1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 28 /* ARM processors have a weak memory model */ 29 #define TCG_GUEST_DEFAULT_MO (0) 30 31 #ifdef TARGET_AARCH64 32 #define KVM_HAVE_MCE_INJECTION 1 33 #endif 34 35 #define EXCP_UDEF 1 /* undefined instruction */ 36 #define EXCP_SWI 2 /* software interrupt */ 37 #define EXCP_PREFETCH_ABORT 3 38 #define EXCP_DATA_ABORT 4 39 #define EXCP_IRQ 5 40 #define EXCP_FIQ 6 41 #define EXCP_BKPT 7 42 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 43 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 44 #define EXCP_HVC 11 /* HyperVisor Call */ 45 #define EXCP_HYP_TRAP 12 46 #define EXCP_SMC 13 /* Secure Monitor Call */ 47 #define EXCP_VIRQ 14 48 #define EXCP_VFIQ 15 49 #define EXCP_SEMIHOST 16 /* semihosting call */ 50 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 51 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 52 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 53 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 54 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 55 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 56 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 57 58 #define ARMV7M_EXCP_RESET 1 59 #define ARMV7M_EXCP_NMI 2 60 #define ARMV7M_EXCP_HARD 3 61 #define ARMV7M_EXCP_MEM 4 62 #define ARMV7M_EXCP_BUS 5 63 #define ARMV7M_EXCP_USAGE 6 64 #define ARMV7M_EXCP_SECURE 7 65 #define ARMV7M_EXCP_SVC 11 66 #define ARMV7M_EXCP_DEBUG 12 67 #define ARMV7M_EXCP_PENDSV 14 68 #define ARMV7M_EXCP_SYSTICK 15 69 70 /* For M profile, some registers are banked secure vs non-secure; 71 * these are represented as a 2-element array where the first element 72 * is the non-secure copy and the second is the secure copy. 73 * When the CPU does not have implement the security extension then 74 * only the first element is used. 75 * This means that the copy for the current security state can be 76 * accessed via env->registerfield[env->v7m.secure] (whether the security 77 * extension is implemented or not). 78 */ 79 enum { 80 M_REG_NS = 0, 81 M_REG_S = 1, 82 M_REG_NUM_BANKS = 2, 83 }; 84 85 /* ARM-specific interrupt pending bits. */ 86 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 87 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 88 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 89 90 /* The usual mapping for an AArch64 system register to its AArch32 91 * counterpart is for the 32 bit world to have access to the lower 92 * half only (with writes leaving the upper half untouched). It's 93 * therefore useful to be able to pass TCG the offset of the least 94 * significant half of a uint64_t struct member. 95 */ 96 #ifdef HOST_WORDS_BIGENDIAN 97 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 98 #define offsetofhigh32(S, M) offsetof(S, M) 99 #else 100 #define offsetoflow32(S, M) offsetof(S, M) 101 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 102 #endif 103 104 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 105 #define ARM_CPU_IRQ 0 106 #define ARM_CPU_FIQ 1 107 #define ARM_CPU_VIRQ 2 108 #define ARM_CPU_VFIQ 3 109 110 /* ARM-specific extra insn start words: 111 * 1: Conditional execution bits 112 * 2: Partial exception syndrome for data aborts 113 */ 114 #define TARGET_INSN_START_EXTRA_WORDS 2 115 116 /* The 2nd extra word holding syndrome info for data aborts does not use 117 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 118 * help the sleb128 encoder do a better job. 119 * When restoring the CPU state, we shift it back up. 120 */ 121 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 122 #define ARM_INSN_START_WORD2_SHIFT 14 123 124 /* We currently assume float and double are IEEE single and double 125 precision respectively. 126 Doing runtime conversions is tricky because VFP registers may contain 127 integer values (eg. as the result of a FTOSI instruction). 128 s<2n> maps to the least significant half of d<n> 129 s<2n+1> maps to the most significant half of d<n> 130 */ 131 132 /** 133 * DynamicGDBXMLInfo: 134 * @desc: Contains the XML descriptions. 135 * @num: Number of the registers in this XML seen by GDB. 136 * @data: A union with data specific to the set of registers 137 * @cpregs_keys: Array that contains the corresponding Key of 138 * a given cpreg with the same order of the cpreg 139 * in the XML description. 140 */ 141 typedef struct DynamicGDBXMLInfo { 142 char *desc; 143 int num; 144 union { 145 struct { 146 uint32_t *keys; 147 } cpregs; 148 } data; 149 } DynamicGDBXMLInfo; 150 151 /* CPU state for each instance of a generic timer (in cp15 c14) */ 152 typedef struct ARMGenericTimer { 153 uint64_t cval; /* Timer CompareValue register */ 154 uint64_t ctl; /* Timer Control register */ 155 } ARMGenericTimer; 156 157 #define GTIMER_PHYS 0 158 #define GTIMER_VIRT 1 159 #define GTIMER_HYP 2 160 #define GTIMER_SEC 3 161 #define GTIMER_HYPVIRT 4 162 #define NUM_GTIMERS 5 163 164 typedef struct { 165 uint64_t raw_tcr; 166 uint32_t mask; 167 uint32_t base_mask; 168 } TCR; 169 170 /* Define a maximum sized vector register. 171 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 172 * For 64-bit, this is a 2048-bit SVE register. 173 * 174 * Note that the mapping between S, D, and Q views of the register bank 175 * differs between AArch64 and AArch32. 176 * In AArch32: 177 * Qn = regs[n].d[1]:regs[n].d[0] 178 * Dn = regs[n / 2].d[n & 1] 179 * Sn = regs[n / 4].d[n % 4 / 2], 180 * bits 31..0 for even n, and bits 63..32 for odd n 181 * (and regs[16] to regs[31] are inaccessible) 182 * In AArch64: 183 * Zn = regs[n].d[*] 184 * Qn = regs[n].d[1]:regs[n].d[0] 185 * Dn = regs[n].d[0] 186 * Sn = regs[n].d[0] bits 31..0 187 * Hn = regs[n].d[0] bits 15..0 188 * 189 * This corresponds to the architecturally defined mapping between 190 * the two execution states, and means we do not need to explicitly 191 * map these registers when changing states. 192 * 193 * Align the data for use with TCG host vector operations. 194 */ 195 196 #ifdef TARGET_AARCH64 197 # define ARM_MAX_VQ 16 198 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 199 #else 200 # define ARM_MAX_VQ 1 201 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 202 #endif 203 204 typedef struct ARMVectorReg { 205 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 206 } ARMVectorReg; 207 208 #ifdef TARGET_AARCH64 209 /* In AArch32 mode, predicate registers do not exist at all. */ 210 typedef struct ARMPredicateReg { 211 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 212 } ARMPredicateReg; 213 214 /* In AArch32 mode, PAC keys do not exist at all. */ 215 typedef struct ARMPACKey { 216 uint64_t lo, hi; 217 } ARMPACKey; 218 #endif 219 220 221 typedef struct CPUARMState { 222 /* Regs for current mode. */ 223 uint32_t regs[16]; 224 225 /* 32/64 switch only happens when taking and returning from 226 * exceptions so the overlap semantics are taken care of then 227 * instead of having a complicated union. 228 */ 229 /* Regs for A64 mode. */ 230 uint64_t xregs[32]; 231 uint64_t pc; 232 /* PSTATE isn't an architectural register for ARMv8. However, it is 233 * convenient for us to assemble the underlying state into a 32 bit format 234 * identical to the architectural format used for the SPSR. (This is also 235 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 236 * 'pstate' register are.) Of the PSTATE bits: 237 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 238 * semantics as for AArch32, as described in the comments on each field) 239 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 240 * DAIF (exception masks) are kept in env->daif 241 * BTYPE is kept in env->btype 242 * all other bits are stored in their correct places in env->pstate 243 */ 244 uint32_t pstate; 245 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 246 247 /* Cached TBFLAGS state. See below for which bits are included. */ 248 uint32_t hflags; 249 250 /* Frequently accessed CPSR bits are stored separately for efficiency. 251 This contains all the other bits. Use cpsr_{read,write} to access 252 the whole CPSR. */ 253 uint32_t uncached_cpsr; 254 uint32_t spsr; 255 256 /* Banked registers. */ 257 uint64_t banked_spsr[8]; 258 uint32_t banked_r13[8]; 259 uint32_t banked_r14[8]; 260 261 /* These hold r8-r12. */ 262 uint32_t usr_regs[5]; 263 uint32_t fiq_regs[5]; 264 265 /* cpsr flag cache for faster execution */ 266 uint32_t CF; /* 0 or 1 */ 267 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 268 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 269 uint32_t ZF; /* Z set if zero. */ 270 uint32_t QF; /* 0 or 1 */ 271 uint32_t GE; /* cpsr[19:16] */ 272 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 273 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 274 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 275 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 276 277 uint64_t elr_el[4]; /* AArch64 exception link regs */ 278 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 279 280 /* System control coprocessor (cp15) */ 281 struct { 282 uint32_t c0_cpuid; 283 union { /* Cache size selection */ 284 struct { 285 uint64_t _unused_csselr0; 286 uint64_t csselr_ns; 287 uint64_t _unused_csselr1; 288 uint64_t csselr_s; 289 }; 290 uint64_t csselr_el[4]; 291 }; 292 union { /* System control register. */ 293 struct { 294 uint64_t _unused_sctlr; 295 uint64_t sctlr_ns; 296 uint64_t hsctlr; 297 uint64_t sctlr_s; 298 }; 299 uint64_t sctlr_el[4]; 300 }; 301 uint64_t cpacr_el1; /* Architectural feature access control register */ 302 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 303 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 304 uint64_t sder; /* Secure debug enable register. */ 305 uint32_t nsacr; /* Non-secure access control register. */ 306 union { /* MMU translation table base 0. */ 307 struct { 308 uint64_t _unused_ttbr0_0; 309 uint64_t ttbr0_ns; 310 uint64_t _unused_ttbr0_1; 311 uint64_t ttbr0_s; 312 }; 313 uint64_t ttbr0_el[4]; 314 }; 315 union { /* MMU translation table base 1. */ 316 struct { 317 uint64_t _unused_ttbr1_0; 318 uint64_t ttbr1_ns; 319 uint64_t _unused_ttbr1_1; 320 uint64_t ttbr1_s; 321 }; 322 uint64_t ttbr1_el[4]; 323 }; 324 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 325 /* MMU translation table base control. */ 326 TCR tcr_el[4]; 327 TCR vtcr_el2; /* Virtualization Translation Control. */ 328 uint32_t c2_data; /* MPU data cacheable bits. */ 329 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 330 union { /* MMU domain access control register 331 * MPU write buffer control. 332 */ 333 struct { 334 uint64_t dacr_ns; 335 uint64_t dacr_s; 336 }; 337 struct { 338 uint64_t dacr32_el2; 339 }; 340 }; 341 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 342 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 343 uint64_t hcr_el2; /* Hypervisor configuration register */ 344 uint64_t scr_el3; /* Secure configuration register. */ 345 union { /* Fault status registers. */ 346 struct { 347 uint64_t ifsr_ns; 348 uint64_t ifsr_s; 349 }; 350 struct { 351 uint64_t ifsr32_el2; 352 }; 353 }; 354 union { 355 struct { 356 uint64_t _unused_dfsr; 357 uint64_t dfsr_ns; 358 uint64_t hsr; 359 uint64_t dfsr_s; 360 }; 361 uint64_t esr_el[4]; 362 }; 363 uint32_t c6_region[8]; /* MPU base/size registers. */ 364 union { /* Fault address registers. */ 365 struct { 366 uint64_t _unused_far0; 367 #ifdef HOST_WORDS_BIGENDIAN 368 uint32_t ifar_ns; 369 uint32_t dfar_ns; 370 uint32_t ifar_s; 371 uint32_t dfar_s; 372 #else 373 uint32_t dfar_ns; 374 uint32_t ifar_ns; 375 uint32_t dfar_s; 376 uint32_t ifar_s; 377 #endif 378 uint64_t _unused_far3; 379 }; 380 uint64_t far_el[4]; 381 }; 382 uint64_t hpfar_el2; 383 uint64_t hstr_el2; 384 union { /* Translation result. */ 385 struct { 386 uint64_t _unused_par_0; 387 uint64_t par_ns; 388 uint64_t _unused_par_1; 389 uint64_t par_s; 390 }; 391 uint64_t par_el[4]; 392 }; 393 394 uint32_t c9_insn; /* Cache lockdown registers. */ 395 uint32_t c9_data; 396 uint64_t c9_pmcr; /* performance monitor control register */ 397 uint64_t c9_pmcnten; /* perf monitor counter enables */ 398 uint64_t c9_pmovsr; /* perf monitor overflow status */ 399 uint64_t c9_pmuserenr; /* perf monitor user enable */ 400 uint64_t c9_pmselr; /* perf monitor counter selection register */ 401 uint64_t c9_pminten; /* perf monitor interrupt enables */ 402 union { /* Memory attribute redirection */ 403 struct { 404 #ifdef HOST_WORDS_BIGENDIAN 405 uint64_t _unused_mair_0; 406 uint32_t mair1_ns; 407 uint32_t mair0_ns; 408 uint64_t _unused_mair_1; 409 uint32_t mair1_s; 410 uint32_t mair0_s; 411 #else 412 uint64_t _unused_mair_0; 413 uint32_t mair0_ns; 414 uint32_t mair1_ns; 415 uint64_t _unused_mair_1; 416 uint32_t mair0_s; 417 uint32_t mair1_s; 418 #endif 419 }; 420 uint64_t mair_el[4]; 421 }; 422 union { /* vector base address register */ 423 struct { 424 uint64_t _unused_vbar; 425 uint64_t vbar_ns; 426 uint64_t hvbar; 427 uint64_t vbar_s; 428 }; 429 uint64_t vbar_el[4]; 430 }; 431 uint32_t mvbar; /* (monitor) vector base address register */ 432 struct { /* FCSE PID. */ 433 uint32_t fcseidr_ns; 434 uint32_t fcseidr_s; 435 }; 436 union { /* Context ID. */ 437 struct { 438 uint64_t _unused_contextidr_0; 439 uint64_t contextidr_ns; 440 uint64_t _unused_contextidr_1; 441 uint64_t contextidr_s; 442 }; 443 uint64_t contextidr_el[4]; 444 }; 445 union { /* User RW Thread register. */ 446 struct { 447 uint64_t tpidrurw_ns; 448 uint64_t tpidrprw_ns; 449 uint64_t htpidr; 450 uint64_t _tpidr_el3; 451 }; 452 uint64_t tpidr_el[4]; 453 }; 454 /* The secure banks of these registers don't map anywhere */ 455 uint64_t tpidrurw_s; 456 uint64_t tpidrprw_s; 457 uint64_t tpidruro_s; 458 459 union { /* User RO Thread register. */ 460 uint64_t tpidruro_ns; 461 uint64_t tpidrro_el[1]; 462 }; 463 uint64_t c14_cntfrq; /* Counter Frequency register */ 464 uint64_t c14_cntkctl; /* Timer Control register */ 465 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 466 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 467 ARMGenericTimer c14_timer[NUM_GTIMERS]; 468 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 469 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 470 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 471 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 472 uint32_t c15_threadid; /* TI debugger thread-ID. */ 473 uint32_t c15_config_base_address; /* SCU base address. */ 474 uint32_t c15_diagnostic; /* diagnostic register */ 475 uint32_t c15_power_diagnostic; 476 uint32_t c15_power_control; /* power control */ 477 uint64_t dbgbvr[16]; /* breakpoint value registers */ 478 uint64_t dbgbcr[16]; /* breakpoint control registers */ 479 uint64_t dbgwvr[16]; /* watchpoint value registers */ 480 uint64_t dbgwcr[16]; /* watchpoint control registers */ 481 uint64_t mdscr_el1; 482 uint64_t oslsr_el1; /* OS Lock Status */ 483 uint64_t mdcr_el2; 484 uint64_t mdcr_el3; 485 /* Stores the architectural value of the counter *the last time it was 486 * updated* by pmccntr_op_start. Accesses should always be surrounded 487 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 488 * architecturally-correct value is being read/set. 489 */ 490 uint64_t c15_ccnt; 491 /* Stores the delta between the architectural value and the underlying 492 * cycle count during normal operation. It is used to update c15_ccnt 493 * to be the correct architectural value before accesses. During 494 * accesses, c15_ccnt_delta contains the underlying count being used 495 * for the access, after which it reverts to the delta value in 496 * pmccntr_op_finish. 497 */ 498 uint64_t c15_ccnt_delta; 499 uint64_t c14_pmevcntr[31]; 500 uint64_t c14_pmevcntr_delta[31]; 501 uint64_t c14_pmevtyper[31]; 502 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 503 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 504 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 505 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 506 uint64_t gcr_el1; 507 uint64_t rgsr_el1; 508 } cp15; 509 510 struct { 511 /* M profile has up to 4 stack pointers: 512 * a Main Stack Pointer and a Process Stack Pointer for each 513 * of the Secure and Non-Secure states. (If the CPU doesn't support 514 * the security extension then it has only two SPs.) 515 * In QEMU we always store the currently active SP in regs[13], 516 * and the non-active SP for the current security state in 517 * v7m.other_sp. The stack pointers for the inactive security state 518 * are stored in other_ss_msp and other_ss_psp. 519 * switch_v7m_security_state() is responsible for rearranging them 520 * when we change security state. 521 */ 522 uint32_t other_sp; 523 uint32_t other_ss_msp; 524 uint32_t other_ss_psp; 525 uint32_t vecbase[M_REG_NUM_BANKS]; 526 uint32_t basepri[M_REG_NUM_BANKS]; 527 uint32_t control[M_REG_NUM_BANKS]; 528 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 529 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 530 uint32_t hfsr; /* HardFault Status */ 531 uint32_t dfsr; /* Debug Fault Status Register */ 532 uint32_t sfsr; /* Secure Fault Status Register */ 533 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 534 uint32_t bfar; /* BusFault Address */ 535 uint32_t sfar; /* Secure Fault Address Register */ 536 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 537 int exception; 538 uint32_t primask[M_REG_NUM_BANKS]; 539 uint32_t faultmask[M_REG_NUM_BANKS]; 540 uint32_t aircr; /* only holds r/w state if security extn implemented */ 541 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 542 uint32_t csselr[M_REG_NUM_BANKS]; 543 uint32_t scr[M_REG_NUM_BANKS]; 544 uint32_t msplim[M_REG_NUM_BANKS]; 545 uint32_t psplim[M_REG_NUM_BANKS]; 546 uint32_t fpcar[M_REG_NUM_BANKS]; 547 uint32_t fpccr[M_REG_NUM_BANKS]; 548 uint32_t fpdscr[M_REG_NUM_BANKS]; 549 uint32_t cpacr[M_REG_NUM_BANKS]; 550 uint32_t nsacr; 551 } v7m; 552 553 /* Information associated with an exception about to be taken: 554 * code which raises an exception must set cs->exception_index and 555 * the relevant parts of this structure; the cpu_do_interrupt function 556 * will then set the guest-visible registers as part of the exception 557 * entry process. 558 */ 559 struct { 560 uint32_t syndrome; /* AArch64 format syndrome register */ 561 uint32_t fsr; /* AArch32 format fault status register info */ 562 uint64_t vaddress; /* virtual addr associated with exception, if any */ 563 uint32_t target_el; /* EL the exception should be targeted for */ 564 /* If we implement EL2 we will also need to store information 565 * about the intermediate physical address for stage 2 faults. 566 */ 567 } exception; 568 569 /* Information associated with an SError */ 570 struct { 571 uint8_t pending; 572 uint8_t has_esr; 573 uint64_t esr; 574 } serror; 575 576 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 577 uint32_t irq_line_state; 578 579 /* Thumb-2 EE state. */ 580 uint32_t teecr; 581 uint32_t teehbr; 582 583 /* VFP coprocessor state. */ 584 struct { 585 ARMVectorReg zregs[32]; 586 587 #ifdef TARGET_AARCH64 588 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 589 #define FFR_PRED_NUM 16 590 ARMPredicateReg pregs[17]; 591 /* Scratch space for aa64 sve predicate temporary. */ 592 ARMPredicateReg preg_tmp; 593 #endif 594 595 /* We store these fpcsr fields separately for convenience. */ 596 uint32_t qc[4] QEMU_ALIGNED(16); 597 int vec_len; 598 int vec_stride; 599 600 uint32_t xregs[16]; 601 602 /* Scratch space for aa32 neon expansion. */ 603 uint32_t scratch[8]; 604 605 /* There are a number of distinct float control structures: 606 * 607 * fp_status: is the "normal" fp status. 608 * fp_status_fp16: used for half-precision calculations 609 * standard_fp_status : the ARM "Standard FPSCR Value" 610 * 611 * Half-precision operations are governed by a separate 612 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 613 * status structure to control this. 614 * 615 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 616 * round-to-nearest and is used by any operations (generally 617 * Neon) which the architecture defines as controlled by the 618 * standard FPSCR value rather than the FPSCR. 619 * 620 * To avoid having to transfer exception bits around, we simply 621 * say that the FPSCR cumulative exception flags are the logical 622 * OR of the flags in the three fp statuses. This relies on the 623 * only thing which needs to read the exception flags being 624 * an explicit FPSCR read. 625 */ 626 float_status fp_status; 627 float_status fp_status_f16; 628 float_status standard_fp_status; 629 630 /* ZCR_EL[1-3] */ 631 uint64_t zcr_el[4]; 632 } vfp; 633 uint64_t exclusive_addr; 634 uint64_t exclusive_val; 635 uint64_t exclusive_high; 636 637 /* iwMMXt coprocessor state. */ 638 struct { 639 uint64_t regs[16]; 640 uint64_t val; 641 642 uint32_t cregs[16]; 643 } iwmmxt; 644 645 #ifdef TARGET_AARCH64 646 struct { 647 ARMPACKey apia; 648 ARMPACKey apib; 649 ARMPACKey apda; 650 ARMPACKey apdb; 651 ARMPACKey apga; 652 } keys; 653 #endif 654 655 #if defined(CONFIG_USER_ONLY) 656 /* For usermode syscall translation. */ 657 int eabi; 658 #endif 659 660 struct CPUBreakpoint *cpu_breakpoint[16]; 661 struct CPUWatchpoint *cpu_watchpoint[16]; 662 663 /* Fields up to this point are cleared by a CPU reset */ 664 struct {} end_reset_fields; 665 666 /* Fields after this point are preserved across CPU reset. */ 667 668 /* Internal CPU feature flags. */ 669 uint64_t features; 670 671 /* PMSAv7 MPU */ 672 struct { 673 uint32_t *drbar; 674 uint32_t *drsr; 675 uint32_t *dracr; 676 uint32_t rnr[M_REG_NUM_BANKS]; 677 } pmsav7; 678 679 /* PMSAv8 MPU */ 680 struct { 681 /* The PMSAv8 implementation also shares some PMSAv7 config 682 * and state: 683 * pmsav7.rnr (region number register) 684 * pmsav7_dregion (number of configured regions) 685 */ 686 uint32_t *rbar[M_REG_NUM_BANKS]; 687 uint32_t *rlar[M_REG_NUM_BANKS]; 688 uint32_t mair0[M_REG_NUM_BANKS]; 689 uint32_t mair1[M_REG_NUM_BANKS]; 690 } pmsav8; 691 692 /* v8M SAU */ 693 struct { 694 uint32_t *rbar; 695 uint32_t *rlar; 696 uint32_t rnr; 697 uint32_t ctrl; 698 } sau; 699 700 void *nvic; 701 const struct arm_boot_info *boot_info; 702 /* Store GICv3CPUState to access from this struct */ 703 void *gicv3state; 704 } CPUARMState; 705 706 static inline void set_feature(CPUARMState *env, int feature) 707 { 708 env->features |= 1ULL << feature; 709 } 710 711 static inline void unset_feature(CPUARMState *env, int feature) 712 { 713 env->features &= ~(1ULL << feature); 714 } 715 716 /** 717 * ARMELChangeHookFn: 718 * type of a function which can be registered via arm_register_el_change_hook() 719 * to get callbacks when the CPU changes its exception level or mode. 720 */ 721 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 722 typedef struct ARMELChangeHook ARMELChangeHook; 723 struct ARMELChangeHook { 724 ARMELChangeHookFn *hook; 725 void *opaque; 726 QLIST_ENTRY(ARMELChangeHook) node; 727 }; 728 729 /* These values map onto the return values for 730 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 731 typedef enum ARMPSCIState { 732 PSCI_ON = 0, 733 PSCI_OFF = 1, 734 PSCI_ON_PENDING = 2 735 } ARMPSCIState; 736 737 typedef struct ARMISARegisters ARMISARegisters; 738 739 /** 740 * ARMCPU: 741 * @env: #CPUARMState 742 * 743 * An ARM CPU core. 744 */ 745 struct ARMCPU { 746 /*< private >*/ 747 CPUState parent_obj; 748 /*< public >*/ 749 750 CPUNegativeOffsetState neg; 751 CPUARMState env; 752 753 /* Coprocessor information */ 754 GHashTable *cp_regs; 755 /* For marshalling (mostly coprocessor) register state between the 756 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 757 * we use these arrays. 758 */ 759 /* List of register indexes managed via these arrays; (full KVM style 760 * 64 bit indexes, not CPRegInfo 32 bit indexes) 761 */ 762 uint64_t *cpreg_indexes; 763 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 764 uint64_t *cpreg_values; 765 /* Length of the indexes, values, reset_values arrays */ 766 int32_t cpreg_array_len; 767 /* These are used only for migration: incoming data arrives in 768 * these fields and is sanity checked in post_load before copying 769 * to the working data structures above. 770 */ 771 uint64_t *cpreg_vmstate_indexes; 772 uint64_t *cpreg_vmstate_values; 773 int32_t cpreg_vmstate_array_len; 774 775 DynamicGDBXMLInfo dyn_sysreg_xml; 776 DynamicGDBXMLInfo dyn_svereg_xml; 777 778 /* Timers used by the generic (architected) timer */ 779 QEMUTimer *gt_timer[NUM_GTIMERS]; 780 /* 781 * Timer used by the PMU. Its state is restored after migration by 782 * pmu_op_finish() - it does not need other handling during migration 783 */ 784 QEMUTimer *pmu_timer; 785 /* GPIO outputs for generic timer */ 786 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 787 /* GPIO output for GICv3 maintenance interrupt signal */ 788 qemu_irq gicv3_maintenance_interrupt; 789 /* GPIO output for the PMU interrupt */ 790 qemu_irq pmu_interrupt; 791 792 /* MemoryRegion to use for secure physical accesses */ 793 MemoryRegion *secure_memory; 794 795 /* MemoryRegion to use for allocation tag accesses */ 796 MemoryRegion *tag_memory; 797 MemoryRegion *secure_tag_memory; 798 799 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 800 Object *idau; 801 802 /* 'compatible' string for this CPU for Linux device trees */ 803 const char *dtb_compatible; 804 805 /* PSCI version for this CPU 806 * Bits[31:16] = Major Version 807 * Bits[15:0] = Minor Version 808 */ 809 uint32_t psci_version; 810 811 /* Should CPU start in PSCI powered-off state? */ 812 bool start_powered_off; 813 814 /* Current power state, access guarded by BQL */ 815 ARMPSCIState power_state; 816 817 /* CPU has virtualization extension */ 818 bool has_el2; 819 /* CPU has security extension */ 820 bool has_el3; 821 /* CPU has PMU (Performance Monitor Unit) */ 822 bool has_pmu; 823 /* CPU has VFP */ 824 bool has_vfp; 825 /* CPU has Neon */ 826 bool has_neon; 827 /* CPU has M-profile DSP extension */ 828 bool has_dsp; 829 830 /* CPU has memory protection unit */ 831 bool has_mpu; 832 /* PMSAv7 MPU number of supported regions */ 833 uint32_t pmsav7_dregion; 834 /* v8M SAU number of supported regions */ 835 uint32_t sau_sregion; 836 837 /* PSCI conduit used to invoke PSCI methods 838 * 0 - disabled, 1 - smc, 2 - hvc 839 */ 840 uint32_t psci_conduit; 841 842 /* For v8M, initial value of the Secure VTOR */ 843 uint32_t init_svtor; 844 845 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 846 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 847 */ 848 uint32_t kvm_target; 849 850 /* KVM init features for this CPU */ 851 uint32_t kvm_init_features[7]; 852 853 /* KVM CPU state */ 854 855 /* KVM virtual time adjustment */ 856 bool kvm_adjvtime; 857 bool kvm_vtime_dirty; 858 uint64_t kvm_vtime; 859 860 /* Uniprocessor system with MP extensions */ 861 bool mp_is_up; 862 863 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 864 * and the probe failed (so we need to report the error in realize) 865 */ 866 bool host_cpu_probe_failed; 867 868 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 869 * register. 870 */ 871 int32_t core_count; 872 873 /* The instance init functions for implementation-specific subclasses 874 * set these fields to specify the implementation-dependent values of 875 * various constant registers and reset values of non-constant 876 * registers. 877 * Some of these might become QOM properties eventually. 878 * Field names match the official register names as defined in the 879 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 880 * is used for reset values of non-constant registers; no reset_ 881 * prefix means a constant register. 882 * Some of these registers are split out into a substructure that 883 * is shared with the translators to control the ISA. 884 * 885 * Note that if you add an ID register to the ARMISARegisters struct 886 * you need to also update the 32-bit and 64-bit versions of the 887 * kvm_arm_get_host_cpu_features() function to correctly populate the 888 * field by reading the value from the KVM vCPU. 889 */ 890 struct ARMISARegisters { 891 uint32_t id_isar0; 892 uint32_t id_isar1; 893 uint32_t id_isar2; 894 uint32_t id_isar3; 895 uint32_t id_isar4; 896 uint32_t id_isar5; 897 uint32_t id_isar6; 898 uint32_t id_mmfr0; 899 uint32_t id_mmfr1; 900 uint32_t id_mmfr2; 901 uint32_t id_mmfr3; 902 uint32_t id_mmfr4; 903 uint32_t mvfr0; 904 uint32_t mvfr1; 905 uint32_t mvfr2; 906 uint32_t id_dfr0; 907 uint32_t dbgdidr; 908 uint64_t id_aa64isar0; 909 uint64_t id_aa64isar1; 910 uint64_t id_aa64pfr0; 911 uint64_t id_aa64pfr1; 912 uint64_t id_aa64mmfr0; 913 uint64_t id_aa64mmfr1; 914 uint64_t id_aa64mmfr2; 915 uint64_t id_aa64dfr0; 916 uint64_t id_aa64dfr1; 917 } isar; 918 uint64_t midr; 919 uint32_t revidr; 920 uint32_t reset_fpsid; 921 uint32_t ctr; 922 uint32_t reset_sctlr; 923 uint32_t id_pfr0; 924 uint32_t id_pfr1; 925 uint64_t pmceid0; 926 uint64_t pmceid1; 927 uint32_t id_afr0; 928 uint64_t id_aa64afr0; 929 uint64_t id_aa64afr1; 930 uint32_t clidr; 931 uint64_t mp_affinity; /* MP ID without feature bits */ 932 /* The elements of this array are the CCSIDR values for each cache, 933 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 934 */ 935 uint64_t ccsidr[16]; 936 uint64_t reset_cbar; 937 uint32_t reset_auxcr; 938 bool reset_hivecs; 939 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 940 uint32_t dcz_blocksize; 941 uint64_t rvbar; 942 943 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 944 int gic_num_lrs; /* number of list registers */ 945 int gic_vpribits; /* number of virtual priority bits */ 946 int gic_vprebits; /* number of virtual preemption bits */ 947 948 /* Whether the cfgend input is high (i.e. this CPU should reset into 949 * big-endian mode). This setting isn't used directly: instead it modifies 950 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 951 * architecture version. 952 */ 953 bool cfgend; 954 955 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 956 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 957 958 int32_t node_id; /* NUMA node this CPU belongs to */ 959 960 /* Used to synchronize KVM and QEMU in-kernel device levels */ 961 uint8_t device_irq_level; 962 963 /* Used to set the maximum vector length the cpu will support. */ 964 uint32_t sve_max_vq; 965 966 /* 967 * In sve_vq_map each set bit is a supported vector length of 968 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 969 * length in quadwords. 970 * 971 * While processing properties during initialization, corresponding 972 * sve_vq_init bits are set for bits in sve_vq_map that have been 973 * set by properties. 974 */ 975 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 976 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 977 978 /* Generic timer counter frequency, in Hz */ 979 uint64_t gt_cntfrq_hz; 980 }; 981 982 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 983 984 void arm_cpu_post_init(Object *obj); 985 986 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 987 988 #ifndef CONFIG_USER_ONLY 989 extern const VMStateDescription vmstate_arm_cpu; 990 #endif 991 992 void arm_cpu_do_interrupt(CPUState *cpu); 993 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 994 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 995 996 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 997 MemTxAttrs *attrs); 998 999 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1000 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1001 1002 /* 1003 * Helpers to dynamically generates XML descriptions of the sysregs 1004 * and SVE registers. Returns the number of registers in each set. 1005 */ 1006 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1007 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1008 1009 /* Returns the dynamically generated XML for the gdb stub. 1010 * Returns a pointer to the XML contents for the specified XML file or NULL 1011 * if the XML name doesn't match the predefined one. 1012 */ 1013 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1014 1015 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1016 int cpuid, void *opaque); 1017 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1018 int cpuid, void *opaque); 1019 1020 #ifdef TARGET_AARCH64 1021 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1022 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1023 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1024 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1025 int new_el, bool el0_a64); 1026 void aarch64_add_sve_properties(Object *obj); 1027 1028 /* 1029 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1030 * The byte at offset i from the start of the in-memory representation contains 1031 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1032 * lowest offsets are stored in the lowest memory addresses, then that nearly 1033 * matches QEMU's representation, which is to use an array of host-endian 1034 * uint64_t's, where the lower offsets are at the lower indices. To complete 1035 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1036 */ 1037 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1038 { 1039 #ifdef HOST_WORDS_BIGENDIAN 1040 int i; 1041 1042 for (i = 0; i < nr; ++i) { 1043 dst[i] = bswap64(src[i]); 1044 } 1045 1046 return dst; 1047 #else 1048 return src; 1049 #endif 1050 } 1051 1052 #else 1053 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1054 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1055 int n, bool a) 1056 { } 1057 static inline void aarch64_add_sve_properties(Object *obj) { } 1058 #endif 1059 1060 #if !defined(CONFIG_TCG) 1061 static inline target_ulong do_arm_semihosting(CPUARMState *env) 1062 { 1063 g_assert_not_reached(); 1064 } 1065 #else 1066 target_ulong do_arm_semihosting(CPUARMState *env); 1067 #endif 1068 void aarch64_sync_32_to_64(CPUARMState *env); 1069 void aarch64_sync_64_to_32(CPUARMState *env); 1070 1071 int fp_exception_el(CPUARMState *env, int cur_el); 1072 int sve_exception_el(CPUARMState *env, int cur_el); 1073 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1074 1075 static inline bool is_a64(CPUARMState *env) 1076 { 1077 return env->aarch64; 1078 } 1079 1080 /* you can call this signal handler from your SIGBUS and SIGSEGV 1081 signal handlers to inform the virtual CPU of exceptions. non zero 1082 is returned if the signal was handled by the virtual CPU. */ 1083 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1084 void *puc); 1085 1086 /** 1087 * pmu_op_start/finish 1088 * @env: CPUARMState 1089 * 1090 * Convert all PMU counters between their delta form (the typical mode when 1091 * they are enabled) and the guest-visible values. These two calls must 1092 * surround any action which might affect the counters. 1093 */ 1094 void pmu_op_start(CPUARMState *env); 1095 void pmu_op_finish(CPUARMState *env); 1096 1097 /* 1098 * Called when a PMU counter is due to overflow 1099 */ 1100 void arm_pmu_timer_cb(void *opaque); 1101 1102 /** 1103 * Functions to register as EL change hooks for PMU mode filtering 1104 */ 1105 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1106 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1107 1108 /* 1109 * pmu_init 1110 * @cpu: ARMCPU 1111 * 1112 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1113 * for the current configuration 1114 */ 1115 void pmu_init(ARMCPU *cpu); 1116 1117 /* SCTLR bit meanings. Several bits have been reused in newer 1118 * versions of the architecture; in that case we define constants 1119 * for both old and new bit meanings. Code which tests against those 1120 * bits should probably check or otherwise arrange that the CPU 1121 * is the architectural version it expects. 1122 */ 1123 #define SCTLR_M (1U << 0) 1124 #define SCTLR_A (1U << 1) 1125 #define SCTLR_C (1U << 2) 1126 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1127 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1128 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1129 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1130 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1131 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1132 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1133 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1134 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1135 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1136 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1137 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1138 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1139 #define SCTLR_SED (1U << 8) /* v8 onward */ 1140 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1141 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1142 #define SCTLR_F (1U << 10) /* up to v6 */ 1143 #define SCTLR_SW (1U << 10) /* v7 */ 1144 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1145 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1146 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1147 #define SCTLR_I (1U << 12) 1148 #define SCTLR_V (1U << 13) /* AArch32 only */ 1149 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1150 #define SCTLR_RR (1U << 14) /* up to v7 */ 1151 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1152 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1153 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1154 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1155 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1156 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1157 #define SCTLR_BR (1U << 17) /* PMSA only */ 1158 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1159 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1160 #define SCTLR_WXN (1U << 19) 1161 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1162 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1163 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1164 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1165 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1166 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1167 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1168 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1169 #define SCTLR_VE (1U << 24) /* up to v7 */ 1170 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1171 #define SCTLR_EE (1U << 25) 1172 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1173 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1174 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1175 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1176 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1177 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1178 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1179 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1180 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1181 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1182 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1183 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1184 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1185 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1186 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1187 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1188 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1189 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1190 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1191 1192 #define CPTR_TCPAC (1U << 31) 1193 #define CPTR_TTA (1U << 20) 1194 #define CPTR_TFP (1U << 10) 1195 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1196 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1197 1198 #define MDCR_EPMAD (1U << 21) 1199 #define MDCR_EDAD (1U << 20) 1200 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1201 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1202 #define MDCR_SDD (1U << 16) 1203 #define MDCR_SPD (3U << 14) 1204 #define MDCR_TDRA (1U << 11) 1205 #define MDCR_TDOSA (1U << 10) 1206 #define MDCR_TDA (1U << 9) 1207 #define MDCR_TDE (1U << 8) 1208 #define MDCR_HPME (1U << 7) 1209 #define MDCR_TPM (1U << 6) 1210 #define MDCR_TPMCR (1U << 5) 1211 #define MDCR_HPMN (0x1fU) 1212 1213 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1214 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1215 1216 #define CPSR_M (0x1fU) 1217 #define CPSR_T (1U << 5) 1218 #define CPSR_F (1U << 6) 1219 #define CPSR_I (1U << 7) 1220 #define CPSR_A (1U << 8) 1221 #define CPSR_E (1U << 9) 1222 #define CPSR_IT_2_7 (0xfc00U) 1223 #define CPSR_GE (0xfU << 16) 1224 #define CPSR_IL (1U << 20) 1225 #define CPSR_PAN (1U << 22) 1226 #define CPSR_J (1U << 24) 1227 #define CPSR_IT_0_1 (3U << 25) 1228 #define CPSR_Q (1U << 27) 1229 #define CPSR_V (1U << 28) 1230 #define CPSR_C (1U << 29) 1231 #define CPSR_Z (1U << 30) 1232 #define CPSR_N (1U << 31) 1233 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1234 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1235 1236 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1237 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1238 | CPSR_NZCV) 1239 /* Bits writable in user mode. */ 1240 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1241 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1242 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1243 1244 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1245 #define XPSR_EXCP 0x1ffU 1246 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1247 #define XPSR_IT_2_7 CPSR_IT_2_7 1248 #define XPSR_GE CPSR_GE 1249 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1250 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1251 #define XPSR_IT_0_1 CPSR_IT_0_1 1252 #define XPSR_Q CPSR_Q 1253 #define XPSR_V CPSR_V 1254 #define XPSR_C CPSR_C 1255 #define XPSR_Z CPSR_Z 1256 #define XPSR_N CPSR_N 1257 #define XPSR_NZCV CPSR_NZCV 1258 #define XPSR_IT CPSR_IT 1259 1260 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1261 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1262 #define TTBCR_PD0 (1U << 4) 1263 #define TTBCR_PD1 (1U << 5) 1264 #define TTBCR_EPD0 (1U << 7) 1265 #define TTBCR_IRGN0 (3U << 8) 1266 #define TTBCR_ORGN0 (3U << 10) 1267 #define TTBCR_SH0 (3U << 12) 1268 #define TTBCR_T1SZ (3U << 16) 1269 #define TTBCR_A1 (1U << 22) 1270 #define TTBCR_EPD1 (1U << 23) 1271 #define TTBCR_IRGN1 (3U << 24) 1272 #define TTBCR_ORGN1 (3U << 26) 1273 #define TTBCR_SH1 (1U << 28) 1274 #define TTBCR_EAE (1U << 31) 1275 1276 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1277 * Only these are valid when in AArch64 mode; in 1278 * AArch32 mode SPSRs are basically CPSR-format. 1279 */ 1280 #define PSTATE_SP (1U) 1281 #define PSTATE_M (0xFU) 1282 #define PSTATE_nRW (1U << 4) 1283 #define PSTATE_F (1U << 6) 1284 #define PSTATE_I (1U << 7) 1285 #define PSTATE_A (1U << 8) 1286 #define PSTATE_D (1U << 9) 1287 #define PSTATE_BTYPE (3U << 10) 1288 #define PSTATE_IL (1U << 20) 1289 #define PSTATE_SS (1U << 21) 1290 #define PSTATE_PAN (1U << 22) 1291 #define PSTATE_UAO (1U << 23) 1292 #define PSTATE_TCO (1U << 25) 1293 #define PSTATE_V (1U << 28) 1294 #define PSTATE_C (1U << 29) 1295 #define PSTATE_Z (1U << 30) 1296 #define PSTATE_N (1U << 31) 1297 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1298 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1299 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1300 /* Mode values for AArch64 */ 1301 #define PSTATE_MODE_EL3h 13 1302 #define PSTATE_MODE_EL3t 12 1303 #define PSTATE_MODE_EL2h 9 1304 #define PSTATE_MODE_EL2t 8 1305 #define PSTATE_MODE_EL1h 5 1306 #define PSTATE_MODE_EL1t 4 1307 #define PSTATE_MODE_EL0t 0 1308 1309 /* Write a new value to v7m.exception, thus transitioning into or out 1310 * of Handler mode; this may result in a change of active stack pointer. 1311 */ 1312 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1313 1314 /* Map EL and handler into a PSTATE_MODE. */ 1315 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1316 { 1317 return (el << 2) | handler; 1318 } 1319 1320 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1321 * interprocessing, so we don't attempt to sync with the cpsr state used by 1322 * the 32 bit decoder. 1323 */ 1324 static inline uint32_t pstate_read(CPUARMState *env) 1325 { 1326 int ZF; 1327 1328 ZF = (env->ZF == 0); 1329 return (env->NF & 0x80000000) | (ZF << 30) 1330 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1331 | env->pstate | env->daif | (env->btype << 10); 1332 } 1333 1334 static inline void pstate_write(CPUARMState *env, uint32_t val) 1335 { 1336 env->ZF = (~val) & PSTATE_Z; 1337 env->NF = val; 1338 env->CF = (val >> 29) & 1; 1339 env->VF = (val << 3) & 0x80000000; 1340 env->daif = val & PSTATE_DAIF; 1341 env->btype = (val >> 10) & 3; 1342 env->pstate = val & ~CACHED_PSTATE_BITS; 1343 } 1344 1345 /* Return the current CPSR value. */ 1346 uint32_t cpsr_read(CPUARMState *env); 1347 1348 typedef enum CPSRWriteType { 1349 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1350 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1351 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1352 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1353 } CPSRWriteType; 1354 1355 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1356 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1357 CPSRWriteType write_type); 1358 1359 /* Return the current xPSR value. */ 1360 static inline uint32_t xpsr_read(CPUARMState *env) 1361 { 1362 int ZF; 1363 ZF = (env->ZF == 0); 1364 return (env->NF & 0x80000000) | (ZF << 30) 1365 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1366 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1367 | ((env->condexec_bits & 0xfc) << 8) 1368 | (env->GE << 16) 1369 | env->v7m.exception; 1370 } 1371 1372 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1373 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1374 { 1375 if (mask & XPSR_NZCV) { 1376 env->ZF = (~val) & XPSR_Z; 1377 env->NF = val; 1378 env->CF = (val >> 29) & 1; 1379 env->VF = (val << 3) & 0x80000000; 1380 } 1381 if (mask & XPSR_Q) { 1382 env->QF = ((val & XPSR_Q) != 0); 1383 } 1384 if (mask & XPSR_GE) { 1385 env->GE = (val & XPSR_GE) >> 16; 1386 } 1387 #ifndef CONFIG_USER_ONLY 1388 if (mask & XPSR_T) { 1389 env->thumb = ((val & XPSR_T) != 0); 1390 } 1391 if (mask & XPSR_IT_0_1) { 1392 env->condexec_bits &= ~3; 1393 env->condexec_bits |= (val >> 25) & 3; 1394 } 1395 if (mask & XPSR_IT_2_7) { 1396 env->condexec_bits &= 3; 1397 env->condexec_bits |= (val >> 8) & 0xfc; 1398 } 1399 if (mask & XPSR_EXCP) { 1400 /* Note that this only happens on exception exit */ 1401 write_v7m_exception(env, val & XPSR_EXCP); 1402 } 1403 #endif 1404 } 1405 1406 #define HCR_VM (1ULL << 0) 1407 #define HCR_SWIO (1ULL << 1) 1408 #define HCR_PTW (1ULL << 2) 1409 #define HCR_FMO (1ULL << 3) 1410 #define HCR_IMO (1ULL << 4) 1411 #define HCR_AMO (1ULL << 5) 1412 #define HCR_VF (1ULL << 6) 1413 #define HCR_VI (1ULL << 7) 1414 #define HCR_VSE (1ULL << 8) 1415 #define HCR_FB (1ULL << 9) 1416 #define HCR_BSU_MASK (3ULL << 10) 1417 #define HCR_DC (1ULL << 12) 1418 #define HCR_TWI (1ULL << 13) 1419 #define HCR_TWE (1ULL << 14) 1420 #define HCR_TID0 (1ULL << 15) 1421 #define HCR_TID1 (1ULL << 16) 1422 #define HCR_TID2 (1ULL << 17) 1423 #define HCR_TID3 (1ULL << 18) 1424 #define HCR_TSC (1ULL << 19) 1425 #define HCR_TIDCP (1ULL << 20) 1426 #define HCR_TACR (1ULL << 21) 1427 #define HCR_TSW (1ULL << 22) 1428 #define HCR_TPCP (1ULL << 23) 1429 #define HCR_TPU (1ULL << 24) 1430 #define HCR_TTLB (1ULL << 25) 1431 #define HCR_TVM (1ULL << 26) 1432 #define HCR_TGE (1ULL << 27) 1433 #define HCR_TDZ (1ULL << 28) 1434 #define HCR_HCD (1ULL << 29) 1435 #define HCR_TRVM (1ULL << 30) 1436 #define HCR_RW (1ULL << 31) 1437 #define HCR_CD (1ULL << 32) 1438 #define HCR_ID (1ULL << 33) 1439 #define HCR_E2H (1ULL << 34) 1440 #define HCR_TLOR (1ULL << 35) 1441 #define HCR_TERR (1ULL << 36) 1442 #define HCR_TEA (1ULL << 37) 1443 #define HCR_MIOCNCE (1ULL << 38) 1444 /* RES0 bit 39 */ 1445 #define HCR_APK (1ULL << 40) 1446 #define HCR_API (1ULL << 41) 1447 #define HCR_NV (1ULL << 42) 1448 #define HCR_NV1 (1ULL << 43) 1449 #define HCR_AT (1ULL << 44) 1450 #define HCR_NV2 (1ULL << 45) 1451 #define HCR_FWB (1ULL << 46) 1452 #define HCR_FIEN (1ULL << 47) 1453 /* RES0 bit 48 */ 1454 #define HCR_TID4 (1ULL << 49) 1455 #define HCR_TICAB (1ULL << 50) 1456 #define HCR_AMVOFFEN (1ULL << 51) 1457 #define HCR_TOCU (1ULL << 52) 1458 #define HCR_ENSCXT (1ULL << 53) 1459 #define HCR_TTLBIS (1ULL << 54) 1460 #define HCR_TTLBOS (1ULL << 55) 1461 #define HCR_ATA (1ULL << 56) 1462 #define HCR_DCT (1ULL << 57) 1463 #define HCR_TID5 (1ULL << 58) 1464 #define HCR_TWEDEN (1ULL << 59) 1465 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1466 1467 #define SCR_NS (1U << 0) 1468 #define SCR_IRQ (1U << 1) 1469 #define SCR_FIQ (1U << 2) 1470 #define SCR_EA (1U << 3) 1471 #define SCR_FW (1U << 4) 1472 #define SCR_AW (1U << 5) 1473 #define SCR_NET (1U << 6) 1474 #define SCR_SMD (1U << 7) 1475 #define SCR_HCE (1U << 8) 1476 #define SCR_SIF (1U << 9) 1477 #define SCR_RW (1U << 10) 1478 #define SCR_ST (1U << 11) 1479 #define SCR_TWI (1U << 12) 1480 #define SCR_TWE (1U << 13) 1481 #define SCR_TLOR (1U << 14) 1482 #define SCR_TERR (1U << 15) 1483 #define SCR_APK (1U << 16) 1484 #define SCR_API (1U << 17) 1485 #define SCR_EEL2 (1U << 18) 1486 #define SCR_EASE (1U << 19) 1487 #define SCR_NMEA (1U << 20) 1488 #define SCR_FIEN (1U << 21) 1489 #define SCR_ENSCXT (1U << 25) 1490 #define SCR_ATA (1U << 26) 1491 1492 /* Return the current FPSCR value. */ 1493 uint32_t vfp_get_fpscr(CPUARMState *env); 1494 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1495 1496 /* FPCR, Floating Point Control Register 1497 * FPSR, Floating Poiht Status Register 1498 * 1499 * For A64 the FPSCR is split into two logically distinct registers, 1500 * FPCR and FPSR. However since they still use non-overlapping bits 1501 * we store the underlying state in fpscr and just mask on read/write. 1502 */ 1503 #define FPSR_MASK 0xf800009f 1504 #define FPCR_MASK 0x07ff9f00 1505 1506 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1507 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1508 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1509 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1510 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1511 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1512 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1513 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1514 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1515 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1516 1517 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1518 { 1519 return vfp_get_fpscr(env) & FPSR_MASK; 1520 } 1521 1522 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1523 { 1524 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1525 vfp_set_fpscr(env, new_fpscr); 1526 } 1527 1528 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1529 { 1530 return vfp_get_fpscr(env) & FPCR_MASK; 1531 } 1532 1533 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1534 { 1535 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1536 vfp_set_fpscr(env, new_fpscr); 1537 } 1538 1539 enum arm_cpu_mode { 1540 ARM_CPU_MODE_USR = 0x10, 1541 ARM_CPU_MODE_FIQ = 0x11, 1542 ARM_CPU_MODE_IRQ = 0x12, 1543 ARM_CPU_MODE_SVC = 0x13, 1544 ARM_CPU_MODE_MON = 0x16, 1545 ARM_CPU_MODE_ABT = 0x17, 1546 ARM_CPU_MODE_HYP = 0x1a, 1547 ARM_CPU_MODE_UND = 0x1b, 1548 ARM_CPU_MODE_SYS = 0x1f 1549 }; 1550 1551 /* VFP system registers. */ 1552 #define ARM_VFP_FPSID 0 1553 #define ARM_VFP_FPSCR 1 1554 #define ARM_VFP_MVFR2 5 1555 #define ARM_VFP_MVFR1 6 1556 #define ARM_VFP_MVFR0 7 1557 #define ARM_VFP_FPEXC 8 1558 #define ARM_VFP_FPINST 9 1559 #define ARM_VFP_FPINST2 10 1560 1561 /* iwMMXt coprocessor control registers. */ 1562 #define ARM_IWMMXT_wCID 0 1563 #define ARM_IWMMXT_wCon 1 1564 #define ARM_IWMMXT_wCSSF 2 1565 #define ARM_IWMMXT_wCASF 3 1566 #define ARM_IWMMXT_wCGR0 8 1567 #define ARM_IWMMXT_wCGR1 9 1568 #define ARM_IWMMXT_wCGR2 10 1569 #define ARM_IWMMXT_wCGR3 11 1570 1571 /* V7M CCR bits */ 1572 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1573 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1574 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1575 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1576 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1577 FIELD(V7M_CCR, STKALIGN, 9, 1) 1578 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1579 FIELD(V7M_CCR, DC, 16, 1) 1580 FIELD(V7M_CCR, IC, 17, 1) 1581 FIELD(V7M_CCR, BP, 18, 1) 1582 1583 /* V7M SCR bits */ 1584 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1585 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1586 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1587 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1588 1589 /* V7M AIRCR bits */ 1590 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1591 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1592 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1593 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1594 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1595 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1596 FIELD(V7M_AIRCR, PRIS, 14, 1) 1597 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1598 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1599 1600 /* V7M CFSR bits for MMFSR */ 1601 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1602 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1603 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1604 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1605 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1606 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1607 1608 /* V7M CFSR bits for BFSR */ 1609 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1610 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1611 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1612 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1613 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1614 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1615 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1616 1617 /* V7M CFSR bits for UFSR */ 1618 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1619 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1620 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1621 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1622 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1623 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1624 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1625 1626 /* V7M CFSR bit masks covering all of the subregister bits */ 1627 FIELD(V7M_CFSR, MMFSR, 0, 8) 1628 FIELD(V7M_CFSR, BFSR, 8, 8) 1629 FIELD(V7M_CFSR, UFSR, 16, 16) 1630 1631 /* V7M HFSR bits */ 1632 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1633 FIELD(V7M_HFSR, FORCED, 30, 1) 1634 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1635 1636 /* V7M DFSR bits */ 1637 FIELD(V7M_DFSR, HALTED, 0, 1) 1638 FIELD(V7M_DFSR, BKPT, 1, 1) 1639 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1640 FIELD(V7M_DFSR, VCATCH, 3, 1) 1641 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1642 1643 /* V7M SFSR bits */ 1644 FIELD(V7M_SFSR, INVEP, 0, 1) 1645 FIELD(V7M_SFSR, INVIS, 1, 1) 1646 FIELD(V7M_SFSR, INVER, 2, 1) 1647 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1648 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1649 FIELD(V7M_SFSR, LSPERR, 5, 1) 1650 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1651 FIELD(V7M_SFSR, LSERR, 7, 1) 1652 1653 /* v7M MPU_CTRL bits */ 1654 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1655 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1656 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1657 1658 /* v7M CLIDR bits */ 1659 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1660 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1661 FIELD(V7M_CLIDR, LOC, 24, 3) 1662 FIELD(V7M_CLIDR, LOUU, 27, 3) 1663 FIELD(V7M_CLIDR, ICB, 30, 2) 1664 1665 FIELD(V7M_CSSELR, IND, 0, 1) 1666 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1667 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1668 * define a mask for this and check that it doesn't permit running off 1669 * the end of the array. 1670 */ 1671 FIELD(V7M_CSSELR, INDEX, 0, 4) 1672 1673 /* v7M FPCCR bits */ 1674 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1675 FIELD(V7M_FPCCR, USER, 1, 1) 1676 FIELD(V7M_FPCCR, S, 2, 1) 1677 FIELD(V7M_FPCCR, THREAD, 3, 1) 1678 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1679 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1680 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1681 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1682 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1683 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1684 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1685 FIELD(V7M_FPCCR, RES0, 11, 15) 1686 FIELD(V7M_FPCCR, TS, 26, 1) 1687 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1688 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1689 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1690 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1691 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1692 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1693 #define R_V7M_FPCCR_BANKED_MASK \ 1694 (R_V7M_FPCCR_LSPACT_MASK | \ 1695 R_V7M_FPCCR_USER_MASK | \ 1696 R_V7M_FPCCR_THREAD_MASK | \ 1697 R_V7M_FPCCR_MMRDY_MASK | \ 1698 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1699 R_V7M_FPCCR_UFRDY_MASK | \ 1700 R_V7M_FPCCR_ASPEN_MASK) 1701 1702 /* 1703 * System register ID fields. 1704 */ 1705 FIELD(MIDR_EL1, REVISION, 0, 4) 1706 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1707 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1708 FIELD(MIDR_EL1, VARIANT, 20, 4) 1709 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1710 1711 FIELD(ID_ISAR0, SWAP, 0, 4) 1712 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1713 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1714 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1715 FIELD(ID_ISAR0, COPROC, 16, 4) 1716 FIELD(ID_ISAR0, DEBUG, 20, 4) 1717 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1718 1719 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1720 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1721 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1722 FIELD(ID_ISAR1, EXTEND, 12, 4) 1723 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1724 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1725 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1726 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1727 1728 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1729 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1730 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1731 FIELD(ID_ISAR2, MULT, 12, 4) 1732 FIELD(ID_ISAR2, MULTS, 16, 4) 1733 FIELD(ID_ISAR2, MULTU, 20, 4) 1734 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1735 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1736 1737 FIELD(ID_ISAR3, SATURATE, 0, 4) 1738 FIELD(ID_ISAR3, SIMD, 4, 4) 1739 FIELD(ID_ISAR3, SVC, 8, 4) 1740 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1741 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1742 FIELD(ID_ISAR3, T32COPY, 20, 4) 1743 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1744 FIELD(ID_ISAR3, T32EE, 28, 4) 1745 1746 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1747 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1748 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1749 FIELD(ID_ISAR4, SMC, 12, 4) 1750 FIELD(ID_ISAR4, BARRIER, 16, 4) 1751 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1752 FIELD(ID_ISAR4, PSR_M, 24, 4) 1753 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1754 1755 FIELD(ID_ISAR5, SEVL, 0, 4) 1756 FIELD(ID_ISAR5, AES, 4, 4) 1757 FIELD(ID_ISAR5, SHA1, 8, 4) 1758 FIELD(ID_ISAR5, SHA2, 12, 4) 1759 FIELD(ID_ISAR5, CRC32, 16, 4) 1760 FIELD(ID_ISAR5, RDM, 24, 4) 1761 FIELD(ID_ISAR5, VCMA, 28, 4) 1762 1763 FIELD(ID_ISAR6, JSCVT, 0, 4) 1764 FIELD(ID_ISAR6, DP, 4, 4) 1765 FIELD(ID_ISAR6, FHM, 8, 4) 1766 FIELD(ID_ISAR6, SB, 12, 4) 1767 FIELD(ID_ISAR6, SPECRES, 16, 4) 1768 1769 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 1770 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 1771 FIELD(ID_MMFR3, BPMAINT, 8, 4) 1772 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 1773 FIELD(ID_MMFR3, PAN, 16, 4) 1774 FIELD(ID_MMFR3, COHWALK, 20, 4) 1775 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 1776 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 1777 1778 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1779 FIELD(ID_MMFR4, AC2, 4, 4) 1780 FIELD(ID_MMFR4, XNX, 8, 4) 1781 FIELD(ID_MMFR4, CNP, 12, 4) 1782 FIELD(ID_MMFR4, HPDS, 16, 4) 1783 FIELD(ID_MMFR4, LSM, 20, 4) 1784 FIELD(ID_MMFR4, CCIDX, 24, 4) 1785 FIELD(ID_MMFR4, EVT, 28, 4) 1786 1787 FIELD(ID_AA64ISAR0, AES, 4, 4) 1788 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1789 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1790 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1791 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1792 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1793 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1794 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1795 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1796 FIELD(ID_AA64ISAR0, DP, 44, 4) 1797 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1798 FIELD(ID_AA64ISAR0, TS, 52, 4) 1799 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1800 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1801 1802 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1803 FIELD(ID_AA64ISAR1, APA, 4, 4) 1804 FIELD(ID_AA64ISAR1, API, 8, 4) 1805 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1806 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1807 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1808 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1809 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1810 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1811 FIELD(ID_AA64ISAR1, SB, 36, 4) 1812 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1813 1814 FIELD(ID_AA64PFR0, EL0, 0, 4) 1815 FIELD(ID_AA64PFR0, EL1, 4, 4) 1816 FIELD(ID_AA64PFR0, EL2, 8, 4) 1817 FIELD(ID_AA64PFR0, EL3, 12, 4) 1818 FIELD(ID_AA64PFR0, FP, 16, 4) 1819 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1820 FIELD(ID_AA64PFR0, GIC, 24, 4) 1821 FIELD(ID_AA64PFR0, RAS, 28, 4) 1822 FIELD(ID_AA64PFR0, SVE, 32, 4) 1823 1824 FIELD(ID_AA64PFR1, BT, 0, 4) 1825 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1826 FIELD(ID_AA64PFR1, MTE, 8, 4) 1827 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1828 1829 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1830 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1831 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1832 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1833 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1834 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1835 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1836 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1837 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1838 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1839 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1840 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1841 1842 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1843 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1844 FIELD(ID_AA64MMFR1, VH, 8, 4) 1845 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1846 FIELD(ID_AA64MMFR1, LO, 16, 4) 1847 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1848 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1849 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1850 1851 FIELD(ID_AA64MMFR2, CNP, 0, 4) 1852 FIELD(ID_AA64MMFR2, UAO, 4, 4) 1853 FIELD(ID_AA64MMFR2, LSM, 8, 4) 1854 FIELD(ID_AA64MMFR2, IESB, 12, 4) 1855 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 1856 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 1857 FIELD(ID_AA64MMFR2, NV, 24, 4) 1858 FIELD(ID_AA64MMFR2, ST, 28, 4) 1859 FIELD(ID_AA64MMFR2, AT, 32, 4) 1860 FIELD(ID_AA64MMFR2, IDS, 36, 4) 1861 FIELD(ID_AA64MMFR2, FWB, 40, 4) 1862 FIELD(ID_AA64MMFR2, TTL, 48, 4) 1863 FIELD(ID_AA64MMFR2, BBM, 52, 4) 1864 FIELD(ID_AA64MMFR2, EVT, 56, 4) 1865 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 1866 1867 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 1868 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 1869 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 1870 FIELD(ID_AA64DFR0, BRPS, 12, 4) 1871 FIELD(ID_AA64DFR0, WRPS, 20, 4) 1872 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 1873 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 1874 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 1875 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 1876 1877 FIELD(ID_DFR0, COPDBG, 0, 4) 1878 FIELD(ID_DFR0, COPSDBG, 4, 4) 1879 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1880 FIELD(ID_DFR0, COPTRC, 12, 4) 1881 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1882 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1883 FIELD(ID_DFR0, PERFMON, 24, 4) 1884 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1885 1886 FIELD(DBGDIDR, SE_IMP, 12, 1) 1887 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 1888 FIELD(DBGDIDR, VERSION, 16, 4) 1889 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 1890 FIELD(DBGDIDR, BRPS, 24, 4) 1891 FIELD(DBGDIDR, WRPS, 28, 4) 1892 1893 FIELD(MVFR0, SIMDREG, 0, 4) 1894 FIELD(MVFR0, FPSP, 4, 4) 1895 FIELD(MVFR0, FPDP, 8, 4) 1896 FIELD(MVFR0, FPTRAP, 12, 4) 1897 FIELD(MVFR0, FPDIVIDE, 16, 4) 1898 FIELD(MVFR0, FPSQRT, 20, 4) 1899 FIELD(MVFR0, FPSHVEC, 24, 4) 1900 FIELD(MVFR0, FPROUND, 28, 4) 1901 1902 FIELD(MVFR1, FPFTZ, 0, 4) 1903 FIELD(MVFR1, FPDNAN, 4, 4) 1904 FIELD(MVFR1, SIMDLS, 8, 4) 1905 FIELD(MVFR1, SIMDINT, 12, 4) 1906 FIELD(MVFR1, SIMDSP, 16, 4) 1907 FIELD(MVFR1, SIMDHP, 20, 4) 1908 FIELD(MVFR1, FPHP, 24, 4) 1909 FIELD(MVFR1, SIMDFMAC, 28, 4) 1910 1911 FIELD(MVFR2, SIMDMISC, 0, 4) 1912 FIELD(MVFR2, FPMISC, 4, 4) 1913 1914 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1915 1916 /* If adding a feature bit which corresponds to a Linux ELF 1917 * HWCAP bit, remember to update the feature-bit-to-hwcap 1918 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1919 */ 1920 enum arm_features { 1921 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1922 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1923 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1924 ARM_FEATURE_V6, 1925 ARM_FEATURE_V6K, 1926 ARM_FEATURE_V7, 1927 ARM_FEATURE_THUMB2, 1928 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1929 ARM_FEATURE_NEON, 1930 ARM_FEATURE_M, /* Microcontroller profile. */ 1931 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1932 ARM_FEATURE_THUMB2EE, 1933 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1934 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1935 ARM_FEATURE_V4T, 1936 ARM_FEATURE_V5, 1937 ARM_FEATURE_STRONGARM, 1938 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1939 ARM_FEATURE_GENERIC_TIMER, 1940 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1941 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1942 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1943 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1944 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1945 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1946 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1947 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1948 ARM_FEATURE_V8, 1949 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1950 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1951 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1952 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1953 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1954 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1955 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1956 ARM_FEATURE_PMU, /* has PMU support */ 1957 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1958 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1959 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1960 }; 1961 1962 static inline int arm_feature(CPUARMState *env, int feature) 1963 { 1964 return (env->features & (1ULL << feature)) != 0; 1965 } 1966 1967 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 1968 1969 #if !defined(CONFIG_USER_ONLY) 1970 /* Return true if exception levels below EL3 are in secure state, 1971 * or would be following an exception return to that level. 1972 * Unlike arm_is_secure() (which is always a question about the 1973 * _current_ state of the CPU) this doesn't care about the current 1974 * EL or mode. 1975 */ 1976 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1977 { 1978 if (arm_feature(env, ARM_FEATURE_EL3)) { 1979 return !(env->cp15.scr_el3 & SCR_NS); 1980 } else { 1981 /* If EL3 is not supported then the secure state is implementation 1982 * defined, in which case QEMU defaults to non-secure. 1983 */ 1984 return false; 1985 } 1986 } 1987 1988 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1989 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1990 { 1991 if (arm_feature(env, ARM_FEATURE_EL3)) { 1992 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1993 /* CPU currently in AArch64 state and EL3 */ 1994 return true; 1995 } else if (!is_a64(env) && 1996 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1997 /* CPU currently in AArch32 state and monitor mode */ 1998 return true; 1999 } 2000 } 2001 return false; 2002 } 2003 2004 /* Return true if the processor is in secure state */ 2005 static inline bool arm_is_secure(CPUARMState *env) 2006 { 2007 if (arm_is_el3_or_mon(env)) { 2008 return true; 2009 } 2010 return arm_is_secure_below_el3(env); 2011 } 2012 2013 #else 2014 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2015 { 2016 return false; 2017 } 2018 2019 static inline bool arm_is_secure(CPUARMState *env) 2020 { 2021 return false; 2022 } 2023 #endif 2024 2025 /** 2026 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2027 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2028 * "for all purposes other than a direct read or write access of HCR_EL2." 2029 * Not included here is HCR_RW. 2030 */ 2031 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2032 2033 /* Return true if the specified exception level is running in AArch64 state. */ 2034 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2035 { 2036 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2037 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2038 */ 2039 assert(el >= 1 && el <= 3); 2040 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2041 2042 /* The highest exception level is always at the maximum supported 2043 * register width, and then lower levels have a register width controlled 2044 * by bits in the SCR or HCR registers. 2045 */ 2046 if (el == 3) { 2047 return aa64; 2048 } 2049 2050 if (arm_feature(env, ARM_FEATURE_EL3)) { 2051 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2052 } 2053 2054 if (el == 2) { 2055 return aa64; 2056 } 2057 2058 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 2059 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2060 } 2061 2062 return aa64; 2063 } 2064 2065 /* Function for determing whether guest cp register reads and writes should 2066 * access the secure or non-secure bank of a cp register. When EL3 is 2067 * operating in AArch32 state, the NS-bit determines whether the secure 2068 * instance of a cp register should be used. When EL3 is AArch64 (or if 2069 * it doesn't exist at all) then there is no register banking, and all 2070 * accesses are to the non-secure version. 2071 */ 2072 static inline bool access_secure_reg(CPUARMState *env) 2073 { 2074 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2075 !arm_el_is_aa64(env, 3) && 2076 !(env->cp15.scr_el3 & SCR_NS)); 2077 2078 return ret; 2079 } 2080 2081 /* Macros for accessing a specified CP register bank */ 2082 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2083 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2084 2085 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2086 do { \ 2087 if (_secure) { \ 2088 (_env)->cp15._regname##_s = (_val); \ 2089 } else { \ 2090 (_env)->cp15._regname##_ns = (_val); \ 2091 } \ 2092 } while (0) 2093 2094 /* Macros for automatically accessing a specific CP register bank depending on 2095 * the current secure state of the system. These macros are not intended for 2096 * supporting instruction translation reads/writes as these are dependent 2097 * solely on the SCR.NS bit and not the mode. 2098 */ 2099 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2100 A32_BANKED_REG_GET((_env), _regname, \ 2101 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2102 2103 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2104 A32_BANKED_REG_SET((_env), _regname, \ 2105 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2106 (_val)) 2107 2108 void arm_cpu_list(void); 2109 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2110 uint32_t cur_el, bool secure); 2111 2112 /* Interface between CPU and Interrupt controller. */ 2113 #ifndef CONFIG_USER_ONLY 2114 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2115 #else 2116 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2117 { 2118 return true; 2119 } 2120 #endif 2121 /** 2122 * armv7m_nvic_set_pending: mark the specified exception as pending 2123 * @opaque: the NVIC 2124 * @irq: the exception number to mark pending 2125 * @secure: false for non-banked exceptions or for the nonsecure 2126 * version of a banked exception, true for the secure version of a banked 2127 * exception. 2128 * 2129 * Marks the specified exception as pending. Note that we will assert() 2130 * if @secure is true and @irq does not specify one of the fixed set 2131 * of architecturally banked exceptions. 2132 */ 2133 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2134 /** 2135 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2136 * @opaque: the NVIC 2137 * @irq: the exception number to mark pending 2138 * @secure: false for non-banked exceptions or for the nonsecure 2139 * version of a banked exception, true for the secure version of a banked 2140 * exception. 2141 * 2142 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2143 * exceptions (exceptions generated in the course of trying to take 2144 * a different exception). 2145 */ 2146 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2147 /** 2148 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2149 * @opaque: the NVIC 2150 * @irq: the exception number to mark pending 2151 * @secure: false for non-banked exceptions or for the nonsecure 2152 * version of a banked exception, true for the secure version of a banked 2153 * exception. 2154 * 2155 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2156 * generated in the course of lazy stacking of FP registers. 2157 */ 2158 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2159 /** 2160 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2161 * exception, and whether it targets Secure state 2162 * @opaque: the NVIC 2163 * @pirq: set to pending exception number 2164 * @ptargets_secure: set to whether pending exception targets Secure 2165 * 2166 * This function writes the number of the highest priority pending 2167 * exception (the one which would be made active by 2168 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2169 * to true if the current highest priority pending exception should 2170 * be taken to Secure state, false for NS. 2171 */ 2172 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2173 bool *ptargets_secure); 2174 /** 2175 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2176 * @opaque: the NVIC 2177 * 2178 * Move the current highest priority pending exception from the pending 2179 * state to the active state, and update v7m.exception to indicate that 2180 * it is the exception currently being handled. 2181 */ 2182 void armv7m_nvic_acknowledge_irq(void *opaque); 2183 /** 2184 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2185 * @opaque: the NVIC 2186 * @irq: the exception number to complete 2187 * @secure: true if this exception was secure 2188 * 2189 * Returns: -1 if the irq was not active 2190 * 1 if completing this irq brought us back to base (no active irqs) 2191 * 0 if there is still an irq active after this one was completed 2192 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2193 */ 2194 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2195 /** 2196 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2197 * @opaque: the NVIC 2198 * @irq: the exception number to mark pending 2199 * @secure: false for non-banked exceptions or for the nonsecure 2200 * version of a banked exception, true for the secure version of a banked 2201 * exception. 2202 * 2203 * Return whether an exception is "ready", i.e. whether the exception is 2204 * enabled and is configured at a priority which would allow it to 2205 * interrupt the current execution priority. This controls whether the 2206 * RDY bit for it in the FPCCR is set. 2207 */ 2208 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2209 /** 2210 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2211 * @opaque: the NVIC 2212 * 2213 * Returns: the raw execution priority as defined by the v8M architecture. 2214 * This is the execution priority minus the effects of AIRCR.PRIS, 2215 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2216 * (v8M ARM ARM I_PKLD.) 2217 */ 2218 int armv7m_nvic_raw_execution_priority(void *opaque); 2219 /** 2220 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2221 * priority is negative for the specified security state. 2222 * @opaque: the NVIC 2223 * @secure: the security state to test 2224 * This corresponds to the pseudocode IsReqExecPriNeg(). 2225 */ 2226 #ifndef CONFIG_USER_ONLY 2227 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2228 #else 2229 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2230 { 2231 return false; 2232 } 2233 #endif 2234 2235 /* Interface for defining coprocessor registers. 2236 * Registers are defined in tables of arm_cp_reginfo structs 2237 * which are passed to define_arm_cp_regs(). 2238 */ 2239 2240 /* When looking up a coprocessor register we look for it 2241 * via an integer which encodes all of: 2242 * coprocessor number 2243 * Crn, Crm, opc1, opc2 fields 2244 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2245 * or via MRRC/MCRR?) 2246 * non-secure/secure bank (AArch32 only) 2247 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2248 * (In this case crn and opc2 should be zero.) 2249 * For AArch64, there is no 32/64 bit size distinction; 2250 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2251 * and 4 bit CRn and CRm. The encoding patterns are chosen 2252 * to be easy to convert to and from the KVM encodings, and also 2253 * so that the hashtable can contain both AArch32 and AArch64 2254 * registers (to allow for interprocessing where we might run 2255 * 32 bit code on a 64 bit core). 2256 */ 2257 /* This bit is private to our hashtable cpreg; in KVM register 2258 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2259 * in the upper bits of the 64 bit ID. 2260 */ 2261 #define CP_REG_AA64_SHIFT 28 2262 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2263 2264 /* To enable banking of coprocessor registers depending on ns-bit we 2265 * add a bit to distinguish between secure and non-secure cpregs in the 2266 * hashtable. 2267 */ 2268 #define CP_REG_NS_SHIFT 29 2269 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2270 2271 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2272 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2273 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2274 2275 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2276 (CP_REG_AA64_MASK | \ 2277 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2278 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2279 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2280 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2281 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2282 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2283 2284 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2285 * version used as a key for the coprocessor register hashtable 2286 */ 2287 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2288 { 2289 uint32_t cpregid = kvmid; 2290 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2291 cpregid |= CP_REG_AA64_MASK; 2292 } else { 2293 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2294 cpregid |= (1 << 15); 2295 } 2296 2297 /* KVM is always non-secure so add the NS flag on AArch32 register 2298 * entries. 2299 */ 2300 cpregid |= 1 << CP_REG_NS_SHIFT; 2301 } 2302 return cpregid; 2303 } 2304 2305 /* Convert a truncated 32 bit hashtable key into the full 2306 * 64 bit KVM register ID. 2307 */ 2308 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2309 { 2310 uint64_t kvmid; 2311 2312 if (cpregid & CP_REG_AA64_MASK) { 2313 kvmid = cpregid & ~CP_REG_AA64_MASK; 2314 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2315 } else { 2316 kvmid = cpregid & ~(1 << 15); 2317 if (cpregid & (1 << 15)) { 2318 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2319 } else { 2320 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2321 } 2322 } 2323 return kvmid; 2324 } 2325 2326 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2327 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2328 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2329 * TCG can assume the value to be constant (ie load at translate time) 2330 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2331 * indicates that the TB should not be ended after a write to this register 2332 * (the default is that the TB ends after cp writes). OVERRIDE permits 2333 * a register definition to override a previous definition for the 2334 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2335 * old must have the OVERRIDE bit set. 2336 * ALIAS indicates that this register is an alias view of some underlying 2337 * state which is also visible via another register, and that the other 2338 * register is handling migration and reset; registers marked ALIAS will not be 2339 * migrated but may have their state set by syncing of register state from KVM. 2340 * NO_RAW indicates that this register has no underlying state and does not 2341 * support raw access for state saving/loading; it will not be used for either 2342 * migration or KVM state synchronization. (Typically this is for "registers" 2343 * which are actually used as instructions for cache maintenance and so on.) 2344 * IO indicates that this register does I/O and therefore its accesses 2345 * need to be marked with gen_io_start() and also end the TB. In particular, 2346 * registers which implement clocks or timers require this. 2347 * RAISES_EXC is for when the read or write hook might raise an exception; 2348 * the generated code will synchronize the CPU state before calling the hook 2349 * so that it is safe for the hook to call raise_exception(). 2350 * NEWEL is for writes to registers that might change the exception 2351 * level - typically on older ARM chips. For those cases we need to 2352 * re-read the new el when recomputing the translation flags. 2353 */ 2354 #define ARM_CP_SPECIAL 0x0001 2355 #define ARM_CP_CONST 0x0002 2356 #define ARM_CP_64BIT 0x0004 2357 #define ARM_CP_SUPPRESS_TB_END 0x0008 2358 #define ARM_CP_OVERRIDE 0x0010 2359 #define ARM_CP_ALIAS 0x0020 2360 #define ARM_CP_IO 0x0040 2361 #define ARM_CP_NO_RAW 0x0080 2362 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2363 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2364 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2365 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2366 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2367 #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) 2368 #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) 2369 #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA 2370 #define ARM_CP_FPU 0x1000 2371 #define ARM_CP_SVE 0x2000 2372 #define ARM_CP_NO_GDB 0x4000 2373 #define ARM_CP_RAISES_EXC 0x8000 2374 #define ARM_CP_NEWEL 0x10000 2375 /* Used only as a terminator for ARMCPRegInfo lists */ 2376 #define ARM_CP_SENTINEL 0xfffff 2377 /* Mask of only the flag bits in a type field */ 2378 #define ARM_CP_FLAG_MASK 0x1f0ff 2379 2380 /* Valid values for ARMCPRegInfo state field, indicating which of 2381 * the AArch32 and AArch64 execution states this register is visible in. 2382 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2383 * If the reginfo is declared to be visible in both states then a second 2384 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2385 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2386 * Note that we rely on the values of these enums as we iterate through 2387 * the various states in some places. 2388 */ 2389 enum { 2390 ARM_CP_STATE_AA32 = 0, 2391 ARM_CP_STATE_AA64 = 1, 2392 ARM_CP_STATE_BOTH = 2, 2393 }; 2394 2395 /* ARM CP register secure state flags. These flags identify security state 2396 * attributes for a given CP register entry. 2397 * The existence of both or neither secure and non-secure flags indicates that 2398 * the register has both a secure and non-secure hash entry. A single one of 2399 * these flags causes the register to only be hashed for the specified 2400 * security state. 2401 * Although definitions may have any combination of the S/NS bits, each 2402 * registered entry will only have one to identify whether the entry is secure 2403 * or non-secure. 2404 */ 2405 enum { 2406 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2407 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2408 }; 2409 2410 /* Return true if cptype is a valid type field. This is used to try to 2411 * catch errors where the sentinel has been accidentally left off the end 2412 * of a list of registers. 2413 */ 2414 static inline bool cptype_valid(int cptype) 2415 { 2416 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2417 || ((cptype & ARM_CP_SPECIAL) && 2418 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2419 } 2420 2421 /* Access rights: 2422 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2423 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2424 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2425 * (ie any of the privileged modes in Secure state, or Monitor mode). 2426 * If a register is accessible in one privilege level it's always accessible 2427 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2428 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2429 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2430 * terminology a little and call this PL3. 2431 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2432 * with the ELx exception levels. 2433 * 2434 * If access permissions for a register are more complex than can be 2435 * described with these bits, then use a laxer set of restrictions, and 2436 * do the more restrictive/complex check inside a helper function. 2437 */ 2438 #define PL3_R 0x80 2439 #define PL3_W 0x40 2440 #define PL2_R (0x20 | PL3_R) 2441 #define PL2_W (0x10 | PL3_W) 2442 #define PL1_R (0x08 | PL2_R) 2443 #define PL1_W (0x04 | PL2_W) 2444 #define PL0_R (0x02 | PL1_R) 2445 #define PL0_W (0x01 | PL1_W) 2446 2447 /* 2448 * For user-mode some registers are accessible to EL0 via a kernel 2449 * trap-and-emulate ABI. In this case we define the read permissions 2450 * as actually being PL0_R. However some bits of any given register 2451 * may still be masked. 2452 */ 2453 #ifdef CONFIG_USER_ONLY 2454 #define PL0U_R PL0_R 2455 #else 2456 #define PL0U_R PL1_R 2457 #endif 2458 2459 #define PL3_RW (PL3_R | PL3_W) 2460 #define PL2_RW (PL2_R | PL2_W) 2461 #define PL1_RW (PL1_R | PL1_W) 2462 #define PL0_RW (PL0_R | PL0_W) 2463 2464 /* Return the highest implemented Exception Level */ 2465 static inline int arm_highest_el(CPUARMState *env) 2466 { 2467 if (arm_feature(env, ARM_FEATURE_EL3)) { 2468 return 3; 2469 } 2470 if (arm_feature(env, ARM_FEATURE_EL2)) { 2471 return 2; 2472 } 2473 return 1; 2474 } 2475 2476 /* Return true if a v7M CPU is in Handler mode */ 2477 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2478 { 2479 return env->v7m.exception != 0; 2480 } 2481 2482 /* Return the current Exception Level (as per ARMv8; note that this differs 2483 * from the ARMv7 Privilege Level). 2484 */ 2485 static inline int arm_current_el(CPUARMState *env) 2486 { 2487 if (arm_feature(env, ARM_FEATURE_M)) { 2488 return arm_v7m_is_handler_mode(env) || 2489 !(env->v7m.control[env->v7m.secure] & 1); 2490 } 2491 2492 if (is_a64(env)) { 2493 return extract32(env->pstate, 2, 2); 2494 } 2495 2496 switch (env->uncached_cpsr & 0x1f) { 2497 case ARM_CPU_MODE_USR: 2498 return 0; 2499 case ARM_CPU_MODE_HYP: 2500 return 2; 2501 case ARM_CPU_MODE_MON: 2502 return 3; 2503 default: 2504 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2505 /* If EL3 is 32-bit then all secure privileged modes run in 2506 * EL3 2507 */ 2508 return 3; 2509 } 2510 2511 return 1; 2512 } 2513 } 2514 2515 typedef struct ARMCPRegInfo ARMCPRegInfo; 2516 2517 typedef enum CPAccessResult { 2518 /* Access is permitted */ 2519 CP_ACCESS_OK = 0, 2520 /* Access fails due to a configurable trap or enable which would 2521 * result in a categorized exception syndrome giving information about 2522 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2523 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2524 * PL1 if in EL0, otherwise to the current EL). 2525 */ 2526 CP_ACCESS_TRAP = 1, 2527 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2528 * Note that this is not a catch-all case -- the set of cases which may 2529 * result in this failure is specifically defined by the architecture. 2530 */ 2531 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2532 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2533 CP_ACCESS_TRAP_EL2 = 3, 2534 CP_ACCESS_TRAP_EL3 = 4, 2535 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2536 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2537 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2538 /* Access fails and results in an exception syndrome for an FP access, 2539 * trapped directly to EL2 or EL3 2540 */ 2541 CP_ACCESS_TRAP_FP_EL2 = 7, 2542 CP_ACCESS_TRAP_FP_EL3 = 8, 2543 } CPAccessResult; 2544 2545 /* Access functions for coprocessor registers. These cannot fail and 2546 * may not raise exceptions. 2547 */ 2548 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2549 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2550 uint64_t value); 2551 /* Access permission check functions for coprocessor registers. */ 2552 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2553 const ARMCPRegInfo *opaque, 2554 bool isread); 2555 /* Hook function for register reset */ 2556 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2557 2558 #define CP_ANY 0xff 2559 2560 /* Definition of an ARM coprocessor register */ 2561 struct ARMCPRegInfo { 2562 /* Name of register (useful mainly for debugging, need not be unique) */ 2563 const char *name; 2564 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2565 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2566 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2567 * will be decoded to this register. The register read and write 2568 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2569 * used by the program, so it is possible to register a wildcard and 2570 * then behave differently on read/write if necessary. 2571 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2572 * must both be zero. 2573 * For AArch64-visible registers, opc0 is also used. 2574 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2575 * way to distinguish (for KVM's benefit) guest-visible system registers 2576 * from demuxed ones provided to preserve the "no side effects on 2577 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2578 * visible (to match KVM's encoding); cp==0 will be converted to 2579 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2580 */ 2581 uint8_t cp; 2582 uint8_t crn; 2583 uint8_t crm; 2584 uint8_t opc0; 2585 uint8_t opc1; 2586 uint8_t opc2; 2587 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2588 int state; 2589 /* Register type: ARM_CP_* bits/values */ 2590 int type; 2591 /* Access rights: PL*_[RW] */ 2592 int access; 2593 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2594 int secure; 2595 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2596 * this register was defined: can be used to hand data through to the 2597 * register read/write functions, since they are passed the ARMCPRegInfo*. 2598 */ 2599 void *opaque; 2600 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2601 * fieldoffset is non-zero, the reset value of the register. 2602 */ 2603 uint64_t resetvalue; 2604 /* Offset of the field in CPUARMState for this register. 2605 * 2606 * This is not needed if either: 2607 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2608 * 2. both readfn and writefn are specified 2609 */ 2610 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2611 2612 /* Offsets of the secure and non-secure fields in CPUARMState for the 2613 * register if it is banked. These fields are only used during the static 2614 * registration of a register. During hashing the bank associated 2615 * with a given security state is copied to fieldoffset which is used from 2616 * there on out. 2617 * 2618 * It is expected that register definitions use either fieldoffset or 2619 * bank_fieldoffsets in the definition but not both. It is also expected 2620 * that both bank offsets are set when defining a banked register. This 2621 * use indicates that a register is banked. 2622 */ 2623 ptrdiff_t bank_fieldoffsets[2]; 2624 2625 /* Function for making any access checks for this register in addition to 2626 * those specified by the 'access' permissions bits. If NULL, no extra 2627 * checks required. The access check is performed at runtime, not at 2628 * translate time. 2629 */ 2630 CPAccessFn *accessfn; 2631 /* Function for handling reads of this register. If NULL, then reads 2632 * will be done by loading from the offset into CPUARMState specified 2633 * by fieldoffset. 2634 */ 2635 CPReadFn *readfn; 2636 /* Function for handling writes of this register. If NULL, then writes 2637 * will be done by writing to the offset into CPUARMState specified 2638 * by fieldoffset. 2639 */ 2640 CPWriteFn *writefn; 2641 /* Function for doing a "raw" read; used when we need to copy 2642 * coprocessor state to the kernel for KVM or out for 2643 * migration. This only needs to be provided if there is also a 2644 * readfn and it has side effects (for instance clear-on-read bits). 2645 */ 2646 CPReadFn *raw_readfn; 2647 /* Function for doing a "raw" write; used when we need to copy KVM 2648 * kernel coprocessor state into userspace, or for inbound 2649 * migration. This only needs to be provided if there is also a 2650 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2651 * or similar behaviour. 2652 */ 2653 CPWriteFn *raw_writefn; 2654 /* Function for resetting the register. If NULL, then reset will be done 2655 * by writing resetvalue to the field specified in fieldoffset. If 2656 * fieldoffset is 0 then no reset will be done. 2657 */ 2658 CPResetFn *resetfn; 2659 2660 /* 2661 * "Original" writefn and readfn. 2662 * For ARMv8.1-VHE register aliases, we overwrite the read/write 2663 * accessor functions of various EL1/EL0 to perform the runtime 2664 * check for which sysreg should actually be modified, and then 2665 * forwards the operation. Before overwriting the accessors, 2666 * the original function is copied here, so that accesses that 2667 * really do go to the EL1/EL0 version proceed normally. 2668 * (The corresponding EL2 register is linked via opaque.) 2669 */ 2670 CPReadFn *orig_readfn; 2671 CPWriteFn *orig_writefn; 2672 }; 2673 2674 /* Macros which are lvalues for the field in CPUARMState for the 2675 * ARMCPRegInfo *ri. 2676 */ 2677 #define CPREG_FIELD32(env, ri) \ 2678 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2679 #define CPREG_FIELD64(env, ri) \ 2680 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2681 2682 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2683 2684 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2685 const ARMCPRegInfo *regs, void *opaque); 2686 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2687 const ARMCPRegInfo *regs, void *opaque); 2688 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2689 { 2690 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2691 } 2692 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2693 { 2694 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2695 } 2696 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2697 2698 /* 2699 * Definition of an ARM co-processor register as viewed from 2700 * userspace. This is used for presenting sanitised versions of 2701 * registers to userspace when emulating the Linux AArch64 CPU 2702 * ID/feature ABI (advertised as HWCAP_CPUID). 2703 */ 2704 typedef struct ARMCPRegUserSpaceInfo { 2705 /* Name of register */ 2706 const char *name; 2707 2708 /* Is the name actually a glob pattern */ 2709 bool is_glob; 2710 2711 /* Only some bits are exported to user space */ 2712 uint64_t exported_bits; 2713 2714 /* Fixed bits are applied after the mask */ 2715 uint64_t fixed_bits; 2716 } ARMCPRegUserSpaceInfo; 2717 2718 #define REGUSERINFO_SENTINEL { .name = NULL } 2719 2720 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2721 2722 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2723 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2724 uint64_t value); 2725 /* CPReadFn that can be used for read-as-zero behaviour */ 2726 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2727 2728 /* CPResetFn that does nothing, for use if no reset is required even 2729 * if fieldoffset is non zero. 2730 */ 2731 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2732 2733 /* Return true if this reginfo struct's field in the cpu state struct 2734 * is 64 bits wide. 2735 */ 2736 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2737 { 2738 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2739 } 2740 2741 static inline bool cp_access_ok(int current_el, 2742 const ARMCPRegInfo *ri, int isread) 2743 { 2744 return (ri->access >> ((current_el * 2) + isread)) & 1; 2745 } 2746 2747 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2748 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2749 2750 /** 2751 * write_list_to_cpustate 2752 * @cpu: ARMCPU 2753 * 2754 * For each register listed in the ARMCPU cpreg_indexes list, write 2755 * its value from the cpreg_values list into the ARMCPUState structure. 2756 * This updates TCG's working data structures from KVM data or 2757 * from incoming migration state. 2758 * 2759 * Returns: true if all register values were updated correctly, 2760 * false if some register was unknown or could not be written. 2761 * Note that we do not stop early on failure -- we will attempt 2762 * writing all registers in the list. 2763 */ 2764 bool write_list_to_cpustate(ARMCPU *cpu); 2765 2766 /** 2767 * write_cpustate_to_list: 2768 * @cpu: ARMCPU 2769 * @kvm_sync: true if this is for syncing back to KVM 2770 * 2771 * For each register listed in the ARMCPU cpreg_indexes list, write 2772 * its value from the ARMCPUState structure into the cpreg_values list. 2773 * This is used to copy info from TCG's working data structures into 2774 * KVM or for outbound migration. 2775 * 2776 * @kvm_sync is true if we are doing this in order to sync the 2777 * register state back to KVM. In this case we will only update 2778 * values in the list if the previous list->cpustate sync actually 2779 * successfully wrote the CPU state. Otherwise we will keep the value 2780 * that is in the list. 2781 * 2782 * Returns: true if all register values were read correctly, 2783 * false if some register was unknown or could not be read. 2784 * Note that we do not stop early on failure -- we will attempt 2785 * reading all registers in the list. 2786 */ 2787 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2788 2789 #define ARM_CPUID_TI915T 0x54029152 2790 #define ARM_CPUID_TI925T 0x54029252 2791 2792 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2793 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2794 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2795 2796 #define cpu_signal_handler cpu_arm_signal_handler 2797 #define cpu_list arm_cpu_list 2798 2799 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2800 * 2801 * If EL3 is 64-bit: 2802 * + NonSecure EL1 & 0 stage 1 2803 * + NonSecure EL1 & 0 stage 2 2804 * + NonSecure EL2 2805 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2806 * + Secure EL1 & 0 2807 * + Secure EL3 2808 * If EL3 is 32-bit: 2809 * + NonSecure PL1 & 0 stage 1 2810 * + NonSecure PL1 & 0 stage 2 2811 * + NonSecure PL2 2812 * + Secure PL0 2813 * + Secure PL1 2814 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2815 * 2816 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2817 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2818 * because they may differ in access permissions even if the VA->PA map is 2819 * the same 2820 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2821 * translation, which means that we have one mmu_idx that deals with two 2822 * concatenated translation regimes [this sort of combined s1+2 TLB is 2823 * architecturally permitted] 2824 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2825 * handling via the TLB. The only way to do a stage 1 translation without 2826 * the immediate stage 2 translation is via the ATS or AT system insns, 2827 * which can be slow-pathed and always do a page table walk. 2828 * The only use of stage 2 translations is either as part of an s1+2 2829 * lookup or when loading the descriptors during a stage 1 page table walk, 2830 * and in both those cases we don't use the TLB. 2831 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2832 * translation regimes, because they map reasonably well to each other 2833 * and they can't both be active at the same time. 2834 * 5. we want to be able to use the TLB for accesses done as part of a 2835 * stage1 page table walk, rather than having to walk the stage2 page 2836 * table over and over. 2837 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2838 * Never (PAN) bit within PSTATE. 2839 * 2840 * This gives us the following list of cases: 2841 * 2842 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 2843 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 2844 * NS EL1 EL1&0 stage 1+2 +PAN 2845 * NS EL0 EL2&0 2846 * NS EL2 EL2&0 2847 * NS EL2 EL2&0 +PAN 2848 * NS EL2 (aka NS PL2) 2849 * S EL0 EL1&0 (aka S PL0) 2850 * S EL1 EL1&0 (not used if EL3 is 32 bit) 2851 * S EL1 EL1&0 +PAN 2852 * S EL3 (aka S PL1) 2853 * 2854 * for a total of 11 different mmu_idx. 2855 * 2856 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2857 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2858 * NS EL2 if we ever model a Cortex-R52). 2859 * 2860 * M profile CPUs are rather different as they do not have a true MMU. 2861 * They have the following different MMU indexes: 2862 * User 2863 * Privileged 2864 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2865 * Privileged, execution priority negative (ditto) 2866 * If the CPU supports the v8M Security Extension then there are also: 2867 * Secure User 2868 * Secure Privileged 2869 * Secure User, execution priority negative 2870 * Secure Privileged, execution priority negative 2871 * 2872 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2873 * are not quite the same -- different CPU types (most notably M profile 2874 * vs A/R profile) would like to use MMU indexes with different semantics, 2875 * but since we don't ever need to use all of those in a single CPU we 2876 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2877 * modes + total number of M profile MMU modes". The lower bits of 2878 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2879 * the same for any particular CPU. 2880 * Variables of type ARMMUIdx are always full values, and the core 2881 * index values are in variables of type 'int'. 2882 * 2883 * Our enumeration includes at the end some entries which are not "true" 2884 * mmu_idx values in that they don't have corresponding TLBs and are only 2885 * valid for doing slow path page table walks. 2886 * 2887 * The constant names here are patterned after the general style of the names 2888 * of the AT/ATS operations. 2889 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2890 * For M profile we arrange them to have a bit for priv, a bit for negpri 2891 * and a bit for secure. 2892 */ 2893 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2894 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2895 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2896 2897 /* Meanings of the bits for M profile mmu idx values */ 2898 #define ARM_MMU_IDX_M_PRIV 0x1 2899 #define ARM_MMU_IDX_M_NEGPRI 0x2 2900 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2901 2902 #define ARM_MMU_IDX_TYPE_MASK \ 2903 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2904 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2905 2906 typedef enum ARMMMUIdx { 2907 /* 2908 * A-profile. 2909 */ 2910 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2911 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2912 2913 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2914 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A, 2915 2916 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A, 2917 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A, 2918 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A, 2919 2920 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A, 2921 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A, 2922 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A, 2923 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A, 2924 2925 /* 2926 * These are not allocated TLBs and are used only for AT system 2927 * instructions or for the first stage of an S12 page table walk. 2928 */ 2929 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2930 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2931 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2932 /* 2933 * Not allocated a TLB: used only for second stage of an S12 page 2934 * table walk, or for descriptor loads during first stage of an S1 2935 * page table walk. Note that if we ever want to have a TLB for this 2936 * then various TLB flush insns which currently are no-ops or flush 2937 * only stage 1 MMU indexes will need to change to flush stage 2. 2938 */ 2939 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB, 2940 2941 /* 2942 * M-profile. 2943 */ 2944 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2945 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2946 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2947 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2948 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2949 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2950 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2951 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2952 } ARMMMUIdx; 2953 2954 /* 2955 * Bit macros for the core-mmu-index values for each index, 2956 * for use when calling tlb_flush_by_mmuidx() and friends. 2957 */ 2958 #define TO_CORE_BIT(NAME) \ 2959 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2960 2961 typedef enum ARMMMUIdxBit { 2962 TO_CORE_BIT(E10_0), 2963 TO_CORE_BIT(E20_0), 2964 TO_CORE_BIT(E10_1), 2965 TO_CORE_BIT(E10_1_PAN), 2966 TO_CORE_BIT(E2), 2967 TO_CORE_BIT(E20_2), 2968 TO_CORE_BIT(E20_2_PAN), 2969 TO_CORE_BIT(SE10_0), 2970 TO_CORE_BIT(SE10_1), 2971 TO_CORE_BIT(SE10_1_PAN), 2972 TO_CORE_BIT(SE3), 2973 2974 TO_CORE_BIT(MUser), 2975 TO_CORE_BIT(MPriv), 2976 TO_CORE_BIT(MUserNegPri), 2977 TO_CORE_BIT(MPrivNegPri), 2978 TO_CORE_BIT(MSUser), 2979 TO_CORE_BIT(MSPriv), 2980 TO_CORE_BIT(MSUserNegPri), 2981 TO_CORE_BIT(MSPrivNegPri), 2982 } ARMMMUIdxBit; 2983 2984 #undef TO_CORE_BIT 2985 2986 #define MMU_USER_IDX 0 2987 2988 /* Indexes used when registering address spaces with cpu_address_space_init */ 2989 typedef enum ARMASIdx { 2990 ARMASIdx_NS = 0, 2991 ARMASIdx_S = 1, 2992 ARMASIdx_TagNS = 2, 2993 ARMASIdx_TagS = 3, 2994 } ARMASIdx; 2995 2996 /* Return the Exception Level targeted by debug exceptions. */ 2997 static inline int arm_debug_target_el(CPUARMState *env) 2998 { 2999 bool secure = arm_is_secure(env); 3000 bool route_to_el2 = false; 3001 3002 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 3003 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 3004 env->cp15.mdcr_el2 & MDCR_TDE; 3005 } 3006 3007 if (route_to_el2) { 3008 return 2; 3009 } else if (arm_feature(env, ARM_FEATURE_EL3) && 3010 !arm_el_is_aa64(env, 3) && secure) { 3011 return 3; 3012 } else { 3013 return 1; 3014 } 3015 } 3016 3017 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3018 { 3019 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3020 * CSSELR is RAZ/WI. 3021 */ 3022 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3023 } 3024 3025 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 3026 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 3027 { 3028 int cur_el = arm_current_el(env); 3029 int debug_el; 3030 3031 if (cur_el == 3) { 3032 return false; 3033 } 3034 3035 /* MDCR_EL3.SDD disables debug events from Secure state */ 3036 if (arm_is_secure_below_el3(env) 3037 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3038 return false; 3039 } 3040 3041 /* 3042 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3043 * while not masking the (D)ebug bit in DAIF. 3044 */ 3045 debug_el = arm_debug_target_el(env); 3046 3047 if (cur_el == debug_el) { 3048 return extract32(env->cp15.mdscr_el1, 13, 1) 3049 && !(env->daif & PSTATE_D); 3050 } 3051 3052 /* Otherwise the debug target needs to be a higher EL */ 3053 return debug_el > cur_el; 3054 } 3055 3056 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3057 { 3058 int el = arm_current_el(env); 3059 3060 if (el == 0 && arm_el_is_aa64(env, 1)) { 3061 return aa64_generate_debug_exceptions(env); 3062 } 3063 3064 if (arm_is_secure(env)) { 3065 int spd; 3066 3067 if (el == 0 && (env->cp15.sder & 1)) { 3068 /* SDER.SUIDEN means debug exceptions from Secure EL0 3069 * are always enabled. Otherwise they are controlled by 3070 * SDCR.SPD like those from other Secure ELs. 3071 */ 3072 return true; 3073 } 3074 3075 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3076 switch (spd) { 3077 case 1: 3078 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3079 case 0: 3080 /* For 0b00 we return true if external secure invasive debug 3081 * is enabled. On real hardware this is controlled by external 3082 * signals to the core. QEMU always permits debug, and behaves 3083 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3084 */ 3085 return true; 3086 case 2: 3087 return false; 3088 case 3: 3089 return true; 3090 } 3091 } 3092 3093 return el != 2; 3094 } 3095 3096 /* Return true if debugging exceptions are currently enabled. 3097 * This corresponds to what in ARM ARM pseudocode would be 3098 * if UsingAArch32() then 3099 * return AArch32.GenerateDebugExceptions() 3100 * else 3101 * return AArch64.GenerateDebugExceptions() 3102 * We choose to push the if() down into this function for clarity, 3103 * since the pseudocode has it at all callsites except for the one in 3104 * CheckSoftwareStep(), where it is elided because both branches would 3105 * always return the same value. 3106 */ 3107 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3108 { 3109 if (env->aarch64) { 3110 return aa64_generate_debug_exceptions(env); 3111 } else { 3112 return aa32_generate_debug_exceptions(env); 3113 } 3114 } 3115 3116 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3117 * implicitly means this always returns false in pre-v8 CPUs.) 3118 */ 3119 static inline bool arm_singlestep_active(CPUARMState *env) 3120 { 3121 return extract32(env->cp15.mdscr_el1, 0, 1) 3122 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3123 && arm_generate_debug_exceptions(env); 3124 } 3125 3126 static inline bool arm_sctlr_b(CPUARMState *env) 3127 { 3128 return 3129 /* We need not implement SCTLR.ITD in user-mode emulation, so 3130 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3131 * This lets people run BE32 binaries with "-cpu any". 3132 */ 3133 #ifndef CONFIG_USER_ONLY 3134 !arm_feature(env, ARM_FEATURE_V7) && 3135 #endif 3136 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3137 } 3138 3139 uint64_t arm_sctlr(CPUARMState *env, int el); 3140 3141 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3142 bool sctlr_b) 3143 { 3144 #ifdef CONFIG_USER_ONLY 3145 /* 3146 * In system mode, BE32 is modelled in line with the 3147 * architecture (as word-invariant big-endianness), where loads 3148 * and stores are done little endian but from addresses which 3149 * are adjusted by XORing with the appropriate constant. So the 3150 * endianness to use for the raw data access is not affected by 3151 * SCTLR.B. 3152 * In user mode, however, we model BE32 as byte-invariant 3153 * big-endianness (because user-only code cannot tell the 3154 * difference), and so we need to use a data access endianness 3155 * that depends on SCTLR.B. 3156 */ 3157 if (sctlr_b) { 3158 return true; 3159 } 3160 #endif 3161 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3162 return env->uncached_cpsr & CPSR_E; 3163 } 3164 3165 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3166 { 3167 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3168 } 3169 3170 /* Return true if the processor is in big-endian mode. */ 3171 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3172 { 3173 if (!is_a64(env)) { 3174 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3175 } else { 3176 int cur_el = arm_current_el(env); 3177 uint64_t sctlr = arm_sctlr(env, cur_el); 3178 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3179 } 3180 } 3181 3182 typedef CPUARMState CPUArchState; 3183 typedef ARMCPU ArchCPU; 3184 3185 #include "exec/cpu-all.h" 3186 3187 /* 3188 * Bit usage in the TB flags field: bit 31 indicates whether we are 3189 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3190 * We put flags which are shared between 32 and 64 bit mode at the top 3191 * of the word, and flags which apply to only one mode at the bottom. 3192 * 3193 * 31 20 18 14 9 0 3194 * +--------------+-----+-----+----------+--------------+ 3195 * | | | TBFLAG_A32 | | 3196 * | | +-----+----------+ TBFLAG_AM32 | 3197 * | TBFLAG_ANY | |TBFLAG_M32| | 3198 * | +-----------+----------+--------------| 3199 * | | TBFLAG_A64 | 3200 * +--------------+-------------------------------------+ 3201 * 31 20 0 3202 * 3203 * Unless otherwise noted, these bits are cached in env->hflags. 3204 */ 3205 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3206 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1) 3207 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */ 3208 FIELD(TBFLAG_ANY, BE_DATA, 28, 1) 3209 FIELD(TBFLAG_ANY, MMUIDX, 24, 4) 3210 /* Target EL if we take a floating-point-disabled exception */ 3211 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2) 3212 /* For A-profile only, target EL for debug exceptions. */ 3213 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2) 3214 3215 /* 3216 * Bit usage when in AArch32 state, both A- and M-profile. 3217 */ 3218 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */ 3219 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */ 3220 3221 /* 3222 * Bit usage when in AArch32 state, for A-profile only. 3223 */ 3224 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */ 3225 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */ 3226 /* 3227 * We store the bottom two bits of the CPAR as TB flags and handle 3228 * checks on the other bits at runtime. This shares the same bits as 3229 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3230 * Not cached, because VECLEN+VECSTRIDE are not cached. 3231 */ 3232 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2) 3233 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */ 3234 FIELD(TBFLAG_A32, SCTLR_B, 15, 1) 3235 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1) 3236 /* 3237 * Indicates whether cp register reads and writes by guest code should access 3238 * the secure or nonsecure bank of banked registers; note that this is not 3239 * the same thing as the current security state of the processor! 3240 */ 3241 FIELD(TBFLAG_A32, NS, 17, 1) 3242 3243 /* 3244 * Bit usage when in AArch32 state, for M-profile only. 3245 */ 3246 /* Handler (ie not Thread) mode */ 3247 FIELD(TBFLAG_M32, HANDLER, 9, 1) 3248 /* Whether we should generate stack-limit checks */ 3249 FIELD(TBFLAG_M32, STACKCHECK, 10, 1) 3250 /* Set if FPCCR.LSPACT is set */ 3251 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */ 3252 /* Set if we must create a new FP context */ 3253 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */ 3254 /* Set if FPCCR.S does not match current security state */ 3255 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */ 3256 3257 /* 3258 * Bit usage when in AArch64 state 3259 */ 3260 FIELD(TBFLAG_A64, TBII, 0, 2) 3261 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3262 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3263 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3264 FIELD(TBFLAG_A64, BT, 9, 1) 3265 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3266 FIELD(TBFLAG_A64, TBID, 12, 2) 3267 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3268 FIELD(TBFLAG_A64, ATA, 15, 1) 3269 FIELD(TBFLAG_A64, TCMA, 16, 2) 3270 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3271 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3272 3273 /** 3274 * cpu_mmu_index: 3275 * @env: The cpu environment 3276 * @ifetch: True for code access, false for data access. 3277 * 3278 * Return the core mmu index for the current translation regime. 3279 * This function is used by generic TCG code paths. 3280 */ 3281 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3282 { 3283 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX); 3284 } 3285 3286 static inline bool bswap_code(bool sctlr_b) 3287 { 3288 #ifdef CONFIG_USER_ONLY 3289 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3290 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3291 * would also end up as a mixed-endian mode with BE code, LE data. 3292 */ 3293 return 3294 #ifdef TARGET_WORDS_BIGENDIAN 3295 1 ^ 3296 #endif 3297 sctlr_b; 3298 #else 3299 /* All code access in ARM is little endian, and there are no loaders 3300 * doing swaps that need to be reversed 3301 */ 3302 return 0; 3303 #endif 3304 } 3305 3306 #ifdef CONFIG_USER_ONLY 3307 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3308 { 3309 return 3310 #ifdef TARGET_WORDS_BIGENDIAN 3311 1 ^ 3312 #endif 3313 arm_cpu_data_is_big_endian(env); 3314 } 3315 #endif 3316 3317 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3318 target_ulong *cs_base, uint32_t *flags); 3319 3320 enum { 3321 QEMU_PSCI_CONDUIT_DISABLED = 0, 3322 QEMU_PSCI_CONDUIT_SMC = 1, 3323 QEMU_PSCI_CONDUIT_HVC = 2, 3324 }; 3325 3326 #ifndef CONFIG_USER_ONLY 3327 /* Return the address space index to use for a memory access */ 3328 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3329 { 3330 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3331 } 3332 3333 /* Return the AddressSpace to use for a memory access 3334 * (which depends on whether the access is S or NS, and whether 3335 * the board gave us a separate AddressSpace for S accesses). 3336 */ 3337 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3338 { 3339 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3340 } 3341 #endif 3342 3343 /** 3344 * arm_register_pre_el_change_hook: 3345 * Register a hook function which will be called immediately before this 3346 * CPU changes exception level or mode. The hook function will be 3347 * passed a pointer to the ARMCPU and the opaque data pointer passed 3348 * to this function when the hook was registered. 3349 * 3350 * Note that if a pre-change hook is called, any registered post-change hooks 3351 * are guaranteed to subsequently be called. 3352 */ 3353 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3354 void *opaque); 3355 /** 3356 * arm_register_el_change_hook: 3357 * Register a hook function which will be called immediately after this 3358 * CPU changes exception level or mode. The hook function will be 3359 * passed a pointer to the ARMCPU and the opaque data pointer passed 3360 * to this function when the hook was registered. 3361 * 3362 * Note that any registered hooks registered here are guaranteed to be called 3363 * if pre-change hooks have been. 3364 */ 3365 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3366 *opaque); 3367 3368 /** 3369 * arm_rebuild_hflags: 3370 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3371 */ 3372 void arm_rebuild_hflags(CPUARMState *env); 3373 3374 /** 3375 * aa32_vfp_dreg: 3376 * Return a pointer to the Dn register within env in 32-bit mode. 3377 */ 3378 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3379 { 3380 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3381 } 3382 3383 /** 3384 * aa32_vfp_qreg: 3385 * Return a pointer to the Qn register within env in 32-bit mode. 3386 */ 3387 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3388 { 3389 return &env->vfp.zregs[regno].d[0]; 3390 } 3391 3392 /** 3393 * aa64_vfp_qreg: 3394 * Return a pointer to the Qn register within env in 64-bit mode. 3395 */ 3396 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3397 { 3398 return &env->vfp.zregs[regno].d[0]; 3399 } 3400 3401 /* Shared between translate-sve.c and sve_helper.c. */ 3402 extern const uint64_t pred_esz_masks[4]; 3403 3404 /* Helper for the macros below, validating the argument type. */ 3405 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) 3406 { 3407 return x; 3408 } 3409 3410 /* 3411 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. 3412 * Using these should be a bit more self-documenting than using the 3413 * generic target bits directly. 3414 */ 3415 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) 3416 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) 3417 3418 /* 3419 * Naming convention for isar_feature functions: 3420 * Functions which test 32-bit ID registers should have _aa32_ in 3421 * their name. Functions which test 64-bit ID registers should have 3422 * _aa64_ in their name. These must only be used in code where we 3423 * know for certain that the CPU has AArch32 or AArch64 respectively 3424 * or where the correct answer for a CPU which doesn't implement that 3425 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3426 * system registers that are specific to that CPU state, for "should 3427 * we let this system register bit be set" tests where the 32-bit 3428 * flavour of the register doesn't have the bit, and so on). 3429 * Functions which simply ask "does this feature exist at all" have 3430 * _any_ in their name, and always return the logical OR of the _aa64_ 3431 * and the _aa32_ function. 3432 */ 3433 3434 /* 3435 * 32-bit feature tests via id registers. 3436 */ 3437 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3438 { 3439 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3440 } 3441 3442 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3443 { 3444 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3445 } 3446 3447 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3448 { 3449 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3450 } 3451 3452 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3453 { 3454 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3455 } 3456 3457 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3458 { 3459 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3460 } 3461 3462 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3463 { 3464 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3465 } 3466 3467 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3468 { 3469 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3470 } 3471 3472 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3473 { 3474 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3475 } 3476 3477 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3478 { 3479 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3480 } 3481 3482 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3483 { 3484 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3485 } 3486 3487 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3488 { 3489 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3490 } 3491 3492 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3493 { 3494 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3495 } 3496 3497 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3498 { 3499 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3500 } 3501 3502 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3503 { 3504 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3505 } 3506 3507 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3508 { 3509 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3510 } 3511 3512 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3513 { 3514 /* 3515 * This is a placeholder for use by VCMA until the rest of 3516 * the ARMv8.2-FP16 extension is implemented for aa32 mode. 3517 * At which point we can properly set and check MVFR1.FPHP. 3518 */ 3519 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3520 } 3521 3522 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3523 { 3524 /* 3525 * Return true if either VFP or SIMD is implemented. 3526 * In this case, a minimum of VFP w/ D0-D15. 3527 */ 3528 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3529 } 3530 3531 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3532 { 3533 /* Return true if D16-D31 are implemented */ 3534 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3535 } 3536 3537 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3538 { 3539 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3540 } 3541 3542 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3543 { 3544 /* Return true if CPU supports single precision floating point, VFPv2 */ 3545 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3546 } 3547 3548 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3549 { 3550 /* Return true if CPU supports single precision floating point, VFPv3 */ 3551 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3552 } 3553 3554 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3555 { 3556 /* Return true if CPU supports double precision floating point, VFPv2 */ 3557 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3558 } 3559 3560 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3561 { 3562 /* Return true if CPU supports double precision floating point, VFPv3 */ 3563 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3564 } 3565 3566 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3567 { 3568 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3569 } 3570 3571 /* 3572 * We always set the FP and SIMD FP16 fields to indicate identical 3573 * levels of support (assuming SIMD is implemented at all), so 3574 * we only need one set of accessors. 3575 */ 3576 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3577 { 3578 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3579 } 3580 3581 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3582 { 3583 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3584 } 3585 3586 /* 3587 * Note that this ID register field covers both VFP and Neon FMAC, 3588 * so should usually be tested in combination with some other 3589 * check that confirms the presence of whichever of VFP or Neon is 3590 * relevant, to avoid accidentally enabling a Neon feature on 3591 * a VFP-no-Neon core or vice-versa. 3592 */ 3593 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3594 { 3595 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3596 } 3597 3598 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3599 { 3600 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3601 } 3602 3603 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3604 { 3605 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3606 } 3607 3608 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3609 { 3610 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3611 } 3612 3613 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3614 { 3615 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3616 } 3617 3618 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3619 { 3620 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3621 } 3622 3623 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3624 { 3625 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3626 } 3627 3628 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3629 { 3630 /* 0xf means "non-standard IMPDEF PMU" */ 3631 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3632 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3633 } 3634 3635 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3636 { 3637 /* 0xf means "non-standard IMPDEF PMU" */ 3638 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3639 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3640 } 3641 3642 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3643 { 3644 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3645 } 3646 3647 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3648 { 3649 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3650 } 3651 3652 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3653 { 3654 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3655 } 3656 3657 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3658 { 3659 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3660 } 3661 3662 /* 3663 * 64-bit feature tests via id registers. 3664 */ 3665 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3666 { 3667 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3668 } 3669 3670 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3671 { 3672 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3673 } 3674 3675 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3676 { 3677 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3678 } 3679 3680 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3681 { 3682 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3683 } 3684 3685 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3686 { 3687 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3688 } 3689 3690 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3691 { 3692 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3693 } 3694 3695 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3696 { 3697 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3698 } 3699 3700 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3701 { 3702 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3703 } 3704 3705 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3706 { 3707 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3708 } 3709 3710 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3711 { 3712 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3713 } 3714 3715 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3716 { 3717 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3718 } 3719 3720 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3721 { 3722 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3723 } 3724 3725 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3726 { 3727 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3728 } 3729 3730 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3731 { 3732 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3733 } 3734 3735 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3736 { 3737 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3738 } 3739 3740 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3741 { 3742 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3743 } 3744 3745 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3746 { 3747 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3748 } 3749 3750 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3751 { 3752 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3753 } 3754 3755 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3756 { 3757 /* 3758 * Note that while QEMU will only implement the architected algorithm 3759 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3760 * defined algorithms, and thus API+GPI, and this predicate controls 3761 * migration of the 128-bit keys. 3762 */ 3763 return (id->id_aa64isar1 & 3764 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3765 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3766 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3767 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3768 } 3769 3770 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3771 { 3772 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3773 } 3774 3775 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3776 { 3777 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3778 } 3779 3780 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3781 { 3782 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3783 } 3784 3785 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3786 { 3787 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3788 } 3789 3790 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3791 { 3792 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3793 } 3794 3795 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3796 { 3797 /* We always set the AdvSIMD and FP fields identically. */ 3798 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3799 } 3800 3801 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3802 { 3803 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3804 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3805 } 3806 3807 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3808 { 3809 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3810 } 3811 3812 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3813 { 3814 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3815 } 3816 3817 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3818 { 3819 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3820 } 3821 3822 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3823 { 3824 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3825 } 3826 3827 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3828 { 3829 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3830 } 3831 3832 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3833 { 3834 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3835 } 3836 3837 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 3838 { 3839 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 3840 } 3841 3842 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3843 { 3844 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3845 } 3846 3847 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 3848 { 3849 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 3850 } 3851 3852 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 3853 { 3854 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 3855 } 3856 3857 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 3858 { 3859 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 3860 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3861 } 3862 3863 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 3864 { 3865 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 3866 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3867 } 3868 3869 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 3870 { 3871 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 3872 } 3873 3874 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 3875 { 3876 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 3877 } 3878 3879 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 3880 { 3881 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 3882 } 3883 3884 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 3885 { 3886 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 3887 } 3888 3889 /* 3890 * Feature tests for "does this exist in either 32-bit or 64-bit?" 3891 */ 3892 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 3893 { 3894 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 3895 } 3896 3897 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 3898 { 3899 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 3900 } 3901 3902 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 3903 { 3904 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 3905 } 3906 3907 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 3908 { 3909 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 3910 } 3911 3912 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 3913 { 3914 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 3915 } 3916 3917 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 3918 { 3919 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 3920 } 3921 3922 /* 3923 * Forward to the above feature tests given an ARMCPU pointer. 3924 */ 3925 #define cpu_isar_feature(name, cpu) \ 3926 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3927 3928 #endif 3929