xref: /openbmc/qemu/target/arm/cpu.h (revision b01e2f0284a2df11aef990219104e3f52c317061)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
60 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
61 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
62 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
63 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
64 
65 #define ARMV7M_EXCP_RESET   1
66 #define ARMV7M_EXCP_NMI     2
67 #define ARMV7M_EXCP_HARD    3
68 #define ARMV7M_EXCP_MEM     4
69 #define ARMV7M_EXCP_BUS     5
70 #define ARMV7M_EXCP_USAGE   6
71 #define ARMV7M_EXCP_SECURE  7
72 #define ARMV7M_EXCP_SVC     11
73 #define ARMV7M_EXCP_DEBUG   12
74 #define ARMV7M_EXCP_PENDSV  14
75 #define ARMV7M_EXCP_SYSTICK 15
76 
77 /* For M profile, some registers are banked secure vs non-secure;
78  * these are represented as a 2-element array where the first element
79  * is the non-secure copy and the second is the secure copy.
80  * When the CPU does not have implement the security extension then
81  * only the first element is used.
82  * This means that the copy for the current security state can be
83  * accessed via env->registerfield[env->v7m.secure] (whether the security
84  * extension is implemented or not).
85  */
86 enum {
87     M_REG_NS = 0,
88     M_REG_S = 1,
89     M_REG_NUM_BANKS = 2,
90 };
91 
92 /* ARM-specific interrupt pending bits.  */
93 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
94 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
95 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
96 
97 /* The usual mapping for an AArch64 system register to its AArch32
98  * counterpart is for the 32 bit world to have access to the lower
99  * half only (with writes leaving the upper half untouched). It's
100  * therefore useful to be able to pass TCG the offset of the least
101  * significant half of a uint64_t struct member.
102  */
103 #ifdef HOST_WORDS_BIGENDIAN
104 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #define offsetofhigh32(S, M) offsetof(S, M)
106 #else
107 #define offsetoflow32(S, M) offsetof(S, M)
108 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
109 #endif
110 
111 /* Meanings of the ARMCPU object's four inbound GPIO lines */
112 #define ARM_CPU_IRQ 0
113 #define ARM_CPU_FIQ 1
114 #define ARM_CPU_VIRQ 2
115 #define ARM_CPU_VFIQ 3
116 
117 #define NB_MMU_MODES 8
118 /* ARM-specific extra insn start words:
119  * 1: Conditional execution bits
120  * 2: Partial exception syndrome for data aborts
121  */
122 #define TARGET_INSN_START_EXTRA_WORDS 2
123 
124 /* The 2nd extra word holding syndrome info for data aborts does not use
125  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
126  * help the sleb128 encoder do a better job.
127  * When restoring the CPU state, we shift it back up.
128  */
129 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
130 #define ARM_INSN_START_WORD2_SHIFT 14
131 
132 /* We currently assume float and double are IEEE single and double
133    precision respectively.
134    Doing runtime conversions is tricky because VFP registers may contain
135    integer values (eg. as the result of a FTOSI instruction).
136    s<2n> maps to the least significant half of d<n>
137    s<2n+1> maps to the most significant half of d<n>
138  */
139 
140 /**
141  * DynamicGDBXMLInfo:
142  * @desc: Contains the XML descriptions.
143  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
144  * @cpregs_keys: Array that contains the corresponding Key of
145  * a given cpreg with the same order of the cpreg in the XML description.
146  */
147 typedef struct DynamicGDBXMLInfo {
148     char *desc;
149     int num_cpregs;
150     uint32_t *cpregs_keys;
151 } DynamicGDBXMLInfo;
152 
153 /* CPU state for each instance of a generic timer (in cp15 c14) */
154 typedef struct ARMGenericTimer {
155     uint64_t cval; /* Timer CompareValue register */
156     uint64_t ctl; /* Timer Control register */
157 } ARMGenericTimer;
158 
159 #define GTIMER_PHYS 0
160 #define GTIMER_VIRT 1
161 #define GTIMER_HYP  2
162 #define GTIMER_SEC  3
163 #define NUM_GTIMERS 4
164 
165 typedef struct {
166     uint64_t raw_tcr;
167     uint32_t mask;
168     uint32_t base_mask;
169 } TCR;
170 
171 /* Define a maximum sized vector register.
172  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
173  * For 64-bit, this is a 2048-bit SVE register.
174  *
175  * Note that the mapping between S, D, and Q views of the register bank
176  * differs between AArch64 and AArch32.
177  * In AArch32:
178  *  Qn = regs[n].d[1]:regs[n].d[0]
179  *  Dn = regs[n / 2].d[n & 1]
180  *  Sn = regs[n / 4].d[n % 4 / 2],
181  *       bits 31..0 for even n, and bits 63..32 for odd n
182  *       (and regs[16] to regs[31] are inaccessible)
183  * In AArch64:
184  *  Zn = regs[n].d[*]
185  *  Qn = regs[n].d[1]:regs[n].d[0]
186  *  Dn = regs[n].d[0]
187  *  Sn = regs[n].d[0] bits 31..0
188  *  Hn = regs[n].d[0] bits 15..0
189  *
190  * This corresponds to the architecturally defined mapping between
191  * the two execution states, and means we do not need to explicitly
192  * map these registers when changing states.
193  *
194  * Align the data for use with TCG host vector operations.
195  */
196 
197 #ifdef TARGET_AARCH64
198 # define ARM_MAX_VQ    16
199 #else
200 # define ARM_MAX_VQ    1
201 #endif
202 
203 typedef struct ARMVectorReg {
204     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
205 } ARMVectorReg;
206 
207 #ifdef TARGET_AARCH64
208 /* In AArch32 mode, predicate registers do not exist at all.  */
209 typedef struct ARMPredicateReg {
210     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
211 } ARMPredicateReg;
212 
213 /* In AArch32 mode, PAC keys do not exist at all.  */
214 typedef struct ARMPACKey {
215     uint64_t lo, hi;
216 } ARMPACKey;
217 #endif
218 
219 
220 typedef struct CPUARMState {
221     /* Regs for current mode.  */
222     uint32_t regs[16];
223 
224     /* 32/64 switch only happens when taking and returning from
225      * exceptions so the overlap semantics are taken care of then
226      * instead of having a complicated union.
227      */
228     /* Regs for A64 mode.  */
229     uint64_t xregs[32];
230     uint64_t pc;
231     /* PSTATE isn't an architectural register for ARMv8. However, it is
232      * convenient for us to assemble the underlying state into a 32 bit format
233      * identical to the architectural format used for the SPSR. (This is also
234      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
235      * 'pstate' register are.) Of the PSTATE bits:
236      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
237      *    semantics as for AArch32, as described in the comments on each field)
238      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
239      *  DAIF (exception masks) are kept in env->daif
240      *  BTYPE is kept in env->btype
241      *  all other bits are stored in their correct places in env->pstate
242      */
243     uint32_t pstate;
244     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
245 
246     /* Frequently accessed CPSR bits are stored separately for efficiency.
247        This contains all the other bits.  Use cpsr_{read,write} to access
248        the whole CPSR.  */
249     uint32_t uncached_cpsr;
250     uint32_t spsr;
251 
252     /* Banked registers.  */
253     uint64_t banked_spsr[8];
254     uint32_t banked_r13[8];
255     uint32_t banked_r14[8];
256 
257     /* These hold r8-r12.  */
258     uint32_t usr_regs[5];
259     uint32_t fiq_regs[5];
260 
261     /* cpsr flag cache for faster execution */
262     uint32_t CF; /* 0 or 1 */
263     uint32_t VF; /* V is the bit 31. All other bits are undefined */
264     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
265     uint32_t ZF; /* Z set if zero.  */
266     uint32_t QF; /* 0 or 1 */
267     uint32_t GE; /* cpsr[19:16] */
268     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
269     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
270     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
271     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
272 
273     uint64_t elr_el[4]; /* AArch64 exception link regs  */
274     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
275 
276     /* System control coprocessor (cp15) */
277     struct {
278         uint32_t c0_cpuid;
279         union { /* Cache size selection */
280             struct {
281                 uint64_t _unused_csselr0;
282                 uint64_t csselr_ns;
283                 uint64_t _unused_csselr1;
284                 uint64_t csselr_s;
285             };
286             uint64_t csselr_el[4];
287         };
288         union { /* System control register. */
289             struct {
290                 uint64_t _unused_sctlr;
291                 uint64_t sctlr_ns;
292                 uint64_t hsctlr;
293                 uint64_t sctlr_s;
294             };
295             uint64_t sctlr_el[4];
296         };
297         uint64_t cpacr_el1; /* Architectural feature access control register */
298         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
299         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
300         uint64_t sder; /* Secure debug enable register. */
301         uint32_t nsacr; /* Non-secure access control register. */
302         union { /* MMU translation table base 0. */
303             struct {
304                 uint64_t _unused_ttbr0_0;
305                 uint64_t ttbr0_ns;
306                 uint64_t _unused_ttbr0_1;
307                 uint64_t ttbr0_s;
308             };
309             uint64_t ttbr0_el[4];
310         };
311         union { /* MMU translation table base 1. */
312             struct {
313                 uint64_t _unused_ttbr1_0;
314                 uint64_t ttbr1_ns;
315                 uint64_t _unused_ttbr1_1;
316                 uint64_t ttbr1_s;
317             };
318             uint64_t ttbr1_el[4];
319         };
320         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
321         /* MMU translation table base control. */
322         TCR tcr_el[4];
323         TCR vtcr_el2; /* Virtualization Translation Control.  */
324         uint32_t c2_data; /* MPU data cacheable bits.  */
325         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
326         union { /* MMU domain access control register
327                  * MPU write buffer control.
328                  */
329             struct {
330                 uint64_t dacr_ns;
331                 uint64_t dacr_s;
332             };
333             struct {
334                 uint64_t dacr32_el2;
335             };
336         };
337         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
338         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
339         uint64_t hcr_el2; /* Hypervisor configuration register */
340         uint64_t scr_el3; /* Secure configuration register.  */
341         union { /* Fault status registers.  */
342             struct {
343                 uint64_t ifsr_ns;
344                 uint64_t ifsr_s;
345             };
346             struct {
347                 uint64_t ifsr32_el2;
348             };
349         };
350         union {
351             struct {
352                 uint64_t _unused_dfsr;
353                 uint64_t dfsr_ns;
354                 uint64_t hsr;
355                 uint64_t dfsr_s;
356             };
357             uint64_t esr_el[4];
358         };
359         uint32_t c6_region[8]; /* MPU base/size registers.  */
360         union { /* Fault address registers. */
361             struct {
362                 uint64_t _unused_far0;
363 #ifdef HOST_WORDS_BIGENDIAN
364                 uint32_t ifar_ns;
365                 uint32_t dfar_ns;
366                 uint32_t ifar_s;
367                 uint32_t dfar_s;
368 #else
369                 uint32_t dfar_ns;
370                 uint32_t ifar_ns;
371                 uint32_t dfar_s;
372                 uint32_t ifar_s;
373 #endif
374                 uint64_t _unused_far3;
375             };
376             uint64_t far_el[4];
377         };
378         uint64_t hpfar_el2;
379         uint64_t hstr_el2;
380         union { /* Translation result. */
381             struct {
382                 uint64_t _unused_par_0;
383                 uint64_t par_ns;
384                 uint64_t _unused_par_1;
385                 uint64_t par_s;
386             };
387             uint64_t par_el[4];
388         };
389 
390         uint32_t c9_insn; /* Cache lockdown registers.  */
391         uint32_t c9_data;
392         uint64_t c9_pmcr; /* performance monitor control register */
393         uint64_t c9_pmcnten; /* perf monitor counter enables */
394         uint64_t c9_pmovsr; /* perf monitor overflow status */
395         uint64_t c9_pmuserenr; /* perf monitor user enable */
396         uint64_t c9_pmselr; /* perf monitor counter selection register */
397         uint64_t c9_pminten; /* perf monitor interrupt enables */
398         union { /* Memory attribute redirection */
399             struct {
400 #ifdef HOST_WORDS_BIGENDIAN
401                 uint64_t _unused_mair_0;
402                 uint32_t mair1_ns;
403                 uint32_t mair0_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair1_s;
406                 uint32_t mair0_s;
407 #else
408                 uint64_t _unused_mair_0;
409                 uint32_t mair0_ns;
410                 uint32_t mair1_ns;
411                 uint64_t _unused_mair_1;
412                 uint32_t mair0_s;
413                 uint32_t mair1_s;
414 #endif
415             };
416             uint64_t mair_el[4];
417         };
418         union { /* vector base address register */
419             struct {
420                 uint64_t _unused_vbar;
421                 uint64_t vbar_ns;
422                 uint64_t hvbar;
423                 uint64_t vbar_s;
424             };
425             uint64_t vbar_el[4];
426         };
427         uint32_t mvbar; /* (monitor) vector base address register */
428         struct { /* FCSE PID. */
429             uint32_t fcseidr_ns;
430             uint32_t fcseidr_s;
431         };
432         union { /* Context ID. */
433             struct {
434                 uint64_t _unused_contextidr_0;
435                 uint64_t contextidr_ns;
436                 uint64_t _unused_contextidr_1;
437                 uint64_t contextidr_s;
438             };
439             uint64_t contextidr_el[4];
440         };
441         union { /* User RW Thread register. */
442             struct {
443                 uint64_t tpidrurw_ns;
444                 uint64_t tpidrprw_ns;
445                 uint64_t htpidr;
446                 uint64_t _tpidr_el3;
447             };
448             uint64_t tpidr_el[4];
449         };
450         /* The secure banks of these registers don't map anywhere */
451         uint64_t tpidrurw_s;
452         uint64_t tpidrprw_s;
453         uint64_t tpidruro_s;
454 
455         union { /* User RO Thread register. */
456             uint64_t tpidruro_ns;
457             uint64_t tpidrro_el[1];
458         };
459         uint64_t c14_cntfrq; /* Counter Frequency register */
460         uint64_t c14_cntkctl; /* Timer Control register */
461         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
462         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
463         ARMGenericTimer c14_timer[NUM_GTIMERS];
464         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
465         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
466         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
467         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
468         uint32_t c15_threadid; /* TI debugger thread-ID.  */
469         uint32_t c15_config_base_address; /* SCU base address.  */
470         uint32_t c15_diagnostic; /* diagnostic register */
471         uint32_t c15_power_diagnostic;
472         uint32_t c15_power_control; /* power control */
473         uint64_t dbgbvr[16]; /* breakpoint value registers */
474         uint64_t dbgbcr[16]; /* breakpoint control registers */
475         uint64_t dbgwvr[16]; /* watchpoint value registers */
476         uint64_t dbgwcr[16]; /* watchpoint control registers */
477         uint64_t mdscr_el1;
478         uint64_t oslsr_el1; /* OS Lock Status */
479         uint64_t mdcr_el2;
480         uint64_t mdcr_el3;
481         /* Stores the architectural value of the counter *the last time it was
482          * updated* by pmccntr_op_start. Accesses should always be surrounded
483          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484          * architecturally-correct value is being read/set.
485          */
486         uint64_t c15_ccnt;
487         /* Stores the delta between the architectural value and the underlying
488          * cycle count during normal operation. It is used to update c15_ccnt
489          * to be the correct architectural value before accesses. During
490          * accesses, c15_ccnt_delta contains the underlying count being used
491          * for the access, after which it reverts to the delta value in
492          * pmccntr_op_finish.
493          */
494         uint64_t c15_ccnt_delta;
495         uint64_t c14_pmevcntr[31];
496         uint64_t c14_pmevcntr_delta[31];
497         uint64_t c14_pmevtyper[31];
498         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
499         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
500         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
501     } cp15;
502 
503     struct {
504         /* M profile has up to 4 stack pointers:
505          * a Main Stack Pointer and a Process Stack Pointer for each
506          * of the Secure and Non-Secure states. (If the CPU doesn't support
507          * the security extension then it has only two SPs.)
508          * In QEMU we always store the currently active SP in regs[13],
509          * and the non-active SP for the current security state in
510          * v7m.other_sp. The stack pointers for the inactive security state
511          * are stored in other_ss_msp and other_ss_psp.
512          * switch_v7m_security_state() is responsible for rearranging them
513          * when we change security state.
514          */
515         uint32_t other_sp;
516         uint32_t other_ss_msp;
517         uint32_t other_ss_psp;
518         uint32_t vecbase[M_REG_NUM_BANKS];
519         uint32_t basepri[M_REG_NUM_BANKS];
520         uint32_t control[M_REG_NUM_BANKS];
521         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
522         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
523         uint32_t hfsr; /* HardFault Status */
524         uint32_t dfsr; /* Debug Fault Status Register */
525         uint32_t sfsr; /* Secure Fault Status Register */
526         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
527         uint32_t bfar; /* BusFault Address */
528         uint32_t sfar; /* Secure Fault Address Register */
529         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
530         int exception;
531         uint32_t primask[M_REG_NUM_BANKS];
532         uint32_t faultmask[M_REG_NUM_BANKS];
533         uint32_t aircr; /* only holds r/w state if security extn implemented */
534         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
535         uint32_t csselr[M_REG_NUM_BANKS];
536         uint32_t scr[M_REG_NUM_BANKS];
537         uint32_t msplim[M_REG_NUM_BANKS];
538         uint32_t psplim[M_REG_NUM_BANKS];
539         uint32_t fpcar[M_REG_NUM_BANKS];
540         uint32_t fpccr[M_REG_NUM_BANKS];
541         uint32_t fpdscr[M_REG_NUM_BANKS];
542         uint32_t cpacr[M_REG_NUM_BANKS];
543         uint32_t nsacr;
544     } v7m;
545 
546     /* Information associated with an exception about to be taken:
547      * code which raises an exception must set cs->exception_index and
548      * the relevant parts of this structure; the cpu_do_interrupt function
549      * will then set the guest-visible registers as part of the exception
550      * entry process.
551      */
552     struct {
553         uint32_t syndrome; /* AArch64 format syndrome register */
554         uint32_t fsr; /* AArch32 format fault status register info */
555         uint64_t vaddress; /* virtual addr associated with exception, if any */
556         uint32_t target_el; /* EL the exception should be targeted for */
557         /* If we implement EL2 we will also need to store information
558          * about the intermediate physical address for stage 2 faults.
559          */
560     } exception;
561 
562     /* Information associated with an SError */
563     struct {
564         uint8_t pending;
565         uint8_t has_esr;
566         uint64_t esr;
567     } serror;
568 
569     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
570     uint32_t irq_line_state;
571 
572     /* Thumb-2 EE state.  */
573     uint32_t teecr;
574     uint32_t teehbr;
575 
576     /* VFP coprocessor state.  */
577     struct {
578         ARMVectorReg zregs[32];
579 
580 #ifdef TARGET_AARCH64
581         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
582 #define FFR_PRED_NUM 16
583         ARMPredicateReg pregs[17];
584         /* Scratch space for aa64 sve predicate temporary.  */
585         ARMPredicateReg preg_tmp;
586 #endif
587 
588         /* We store these fpcsr fields separately for convenience.  */
589         uint32_t qc[4] QEMU_ALIGNED(16);
590         int vec_len;
591         int vec_stride;
592 
593         uint32_t xregs[16];
594 
595         /* Scratch space for aa32 neon expansion.  */
596         uint32_t scratch[8];
597 
598         /* There are a number of distinct float control structures:
599          *
600          *  fp_status: is the "normal" fp status.
601          *  fp_status_fp16: used for half-precision calculations
602          *  standard_fp_status : the ARM "Standard FPSCR Value"
603          *
604          * Half-precision operations are governed by a separate
605          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
606          * status structure to control this.
607          *
608          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
609          * round-to-nearest and is used by any operations (generally
610          * Neon) which the architecture defines as controlled by the
611          * standard FPSCR value rather than the FPSCR.
612          *
613          * To avoid having to transfer exception bits around, we simply
614          * say that the FPSCR cumulative exception flags are the logical
615          * OR of the flags in the three fp statuses. This relies on the
616          * only thing which needs to read the exception flags being
617          * an explicit FPSCR read.
618          */
619         float_status fp_status;
620         float_status fp_status_f16;
621         float_status standard_fp_status;
622 
623         /* ZCR_EL[1-3] */
624         uint64_t zcr_el[4];
625     } vfp;
626     uint64_t exclusive_addr;
627     uint64_t exclusive_val;
628     uint64_t exclusive_high;
629 
630     /* iwMMXt coprocessor state.  */
631     struct {
632         uint64_t regs[16];
633         uint64_t val;
634 
635         uint32_t cregs[16];
636     } iwmmxt;
637 
638 #ifdef TARGET_AARCH64
639     ARMPACKey apia_key;
640     ARMPACKey apib_key;
641     ARMPACKey apda_key;
642     ARMPACKey apdb_key;
643     ARMPACKey apga_key;
644 #endif
645 
646 #if defined(CONFIG_USER_ONLY)
647     /* For usermode syscall translation.  */
648     int eabi;
649 #endif
650 
651     struct CPUBreakpoint *cpu_breakpoint[16];
652     struct CPUWatchpoint *cpu_watchpoint[16];
653 
654     /* Fields up to this point are cleared by a CPU reset */
655     struct {} end_reset_fields;
656 
657     CPU_COMMON
658 
659     /* Fields after CPU_COMMON are preserved across CPU reset. */
660 
661     /* Internal CPU feature flags.  */
662     uint64_t features;
663 
664     /* PMSAv7 MPU */
665     struct {
666         uint32_t *drbar;
667         uint32_t *drsr;
668         uint32_t *dracr;
669         uint32_t rnr[M_REG_NUM_BANKS];
670     } pmsav7;
671 
672     /* PMSAv8 MPU */
673     struct {
674         /* The PMSAv8 implementation also shares some PMSAv7 config
675          * and state:
676          *  pmsav7.rnr (region number register)
677          *  pmsav7_dregion (number of configured regions)
678          */
679         uint32_t *rbar[M_REG_NUM_BANKS];
680         uint32_t *rlar[M_REG_NUM_BANKS];
681         uint32_t mair0[M_REG_NUM_BANKS];
682         uint32_t mair1[M_REG_NUM_BANKS];
683     } pmsav8;
684 
685     /* v8M SAU */
686     struct {
687         uint32_t *rbar;
688         uint32_t *rlar;
689         uint32_t rnr;
690         uint32_t ctrl;
691     } sau;
692 
693     void *nvic;
694     const struct arm_boot_info *boot_info;
695     /* Store GICv3CPUState to access from this struct */
696     void *gicv3state;
697 } CPUARMState;
698 
699 /**
700  * ARMELChangeHookFn:
701  * type of a function which can be registered via arm_register_el_change_hook()
702  * to get callbacks when the CPU changes its exception level or mode.
703  */
704 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
705 typedef struct ARMELChangeHook ARMELChangeHook;
706 struct ARMELChangeHook {
707     ARMELChangeHookFn *hook;
708     void *opaque;
709     QLIST_ENTRY(ARMELChangeHook) node;
710 };
711 
712 /* These values map onto the return values for
713  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
714 typedef enum ARMPSCIState {
715     PSCI_ON = 0,
716     PSCI_OFF = 1,
717     PSCI_ON_PENDING = 2
718 } ARMPSCIState;
719 
720 typedef struct ARMISARegisters ARMISARegisters;
721 
722 /**
723  * ARMCPU:
724  * @env: #CPUARMState
725  *
726  * An ARM CPU core.
727  */
728 struct ARMCPU {
729     /*< private >*/
730     CPUState parent_obj;
731     /*< public >*/
732 
733     CPUARMState env;
734 
735     /* Coprocessor information */
736     GHashTable *cp_regs;
737     /* For marshalling (mostly coprocessor) register state between the
738      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
739      * we use these arrays.
740      */
741     /* List of register indexes managed via these arrays; (full KVM style
742      * 64 bit indexes, not CPRegInfo 32 bit indexes)
743      */
744     uint64_t *cpreg_indexes;
745     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
746     uint64_t *cpreg_values;
747     /* Length of the indexes, values, reset_values arrays */
748     int32_t cpreg_array_len;
749     /* These are used only for migration: incoming data arrives in
750      * these fields and is sanity checked in post_load before copying
751      * to the working data structures above.
752      */
753     uint64_t *cpreg_vmstate_indexes;
754     uint64_t *cpreg_vmstate_values;
755     int32_t cpreg_vmstate_array_len;
756 
757     DynamicGDBXMLInfo dyn_xml;
758 
759     /* Timers used by the generic (architected) timer */
760     QEMUTimer *gt_timer[NUM_GTIMERS];
761     /*
762      * Timer used by the PMU. Its state is restored after migration by
763      * pmu_op_finish() - it does not need other handling during migration
764      */
765     QEMUTimer *pmu_timer;
766     /* GPIO outputs for generic timer */
767     qemu_irq gt_timer_outputs[NUM_GTIMERS];
768     /* GPIO output for GICv3 maintenance interrupt signal */
769     qemu_irq gicv3_maintenance_interrupt;
770     /* GPIO output for the PMU interrupt */
771     qemu_irq pmu_interrupt;
772 
773     /* MemoryRegion to use for secure physical accesses */
774     MemoryRegion *secure_memory;
775 
776     /* For v8M, pointer to the IDAU interface provided by board/SoC */
777     Object *idau;
778 
779     /* 'compatible' string for this CPU for Linux device trees */
780     const char *dtb_compatible;
781 
782     /* PSCI version for this CPU
783      * Bits[31:16] = Major Version
784      * Bits[15:0] = Minor Version
785      */
786     uint32_t psci_version;
787 
788     /* Should CPU start in PSCI powered-off state? */
789     bool start_powered_off;
790 
791     /* Current power state, access guarded by BQL */
792     ARMPSCIState power_state;
793 
794     /* CPU has virtualization extension */
795     bool has_el2;
796     /* CPU has security extension */
797     bool has_el3;
798     /* CPU has PMU (Performance Monitor Unit) */
799     bool has_pmu;
800 
801     /* CPU has memory protection unit */
802     bool has_mpu;
803     /* PMSAv7 MPU number of supported regions */
804     uint32_t pmsav7_dregion;
805     /* v8M SAU number of supported regions */
806     uint32_t sau_sregion;
807 
808     /* PSCI conduit used to invoke PSCI methods
809      * 0 - disabled, 1 - smc, 2 - hvc
810      */
811     uint32_t psci_conduit;
812 
813     /* For v8M, initial value of the Secure VTOR */
814     uint32_t init_svtor;
815 
816     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
817      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
818      */
819     uint32_t kvm_target;
820 
821     /* KVM init features for this CPU */
822     uint32_t kvm_init_features[7];
823 
824     /* Uniprocessor system with MP extensions */
825     bool mp_is_up;
826 
827     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
828      * and the probe failed (so we need to report the error in realize)
829      */
830     bool host_cpu_probe_failed;
831 
832     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
833      * register.
834      */
835     int32_t core_count;
836 
837     /* The instance init functions for implementation-specific subclasses
838      * set these fields to specify the implementation-dependent values of
839      * various constant registers and reset values of non-constant
840      * registers.
841      * Some of these might become QOM properties eventually.
842      * Field names match the official register names as defined in the
843      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
844      * is used for reset values of non-constant registers; no reset_
845      * prefix means a constant register.
846      * Some of these registers are split out into a substructure that
847      * is shared with the translators to control the ISA.
848      */
849     struct ARMISARegisters {
850         uint32_t id_isar0;
851         uint32_t id_isar1;
852         uint32_t id_isar2;
853         uint32_t id_isar3;
854         uint32_t id_isar4;
855         uint32_t id_isar5;
856         uint32_t id_isar6;
857         uint32_t mvfr0;
858         uint32_t mvfr1;
859         uint32_t mvfr2;
860         uint64_t id_aa64isar0;
861         uint64_t id_aa64isar1;
862         uint64_t id_aa64pfr0;
863         uint64_t id_aa64pfr1;
864         uint64_t id_aa64mmfr0;
865         uint64_t id_aa64mmfr1;
866     } isar;
867     uint32_t midr;
868     uint32_t revidr;
869     uint32_t reset_fpsid;
870     uint32_t ctr;
871     uint32_t reset_sctlr;
872     uint32_t id_pfr0;
873     uint32_t id_pfr1;
874     uint32_t id_dfr0;
875     uint64_t pmceid0;
876     uint64_t pmceid1;
877     uint32_t id_afr0;
878     uint32_t id_mmfr0;
879     uint32_t id_mmfr1;
880     uint32_t id_mmfr2;
881     uint32_t id_mmfr3;
882     uint32_t id_mmfr4;
883     uint64_t id_aa64dfr0;
884     uint64_t id_aa64dfr1;
885     uint64_t id_aa64afr0;
886     uint64_t id_aa64afr1;
887     uint32_t dbgdidr;
888     uint32_t clidr;
889     uint64_t mp_affinity; /* MP ID without feature bits */
890     /* The elements of this array are the CCSIDR values for each cache,
891      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
892      */
893     uint32_t ccsidr[16];
894     uint64_t reset_cbar;
895     uint32_t reset_auxcr;
896     bool reset_hivecs;
897     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
898     uint32_t dcz_blocksize;
899     uint64_t rvbar;
900 
901     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
902     int gic_num_lrs; /* number of list registers */
903     int gic_vpribits; /* number of virtual priority bits */
904     int gic_vprebits; /* number of virtual preemption bits */
905 
906     /* Whether the cfgend input is high (i.e. this CPU should reset into
907      * big-endian mode).  This setting isn't used directly: instead it modifies
908      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
909      * architecture version.
910      */
911     bool cfgend;
912 
913     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
914     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
915 
916     int32_t node_id; /* NUMA node this CPU belongs to */
917 
918     /* Used to synchronize KVM and QEMU in-kernel device levels */
919     uint8_t device_irq_level;
920 
921     /* Used to set the maximum vector length the cpu will support.  */
922     uint32_t sve_max_vq;
923 };
924 
925 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
926 {
927     return container_of(env, ARMCPU, env);
928 }
929 
930 void arm_cpu_post_init(Object *obj);
931 
932 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
933 
934 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
935 
936 #define ENV_OFFSET offsetof(ARMCPU, env)
937 
938 #ifndef CONFIG_USER_ONLY
939 extern const struct VMStateDescription vmstate_arm_cpu;
940 #endif
941 
942 void arm_cpu_do_interrupt(CPUState *cpu);
943 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
944 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
945 
946 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
947 
948 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
949                                          MemTxAttrs *attrs);
950 
951 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
952 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
953 
954 /* Dynamically generates for gdb stub an XML description of the sysregs from
955  * the cp_regs hashtable. Returns the registered sysregs number.
956  */
957 int arm_gen_dynamic_xml(CPUState *cpu);
958 
959 /* Returns the dynamically generated XML for the gdb stub.
960  * Returns a pointer to the XML contents for the specified XML file or NULL
961  * if the XML name doesn't match the predefined one.
962  */
963 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
964 
965 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
966                              int cpuid, void *opaque);
967 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
968                              int cpuid, void *opaque);
969 
970 #ifdef TARGET_AARCH64
971 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
972 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
973 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
974 void aarch64_sve_change_el(CPUARMState *env, int old_el,
975                            int new_el, bool el0_a64);
976 #else
977 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
978 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
979                                          int n, bool a)
980 { }
981 #endif
982 
983 target_ulong do_arm_semihosting(CPUARMState *env);
984 void aarch64_sync_32_to_64(CPUARMState *env);
985 void aarch64_sync_64_to_32(CPUARMState *env);
986 
987 int fp_exception_el(CPUARMState *env, int cur_el);
988 int sve_exception_el(CPUARMState *env, int cur_el);
989 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
990 
991 static inline bool is_a64(CPUARMState *env)
992 {
993     return env->aarch64;
994 }
995 
996 /* you can call this signal handler from your SIGBUS and SIGSEGV
997    signal handlers to inform the virtual CPU of exceptions. non zero
998    is returned if the signal was handled by the virtual CPU.  */
999 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1000                            void *puc);
1001 
1002 /**
1003  * pmu_op_start/finish
1004  * @env: CPUARMState
1005  *
1006  * Convert all PMU counters between their delta form (the typical mode when
1007  * they are enabled) and the guest-visible values. These two calls must
1008  * surround any action which might affect the counters.
1009  */
1010 void pmu_op_start(CPUARMState *env);
1011 void pmu_op_finish(CPUARMState *env);
1012 
1013 /*
1014  * Called when a PMU counter is due to overflow
1015  */
1016 void arm_pmu_timer_cb(void *opaque);
1017 
1018 /**
1019  * Functions to register as EL change hooks for PMU mode filtering
1020  */
1021 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1022 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1023 
1024 /*
1025  * pmu_init
1026  * @cpu: ARMCPU
1027  *
1028  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1029  * for the current configuration
1030  */
1031 void pmu_init(ARMCPU *cpu);
1032 
1033 /* SCTLR bit meanings. Several bits have been reused in newer
1034  * versions of the architecture; in that case we define constants
1035  * for both old and new bit meanings. Code which tests against those
1036  * bits should probably check or otherwise arrange that the CPU
1037  * is the architectural version it expects.
1038  */
1039 #define SCTLR_M       (1U << 0)
1040 #define SCTLR_A       (1U << 1)
1041 #define SCTLR_C       (1U << 2)
1042 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1043 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1044 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1045 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1046 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1047 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1048 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1049 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1050 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1051 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1052 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1053 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1054 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1055 #define SCTLR_SED     (1U << 8) /* v8 onward */
1056 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1057 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1058 #define SCTLR_F       (1U << 10) /* up to v6 */
1059 #define SCTLR_SW      (1U << 10) /* v7 */
1060 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1061 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1062 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1063 #define SCTLR_I       (1U << 12)
1064 #define SCTLR_V       (1U << 13) /* AArch32 only */
1065 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1066 #define SCTLR_RR      (1U << 14) /* up to v7 */
1067 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1068 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1069 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1070 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1071 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1072 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1073 #define SCTLR_BR      (1U << 17) /* PMSA only */
1074 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1075 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1076 #define SCTLR_WXN     (1U << 19)
1077 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1078 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1079 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1080 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1081 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1082 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1083 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1084 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1085 #define SCTLR_VE      (1U << 24) /* up to v7 */
1086 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1087 #define SCTLR_EE      (1U << 25)
1088 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1089 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1090 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1091 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1092 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1093 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1094 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1095 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1096 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1097 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1098 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1099 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1100 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1101 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1102 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1103 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1104 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1105 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1106 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1107 
1108 #define CPTR_TCPAC    (1U << 31)
1109 #define CPTR_TTA      (1U << 20)
1110 #define CPTR_TFP      (1U << 10)
1111 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1112 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1113 
1114 #define MDCR_EPMAD    (1U << 21)
1115 #define MDCR_EDAD     (1U << 20)
1116 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1117 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1118 #define MDCR_SDD      (1U << 16)
1119 #define MDCR_SPD      (3U << 14)
1120 #define MDCR_TDRA     (1U << 11)
1121 #define MDCR_TDOSA    (1U << 10)
1122 #define MDCR_TDA      (1U << 9)
1123 #define MDCR_TDE      (1U << 8)
1124 #define MDCR_HPME     (1U << 7)
1125 #define MDCR_TPM      (1U << 6)
1126 #define MDCR_TPMCR    (1U << 5)
1127 #define MDCR_HPMN     (0x1fU)
1128 
1129 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1130 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1131 
1132 #define CPSR_M (0x1fU)
1133 #define CPSR_T (1U << 5)
1134 #define CPSR_F (1U << 6)
1135 #define CPSR_I (1U << 7)
1136 #define CPSR_A (1U << 8)
1137 #define CPSR_E (1U << 9)
1138 #define CPSR_IT_2_7 (0xfc00U)
1139 #define CPSR_GE (0xfU << 16)
1140 #define CPSR_IL (1U << 20)
1141 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1142  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1143  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1144  * where it is live state but not accessible to the AArch32 code.
1145  */
1146 #define CPSR_RESERVED (0x7U << 21)
1147 #define CPSR_J (1U << 24)
1148 #define CPSR_IT_0_1 (3U << 25)
1149 #define CPSR_Q (1U << 27)
1150 #define CPSR_V (1U << 28)
1151 #define CPSR_C (1U << 29)
1152 #define CPSR_Z (1U << 30)
1153 #define CPSR_N (1U << 31)
1154 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1155 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1156 
1157 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1158 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1159     | CPSR_NZCV)
1160 /* Bits writable in user mode.  */
1161 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1162 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1163 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1164 /* Mask of bits which may be set by exception return copying them from SPSR */
1165 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1166 
1167 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1168 #define XPSR_EXCP 0x1ffU
1169 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1170 #define XPSR_IT_2_7 CPSR_IT_2_7
1171 #define XPSR_GE CPSR_GE
1172 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1173 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1174 #define XPSR_IT_0_1 CPSR_IT_0_1
1175 #define XPSR_Q CPSR_Q
1176 #define XPSR_V CPSR_V
1177 #define XPSR_C CPSR_C
1178 #define XPSR_Z CPSR_Z
1179 #define XPSR_N CPSR_N
1180 #define XPSR_NZCV CPSR_NZCV
1181 #define XPSR_IT CPSR_IT
1182 
1183 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1184 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1185 #define TTBCR_PD0    (1U << 4)
1186 #define TTBCR_PD1    (1U << 5)
1187 #define TTBCR_EPD0   (1U << 7)
1188 #define TTBCR_IRGN0  (3U << 8)
1189 #define TTBCR_ORGN0  (3U << 10)
1190 #define TTBCR_SH0    (3U << 12)
1191 #define TTBCR_T1SZ   (3U << 16)
1192 #define TTBCR_A1     (1U << 22)
1193 #define TTBCR_EPD1   (1U << 23)
1194 #define TTBCR_IRGN1  (3U << 24)
1195 #define TTBCR_ORGN1  (3U << 26)
1196 #define TTBCR_SH1    (1U << 28)
1197 #define TTBCR_EAE    (1U << 31)
1198 
1199 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1200  * Only these are valid when in AArch64 mode; in
1201  * AArch32 mode SPSRs are basically CPSR-format.
1202  */
1203 #define PSTATE_SP (1U)
1204 #define PSTATE_M (0xFU)
1205 #define PSTATE_nRW (1U << 4)
1206 #define PSTATE_F (1U << 6)
1207 #define PSTATE_I (1U << 7)
1208 #define PSTATE_A (1U << 8)
1209 #define PSTATE_D (1U << 9)
1210 #define PSTATE_BTYPE (3U << 10)
1211 #define PSTATE_IL (1U << 20)
1212 #define PSTATE_SS (1U << 21)
1213 #define PSTATE_V (1U << 28)
1214 #define PSTATE_C (1U << 29)
1215 #define PSTATE_Z (1U << 30)
1216 #define PSTATE_N (1U << 31)
1217 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1218 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1219 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1220 /* Mode values for AArch64 */
1221 #define PSTATE_MODE_EL3h 13
1222 #define PSTATE_MODE_EL3t 12
1223 #define PSTATE_MODE_EL2h 9
1224 #define PSTATE_MODE_EL2t 8
1225 #define PSTATE_MODE_EL1h 5
1226 #define PSTATE_MODE_EL1t 4
1227 #define PSTATE_MODE_EL0t 0
1228 
1229 /* Write a new value to v7m.exception, thus transitioning into or out
1230  * of Handler mode; this may result in a change of active stack pointer.
1231  */
1232 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1233 
1234 /* Map EL and handler into a PSTATE_MODE.  */
1235 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1236 {
1237     return (el << 2) | handler;
1238 }
1239 
1240 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1241  * interprocessing, so we don't attempt to sync with the cpsr state used by
1242  * the 32 bit decoder.
1243  */
1244 static inline uint32_t pstate_read(CPUARMState *env)
1245 {
1246     int ZF;
1247 
1248     ZF = (env->ZF == 0);
1249     return (env->NF & 0x80000000) | (ZF << 30)
1250         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1251         | env->pstate | env->daif | (env->btype << 10);
1252 }
1253 
1254 static inline void pstate_write(CPUARMState *env, uint32_t val)
1255 {
1256     env->ZF = (~val) & PSTATE_Z;
1257     env->NF = val;
1258     env->CF = (val >> 29) & 1;
1259     env->VF = (val << 3) & 0x80000000;
1260     env->daif = val & PSTATE_DAIF;
1261     env->btype = (val >> 10) & 3;
1262     env->pstate = val & ~CACHED_PSTATE_BITS;
1263 }
1264 
1265 /* Return the current CPSR value.  */
1266 uint32_t cpsr_read(CPUARMState *env);
1267 
1268 typedef enum CPSRWriteType {
1269     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1270     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1271     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1272     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1273 } CPSRWriteType;
1274 
1275 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1276 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1277                 CPSRWriteType write_type);
1278 
1279 /* Return the current xPSR value.  */
1280 static inline uint32_t xpsr_read(CPUARMState *env)
1281 {
1282     int ZF;
1283     ZF = (env->ZF == 0);
1284     return (env->NF & 0x80000000) | (ZF << 30)
1285         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1286         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1287         | ((env->condexec_bits & 0xfc) << 8)
1288         | env->v7m.exception;
1289 }
1290 
1291 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1292 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1293 {
1294     if (mask & XPSR_NZCV) {
1295         env->ZF = (~val) & XPSR_Z;
1296         env->NF = val;
1297         env->CF = (val >> 29) & 1;
1298         env->VF = (val << 3) & 0x80000000;
1299     }
1300     if (mask & XPSR_Q) {
1301         env->QF = ((val & XPSR_Q) != 0);
1302     }
1303     if (mask & XPSR_T) {
1304         env->thumb = ((val & XPSR_T) != 0);
1305     }
1306     if (mask & XPSR_IT_0_1) {
1307         env->condexec_bits &= ~3;
1308         env->condexec_bits |= (val >> 25) & 3;
1309     }
1310     if (mask & XPSR_IT_2_7) {
1311         env->condexec_bits &= 3;
1312         env->condexec_bits |= (val >> 8) & 0xfc;
1313     }
1314     if (mask & XPSR_EXCP) {
1315         /* Note that this only happens on exception exit */
1316         write_v7m_exception(env, val & XPSR_EXCP);
1317     }
1318 }
1319 
1320 #define HCR_VM        (1ULL << 0)
1321 #define HCR_SWIO      (1ULL << 1)
1322 #define HCR_PTW       (1ULL << 2)
1323 #define HCR_FMO       (1ULL << 3)
1324 #define HCR_IMO       (1ULL << 4)
1325 #define HCR_AMO       (1ULL << 5)
1326 #define HCR_VF        (1ULL << 6)
1327 #define HCR_VI        (1ULL << 7)
1328 #define HCR_VSE       (1ULL << 8)
1329 #define HCR_FB        (1ULL << 9)
1330 #define HCR_BSU_MASK  (3ULL << 10)
1331 #define HCR_DC        (1ULL << 12)
1332 #define HCR_TWI       (1ULL << 13)
1333 #define HCR_TWE       (1ULL << 14)
1334 #define HCR_TID0      (1ULL << 15)
1335 #define HCR_TID1      (1ULL << 16)
1336 #define HCR_TID2      (1ULL << 17)
1337 #define HCR_TID3      (1ULL << 18)
1338 #define HCR_TSC       (1ULL << 19)
1339 #define HCR_TIDCP     (1ULL << 20)
1340 #define HCR_TACR      (1ULL << 21)
1341 #define HCR_TSW       (1ULL << 22)
1342 #define HCR_TPCP      (1ULL << 23)
1343 #define HCR_TPU       (1ULL << 24)
1344 #define HCR_TTLB      (1ULL << 25)
1345 #define HCR_TVM       (1ULL << 26)
1346 #define HCR_TGE       (1ULL << 27)
1347 #define HCR_TDZ       (1ULL << 28)
1348 #define HCR_HCD       (1ULL << 29)
1349 #define HCR_TRVM      (1ULL << 30)
1350 #define HCR_RW        (1ULL << 31)
1351 #define HCR_CD        (1ULL << 32)
1352 #define HCR_ID        (1ULL << 33)
1353 #define HCR_E2H       (1ULL << 34)
1354 #define HCR_TLOR      (1ULL << 35)
1355 #define HCR_TERR      (1ULL << 36)
1356 #define HCR_TEA       (1ULL << 37)
1357 #define HCR_MIOCNCE   (1ULL << 38)
1358 #define HCR_APK       (1ULL << 40)
1359 #define HCR_API       (1ULL << 41)
1360 #define HCR_NV        (1ULL << 42)
1361 #define HCR_NV1       (1ULL << 43)
1362 #define HCR_AT        (1ULL << 44)
1363 #define HCR_NV2       (1ULL << 45)
1364 #define HCR_FWB       (1ULL << 46)
1365 #define HCR_FIEN      (1ULL << 47)
1366 #define HCR_TID4      (1ULL << 49)
1367 #define HCR_TICAB     (1ULL << 50)
1368 #define HCR_TOCU      (1ULL << 52)
1369 #define HCR_TTLBIS    (1ULL << 54)
1370 #define HCR_TTLBOS    (1ULL << 55)
1371 #define HCR_ATA       (1ULL << 56)
1372 #define HCR_DCT       (1ULL << 57)
1373 
1374 /*
1375  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1376  * HCR_MASK and then clear it again if the feature bit is not set in
1377  * hcr_write().
1378  */
1379 #define HCR_MASK      ((1ULL << 34) - 1)
1380 
1381 #define SCR_NS                (1U << 0)
1382 #define SCR_IRQ               (1U << 1)
1383 #define SCR_FIQ               (1U << 2)
1384 #define SCR_EA                (1U << 3)
1385 #define SCR_FW                (1U << 4)
1386 #define SCR_AW                (1U << 5)
1387 #define SCR_NET               (1U << 6)
1388 #define SCR_SMD               (1U << 7)
1389 #define SCR_HCE               (1U << 8)
1390 #define SCR_SIF               (1U << 9)
1391 #define SCR_RW                (1U << 10)
1392 #define SCR_ST                (1U << 11)
1393 #define SCR_TWI               (1U << 12)
1394 #define SCR_TWE               (1U << 13)
1395 #define SCR_TLOR              (1U << 14)
1396 #define SCR_TERR              (1U << 15)
1397 #define SCR_APK               (1U << 16)
1398 #define SCR_API               (1U << 17)
1399 #define SCR_EEL2              (1U << 18)
1400 #define SCR_EASE              (1U << 19)
1401 #define SCR_NMEA              (1U << 20)
1402 #define SCR_FIEN              (1U << 21)
1403 #define SCR_ENSCXT            (1U << 25)
1404 #define SCR_ATA               (1U << 26)
1405 
1406 /* Return the current FPSCR value.  */
1407 uint32_t vfp_get_fpscr(CPUARMState *env);
1408 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1409 
1410 /* FPCR, Floating Point Control Register
1411  * FPSR, Floating Poiht Status Register
1412  *
1413  * For A64 the FPSCR is split into two logically distinct registers,
1414  * FPCR and FPSR. However since they still use non-overlapping bits
1415  * we store the underlying state in fpscr and just mask on read/write.
1416  */
1417 #define FPSR_MASK 0xf800009f
1418 #define FPCR_MASK 0x07ff9f00
1419 
1420 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1421 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1422 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1423 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1424 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1425 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1426 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1427 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1428 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1429 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1430 
1431 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1432 {
1433     return vfp_get_fpscr(env) & FPSR_MASK;
1434 }
1435 
1436 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1437 {
1438     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1439     vfp_set_fpscr(env, new_fpscr);
1440 }
1441 
1442 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1443 {
1444     return vfp_get_fpscr(env) & FPCR_MASK;
1445 }
1446 
1447 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1448 {
1449     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1450     vfp_set_fpscr(env, new_fpscr);
1451 }
1452 
1453 enum arm_cpu_mode {
1454   ARM_CPU_MODE_USR = 0x10,
1455   ARM_CPU_MODE_FIQ = 0x11,
1456   ARM_CPU_MODE_IRQ = 0x12,
1457   ARM_CPU_MODE_SVC = 0x13,
1458   ARM_CPU_MODE_MON = 0x16,
1459   ARM_CPU_MODE_ABT = 0x17,
1460   ARM_CPU_MODE_HYP = 0x1a,
1461   ARM_CPU_MODE_UND = 0x1b,
1462   ARM_CPU_MODE_SYS = 0x1f
1463 };
1464 
1465 /* VFP system registers.  */
1466 #define ARM_VFP_FPSID   0
1467 #define ARM_VFP_FPSCR   1
1468 #define ARM_VFP_MVFR2   5
1469 #define ARM_VFP_MVFR1   6
1470 #define ARM_VFP_MVFR0   7
1471 #define ARM_VFP_FPEXC   8
1472 #define ARM_VFP_FPINST  9
1473 #define ARM_VFP_FPINST2 10
1474 
1475 /* iwMMXt coprocessor control registers.  */
1476 #define ARM_IWMMXT_wCID  0
1477 #define ARM_IWMMXT_wCon  1
1478 #define ARM_IWMMXT_wCSSF 2
1479 #define ARM_IWMMXT_wCASF 3
1480 #define ARM_IWMMXT_wCGR0 8
1481 #define ARM_IWMMXT_wCGR1 9
1482 #define ARM_IWMMXT_wCGR2 10
1483 #define ARM_IWMMXT_wCGR3 11
1484 
1485 /* V7M CCR bits */
1486 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1487 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1488 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1489 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1490 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1491 FIELD(V7M_CCR, STKALIGN, 9, 1)
1492 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1493 FIELD(V7M_CCR, DC, 16, 1)
1494 FIELD(V7M_CCR, IC, 17, 1)
1495 FIELD(V7M_CCR, BP, 18, 1)
1496 
1497 /* V7M SCR bits */
1498 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1499 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1500 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1501 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1502 
1503 /* V7M AIRCR bits */
1504 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1505 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1506 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1507 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1508 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1509 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1510 FIELD(V7M_AIRCR, PRIS, 14, 1)
1511 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1512 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1513 
1514 /* V7M CFSR bits for MMFSR */
1515 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1516 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1517 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1518 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1519 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1520 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1521 
1522 /* V7M CFSR bits for BFSR */
1523 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1524 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1525 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1526 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1527 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1528 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1529 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1530 
1531 /* V7M CFSR bits for UFSR */
1532 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1533 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1534 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1535 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1536 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1537 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1538 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1539 
1540 /* V7M CFSR bit masks covering all of the subregister bits */
1541 FIELD(V7M_CFSR, MMFSR, 0, 8)
1542 FIELD(V7M_CFSR, BFSR, 8, 8)
1543 FIELD(V7M_CFSR, UFSR, 16, 16)
1544 
1545 /* V7M HFSR bits */
1546 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1547 FIELD(V7M_HFSR, FORCED, 30, 1)
1548 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1549 
1550 /* V7M DFSR bits */
1551 FIELD(V7M_DFSR, HALTED, 0, 1)
1552 FIELD(V7M_DFSR, BKPT, 1, 1)
1553 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1554 FIELD(V7M_DFSR, VCATCH, 3, 1)
1555 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1556 
1557 /* V7M SFSR bits */
1558 FIELD(V7M_SFSR, INVEP, 0, 1)
1559 FIELD(V7M_SFSR, INVIS, 1, 1)
1560 FIELD(V7M_SFSR, INVER, 2, 1)
1561 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1562 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1563 FIELD(V7M_SFSR, LSPERR, 5, 1)
1564 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1565 FIELD(V7M_SFSR, LSERR, 7, 1)
1566 
1567 /* v7M MPU_CTRL bits */
1568 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1569 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1570 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1571 
1572 /* v7M CLIDR bits */
1573 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1574 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1575 FIELD(V7M_CLIDR, LOC, 24, 3)
1576 FIELD(V7M_CLIDR, LOUU, 27, 3)
1577 FIELD(V7M_CLIDR, ICB, 30, 2)
1578 
1579 FIELD(V7M_CSSELR, IND, 0, 1)
1580 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1581 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1582  * define a mask for this and check that it doesn't permit running off
1583  * the end of the array.
1584  */
1585 FIELD(V7M_CSSELR, INDEX, 0, 4)
1586 
1587 /* v7M FPCCR bits */
1588 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1589 FIELD(V7M_FPCCR, USER, 1, 1)
1590 FIELD(V7M_FPCCR, S, 2, 1)
1591 FIELD(V7M_FPCCR, THREAD, 3, 1)
1592 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1593 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1594 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1595 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1596 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1597 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1598 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1599 FIELD(V7M_FPCCR, RES0, 11, 15)
1600 FIELD(V7M_FPCCR, TS, 26, 1)
1601 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1602 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1603 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1604 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1605 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1606 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1607 #define R_V7M_FPCCR_BANKED_MASK                 \
1608     (R_V7M_FPCCR_LSPACT_MASK |                  \
1609      R_V7M_FPCCR_USER_MASK |                    \
1610      R_V7M_FPCCR_THREAD_MASK |                  \
1611      R_V7M_FPCCR_MMRDY_MASK |                   \
1612      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1613      R_V7M_FPCCR_UFRDY_MASK |                   \
1614      R_V7M_FPCCR_ASPEN_MASK)
1615 
1616 /*
1617  * System register ID fields.
1618  */
1619 FIELD(ID_ISAR0, SWAP, 0, 4)
1620 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1621 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1622 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1623 FIELD(ID_ISAR0, COPROC, 16, 4)
1624 FIELD(ID_ISAR0, DEBUG, 20, 4)
1625 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1626 
1627 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1628 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1629 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1630 FIELD(ID_ISAR1, EXTEND, 12, 4)
1631 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1632 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1633 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1634 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1635 
1636 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1637 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1638 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1639 FIELD(ID_ISAR2, MULT, 12, 4)
1640 FIELD(ID_ISAR2, MULTS, 16, 4)
1641 FIELD(ID_ISAR2, MULTU, 20, 4)
1642 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1643 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1644 
1645 FIELD(ID_ISAR3, SATURATE, 0, 4)
1646 FIELD(ID_ISAR3, SIMD, 4, 4)
1647 FIELD(ID_ISAR3, SVC, 8, 4)
1648 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1649 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1650 FIELD(ID_ISAR3, T32COPY, 20, 4)
1651 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1652 FIELD(ID_ISAR3, T32EE, 28, 4)
1653 
1654 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1655 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1656 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1657 FIELD(ID_ISAR4, SMC, 12, 4)
1658 FIELD(ID_ISAR4, BARRIER, 16, 4)
1659 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1660 FIELD(ID_ISAR4, PSR_M, 24, 4)
1661 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1662 
1663 FIELD(ID_ISAR5, SEVL, 0, 4)
1664 FIELD(ID_ISAR5, AES, 4, 4)
1665 FIELD(ID_ISAR5, SHA1, 8, 4)
1666 FIELD(ID_ISAR5, SHA2, 12, 4)
1667 FIELD(ID_ISAR5, CRC32, 16, 4)
1668 FIELD(ID_ISAR5, RDM, 24, 4)
1669 FIELD(ID_ISAR5, VCMA, 28, 4)
1670 
1671 FIELD(ID_ISAR6, JSCVT, 0, 4)
1672 FIELD(ID_ISAR6, DP, 4, 4)
1673 FIELD(ID_ISAR6, FHM, 8, 4)
1674 FIELD(ID_ISAR6, SB, 12, 4)
1675 FIELD(ID_ISAR6, SPECRES, 16, 4)
1676 
1677 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1678 FIELD(ID_MMFR4, AC2, 4, 4)
1679 FIELD(ID_MMFR4, XNX, 8, 4)
1680 FIELD(ID_MMFR4, CNP, 12, 4)
1681 FIELD(ID_MMFR4, HPDS, 16, 4)
1682 FIELD(ID_MMFR4, LSM, 20, 4)
1683 FIELD(ID_MMFR4, CCIDX, 24, 4)
1684 FIELD(ID_MMFR4, EVT, 28, 4)
1685 
1686 FIELD(ID_AA64ISAR0, AES, 4, 4)
1687 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1688 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1689 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1690 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1691 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1692 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1693 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1694 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1695 FIELD(ID_AA64ISAR0, DP, 44, 4)
1696 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1697 FIELD(ID_AA64ISAR0, TS, 52, 4)
1698 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1699 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1700 
1701 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1702 FIELD(ID_AA64ISAR1, APA, 4, 4)
1703 FIELD(ID_AA64ISAR1, API, 8, 4)
1704 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1705 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1706 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1707 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1708 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1709 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1710 FIELD(ID_AA64ISAR1, SB, 36, 4)
1711 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1712 
1713 FIELD(ID_AA64PFR0, EL0, 0, 4)
1714 FIELD(ID_AA64PFR0, EL1, 4, 4)
1715 FIELD(ID_AA64PFR0, EL2, 8, 4)
1716 FIELD(ID_AA64PFR0, EL3, 12, 4)
1717 FIELD(ID_AA64PFR0, FP, 16, 4)
1718 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1719 FIELD(ID_AA64PFR0, GIC, 24, 4)
1720 FIELD(ID_AA64PFR0, RAS, 28, 4)
1721 FIELD(ID_AA64PFR0, SVE, 32, 4)
1722 
1723 FIELD(ID_AA64PFR1, BT, 0, 4)
1724 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1725 FIELD(ID_AA64PFR1, MTE, 8, 4)
1726 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1727 
1728 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1729 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1730 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1731 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1732 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1733 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1734 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1735 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1736 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1737 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1738 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1739 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1740 
1741 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1742 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1743 FIELD(ID_AA64MMFR1, VH, 8, 4)
1744 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1745 FIELD(ID_AA64MMFR1, LO, 16, 4)
1746 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1747 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1748 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1749 
1750 FIELD(ID_DFR0, COPDBG, 0, 4)
1751 FIELD(ID_DFR0, COPSDBG, 4, 4)
1752 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1753 FIELD(ID_DFR0, COPTRC, 12, 4)
1754 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1755 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1756 FIELD(ID_DFR0, PERFMON, 24, 4)
1757 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1758 
1759 FIELD(MVFR0, SIMDREG, 0, 4)
1760 FIELD(MVFR0, FPSP, 4, 4)
1761 FIELD(MVFR0, FPDP, 8, 4)
1762 FIELD(MVFR0, FPTRAP, 12, 4)
1763 FIELD(MVFR0, FPDIVIDE, 16, 4)
1764 FIELD(MVFR0, FPSQRT, 20, 4)
1765 FIELD(MVFR0, FPSHVEC, 24, 4)
1766 FIELD(MVFR0, FPROUND, 28, 4)
1767 
1768 FIELD(MVFR1, FPFTZ, 0, 4)
1769 FIELD(MVFR1, FPDNAN, 4, 4)
1770 FIELD(MVFR1, SIMDLS, 8, 4)
1771 FIELD(MVFR1, SIMDINT, 12, 4)
1772 FIELD(MVFR1, SIMDSP, 16, 4)
1773 FIELD(MVFR1, SIMDHP, 20, 4)
1774 FIELD(MVFR1, FPHP, 24, 4)
1775 FIELD(MVFR1, SIMDFMAC, 28, 4)
1776 
1777 FIELD(MVFR2, SIMDMISC, 0, 4)
1778 FIELD(MVFR2, FPMISC, 4, 4)
1779 
1780 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1781 
1782 /* If adding a feature bit which corresponds to a Linux ELF
1783  * HWCAP bit, remember to update the feature-bit-to-hwcap
1784  * mapping in linux-user/elfload.c:get_elf_hwcap().
1785  */
1786 enum arm_features {
1787     ARM_FEATURE_VFP,
1788     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1789     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1790     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1791     ARM_FEATURE_V6,
1792     ARM_FEATURE_V6K,
1793     ARM_FEATURE_V7,
1794     ARM_FEATURE_THUMB2,
1795     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1796     ARM_FEATURE_VFP3,
1797     ARM_FEATURE_NEON,
1798     ARM_FEATURE_M, /* Microcontroller profile.  */
1799     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1800     ARM_FEATURE_THUMB2EE,
1801     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1802     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1803     ARM_FEATURE_V4T,
1804     ARM_FEATURE_V5,
1805     ARM_FEATURE_STRONGARM,
1806     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1807     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1808     ARM_FEATURE_GENERIC_TIMER,
1809     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1810     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1811     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1812     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1813     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1814     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1815     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1816     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1817     ARM_FEATURE_V8,
1818     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1819     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1820     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1821     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1822     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1823     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1824     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1825     ARM_FEATURE_PMU, /* has PMU support */
1826     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1827     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1828     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1829 };
1830 
1831 static inline int arm_feature(CPUARMState *env, int feature)
1832 {
1833     return (env->features & (1ULL << feature)) != 0;
1834 }
1835 
1836 #if !defined(CONFIG_USER_ONLY)
1837 /* Return true if exception levels below EL3 are in secure state,
1838  * or would be following an exception return to that level.
1839  * Unlike arm_is_secure() (which is always a question about the
1840  * _current_ state of the CPU) this doesn't care about the current
1841  * EL or mode.
1842  */
1843 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1844 {
1845     if (arm_feature(env, ARM_FEATURE_EL3)) {
1846         return !(env->cp15.scr_el3 & SCR_NS);
1847     } else {
1848         /* If EL3 is not supported then the secure state is implementation
1849          * defined, in which case QEMU defaults to non-secure.
1850          */
1851         return false;
1852     }
1853 }
1854 
1855 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1856 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1857 {
1858     if (arm_feature(env, ARM_FEATURE_EL3)) {
1859         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1860             /* CPU currently in AArch64 state and EL3 */
1861             return true;
1862         } else if (!is_a64(env) &&
1863                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1864             /* CPU currently in AArch32 state and monitor mode */
1865             return true;
1866         }
1867     }
1868     return false;
1869 }
1870 
1871 /* Return true if the processor is in secure state */
1872 static inline bool arm_is_secure(CPUARMState *env)
1873 {
1874     if (arm_is_el3_or_mon(env)) {
1875         return true;
1876     }
1877     return arm_is_secure_below_el3(env);
1878 }
1879 
1880 #else
1881 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1882 {
1883     return false;
1884 }
1885 
1886 static inline bool arm_is_secure(CPUARMState *env)
1887 {
1888     return false;
1889 }
1890 #endif
1891 
1892 /**
1893  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1894  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1895  * "for all purposes other than a direct read or write access of HCR_EL2."
1896  * Not included here is HCR_RW.
1897  */
1898 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1899 
1900 /* Return true if the specified exception level is running in AArch64 state. */
1901 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1902 {
1903     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1904      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1905      */
1906     assert(el >= 1 && el <= 3);
1907     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1908 
1909     /* The highest exception level is always at the maximum supported
1910      * register width, and then lower levels have a register width controlled
1911      * by bits in the SCR or HCR registers.
1912      */
1913     if (el == 3) {
1914         return aa64;
1915     }
1916 
1917     if (arm_feature(env, ARM_FEATURE_EL3)) {
1918         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1919     }
1920 
1921     if (el == 2) {
1922         return aa64;
1923     }
1924 
1925     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1926         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1927     }
1928 
1929     return aa64;
1930 }
1931 
1932 /* Function for determing whether guest cp register reads and writes should
1933  * access the secure or non-secure bank of a cp register.  When EL3 is
1934  * operating in AArch32 state, the NS-bit determines whether the secure
1935  * instance of a cp register should be used. When EL3 is AArch64 (or if
1936  * it doesn't exist at all) then there is no register banking, and all
1937  * accesses are to the non-secure version.
1938  */
1939 static inline bool access_secure_reg(CPUARMState *env)
1940 {
1941     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1942                 !arm_el_is_aa64(env, 3) &&
1943                 !(env->cp15.scr_el3 & SCR_NS));
1944 
1945     return ret;
1946 }
1947 
1948 /* Macros for accessing a specified CP register bank */
1949 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1950     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1951 
1952 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1953     do {                                                \
1954         if (_secure) {                                   \
1955             (_env)->cp15._regname##_s = (_val);            \
1956         } else {                                        \
1957             (_env)->cp15._regname##_ns = (_val);           \
1958         }                                               \
1959     } while (0)
1960 
1961 /* Macros for automatically accessing a specific CP register bank depending on
1962  * the current secure state of the system.  These macros are not intended for
1963  * supporting instruction translation reads/writes as these are dependent
1964  * solely on the SCR.NS bit and not the mode.
1965  */
1966 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1967     A32_BANKED_REG_GET((_env), _regname,                \
1968                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1969 
1970 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1971     A32_BANKED_REG_SET((_env), _regname,                                    \
1972                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1973                        (_val))
1974 
1975 void arm_cpu_list(void);
1976 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1977                                  uint32_t cur_el, bool secure);
1978 
1979 /* Interface between CPU and Interrupt controller.  */
1980 #ifndef CONFIG_USER_ONLY
1981 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1982 #else
1983 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1984 {
1985     return true;
1986 }
1987 #endif
1988 /**
1989  * armv7m_nvic_set_pending: mark the specified exception as pending
1990  * @opaque: the NVIC
1991  * @irq: the exception number to mark pending
1992  * @secure: false for non-banked exceptions or for the nonsecure
1993  * version of a banked exception, true for the secure version of a banked
1994  * exception.
1995  *
1996  * Marks the specified exception as pending. Note that we will assert()
1997  * if @secure is true and @irq does not specify one of the fixed set
1998  * of architecturally banked exceptions.
1999  */
2000 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2001 /**
2002  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2003  * @opaque: the NVIC
2004  * @irq: the exception number to mark pending
2005  * @secure: false for non-banked exceptions or for the nonsecure
2006  * version of a banked exception, true for the secure version of a banked
2007  * exception.
2008  *
2009  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2010  * exceptions (exceptions generated in the course of trying to take
2011  * a different exception).
2012  */
2013 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2014 /**
2015  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2016  * @opaque: the NVIC
2017  * @irq: the exception number to mark pending
2018  * @secure: false for non-banked exceptions or for the nonsecure
2019  * version of a banked exception, true for the secure version of a banked
2020  * exception.
2021  *
2022  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2023  * generated in the course of lazy stacking of FP registers.
2024  */
2025 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2026 /**
2027  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2028  *    exception, and whether it targets Secure state
2029  * @opaque: the NVIC
2030  * @pirq: set to pending exception number
2031  * @ptargets_secure: set to whether pending exception targets Secure
2032  *
2033  * This function writes the number of the highest priority pending
2034  * exception (the one which would be made active by
2035  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2036  * to true if the current highest priority pending exception should
2037  * be taken to Secure state, false for NS.
2038  */
2039 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2040                                       bool *ptargets_secure);
2041 /**
2042  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2043  * @opaque: the NVIC
2044  *
2045  * Move the current highest priority pending exception from the pending
2046  * state to the active state, and update v7m.exception to indicate that
2047  * it is the exception currently being handled.
2048  */
2049 void armv7m_nvic_acknowledge_irq(void *opaque);
2050 /**
2051  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2052  * @opaque: the NVIC
2053  * @irq: the exception number to complete
2054  * @secure: true if this exception was secure
2055  *
2056  * Returns: -1 if the irq was not active
2057  *           1 if completing this irq brought us back to base (no active irqs)
2058  *           0 if there is still an irq active after this one was completed
2059  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2060  */
2061 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2062 /**
2063  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2064  * @opaque: the NVIC
2065  * @irq: the exception number to mark pending
2066  * @secure: false for non-banked exceptions or for the nonsecure
2067  * version of a banked exception, true for the secure version of a banked
2068  * exception.
2069  *
2070  * Return whether an exception is "ready", i.e. whether the exception is
2071  * enabled and is configured at a priority which would allow it to
2072  * interrupt the current execution priority. This controls whether the
2073  * RDY bit for it in the FPCCR is set.
2074  */
2075 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2076 /**
2077  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2078  * @opaque: the NVIC
2079  *
2080  * Returns: the raw execution priority as defined by the v8M architecture.
2081  * This is the execution priority minus the effects of AIRCR.PRIS,
2082  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2083  * (v8M ARM ARM I_PKLD.)
2084  */
2085 int armv7m_nvic_raw_execution_priority(void *opaque);
2086 /**
2087  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2088  * priority is negative for the specified security state.
2089  * @opaque: the NVIC
2090  * @secure: the security state to test
2091  * This corresponds to the pseudocode IsReqExecPriNeg().
2092  */
2093 #ifndef CONFIG_USER_ONLY
2094 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2095 #else
2096 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2097 {
2098     return false;
2099 }
2100 #endif
2101 
2102 /* Interface for defining coprocessor registers.
2103  * Registers are defined in tables of arm_cp_reginfo structs
2104  * which are passed to define_arm_cp_regs().
2105  */
2106 
2107 /* When looking up a coprocessor register we look for it
2108  * via an integer which encodes all of:
2109  *  coprocessor number
2110  *  Crn, Crm, opc1, opc2 fields
2111  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2112  *    or via MRRC/MCRR?)
2113  *  non-secure/secure bank (AArch32 only)
2114  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2115  * (In this case crn and opc2 should be zero.)
2116  * For AArch64, there is no 32/64 bit size distinction;
2117  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2118  * and 4 bit CRn and CRm. The encoding patterns are chosen
2119  * to be easy to convert to and from the KVM encodings, and also
2120  * so that the hashtable can contain both AArch32 and AArch64
2121  * registers (to allow for interprocessing where we might run
2122  * 32 bit code on a 64 bit core).
2123  */
2124 /* This bit is private to our hashtable cpreg; in KVM register
2125  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2126  * in the upper bits of the 64 bit ID.
2127  */
2128 #define CP_REG_AA64_SHIFT 28
2129 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2130 
2131 /* To enable banking of coprocessor registers depending on ns-bit we
2132  * add a bit to distinguish between secure and non-secure cpregs in the
2133  * hashtable.
2134  */
2135 #define CP_REG_NS_SHIFT 29
2136 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2137 
2138 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2139     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2140      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2141 
2142 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2143     (CP_REG_AA64_MASK |                                 \
2144      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2145      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2146      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2147      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2148      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2149      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2150 
2151 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2152  * version used as a key for the coprocessor register hashtable
2153  */
2154 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2155 {
2156     uint32_t cpregid = kvmid;
2157     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2158         cpregid |= CP_REG_AA64_MASK;
2159     } else {
2160         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2161             cpregid |= (1 << 15);
2162         }
2163 
2164         /* KVM is always non-secure so add the NS flag on AArch32 register
2165          * entries.
2166          */
2167          cpregid |= 1 << CP_REG_NS_SHIFT;
2168     }
2169     return cpregid;
2170 }
2171 
2172 /* Convert a truncated 32 bit hashtable key into the full
2173  * 64 bit KVM register ID.
2174  */
2175 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2176 {
2177     uint64_t kvmid;
2178 
2179     if (cpregid & CP_REG_AA64_MASK) {
2180         kvmid = cpregid & ~CP_REG_AA64_MASK;
2181         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2182     } else {
2183         kvmid = cpregid & ~(1 << 15);
2184         if (cpregid & (1 << 15)) {
2185             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2186         } else {
2187             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2188         }
2189     }
2190     return kvmid;
2191 }
2192 
2193 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2194  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2195  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2196  * TCG can assume the value to be constant (ie load at translate time)
2197  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2198  * indicates that the TB should not be ended after a write to this register
2199  * (the default is that the TB ends after cp writes). OVERRIDE permits
2200  * a register definition to override a previous definition for the
2201  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2202  * old must have the OVERRIDE bit set.
2203  * ALIAS indicates that this register is an alias view of some underlying
2204  * state which is also visible via another register, and that the other
2205  * register is handling migration and reset; registers marked ALIAS will not be
2206  * migrated but may have their state set by syncing of register state from KVM.
2207  * NO_RAW indicates that this register has no underlying state and does not
2208  * support raw access for state saving/loading; it will not be used for either
2209  * migration or KVM state synchronization. (Typically this is for "registers"
2210  * which are actually used as instructions for cache maintenance and so on.)
2211  * IO indicates that this register does I/O and therefore its accesses
2212  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2213  * registers which implement clocks or timers require this.
2214  */
2215 #define ARM_CP_SPECIAL           0x0001
2216 #define ARM_CP_CONST             0x0002
2217 #define ARM_CP_64BIT             0x0004
2218 #define ARM_CP_SUPPRESS_TB_END   0x0008
2219 #define ARM_CP_OVERRIDE          0x0010
2220 #define ARM_CP_ALIAS             0x0020
2221 #define ARM_CP_IO                0x0040
2222 #define ARM_CP_NO_RAW            0x0080
2223 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2224 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2225 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2226 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2227 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2228 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2229 #define ARM_CP_FPU               0x1000
2230 #define ARM_CP_SVE               0x2000
2231 #define ARM_CP_NO_GDB            0x4000
2232 /* Used only as a terminator for ARMCPRegInfo lists */
2233 #define ARM_CP_SENTINEL          0xffff
2234 /* Mask of only the flag bits in a type field */
2235 #define ARM_CP_FLAG_MASK         0x70ff
2236 
2237 /* Valid values for ARMCPRegInfo state field, indicating which of
2238  * the AArch32 and AArch64 execution states this register is visible in.
2239  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2240  * If the reginfo is declared to be visible in both states then a second
2241  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2242  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2243  * Note that we rely on the values of these enums as we iterate through
2244  * the various states in some places.
2245  */
2246 enum {
2247     ARM_CP_STATE_AA32 = 0,
2248     ARM_CP_STATE_AA64 = 1,
2249     ARM_CP_STATE_BOTH = 2,
2250 };
2251 
2252 /* ARM CP register secure state flags.  These flags identify security state
2253  * attributes for a given CP register entry.
2254  * The existence of both or neither secure and non-secure flags indicates that
2255  * the register has both a secure and non-secure hash entry.  A single one of
2256  * these flags causes the register to only be hashed for the specified
2257  * security state.
2258  * Although definitions may have any combination of the S/NS bits, each
2259  * registered entry will only have one to identify whether the entry is secure
2260  * or non-secure.
2261  */
2262 enum {
2263     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2264     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2265 };
2266 
2267 /* Return true if cptype is a valid type field. This is used to try to
2268  * catch errors where the sentinel has been accidentally left off the end
2269  * of a list of registers.
2270  */
2271 static inline bool cptype_valid(int cptype)
2272 {
2273     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2274         || ((cptype & ARM_CP_SPECIAL) &&
2275             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2276 }
2277 
2278 /* Access rights:
2279  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2280  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2281  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2282  * (ie any of the privileged modes in Secure state, or Monitor mode).
2283  * If a register is accessible in one privilege level it's always accessible
2284  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2285  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2286  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2287  * terminology a little and call this PL3.
2288  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2289  * with the ELx exception levels.
2290  *
2291  * If access permissions for a register are more complex than can be
2292  * described with these bits, then use a laxer set of restrictions, and
2293  * do the more restrictive/complex check inside a helper function.
2294  */
2295 #define PL3_R 0x80
2296 #define PL3_W 0x40
2297 #define PL2_R (0x20 | PL3_R)
2298 #define PL2_W (0x10 | PL3_W)
2299 #define PL1_R (0x08 | PL2_R)
2300 #define PL1_W (0x04 | PL2_W)
2301 #define PL0_R (0x02 | PL1_R)
2302 #define PL0_W (0x01 | PL1_W)
2303 
2304 /*
2305  * For user-mode some registers are accessible to EL0 via a kernel
2306  * trap-and-emulate ABI. In this case we define the read permissions
2307  * as actually being PL0_R. However some bits of any given register
2308  * may still be masked.
2309  */
2310 #ifdef CONFIG_USER_ONLY
2311 #define PL0U_R PL0_R
2312 #else
2313 #define PL0U_R PL1_R
2314 #endif
2315 
2316 #define PL3_RW (PL3_R | PL3_W)
2317 #define PL2_RW (PL2_R | PL2_W)
2318 #define PL1_RW (PL1_R | PL1_W)
2319 #define PL0_RW (PL0_R | PL0_W)
2320 
2321 /* Return the highest implemented Exception Level */
2322 static inline int arm_highest_el(CPUARMState *env)
2323 {
2324     if (arm_feature(env, ARM_FEATURE_EL3)) {
2325         return 3;
2326     }
2327     if (arm_feature(env, ARM_FEATURE_EL2)) {
2328         return 2;
2329     }
2330     return 1;
2331 }
2332 
2333 /* Return true if a v7M CPU is in Handler mode */
2334 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2335 {
2336     return env->v7m.exception != 0;
2337 }
2338 
2339 /* Return the current Exception Level (as per ARMv8; note that this differs
2340  * from the ARMv7 Privilege Level).
2341  */
2342 static inline int arm_current_el(CPUARMState *env)
2343 {
2344     if (arm_feature(env, ARM_FEATURE_M)) {
2345         return arm_v7m_is_handler_mode(env) ||
2346             !(env->v7m.control[env->v7m.secure] & 1);
2347     }
2348 
2349     if (is_a64(env)) {
2350         return extract32(env->pstate, 2, 2);
2351     }
2352 
2353     switch (env->uncached_cpsr & 0x1f) {
2354     case ARM_CPU_MODE_USR:
2355         return 0;
2356     case ARM_CPU_MODE_HYP:
2357         return 2;
2358     case ARM_CPU_MODE_MON:
2359         return 3;
2360     default:
2361         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2362             /* If EL3 is 32-bit then all secure privileged modes run in
2363              * EL3
2364              */
2365             return 3;
2366         }
2367 
2368         return 1;
2369     }
2370 }
2371 
2372 typedef struct ARMCPRegInfo ARMCPRegInfo;
2373 
2374 typedef enum CPAccessResult {
2375     /* Access is permitted */
2376     CP_ACCESS_OK = 0,
2377     /* Access fails due to a configurable trap or enable which would
2378      * result in a categorized exception syndrome giving information about
2379      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2380      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2381      * PL1 if in EL0, otherwise to the current EL).
2382      */
2383     CP_ACCESS_TRAP = 1,
2384     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2385      * Note that this is not a catch-all case -- the set of cases which may
2386      * result in this failure is specifically defined by the architecture.
2387      */
2388     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2389     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2390     CP_ACCESS_TRAP_EL2 = 3,
2391     CP_ACCESS_TRAP_EL3 = 4,
2392     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2393     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2394     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2395     /* Access fails and results in an exception syndrome for an FP access,
2396      * trapped directly to EL2 or EL3
2397      */
2398     CP_ACCESS_TRAP_FP_EL2 = 7,
2399     CP_ACCESS_TRAP_FP_EL3 = 8,
2400 } CPAccessResult;
2401 
2402 /* Access functions for coprocessor registers. These cannot fail and
2403  * may not raise exceptions.
2404  */
2405 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2406 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2407                        uint64_t value);
2408 /* Access permission check functions for coprocessor registers. */
2409 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2410                                   const ARMCPRegInfo *opaque,
2411                                   bool isread);
2412 /* Hook function for register reset */
2413 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2414 
2415 #define CP_ANY 0xff
2416 
2417 /* Definition of an ARM coprocessor register */
2418 struct ARMCPRegInfo {
2419     /* Name of register (useful mainly for debugging, need not be unique) */
2420     const char *name;
2421     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2422      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2423      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2424      * will be decoded to this register. The register read and write
2425      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2426      * used by the program, so it is possible to register a wildcard and
2427      * then behave differently on read/write if necessary.
2428      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2429      * must both be zero.
2430      * For AArch64-visible registers, opc0 is also used.
2431      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2432      * way to distinguish (for KVM's benefit) guest-visible system registers
2433      * from demuxed ones provided to preserve the "no side effects on
2434      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2435      * visible (to match KVM's encoding); cp==0 will be converted to
2436      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2437      */
2438     uint8_t cp;
2439     uint8_t crn;
2440     uint8_t crm;
2441     uint8_t opc0;
2442     uint8_t opc1;
2443     uint8_t opc2;
2444     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2445     int state;
2446     /* Register type: ARM_CP_* bits/values */
2447     int type;
2448     /* Access rights: PL*_[RW] */
2449     int access;
2450     /* Security state: ARM_CP_SECSTATE_* bits/values */
2451     int secure;
2452     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2453      * this register was defined: can be used to hand data through to the
2454      * register read/write functions, since they are passed the ARMCPRegInfo*.
2455      */
2456     void *opaque;
2457     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2458      * fieldoffset is non-zero, the reset value of the register.
2459      */
2460     uint64_t resetvalue;
2461     /* Offset of the field in CPUARMState for this register.
2462      *
2463      * This is not needed if either:
2464      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2465      *  2. both readfn and writefn are specified
2466      */
2467     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2468 
2469     /* Offsets of the secure and non-secure fields in CPUARMState for the
2470      * register if it is banked.  These fields are only used during the static
2471      * registration of a register.  During hashing the bank associated
2472      * with a given security state is copied to fieldoffset which is used from
2473      * there on out.
2474      *
2475      * It is expected that register definitions use either fieldoffset or
2476      * bank_fieldoffsets in the definition but not both.  It is also expected
2477      * that both bank offsets are set when defining a banked register.  This
2478      * use indicates that a register is banked.
2479      */
2480     ptrdiff_t bank_fieldoffsets[2];
2481 
2482     /* Function for making any access checks for this register in addition to
2483      * those specified by the 'access' permissions bits. If NULL, no extra
2484      * checks required. The access check is performed at runtime, not at
2485      * translate time.
2486      */
2487     CPAccessFn *accessfn;
2488     /* Function for handling reads of this register. If NULL, then reads
2489      * will be done by loading from the offset into CPUARMState specified
2490      * by fieldoffset.
2491      */
2492     CPReadFn *readfn;
2493     /* Function for handling writes of this register. If NULL, then writes
2494      * will be done by writing to the offset into CPUARMState specified
2495      * by fieldoffset.
2496      */
2497     CPWriteFn *writefn;
2498     /* Function for doing a "raw" read; used when we need to copy
2499      * coprocessor state to the kernel for KVM or out for
2500      * migration. This only needs to be provided if there is also a
2501      * readfn and it has side effects (for instance clear-on-read bits).
2502      */
2503     CPReadFn *raw_readfn;
2504     /* Function for doing a "raw" write; used when we need to copy KVM
2505      * kernel coprocessor state into userspace, or for inbound
2506      * migration. This only needs to be provided if there is also a
2507      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2508      * or similar behaviour.
2509      */
2510     CPWriteFn *raw_writefn;
2511     /* Function for resetting the register. If NULL, then reset will be done
2512      * by writing resetvalue to the field specified in fieldoffset. If
2513      * fieldoffset is 0 then no reset will be done.
2514      */
2515     CPResetFn *resetfn;
2516 };
2517 
2518 /* Macros which are lvalues for the field in CPUARMState for the
2519  * ARMCPRegInfo *ri.
2520  */
2521 #define CPREG_FIELD32(env, ri) \
2522     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2523 #define CPREG_FIELD64(env, ri) \
2524     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2525 
2526 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2527 
2528 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2529                                     const ARMCPRegInfo *regs, void *opaque);
2530 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2531                                        const ARMCPRegInfo *regs, void *opaque);
2532 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2533 {
2534     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2535 }
2536 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2537 {
2538     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2539 }
2540 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2541 
2542 /*
2543  * Definition of an ARM co-processor register as viewed from
2544  * userspace. This is used for presenting sanitised versions of
2545  * registers to userspace when emulating the Linux AArch64 CPU
2546  * ID/feature ABI (advertised as HWCAP_CPUID).
2547  */
2548 typedef struct ARMCPRegUserSpaceInfo {
2549     /* Name of register */
2550     const char *name;
2551 
2552     /* Is the name actually a glob pattern */
2553     bool is_glob;
2554 
2555     /* Only some bits are exported to user space */
2556     uint64_t exported_bits;
2557 
2558     /* Fixed bits are applied after the mask */
2559     uint64_t fixed_bits;
2560 } ARMCPRegUserSpaceInfo;
2561 
2562 #define REGUSERINFO_SENTINEL { .name = NULL }
2563 
2564 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2565 
2566 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2567 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2568                          uint64_t value);
2569 /* CPReadFn that can be used for read-as-zero behaviour */
2570 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2571 
2572 /* CPResetFn that does nothing, for use if no reset is required even
2573  * if fieldoffset is non zero.
2574  */
2575 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2576 
2577 /* Return true if this reginfo struct's field in the cpu state struct
2578  * is 64 bits wide.
2579  */
2580 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2581 {
2582     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2583 }
2584 
2585 static inline bool cp_access_ok(int current_el,
2586                                 const ARMCPRegInfo *ri, int isread)
2587 {
2588     return (ri->access >> ((current_el * 2) + isread)) & 1;
2589 }
2590 
2591 /* Raw read of a coprocessor register (as needed for migration, etc) */
2592 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2593 
2594 /**
2595  * write_list_to_cpustate
2596  * @cpu: ARMCPU
2597  *
2598  * For each register listed in the ARMCPU cpreg_indexes list, write
2599  * its value from the cpreg_values list into the ARMCPUState structure.
2600  * This updates TCG's working data structures from KVM data or
2601  * from incoming migration state.
2602  *
2603  * Returns: true if all register values were updated correctly,
2604  * false if some register was unknown or could not be written.
2605  * Note that we do not stop early on failure -- we will attempt
2606  * writing all registers in the list.
2607  */
2608 bool write_list_to_cpustate(ARMCPU *cpu);
2609 
2610 /**
2611  * write_cpustate_to_list:
2612  * @cpu: ARMCPU
2613  * @kvm_sync: true if this is for syncing back to KVM
2614  *
2615  * For each register listed in the ARMCPU cpreg_indexes list, write
2616  * its value from the ARMCPUState structure into the cpreg_values list.
2617  * This is used to copy info from TCG's working data structures into
2618  * KVM or for outbound migration.
2619  *
2620  * @kvm_sync is true if we are doing this in order to sync the
2621  * register state back to KVM. In this case we will only update
2622  * values in the list if the previous list->cpustate sync actually
2623  * successfully wrote the CPU state. Otherwise we will keep the value
2624  * that is in the list.
2625  *
2626  * Returns: true if all register values were read correctly,
2627  * false if some register was unknown or could not be read.
2628  * Note that we do not stop early on failure -- we will attempt
2629  * reading all registers in the list.
2630  */
2631 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2632 
2633 #define ARM_CPUID_TI915T      0x54029152
2634 #define ARM_CPUID_TI925T      0x54029252
2635 
2636 #if defined(CONFIG_USER_ONLY)
2637 #define TARGET_PAGE_BITS 12
2638 #else
2639 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2640  * have to support 1K tiny pages.
2641  */
2642 #define TARGET_PAGE_BITS_VARY
2643 #define TARGET_PAGE_BITS_MIN 10
2644 #endif
2645 
2646 #if defined(TARGET_AARCH64)
2647 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2648 #  define TARGET_VIRT_ADDR_SPACE_BITS 48
2649 #else
2650 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2651 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2652 #endif
2653 
2654 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2655                                      unsigned int target_el)
2656 {
2657     CPUARMState *env = cs->env_ptr;
2658     unsigned int cur_el = arm_current_el(env);
2659     bool secure = arm_is_secure(env);
2660     bool pstate_unmasked;
2661     int8_t unmasked = 0;
2662     uint64_t hcr_el2;
2663 
2664     /* Don't take exceptions if they target a lower EL.
2665      * This check should catch any exceptions that would not be taken but left
2666      * pending.
2667      */
2668     if (cur_el > target_el) {
2669         return false;
2670     }
2671 
2672     hcr_el2 = arm_hcr_el2_eff(env);
2673 
2674     switch (excp_idx) {
2675     case EXCP_FIQ:
2676         pstate_unmasked = !(env->daif & PSTATE_F);
2677         break;
2678 
2679     case EXCP_IRQ:
2680         pstate_unmasked = !(env->daif & PSTATE_I);
2681         break;
2682 
2683     case EXCP_VFIQ:
2684         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2685             /* VFIQs are only taken when hypervized and non-secure.  */
2686             return false;
2687         }
2688         return !(env->daif & PSTATE_F);
2689     case EXCP_VIRQ:
2690         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2691             /* VIRQs are only taken when hypervized and non-secure.  */
2692             return false;
2693         }
2694         return !(env->daif & PSTATE_I);
2695     default:
2696         g_assert_not_reached();
2697     }
2698 
2699     /* Use the target EL, current execution state and SCR/HCR settings to
2700      * determine whether the corresponding CPSR bit is used to mask the
2701      * interrupt.
2702      */
2703     if ((target_el > cur_el) && (target_el != 1)) {
2704         /* Exceptions targeting a higher EL may not be maskable */
2705         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2706             /* 64-bit masking rules are simple: exceptions to EL3
2707              * can't be masked, and exceptions to EL2 can only be
2708              * masked from Secure state. The HCR and SCR settings
2709              * don't affect the masking logic, only the interrupt routing.
2710              */
2711             if (target_el == 3 || !secure) {
2712                 unmasked = 1;
2713             }
2714         } else {
2715             /* The old 32-bit-only environment has a more complicated
2716              * masking setup. HCR and SCR bits not only affect interrupt
2717              * routing but also change the behaviour of masking.
2718              */
2719             bool hcr, scr;
2720 
2721             switch (excp_idx) {
2722             case EXCP_FIQ:
2723                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2724                  * we override the CPSR.F in determining if the exception is
2725                  * masked or not. If neither of these are set then we fall back
2726                  * to the CPSR.F setting otherwise we further assess the state
2727                  * below.
2728                  */
2729                 hcr = hcr_el2 & HCR_FMO;
2730                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2731 
2732                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2733                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2734                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2735                  * when non-secure but only when FIQs are only routed to EL3.
2736                  */
2737                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2738                 break;
2739             case EXCP_IRQ:
2740                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2741                  * we may override the CPSR.I masking when in non-secure state.
2742                  * The SCR.IRQ setting has already been taken into consideration
2743                  * when setting the target EL, so it does not have a further
2744                  * affect here.
2745                  */
2746                 hcr = hcr_el2 & HCR_IMO;
2747                 scr = false;
2748                 break;
2749             default:
2750                 g_assert_not_reached();
2751             }
2752 
2753             if ((scr || hcr) && !secure) {
2754                 unmasked = 1;
2755             }
2756         }
2757     }
2758 
2759     /* The PSTATE bits only mask the interrupt if we have not overriden the
2760      * ability above.
2761      */
2762     return unmasked || pstate_unmasked;
2763 }
2764 
2765 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2766 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2767 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2768 
2769 #define cpu_signal_handler cpu_arm_signal_handler
2770 #define cpu_list arm_cpu_list
2771 
2772 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2773  *
2774  * If EL3 is 64-bit:
2775  *  + NonSecure EL1 & 0 stage 1
2776  *  + NonSecure EL1 & 0 stage 2
2777  *  + NonSecure EL2
2778  *  + Secure EL1 & EL0
2779  *  + Secure EL3
2780  * If EL3 is 32-bit:
2781  *  + NonSecure PL1 & 0 stage 1
2782  *  + NonSecure PL1 & 0 stage 2
2783  *  + NonSecure PL2
2784  *  + Secure PL0 & PL1
2785  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2786  *
2787  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2788  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2789  *     may differ in access permissions even if the VA->PA map is the same
2790  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2791  *     translation, which means that we have one mmu_idx that deals with two
2792  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2793  *     architecturally permitted]
2794  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2795  *     handling via the TLB. The only way to do a stage 1 translation without
2796  *     the immediate stage 2 translation is via the ATS or AT system insns,
2797  *     which can be slow-pathed and always do a page table walk.
2798  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2799  *     translation regimes, because they map reasonably well to each other
2800  *     and they can't both be active at the same time.
2801  * This gives us the following list of mmu_idx values:
2802  *
2803  * NS EL0 (aka NS PL0) stage 1+2
2804  * NS EL1 (aka NS PL1) stage 1+2
2805  * NS EL2 (aka NS PL2)
2806  * S EL3 (aka S PL1)
2807  * S EL0 (aka S PL0)
2808  * S EL1 (not used if EL3 is 32 bit)
2809  * NS EL0+1 stage 2
2810  *
2811  * (The last of these is an mmu_idx because we want to be able to use the TLB
2812  * for the accesses done as part of a stage 1 page table walk, rather than
2813  * having to walk the stage 2 page table over and over.)
2814  *
2815  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2816  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2817  * NS EL2 if we ever model a Cortex-R52).
2818  *
2819  * M profile CPUs are rather different as they do not have a true MMU.
2820  * They have the following different MMU indexes:
2821  *  User
2822  *  Privileged
2823  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2824  *  Privileged, execution priority negative (ditto)
2825  * If the CPU supports the v8M Security Extension then there are also:
2826  *  Secure User
2827  *  Secure Privileged
2828  *  Secure User, execution priority negative
2829  *  Secure Privileged, execution priority negative
2830  *
2831  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2832  * are not quite the same -- different CPU types (most notably M profile
2833  * vs A/R profile) would like to use MMU indexes with different semantics,
2834  * but since we don't ever need to use all of those in a single CPU we
2835  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2836  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2837  * the same for any particular CPU.
2838  * Variables of type ARMMUIdx are always full values, and the core
2839  * index values are in variables of type 'int'.
2840  *
2841  * Our enumeration includes at the end some entries which are not "true"
2842  * mmu_idx values in that they don't have corresponding TLBs and are only
2843  * valid for doing slow path page table walks.
2844  *
2845  * The constant names here are patterned after the general style of the names
2846  * of the AT/ATS operations.
2847  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2848  * For M profile we arrange them to have a bit for priv, a bit for negpri
2849  * and a bit for secure.
2850  */
2851 #define ARM_MMU_IDX_A 0x10 /* A profile */
2852 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2853 #define ARM_MMU_IDX_M 0x40 /* M profile */
2854 
2855 /* meanings of the bits for M profile mmu idx values */
2856 #define ARM_MMU_IDX_M_PRIV 0x1
2857 #define ARM_MMU_IDX_M_NEGPRI 0x2
2858 #define ARM_MMU_IDX_M_S 0x4
2859 
2860 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2861 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2862 
2863 typedef enum ARMMMUIdx {
2864     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2865     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2866     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2867     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2868     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2869     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2870     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2871     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2872     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2873     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2874     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2875     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2876     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2877     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2878     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2879     /* Indexes below here don't have TLBs and are used only for AT system
2880      * instructions or for the first stage of an S12 page table walk.
2881      */
2882     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2883     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2884 } ARMMMUIdx;
2885 
2886 /* Bit macros for the core-mmu-index values for each index,
2887  * for use when calling tlb_flush_by_mmuidx() and friends.
2888  */
2889 typedef enum ARMMMUIdxBit {
2890     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2891     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2892     ARMMMUIdxBit_S1E2 = 1 << 2,
2893     ARMMMUIdxBit_S1E3 = 1 << 3,
2894     ARMMMUIdxBit_S1SE0 = 1 << 4,
2895     ARMMMUIdxBit_S1SE1 = 1 << 5,
2896     ARMMMUIdxBit_S2NS = 1 << 6,
2897     ARMMMUIdxBit_MUser = 1 << 0,
2898     ARMMMUIdxBit_MPriv = 1 << 1,
2899     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2900     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2901     ARMMMUIdxBit_MSUser = 1 << 4,
2902     ARMMMUIdxBit_MSPriv = 1 << 5,
2903     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2904     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2905 } ARMMMUIdxBit;
2906 
2907 #define MMU_USER_IDX 0
2908 
2909 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2910 {
2911     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2912 }
2913 
2914 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2915 {
2916     if (arm_feature(env, ARM_FEATURE_M)) {
2917         return mmu_idx | ARM_MMU_IDX_M;
2918     } else {
2919         return mmu_idx | ARM_MMU_IDX_A;
2920     }
2921 }
2922 
2923 /* Return the exception level we're running at if this is our mmu_idx */
2924 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2925 {
2926     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2927     case ARM_MMU_IDX_A:
2928         return mmu_idx & 3;
2929     case ARM_MMU_IDX_M:
2930         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2931     default:
2932         g_assert_not_reached();
2933     }
2934 }
2935 
2936 /*
2937  * Return the MMU index for a v7M CPU with all relevant information
2938  * manually specified.
2939  */
2940 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2941                               bool secstate, bool priv, bool negpri);
2942 
2943 /* Return the MMU index for a v7M CPU in the specified security and
2944  * privilege state.
2945  */
2946 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2947                                                 bool secstate, bool priv);
2948 
2949 /* Return the MMU index for a v7M CPU in the specified security state */
2950 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2951 
2952 /**
2953  * cpu_mmu_index:
2954  * @env: The cpu environment
2955  * @ifetch: True for code access, false for data access.
2956  *
2957  * Return the core mmu index for the current translation regime.
2958  * This function is used by generic TCG code paths.
2959  */
2960 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2961 
2962 /* Indexes used when registering address spaces with cpu_address_space_init */
2963 typedef enum ARMASIdx {
2964     ARMASIdx_NS = 0,
2965     ARMASIdx_S = 1,
2966 } ARMASIdx;
2967 
2968 /* Return the Exception Level targeted by debug exceptions. */
2969 static inline int arm_debug_target_el(CPUARMState *env)
2970 {
2971     bool secure = arm_is_secure(env);
2972     bool route_to_el2 = false;
2973 
2974     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2975         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2976                        env->cp15.mdcr_el2 & MDCR_TDE;
2977     }
2978 
2979     if (route_to_el2) {
2980         return 2;
2981     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2982                !arm_el_is_aa64(env, 3) && secure) {
2983         return 3;
2984     } else {
2985         return 1;
2986     }
2987 }
2988 
2989 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2990 {
2991     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2992      * CSSELR is RAZ/WI.
2993      */
2994     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2995 }
2996 
2997 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2998 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2999 {
3000     int cur_el = arm_current_el(env);
3001     int debug_el;
3002 
3003     if (cur_el == 3) {
3004         return false;
3005     }
3006 
3007     /* MDCR_EL3.SDD disables debug events from Secure state */
3008     if (arm_is_secure_below_el3(env)
3009         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3010         return false;
3011     }
3012 
3013     /*
3014      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3015      * while not masking the (D)ebug bit in DAIF.
3016      */
3017     debug_el = arm_debug_target_el(env);
3018 
3019     if (cur_el == debug_el) {
3020         return extract32(env->cp15.mdscr_el1, 13, 1)
3021             && !(env->daif & PSTATE_D);
3022     }
3023 
3024     /* Otherwise the debug target needs to be a higher EL */
3025     return debug_el > cur_el;
3026 }
3027 
3028 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3029 {
3030     int el = arm_current_el(env);
3031 
3032     if (el == 0 && arm_el_is_aa64(env, 1)) {
3033         return aa64_generate_debug_exceptions(env);
3034     }
3035 
3036     if (arm_is_secure(env)) {
3037         int spd;
3038 
3039         if (el == 0 && (env->cp15.sder & 1)) {
3040             /* SDER.SUIDEN means debug exceptions from Secure EL0
3041              * are always enabled. Otherwise they are controlled by
3042              * SDCR.SPD like those from other Secure ELs.
3043              */
3044             return true;
3045         }
3046 
3047         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3048         switch (spd) {
3049         case 1:
3050             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3051         case 0:
3052             /* For 0b00 we return true if external secure invasive debug
3053              * is enabled. On real hardware this is controlled by external
3054              * signals to the core. QEMU always permits debug, and behaves
3055              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3056              */
3057             return true;
3058         case 2:
3059             return false;
3060         case 3:
3061             return true;
3062         }
3063     }
3064 
3065     return el != 2;
3066 }
3067 
3068 /* Return true if debugging exceptions are currently enabled.
3069  * This corresponds to what in ARM ARM pseudocode would be
3070  *    if UsingAArch32() then
3071  *        return AArch32.GenerateDebugExceptions()
3072  *    else
3073  *        return AArch64.GenerateDebugExceptions()
3074  * We choose to push the if() down into this function for clarity,
3075  * since the pseudocode has it at all callsites except for the one in
3076  * CheckSoftwareStep(), where it is elided because both branches would
3077  * always return the same value.
3078  */
3079 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3080 {
3081     if (env->aarch64) {
3082         return aa64_generate_debug_exceptions(env);
3083     } else {
3084         return aa32_generate_debug_exceptions(env);
3085     }
3086 }
3087 
3088 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3089  * implicitly means this always returns false in pre-v8 CPUs.)
3090  */
3091 static inline bool arm_singlestep_active(CPUARMState *env)
3092 {
3093     return extract32(env->cp15.mdscr_el1, 0, 1)
3094         && arm_el_is_aa64(env, arm_debug_target_el(env))
3095         && arm_generate_debug_exceptions(env);
3096 }
3097 
3098 static inline bool arm_sctlr_b(CPUARMState *env)
3099 {
3100     return
3101         /* We need not implement SCTLR.ITD in user-mode emulation, so
3102          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3103          * This lets people run BE32 binaries with "-cpu any".
3104          */
3105 #ifndef CONFIG_USER_ONLY
3106         !arm_feature(env, ARM_FEATURE_V7) &&
3107 #endif
3108         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3109 }
3110 
3111 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3112 {
3113     if (el == 0) {
3114         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3115         return env->cp15.sctlr_el[1];
3116     } else {
3117         return env->cp15.sctlr_el[el];
3118     }
3119 }
3120 
3121 
3122 /* Return true if the processor is in big-endian mode. */
3123 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3124 {
3125     /* In 32bit endianness is determined by looking at CPSR's E bit */
3126     if (!is_a64(env)) {
3127         return
3128 #ifdef CONFIG_USER_ONLY
3129             /* In system mode, BE32 is modelled in line with the
3130              * architecture (as word-invariant big-endianness), where loads
3131              * and stores are done little endian but from addresses which
3132              * are adjusted by XORing with the appropriate constant. So the
3133              * endianness to use for the raw data access is not affected by
3134              * SCTLR.B.
3135              * In user mode, however, we model BE32 as byte-invariant
3136              * big-endianness (because user-only code cannot tell the
3137              * difference), and so we need to use a data access endianness
3138              * that depends on SCTLR.B.
3139              */
3140             arm_sctlr_b(env) ||
3141 #endif
3142                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3143     } else {
3144         int cur_el = arm_current_el(env);
3145         uint64_t sctlr = arm_sctlr(env, cur_el);
3146 
3147         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3148     }
3149 }
3150 
3151 #include "exec/cpu-all.h"
3152 
3153 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3154  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3155  * We put flags which are shared between 32 and 64 bit mode at the top
3156  * of the word, and flags which apply to only one mode at the bottom.
3157  */
3158 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3159 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3160 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3161 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3162 /* Target EL if we take a floating-point-disabled exception */
3163 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3164 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3165 
3166 /* Bit usage when in AArch32 state: */
3167 FIELD(TBFLAG_A32, THUMB, 0, 1)
3168 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3169 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3170 /*
3171  * We store the bottom two bits of the CPAR as TB flags and handle
3172  * checks on the other bits at runtime. This shares the same bits as
3173  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3174  */
3175 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3176 /*
3177  * Indicates whether cp register reads and writes by guest code should access
3178  * the secure or nonsecure bank of banked registers; note that this is not
3179  * the same thing as the current security state of the processor!
3180  */
3181 FIELD(TBFLAG_A32, NS, 6, 1)
3182 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3183 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3184 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3185 /* For M profile only, set if FPCCR.LSPACT is set */
3186 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3187 /* For M profile only, set if we must create a new FP context */
3188 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3189 /* For M profile only, set if FPCCR.S does not match current security state */
3190 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3191 /* For M profile only, Handler (ie not Thread) mode */
3192 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3193 /* For M profile only, whether we should generate stack-limit checks */
3194 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3195 
3196 /* Bit usage when in AArch64 state */
3197 FIELD(TBFLAG_A64, TBII, 0, 2)
3198 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3199 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3200 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3201 FIELD(TBFLAG_A64, BT, 9, 1)
3202 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3203 FIELD(TBFLAG_A64, TBID, 12, 2)
3204 
3205 static inline bool bswap_code(bool sctlr_b)
3206 {
3207 #ifdef CONFIG_USER_ONLY
3208     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3209      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3210      * would also end up as a mixed-endian mode with BE code, LE data.
3211      */
3212     return
3213 #ifdef TARGET_WORDS_BIGENDIAN
3214         1 ^
3215 #endif
3216         sctlr_b;
3217 #else
3218     /* All code access in ARM is little endian, and there are no loaders
3219      * doing swaps that need to be reversed
3220      */
3221     return 0;
3222 #endif
3223 }
3224 
3225 #ifdef CONFIG_USER_ONLY
3226 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3227 {
3228     return
3229 #ifdef TARGET_WORDS_BIGENDIAN
3230        1 ^
3231 #endif
3232        arm_cpu_data_is_big_endian(env);
3233 }
3234 #endif
3235 
3236 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3237                           target_ulong *cs_base, uint32_t *flags);
3238 
3239 enum {
3240     QEMU_PSCI_CONDUIT_DISABLED = 0,
3241     QEMU_PSCI_CONDUIT_SMC = 1,
3242     QEMU_PSCI_CONDUIT_HVC = 2,
3243 };
3244 
3245 #ifndef CONFIG_USER_ONLY
3246 /* Return the address space index to use for a memory access */
3247 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3248 {
3249     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3250 }
3251 
3252 /* Return the AddressSpace to use for a memory access
3253  * (which depends on whether the access is S or NS, and whether
3254  * the board gave us a separate AddressSpace for S accesses).
3255  */
3256 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3257 {
3258     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3259 }
3260 #endif
3261 
3262 /**
3263  * arm_register_pre_el_change_hook:
3264  * Register a hook function which will be called immediately before this
3265  * CPU changes exception level or mode. The hook function will be
3266  * passed a pointer to the ARMCPU and the opaque data pointer passed
3267  * to this function when the hook was registered.
3268  *
3269  * Note that if a pre-change hook is called, any registered post-change hooks
3270  * are guaranteed to subsequently be called.
3271  */
3272 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3273                                  void *opaque);
3274 /**
3275  * arm_register_el_change_hook:
3276  * Register a hook function which will be called immediately after this
3277  * CPU changes exception level or mode. The hook function will be
3278  * passed a pointer to the ARMCPU and the opaque data pointer passed
3279  * to this function when the hook was registered.
3280  *
3281  * Note that any registered hooks registered here are guaranteed to be called
3282  * if pre-change hooks have been.
3283  */
3284 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3285         *opaque);
3286 
3287 /**
3288  * aa32_vfp_dreg:
3289  * Return a pointer to the Dn register within env in 32-bit mode.
3290  */
3291 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3292 {
3293     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3294 }
3295 
3296 /**
3297  * aa32_vfp_qreg:
3298  * Return a pointer to the Qn register within env in 32-bit mode.
3299  */
3300 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3301 {
3302     return &env->vfp.zregs[regno].d[0];
3303 }
3304 
3305 /**
3306  * aa64_vfp_qreg:
3307  * Return a pointer to the Qn register within env in 64-bit mode.
3308  */
3309 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3310 {
3311     return &env->vfp.zregs[regno].d[0];
3312 }
3313 
3314 /* Shared between translate-sve.c and sve_helper.c.  */
3315 extern const uint64_t pred_esz_masks[4];
3316 
3317 /*
3318  * 32-bit feature tests via id registers.
3319  */
3320 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3321 {
3322     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3323 }
3324 
3325 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3326 {
3327     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3328 }
3329 
3330 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3331 {
3332     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3333 }
3334 
3335 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3336 {
3337     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3338 }
3339 
3340 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3341 {
3342     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3343 }
3344 
3345 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3346 {
3347     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3348 }
3349 
3350 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3351 {
3352     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3353 }
3354 
3355 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3356 {
3357     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3358 }
3359 
3360 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3361 {
3362     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3363 }
3364 
3365 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3366 {
3367     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3368 }
3369 
3370 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3371 {
3372     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3373 }
3374 
3375 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3376 {
3377     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3378 }
3379 
3380 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3381 {
3382     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3383 }
3384 
3385 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3386 {
3387     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3388 }
3389 
3390 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3391 {
3392     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3393 }
3394 
3395 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3396 {
3397     /*
3398      * This is a placeholder for use by VCMA until the rest of
3399      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3400      * At which point we can properly set and check MVFR1.FPHP.
3401      */
3402     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3403 }
3404 
3405 /*
3406  * We always set the FP and SIMD FP16 fields to indicate identical
3407  * levels of support (assuming SIMD is implemented at all), so
3408  * we only need one set of accessors.
3409  */
3410 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3411 {
3412     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3413 }
3414 
3415 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3416 {
3417     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3418 }
3419 
3420 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3421 {
3422     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3423 }
3424 
3425 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3426 {
3427     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3428 }
3429 
3430 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3431 {
3432     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3433 }
3434 
3435 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3436 {
3437     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3438 }
3439 
3440 /*
3441  * 64-bit feature tests via id registers.
3442  */
3443 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3444 {
3445     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3446 }
3447 
3448 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3449 {
3450     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3451 }
3452 
3453 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3454 {
3455     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3456 }
3457 
3458 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3459 {
3460     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3461 }
3462 
3463 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3464 {
3465     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3466 }
3467 
3468 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3469 {
3470     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3471 }
3472 
3473 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3476 }
3477 
3478 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3479 {
3480     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3481 }
3482 
3483 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3484 {
3485     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3486 }
3487 
3488 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3489 {
3490     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3491 }
3492 
3493 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3496 }
3497 
3498 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3499 {
3500     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3501 }
3502 
3503 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3504 {
3505     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3506 }
3507 
3508 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3509 {
3510     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3511 }
3512 
3513 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3514 {
3515     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3516 }
3517 
3518 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3519 {
3520     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3521 }
3522 
3523 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3524 {
3525     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3526 }
3527 
3528 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3529 {
3530     /*
3531      * Note that while QEMU will only implement the architected algorithm
3532      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3533      * defined algorithms, and thus API+GPI, and this predicate controls
3534      * migration of the 128-bit keys.
3535      */
3536     return (id->id_aa64isar1 &
3537             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3538              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3539              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3540              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3541 }
3542 
3543 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3544 {
3545     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3546 }
3547 
3548 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3549 {
3550     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3551 }
3552 
3553 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3554 {
3555     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3556 }
3557 
3558 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3559 {
3560     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3561     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3562 }
3563 
3564 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3565 {
3566     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3567 }
3568 
3569 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3570 {
3571     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3572 }
3573 
3574 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3575 {
3576     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3577 }
3578 
3579 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3580 {
3581     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3582 }
3583 
3584 /*
3585  * Forward to the above feature tests given an ARMCPU pointer.
3586  */
3587 #define cpu_isar_feature(name, cpu) \
3588     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3589 
3590 #endif
3591