xref: /openbmc/qemu/target/arm/cpu.h (revision b14df228)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 #define VTCR_NSW (1u << 29)
170 #define VTCR_NSA (1u << 30)
171 #define VSTCR_SW VTCR_NSW
172 #define VSTCR_SA VTCR_NSA
173 
174 /* Define a maximum sized vector register.
175  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176  * For 64-bit, this is a 2048-bit SVE register.
177  *
178  * Note that the mapping between S, D, and Q views of the register bank
179  * differs between AArch64 and AArch32.
180  * In AArch32:
181  *  Qn = regs[n].d[1]:regs[n].d[0]
182  *  Dn = regs[n / 2].d[n & 1]
183  *  Sn = regs[n / 4].d[n % 4 / 2],
184  *       bits 31..0 for even n, and bits 63..32 for odd n
185  *       (and regs[16] to regs[31] are inaccessible)
186  * In AArch64:
187  *  Zn = regs[n].d[*]
188  *  Qn = regs[n].d[1]:regs[n].d[0]
189  *  Dn = regs[n].d[0]
190  *  Sn = regs[n].d[0] bits 31..0
191  *  Hn = regs[n].d[0] bits 15..0
192  *
193  * This corresponds to the architecturally defined mapping between
194  * the two execution states, and means we do not need to explicitly
195  * map these registers when changing states.
196  *
197  * Align the data for use with TCG host vector operations.
198  */
199 
200 #ifdef TARGET_AARCH64
201 # define ARM_MAX_VQ    16
202 #else
203 # define ARM_MAX_VQ    1
204 #endif
205 
206 typedef struct ARMVectorReg {
207     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208 } ARMVectorReg;
209 
210 #ifdef TARGET_AARCH64
211 /* In AArch32 mode, predicate registers do not exist at all.  */
212 typedef struct ARMPredicateReg {
213     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
214 } ARMPredicateReg;
215 
216 /* In AArch32 mode, PAC keys do not exist at all.  */
217 typedef struct ARMPACKey {
218     uint64_t lo, hi;
219 } ARMPACKey;
220 #endif
221 
222 /* See the commentary above the TBFLAG field definitions.  */
223 typedef struct CPUARMTBFlags {
224     uint32_t flags;
225     target_ulong flags2;
226 } CPUARMTBFlags;
227 
228 typedef struct CPUArchState {
229     /* Regs for current mode.  */
230     uint32_t regs[16];
231 
232     /* 32/64 switch only happens when taking and returning from
233      * exceptions so the overlap semantics are taken care of then
234      * instead of having a complicated union.
235      */
236     /* Regs for A64 mode.  */
237     uint64_t xregs[32];
238     uint64_t pc;
239     /* PSTATE isn't an architectural register for ARMv8. However, it is
240      * convenient for us to assemble the underlying state into a 32 bit format
241      * identical to the architectural format used for the SPSR. (This is also
242      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
243      * 'pstate' register are.) Of the PSTATE bits:
244      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
245      *    semantics as for AArch32, as described in the comments on each field)
246      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
247      *  DAIF (exception masks) are kept in env->daif
248      *  BTYPE is kept in env->btype
249      *  SM and ZA are kept in env->svcr
250      *  all other bits are stored in their correct places in env->pstate
251      */
252     uint32_t pstate;
253     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
254     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
255 
256     /* Cached TBFLAGS state.  See below for which bits are included.  */
257     CPUARMTBFlags hflags;
258 
259     /* Frequently accessed CPSR bits are stored separately for efficiency.
260        This contains all the other bits.  Use cpsr_{read,write} to access
261        the whole CPSR.  */
262     uint32_t uncached_cpsr;
263     uint32_t spsr;
264 
265     /* Banked registers.  */
266     uint64_t banked_spsr[8];
267     uint32_t banked_r13[8];
268     uint32_t banked_r14[8];
269 
270     /* These hold r8-r12.  */
271     uint32_t usr_regs[5];
272     uint32_t fiq_regs[5];
273 
274     /* cpsr flag cache for faster execution */
275     uint32_t CF; /* 0 or 1 */
276     uint32_t VF; /* V is the bit 31. All other bits are undefined */
277     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
278     uint32_t ZF; /* Z set if zero.  */
279     uint32_t QF; /* 0 or 1 */
280     uint32_t GE; /* cpsr[19:16] */
281     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
282     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
283     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
284     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
285 
286     uint64_t elr_el[4]; /* AArch64 exception link regs  */
287     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
288 
289     /* System control coprocessor (cp15) */
290     struct {
291         uint32_t c0_cpuid;
292         union { /* Cache size selection */
293             struct {
294                 uint64_t _unused_csselr0;
295                 uint64_t csselr_ns;
296                 uint64_t _unused_csselr1;
297                 uint64_t csselr_s;
298             };
299             uint64_t csselr_el[4];
300         };
301         union { /* System control register. */
302             struct {
303                 uint64_t _unused_sctlr;
304                 uint64_t sctlr_ns;
305                 uint64_t hsctlr;
306                 uint64_t sctlr_s;
307             };
308             uint64_t sctlr_el[4];
309         };
310         uint64_t cpacr_el1; /* Architectural feature access control register */
311         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
312         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
313         uint64_t sder; /* Secure debug enable register. */
314         uint32_t nsacr; /* Non-secure access control register. */
315         union { /* MMU translation table base 0. */
316             struct {
317                 uint64_t _unused_ttbr0_0;
318                 uint64_t ttbr0_ns;
319                 uint64_t _unused_ttbr0_1;
320                 uint64_t ttbr0_s;
321             };
322             uint64_t ttbr0_el[4];
323         };
324         union { /* MMU translation table base 1. */
325             struct {
326                 uint64_t _unused_ttbr1_0;
327                 uint64_t ttbr1_ns;
328                 uint64_t _unused_ttbr1_1;
329                 uint64_t ttbr1_s;
330             };
331             uint64_t ttbr1_el[4];
332         };
333         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
334         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
335         /* MMU translation table base control. */
336         uint64_t tcr_el[4];
337         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
338         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
339         uint32_t c2_data; /* MPU data cacheable bits.  */
340         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
341         union { /* MMU domain access control register
342                  * MPU write buffer control.
343                  */
344             struct {
345                 uint64_t dacr_ns;
346                 uint64_t dacr_s;
347             };
348             struct {
349                 uint64_t dacr32_el2;
350             };
351         };
352         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
353         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
354         uint64_t hcr_el2; /* Hypervisor configuration register */
355         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
356         uint64_t scr_el3; /* Secure configuration register.  */
357         union { /* Fault status registers.  */
358             struct {
359                 uint64_t ifsr_ns;
360                 uint64_t ifsr_s;
361             };
362             struct {
363                 uint64_t ifsr32_el2;
364             };
365         };
366         union {
367             struct {
368                 uint64_t _unused_dfsr;
369                 uint64_t dfsr_ns;
370                 uint64_t hsr;
371                 uint64_t dfsr_s;
372             };
373             uint64_t esr_el[4];
374         };
375         uint32_t c6_region[8]; /* MPU base/size registers.  */
376         union { /* Fault address registers. */
377             struct {
378                 uint64_t _unused_far0;
379 #if HOST_BIG_ENDIAN
380                 uint32_t ifar_ns;
381                 uint32_t dfar_ns;
382                 uint32_t ifar_s;
383                 uint32_t dfar_s;
384 #else
385                 uint32_t dfar_ns;
386                 uint32_t ifar_ns;
387                 uint32_t dfar_s;
388                 uint32_t ifar_s;
389 #endif
390                 uint64_t _unused_far3;
391             };
392             uint64_t far_el[4];
393         };
394         uint64_t hpfar_el2;
395         uint64_t hstr_el2;
396         union { /* Translation result. */
397             struct {
398                 uint64_t _unused_par_0;
399                 uint64_t par_ns;
400                 uint64_t _unused_par_1;
401                 uint64_t par_s;
402             };
403             uint64_t par_el[4];
404         };
405 
406         uint32_t c9_insn; /* Cache lockdown registers.  */
407         uint32_t c9_data;
408         uint64_t c9_pmcr; /* performance monitor control register */
409         uint64_t c9_pmcnten; /* perf monitor counter enables */
410         uint64_t c9_pmovsr; /* perf monitor overflow status */
411         uint64_t c9_pmuserenr; /* perf monitor user enable */
412         uint64_t c9_pmselr; /* perf monitor counter selection register */
413         uint64_t c9_pminten; /* perf monitor interrupt enables */
414         union { /* Memory attribute redirection */
415             struct {
416 #if HOST_BIG_ENDIAN
417                 uint64_t _unused_mair_0;
418                 uint32_t mair1_ns;
419                 uint32_t mair0_ns;
420                 uint64_t _unused_mair_1;
421                 uint32_t mair1_s;
422                 uint32_t mair0_s;
423 #else
424                 uint64_t _unused_mair_0;
425                 uint32_t mair0_ns;
426                 uint32_t mair1_ns;
427                 uint64_t _unused_mair_1;
428                 uint32_t mair0_s;
429                 uint32_t mair1_s;
430 #endif
431             };
432             uint64_t mair_el[4];
433         };
434         union { /* vector base address register */
435             struct {
436                 uint64_t _unused_vbar;
437                 uint64_t vbar_ns;
438                 uint64_t hvbar;
439                 uint64_t vbar_s;
440             };
441             uint64_t vbar_el[4];
442         };
443         uint32_t mvbar; /* (monitor) vector base address register */
444         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
445         struct { /* FCSE PID. */
446             uint32_t fcseidr_ns;
447             uint32_t fcseidr_s;
448         };
449         union { /* Context ID. */
450             struct {
451                 uint64_t _unused_contextidr_0;
452                 uint64_t contextidr_ns;
453                 uint64_t _unused_contextidr_1;
454                 uint64_t contextidr_s;
455             };
456             uint64_t contextidr_el[4];
457         };
458         union { /* User RW Thread register. */
459             struct {
460                 uint64_t tpidrurw_ns;
461                 uint64_t tpidrprw_ns;
462                 uint64_t htpidr;
463                 uint64_t _tpidr_el3;
464             };
465             uint64_t tpidr_el[4];
466         };
467         uint64_t tpidr2_el0;
468         /* The secure banks of these registers don't map anywhere */
469         uint64_t tpidrurw_s;
470         uint64_t tpidrprw_s;
471         uint64_t tpidruro_s;
472 
473         union { /* User RO Thread register. */
474             uint64_t tpidruro_ns;
475             uint64_t tpidrro_el[1];
476         };
477         uint64_t c14_cntfrq; /* Counter Frequency register */
478         uint64_t c14_cntkctl; /* Timer Control register */
479         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
480         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
481         ARMGenericTimer c14_timer[NUM_GTIMERS];
482         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
483         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
484         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
485         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
486         uint32_t c15_threadid; /* TI debugger thread-ID.  */
487         uint32_t c15_config_base_address; /* SCU base address.  */
488         uint32_t c15_diagnostic; /* diagnostic register */
489         uint32_t c15_power_diagnostic;
490         uint32_t c15_power_control; /* power control */
491         uint64_t dbgbvr[16]; /* breakpoint value registers */
492         uint64_t dbgbcr[16]; /* breakpoint control registers */
493         uint64_t dbgwvr[16]; /* watchpoint value registers */
494         uint64_t dbgwcr[16]; /* watchpoint control registers */
495         uint64_t mdscr_el1;
496         uint64_t oslsr_el1; /* OS Lock Status */
497         uint64_t osdlr_el1; /* OS DoubleLock status */
498         uint64_t mdcr_el2;
499         uint64_t mdcr_el3;
500         /* Stores the architectural value of the counter *the last time it was
501          * updated* by pmccntr_op_start. Accesses should always be surrounded
502          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
503          * architecturally-correct value is being read/set.
504          */
505         uint64_t c15_ccnt;
506         /* Stores the delta between the architectural value and the underlying
507          * cycle count during normal operation. It is used to update c15_ccnt
508          * to be the correct architectural value before accesses. During
509          * accesses, c15_ccnt_delta contains the underlying count being used
510          * for the access, after which it reverts to the delta value in
511          * pmccntr_op_finish.
512          */
513         uint64_t c15_ccnt_delta;
514         uint64_t c14_pmevcntr[31];
515         uint64_t c14_pmevcntr_delta[31];
516         uint64_t c14_pmevtyper[31];
517         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
518         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
519         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
520         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
521         uint64_t gcr_el1;
522         uint64_t rgsr_el1;
523 
524         /* Minimal RAS registers */
525         uint64_t disr_el1;
526         uint64_t vdisr_el2;
527         uint64_t vsesr_el2;
528     } cp15;
529 
530     struct {
531         /* M profile has up to 4 stack pointers:
532          * a Main Stack Pointer and a Process Stack Pointer for each
533          * of the Secure and Non-Secure states. (If the CPU doesn't support
534          * the security extension then it has only two SPs.)
535          * In QEMU we always store the currently active SP in regs[13],
536          * and the non-active SP for the current security state in
537          * v7m.other_sp. The stack pointers for the inactive security state
538          * are stored in other_ss_msp and other_ss_psp.
539          * switch_v7m_security_state() is responsible for rearranging them
540          * when we change security state.
541          */
542         uint32_t other_sp;
543         uint32_t other_ss_msp;
544         uint32_t other_ss_psp;
545         uint32_t vecbase[M_REG_NUM_BANKS];
546         uint32_t basepri[M_REG_NUM_BANKS];
547         uint32_t control[M_REG_NUM_BANKS];
548         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
549         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
550         uint32_t hfsr; /* HardFault Status */
551         uint32_t dfsr; /* Debug Fault Status Register */
552         uint32_t sfsr; /* Secure Fault Status Register */
553         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
554         uint32_t bfar; /* BusFault Address */
555         uint32_t sfar; /* Secure Fault Address Register */
556         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
557         int exception;
558         uint32_t primask[M_REG_NUM_BANKS];
559         uint32_t faultmask[M_REG_NUM_BANKS];
560         uint32_t aircr; /* only holds r/w state if security extn implemented */
561         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
562         uint32_t csselr[M_REG_NUM_BANKS];
563         uint32_t scr[M_REG_NUM_BANKS];
564         uint32_t msplim[M_REG_NUM_BANKS];
565         uint32_t psplim[M_REG_NUM_BANKS];
566         uint32_t fpcar[M_REG_NUM_BANKS];
567         uint32_t fpccr[M_REG_NUM_BANKS];
568         uint32_t fpdscr[M_REG_NUM_BANKS];
569         uint32_t cpacr[M_REG_NUM_BANKS];
570         uint32_t nsacr;
571         uint32_t ltpsize;
572         uint32_t vpr;
573     } v7m;
574 
575     /* Information associated with an exception about to be taken:
576      * code which raises an exception must set cs->exception_index and
577      * the relevant parts of this structure; the cpu_do_interrupt function
578      * will then set the guest-visible registers as part of the exception
579      * entry process.
580      */
581     struct {
582         uint32_t syndrome; /* AArch64 format syndrome register */
583         uint32_t fsr; /* AArch32 format fault status register info */
584         uint64_t vaddress; /* virtual addr associated with exception, if any */
585         uint32_t target_el; /* EL the exception should be targeted for */
586         /* If we implement EL2 we will also need to store information
587          * about the intermediate physical address for stage 2 faults.
588          */
589     } exception;
590 
591     /* Information associated with an SError */
592     struct {
593         uint8_t pending;
594         uint8_t has_esr;
595         uint64_t esr;
596     } serror;
597 
598     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
599 
600     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
601     uint32_t irq_line_state;
602 
603     /* Thumb-2 EE state.  */
604     uint32_t teecr;
605     uint32_t teehbr;
606 
607     /* VFP coprocessor state.  */
608     struct {
609         ARMVectorReg zregs[32];
610 
611 #ifdef TARGET_AARCH64
612         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
613 #define FFR_PRED_NUM 16
614         ARMPredicateReg pregs[17];
615         /* Scratch space for aa64 sve predicate temporary.  */
616         ARMPredicateReg preg_tmp;
617 #endif
618 
619         /* We store these fpcsr fields separately for convenience.  */
620         uint32_t qc[4] QEMU_ALIGNED(16);
621         int vec_len;
622         int vec_stride;
623 
624         uint32_t xregs[16];
625 
626         /* Scratch space for aa32 neon expansion.  */
627         uint32_t scratch[8];
628 
629         /* There are a number of distinct float control structures:
630          *
631          *  fp_status: is the "normal" fp status.
632          *  fp_status_fp16: used for half-precision calculations
633          *  standard_fp_status : the ARM "Standard FPSCR Value"
634          *  standard_fp_status_fp16 : used for half-precision
635          *       calculations with the ARM "Standard FPSCR Value"
636          *
637          * Half-precision operations are governed by a separate
638          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
639          * status structure to control this.
640          *
641          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
642          * round-to-nearest and is used by any operations (generally
643          * Neon) which the architecture defines as controlled by the
644          * standard FPSCR value rather than the FPSCR.
645          *
646          * The "standard FPSCR but for fp16 ops" is needed because
647          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
648          * using a fixed value for it.
649          *
650          * To avoid having to transfer exception bits around, we simply
651          * say that the FPSCR cumulative exception flags are the logical
652          * OR of the flags in the four fp statuses. This relies on the
653          * only thing which needs to read the exception flags being
654          * an explicit FPSCR read.
655          */
656         float_status fp_status;
657         float_status fp_status_f16;
658         float_status standard_fp_status;
659         float_status standard_fp_status_f16;
660 
661         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
662         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
663     } vfp;
664     uint64_t exclusive_addr;
665     uint64_t exclusive_val;
666     uint64_t exclusive_high;
667 
668     /* iwMMXt coprocessor state.  */
669     struct {
670         uint64_t regs[16];
671         uint64_t val;
672 
673         uint32_t cregs[16];
674     } iwmmxt;
675 
676 #ifdef TARGET_AARCH64
677     struct {
678         ARMPACKey apia;
679         ARMPACKey apib;
680         ARMPACKey apda;
681         ARMPACKey apdb;
682         ARMPACKey apga;
683     } keys;
684 
685     uint64_t scxtnum_el[4];
686 
687     /*
688      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
689      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
690      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
691      * When SVL is less than the architectural maximum, the accessible
692      * storage is restricted, such that if the SVL is X bytes the guest can
693      * see only the bottom X elements of zarray[], and only the least
694      * significant X bytes of each element of the array. (In other words,
695      * the observable part is always square.)
696      *
697      * The ZA storage can also be considered as a set of square tiles of
698      * elements of different sizes. The mapping from tiles to the ZA array
699      * is architecturally defined, such that for tiles of elements of esz
700      * bytes, the Nth row (or "horizontal slice") of tile T is in
701      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
702      * in the ZA storage, because its rows are striped through the ZA array.
703      *
704      * Because this is so large, keep this toward the end of the reset area,
705      * to keep the offsets into the rest of the structure smaller.
706      */
707     ARMVectorReg zarray[ARM_MAX_VQ * 16];
708 #endif
709 
710 #if defined(CONFIG_USER_ONLY)
711     /* For usermode syscall translation.  */
712     int eabi;
713 #endif
714 
715     struct CPUBreakpoint *cpu_breakpoint[16];
716     struct CPUWatchpoint *cpu_watchpoint[16];
717 
718     /* Fields up to this point are cleared by a CPU reset */
719     struct {} end_reset_fields;
720 
721     /* Fields after this point are preserved across CPU reset. */
722 
723     /* Internal CPU feature flags.  */
724     uint64_t features;
725 
726     /* PMSAv7 MPU */
727     struct {
728         uint32_t *drbar;
729         uint32_t *drsr;
730         uint32_t *dracr;
731         uint32_t rnr[M_REG_NUM_BANKS];
732     } pmsav7;
733 
734     /* PMSAv8 MPU */
735     struct {
736         /* The PMSAv8 implementation also shares some PMSAv7 config
737          * and state:
738          *  pmsav7.rnr (region number register)
739          *  pmsav7_dregion (number of configured regions)
740          */
741         uint32_t *rbar[M_REG_NUM_BANKS];
742         uint32_t *rlar[M_REG_NUM_BANKS];
743         uint32_t mair0[M_REG_NUM_BANKS];
744         uint32_t mair1[M_REG_NUM_BANKS];
745     } pmsav8;
746 
747     /* v8M SAU */
748     struct {
749         uint32_t *rbar;
750         uint32_t *rlar;
751         uint32_t rnr;
752         uint32_t ctrl;
753     } sau;
754 
755     void *nvic;
756     const struct arm_boot_info *boot_info;
757     /* Store GICv3CPUState to access from this struct */
758     void *gicv3state;
759 
760 #ifdef TARGET_TAGGED_ADDRESSES
761     /* Linux syscall tagged address support */
762     bool tagged_addr_enable;
763 #endif
764 } CPUARMState;
765 
766 static inline void set_feature(CPUARMState *env, int feature)
767 {
768     env->features |= 1ULL << feature;
769 }
770 
771 static inline void unset_feature(CPUARMState *env, int feature)
772 {
773     env->features &= ~(1ULL << feature);
774 }
775 
776 /**
777  * ARMELChangeHookFn:
778  * type of a function which can be registered via arm_register_el_change_hook()
779  * to get callbacks when the CPU changes its exception level or mode.
780  */
781 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
782 typedef struct ARMELChangeHook ARMELChangeHook;
783 struct ARMELChangeHook {
784     ARMELChangeHookFn *hook;
785     void *opaque;
786     QLIST_ENTRY(ARMELChangeHook) node;
787 };
788 
789 /* These values map onto the return values for
790  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
791 typedef enum ARMPSCIState {
792     PSCI_ON = 0,
793     PSCI_OFF = 1,
794     PSCI_ON_PENDING = 2
795 } ARMPSCIState;
796 
797 typedef struct ARMISARegisters ARMISARegisters;
798 
799 /*
800  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
801  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
802  *
803  * While processing properties during initialization, corresponding init bits
804  * are set for bits in sve_vq_map that have been set by properties.
805  *
806  * Bits set in supported represent valid vector lengths for the CPU type.
807  */
808 typedef struct {
809     uint32_t map, init, supported;
810 } ARMVQMap;
811 
812 /**
813  * ARMCPU:
814  * @env: #CPUARMState
815  *
816  * An ARM CPU core.
817  */
818 struct ArchCPU {
819     /*< private >*/
820     CPUState parent_obj;
821     /*< public >*/
822 
823     CPUNegativeOffsetState neg;
824     CPUARMState env;
825 
826     /* Coprocessor information */
827     GHashTable *cp_regs;
828     /* For marshalling (mostly coprocessor) register state between the
829      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
830      * we use these arrays.
831      */
832     /* List of register indexes managed via these arrays; (full KVM style
833      * 64 bit indexes, not CPRegInfo 32 bit indexes)
834      */
835     uint64_t *cpreg_indexes;
836     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
837     uint64_t *cpreg_values;
838     /* Length of the indexes, values, reset_values arrays */
839     int32_t cpreg_array_len;
840     /* These are used only for migration: incoming data arrives in
841      * these fields and is sanity checked in post_load before copying
842      * to the working data structures above.
843      */
844     uint64_t *cpreg_vmstate_indexes;
845     uint64_t *cpreg_vmstate_values;
846     int32_t cpreg_vmstate_array_len;
847 
848     DynamicGDBXMLInfo dyn_sysreg_xml;
849     DynamicGDBXMLInfo dyn_svereg_xml;
850 
851     /* Timers used by the generic (architected) timer */
852     QEMUTimer *gt_timer[NUM_GTIMERS];
853     /*
854      * Timer used by the PMU. Its state is restored after migration by
855      * pmu_op_finish() - it does not need other handling during migration
856      */
857     QEMUTimer *pmu_timer;
858     /* GPIO outputs for generic timer */
859     qemu_irq gt_timer_outputs[NUM_GTIMERS];
860     /* GPIO output for GICv3 maintenance interrupt signal */
861     qemu_irq gicv3_maintenance_interrupt;
862     /* GPIO output for the PMU interrupt */
863     qemu_irq pmu_interrupt;
864 
865     /* MemoryRegion to use for secure physical accesses */
866     MemoryRegion *secure_memory;
867 
868     /* MemoryRegion to use for allocation tag accesses */
869     MemoryRegion *tag_memory;
870     MemoryRegion *secure_tag_memory;
871 
872     /* For v8M, pointer to the IDAU interface provided by board/SoC */
873     Object *idau;
874 
875     /* 'compatible' string for this CPU for Linux device trees */
876     const char *dtb_compatible;
877 
878     /* PSCI version for this CPU
879      * Bits[31:16] = Major Version
880      * Bits[15:0] = Minor Version
881      */
882     uint32_t psci_version;
883 
884     /* Current power state, access guarded by BQL */
885     ARMPSCIState power_state;
886 
887     /* CPU has virtualization extension */
888     bool has_el2;
889     /* CPU has security extension */
890     bool has_el3;
891     /* CPU has PMU (Performance Monitor Unit) */
892     bool has_pmu;
893     /* CPU has VFP */
894     bool has_vfp;
895     /* CPU has Neon */
896     bool has_neon;
897     /* CPU has M-profile DSP extension */
898     bool has_dsp;
899 
900     /* CPU has memory protection unit */
901     bool has_mpu;
902     /* PMSAv7 MPU number of supported regions */
903     uint32_t pmsav7_dregion;
904     /* v8M SAU number of supported regions */
905     uint32_t sau_sregion;
906 
907     /* PSCI conduit used to invoke PSCI methods
908      * 0 - disabled, 1 - smc, 2 - hvc
909      */
910     uint32_t psci_conduit;
911 
912     /* For v8M, initial value of the Secure VTOR */
913     uint32_t init_svtor;
914     /* For v8M, initial value of the Non-secure VTOR */
915     uint32_t init_nsvtor;
916 
917     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
918      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
919      */
920     uint32_t kvm_target;
921 
922     /* KVM init features for this CPU */
923     uint32_t kvm_init_features[7];
924 
925     /* KVM CPU state */
926 
927     /* KVM virtual time adjustment */
928     bool kvm_adjvtime;
929     bool kvm_vtime_dirty;
930     uint64_t kvm_vtime;
931 
932     /* KVM steal time */
933     OnOffAuto kvm_steal_time;
934 
935     /* Uniprocessor system with MP extensions */
936     bool mp_is_up;
937 
938     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
939      * and the probe failed (so we need to report the error in realize)
940      */
941     bool host_cpu_probe_failed;
942 
943     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
944      * register.
945      */
946     int32_t core_count;
947 
948     /* The instance init functions for implementation-specific subclasses
949      * set these fields to specify the implementation-dependent values of
950      * various constant registers and reset values of non-constant
951      * registers.
952      * Some of these might become QOM properties eventually.
953      * Field names match the official register names as defined in the
954      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
955      * is used for reset values of non-constant registers; no reset_
956      * prefix means a constant register.
957      * Some of these registers are split out into a substructure that
958      * is shared with the translators to control the ISA.
959      *
960      * Note that if you add an ID register to the ARMISARegisters struct
961      * you need to also update the 32-bit and 64-bit versions of the
962      * kvm_arm_get_host_cpu_features() function to correctly populate the
963      * field by reading the value from the KVM vCPU.
964      */
965     struct ARMISARegisters {
966         uint32_t id_isar0;
967         uint32_t id_isar1;
968         uint32_t id_isar2;
969         uint32_t id_isar3;
970         uint32_t id_isar4;
971         uint32_t id_isar5;
972         uint32_t id_isar6;
973         uint32_t id_mmfr0;
974         uint32_t id_mmfr1;
975         uint32_t id_mmfr2;
976         uint32_t id_mmfr3;
977         uint32_t id_mmfr4;
978         uint32_t id_pfr0;
979         uint32_t id_pfr1;
980         uint32_t id_pfr2;
981         uint32_t mvfr0;
982         uint32_t mvfr1;
983         uint32_t mvfr2;
984         uint32_t id_dfr0;
985         uint32_t dbgdidr;
986         uint32_t dbgdevid;
987         uint32_t dbgdevid1;
988         uint64_t id_aa64isar0;
989         uint64_t id_aa64isar1;
990         uint64_t id_aa64pfr0;
991         uint64_t id_aa64pfr1;
992         uint64_t id_aa64mmfr0;
993         uint64_t id_aa64mmfr1;
994         uint64_t id_aa64mmfr2;
995         uint64_t id_aa64dfr0;
996         uint64_t id_aa64dfr1;
997         uint64_t id_aa64zfr0;
998         uint64_t id_aa64smfr0;
999         uint64_t reset_pmcr_el0;
1000     } isar;
1001     uint64_t midr;
1002     uint32_t revidr;
1003     uint32_t reset_fpsid;
1004     uint64_t ctr;
1005     uint32_t reset_sctlr;
1006     uint64_t pmceid0;
1007     uint64_t pmceid1;
1008     uint32_t id_afr0;
1009     uint64_t id_aa64afr0;
1010     uint64_t id_aa64afr1;
1011     uint64_t clidr;
1012     uint64_t mp_affinity; /* MP ID without feature bits */
1013     /* The elements of this array are the CCSIDR values for each cache,
1014      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1015      */
1016     uint64_t ccsidr[16];
1017     uint64_t reset_cbar;
1018     uint32_t reset_auxcr;
1019     bool reset_hivecs;
1020 
1021     /*
1022      * Intermediate values used during property parsing.
1023      * Once finalized, the values should be read from ID_AA64*.
1024      */
1025     bool prop_pauth;
1026     bool prop_pauth_impdef;
1027     bool prop_lpa2;
1028 
1029     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1030     uint32_t dcz_blocksize;
1031     uint64_t rvbar_prop; /* Property/input signals.  */
1032 
1033     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1034     int gic_num_lrs; /* number of list registers */
1035     int gic_vpribits; /* number of virtual priority bits */
1036     int gic_vprebits; /* number of virtual preemption bits */
1037     int gic_pribits; /* number of physical priority bits */
1038 
1039     /* Whether the cfgend input is high (i.e. this CPU should reset into
1040      * big-endian mode).  This setting isn't used directly: instead it modifies
1041      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1042      * architecture version.
1043      */
1044     bool cfgend;
1045 
1046     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1047     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1048 
1049     int32_t node_id; /* NUMA node this CPU belongs to */
1050 
1051     /* Used to synchronize KVM and QEMU in-kernel device levels */
1052     uint8_t device_irq_level;
1053 
1054     /* Used to set the maximum vector length the cpu will support.  */
1055     uint32_t sve_max_vq;
1056 
1057 #ifdef CONFIG_USER_ONLY
1058     /* Used to set the default vector length at process start. */
1059     uint32_t sve_default_vq;
1060     uint32_t sme_default_vq;
1061 #endif
1062 
1063     ARMVQMap sve_vq;
1064     ARMVQMap sme_vq;
1065 
1066     /* Generic timer counter frequency, in Hz */
1067     uint64_t gt_cntfrq_hz;
1068 };
1069 
1070 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1071 
1072 void arm_cpu_post_init(Object *obj);
1073 
1074 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1075 
1076 #ifndef CONFIG_USER_ONLY
1077 extern const VMStateDescription vmstate_arm_cpu;
1078 
1079 void arm_cpu_do_interrupt(CPUState *cpu);
1080 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1081 #endif /* !CONFIG_USER_ONLY */
1082 
1083 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1084                                          MemTxAttrs *attrs);
1085 
1086 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1087 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1088 
1089 /*
1090  * Helpers to dynamically generates XML descriptions of the sysregs
1091  * and SVE registers. Returns the number of registers in each set.
1092  */
1093 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1094 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1095 
1096 /* Returns the dynamically generated XML for the gdb stub.
1097  * Returns a pointer to the XML contents for the specified XML file or NULL
1098  * if the XML name doesn't match the predefined one.
1099  */
1100 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1101 
1102 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1103                              int cpuid, void *opaque);
1104 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1105                              int cpuid, void *opaque);
1106 
1107 #ifdef TARGET_AARCH64
1108 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1109 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1110 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1111 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1112                            int new_el, bool el0_a64);
1113 void arm_reset_sve_state(CPUARMState *env);
1114 
1115 /*
1116  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1117  * The byte at offset i from the start of the in-memory representation contains
1118  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1119  * lowest offsets are stored in the lowest memory addresses, then that nearly
1120  * matches QEMU's representation, which is to use an array of host-endian
1121  * uint64_t's, where the lower offsets are at the lower indices. To complete
1122  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1123  */
1124 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1125 {
1126 #if HOST_BIG_ENDIAN
1127     int i;
1128 
1129     for (i = 0; i < nr; ++i) {
1130         dst[i] = bswap64(src[i]);
1131     }
1132 
1133     return dst;
1134 #else
1135     return src;
1136 #endif
1137 }
1138 
1139 #else
1140 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1141 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1142                                          int n, bool a)
1143 { }
1144 #endif
1145 
1146 void aarch64_sync_32_to_64(CPUARMState *env);
1147 void aarch64_sync_64_to_32(CPUARMState *env);
1148 
1149 int fp_exception_el(CPUARMState *env, int cur_el);
1150 int sve_exception_el(CPUARMState *env, int cur_el);
1151 int sme_exception_el(CPUARMState *env, int cur_el);
1152 
1153 /**
1154  * sve_vqm1_for_el_sm:
1155  * @env: CPUARMState
1156  * @el: exception level
1157  * @sm: streaming mode
1158  *
1159  * Compute the current vector length for @el & @sm, in units of
1160  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1161  * If @sm, compute for SVL, otherwise NVL.
1162  */
1163 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1164 
1165 /* Likewise, but using @sm = PSTATE.SM. */
1166 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1167 
1168 static inline bool is_a64(CPUARMState *env)
1169 {
1170     return env->aarch64;
1171 }
1172 
1173 /**
1174  * pmu_op_start/finish
1175  * @env: CPUARMState
1176  *
1177  * Convert all PMU counters between their delta form (the typical mode when
1178  * they are enabled) and the guest-visible values. These two calls must
1179  * surround any action which might affect the counters.
1180  */
1181 void pmu_op_start(CPUARMState *env);
1182 void pmu_op_finish(CPUARMState *env);
1183 
1184 /*
1185  * Called when a PMU counter is due to overflow
1186  */
1187 void arm_pmu_timer_cb(void *opaque);
1188 
1189 /**
1190  * Functions to register as EL change hooks for PMU mode filtering
1191  */
1192 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1193 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1194 
1195 /*
1196  * pmu_init
1197  * @cpu: ARMCPU
1198  *
1199  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1200  * for the current configuration
1201  */
1202 void pmu_init(ARMCPU *cpu);
1203 
1204 /* SCTLR bit meanings. Several bits have been reused in newer
1205  * versions of the architecture; in that case we define constants
1206  * for both old and new bit meanings. Code which tests against those
1207  * bits should probably check or otherwise arrange that the CPU
1208  * is the architectural version it expects.
1209  */
1210 #define SCTLR_M       (1U << 0)
1211 #define SCTLR_A       (1U << 1)
1212 #define SCTLR_C       (1U << 2)
1213 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1214 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1215 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1216 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1217 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1218 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1219 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1220 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1221 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1222 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1223 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1224 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1225 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1226 #define SCTLR_SED     (1U << 8) /* v8 onward */
1227 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1228 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1229 #define SCTLR_F       (1U << 10) /* up to v6 */
1230 #define SCTLR_SW      (1U << 10) /* v7 */
1231 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1232 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1233 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1234 #define SCTLR_I       (1U << 12)
1235 #define SCTLR_V       (1U << 13) /* AArch32 only */
1236 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1237 #define SCTLR_RR      (1U << 14) /* up to v7 */
1238 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1239 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1240 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1241 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1242 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1243 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1244 #define SCTLR_BR      (1U << 17) /* PMSA only */
1245 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1246 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1247 #define SCTLR_WXN     (1U << 19)
1248 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1249 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1250 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1251 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1252 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1253 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1254 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1255 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1256 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1257 #define SCTLR_VE      (1U << 24) /* up to v7 */
1258 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1259 #define SCTLR_EE      (1U << 25)
1260 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1261 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1262 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1263 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1264 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1265 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1266 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1267 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1268 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1269 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1270 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1271 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1272 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1273 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1274 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1275 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1276 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1277 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1278 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1279 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1280 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1281 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1282 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1283 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1284 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1285 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1286 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1287 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1288 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1289 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1290 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1291 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1292 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1293 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1294 
1295 /* Bit definitions for CPACR (AArch32 only) */
1296 FIELD(CPACR, CP10, 20, 2)
1297 FIELD(CPACR, CP11, 22, 2)
1298 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1299 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1300 FIELD(CPACR, ASEDIS, 31, 1)
1301 
1302 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1303 FIELD(CPACR_EL1, ZEN, 16, 2)
1304 FIELD(CPACR_EL1, FPEN, 20, 2)
1305 FIELD(CPACR_EL1, SMEN, 24, 2)
1306 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1307 
1308 /* Bit definitions for HCPTR (AArch32 only) */
1309 FIELD(HCPTR, TCP10, 10, 1)
1310 FIELD(HCPTR, TCP11, 11, 1)
1311 FIELD(HCPTR, TASE, 15, 1)
1312 FIELD(HCPTR, TTA, 20, 1)
1313 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1314 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1315 
1316 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1317 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1318 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1319 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1320 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1321 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1322 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1323 FIELD(CPTR_EL2, TTA, 28, 1)
1324 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1325 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1326 
1327 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1328 FIELD(CPTR_EL3, EZ, 8, 1)
1329 FIELD(CPTR_EL3, TFP, 10, 1)
1330 FIELD(CPTR_EL3, ESM, 12, 1)
1331 FIELD(CPTR_EL3, TTA, 20, 1)
1332 FIELD(CPTR_EL3, TAM, 30, 1)
1333 FIELD(CPTR_EL3, TCPAC, 31, 1)
1334 
1335 #define MDCR_EPMAD    (1U << 21)
1336 #define MDCR_EDAD     (1U << 20)
1337 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1338 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1339 #define MDCR_SDD      (1U << 16)
1340 #define MDCR_SPD      (3U << 14)
1341 #define MDCR_TDRA     (1U << 11)
1342 #define MDCR_TDOSA    (1U << 10)
1343 #define MDCR_TDA      (1U << 9)
1344 #define MDCR_TDE      (1U << 8)
1345 #define MDCR_HPME     (1U << 7)
1346 #define MDCR_TPM      (1U << 6)
1347 #define MDCR_TPMCR    (1U << 5)
1348 #define MDCR_HPMN     (0x1fU)
1349 
1350 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1351 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1352 
1353 #define CPSR_M (0x1fU)
1354 #define CPSR_T (1U << 5)
1355 #define CPSR_F (1U << 6)
1356 #define CPSR_I (1U << 7)
1357 #define CPSR_A (1U << 8)
1358 #define CPSR_E (1U << 9)
1359 #define CPSR_IT_2_7 (0xfc00U)
1360 #define CPSR_GE (0xfU << 16)
1361 #define CPSR_IL (1U << 20)
1362 #define CPSR_DIT (1U << 21)
1363 #define CPSR_PAN (1U << 22)
1364 #define CPSR_SSBS (1U << 23)
1365 #define CPSR_J (1U << 24)
1366 #define CPSR_IT_0_1 (3U << 25)
1367 #define CPSR_Q (1U << 27)
1368 #define CPSR_V (1U << 28)
1369 #define CPSR_C (1U << 29)
1370 #define CPSR_Z (1U << 30)
1371 #define CPSR_N (1U << 31)
1372 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1373 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1374 
1375 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1376 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1377     | CPSR_NZCV)
1378 /* Bits writable in user mode.  */
1379 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1380 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1381 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1382 
1383 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1384 #define XPSR_EXCP 0x1ffU
1385 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1386 #define XPSR_IT_2_7 CPSR_IT_2_7
1387 #define XPSR_GE CPSR_GE
1388 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1389 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1390 #define XPSR_IT_0_1 CPSR_IT_0_1
1391 #define XPSR_Q CPSR_Q
1392 #define XPSR_V CPSR_V
1393 #define XPSR_C CPSR_C
1394 #define XPSR_Z CPSR_Z
1395 #define XPSR_N CPSR_N
1396 #define XPSR_NZCV CPSR_NZCV
1397 #define XPSR_IT CPSR_IT
1398 
1399 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1400 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1401 #define TTBCR_PD0    (1U << 4)
1402 #define TTBCR_PD1    (1U << 5)
1403 #define TTBCR_EPD0   (1U << 7)
1404 #define TTBCR_IRGN0  (3U << 8)
1405 #define TTBCR_ORGN0  (3U << 10)
1406 #define TTBCR_SH0    (3U << 12)
1407 #define TTBCR_T1SZ   (3U << 16)
1408 #define TTBCR_A1     (1U << 22)
1409 #define TTBCR_EPD1   (1U << 23)
1410 #define TTBCR_IRGN1  (3U << 24)
1411 #define TTBCR_ORGN1  (3U << 26)
1412 #define TTBCR_SH1    (1U << 28)
1413 #define TTBCR_EAE    (1U << 31)
1414 
1415 FIELD(VTCR, T0SZ, 0, 6)
1416 FIELD(VTCR, SL0, 6, 2)
1417 FIELD(VTCR, IRGN0, 8, 2)
1418 FIELD(VTCR, ORGN0, 10, 2)
1419 FIELD(VTCR, SH0, 12, 2)
1420 FIELD(VTCR, TG0, 14, 2)
1421 FIELD(VTCR, PS, 16, 3)
1422 FIELD(VTCR, VS, 19, 1)
1423 FIELD(VTCR, HA, 21, 1)
1424 FIELD(VTCR, HD, 22, 1)
1425 FIELD(VTCR, HWU59, 25, 1)
1426 FIELD(VTCR, HWU60, 26, 1)
1427 FIELD(VTCR, HWU61, 27, 1)
1428 FIELD(VTCR, HWU62, 28, 1)
1429 FIELD(VTCR, NSW, 29, 1)
1430 FIELD(VTCR, NSA, 30, 1)
1431 FIELD(VTCR, DS, 32, 1)
1432 FIELD(VTCR, SL2, 33, 1)
1433 
1434 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1435  * Only these are valid when in AArch64 mode; in
1436  * AArch32 mode SPSRs are basically CPSR-format.
1437  */
1438 #define PSTATE_SP (1U)
1439 #define PSTATE_M (0xFU)
1440 #define PSTATE_nRW (1U << 4)
1441 #define PSTATE_F (1U << 6)
1442 #define PSTATE_I (1U << 7)
1443 #define PSTATE_A (1U << 8)
1444 #define PSTATE_D (1U << 9)
1445 #define PSTATE_BTYPE (3U << 10)
1446 #define PSTATE_SSBS (1U << 12)
1447 #define PSTATE_IL (1U << 20)
1448 #define PSTATE_SS (1U << 21)
1449 #define PSTATE_PAN (1U << 22)
1450 #define PSTATE_UAO (1U << 23)
1451 #define PSTATE_DIT (1U << 24)
1452 #define PSTATE_TCO (1U << 25)
1453 #define PSTATE_V (1U << 28)
1454 #define PSTATE_C (1U << 29)
1455 #define PSTATE_Z (1U << 30)
1456 #define PSTATE_N (1U << 31)
1457 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1458 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1459 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1460 /* Mode values for AArch64 */
1461 #define PSTATE_MODE_EL3h 13
1462 #define PSTATE_MODE_EL3t 12
1463 #define PSTATE_MODE_EL2h 9
1464 #define PSTATE_MODE_EL2t 8
1465 #define PSTATE_MODE_EL1h 5
1466 #define PSTATE_MODE_EL1t 4
1467 #define PSTATE_MODE_EL0t 0
1468 
1469 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1470 FIELD(SVCR, SM, 0, 1)
1471 FIELD(SVCR, ZA, 1, 1)
1472 
1473 /* Fields for SMCR_ELx. */
1474 FIELD(SMCR, LEN, 0, 4)
1475 FIELD(SMCR, FA64, 31, 1)
1476 
1477 /* Write a new value to v7m.exception, thus transitioning into or out
1478  * of Handler mode; this may result in a change of active stack pointer.
1479  */
1480 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1481 
1482 /* Map EL and handler into a PSTATE_MODE.  */
1483 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1484 {
1485     return (el << 2) | handler;
1486 }
1487 
1488 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1489  * interprocessing, so we don't attempt to sync with the cpsr state used by
1490  * the 32 bit decoder.
1491  */
1492 static inline uint32_t pstate_read(CPUARMState *env)
1493 {
1494     int ZF;
1495 
1496     ZF = (env->ZF == 0);
1497     return (env->NF & 0x80000000) | (ZF << 30)
1498         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1499         | env->pstate | env->daif | (env->btype << 10);
1500 }
1501 
1502 static inline void pstate_write(CPUARMState *env, uint32_t val)
1503 {
1504     env->ZF = (~val) & PSTATE_Z;
1505     env->NF = val;
1506     env->CF = (val >> 29) & 1;
1507     env->VF = (val << 3) & 0x80000000;
1508     env->daif = val & PSTATE_DAIF;
1509     env->btype = (val >> 10) & 3;
1510     env->pstate = val & ~CACHED_PSTATE_BITS;
1511 }
1512 
1513 /* Return the current CPSR value.  */
1514 uint32_t cpsr_read(CPUARMState *env);
1515 
1516 typedef enum CPSRWriteType {
1517     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1518     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1519     CPSRWriteRaw = 2,
1520         /* trust values, no reg bank switch, no hflags rebuild */
1521     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1522 } CPSRWriteType;
1523 
1524 /*
1525  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1526  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1527  * correspond to TB flags bits cached in the hflags, unless @write_type
1528  * is CPSRWriteRaw.
1529  */
1530 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1531                 CPSRWriteType write_type);
1532 
1533 /* Return the current xPSR value.  */
1534 static inline uint32_t xpsr_read(CPUARMState *env)
1535 {
1536     int ZF;
1537     ZF = (env->ZF == 0);
1538     return (env->NF & 0x80000000) | (ZF << 30)
1539         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1540         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1541         | ((env->condexec_bits & 0xfc) << 8)
1542         | (env->GE << 16)
1543         | env->v7m.exception;
1544 }
1545 
1546 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1547 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1548 {
1549     if (mask & XPSR_NZCV) {
1550         env->ZF = (~val) & XPSR_Z;
1551         env->NF = val;
1552         env->CF = (val >> 29) & 1;
1553         env->VF = (val << 3) & 0x80000000;
1554     }
1555     if (mask & XPSR_Q) {
1556         env->QF = ((val & XPSR_Q) != 0);
1557     }
1558     if (mask & XPSR_GE) {
1559         env->GE = (val & XPSR_GE) >> 16;
1560     }
1561 #ifndef CONFIG_USER_ONLY
1562     if (mask & XPSR_T) {
1563         env->thumb = ((val & XPSR_T) != 0);
1564     }
1565     if (mask & XPSR_IT_0_1) {
1566         env->condexec_bits &= ~3;
1567         env->condexec_bits |= (val >> 25) & 3;
1568     }
1569     if (mask & XPSR_IT_2_7) {
1570         env->condexec_bits &= 3;
1571         env->condexec_bits |= (val >> 8) & 0xfc;
1572     }
1573     if (mask & XPSR_EXCP) {
1574         /* Note that this only happens on exception exit */
1575         write_v7m_exception(env, val & XPSR_EXCP);
1576     }
1577 #endif
1578 }
1579 
1580 #define HCR_VM        (1ULL << 0)
1581 #define HCR_SWIO      (1ULL << 1)
1582 #define HCR_PTW       (1ULL << 2)
1583 #define HCR_FMO       (1ULL << 3)
1584 #define HCR_IMO       (1ULL << 4)
1585 #define HCR_AMO       (1ULL << 5)
1586 #define HCR_VF        (1ULL << 6)
1587 #define HCR_VI        (1ULL << 7)
1588 #define HCR_VSE       (1ULL << 8)
1589 #define HCR_FB        (1ULL << 9)
1590 #define HCR_BSU_MASK  (3ULL << 10)
1591 #define HCR_DC        (1ULL << 12)
1592 #define HCR_TWI       (1ULL << 13)
1593 #define HCR_TWE       (1ULL << 14)
1594 #define HCR_TID0      (1ULL << 15)
1595 #define HCR_TID1      (1ULL << 16)
1596 #define HCR_TID2      (1ULL << 17)
1597 #define HCR_TID3      (1ULL << 18)
1598 #define HCR_TSC       (1ULL << 19)
1599 #define HCR_TIDCP     (1ULL << 20)
1600 #define HCR_TACR      (1ULL << 21)
1601 #define HCR_TSW       (1ULL << 22)
1602 #define HCR_TPCP      (1ULL << 23)
1603 #define HCR_TPU       (1ULL << 24)
1604 #define HCR_TTLB      (1ULL << 25)
1605 #define HCR_TVM       (1ULL << 26)
1606 #define HCR_TGE       (1ULL << 27)
1607 #define HCR_TDZ       (1ULL << 28)
1608 #define HCR_HCD       (1ULL << 29)
1609 #define HCR_TRVM      (1ULL << 30)
1610 #define HCR_RW        (1ULL << 31)
1611 #define HCR_CD        (1ULL << 32)
1612 #define HCR_ID        (1ULL << 33)
1613 #define HCR_E2H       (1ULL << 34)
1614 #define HCR_TLOR      (1ULL << 35)
1615 #define HCR_TERR      (1ULL << 36)
1616 #define HCR_TEA       (1ULL << 37)
1617 #define HCR_MIOCNCE   (1ULL << 38)
1618 /* RES0 bit 39 */
1619 #define HCR_APK       (1ULL << 40)
1620 #define HCR_API       (1ULL << 41)
1621 #define HCR_NV        (1ULL << 42)
1622 #define HCR_NV1       (1ULL << 43)
1623 #define HCR_AT        (1ULL << 44)
1624 #define HCR_NV2       (1ULL << 45)
1625 #define HCR_FWB       (1ULL << 46)
1626 #define HCR_FIEN      (1ULL << 47)
1627 /* RES0 bit 48 */
1628 #define HCR_TID4      (1ULL << 49)
1629 #define HCR_TICAB     (1ULL << 50)
1630 #define HCR_AMVOFFEN  (1ULL << 51)
1631 #define HCR_TOCU      (1ULL << 52)
1632 #define HCR_ENSCXT    (1ULL << 53)
1633 #define HCR_TTLBIS    (1ULL << 54)
1634 #define HCR_TTLBOS    (1ULL << 55)
1635 #define HCR_ATA       (1ULL << 56)
1636 #define HCR_DCT       (1ULL << 57)
1637 #define HCR_TID5      (1ULL << 58)
1638 #define HCR_TWEDEN    (1ULL << 59)
1639 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1640 
1641 #define HCRX_ENAS0    (1ULL << 0)
1642 #define HCRX_ENALS    (1ULL << 1)
1643 #define HCRX_ENASR    (1ULL << 2)
1644 #define HCRX_FNXS     (1ULL << 3)
1645 #define HCRX_FGTNXS   (1ULL << 4)
1646 #define HCRX_SMPME    (1ULL << 5)
1647 #define HCRX_TALLINT  (1ULL << 6)
1648 #define HCRX_VINMI    (1ULL << 7)
1649 #define HCRX_VFNMI    (1ULL << 8)
1650 #define HCRX_CMOW     (1ULL << 9)
1651 #define HCRX_MCE2     (1ULL << 10)
1652 #define HCRX_MSCEN    (1ULL << 11)
1653 
1654 #define HPFAR_NS      (1ULL << 63)
1655 
1656 #define SCR_NS                (1U << 0)
1657 #define SCR_IRQ               (1U << 1)
1658 #define SCR_FIQ               (1U << 2)
1659 #define SCR_EA                (1U << 3)
1660 #define SCR_FW                (1U << 4)
1661 #define SCR_AW                (1U << 5)
1662 #define SCR_NET               (1U << 6)
1663 #define SCR_SMD               (1U << 7)
1664 #define SCR_HCE               (1U << 8)
1665 #define SCR_SIF               (1U << 9)
1666 #define SCR_RW                (1U << 10)
1667 #define SCR_ST                (1U << 11)
1668 #define SCR_TWI               (1U << 12)
1669 #define SCR_TWE               (1U << 13)
1670 #define SCR_TLOR              (1U << 14)
1671 #define SCR_TERR              (1U << 15)
1672 #define SCR_APK               (1U << 16)
1673 #define SCR_API               (1U << 17)
1674 #define SCR_EEL2              (1U << 18)
1675 #define SCR_EASE              (1U << 19)
1676 #define SCR_NMEA              (1U << 20)
1677 #define SCR_FIEN              (1U << 21)
1678 #define SCR_ENSCXT            (1U << 25)
1679 #define SCR_ATA               (1U << 26)
1680 #define SCR_FGTEN             (1U << 27)
1681 #define SCR_ECVEN             (1U << 28)
1682 #define SCR_TWEDEN            (1U << 29)
1683 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1684 #define SCR_TME               (1ULL << 34)
1685 #define SCR_AMVOFFEN          (1ULL << 35)
1686 #define SCR_ENAS0             (1ULL << 36)
1687 #define SCR_ADEN              (1ULL << 37)
1688 #define SCR_HXEN              (1ULL << 38)
1689 #define SCR_TRNDR             (1ULL << 40)
1690 #define SCR_ENTP2             (1ULL << 41)
1691 #define SCR_GPF               (1ULL << 48)
1692 
1693 #define HSTR_TTEE (1 << 16)
1694 #define HSTR_TJDBX (1 << 17)
1695 
1696 /* Return the current FPSCR value.  */
1697 uint32_t vfp_get_fpscr(CPUARMState *env);
1698 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1699 
1700 /* FPCR, Floating Point Control Register
1701  * FPSR, Floating Poiht Status Register
1702  *
1703  * For A64 the FPSCR is split into two logically distinct registers,
1704  * FPCR and FPSR. However since they still use non-overlapping bits
1705  * we store the underlying state in fpscr and just mask on read/write.
1706  */
1707 #define FPSR_MASK 0xf800009f
1708 #define FPCR_MASK 0x07ff9f00
1709 
1710 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1711 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1712 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1713 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1714 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1715 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1716 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1717 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1718 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1719 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1720 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1721 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1722 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1723 #define FPCR_C      (1 << 29)   /* FP carry flag */
1724 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1725 #define FPCR_N      (1 << 31)   /* FP negative flag */
1726 
1727 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1728 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1729 #define FPCR_LTPSIZE_LENGTH 3
1730 
1731 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1732 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1733 
1734 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1735 {
1736     return vfp_get_fpscr(env) & FPSR_MASK;
1737 }
1738 
1739 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1740 {
1741     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1742     vfp_set_fpscr(env, new_fpscr);
1743 }
1744 
1745 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1746 {
1747     return vfp_get_fpscr(env) & FPCR_MASK;
1748 }
1749 
1750 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1751 {
1752     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1753     vfp_set_fpscr(env, new_fpscr);
1754 }
1755 
1756 enum arm_cpu_mode {
1757   ARM_CPU_MODE_USR = 0x10,
1758   ARM_CPU_MODE_FIQ = 0x11,
1759   ARM_CPU_MODE_IRQ = 0x12,
1760   ARM_CPU_MODE_SVC = 0x13,
1761   ARM_CPU_MODE_MON = 0x16,
1762   ARM_CPU_MODE_ABT = 0x17,
1763   ARM_CPU_MODE_HYP = 0x1a,
1764   ARM_CPU_MODE_UND = 0x1b,
1765   ARM_CPU_MODE_SYS = 0x1f
1766 };
1767 
1768 /* VFP system registers.  */
1769 #define ARM_VFP_FPSID   0
1770 #define ARM_VFP_FPSCR   1
1771 #define ARM_VFP_MVFR2   5
1772 #define ARM_VFP_MVFR1   6
1773 #define ARM_VFP_MVFR0   7
1774 #define ARM_VFP_FPEXC   8
1775 #define ARM_VFP_FPINST  9
1776 #define ARM_VFP_FPINST2 10
1777 /* These ones are M-profile only */
1778 #define ARM_VFP_FPSCR_NZCVQC 2
1779 #define ARM_VFP_VPR 12
1780 #define ARM_VFP_P0 13
1781 #define ARM_VFP_FPCXT_NS 14
1782 #define ARM_VFP_FPCXT_S 15
1783 
1784 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1785 #define QEMU_VFP_FPSCR_NZCV 0xffff
1786 
1787 /* iwMMXt coprocessor control registers.  */
1788 #define ARM_IWMMXT_wCID  0
1789 #define ARM_IWMMXT_wCon  1
1790 #define ARM_IWMMXT_wCSSF 2
1791 #define ARM_IWMMXT_wCASF 3
1792 #define ARM_IWMMXT_wCGR0 8
1793 #define ARM_IWMMXT_wCGR1 9
1794 #define ARM_IWMMXT_wCGR2 10
1795 #define ARM_IWMMXT_wCGR3 11
1796 
1797 /* V7M CCR bits */
1798 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1799 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1800 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1801 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1802 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1803 FIELD(V7M_CCR, STKALIGN, 9, 1)
1804 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1805 FIELD(V7M_CCR, DC, 16, 1)
1806 FIELD(V7M_CCR, IC, 17, 1)
1807 FIELD(V7M_CCR, BP, 18, 1)
1808 FIELD(V7M_CCR, LOB, 19, 1)
1809 FIELD(V7M_CCR, TRD, 20, 1)
1810 
1811 /* V7M SCR bits */
1812 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1813 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1814 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1815 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1816 
1817 /* V7M AIRCR bits */
1818 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1819 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1820 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1821 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1822 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1823 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1824 FIELD(V7M_AIRCR, PRIS, 14, 1)
1825 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1826 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1827 
1828 /* V7M CFSR bits for MMFSR */
1829 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1830 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1831 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1832 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1833 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1834 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1835 
1836 /* V7M CFSR bits for BFSR */
1837 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1838 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1839 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1840 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1841 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1842 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1843 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1844 
1845 /* V7M CFSR bits for UFSR */
1846 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1847 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1848 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1849 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1850 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1851 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1852 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1853 
1854 /* V7M CFSR bit masks covering all of the subregister bits */
1855 FIELD(V7M_CFSR, MMFSR, 0, 8)
1856 FIELD(V7M_CFSR, BFSR, 8, 8)
1857 FIELD(V7M_CFSR, UFSR, 16, 16)
1858 
1859 /* V7M HFSR bits */
1860 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1861 FIELD(V7M_HFSR, FORCED, 30, 1)
1862 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1863 
1864 /* V7M DFSR bits */
1865 FIELD(V7M_DFSR, HALTED, 0, 1)
1866 FIELD(V7M_DFSR, BKPT, 1, 1)
1867 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1868 FIELD(V7M_DFSR, VCATCH, 3, 1)
1869 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1870 
1871 /* V7M SFSR bits */
1872 FIELD(V7M_SFSR, INVEP, 0, 1)
1873 FIELD(V7M_SFSR, INVIS, 1, 1)
1874 FIELD(V7M_SFSR, INVER, 2, 1)
1875 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1876 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1877 FIELD(V7M_SFSR, LSPERR, 5, 1)
1878 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1879 FIELD(V7M_SFSR, LSERR, 7, 1)
1880 
1881 /* v7M MPU_CTRL bits */
1882 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1883 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1884 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1885 
1886 /* v7M CLIDR bits */
1887 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1888 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1889 FIELD(V7M_CLIDR, LOC, 24, 3)
1890 FIELD(V7M_CLIDR, LOUU, 27, 3)
1891 FIELD(V7M_CLIDR, ICB, 30, 2)
1892 
1893 FIELD(V7M_CSSELR, IND, 0, 1)
1894 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1895 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1896  * define a mask for this and check that it doesn't permit running off
1897  * the end of the array.
1898  */
1899 FIELD(V7M_CSSELR, INDEX, 0, 4)
1900 
1901 /* v7M FPCCR bits */
1902 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1903 FIELD(V7M_FPCCR, USER, 1, 1)
1904 FIELD(V7M_FPCCR, S, 2, 1)
1905 FIELD(V7M_FPCCR, THREAD, 3, 1)
1906 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1907 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1908 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1909 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1910 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1911 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1912 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1913 FIELD(V7M_FPCCR, RES0, 11, 15)
1914 FIELD(V7M_FPCCR, TS, 26, 1)
1915 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1916 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1917 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1918 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1919 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1920 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1921 #define R_V7M_FPCCR_BANKED_MASK                 \
1922     (R_V7M_FPCCR_LSPACT_MASK |                  \
1923      R_V7M_FPCCR_USER_MASK |                    \
1924      R_V7M_FPCCR_THREAD_MASK |                  \
1925      R_V7M_FPCCR_MMRDY_MASK |                   \
1926      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1927      R_V7M_FPCCR_UFRDY_MASK |                   \
1928      R_V7M_FPCCR_ASPEN_MASK)
1929 
1930 /* v7M VPR bits */
1931 FIELD(V7M_VPR, P0, 0, 16)
1932 FIELD(V7M_VPR, MASK01, 16, 4)
1933 FIELD(V7M_VPR, MASK23, 20, 4)
1934 
1935 /*
1936  * System register ID fields.
1937  */
1938 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1939 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1940 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1941 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1942 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1943 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1944 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1945 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1946 FIELD(CLIDR_EL1, LOC, 24, 3)
1947 FIELD(CLIDR_EL1, LOUU, 27, 3)
1948 FIELD(CLIDR_EL1, ICB, 30, 3)
1949 
1950 /* When FEAT_CCIDX is implemented */
1951 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1952 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1953 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1954 
1955 /* When FEAT_CCIDX is not implemented */
1956 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1957 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1958 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1959 
1960 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1961 FIELD(CTR_EL0,  L1IP, 14, 2)
1962 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1963 FIELD(CTR_EL0,  ERG, 20, 4)
1964 FIELD(CTR_EL0,  CWG, 24, 4)
1965 FIELD(CTR_EL0,  IDC, 28, 1)
1966 FIELD(CTR_EL0,  DIC, 29, 1)
1967 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1968 
1969 FIELD(MIDR_EL1, REVISION, 0, 4)
1970 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1971 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1972 FIELD(MIDR_EL1, VARIANT, 20, 4)
1973 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1974 
1975 FIELD(ID_ISAR0, SWAP, 0, 4)
1976 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1977 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1978 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1979 FIELD(ID_ISAR0, COPROC, 16, 4)
1980 FIELD(ID_ISAR0, DEBUG, 20, 4)
1981 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1982 
1983 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1984 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1985 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1986 FIELD(ID_ISAR1, EXTEND, 12, 4)
1987 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1988 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1989 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1990 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1991 
1992 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1993 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1994 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1995 FIELD(ID_ISAR2, MULT, 12, 4)
1996 FIELD(ID_ISAR2, MULTS, 16, 4)
1997 FIELD(ID_ISAR2, MULTU, 20, 4)
1998 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1999 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2000 
2001 FIELD(ID_ISAR3, SATURATE, 0, 4)
2002 FIELD(ID_ISAR3, SIMD, 4, 4)
2003 FIELD(ID_ISAR3, SVC, 8, 4)
2004 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2005 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2006 FIELD(ID_ISAR3, T32COPY, 20, 4)
2007 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2008 FIELD(ID_ISAR3, T32EE, 28, 4)
2009 
2010 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2011 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2012 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2013 FIELD(ID_ISAR4, SMC, 12, 4)
2014 FIELD(ID_ISAR4, BARRIER, 16, 4)
2015 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2016 FIELD(ID_ISAR4, PSR_M, 24, 4)
2017 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2018 
2019 FIELD(ID_ISAR5, SEVL, 0, 4)
2020 FIELD(ID_ISAR5, AES, 4, 4)
2021 FIELD(ID_ISAR5, SHA1, 8, 4)
2022 FIELD(ID_ISAR5, SHA2, 12, 4)
2023 FIELD(ID_ISAR5, CRC32, 16, 4)
2024 FIELD(ID_ISAR5, RDM, 24, 4)
2025 FIELD(ID_ISAR5, VCMA, 28, 4)
2026 
2027 FIELD(ID_ISAR6, JSCVT, 0, 4)
2028 FIELD(ID_ISAR6, DP, 4, 4)
2029 FIELD(ID_ISAR6, FHM, 8, 4)
2030 FIELD(ID_ISAR6, SB, 12, 4)
2031 FIELD(ID_ISAR6, SPECRES, 16, 4)
2032 FIELD(ID_ISAR6, BF16, 20, 4)
2033 FIELD(ID_ISAR6, I8MM, 24, 4)
2034 
2035 FIELD(ID_MMFR0, VMSA, 0, 4)
2036 FIELD(ID_MMFR0, PMSA, 4, 4)
2037 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2038 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2039 FIELD(ID_MMFR0, TCM, 16, 4)
2040 FIELD(ID_MMFR0, AUXREG, 20, 4)
2041 FIELD(ID_MMFR0, FCSE, 24, 4)
2042 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2043 
2044 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2045 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2046 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2047 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2048 FIELD(ID_MMFR1, L1HVD, 16, 4)
2049 FIELD(ID_MMFR1, L1UNI, 20, 4)
2050 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2051 FIELD(ID_MMFR1, BPRED, 28, 4)
2052 
2053 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2054 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2055 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2056 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2057 FIELD(ID_MMFR2, UNITLB, 16, 4)
2058 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2059 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2060 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2061 
2062 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2063 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2064 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2065 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2066 FIELD(ID_MMFR3, PAN, 16, 4)
2067 FIELD(ID_MMFR3, COHWALK, 20, 4)
2068 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2069 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2070 
2071 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2072 FIELD(ID_MMFR4, AC2, 4, 4)
2073 FIELD(ID_MMFR4, XNX, 8, 4)
2074 FIELD(ID_MMFR4, CNP, 12, 4)
2075 FIELD(ID_MMFR4, HPDS, 16, 4)
2076 FIELD(ID_MMFR4, LSM, 20, 4)
2077 FIELD(ID_MMFR4, CCIDX, 24, 4)
2078 FIELD(ID_MMFR4, EVT, 28, 4)
2079 
2080 FIELD(ID_MMFR5, ETS, 0, 4)
2081 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2082 
2083 FIELD(ID_PFR0, STATE0, 0, 4)
2084 FIELD(ID_PFR0, STATE1, 4, 4)
2085 FIELD(ID_PFR0, STATE2, 8, 4)
2086 FIELD(ID_PFR0, STATE3, 12, 4)
2087 FIELD(ID_PFR0, CSV2, 16, 4)
2088 FIELD(ID_PFR0, AMU, 20, 4)
2089 FIELD(ID_PFR0, DIT, 24, 4)
2090 FIELD(ID_PFR0, RAS, 28, 4)
2091 
2092 FIELD(ID_PFR1, PROGMOD, 0, 4)
2093 FIELD(ID_PFR1, SECURITY, 4, 4)
2094 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2095 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2096 FIELD(ID_PFR1, GENTIMER, 16, 4)
2097 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2098 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2099 FIELD(ID_PFR1, GIC, 28, 4)
2100 
2101 FIELD(ID_PFR2, CSV3, 0, 4)
2102 FIELD(ID_PFR2, SSBS, 4, 4)
2103 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2104 
2105 FIELD(ID_AA64ISAR0, AES, 4, 4)
2106 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2107 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2108 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2109 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2110 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2111 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2112 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2113 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2114 FIELD(ID_AA64ISAR0, DP, 44, 4)
2115 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2116 FIELD(ID_AA64ISAR0, TS, 52, 4)
2117 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2118 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2119 
2120 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2121 FIELD(ID_AA64ISAR1, APA, 4, 4)
2122 FIELD(ID_AA64ISAR1, API, 8, 4)
2123 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2124 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2125 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2126 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2127 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2128 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2129 FIELD(ID_AA64ISAR1, SB, 36, 4)
2130 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2131 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2132 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2133 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2134 FIELD(ID_AA64ISAR1, XS, 56, 4)
2135 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2136 
2137 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2138 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2139 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2140 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2141 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2142 FIELD(ID_AA64ISAR2, BC, 20, 4)
2143 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2144 
2145 FIELD(ID_AA64PFR0, EL0, 0, 4)
2146 FIELD(ID_AA64PFR0, EL1, 4, 4)
2147 FIELD(ID_AA64PFR0, EL2, 8, 4)
2148 FIELD(ID_AA64PFR0, EL3, 12, 4)
2149 FIELD(ID_AA64PFR0, FP, 16, 4)
2150 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2151 FIELD(ID_AA64PFR0, GIC, 24, 4)
2152 FIELD(ID_AA64PFR0, RAS, 28, 4)
2153 FIELD(ID_AA64PFR0, SVE, 32, 4)
2154 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2155 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2156 FIELD(ID_AA64PFR0, AMU, 44, 4)
2157 FIELD(ID_AA64PFR0, DIT, 48, 4)
2158 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2159 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2160 
2161 FIELD(ID_AA64PFR1, BT, 0, 4)
2162 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2163 FIELD(ID_AA64PFR1, MTE, 8, 4)
2164 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2165 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2166 FIELD(ID_AA64PFR1, SME, 24, 4)
2167 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2168 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2169 FIELD(ID_AA64PFR1, NMI, 36, 4)
2170 
2171 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2172 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2173 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2174 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2175 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2176 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2177 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2178 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2179 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2180 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2181 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2182 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2183 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2184 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2185 
2186 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2187 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2188 FIELD(ID_AA64MMFR1, VH, 8, 4)
2189 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2190 FIELD(ID_AA64MMFR1, LO, 16, 4)
2191 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2192 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2193 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2194 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2195 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2196 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2197 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2198 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2199 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2200 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2201 
2202 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2203 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2204 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2205 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2206 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2207 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2208 FIELD(ID_AA64MMFR2, NV, 24, 4)
2209 FIELD(ID_AA64MMFR2, ST, 28, 4)
2210 FIELD(ID_AA64MMFR2, AT, 32, 4)
2211 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2212 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2213 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2214 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2215 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2216 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2217 
2218 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2219 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2220 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2221 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2222 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2223 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2224 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2225 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2226 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2227 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2228 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2229 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2230 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2231 
2232 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2233 FIELD(ID_AA64ZFR0, AES, 4, 4)
2234 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2235 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2236 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2237 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2238 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2239 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2240 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2241 
2242 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2243 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2244 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2245 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2246 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2247 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2248 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2249 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2250 
2251 FIELD(ID_DFR0, COPDBG, 0, 4)
2252 FIELD(ID_DFR0, COPSDBG, 4, 4)
2253 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2254 FIELD(ID_DFR0, COPTRC, 12, 4)
2255 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2256 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2257 FIELD(ID_DFR0, PERFMON, 24, 4)
2258 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2259 
2260 FIELD(ID_DFR1, MTPMU, 0, 4)
2261 FIELD(ID_DFR1, HPMN0, 4, 4)
2262 
2263 FIELD(DBGDIDR, SE_IMP, 12, 1)
2264 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2265 FIELD(DBGDIDR, VERSION, 16, 4)
2266 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2267 FIELD(DBGDIDR, BRPS, 24, 4)
2268 FIELD(DBGDIDR, WRPS, 28, 4)
2269 
2270 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2271 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2272 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2273 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2274 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2275 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2276 FIELD(DBGDEVID, AUXREGS, 24, 4)
2277 FIELD(DBGDEVID, CIDMASK, 28, 4)
2278 
2279 FIELD(MVFR0, SIMDREG, 0, 4)
2280 FIELD(MVFR0, FPSP, 4, 4)
2281 FIELD(MVFR0, FPDP, 8, 4)
2282 FIELD(MVFR0, FPTRAP, 12, 4)
2283 FIELD(MVFR0, FPDIVIDE, 16, 4)
2284 FIELD(MVFR0, FPSQRT, 20, 4)
2285 FIELD(MVFR0, FPSHVEC, 24, 4)
2286 FIELD(MVFR0, FPROUND, 28, 4)
2287 
2288 FIELD(MVFR1, FPFTZ, 0, 4)
2289 FIELD(MVFR1, FPDNAN, 4, 4)
2290 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2291 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2292 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2293 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2294 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2295 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2296 FIELD(MVFR1, FPHP, 24, 4)
2297 FIELD(MVFR1, SIMDFMAC, 28, 4)
2298 
2299 FIELD(MVFR2, SIMDMISC, 0, 4)
2300 FIELD(MVFR2, FPMISC, 4, 4)
2301 
2302 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2303 
2304 /* If adding a feature bit which corresponds to a Linux ELF
2305  * HWCAP bit, remember to update the feature-bit-to-hwcap
2306  * mapping in linux-user/elfload.c:get_elf_hwcap().
2307  */
2308 enum arm_features {
2309     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2310     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2311     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2312     ARM_FEATURE_V6,
2313     ARM_FEATURE_V6K,
2314     ARM_FEATURE_V7,
2315     ARM_FEATURE_THUMB2,
2316     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2317     ARM_FEATURE_NEON,
2318     ARM_FEATURE_M, /* Microcontroller profile.  */
2319     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2320     ARM_FEATURE_THUMB2EE,
2321     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2322     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2323     ARM_FEATURE_V4T,
2324     ARM_FEATURE_V5,
2325     ARM_FEATURE_STRONGARM,
2326     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2327     ARM_FEATURE_GENERIC_TIMER,
2328     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2329     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2330     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2331     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2332     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2333     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2334     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2335     ARM_FEATURE_V8,
2336     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2337     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2338     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2339     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2340     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2341     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2342     ARM_FEATURE_PMU, /* has PMU support */
2343     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2344     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2345     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2346     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2347 };
2348 
2349 static inline int arm_feature(CPUARMState *env, int feature)
2350 {
2351     return (env->features & (1ULL << feature)) != 0;
2352 }
2353 
2354 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2355 
2356 #if !defined(CONFIG_USER_ONLY)
2357 /* Return true if exception levels below EL3 are in secure state,
2358  * or would be following an exception return to that level.
2359  * Unlike arm_is_secure() (which is always a question about the
2360  * _current_ state of the CPU) this doesn't care about the current
2361  * EL or mode.
2362  */
2363 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2364 {
2365     if (arm_feature(env, ARM_FEATURE_EL3)) {
2366         return !(env->cp15.scr_el3 & SCR_NS);
2367     } else {
2368         /* If EL3 is not supported then the secure state is implementation
2369          * defined, in which case QEMU defaults to non-secure.
2370          */
2371         return false;
2372     }
2373 }
2374 
2375 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2376 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2377 {
2378     if (arm_feature(env, ARM_FEATURE_EL3)) {
2379         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2380             /* CPU currently in AArch64 state and EL3 */
2381             return true;
2382         } else if (!is_a64(env) &&
2383                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2384             /* CPU currently in AArch32 state and monitor mode */
2385             return true;
2386         }
2387     }
2388     return false;
2389 }
2390 
2391 /* Return true if the processor is in secure state */
2392 static inline bool arm_is_secure(CPUARMState *env)
2393 {
2394     if (arm_is_el3_or_mon(env)) {
2395         return true;
2396     }
2397     return arm_is_secure_below_el3(env);
2398 }
2399 
2400 /*
2401  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2402  * This corresponds to the pseudocode EL2Enabled()
2403  */
2404 static inline bool arm_is_el2_enabled(CPUARMState *env)
2405 {
2406     if (arm_feature(env, ARM_FEATURE_EL2)) {
2407         if (arm_is_secure_below_el3(env)) {
2408             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2409         }
2410         return true;
2411     }
2412     return false;
2413 }
2414 
2415 #else
2416 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2417 {
2418     return false;
2419 }
2420 
2421 static inline bool arm_is_secure(CPUARMState *env)
2422 {
2423     return false;
2424 }
2425 
2426 static inline bool arm_is_el2_enabled(CPUARMState *env)
2427 {
2428     return false;
2429 }
2430 #endif
2431 
2432 /**
2433  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2434  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2435  * "for all purposes other than a direct read or write access of HCR_EL2."
2436  * Not included here is HCR_RW.
2437  */
2438 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2439 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2440 
2441 /* Return true if the specified exception level is running in AArch64 state. */
2442 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2443 {
2444     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2445      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2446      */
2447     assert(el >= 1 && el <= 3);
2448     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2449 
2450     /* The highest exception level is always at the maximum supported
2451      * register width, and then lower levels have a register width controlled
2452      * by bits in the SCR or HCR registers.
2453      */
2454     if (el == 3) {
2455         return aa64;
2456     }
2457 
2458     if (arm_feature(env, ARM_FEATURE_EL3) &&
2459         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2460         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2461     }
2462 
2463     if (el == 2) {
2464         return aa64;
2465     }
2466 
2467     if (arm_is_el2_enabled(env)) {
2468         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2469     }
2470 
2471     return aa64;
2472 }
2473 
2474 /* Function for determing whether guest cp register reads and writes should
2475  * access the secure or non-secure bank of a cp register.  When EL3 is
2476  * operating in AArch32 state, the NS-bit determines whether the secure
2477  * instance of a cp register should be used. When EL3 is AArch64 (or if
2478  * it doesn't exist at all) then there is no register banking, and all
2479  * accesses are to the non-secure version.
2480  */
2481 static inline bool access_secure_reg(CPUARMState *env)
2482 {
2483     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2484                 !arm_el_is_aa64(env, 3) &&
2485                 !(env->cp15.scr_el3 & SCR_NS));
2486 
2487     return ret;
2488 }
2489 
2490 /* Macros for accessing a specified CP register bank */
2491 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2492     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2493 
2494 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2495     do {                                                \
2496         if (_secure) {                                   \
2497             (_env)->cp15._regname##_s = (_val);            \
2498         } else {                                        \
2499             (_env)->cp15._regname##_ns = (_val);           \
2500         }                                               \
2501     } while (0)
2502 
2503 /* Macros for automatically accessing a specific CP register bank depending on
2504  * the current secure state of the system.  These macros are not intended for
2505  * supporting instruction translation reads/writes as these are dependent
2506  * solely on the SCR.NS bit and not the mode.
2507  */
2508 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2509     A32_BANKED_REG_GET((_env), _regname,                \
2510                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2511 
2512 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2513     A32_BANKED_REG_SET((_env), _regname,                                    \
2514                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2515                        (_val))
2516 
2517 void arm_cpu_list(void);
2518 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2519                                  uint32_t cur_el, bool secure);
2520 
2521 /* Interface between CPU and Interrupt controller.  */
2522 #ifndef CONFIG_USER_ONLY
2523 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2524 #else
2525 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2526 {
2527     return true;
2528 }
2529 #endif
2530 /**
2531  * armv7m_nvic_set_pending: mark the specified exception as pending
2532  * @opaque: the NVIC
2533  * @irq: the exception number to mark pending
2534  * @secure: false for non-banked exceptions or for the nonsecure
2535  * version of a banked exception, true for the secure version of a banked
2536  * exception.
2537  *
2538  * Marks the specified exception as pending. Note that we will assert()
2539  * if @secure is true and @irq does not specify one of the fixed set
2540  * of architecturally banked exceptions.
2541  */
2542 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2543 /**
2544  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2545  * @opaque: the NVIC
2546  * @irq: the exception number to mark pending
2547  * @secure: false for non-banked exceptions or for the nonsecure
2548  * version of a banked exception, true for the secure version of a banked
2549  * exception.
2550  *
2551  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2552  * exceptions (exceptions generated in the course of trying to take
2553  * a different exception).
2554  */
2555 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2556 /**
2557  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2558  * @opaque: the NVIC
2559  * @irq: the exception number to mark pending
2560  * @secure: false for non-banked exceptions or for the nonsecure
2561  * version of a banked exception, true for the secure version of a banked
2562  * exception.
2563  *
2564  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2565  * generated in the course of lazy stacking of FP registers.
2566  */
2567 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2568 /**
2569  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2570  *    exception, and whether it targets Secure state
2571  * @opaque: the NVIC
2572  * @pirq: set to pending exception number
2573  * @ptargets_secure: set to whether pending exception targets Secure
2574  *
2575  * This function writes the number of the highest priority pending
2576  * exception (the one which would be made active by
2577  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2578  * to true if the current highest priority pending exception should
2579  * be taken to Secure state, false for NS.
2580  */
2581 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2582                                       bool *ptargets_secure);
2583 /**
2584  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2585  * @opaque: the NVIC
2586  *
2587  * Move the current highest priority pending exception from the pending
2588  * state to the active state, and update v7m.exception to indicate that
2589  * it is the exception currently being handled.
2590  */
2591 void armv7m_nvic_acknowledge_irq(void *opaque);
2592 /**
2593  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2594  * @opaque: the NVIC
2595  * @irq: the exception number to complete
2596  * @secure: true if this exception was secure
2597  *
2598  * Returns: -1 if the irq was not active
2599  *           1 if completing this irq brought us back to base (no active irqs)
2600  *           0 if there is still an irq active after this one was completed
2601  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2602  */
2603 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2604 /**
2605  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2606  * @opaque: the NVIC
2607  * @irq: the exception number to mark pending
2608  * @secure: false for non-banked exceptions or for the nonsecure
2609  * version of a banked exception, true for the secure version of a banked
2610  * exception.
2611  *
2612  * Return whether an exception is "ready", i.e. whether the exception is
2613  * enabled and is configured at a priority which would allow it to
2614  * interrupt the current execution priority. This controls whether the
2615  * RDY bit for it in the FPCCR is set.
2616  */
2617 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2618 /**
2619  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2620  * @opaque: the NVIC
2621  *
2622  * Returns: the raw execution priority as defined by the v8M architecture.
2623  * This is the execution priority minus the effects of AIRCR.PRIS,
2624  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2625  * (v8M ARM ARM I_PKLD.)
2626  */
2627 int armv7m_nvic_raw_execution_priority(void *opaque);
2628 /**
2629  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2630  * priority is negative for the specified security state.
2631  * @opaque: the NVIC
2632  * @secure: the security state to test
2633  * This corresponds to the pseudocode IsReqExecPriNeg().
2634  */
2635 #ifndef CONFIG_USER_ONLY
2636 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2637 #else
2638 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2639 {
2640     return false;
2641 }
2642 #endif
2643 
2644 /* Interface for defining coprocessor registers.
2645  * Registers are defined in tables of arm_cp_reginfo structs
2646  * which are passed to define_arm_cp_regs().
2647  */
2648 
2649 /* When looking up a coprocessor register we look for it
2650  * via an integer which encodes all of:
2651  *  coprocessor number
2652  *  Crn, Crm, opc1, opc2 fields
2653  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2654  *    or via MRRC/MCRR?)
2655  *  non-secure/secure bank (AArch32 only)
2656  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2657  * (In this case crn and opc2 should be zero.)
2658  * For AArch64, there is no 32/64 bit size distinction;
2659  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2660  * and 4 bit CRn and CRm. The encoding patterns are chosen
2661  * to be easy to convert to and from the KVM encodings, and also
2662  * so that the hashtable can contain both AArch32 and AArch64
2663  * registers (to allow for interprocessing where we might run
2664  * 32 bit code on a 64 bit core).
2665  */
2666 /* This bit is private to our hashtable cpreg; in KVM register
2667  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2668  * in the upper bits of the 64 bit ID.
2669  */
2670 #define CP_REG_AA64_SHIFT 28
2671 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2672 
2673 /* To enable banking of coprocessor registers depending on ns-bit we
2674  * add a bit to distinguish between secure and non-secure cpregs in the
2675  * hashtable.
2676  */
2677 #define CP_REG_NS_SHIFT 29
2678 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2679 
2680 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2681     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2682      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2683 
2684 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2685     (CP_REG_AA64_MASK |                                 \
2686      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2687      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2688      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2689      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2690      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2691      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2692 
2693 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2694  * version used as a key for the coprocessor register hashtable
2695  */
2696 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2697 {
2698     uint32_t cpregid = kvmid;
2699     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2700         cpregid |= CP_REG_AA64_MASK;
2701     } else {
2702         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2703             cpregid |= (1 << 15);
2704         }
2705 
2706         /* KVM is always non-secure so add the NS flag on AArch32 register
2707          * entries.
2708          */
2709          cpregid |= 1 << CP_REG_NS_SHIFT;
2710     }
2711     return cpregid;
2712 }
2713 
2714 /* Convert a truncated 32 bit hashtable key into the full
2715  * 64 bit KVM register ID.
2716  */
2717 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2718 {
2719     uint64_t kvmid;
2720 
2721     if (cpregid & CP_REG_AA64_MASK) {
2722         kvmid = cpregid & ~CP_REG_AA64_MASK;
2723         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2724     } else {
2725         kvmid = cpregid & ~(1 << 15);
2726         if (cpregid & (1 << 15)) {
2727             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2728         } else {
2729             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2730         }
2731     }
2732     return kvmid;
2733 }
2734 
2735 /* Return the highest implemented Exception Level */
2736 static inline int arm_highest_el(CPUARMState *env)
2737 {
2738     if (arm_feature(env, ARM_FEATURE_EL3)) {
2739         return 3;
2740     }
2741     if (arm_feature(env, ARM_FEATURE_EL2)) {
2742         return 2;
2743     }
2744     return 1;
2745 }
2746 
2747 /* Return true if a v7M CPU is in Handler mode */
2748 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2749 {
2750     return env->v7m.exception != 0;
2751 }
2752 
2753 /* Return the current Exception Level (as per ARMv8; note that this differs
2754  * from the ARMv7 Privilege Level).
2755  */
2756 static inline int arm_current_el(CPUARMState *env)
2757 {
2758     if (arm_feature(env, ARM_FEATURE_M)) {
2759         return arm_v7m_is_handler_mode(env) ||
2760             !(env->v7m.control[env->v7m.secure] & 1);
2761     }
2762 
2763     if (is_a64(env)) {
2764         return extract32(env->pstate, 2, 2);
2765     }
2766 
2767     switch (env->uncached_cpsr & 0x1f) {
2768     case ARM_CPU_MODE_USR:
2769         return 0;
2770     case ARM_CPU_MODE_HYP:
2771         return 2;
2772     case ARM_CPU_MODE_MON:
2773         return 3;
2774     default:
2775         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2776             /* If EL3 is 32-bit then all secure privileged modes run in
2777              * EL3
2778              */
2779             return 3;
2780         }
2781 
2782         return 1;
2783     }
2784 }
2785 
2786 /**
2787  * write_list_to_cpustate
2788  * @cpu: ARMCPU
2789  *
2790  * For each register listed in the ARMCPU cpreg_indexes list, write
2791  * its value from the cpreg_values list into the ARMCPUState structure.
2792  * This updates TCG's working data structures from KVM data or
2793  * from incoming migration state.
2794  *
2795  * Returns: true if all register values were updated correctly,
2796  * false if some register was unknown or could not be written.
2797  * Note that we do not stop early on failure -- we will attempt
2798  * writing all registers in the list.
2799  */
2800 bool write_list_to_cpustate(ARMCPU *cpu);
2801 
2802 /**
2803  * write_cpustate_to_list:
2804  * @cpu: ARMCPU
2805  * @kvm_sync: true if this is for syncing back to KVM
2806  *
2807  * For each register listed in the ARMCPU cpreg_indexes list, write
2808  * its value from the ARMCPUState structure into the cpreg_values list.
2809  * This is used to copy info from TCG's working data structures into
2810  * KVM or for outbound migration.
2811  *
2812  * @kvm_sync is true if we are doing this in order to sync the
2813  * register state back to KVM. In this case we will only update
2814  * values in the list if the previous list->cpustate sync actually
2815  * successfully wrote the CPU state. Otherwise we will keep the value
2816  * that is in the list.
2817  *
2818  * Returns: true if all register values were read correctly,
2819  * false if some register was unknown or could not be read.
2820  * Note that we do not stop early on failure -- we will attempt
2821  * reading all registers in the list.
2822  */
2823 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2824 
2825 #define ARM_CPUID_TI915T      0x54029152
2826 #define ARM_CPUID_TI925T      0x54029252
2827 
2828 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2829 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2830 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2831 
2832 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2833 
2834 #define cpu_list arm_cpu_list
2835 
2836 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2837  *
2838  * If EL3 is 64-bit:
2839  *  + NonSecure EL1 & 0 stage 1
2840  *  + NonSecure EL1 & 0 stage 2
2841  *  + NonSecure EL2
2842  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2843  *  + Secure EL1 & 0
2844  *  + Secure EL3
2845  * If EL3 is 32-bit:
2846  *  + NonSecure PL1 & 0 stage 1
2847  *  + NonSecure PL1 & 0 stage 2
2848  *  + NonSecure PL2
2849  *  + Secure PL0
2850  *  + Secure PL1
2851  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2852  *
2853  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2854  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2855  *     because they may differ in access permissions even if the VA->PA map is
2856  *     the same
2857  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2858  *     translation, which means that we have one mmu_idx that deals with two
2859  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2860  *     architecturally permitted]
2861  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2862  *     handling via the TLB. The only way to do a stage 1 translation without
2863  *     the immediate stage 2 translation is via the ATS or AT system insns,
2864  *     which can be slow-pathed and always do a page table walk.
2865  *     The only use of stage 2 translations is either as part of an s1+2
2866  *     lookup or when loading the descriptors during a stage 1 page table walk,
2867  *     and in both those cases we don't use the TLB.
2868  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2869  *     translation regimes, because they map reasonably well to each other
2870  *     and they can't both be active at the same time.
2871  *  5. we want to be able to use the TLB for accesses done as part of a
2872  *     stage1 page table walk, rather than having to walk the stage2 page
2873  *     table over and over.
2874  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2875  *     Never (PAN) bit within PSTATE.
2876  *
2877  * This gives us the following list of cases:
2878  *
2879  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2880  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2881  * NS EL1 EL1&0 stage 1+2 +PAN
2882  * NS EL0 EL2&0
2883  * NS EL2 EL2&0
2884  * NS EL2 EL2&0 +PAN
2885  * NS EL2 (aka NS PL2)
2886  * S EL0 EL1&0 (aka S PL0)
2887  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2888  * S EL1 EL1&0 +PAN
2889  * S EL3 (aka S PL1)
2890  *
2891  * for a total of 11 different mmu_idx.
2892  *
2893  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2894  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2895  * NS EL2 if we ever model a Cortex-R52).
2896  *
2897  * M profile CPUs are rather different as they do not have a true MMU.
2898  * They have the following different MMU indexes:
2899  *  User
2900  *  Privileged
2901  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2902  *  Privileged, execution priority negative (ditto)
2903  * If the CPU supports the v8M Security Extension then there are also:
2904  *  Secure User
2905  *  Secure Privileged
2906  *  Secure User, execution priority negative
2907  *  Secure Privileged, execution priority negative
2908  *
2909  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2910  * are not quite the same -- different CPU types (most notably M profile
2911  * vs A/R profile) would like to use MMU indexes with different semantics,
2912  * but since we don't ever need to use all of those in a single CPU we
2913  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2914  * modes + total number of M profile MMU modes". The lower bits of
2915  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2916  * the same for any particular CPU.
2917  * Variables of type ARMMUIdx are always full values, and the core
2918  * index values are in variables of type 'int'.
2919  *
2920  * Our enumeration includes at the end some entries which are not "true"
2921  * mmu_idx values in that they don't have corresponding TLBs and are only
2922  * valid for doing slow path page table walks.
2923  *
2924  * The constant names here are patterned after the general style of the names
2925  * of the AT/ATS operations.
2926  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2927  * For M profile we arrange them to have a bit for priv, a bit for negpri
2928  * and a bit for secure.
2929  */
2930 #define ARM_MMU_IDX_A     0x10  /* A profile */
2931 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2932 #define ARM_MMU_IDX_M     0x40  /* M profile */
2933 
2934 /* Meanings of the bits for A profile mmu idx values */
2935 #define ARM_MMU_IDX_A_NS     0x8
2936 
2937 /* Meanings of the bits for M profile mmu idx values */
2938 #define ARM_MMU_IDX_M_PRIV   0x1
2939 #define ARM_MMU_IDX_M_NEGPRI 0x2
2940 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2941 
2942 #define ARM_MMU_IDX_TYPE_MASK \
2943     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2944 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2945 
2946 typedef enum ARMMMUIdx {
2947     /*
2948      * A-profile.
2949      */
2950     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
2951     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
2952     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
2953     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
2954     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
2955     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
2956     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
2957     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
2958 
2959     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2960     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2961     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2962     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2963     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2964     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2965     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2966 
2967     /*
2968      * These are not allocated TLBs and are used only for AT system
2969      * instructions or for the first stage of an S12 page table walk.
2970      */
2971     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2972     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2973     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2974     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2975     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2976     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2977     /*
2978      * Not allocated a TLB: used only for second stage of an S12 page
2979      * table walk, or for descriptor loads during first stage of an S1
2980      * page table walk. Note that if we ever want to have a TLB for this
2981      * then various TLB flush insns which currently are no-ops or flush
2982      * only stage 1 MMU indexes will need to change to flush stage 2.
2983      */
2984     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
2985     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
2986 
2987     /*
2988      * M-profile.
2989      */
2990     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2991     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2992     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2993     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2994     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2995     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2996     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2997     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2998 } ARMMMUIdx;
2999 
3000 /*
3001  * Bit macros for the core-mmu-index values for each index,
3002  * for use when calling tlb_flush_by_mmuidx() and friends.
3003  */
3004 #define TO_CORE_BIT(NAME) \
3005     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3006 
3007 typedef enum ARMMMUIdxBit {
3008     TO_CORE_BIT(E10_0),
3009     TO_CORE_BIT(E20_0),
3010     TO_CORE_BIT(E10_1),
3011     TO_CORE_BIT(E10_1_PAN),
3012     TO_CORE_BIT(E2),
3013     TO_CORE_BIT(E20_2),
3014     TO_CORE_BIT(E20_2_PAN),
3015     TO_CORE_BIT(SE10_0),
3016     TO_CORE_BIT(SE20_0),
3017     TO_CORE_BIT(SE10_1),
3018     TO_CORE_BIT(SE20_2),
3019     TO_CORE_BIT(SE10_1_PAN),
3020     TO_CORE_BIT(SE20_2_PAN),
3021     TO_CORE_BIT(SE2),
3022     TO_CORE_BIT(SE3),
3023 
3024     TO_CORE_BIT(MUser),
3025     TO_CORE_BIT(MPriv),
3026     TO_CORE_BIT(MUserNegPri),
3027     TO_CORE_BIT(MPrivNegPri),
3028     TO_CORE_BIT(MSUser),
3029     TO_CORE_BIT(MSPriv),
3030     TO_CORE_BIT(MSUserNegPri),
3031     TO_CORE_BIT(MSPrivNegPri),
3032 } ARMMMUIdxBit;
3033 
3034 #undef TO_CORE_BIT
3035 
3036 #define MMU_USER_IDX 0
3037 
3038 /* Indexes used when registering address spaces with cpu_address_space_init */
3039 typedef enum ARMASIdx {
3040     ARMASIdx_NS = 0,
3041     ARMASIdx_S = 1,
3042     ARMASIdx_TagNS = 2,
3043     ARMASIdx_TagS = 3,
3044 } ARMASIdx;
3045 
3046 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3047 {
3048     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3049      * CSSELR is RAZ/WI.
3050      */
3051     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3052 }
3053 
3054 static inline bool arm_sctlr_b(CPUARMState *env)
3055 {
3056     return
3057         /* We need not implement SCTLR.ITD in user-mode emulation, so
3058          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3059          * This lets people run BE32 binaries with "-cpu any".
3060          */
3061 #ifndef CONFIG_USER_ONLY
3062         !arm_feature(env, ARM_FEATURE_V7) &&
3063 #endif
3064         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3065 }
3066 
3067 uint64_t arm_sctlr(CPUARMState *env, int el);
3068 
3069 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3070                                                   bool sctlr_b)
3071 {
3072 #ifdef CONFIG_USER_ONLY
3073     /*
3074      * In system mode, BE32 is modelled in line with the
3075      * architecture (as word-invariant big-endianness), where loads
3076      * and stores are done little endian but from addresses which
3077      * are adjusted by XORing with the appropriate constant. So the
3078      * endianness to use for the raw data access is not affected by
3079      * SCTLR.B.
3080      * In user mode, however, we model BE32 as byte-invariant
3081      * big-endianness (because user-only code cannot tell the
3082      * difference), and so we need to use a data access endianness
3083      * that depends on SCTLR.B.
3084      */
3085     if (sctlr_b) {
3086         return true;
3087     }
3088 #endif
3089     /* In 32bit endianness is determined by looking at CPSR's E bit */
3090     return env->uncached_cpsr & CPSR_E;
3091 }
3092 
3093 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3094 {
3095     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3096 }
3097 
3098 /* Return true if the processor is in big-endian mode. */
3099 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3100 {
3101     if (!is_a64(env)) {
3102         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3103     } else {
3104         int cur_el = arm_current_el(env);
3105         uint64_t sctlr = arm_sctlr(env, cur_el);
3106         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3107     }
3108 }
3109 
3110 #include "exec/cpu-all.h"
3111 
3112 /*
3113  * We have more than 32-bits worth of state per TB, so we split the data
3114  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3115  * We collect these two parts in CPUARMTBFlags where they are named
3116  * flags and flags2 respectively.
3117  *
3118  * The flags that are shared between all execution modes, TBFLAG_ANY,
3119  * are stored in flags.  The flags that are specific to a given mode
3120  * are stores in flags2.  Since cs_base is sized on the configured
3121  * address size, flags2 always has 64-bits for A64, and a minimum of
3122  * 32-bits for A32 and M32.
3123  *
3124  * The bits for 32-bit A-profile and M-profile partially overlap:
3125  *
3126  *  31         23         11 10             0
3127  * +-------------+----------+----------------+
3128  * |             |          |   TBFLAG_A32   |
3129  * | TBFLAG_AM32 |          +-----+----------+
3130  * |             |                |TBFLAG_M32|
3131  * +-------------+----------------+----------+
3132  *  31         23                6 5        0
3133  *
3134  * Unless otherwise noted, these bits are cached in env->hflags.
3135  */
3136 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3137 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3138 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3139 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3140 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3141 /* Target EL if we take a floating-point-disabled exception */
3142 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3143 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3144 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3145 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3146 
3147 /*
3148  * Bit usage when in AArch32 state, both A- and M-profile.
3149  */
3150 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3151 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3152 
3153 /*
3154  * Bit usage when in AArch32 state, for A-profile only.
3155  */
3156 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3157 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3158 /*
3159  * We store the bottom two bits of the CPAR as TB flags and handle
3160  * checks on the other bits at runtime. This shares the same bits as
3161  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3162  * Not cached, because VECLEN+VECSTRIDE are not cached.
3163  */
3164 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3165 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3166 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3167 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3168 /*
3169  * Indicates whether cp register reads and writes by guest code should access
3170  * the secure or nonsecure bank of banked registers; note that this is not
3171  * the same thing as the current security state of the processor!
3172  */
3173 FIELD(TBFLAG_A32, NS, 10, 1)
3174 /*
3175  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3176  * This requires an SME trap from AArch32 mode when using NEON.
3177  */
3178 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3179 
3180 /*
3181  * Bit usage when in AArch32 state, for M-profile only.
3182  */
3183 /* Handler (ie not Thread) mode */
3184 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3185 /* Whether we should generate stack-limit checks */
3186 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3187 /* Set if FPCCR.LSPACT is set */
3188 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3189 /* Set if we must create a new FP context */
3190 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3191 /* Set if FPCCR.S does not match current security state */
3192 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3193 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3194 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3195 
3196 /*
3197  * Bit usage when in AArch64 state
3198  */
3199 FIELD(TBFLAG_A64, TBII, 0, 2)
3200 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3201 /* The current vector length, either NVL or SVL. */
3202 FIELD(TBFLAG_A64, VL, 4, 4)
3203 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3204 FIELD(TBFLAG_A64, BT, 9, 1)
3205 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3206 FIELD(TBFLAG_A64, TBID, 12, 2)
3207 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3208 FIELD(TBFLAG_A64, ATA, 15, 1)
3209 FIELD(TBFLAG_A64, TCMA, 16, 2)
3210 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3211 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3212 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3213 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3214 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3215 FIELD(TBFLAG_A64, SVL, 24, 4)
3216 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3217 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3218 
3219 /*
3220  * Helpers for using the above.
3221  */
3222 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3223     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3224 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3225     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3226 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3227     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3228 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3229     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3230 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3231     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3232 
3233 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3234 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3235 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3236 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3237 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3238 
3239 /**
3240  * cpu_mmu_index:
3241  * @env: The cpu environment
3242  * @ifetch: True for code access, false for data access.
3243  *
3244  * Return the core mmu index for the current translation regime.
3245  * This function is used by generic TCG code paths.
3246  */
3247 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3248 {
3249     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3250 }
3251 
3252 /**
3253  * sve_vq
3254  * @env: the cpu context
3255  *
3256  * Return the VL cached within env->hflags, in units of quadwords.
3257  */
3258 static inline int sve_vq(CPUARMState *env)
3259 {
3260     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3261 }
3262 
3263 /**
3264  * sme_vq
3265  * @env: the cpu context
3266  *
3267  * Return the SVL cached within env->hflags, in units of quadwords.
3268  */
3269 static inline int sme_vq(CPUARMState *env)
3270 {
3271     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3272 }
3273 
3274 static inline bool bswap_code(bool sctlr_b)
3275 {
3276 #ifdef CONFIG_USER_ONLY
3277     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3278      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3279      * would also end up as a mixed-endian mode with BE code, LE data.
3280      */
3281     return
3282 #if TARGET_BIG_ENDIAN
3283         1 ^
3284 #endif
3285         sctlr_b;
3286 #else
3287     /* All code access in ARM is little endian, and there are no loaders
3288      * doing swaps that need to be reversed
3289      */
3290     return 0;
3291 #endif
3292 }
3293 
3294 #ifdef CONFIG_USER_ONLY
3295 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3296 {
3297     return
3298 #if TARGET_BIG_ENDIAN
3299        1 ^
3300 #endif
3301        arm_cpu_data_is_big_endian(env);
3302 }
3303 #endif
3304 
3305 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3306                           target_ulong *cs_base, uint32_t *flags);
3307 
3308 enum {
3309     QEMU_PSCI_CONDUIT_DISABLED = 0,
3310     QEMU_PSCI_CONDUIT_SMC = 1,
3311     QEMU_PSCI_CONDUIT_HVC = 2,
3312 };
3313 
3314 #ifndef CONFIG_USER_ONLY
3315 /* Return the address space index to use for a memory access */
3316 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3317 {
3318     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3319 }
3320 
3321 /* Return the AddressSpace to use for a memory access
3322  * (which depends on whether the access is S or NS, and whether
3323  * the board gave us a separate AddressSpace for S accesses).
3324  */
3325 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3326 {
3327     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3328 }
3329 #endif
3330 
3331 /**
3332  * arm_register_pre_el_change_hook:
3333  * Register a hook function which will be called immediately before this
3334  * CPU changes exception level or mode. The hook function will be
3335  * passed a pointer to the ARMCPU and the opaque data pointer passed
3336  * to this function when the hook was registered.
3337  *
3338  * Note that if a pre-change hook is called, any registered post-change hooks
3339  * are guaranteed to subsequently be called.
3340  */
3341 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3342                                  void *opaque);
3343 /**
3344  * arm_register_el_change_hook:
3345  * Register a hook function which will be called immediately after this
3346  * CPU changes exception level or mode. The hook function will be
3347  * passed a pointer to the ARMCPU and the opaque data pointer passed
3348  * to this function when the hook was registered.
3349  *
3350  * Note that any registered hooks registered here are guaranteed to be called
3351  * if pre-change hooks have been.
3352  */
3353 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3354         *opaque);
3355 
3356 /**
3357  * arm_rebuild_hflags:
3358  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3359  */
3360 void arm_rebuild_hflags(CPUARMState *env);
3361 
3362 /**
3363  * aa32_vfp_dreg:
3364  * Return a pointer to the Dn register within env in 32-bit mode.
3365  */
3366 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3367 {
3368     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3369 }
3370 
3371 /**
3372  * aa32_vfp_qreg:
3373  * Return a pointer to the Qn register within env in 32-bit mode.
3374  */
3375 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3376 {
3377     return &env->vfp.zregs[regno].d[0];
3378 }
3379 
3380 /**
3381  * aa64_vfp_qreg:
3382  * Return a pointer to the Qn register within env in 64-bit mode.
3383  */
3384 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3385 {
3386     return &env->vfp.zregs[regno].d[0];
3387 }
3388 
3389 /* Shared between translate-sve.c and sve_helper.c.  */
3390 extern const uint64_t pred_esz_masks[5];
3391 
3392 /* Helper for the macros below, validating the argument type. */
3393 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3394 {
3395     return x;
3396 }
3397 
3398 /*
3399  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3400  * Using these should be a bit more self-documenting than using the
3401  * generic target bits directly.
3402  */
3403 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3404 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3405 
3406 /*
3407  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3408  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3409  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3410  */
3411 #define PAGE_BTI            PAGE_TARGET_1
3412 #define PAGE_MTE            PAGE_TARGET_2
3413 #define PAGE_TARGET_STICKY  PAGE_MTE
3414 
3415 #ifdef TARGET_TAGGED_ADDRESSES
3416 /**
3417  * cpu_untagged_addr:
3418  * @cs: CPU context
3419  * @x: tagged address
3420  *
3421  * Remove any address tag from @x.  This is explicitly related to the
3422  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3423  *
3424  * There should be a better place to put this, but we need this in
3425  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3426  */
3427 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3428 {
3429     ARMCPU *cpu = ARM_CPU(cs);
3430     if (cpu->env.tagged_addr_enable) {
3431         /*
3432          * TBI is enabled for userspace but not kernelspace addresses.
3433          * Only clear the tag if bit 55 is clear.
3434          */
3435         x &= sextract64(x, 0, 56);
3436     }
3437     return x;
3438 }
3439 #endif
3440 
3441 /*
3442  * Naming convention for isar_feature functions:
3443  * Functions which test 32-bit ID registers should have _aa32_ in
3444  * their name. Functions which test 64-bit ID registers should have
3445  * _aa64_ in their name. These must only be used in code where we
3446  * know for certain that the CPU has AArch32 or AArch64 respectively
3447  * or where the correct answer for a CPU which doesn't implement that
3448  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3449  * system registers that are specific to that CPU state, for "should
3450  * we let this system register bit be set" tests where the 32-bit
3451  * flavour of the register doesn't have the bit, and so on).
3452  * Functions which simply ask "does this feature exist at all" have
3453  * _any_ in their name, and always return the logical OR of the _aa64_
3454  * and the _aa32_ function.
3455  */
3456 
3457 /*
3458  * 32-bit feature tests via id registers.
3459  */
3460 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3461 {
3462     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3463 }
3464 
3465 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3466 {
3467     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3468 }
3469 
3470 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3471 {
3472     /* (M-profile) low-overhead loops and branch future */
3473     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3474 }
3475 
3476 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3477 {
3478     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3479 }
3480 
3481 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3482 {
3483     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3484 }
3485 
3486 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3487 {
3488     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3489 }
3490 
3491 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3492 {
3493     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3494 }
3495 
3496 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3497 {
3498     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3499 }
3500 
3501 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3502 {
3503     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3504 }
3505 
3506 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3507 {
3508     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3509 }
3510 
3511 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3512 {
3513     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3514 }
3515 
3516 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3517 {
3518     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3519 }
3520 
3521 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3522 {
3523     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3524 }
3525 
3526 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3527 {
3528     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3529 }
3530 
3531 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3532 {
3533     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3534 }
3535 
3536 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3537 {
3538     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3539 }
3540 
3541 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3542 {
3543     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3544 }
3545 
3546 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3547 {
3548     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3549 }
3550 
3551 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3552 {
3553     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3554 }
3555 
3556 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3557 {
3558     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3559 }
3560 
3561 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3562 {
3563     /*
3564      * Return true if M-profile state handling insns
3565      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3566      */
3567     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3568 }
3569 
3570 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3571 {
3572     /* Sadly this is encoded differently for A-profile and M-profile */
3573     if (isar_feature_aa32_mprofile(id)) {
3574         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3575     } else {
3576         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3577     }
3578 }
3579 
3580 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3581 {
3582     /*
3583      * Return true if MVE is supported (either integer or floating point).
3584      * We must check for M-profile as the MVFR1 field means something
3585      * else for A-profile.
3586      */
3587     return isar_feature_aa32_mprofile(id) &&
3588         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3589 }
3590 
3591 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3592 {
3593     /*
3594      * Return true if MVE is supported (either integer or floating point).
3595      * We must check for M-profile as the MVFR1 field means something
3596      * else for A-profile.
3597      */
3598     return isar_feature_aa32_mprofile(id) &&
3599         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3600 }
3601 
3602 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3603 {
3604     /*
3605      * Return true if either VFP or SIMD is implemented.
3606      * In this case, a minimum of VFP w/ D0-D15.
3607      */
3608     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3609 }
3610 
3611 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3612 {
3613     /* Return true if D16-D31 are implemented */
3614     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3615 }
3616 
3617 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3618 {
3619     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3620 }
3621 
3622 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3623 {
3624     /* Return true if CPU supports single precision floating point, VFPv2 */
3625     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3626 }
3627 
3628 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3629 {
3630     /* Return true if CPU supports single precision floating point, VFPv3 */
3631     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3632 }
3633 
3634 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3635 {
3636     /* Return true if CPU supports double precision floating point, VFPv2 */
3637     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3638 }
3639 
3640 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3641 {
3642     /* Return true if CPU supports double precision floating point, VFPv3 */
3643     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3644 }
3645 
3646 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3647 {
3648     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3649 }
3650 
3651 /*
3652  * We always set the FP and SIMD FP16 fields to indicate identical
3653  * levels of support (assuming SIMD is implemented at all), so
3654  * we only need one set of accessors.
3655  */
3656 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3657 {
3658     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3659 }
3660 
3661 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3662 {
3663     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3664 }
3665 
3666 /*
3667  * Note that this ID register field covers both VFP and Neon FMAC,
3668  * so should usually be tested in combination with some other
3669  * check that confirms the presence of whichever of VFP or Neon is
3670  * relevant, to avoid accidentally enabling a Neon feature on
3671  * a VFP-no-Neon core or vice-versa.
3672  */
3673 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3674 {
3675     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3676 }
3677 
3678 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3679 {
3680     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3681 }
3682 
3683 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3684 {
3685     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3686 }
3687 
3688 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3689 {
3690     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3691 }
3692 
3693 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3694 {
3695     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3696 }
3697 
3698 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3699 {
3700     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3701 }
3702 
3703 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3704 {
3705     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3706 }
3707 
3708 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3709 {
3710     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3711 }
3712 
3713 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3714 {
3715     /* 0xf means "non-standard IMPDEF PMU" */
3716     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3717         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3718 }
3719 
3720 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3721 {
3722     /* 0xf means "non-standard IMPDEF PMU" */
3723     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3724         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3725 }
3726 
3727 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3728 {
3729     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3730 }
3731 
3732 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3733 {
3734     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3735 }
3736 
3737 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3738 {
3739     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3740 }
3741 
3742 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3743 {
3744     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3745 }
3746 
3747 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3748 {
3749     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3750 }
3751 
3752 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3753 {
3754     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3755 }
3756 
3757 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3758 {
3759     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3760 }
3761 
3762 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3763 {
3764     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3765 }
3766 
3767 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3768 {
3769     return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3770 }
3771 
3772 /*
3773  * 64-bit feature tests via id registers.
3774  */
3775 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3778 }
3779 
3780 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3783 }
3784 
3785 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3786 {
3787     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3788 }
3789 
3790 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3791 {
3792     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3793 }
3794 
3795 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3796 {
3797     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3798 }
3799 
3800 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3801 {
3802     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3803 }
3804 
3805 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3806 {
3807     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3808 }
3809 
3810 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3811 {
3812     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3813 }
3814 
3815 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3816 {
3817     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3818 }
3819 
3820 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3821 {
3822     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3823 }
3824 
3825 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3826 {
3827     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3828 }
3829 
3830 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3831 {
3832     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3833 }
3834 
3835 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3836 {
3837     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3838 }
3839 
3840 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3841 {
3842     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3843 }
3844 
3845 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3846 {
3847     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3848 }
3849 
3850 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3851 {
3852     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3853 }
3854 
3855 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3856 {
3857     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3858 }
3859 
3860 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3861 {
3862     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3863 }
3864 
3865 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3866 {
3867     /*
3868      * Return true if any form of pauth is enabled, as this
3869      * predicate controls migration of the 128-bit keys.
3870      */
3871     return (id->id_aa64isar1 &
3872             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3873              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3874              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3875              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3876 }
3877 
3878 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3879 {
3880     /*
3881      * Return true if pauth is enabled with the architected QARMA algorithm.
3882      * QEMU will always set APA+GPA to the same value.
3883      */
3884     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3885 }
3886 
3887 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3888 {
3889     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3890 }
3891 
3892 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3893 {
3894     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3895 }
3896 
3897 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3898 {
3899     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3900 }
3901 
3902 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3903 {
3904     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3905 }
3906 
3907 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3908 {
3909     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3910 }
3911 
3912 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3913 {
3914     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3915 }
3916 
3917 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3918 {
3919     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3920 }
3921 
3922 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3923 {
3924     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3925 }
3926 
3927 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3928 {
3929     /* We always set the AdvSIMD and FP fields identically.  */
3930     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3931 }
3932 
3933 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3934 {
3935     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3936     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3937 }
3938 
3939 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3940 {
3941     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3942 }
3943 
3944 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3945 {
3946     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3947 }
3948 
3949 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3950 {
3951     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3952 }
3953 
3954 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3955 {
3956     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3957 }
3958 
3959 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3960 {
3961     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3962 }
3963 
3964 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3965 {
3966     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3967 }
3968 
3969 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3970 {
3971     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3972 }
3973 
3974 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3975 {
3976     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3977 }
3978 
3979 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3980 {
3981     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3982 }
3983 
3984 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3985 {
3986     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3987 }
3988 
3989 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3990 {
3991     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3992 }
3993 
3994 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3995 {
3996     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3997 }
3998 
3999 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4000 {
4001     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4002 }
4003 
4004 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4005 {
4006     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4007 }
4008 
4009 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4010 {
4011     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4012 }
4013 
4014 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4015 {
4016     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4017 }
4018 
4019 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4020 {
4021     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4022 }
4023 
4024 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4025 {
4026     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4027 }
4028 
4029 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4030 {
4031     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4032 }
4033 
4034 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4035 {
4036     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4037 }
4038 
4039 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4040 {
4041     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4042         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4043 }
4044 
4045 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4046 {
4047     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4048         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4049 }
4050 
4051 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4052 {
4053     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4054 }
4055 
4056 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4057 {
4058     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4059 }
4060 
4061 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4062 {
4063     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4064 }
4065 
4066 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4067 {
4068     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4069 }
4070 
4071 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4072 {
4073     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4074     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4075 }
4076 
4077 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4078 {
4079     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4080 }
4081 
4082 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4083 {
4084     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4085     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4086 }
4087 
4088 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4089 {
4090     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4091 }
4092 
4093 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4094 {
4095     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4096 }
4097 
4098 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4099 {
4100     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4101 }
4102 
4103 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4104 {
4105     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4106 }
4107 
4108 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4109 {
4110     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4111     if (key >= 2) {
4112         return true;      /* FEAT_CSV2_2 */
4113     }
4114     if (key == 1) {
4115         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4116         return key >= 2;  /* FEAT_CSV2_1p2 */
4117     }
4118     return false;
4119 }
4120 
4121 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4122 {
4123     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4124 }
4125 
4126 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4127 {
4128     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4129 }
4130 
4131 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4132 {
4133     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4134 }
4135 
4136 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4137 {
4138     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4139 }
4140 
4141 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4142 {
4143     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4144 }
4145 
4146 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4147 {
4148     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4149 }
4150 
4151 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4152 {
4153     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4154 }
4155 
4156 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4157 {
4158     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4159 }
4160 
4161 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4162 {
4163     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4164 }
4165 
4166 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4167 {
4168     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4169 }
4170 
4171 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4172 {
4173     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4174 }
4175 
4176 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4177 {
4178     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4179 }
4180 
4181 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4182 {
4183     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4184 }
4185 
4186 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4187 {
4188     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4189 }
4190 
4191 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4192 {
4193     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4194 }
4195 
4196 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4197 {
4198     return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4199 }
4200 
4201 /*
4202  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4203  */
4204 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4205 {
4206     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4207 }
4208 
4209 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4210 {
4211     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4212 }
4213 
4214 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4215 {
4216     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4217 }
4218 
4219 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4220 {
4221     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4222 }
4223 
4224 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4225 {
4226     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4227 }
4228 
4229 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4230 {
4231     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4232 }
4233 
4234 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4235 {
4236     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4237 }
4238 
4239 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4240 {
4241     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4242 }
4243 
4244 /*
4245  * Forward to the above feature tests given an ARMCPU pointer.
4246  */
4247 #define cpu_isar_feature(name, cpu) \
4248     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4249 
4250 #endif
4251