(MVFR1, SIMDLS, 8, 4)
1768 FIELD(MVFR1, SIMDINT, 12, 4)
1769 FIELD(MVFR1, SIMDSP, 16, 4)
1770 FIELD(MVFR1, SIMDHP, 20, 4)
1771 FIELD(MVFR1, FPHP, 24, 4)
1772 FIELD(MVFR1, SIMDFMAC, 28, 4)
1773 
1774 FIELD(MVFR2, SIMDMISC, 0, 4)
1775 FIELD(MVFR2, FPMISC, 4, 4)
1776 
1777 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1778 
1779 /* If adding a feature bit which corresponds to a Linux ELF
1780  * HWCAP bit, remember to update the feature-bit-to-hwcap
1781  * mapping in linux-user/elfload.c:get_elf_hwcap().
1782  */
1783 enum arm_features {
1784     ARM_FEATURE_VFP,
1785     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1786     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1787     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1788     ARM_FEATURE_V6,
1789     ARM_FEATURE_V6K,
1790     ARM_FEATURE_V7,
1791     ARM_FEATURE_THUMB2,
1792     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1793     ARM_FEATURE_VFP3,
1794     ARM_FEATURE_NEON,
1795     ARM_FEATURE_M, /* Microcontroller profile.  */
1796     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1797     ARM_FEATURE_THUMB2EE,
1798     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1799     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1800     ARM_FEATURE_V4T,
1801     ARM_FEATURE_V5,
1802     ARM_FEATURE_STRONGARM,
1803     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1804     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1805     ARM_FEATURE_GENERIC_TIMER,
1806     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1807     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1808     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1809     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1810     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1811     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1812     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1813     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1814     ARM_FEATURE_V8,
1815     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1816     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1817     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1818     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1819     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1820     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1821     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1822     ARM_FEATURE_PMU, /* has PMU support */
1823     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1824     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1825     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1826 };
1827 
1828 static inline int arm_feature(CPUARMState *env, int feature)
1829 {
1830     return (env->features & (1ULL << feature)) != 0;
1831 }
1832 
1833 #if !defined(CONFIG_USER_ONLY)
1834 /* Return true if exception levels below EL3 are in secure state,
1835  * or would be following an exception return to that level.
1836  * Unlike arm_is_secure() (which is always a question about the
1837  * _current_ state of the CPU) this doesn't care about the current
1838  * EL or mode.
1839  */
1840 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1841 {
1842     if (arm_feature(env, ARM_FEATURE_EL3)) {
1843         return !(env->cp15.scr_el3 & SCR_NS);
1844     } else {
1845         /* If EL3 is not supported then the secure state is implementation
1846          * defined, in which case QEMU defaults to non-secure.
1847          */
1848         return false;
1849     }
1850 }
1851 
1852 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1853 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1854 {
1855     if (arm_feature(env, ARM_FEATURE_EL3)) {
1856         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1857             /* CPU currently in AArch64 state and EL3 */
1858             return true;
1859         } else if (!is_a64(env) &&
1860                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1861             /* CPU currently in AArch32 state and monitor mode */
1862             return true;
1863         }
1864     }
1865     return false;
1866 }
1867 
1868 /* Return true if the processor is in secure state */
1869 static inline bool arm_is_secure(CPUARMState *env)
1870 {
1871     if (arm_is_el3_or_mon(env)) {
1872         return true;
1873     }
1874     return arm_is_secure_below_el3(env);
1875 }
1876 
1877 #else
1878 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1879 {
1880     return false;
1881 }
1882 
1883 static inline bool arm_is_secure(CPUARMState *env)
1884 {
1885     return false;
1886 }
1887 #endif
1888 
1889 /**
1890  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1891  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1892  * "for all purposes other than a direct read or write access of HCR_EL2."
1893  * Not included here is HCR_RW.
1894  */
1895 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1896 
1897 /* Return true if the specified exception level is running in AArch64 state. */
1898 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1899 {
1900     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1901      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1902      */
1903     assert(el >= 1 && el <= 3);
1904     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1905 
1906     /* The highest exception level is always at the maximum supported
1907      * register width, and then lower levels have a register width controlled
1908      * by bits in the SCR or HCR registers.
1909      */
1910     if (el == 3) {
1911         return aa64;
1912     }
1913 
1914     if (arm_feature(env, ARM_FEATURE_EL3)) {
1915         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1916     }
1917 
1918     if (el == 2) {
1919         return aa64;
1920     }
1921 
1922     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1923         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1924     }
1925 
1926     return aa64;
1927 }
1928 
1929 /* Function for determing whether guest cp register reads and writes should
1930  * access the secure or non-secure bank of a cp register.  When EL3 is
1931  * operating in AArch32 state, the NS-bit determines whether the secure
1932  * instance of a cp register should be used. When EL3 is AArch64 (or if
1933  * it doesn't exist at all) then there is no register banking, and all
1934  * accesses are to the non-secure version.
1935  */
1936 static inline bool access_secure_reg(CPUARMState *env)
1937 {
1938     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1939                 !arm_el_is_aa64(env, 3) &&
1940                 !(env->cp15.scr_el3 & SCR_NS));
1941 
1942     return ret;
1943 }
1944 
1945 /* Macros for accessing a specified CP register bank */
1946 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1947     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1948 
1949 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1950     do {                                                \
1951         if (_secure) {                                   \
1952             (_env)->cp15._regname##_s = (_val);            \
1953         } else {                                        \
1954             (_env)->cp15._regname##_ns = (_val);           \
1955         }                                               \
1956     } while (0)
1957 
1958 /* Macros for automatically accessing a specific CP register bank depending on
1959  * the current secure state of the system.  These macros are not intended for
1960  * supporting instruction translation reads/writes as these are dependent
1961  * solely on the SCR.NS bit and not the mode.
1962  */
1963 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1964     A32_BANKED_REG_GET((_env), _regname,                \
1965                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1966 
1967 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1968     A32_BANKED_REG_SET((_env), _regname,                                    \
1969                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1970                        (_val))
1971 
1972 void arm_cpu_list(void);
1973 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1974                                  uint32_t cur_el, bool secure);
1975 
1976 /* Interface between CPU and Interrupt controller.  */
1977 #ifndef CONFIG_USER_ONLY
1978 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1979 #else
1980 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1981 {
1982     return true;
1983 }
1984 #endif
1985 /**
1986  * armv7m_nvic_set_pending: mark the specified exception as pending
1987  * @opaque: the NVIC
1988  * @irq: the exception number to mark pending
1989  * @secure: false for non-banked exceptions or for the nonsecure
1990  * version of a banked exception, true for the secure version of a banked
1991  * exception.
1992  *
1993  * Marks the specified exception as pending. Note that we will assert()
1994  * if @secure is true and @irq does not specify one of the fixed set
1995  * of architecturally banked exceptions.
1996  */
1997 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1998 /**
1999  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2000  * @opaque: the NVIC
2001  * @irq: the exception number to mark pending
2002  * @secure: false for non-banked exceptions or for the nonsecure
2003  * version of a banked exception, true for the secure version of a banked
2004  * exception.
2005  *
2006  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2007  * exceptions (exceptions generated in the course of trying to take
2008  * a different exception).
2009  */
2010 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2011 /**
2012  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2013  *    exception, and whether it targets Secure state
2014  * @opaque: the NVIC
2015  * @pirq: set to pending exception number
2016  * @ptargets_secure: set to whether pending exception targets Secure
2017  *
2018  * This function writes the number of the highest priority pending
2019  * exception (the one which would be made active by
2020  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2021  * to true if the current highest priority pending exception should
2022  * be taken to Secure state, false for NS.
2023  */
2024 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2025                                       bool *ptargets_secure);
2026 /**
2027  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2028  * @opaque: the NVIC
2029  *
2030  * Move the current highest priority pending exception from the pending
2031  * state to the active state, and update v7m.exception to indicate that
2032  * it is the exception currently being handled.
2033  */
2034 void armv7m_nvic_acknowledge_irq(void *opaque);
2035 /**
2036  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2037  * @opaque: the NVIC
2038  * @irq: the exception number to complete
2039  * @secure: true if this exception was secure
2040  *
2041  * Returns: -1 if the irq was not active
2042  *           1 if completing this irq brought us back to base (no active irqs)
2043  *           0 if there is still an irq active after this one was completed
2044  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2045  */
2046 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2047 /**
2048  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2049  * @opaque: the NVIC
2050  * @irq: the exception number to mark pending
2051  * @secure: false for non-banked exceptions or for the nonsecure
2052  * version of a banked exception, true for the secure version of a banked
2053  * exception.
2054  *
2055  * Return whether an exception is "ready", i.e. whether the exception is
2056  * enabled and is configured at a priority which would allow it to
2057  * interrupt the current execution priority. This controls whether the
2058  * RDY bit for it in the FPCCR is set.
2059  */
2060 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2061 /**
2062  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2063  * @opaque: the NVIC
2064  *
2065  * Returns: the raw execution priority as defined by the v8M architecture.
2066  * This is the execution priority minus the effects of AIRCR.PRIS,
2067  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2068  * (v8M ARM ARM I_PKLD.)
2069  */
2070 int armv7m_nvic_raw_execution_priority(void *opaque);
2071 /**
2072  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2073  * priority is negative for the specified security state.
2074  * @opaque: the NVIC
2075  * @secure: the security state to test
2076  * This corresponds to the pseudocode IsReqExecPriNeg().
2077  */
2078 #ifndef CONFIG_USER_ONLY
2079 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2080 #else
2081 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2082 {
2083     return false;
2084 }
2085 #endif
2086 
2087 /* Interface for defining coprocessor registers.
2088  * Registers are defined in tables of arm_cp_reginfo structs
2089  * which are passed to define_arm_cp_regs().
2090  */
2091 
2092 /* When looking up a coprocessor register we look for it
2093  * via an integer which encodes all of:
2094  *  coprocessor number
2095  *  Crn, Crm, opc1, opc2 fields
2096  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2097  *    or via MRRC/MCRR?)
2098  *  non-secure/secure bank (AArch32 only)
2099  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2100  * (In this case crn and opc2 should be zero.)
2101  * For AArch64, there is no 32/64 bit size distinction;
2102  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2103  * and 4 bit CRn and CRm. The encoding patterns are chosen
2104  * to be easy to convert to and from the KVM encodings, and also
2105  * so that the hashtable can contain both AArch32 and AArch64
2106  * registers (to allow for interprocessing where we might run
2107  * 32 bit code on a 64 bit core).
2108  */
2109 /* This bit is private to our hashtable cpreg; in KVM register
2110  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2111  * in the upper bits of the 64 bit ID.
2112  */
2113 #define CP_REG_AA64_SHIFT 28
2114 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2115 
2116 /* To enable banking of coprocessor registers depending on ns-bit we
2117  * add a bit to distinguish between secure and non-secure cpregs in the
2118  * hashtable.
2119  */
2120 #define CP_REG_NS_SHIFT 29
2121 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2122 
2123 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2124     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2125      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2126 
2127 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2128     (CP_REG_AA64_MASK |                                 \
2129      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2130      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2131      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2132      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2133      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2134      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2135 
2136 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2137  * version used as a key for the coprocessor register hashtable
2138  */
2139 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2140 {
2141     uint32_t cpregid = kvmid;
2142     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2143         cpregid |= CP_REG_AA64_MASK;
2144     } else {
2145         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2146             cpregid |= (1 << 15);
2147         }
2148 
2149         /* KVM is always non-secure so add the NS flag on AArch32 register
2150          * entries.
2151          */
2152          cpregid |= 1 << CP_REG_NS_SHIFT;
2153     }
2154     return cpregid;
2155 }
2156 
2157 /* Convert a truncated 32 bit hashtable key into the full
2158  * 64 bit KVM register ID.
2159  */
2160 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2161 {
2162     uint64_t kvmid;
2163 
2164     if (cpregid & CP_REG_AA64_MASK) {
2165         kvmid = cpregid & ~CP_REG_AA64_MASK;
2166         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2167     } else {
2168         kvmid = cpregid & ~(1 << 15);
2169         if (cpregid & (1 << 15)) {
2170             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2171         } else {
2172             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2173         }
2174     }
2175     return kvmid;
2176 }
2177 
2178 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2179  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2180  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2181  * TCG can assume the value to be constant (ie load at translate time)
2182  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2183  * indicates that the TB should not be ended after a write to this register
2184  * (the default is that the TB ends after cp writes). OVERRIDE permits
2185  * a register definition to override a previous definition for the
2186  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2187  * old must have the OVERRIDE bit set.
2188  * ALIAS indicates that this register is an alias view of some underlying
2189  * state which is also visible via another register, and that the other
2190  * register is handling migration and reset; registers marked ALIAS will not be
2191  * migrated but may have their state set by syncing of register state from KVM.
2192  * NO_RAW indicates that this register has no underlying state and does not
2193  * support raw access for state saving/loading; it will not be used for either
2194  * migration or KVM state synchronization. (Typically this is for "registers"
2195  * which are actually used as instructions for cache maintenance and so on.)
2196  * IO indicates that this register does I/O and therefore its accesses
2197  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2198  * registers which implement clocks or timers require this.
2199  */
2200 #define ARM_CP_SPECIAL           0x0001
2201 #define ARM_CP_CONST             0x0002
2202 #define ARM_CP_64BIT             0x0004
2203 #define ARM_CP_SUPPRESS_TB_END   0x0008
2204 #define ARM_CP_OVERRIDE          0x0010
2205 #define ARM_CP_ALIAS             0x0020
2206 #define ARM_CP_IO                0x0040
2207 #define ARM_CP_NO_RAW            0x0080
2208 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2209 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2210 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2211 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2212 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2213 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2214 #define ARM_CP_FPU               0x1000
2215 #define ARM_CP_SVE               0x2000
2216 #define ARM_CP_NO_GDB            0x4000
2217 /* Used only as a terminator for ARMCPRegInfo lists */
2218 #define ARM_CP_SENTINEL          0xffff
2219 /* Mask of only the flag bits in a type field */
2220 #define ARM_CP_FLAG_MASK         0x70ff
2221 
2222 /* Valid values for ARMCPRegInfo state field, indicating which of
2223  * the AArch32 and AArch64 execution states this register is visible in.
2224  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2225  * If the reginfo is declared to be visible in both states then a second
2226  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2227  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2228  * Note that we rely on the values of these enums as we iterate through
2229  * the various states in some places.
2230  */
2231 enum {
2232     ARM_CP_STATE_AA32 = 0,
2233     ARM_CP_STATE_AA64 = 1,
2234     ARM_CP_STATE_BOTH = 2,
2235 };
2236 
2237 /* ARM CP register secure state flags.  These flags identify security state
2238  * attributes for a given CP register entry.
2239  * The existence of both or neither secure and non-secure flags indicates that
2240  * the register has both a secure and non-secure hash entry.  A single one of
2241  * these flags causes the register to only be hashed for the specified
2242  * security state.
2243  * Although definitions may have any combination of the S/NS bits, each
2244  * registered entry will only have one to identify whether the entry is secure
2245  * or non-secure.
2246  */
2247 enum {
2248     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2249     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2250 };
2251 
2252 /* Return true if cptype is a valid type field. This is used to try to
2253  * catch errors where the sentinel has been accidentally left off the end
2254  * of a list of registers.
2255  */
2256 static inline bool cptype_valid(int cptype)
2257 {
2258     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2259         || ((cptype & ARM_CP_SPECIAL) &&
2260             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2261 }
2262 
2263 /* Access rights:
2264  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2265  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2266  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2267  * (ie any of the privileged modes in Secure state, or Monitor mode).
2268  * If a register is accessible in one privilege level it's always accessible
2269  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2270  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2271  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2272  * terminology a little and call this PL3.
2273  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2274  * with the ELx exception levels.
2275  *
2276  * If access permissions for a register are more complex than can be
2277  * described with these bits, then use a laxer set of restrictions, and
2278  * do the more restrictive/complex check inside a helper function.
2279  */
2280 #define PL3_R 0x80
2281 #define PL3_W 0x40
2282 #define PL2_R (0x20 | PL3_R)
2283 #define PL2_W (0x10 | PL3_W)
2284 #define PL1_R (0x08 | PL2_R)
2285 #define PL1_W (0x04 | PL2_W)
2286 #define PL0_R (0x02 | PL1_R)
2287 #define PL0_W (0x01 | PL1_W)
2288 
2289 /*
2290  * For user-mode some registers are accessible to EL0 via a kernel
2291  * trap-and-emulate ABI. In this case we define the read permissions
2292  * as actually being PL0_R. However some bits of any given register
2293  * may still be masked.
2294  */
2295 #ifdef CONFIG_USER_ONLY
2296 #define PL0U_R PL0_R
2297 #else
2298 #define PL0U_R PL1_R
2299 #endif
2300 
2301 #define PL3_RW (PL3_R | PL3_W)
2302 #define PL2_RW (PL2_R | PL2_W)
2303 #define PL1_RW (PL1_R | PL1_W)
2304 #define PL0_RW (PL0_R | PL0_W)
2305 
2306 /* Return the highest implemented Exception Level */
2307 static inline int arm_highest_el(CPUARMState *env)
2308 {
2309     if (arm_feature(env, ARM_FEATURE_EL3)) {
2310         return 3;
2311     }
2312     if (arm_feature(env, ARM_FEATURE_EL2)) {
2313         return 2;
2314     }
2315     return 1;
2316 }
2317 
2318 /* Return true if a v7M CPU is in Handler mode */
2319 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2320 {
2321     return env->v7m.exception != 0;
2322 }
2323 
2324 /* Return the current Exception Level (as per ARMv8; note that this differs
2325  * from the ARMv7 Privilege Level).
2326  */
2327 static inline int arm_current_el(CPUARMState *env)
2328 {
2329     if (arm_feature(env, ARM_FEATURE_M)) {
2330         return arm_v7m_is_handler_mode(env) ||
2331             !(env->v7m.control[env->v7m.secure] & 1);
2332     }
2333 
2334     if (is_a64(env)) {
2335         return extract32(env->pstate, 2, 2);
2336     }
2337 
2338     switch (env->uncached_cpsr & 0x1f) {
2339     case ARM_CPU_MODE_USR:
2340         return 0;
2341     case ARM_CPU_MODE_HYP:
2342         return 2;
2343     case ARM_CPU_MODE_MON:
2344         return 3;
2345     default:
2346         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2347             /* If EL3 is 32-bit then all secure privileged modes run in
2348              * EL3
2349              */
2350             return 3;
2351         }
2352 
2353         return 1;
2354     }
2355 }
2356 
2357 typedef struct ARMCPRegInfo ARMCPRegInfo;
2358 
2359 typedef enum CPAccessResult {
2360     /* Access is permitted */
2361     CP_ACCESS_OK = 0,
2362     /* Access fails due to a configurable trap or enable which would
2363      * result in a categorized exception syndrome giving information about
2364      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2365      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2366      * PL1 if in EL0, otherwise to the current EL).
2367      */
2368     CP_ACCESS_TRAP = 1,
2369     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2370      * Note that this is not a catch-all case -- the set of cases which may
2371      * result in this failure is specifically defined by the architecture.
2372      */
2373     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2374     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2375     CP_ACCESS_TRAP_EL2 = 3,
2376     CP_ACCESS_TRAP_EL3 = 4,
2377     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2378     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2379     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2380     /* Access fails and results in an exception syndrome for an FP access,
2381      * trapped directly to EL2 or EL3
2382      */
2383     CP_ACCESS_TRAP_FP_EL2 = 7,
2384     CP_ACCESS_TRAP_FP_EL3 = 8,
2385 } CPAccessResult;
2386 
2387 /* Access functions for coprocessor registers. These cannot fail and
2388  * may not raise exceptions.
2389  */
2390 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2391 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2392                        uint64_t value);
2393 /* Access permission check functions for coprocessor registers. */
2394 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2395                                   const ARMCPRegInfo *opaque,
2396                                   bool isread);
2397 /* Hook function for register reset */
2398 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2399 
2400 #define CP_ANY 0xff
2401 
2402 /* Definition of an ARM coprocessor register */
2403 struct ARMCPRegInfo {
2404     /* Name of register (useful mainly for debugging, need not be unique) */
2405     const char *name;
2406     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2407      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2408      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2409      * will be decoded to this register. The register read and write
2410      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2411      * used by the program, so it is possible to register a wildcard and
2412      * then behave differently on read/write if necessary.
2413      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2414      * must both be zero.
2415      * For AArch64-visible registers, opc0 is also used.
2416      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2417      * way to distinguish (for KVM's benefit) guest-visible system registers
2418      * from demuxed ones provided to preserve the "no side effects on
2419      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2420      * visible (to match KVM's encoding); cp==0 will be converted to
2421      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2422      */
2423     uint8_t cp;
2424     uint8_t crn;
2425     uint8_t crm;
2426     uint8_t opc0;
2427     uint8_t opc1;
2428     uint8_t opc2;
2429     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2430     int state;
2431     /* Register type: ARM_CP_* bits/values */
2432     int type;
2433     /* Access rights: PL*_[RW] */
2434     int access;
2435     /* Security state: ARM_CP_SECSTATE_* bits/values */
2436     int secure;
2437     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2438      * this register was defined: can be used to hand data through to the
2439      * register read/write functions, since they are passed the ARMCPRegInfo*.
2440      */
2441     void *opaque;
2442     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2443      * fieldoffset is non-zero, the reset value of the register.
2444      */
2445     uint64_t resetvalue;
2446     /* Offset of the field in CPUARMState for this register.
2447      *
2448      * This is not needed if either:
2449      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2450      *  2. both readfn and writefn are specified
2451      */
2452     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2453 
2454     /* Offsets of the secure and non-secure fields in CPUARMState for the
2455      * register if it is banked.  These fields are only used during the static
2456      * registration of a register.  During hashing the bank associated
2457      * with a given security state is copied to fieldoffset which is used from
2458      * there on out.
2459      *
2460      * It is expected that register definitions use either fieldoffset or
2461      * bank_fieldoffsets in the definition but not both.  It is also expected
2462      * that both bank offsets are set when defining a banked register.  This
2463      * use indicates that a register is banked.
2464      */
2465     ptrdiff_t bank_fieldoffsets[2];
2466 
2467     /* Function for making any access checks for this register in addition to
2468      * those specified by the 'access' permissions bits. If NULL, no extra
2469      * checks required. The access check is performed at runtime, not at
2470      * translate time.
2471      */
2472     CPAccessFn *accessfn;
2473     /* Function for handling reads of this register. If NULL, then reads
2474      * will be done by loading from the offset into CPUARMState specified
2475      * by fieldoffset.
2476      */
2477     CPReadFn *readfn;
2478     /* Function for handling writes of this register. If NULL, then writes
2479      * will be done by writing to the offset into CPUARMState specified
2480      * by fieldoffset.
2481      */
2482     CPWriteFn *writefn;
2483     /* Function for doing a "raw" read; used when we need to copy
2484      * coprocessor state to the kernel for KVM or out for
2485      * migration. This only needs to be provided if there is also a
2486      * readfn and it has side effects (for instance clear-on-read bits).
2487      */
2488     CPReadFn *raw_readfn;
2489     /* Function for doing a "raw" write; used when we need to copy KVM
2490      * kernel coprocessor state into userspace, or for inbound
2491      * migration. This only needs to be provided if there is also a
2492      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2493      * or similar behaviour.
2494      */
2495     CPWriteFn *raw_writefn;
2496     /* Function for resetting the register. If NULL, then reset will be done
2497      * by writing resetvalue to the field specified in fieldoffset. If
2498      * fieldoffset is 0 then no reset will be done.
2499      */
2500     CPResetFn *resetfn;
2501 };
2502 
2503 /* Macros which are lvalues for the field in CPUARMState for the
2504  * ARMCPRegInfo *ri.
2505  */
2506 #define CPREG_FIELD32(env, ri) \
2507     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2508 #define CPREG_FIELD64(env, ri) \
2509     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2510 
2511 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2512 
2513 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2514                                     const ARMCPRegInfo *regs, void *opaque);
2515 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2516                                        const ARMCPRegInfo *regs, void *opaque);
2517 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2518 {
2519     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2520 }
2521 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2522 {
2523     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2524 }
2525 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2526 
2527 /*
2528  * Definition of an ARM co-processor register as viewed from
2529  * userspace. This is used for presenting sanitised versions of
2530  * registers to userspace when emulating the Linux AArch64 CPU
2531  * ID/feature ABI (advertised as HWCAP_CPUID).
2532  */
2533 typedef struct ARMCPRegUserSpaceInfo {
2534     /* Name of register */
2535     const char *name;
2536 
2537     /* Is the name actually a glob pattern */
2538     bool is_glob;
2539 
2540     /* Only some bits are exported to user space */
2541     uint64_t exported_bits;
2542 
2543     /* Fixed bits are applied after the mask */
2544     uint64_t fixed_bits;
2545 } ARMCPRegUserSpaceInfo;
2546 
2547 #define REGUSERINFO_SENTINEL { .name = NULL }
2548 
2549 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2550 
2551 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2552 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2553                          uint64_t value);
2554 /* CPReadFn that can be used for read-as-zero behaviour */
2555 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2556 
2557 /* CPResetFn that does nothing, for use if no reset is required even
2558  * if fieldoffset is non zero.
2559  */
2560 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2561 
2562 /* Return true if this reginfo struct's field in the cpu state struct
2563  * is 64 bits wide.
2564  */
2565 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2566 {
2567     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2568 }
2569 
2570 static inline bool cp_access_ok(int current_el,
2571                                 const ARMCPRegInfo *ri, int isread)
2572 {
2573     return (ri->access >> ((current_el * 2) + isread)) & 1;
2574 }
2575 
2576 /* Raw read of a coprocessor register (as needed for migration, etc) */
2577 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2578 
2579 /**
2580  * write_list_to_cpustate
2581  * @cpu: ARMCPU
2582  *
2583  * For each register listed in the ARMCPU cpreg_indexes list, write
2584  * its value from the cpreg_values list into the ARMCPUState structure.
2585  * This updates TCG's working data structures from KVM data or
2586  * from incoming migration state.
2587  *
2588  * Returns: true if all register values were updated correctly,
2589  * false if some register was unknown or could not be written.
2590  * Note that we do not stop early on failure -- we will attempt
2591  * writing all registers in the list.
2592  */
2593 bool write_list_to_cpustate(ARMCPU *cpu);
2594 
2595 /**
2596  * write_cpustate_to_list:
2597  * @cpu: ARMCPU
2598  *
2599  * For each register listed in the ARMCPU cpreg_indexes list, write
2600  * its value from the ARMCPUState structure into the cpreg_values list.
2601  * This is used to copy info from TCG's working data structures into
2602  * KVM or for outbound migration.
2603  *
2604  * Returns: true if all register values were read correctly,
2605  * false if some register was unknown or could not be read.
2606  * Note that we do not stop early on failure -- we will attempt
2607  * reading all registers in the list.
2608  */
2609 bool write_cpustate_to_list(ARMCPU *cpu);
2610 
2611 #define ARM_CPUID_TI915T      0x54029152
2612 #define ARM_CPUID_TI925T      0x54029252
2613 
2614 #if defined(CONFIG_USER_ONLY)
2615 #define TARGET_PAGE_BITS 12
2616 #else
2617 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2618  * have to support 1K tiny pages.
2619  */
2620 #define TARGET_PAGE_BITS_VARY
2621 #define TARGET_PAGE_BITS_MIN 10
2622 #endif
2623 
2624 #if defined(TARGET_AARCH64)
2625 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2626 #  define TARGET_VIRT_ADDR_SPACE_BITS 48
2627 #else
2628 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2629 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2630 #endif
2631 
2632 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2633                                      unsigned int target_el)
2634 {
2635     CPUARMState *env = cs->env_ptr;
2636     unsigned int cur_el = arm_current_el(env);
2637     bool secure = arm_is_secure(env);
2638     bool pstate_unmasked;
2639     int8_t unmasked = 0;
2640     uint64_t hcr_el2;
2641 
2642     /* Don't take exceptions if they target a lower EL.
2643      * This check should catch any exceptions that would not be taken but left
2644      * pending.
2645      */
2646     if (cur_el > target_el) {
2647         return false;
2648     }
2649 
2650     hcr_el2 = arm_hcr_el2_eff(env);
2651 
2652     switch (excp_idx) {
2653     case EXCP_FIQ:
2654         pstate_unmasked = !(env->daif & PSTATE_F);
2655         break;
2656 
2657     case EXCP_IRQ:
2658         pstate_unmasked = !(env->daif & PSTATE_I);
2659         break;
2660 
2661     case EXCP_VFIQ:
2662         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2663             /* VFIQs are only taken when hypervized and non-secure.  */
2664             return false;
2665         }
2666         return !(env->daif & PSTATE_F);
2667     case EXCP_VIRQ:
2668         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2669             /* VIRQs are only taken when hypervized and non-secure.  */
2670             return false;
2671         }
2672         return !(env->daif & PSTATE_I);
2673     default:
2674         g_assert_not_reached();
2675     }
2676 
2677     /* Use the target EL, current execution state and SCR/HCR settings to
2678      * determine whether the corresponding CPSR bit is used to mask the
2679      * interrupt.
2680      */
2681     if ((target_el > cur_el) && (target_el != 1)) {
2682         /* Exceptions targeting a higher EL may not be maskable */
2683         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2684             /* 64-bit masking rules are simple: exceptions to EL3
2685              * can't be masked, and exceptions to EL2 can only be
2686              * masked from Secure state. The HCR and SCR settings
2687              * don't affect the masking logic, only the interrupt routing.
2688              */
2689             if (target_el == 3 || !secure) {
2690                 unmasked = 1;
2691             }
2692         } else {
2693             /* The old 32-bit-only environment has a more complicated
2694              * masking setup. HCR and SCR bits not only affect interrupt
2695              * routing but also change the behaviour of masking.
2696              */
2697             bool hcr, scr;
2698 
2699             switch (excp_idx) {
2700             case EXCP_FIQ:
2701                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2702                  * we override the CPSR.F in determining if the exception is
2703                  * masked or not. If neither of these are set then we fall back
2704                  * to the CPSR.F setting otherwise we further assess the state
2705                  * below.
2706                  */
2707                 hcr = hcr_el2 & HCR_FMO;
2708                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2709 
2710                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2711                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2712                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2713                  * when non-secure but only when FIQs are only routed to EL3.
2714                  */
2715                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2716                 break;
2717             case EXCP_IRQ:
2718                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2719                  * we may override the CPSR.I masking when in non-secure state.
2720                  * The SCR.IRQ setting has already been taken into consideration
2721                  * when setting the target EL, so it does not have a further
2722                  * affect here.
2723                  */
2724                 hcr = hcr_el2 & HCR_IMO;
2725                 scr = false;
2726                 break;
2727             default:
2728                 g_assert_not_reached();
2729             }
2730 
2731             if ((scr || hcr) && !secure) {
2732                 unmasked = 1;
2733             }
2734         }
2735     }
2736 
2737     /* The PSTATE bits only mask the interrupt if we have not overriden the
2738      * ability above.
2739      */
2740     return unmasked || pstate_unmasked;
2741 }
2742 
2743 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2744 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2745 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2746 
2747 #define cpu_signal_handler cpu_arm_signal_handler
2748 #define cpu_list arm_cpu_list
2749 
2750 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2751  *
2752  * If EL3 is 64-bit:
2753  *  + NonSecure EL1 & 0 stage 1
2754  *  + NonSecure EL1 & 0 stage 2
2755  *  + NonSecure EL2
2756  *  + Secure EL1 & EL0
2757  *  + Secure EL3
2758  * If EL3 is 32-bit:
2759  *  + NonSecure PL1 & 0 stage 1
2760  *  + NonSecure PL1 & 0 stage 2
2761  *  + NonSecure PL2
2762  *  + Secure PL0 & PL1
2763  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2764  *
2765  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2766  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2767  *     may differ in access permissions even if the VA->PA map is the same
2768  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2769  *     translation, which means that we have one mmu_idx that deals with two
2770  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2771  *     architecturally permitted]
2772  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2773  *     handling via the TLB. The only way to do a stage 1 translation without
2774  *     the immediate stage 2 translation is via the ATS or AT system insns,
2775  *     which can be slow-pathed and always do a page table walk.
2776  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2777  *     translation regimes, because they map reasonably well to each other
2778  *     and they can't both be active at the same time.
2779  * This gives us the following list of mmu_idx values:
2780  *
2781  * NS EL0 (aka NS PL0) stage 1+2
2782  * NS EL1 (aka NS PL1) stage 1+2
2783  * NS EL2 (aka NS PL2)
2784  * S EL3 (aka S PL1)
2785  * S EL0 (aka S PL0)
2786  * S EL1 (not used if EL3 is 32 bit)
2787  * NS EL0+1 stage 2
2788  *
2789  * (The last of these is an mmu_idx because we want to be able to use the TLB
2790  * for the accesses done as part of a stage 1 page table walk, rather than
2791  * having to walk the stage 2 page table over and over.)
2792  *
2793  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2794  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2795  * NS EL2 if we ever model a Cortex-R52).
2796  *
2797  * M profile CPUs are rather different as they do not have a true MMU.
2798  * They have the following different MMU indexes:
2799  *  User
2800  *  Privileged
2801  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2802  *  Privileged, execution priority negative (ditto)
2803  * If the CPU supports the v8M Security Extension then there are also:
2804  *  Secure User
2805  *  Secure Privileged
2806  *  Secure User, execution priority negative
2807  *  Secure Privileged, execution priority negative
2808  *
2809  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2810  * are not quite the same -- different CPU types (most notably M profile
2811  * vs A/R profile) would like to use MMU indexes with different semantics,
2812  * but since we don't ever need to use all of those in a single CPU we
2813  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2814  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2815  * the same for any particular CPU.
2816  * Variables of type ARMMUIdx are always full values, and the core
2817  * index values are in variables of type 'int'.
2818  *
2819  * Our enumeration includes at the end some entries which are not "true"
2820  * mmu_idx values in that they don't have corresponding TLBs and are only
2821  * valid for doing slow path page table walks.
2822  *
2823  * The constant names here are patterned after the general style of the names
2824  * of the AT/ATS operations.
2825  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2826  * For M profile we arrange them to have a bit for priv, a bit for negpri
2827  * and a bit for secure.
2828  */
2829 #define ARM_MMU_IDX_A 0x10 /* A profile */
2830 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2831 #define ARM_MMU_IDX_M 0x40 /* M profile */
2832 
2833 /* meanings of the bits for M profile mmu idx values */
2834 #define ARM_MMU_IDX_M_PRIV 0x1
2835 #define ARM_MMU_IDX_M_NEGPRI 0x2
2836 #define ARM_MMU_IDX_M_S 0x4
2837 
2838 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2839 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2840 
2841 typedef enum ARMMMUIdx {
2842     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2843     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2844     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2845     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2846     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2847     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2848     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2849     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2850     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2851     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2852     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2853     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2854     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2855     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2856     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2857     /* Indexes below here don't have TLBs and are used only for AT system
2858      * instructions or for the first stage of an S12 page table walk.
2859      */
2860     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2861     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2862 } ARMMMUIdx;
2863 
2864 /* Bit macros for the core-mmu-index values for each index,
2865  * for use when calling tlb_flush_by_mmuidx() and friends.
2866  */
2867 typedef enum ARMMMUIdxBit {
2868     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2869     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2870     ARMMMUIdxBit_S1E2 = 1 << 2,
2871     ARMMMUIdxBit_S1E3 = 1 << 3,
2872     ARMMMUIdxBit_S1SE0 = 1 << 4,
2873     ARMMMUIdxBit_S1SE1 = 1 << 5,
2874     ARMMMUIdxBit_S2NS = 1 << 6,
2875     ARMMMUIdxBit_MUser = 1 << 0,
2876     ARMMMUIdxBit_MPriv = 1 << 1,
2877     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2878     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2879     ARMMMUIdxBit_MSUser = 1 << 4,
2880     ARMMMUIdxBit_MSPriv = 1 << 5,
2881     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2882     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2883 } ARMMMUIdxBit;
2884 
2885 #define MMU_USER_IDX 0
2886 
2887 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2888 {
2889     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2890 }
2891 
2892 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2893 {
2894     if (arm_feature(env, ARM_FEATURE_M)) {
2895         return mmu_idx | ARM_MMU_IDX_M;
2896     } else {
2897         return mmu_idx | ARM_MMU_IDX_A;
2898     }
2899 }
2900 
2901 /* Return the exception level we're running at if this is our mmu_idx */
2902 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2903 {
2904     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2905     case ARM_MMU_IDX_A:
2906         return mmu_idx & 3;
2907     case ARM_MMU_IDX_M:
2908         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2909     default:
2910         g_assert_not_reached();
2911     }
2912 }
2913 
2914 /* Return the MMU index for a v7M CPU in the specified security and
2915  * privilege state.
2916  */
2917 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2918                                                 bool secstate, bool priv);
2919 
2920 /* Return the MMU index for a v7M CPU in the specified security state */
2921 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2922 
2923 /**
2924  * cpu_mmu_index:
2925  * @env: The cpu environment
2926  * @ifetch: True for code access, false for data access.
2927  *
2928  * Return the core mmu index for the current translation regime.
2929  * This function is used by generic TCG code paths.
2930  */
2931 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2932 
2933 /* Indexes used when registering address spaces with cpu_address_space_init */
2934 typedef enum ARMASIdx {
2935     ARMASIdx_NS = 0,
2936     ARMASIdx_S = 1,
2937 } ARMASIdx;
2938 
2939 /* Return the Exception Level targeted by debug exceptions. */
2940 static inline int arm_debug_target_el(CPUARMState *env)
2941 {
2942     bool secure = arm_is_secure(env);
2943     bool route_to_el2 = false;
2944 
2945     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2946         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2947                        env->cp15.mdcr_el2 & MDCR_TDE;
2948     }
2949 
2950     if (route_to_el2) {
2951         return 2;
2952     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2953                !arm_el_is_aa64(env, 3) && secure) {
2954         return 3;
2955     } else {
2956         return 1;
2957     }
2958 }
2959 
2960 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2961 {
2962     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2963      * CSSELR is RAZ/WI.
2964      */
2965     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2966 }
2967 
2968 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2969 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2970 {
2971     int cur_el = arm_current_el(env);
2972     int debug_el;
2973 
2974     if (cur_el == 3) {
2975         return false;
2976     }
2977 
2978     /* MDCR_EL3.SDD disables debug events from Secure state */
2979     if (arm_is_secure_below_el3(env)
2980         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2981         return false;
2982     }
2983 
2984     /*
2985      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2986      * while not masking the (D)ebug bit in DAIF.
2987      */
2988     debug_el = arm_debug_target_el(env);
2989 
2990     if (cur_el == debug_el) {
2991         return extract32(env->cp15.mdscr_el1, 13, 1)
2992             && !(env->daif & PSTATE_D);
2993     }
2994 
2995     /* Otherwise the debug target needs to be a higher EL */
2996     return debug_el > cur_el;
2997 }
2998 
2999 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3000 {
3001     int el = arm_current_el(env);
3002 
3003     if (el == 0 && arm_el_is_aa64(env, 1)) {
3004         return aa64_generate_debug_exceptions(env);
3005     }
3006 
3007     if (arm_is_secure(env)) {
3008         int spd;
3009 
3010         if (el == 0 && (env->cp15.sder & 1)) {
3011             /* SDER.SUIDEN means debug exceptions from Secure EL0
3012              * are always enabled. Otherwise they are controlled by
3013              * SDCR.SPD like those from other Secure ELs.
3014              */
3015             return true;
3016         }
3017 
3018         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3019         switch (spd) {
3020         case 1:
3021             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3022         case 0:
3023             /* For 0b00 we return true if external secure invasive debug
3024              * is enabled. On real hardware this is controlled by external
3025              * signals to the core. QEMU always permits debug, and behaves
3026              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3027              */
3028             return true;
3029         case 2:
3030             return false;
3031         case 3:
3032             return true;
3033         }
3034     }
3035 
3036     return el != 2;
3037 }
3038 
3039 /* Return true if debugging exceptions are currently enabled.
3040  * This corresponds to what in ARM ARM pseudocode would be
3041  *    if UsingAArch32() then
3042  *        return AArch32.GenerateDebugExceptions()
3043  *    else
3044  *        return AArch64.GenerateDebugExceptions()
3045  * We choose to push the if() down into this function for clarity,
3046  * since the pseudocode has it at all callsites except for the one in
3047  * CheckSoftwareStep(), where it is elided because both branches would
3048  * always return the same value.
3049  */
3050 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3051 {
3052     if (env->aarch64) {
3053         return aa64_generate_debug_exceptions(env);
3054     } else {
3055         return aa32_generate_debug_exceptions(env);
3056     }
3057 }
3058 
3059 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3060  * implicitly means this always returns false in pre-v8 CPUs.)
3061  */
3062 static inline bool arm_singlestep_active(CPUARMState *env)
3063 {
3064     return extract32(env->cp15.mdscr_el1, 0, 1)
3065         && arm_el_is_aa64(env, arm_debug_target_el(env))
3066         && arm_generate_debug_exceptions(env);
3067 }
3068 
3069 static inline bool arm_sctlr_b(CPUARMState *env)
3070 {
3071     return
3072         /* We need not implement SCTLR.ITD in user-mode emulation, so
3073          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3074          * This lets people run BE32 binaries with "-cpu any".
3075          */
3076 #ifndef CONFIG_USER_ONLY
3077         !arm_feature(env, ARM_FEATURE_V7) &&
3078 #endif
3079         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3080 }
3081 
3082 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3083 {
3084     if (el == 0) {
3085         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3086         return env->cp15.sctlr_el[1];
3087     } else {
3088         return env->cp15.sctlr_el[el];
3089     }
3090 }
3091 
3092 
3093 /* Return true if the processor is in big-endian mode. */
3094 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3095 {
3096     /* In 32bit endianness is determined by looking at CPSR's E bit */
3097     if (!is_a64(env)) {
3098         return
3099 #ifdef CONFIG_USER_ONLY
3100             /* In system mode, BE32 is modelled in line with the
3101              * architecture (as word-invariant big-endianness), where loads
3102              * and stores are done little endian but from addresses which
3103              * are adjusted by XORing with the appropriate constant. So the
3104              * endianness to use for the raw data access is not affected by
3105              * SCTLR.B.
3106              * In user mode, however, we model BE32 as byte-invariant
3107              * big-endianness (because user-only code cannot tell the
3108              * difference), and so we need to use a data access endianness
3109              * that depends on SCTLR.B.
3110              */
3111             arm_sctlr_b(env) ||
3112 #endif
3113                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3114     } else {
3115         int cur_el = arm_current_el(env);
3116         uint64_t sctlr = arm_sctlr(env, cur_el);
3117 
3118         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3119     }
3120 }
3121 
3122 #include "exec/cpu-all.h"
3123 
3124 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3125  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3126  * We put flags which are shared between 32 and 64 bit mode at the top
3127  * of the word, and flags which apply to only one mode at the bottom.
3128  */
3129 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3130 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3131 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3132 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3133 /* Target EL if we take a floating-point-disabled exception */
3134 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3135 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3136 
3137 /* Bit usage when in AArch32 state: */
3138 FIELD(TBFLAG_A32, THUMB, 0, 1)
3139 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3140 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3141 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3142 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3143 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3144 /* We store the bottom two bits of the CPAR as TB flags and handle
3145  * checks on the other bits at runtime
3146  */
3147 FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3148 /* Indicates whether cp register reads and writes by guest code should access
3149  * the secure or nonsecure bank of banked registers; note that this is not
3150  * the same thing as the current security state of the processor!
3151  */
3152 FIELD(TBFLAG_A32, NS, 19, 1)
3153 /* For M profile only, Handler (ie not Thread) mode */
3154 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3155 /* For M profile only, whether we should generate stack-limit checks */
3156 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3157 
3158 /* Bit usage when in AArch64 state */
3159 FIELD(TBFLAG_A64, TBII, 0, 2)
3160 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3161 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3162 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3163 FIELD(TBFLAG_A64, BT, 9, 1)
3164 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3165 FIELD(TBFLAG_A64, TBID, 12, 2)
3166 
3167 static inline bool bswap_code(bool sctlr_b)
3168 {
3169 #ifdef CONFIG_USER_ONLY
3170     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3171      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3172      * would also end up as a mixed-endian mode with BE code, LE data.
3173      */
3174     return
3175 #ifdef TARGET_WORDS_BIGENDIAN
3176         1 ^
3177 #endif
3178         sctlr_b;
3179 #else
3180     /* All code access in ARM is little endian, and there are no loaders
3181      * doing swaps that need to be reversed
3182      */
3183     return 0;
3184 #endif
3185 }
3186 
3187 #ifdef CONFIG_USER_ONLY
3188 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3189 {
3190     return
3191 #ifdef TARGET_WORDS_BIGENDIAN
3192        1 ^
3193 #endif
3194        arm_cpu_data_is_big_endian(env);
3195 }
3196 #endif
3197 
3198 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3199                           target_ulong *cs_base, uint32_t *flags);
3200 
3201 enum {
3202     QEMU_PSCI_CONDUIT_DISABLED = 0,
3203     QEMU_PSCI_CONDUIT_SMC = 1,
3204     QEMU_PSCI_CONDUIT_HVC = 2,
3205 };
3206 
3207 #ifndef CONFIG_USER_ONLY
3208 /* Return the address space index to use for a memory access */
3209 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3210 {
3211     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3212 }
3213 
3214 /* Return the AddressSpace to use for a memory access
3215  * (which depends on whether the access is S or NS, and whether
3216  * the board gave us a separate AddressSpace for S accesses).
3217  */
3218 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3219 {
3220     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3221 }
3222 #endif
3223 
3224 /**
3225  * arm_register_pre_el_change_hook:
3226  * Register a hook function which will be called immediately before this
3227  * CPU changes exception level or mode. The hook function will be
3228  * passed a pointer to the ARMCPU and the opaque data pointer passed
3229  * to this function when the hook was registered.
3230  *
3231  * Note that if a pre-change hook is called, any registered post-change hooks
3232  * are guaranteed to subsequently be called.
3233  */
3234 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3235                                  void *opaque);
3236 /**
3237  * arm_register_el_change_hook:
3238  * Register a hook function which will be called immediately after this
3239  * CPU changes exception level or mode. The hook function will be
3240  * passed a pointer to the ARMCPU and the opaque data pointer passed
3241  * to this function when the hook was registered.
3242  *
3243  * Note that any registered hooks registered here are guaranteed to be called
3244  * if pre-change hooks have been.
3245  */
3246 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3247         *opaque);
3248 
3249 /**
3250  * aa32_vfp_dreg:
3251  * Return a pointer to the Dn register within env in 32-bit mode.
3252  */
3253 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3254 {
3255     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3256 }
3257 
3258 /**
3259  * aa32_vfp_qreg:
3260  * Return a pointer to the Qn register within env in 32-bit mode.
3261  */
3262 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3263 {
3264     return &env->vfp.zregs[regno].d[0];
3265 }
3266 
3267 /**
3268  * aa64_vfp_qreg:
3269  * Return a pointer to the Qn register within env in 64-bit mode.
3270  */
3271 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3272 {
3273     return &env->vfp.zregs[regno].d[0];
3274 }
3275 
3276 /* Shared between translate-sve.c and sve_helper.c.  */
3277 extern const uint64_t pred_esz_masks[4];
3278 
3279 /*
3280  * 32-bit feature tests via id registers.
3281  */
3282 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3283 {
3284     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3285 }
3286 
3287 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3288 {
3289     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3290 }
3291 
3292 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3293 {
3294     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3295 }
3296 
3297 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3298 {
3299     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3300 }
3301 
3302 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3303 {
3304     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3305 }
3306 
3307 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3308 {
3309     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3310 }
3311 
3312 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3313 {
3314     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3315 }
3316 
3317 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3318 {
3319     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3320 }
3321 
3322 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3323 {
3324     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3325 }
3326 
3327 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3328 {
3329     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3330 }
3331 
3332 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3333 {
3334     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3335 }
3336 
3337 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3338 {
3339     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3340 }
3341 
3342 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3343 {
3344     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3345 }
3346 
3347 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3348 {
3349     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3350 }
3351 
3352 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3353 {
3354     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3355 }
3356 
3357 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3358 {
3359     /*
3360      * This is a placeholder for use by VCMA until the rest of
3361      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3362      * At which point we can properly set and check MVFR1.FPHP.
3363      */
3364     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3365 }
3366 
3367 /*
3368  * We always set the FP and SIMD FP16 fields to indicate identical
3369  * levels of support (assuming SIMD is implemented at all), so
3370  * we only need one set of accessors.
3371  */
3372 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3373 {
3374     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3375 }
3376 
3377 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3378 {
3379     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3380 }
3381 
3382 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3383 {
3384     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3385 }
3386 
3387 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3388 {
3389     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3390 }
3391 
3392 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3393 {
3394     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3395 }
3396 
3397 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3398 {
3399     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3400 }
3401 
3402 /*
3403  * 64-bit feature tests via id registers.
3404  */
3405 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3406 {
3407     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3408 }
3409 
3410 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3411 {
3412     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3413 }
3414 
3415 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3416 {
3417     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3418 }
3419 
3420 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3421 {
3422     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3423 }
3424 
3425 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3426 {
3427     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3428 }
3429 
3430 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3431 {
3432     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3433 }
3434 
3435 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3436 {
3437     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3438 }
3439 
3440 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3441 {
3442     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3443 }
3444 
3445 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3446 {
3447     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3448 }
3449 
3450 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3451 {
3452     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3453 }
3454 
3455 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3456 {
3457     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3458 }
3459 
3460 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3461 {
3462     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3463 }
3464 
3465 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3466 {
3467     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3468 }
3469 
3470 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3471 {
3472     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3473 }
3474 
3475 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3476 {
3477     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3478 }
3479 
3480 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3481 {
3482     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3483 }
3484 
3485 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3486 {
3487     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3488 }
3489 
3490 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3491 {
3492     /*
3493      * Note that while QEMU will only implement the architected algorithm
3494      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3495      * defined algorithms, and thus API+GPI, and this predicate controls
3496      * migration of the 128-bit keys.
3497      */
3498     return (id->id_aa64isar1 &
3499             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3500              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3501              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3502              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3503 }
3504 
3505 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3506 {
3507     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3508 }
3509 
3510 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3511 {
3512     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3513 }
3514 
3515 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3516 {
3517     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3518 }
3519 
3520 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3521 {
3522     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3523     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3524 }
3525 
3526 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3527 {
3528     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3529 }
3530 
3531 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3532 {
3533     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3534 }
3535 
3536 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3537 {
3538     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3539 }
3540 
3541 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3542 {
3543     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3544 }
3545 
3546 /*
3547  * Forward to the above feature tests given an ARMCPU pointer.
3548  */
3549 #define cpu_isar_feature(name, cpu) \
3550     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3551 
3552 #endif
3553