xref: /openbmc/qemu/target/arm/cpu.h (revision ab4c1361)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 #define VTCR_NSW (1u << 29)
170 #define VTCR_NSA (1u << 30)
171 #define VSTCR_SW VTCR_NSW
172 #define VSTCR_SA VTCR_NSA
173 
174 /* Define a maximum sized vector register.
175  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176  * For 64-bit, this is a 2048-bit SVE register.
177  *
178  * Note that the mapping between S, D, and Q views of the register bank
179  * differs between AArch64 and AArch32.
180  * In AArch32:
181  *  Qn = regs[n].d[1]:regs[n].d[0]
182  *  Dn = regs[n / 2].d[n & 1]
183  *  Sn = regs[n / 4].d[n % 4 / 2],
184  *       bits 31..0 for even n, and bits 63..32 for odd n
185  *       (and regs[16] to regs[31] are inaccessible)
186  * In AArch64:
187  *  Zn = regs[n].d[*]
188  *  Qn = regs[n].d[1]:regs[n].d[0]
189  *  Dn = regs[n].d[0]
190  *  Sn = regs[n].d[0] bits 31..0
191  *  Hn = regs[n].d[0] bits 15..0
192  *
193  * This corresponds to the architecturally defined mapping between
194  * the two execution states, and means we do not need to explicitly
195  * map these registers when changing states.
196  *
197  * Align the data for use with TCG host vector operations.
198  */
199 
200 #ifdef TARGET_AARCH64
201 # define ARM_MAX_VQ    16
202 #else
203 # define ARM_MAX_VQ    1
204 #endif
205 
206 typedef struct ARMVectorReg {
207     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208 } ARMVectorReg;
209 
210 #ifdef TARGET_AARCH64
211 /* In AArch32 mode, predicate registers do not exist at all.  */
212 typedef struct ARMPredicateReg {
213     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
214 } ARMPredicateReg;
215 
216 /* In AArch32 mode, PAC keys do not exist at all.  */
217 typedef struct ARMPACKey {
218     uint64_t lo, hi;
219 } ARMPACKey;
220 #endif
221 
222 /* See the commentary above the TBFLAG field definitions.  */
223 typedef struct CPUARMTBFlags {
224     uint32_t flags;
225     target_ulong flags2;
226 } CPUARMTBFlags;
227 
228 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229 
230 typedef struct NVICState NVICState;
231 
232 typedef struct CPUArchState {
233     /* Regs for current mode.  */
234     uint32_t regs[16];
235 
236     /* 32/64 switch only happens when taking and returning from
237      * exceptions so the overlap semantics are taken care of then
238      * instead of having a complicated union.
239      */
240     /* Regs for A64 mode.  */
241     uint64_t xregs[32];
242     uint64_t pc;
243     /* PSTATE isn't an architectural register for ARMv8. However, it is
244      * convenient for us to assemble the underlying state into a 32 bit format
245      * identical to the architectural format used for the SPSR. (This is also
246      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
247      * 'pstate' register are.) Of the PSTATE bits:
248      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
249      *    semantics as for AArch32, as described in the comments on each field)
250      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
251      *  DAIF (exception masks) are kept in env->daif
252      *  BTYPE is kept in env->btype
253      *  SM and ZA are kept in env->svcr
254      *  all other bits are stored in their correct places in env->pstate
255      */
256     uint32_t pstate;
257     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
258     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
259 
260     /* Cached TBFLAGS state.  See below for which bits are included.  */
261     CPUARMTBFlags hflags;
262 
263     /* Frequently accessed CPSR bits are stored separately for efficiency.
264        This contains all the other bits.  Use cpsr_{read,write} to access
265        the whole CPSR.  */
266     uint32_t uncached_cpsr;
267     uint32_t spsr;
268 
269     /* Banked registers.  */
270     uint64_t banked_spsr[8];
271     uint32_t banked_r13[8];
272     uint32_t banked_r14[8];
273 
274     /* These hold r8-r12.  */
275     uint32_t usr_regs[5];
276     uint32_t fiq_regs[5];
277 
278     /* cpsr flag cache for faster execution */
279     uint32_t CF; /* 0 or 1 */
280     uint32_t VF; /* V is the bit 31. All other bits are undefined */
281     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
282     uint32_t ZF; /* Z set if zero.  */
283     uint32_t QF; /* 0 or 1 */
284     uint32_t GE; /* cpsr[19:16] */
285     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
286     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
287     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
288     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
289 
290     uint64_t elr_el[4]; /* AArch64 exception link regs  */
291     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
292 
293     /* System control coprocessor (cp15) */
294     struct {
295         uint32_t c0_cpuid;
296         union { /* Cache size selection */
297             struct {
298                 uint64_t _unused_csselr0;
299                 uint64_t csselr_ns;
300                 uint64_t _unused_csselr1;
301                 uint64_t csselr_s;
302             };
303             uint64_t csselr_el[4];
304         };
305         union { /* System control register. */
306             struct {
307                 uint64_t _unused_sctlr;
308                 uint64_t sctlr_ns;
309                 uint64_t hsctlr;
310                 uint64_t sctlr_s;
311             };
312             uint64_t sctlr_el[4];
313         };
314         uint64_t vsctlr; /* Virtualization System control register. */
315         uint64_t cpacr_el1; /* Architectural feature access control register */
316         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
317         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
318         uint64_t sder; /* Secure debug enable register. */
319         uint32_t nsacr; /* Non-secure access control register. */
320         union { /* MMU translation table base 0. */
321             struct {
322                 uint64_t _unused_ttbr0_0;
323                 uint64_t ttbr0_ns;
324                 uint64_t _unused_ttbr0_1;
325                 uint64_t ttbr0_s;
326             };
327             uint64_t ttbr0_el[4];
328         };
329         union { /* MMU translation table base 1. */
330             struct {
331                 uint64_t _unused_ttbr1_0;
332                 uint64_t ttbr1_ns;
333                 uint64_t _unused_ttbr1_1;
334                 uint64_t ttbr1_s;
335             };
336             uint64_t ttbr1_el[4];
337         };
338         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
339         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
340         /* MMU translation table base control. */
341         uint64_t tcr_el[4];
342         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
343         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
344         uint32_t c2_data; /* MPU data cacheable bits.  */
345         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
346         union { /* MMU domain access control register
347                  * MPU write buffer control.
348                  */
349             struct {
350                 uint64_t dacr_ns;
351                 uint64_t dacr_s;
352             };
353             struct {
354                 uint64_t dacr32_el2;
355             };
356         };
357         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
358         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
359         uint64_t hcr_el2; /* Hypervisor configuration register */
360         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
361         uint64_t scr_el3; /* Secure configuration register.  */
362         union { /* Fault status registers.  */
363             struct {
364                 uint64_t ifsr_ns;
365                 uint64_t ifsr_s;
366             };
367             struct {
368                 uint64_t ifsr32_el2;
369             };
370         };
371         union {
372             struct {
373                 uint64_t _unused_dfsr;
374                 uint64_t dfsr_ns;
375                 uint64_t hsr;
376                 uint64_t dfsr_s;
377             };
378             uint64_t esr_el[4];
379         };
380         uint32_t c6_region[8]; /* MPU base/size registers.  */
381         union { /* Fault address registers. */
382             struct {
383                 uint64_t _unused_far0;
384 #if HOST_BIG_ENDIAN
385                 uint32_t ifar_ns;
386                 uint32_t dfar_ns;
387                 uint32_t ifar_s;
388                 uint32_t dfar_s;
389 #else
390                 uint32_t dfar_ns;
391                 uint32_t ifar_ns;
392                 uint32_t dfar_s;
393                 uint32_t ifar_s;
394 #endif
395                 uint64_t _unused_far3;
396             };
397             uint64_t far_el[4];
398         };
399         uint64_t hpfar_el2;
400         uint64_t hstr_el2;
401         union { /* Translation result. */
402             struct {
403                 uint64_t _unused_par_0;
404                 uint64_t par_ns;
405                 uint64_t _unused_par_1;
406                 uint64_t par_s;
407             };
408             uint64_t par_el[4];
409         };
410 
411         uint32_t c9_insn; /* Cache lockdown registers.  */
412         uint32_t c9_data;
413         uint64_t c9_pmcr; /* performance monitor control register */
414         uint64_t c9_pmcnten; /* perf monitor counter enables */
415         uint64_t c9_pmovsr; /* perf monitor overflow status */
416         uint64_t c9_pmuserenr; /* perf monitor user enable */
417         uint64_t c9_pmselr; /* perf monitor counter selection register */
418         uint64_t c9_pminten; /* perf monitor interrupt enables */
419         union { /* Memory attribute redirection */
420             struct {
421 #if HOST_BIG_ENDIAN
422                 uint64_t _unused_mair_0;
423                 uint32_t mair1_ns;
424                 uint32_t mair0_ns;
425                 uint64_t _unused_mair_1;
426                 uint32_t mair1_s;
427                 uint32_t mair0_s;
428 #else
429                 uint64_t _unused_mair_0;
430                 uint32_t mair0_ns;
431                 uint32_t mair1_ns;
432                 uint64_t _unused_mair_1;
433                 uint32_t mair0_s;
434                 uint32_t mair1_s;
435 #endif
436             };
437             uint64_t mair_el[4];
438         };
439         union { /* vector base address register */
440             struct {
441                 uint64_t _unused_vbar;
442                 uint64_t vbar_ns;
443                 uint64_t hvbar;
444                 uint64_t vbar_s;
445             };
446             uint64_t vbar_el[4];
447         };
448         uint32_t mvbar; /* (monitor) vector base address register */
449         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
450         struct { /* FCSE PID. */
451             uint32_t fcseidr_ns;
452             uint32_t fcseidr_s;
453         };
454         union { /* Context ID. */
455             struct {
456                 uint64_t _unused_contextidr_0;
457                 uint64_t contextidr_ns;
458                 uint64_t _unused_contextidr_1;
459                 uint64_t contextidr_s;
460             };
461             uint64_t contextidr_el[4];
462         };
463         union { /* User RW Thread register. */
464             struct {
465                 uint64_t tpidrurw_ns;
466                 uint64_t tpidrprw_ns;
467                 uint64_t htpidr;
468                 uint64_t _tpidr_el3;
469             };
470             uint64_t tpidr_el[4];
471         };
472         uint64_t tpidr2_el0;
473         /* The secure banks of these registers don't map anywhere */
474         uint64_t tpidrurw_s;
475         uint64_t tpidrprw_s;
476         uint64_t tpidruro_s;
477 
478         union { /* User RO Thread register. */
479             uint64_t tpidruro_ns;
480             uint64_t tpidrro_el[1];
481         };
482         uint64_t c14_cntfrq; /* Counter Frequency register */
483         uint64_t c14_cntkctl; /* Timer Control register */
484         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
485         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
486         ARMGenericTimer c14_timer[NUM_GTIMERS];
487         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
488         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
489         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
490         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
491         uint32_t c15_threadid; /* TI debugger thread-ID.  */
492         uint32_t c15_config_base_address; /* SCU base address.  */
493         uint32_t c15_diagnostic; /* diagnostic register */
494         uint32_t c15_power_diagnostic;
495         uint32_t c15_power_control; /* power control */
496         uint64_t dbgbvr[16]; /* breakpoint value registers */
497         uint64_t dbgbcr[16]; /* breakpoint control registers */
498         uint64_t dbgwvr[16]; /* watchpoint value registers */
499         uint64_t dbgwcr[16]; /* watchpoint control registers */
500         uint64_t dbgclaim;   /* DBGCLAIM bits */
501         uint64_t mdscr_el1;
502         uint64_t oslsr_el1; /* OS Lock Status */
503         uint64_t osdlr_el1; /* OS DoubleLock status */
504         uint64_t mdcr_el2;
505         uint64_t mdcr_el3;
506         /* Stores the architectural value of the counter *the last time it was
507          * updated* by pmccntr_op_start. Accesses should always be surrounded
508          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
509          * architecturally-correct value is being read/set.
510          */
511         uint64_t c15_ccnt;
512         /* Stores the delta between the architectural value and the underlying
513          * cycle count during normal operation. It is used to update c15_ccnt
514          * to be the correct architectural value before accesses. During
515          * accesses, c15_ccnt_delta contains the underlying count being used
516          * for the access, after which it reverts to the delta value in
517          * pmccntr_op_finish.
518          */
519         uint64_t c15_ccnt_delta;
520         uint64_t c14_pmevcntr[31];
521         uint64_t c14_pmevcntr_delta[31];
522         uint64_t c14_pmevtyper[31];
523         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
524         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
525         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
526         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
527         uint64_t gcr_el1;
528         uint64_t rgsr_el1;
529 
530         /* Minimal RAS registers */
531         uint64_t disr_el1;
532         uint64_t vdisr_el2;
533         uint64_t vsesr_el2;
534 
535         /*
536          * Fine-Grained Trap registers. We store these as arrays so the
537          * access checking code doesn't have to manually select
538          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
539          * FEAT_FGT2 will add more elements to these arrays.
540          */
541         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
542         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
543         uint64_t fgt_exec[1]; /* HFGITR */
544     } cp15;
545 
546     struct {
547         /* M profile has up to 4 stack pointers:
548          * a Main Stack Pointer and a Process Stack Pointer for each
549          * of the Secure and Non-Secure states. (If the CPU doesn't support
550          * the security extension then it has only two SPs.)
551          * In QEMU we always store the currently active SP in regs[13],
552          * and the non-active SP for the current security state in
553          * v7m.other_sp. The stack pointers for the inactive security state
554          * are stored in other_ss_msp and other_ss_psp.
555          * switch_v7m_security_state() is responsible for rearranging them
556          * when we change security state.
557          */
558         uint32_t other_sp;
559         uint32_t other_ss_msp;
560         uint32_t other_ss_psp;
561         uint32_t vecbase[M_REG_NUM_BANKS];
562         uint32_t basepri[M_REG_NUM_BANKS];
563         uint32_t control[M_REG_NUM_BANKS];
564         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
565         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
566         uint32_t hfsr; /* HardFault Status */
567         uint32_t dfsr; /* Debug Fault Status Register */
568         uint32_t sfsr; /* Secure Fault Status Register */
569         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
570         uint32_t bfar; /* BusFault Address */
571         uint32_t sfar; /* Secure Fault Address Register */
572         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
573         int exception;
574         uint32_t primask[M_REG_NUM_BANKS];
575         uint32_t faultmask[M_REG_NUM_BANKS];
576         uint32_t aircr; /* only holds r/w state if security extn implemented */
577         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
578         uint32_t csselr[M_REG_NUM_BANKS];
579         uint32_t scr[M_REG_NUM_BANKS];
580         uint32_t msplim[M_REG_NUM_BANKS];
581         uint32_t psplim[M_REG_NUM_BANKS];
582         uint32_t fpcar[M_REG_NUM_BANKS];
583         uint32_t fpccr[M_REG_NUM_BANKS];
584         uint32_t fpdscr[M_REG_NUM_BANKS];
585         uint32_t cpacr[M_REG_NUM_BANKS];
586         uint32_t nsacr;
587         uint32_t ltpsize;
588         uint32_t vpr;
589     } v7m;
590 
591     /* Information associated with an exception about to be taken:
592      * code which raises an exception must set cs->exception_index and
593      * the relevant parts of this structure; the cpu_do_interrupt function
594      * will then set the guest-visible registers as part of the exception
595      * entry process.
596      */
597     struct {
598         uint32_t syndrome; /* AArch64 format syndrome register */
599         uint32_t fsr; /* AArch32 format fault status register info */
600         uint64_t vaddress; /* virtual addr associated with exception, if any */
601         uint32_t target_el; /* EL the exception should be targeted for */
602         /* If we implement EL2 we will also need to store information
603          * about the intermediate physical address for stage 2 faults.
604          */
605     } exception;
606 
607     /* Information associated with an SError */
608     struct {
609         uint8_t pending;
610         uint8_t has_esr;
611         uint64_t esr;
612     } serror;
613 
614     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
615 
616     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
617     uint32_t irq_line_state;
618 
619     /* Thumb-2 EE state.  */
620     uint32_t teecr;
621     uint32_t teehbr;
622 
623     /* VFP coprocessor state.  */
624     struct {
625         ARMVectorReg zregs[32];
626 
627 #ifdef TARGET_AARCH64
628         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
629 #define FFR_PRED_NUM 16
630         ARMPredicateReg pregs[17];
631         /* Scratch space for aa64 sve predicate temporary.  */
632         ARMPredicateReg preg_tmp;
633 #endif
634 
635         /* We store these fpcsr fields separately for convenience.  */
636         uint32_t qc[4] QEMU_ALIGNED(16);
637         int vec_len;
638         int vec_stride;
639 
640         uint32_t xregs[16];
641 
642         /* Scratch space for aa32 neon expansion.  */
643         uint32_t scratch[8];
644 
645         /* There are a number of distinct float control structures:
646          *
647          *  fp_status: is the "normal" fp status.
648          *  fp_status_fp16: used for half-precision calculations
649          *  standard_fp_status : the ARM "Standard FPSCR Value"
650          *  standard_fp_status_fp16 : used for half-precision
651          *       calculations with the ARM "Standard FPSCR Value"
652          *
653          * Half-precision operations are governed by a separate
654          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
655          * status structure to control this.
656          *
657          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
658          * round-to-nearest and is used by any operations (generally
659          * Neon) which the architecture defines as controlled by the
660          * standard FPSCR value rather than the FPSCR.
661          *
662          * The "standard FPSCR but for fp16 ops" is needed because
663          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
664          * using a fixed value for it.
665          *
666          * To avoid having to transfer exception bits around, we simply
667          * say that the FPSCR cumulative exception flags are the logical
668          * OR of the flags in the four fp statuses. This relies on the
669          * only thing which needs to read the exception flags being
670          * an explicit FPSCR read.
671          */
672         float_status fp_status;
673         float_status fp_status_f16;
674         float_status standard_fp_status;
675         float_status standard_fp_status_f16;
676 
677         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
678         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
679     } vfp;
680     uint64_t exclusive_addr;
681     uint64_t exclusive_val;
682     uint64_t exclusive_high;
683 
684     /* iwMMXt coprocessor state.  */
685     struct {
686         uint64_t regs[16];
687         uint64_t val;
688 
689         uint32_t cregs[16];
690     } iwmmxt;
691 
692 #ifdef TARGET_AARCH64
693     struct {
694         ARMPACKey apia;
695         ARMPACKey apib;
696         ARMPACKey apda;
697         ARMPACKey apdb;
698         ARMPACKey apga;
699     } keys;
700 
701     uint64_t scxtnum_el[4];
702 
703     /*
704      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
705      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
706      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
707      * When SVL is less than the architectural maximum, the accessible
708      * storage is restricted, such that if the SVL is X bytes the guest can
709      * see only the bottom X elements of zarray[], and only the least
710      * significant X bytes of each element of the array. (In other words,
711      * the observable part is always square.)
712      *
713      * The ZA storage can also be considered as a set of square tiles of
714      * elements of different sizes. The mapping from tiles to the ZA array
715      * is architecturally defined, such that for tiles of elements of esz
716      * bytes, the Nth row (or "horizontal slice") of tile T is in
717      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
718      * in the ZA storage, because its rows are striped through the ZA array.
719      *
720      * Because this is so large, keep this toward the end of the reset area,
721      * to keep the offsets into the rest of the structure smaller.
722      */
723     ARMVectorReg zarray[ARM_MAX_VQ * 16];
724 #endif
725 
726     struct CPUBreakpoint *cpu_breakpoint[16];
727     struct CPUWatchpoint *cpu_watchpoint[16];
728 
729     /* Optional fault info across tlb lookup. */
730     ARMMMUFaultInfo *tlb_fi;
731 
732     /* Fields up to this point are cleared by a CPU reset */
733     struct {} end_reset_fields;
734 
735     /* Fields after this point are preserved across CPU reset. */
736 
737     /* Internal CPU feature flags.  */
738     uint64_t features;
739 
740     /* PMSAv7 MPU */
741     struct {
742         uint32_t *drbar;
743         uint32_t *drsr;
744         uint32_t *dracr;
745         uint32_t rnr[M_REG_NUM_BANKS];
746     } pmsav7;
747 
748     /* PMSAv8 MPU */
749     struct {
750         /* The PMSAv8 implementation also shares some PMSAv7 config
751          * and state:
752          *  pmsav7.rnr (region number register)
753          *  pmsav7_dregion (number of configured regions)
754          */
755         uint32_t *rbar[M_REG_NUM_BANKS];
756         uint32_t *rlar[M_REG_NUM_BANKS];
757         uint32_t *hprbar;
758         uint32_t *hprlar;
759         uint32_t mair0[M_REG_NUM_BANKS];
760         uint32_t mair1[M_REG_NUM_BANKS];
761         uint32_t hprselr;
762     } pmsav8;
763 
764     /* v8M SAU */
765     struct {
766         uint32_t *rbar;
767         uint32_t *rlar;
768         uint32_t rnr;
769         uint32_t ctrl;
770     } sau;
771 
772 #if !defined(CONFIG_USER_ONLY)
773     NVICState *nvic;
774     const struct arm_boot_info *boot_info;
775     /* Store GICv3CPUState to access from this struct */
776     void *gicv3state;
777 #else /* CONFIG_USER_ONLY */
778     /* For usermode syscall translation.  */
779     bool eabi;
780 #endif /* CONFIG_USER_ONLY */
781 
782 #ifdef TARGET_TAGGED_ADDRESSES
783     /* Linux syscall tagged address support */
784     bool tagged_addr_enable;
785 #endif
786 } CPUARMState;
787 
788 static inline void set_feature(CPUARMState *env, int feature)
789 {
790     env->features |= 1ULL << feature;
791 }
792 
793 static inline void unset_feature(CPUARMState *env, int feature)
794 {
795     env->features &= ~(1ULL << feature);
796 }
797 
798 /**
799  * ARMELChangeHookFn:
800  * type of a function which can be registered via arm_register_el_change_hook()
801  * to get callbacks when the CPU changes its exception level or mode.
802  */
803 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
804 typedef struct ARMELChangeHook ARMELChangeHook;
805 struct ARMELChangeHook {
806     ARMELChangeHookFn *hook;
807     void *opaque;
808     QLIST_ENTRY(ARMELChangeHook) node;
809 };
810 
811 /* These values map onto the return values for
812  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
813 typedef enum ARMPSCIState {
814     PSCI_ON = 0,
815     PSCI_OFF = 1,
816     PSCI_ON_PENDING = 2
817 } ARMPSCIState;
818 
819 typedef struct ARMISARegisters ARMISARegisters;
820 
821 /*
822  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
823  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
824  *
825  * While processing properties during initialization, corresponding init bits
826  * are set for bits in sve_vq_map that have been set by properties.
827  *
828  * Bits set in supported represent valid vector lengths for the CPU type.
829  */
830 typedef struct {
831     uint32_t map, init, supported;
832 } ARMVQMap;
833 
834 /**
835  * ARMCPU:
836  * @env: #CPUARMState
837  *
838  * An ARM CPU core.
839  */
840 struct ArchCPU {
841     /*< private >*/
842     CPUState parent_obj;
843     /*< public >*/
844 
845     CPUNegativeOffsetState neg;
846     CPUARMState env;
847 
848     /* Coprocessor information */
849     GHashTable *cp_regs;
850     /* For marshalling (mostly coprocessor) register state between the
851      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
852      * we use these arrays.
853      */
854     /* List of register indexes managed via these arrays; (full KVM style
855      * 64 bit indexes, not CPRegInfo 32 bit indexes)
856      */
857     uint64_t *cpreg_indexes;
858     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
859     uint64_t *cpreg_values;
860     /* Length of the indexes, values, reset_values arrays */
861     int32_t cpreg_array_len;
862     /* These are used only for migration: incoming data arrives in
863      * these fields and is sanity checked in post_load before copying
864      * to the working data structures above.
865      */
866     uint64_t *cpreg_vmstate_indexes;
867     uint64_t *cpreg_vmstate_values;
868     int32_t cpreg_vmstate_array_len;
869 
870     DynamicGDBXMLInfo dyn_sysreg_xml;
871     DynamicGDBXMLInfo dyn_svereg_xml;
872 
873     /* Timers used by the generic (architected) timer */
874     QEMUTimer *gt_timer[NUM_GTIMERS];
875     /*
876      * Timer used by the PMU. Its state is restored after migration by
877      * pmu_op_finish() - it does not need other handling during migration
878      */
879     QEMUTimer *pmu_timer;
880     /* GPIO outputs for generic timer */
881     qemu_irq gt_timer_outputs[NUM_GTIMERS];
882     /* GPIO output for GICv3 maintenance interrupt signal */
883     qemu_irq gicv3_maintenance_interrupt;
884     /* GPIO output for the PMU interrupt */
885     qemu_irq pmu_interrupt;
886 
887     /* MemoryRegion to use for secure physical accesses */
888     MemoryRegion *secure_memory;
889 
890     /* MemoryRegion to use for allocation tag accesses */
891     MemoryRegion *tag_memory;
892     MemoryRegion *secure_tag_memory;
893 
894     /* For v8M, pointer to the IDAU interface provided by board/SoC */
895     Object *idau;
896 
897     /* 'compatible' string for this CPU for Linux device trees */
898     const char *dtb_compatible;
899 
900     /* PSCI version for this CPU
901      * Bits[31:16] = Major Version
902      * Bits[15:0] = Minor Version
903      */
904     uint32_t psci_version;
905 
906     /* Current power state, access guarded by BQL */
907     ARMPSCIState power_state;
908 
909     /* CPU has virtualization extension */
910     bool has_el2;
911     /* CPU has security extension */
912     bool has_el3;
913     /* CPU has PMU (Performance Monitor Unit) */
914     bool has_pmu;
915     /* CPU has VFP */
916     bool has_vfp;
917     /* CPU has Neon */
918     bool has_neon;
919     /* CPU has M-profile DSP extension */
920     bool has_dsp;
921 
922     /* CPU has memory protection unit */
923     bool has_mpu;
924     /* PMSAv7 MPU number of supported regions */
925     uint32_t pmsav7_dregion;
926     /* PMSAv8 MPU number of supported hyp regions */
927     uint32_t pmsav8r_hdregion;
928     /* v8M SAU number of supported regions */
929     uint32_t sau_sregion;
930 
931     /* PSCI conduit used to invoke PSCI methods
932      * 0 - disabled, 1 - smc, 2 - hvc
933      */
934     uint32_t psci_conduit;
935 
936     /* For v8M, initial value of the Secure VTOR */
937     uint32_t init_svtor;
938     /* For v8M, initial value of the Non-secure VTOR */
939     uint32_t init_nsvtor;
940 
941     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
942      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
943      */
944     uint32_t kvm_target;
945 
946     /* KVM init features for this CPU */
947     uint32_t kvm_init_features[7];
948 
949     /* KVM CPU state */
950 
951     /* KVM virtual time adjustment */
952     bool kvm_adjvtime;
953     bool kvm_vtime_dirty;
954     uint64_t kvm_vtime;
955 
956     /* KVM steal time */
957     OnOffAuto kvm_steal_time;
958 
959     /* Uniprocessor system with MP extensions */
960     bool mp_is_up;
961 
962     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
963      * and the probe failed (so we need to report the error in realize)
964      */
965     bool host_cpu_probe_failed;
966 
967     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
968      * register.
969      */
970     int32_t core_count;
971 
972     /* The instance init functions for implementation-specific subclasses
973      * set these fields to specify the implementation-dependent values of
974      * various constant registers and reset values of non-constant
975      * registers.
976      * Some of these might become QOM properties eventually.
977      * Field names match the official register names as defined in the
978      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
979      * is used for reset values of non-constant registers; no reset_
980      * prefix means a constant register.
981      * Some of these registers are split out into a substructure that
982      * is shared with the translators to control the ISA.
983      *
984      * Note that if you add an ID register to the ARMISARegisters struct
985      * you need to also update the 32-bit and 64-bit versions of the
986      * kvm_arm_get_host_cpu_features() function to correctly populate the
987      * field by reading the value from the KVM vCPU.
988      */
989     struct ARMISARegisters {
990         uint32_t id_isar0;
991         uint32_t id_isar1;
992         uint32_t id_isar2;
993         uint32_t id_isar3;
994         uint32_t id_isar4;
995         uint32_t id_isar5;
996         uint32_t id_isar6;
997         uint32_t id_mmfr0;
998         uint32_t id_mmfr1;
999         uint32_t id_mmfr2;
1000         uint32_t id_mmfr3;
1001         uint32_t id_mmfr4;
1002         uint32_t id_mmfr5;
1003         uint32_t id_pfr0;
1004         uint32_t id_pfr1;
1005         uint32_t id_pfr2;
1006         uint32_t mvfr0;
1007         uint32_t mvfr1;
1008         uint32_t mvfr2;
1009         uint32_t id_dfr0;
1010         uint32_t id_dfr1;
1011         uint32_t dbgdidr;
1012         uint32_t dbgdevid;
1013         uint32_t dbgdevid1;
1014         uint64_t id_aa64isar0;
1015         uint64_t id_aa64isar1;
1016         uint64_t id_aa64pfr0;
1017         uint64_t id_aa64pfr1;
1018         uint64_t id_aa64mmfr0;
1019         uint64_t id_aa64mmfr1;
1020         uint64_t id_aa64mmfr2;
1021         uint64_t id_aa64dfr0;
1022         uint64_t id_aa64dfr1;
1023         uint64_t id_aa64zfr0;
1024         uint64_t id_aa64smfr0;
1025         uint64_t reset_pmcr_el0;
1026     } isar;
1027     uint64_t midr;
1028     uint32_t revidr;
1029     uint32_t reset_fpsid;
1030     uint64_t ctr;
1031     uint32_t reset_sctlr;
1032     uint64_t pmceid0;
1033     uint64_t pmceid1;
1034     uint32_t id_afr0;
1035     uint64_t id_aa64afr0;
1036     uint64_t id_aa64afr1;
1037     uint64_t clidr;
1038     uint64_t mp_affinity; /* MP ID without feature bits */
1039     /* The elements of this array are the CCSIDR values for each cache,
1040      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1041      */
1042     uint64_t ccsidr[16];
1043     uint64_t reset_cbar;
1044     uint32_t reset_auxcr;
1045     bool reset_hivecs;
1046 
1047     /*
1048      * Intermediate values used during property parsing.
1049      * Once finalized, the values should be read from ID_AA64*.
1050      */
1051     bool prop_pauth;
1052     bool prop_pauth_impdef;
1053     bool prop_lpa2;
1054 
1055     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1056     uint32_t dcz_blocksize;
1057     uint64_t rvbar_prop; /* Property/input signals.  */
1058 
1059     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1060     int gic_num_lrs; /* number of list registers */
1061     int gic_vpribits; /* number of virtual priority bits */
1062     int gic_vprebits; /* number of virtual preemption bits */
1063     int gic_pribits; /* number of physical priority bits */
1064 
1065     /* Whether the cfgend input is high (i.e. this CPU should reset into
1066      * big-endian mode).  This setting isn't used directly: instead it modifies
1067      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1068      * architecture version.
1069      */
1070     bool cfgend;
1071 
1072     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1073     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1074 
1075     int32_t node_id; /* NUMA node this CPU belongs to */
1076 
1077     /* Used to synchronize KVM and QEMU in-kernel device levels */
1078     uint8_t device_irq_level;
1079 
1080     /* Used to set the maximum vector length the cpu will support.  */
1081     uint32_t sve_max_vq;
1082 
1083 #ifdef CONFIG_USER_ONLY
1084     /* Used to set the default vector length at process start. */
1085     uint32_t sve_default_vq;
1086     uint32_t sme_default_vq;
1087 #endif
1088 
1089     ARMVQMap sve_vq;
1090     ARMVQMap sme_vq;
1091 
1092     /* Generic timer counter frequency, in Hz */
1093     uint64_t gt_cntfrq_hz;
1094 };
1095 
1096 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1097 
1098 void arm_cpu_post_init(Object *obj);
1099 
1100 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1101 
1102 #ifndef CONFIG_USER_ONLY
1103 extern const VMStateDescription vmstate_arm_cpu;
1104 
1105 void arm_cpu_do_interrupt(CPUState *cpu);
1106 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1107 
1108 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1109                                          MemTxAttrs *attrs);
1110 #endif /* !CONFIG_USER_ONLY */
1111 
1112 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1113 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1114 
1115 /*
1116  * Helpers to dynamically generates XML descriptions of the sysregs
1117  * and SVE registers. Returns the number of registers in each set.
1118  */
1119 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1120 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1121 
1122 /* Returns the dynamically generated XML for the gdb stub.
1123  * Returns a pointer to the XML contents for the specified XML file or NULL
1124  * if the XML name doesn't match the predefined one.
1125  */
1126 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1127 
1128 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1129                              int cpuid, DumpState *s);
1130 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1131                              int cpuid, DumpState *s);
1132 
1133 #ifdef TARGET_AARCH64
1134 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1135 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1136 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1137 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1138                            int new_el, bool el0_a64);
1139 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1140 
1141 /*
1142  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1143  * The byte at offset i from the start of the in-memory representation contains
1144  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1145  * lowest offsets are stored in the lowest memory addresses, then that nearly
1146  * matches QEMU's representation, which is to use an array of host-endian
1147  * uint64_t's, where the lower offsets are at the lower indices. To complete
1148  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1149  */
1150 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1151 {
1152 #if HOST_BIG_ENDIAN
1153     int i;
1154 
1155     for (i = 0; i < nr; ++i) {
1156         dst[i] = bswap64(src[i]);
1157     }
1158 
1159     return dst;
1160 #else
1161     return src;
1162 #endif
1163 }
1164 
1165 #else
1166 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1167 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1168                                          int n, bool a)
1169 { }
1170 #endif
1171 
1172 void aarch64_sync_32_to_64(CPUARMState *env);
1173 void aarch64_sync_64_to_32(CPUARMState *env);
1174 
1175 int fp_exception_el(CPUARMState *env, int cur_el);
1176 int sve_exception_el(CPUARMState *env, int cur_el);
1177 int sme_exception_el(CPUARMState *env, int cur_el);
1178 
1179 /**
1180  * sve_vqm1_for_el_sm:
1181  * @env: CPUARMState
1182  * @el: exception level
1183  * @sm: streaming mode
1184  *
1185  * Compute the current vector length for @el & @sm, in units of
1186  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1187  * If @sm, compute for SVL, otherwise NVL.
1188  */
1189 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1190 
1191 /* Likewise, but using @sm = PSTATE.SM. */
1192 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1193 
1194 static inline bool is_a64(CPUARMState *env)
1195 {
1196     return env->aarch64;
1197 }
1198 
1199 /**
1200  * pmu_op_start/finish
1201  * @env: CPUARMState
1202  *
1203  * Convert all PMU counters between their delta form (the typical mode when
1204  * they are enabled) and the guest-visible values. These two calls must
1205  * surround any action which might affect the counters.
1206  */
1207 void pmu_op_start(CPUARMState *env);
1208 void pmu_op_finish(CPUARMState *env);
1209 
1210 /*
1211  * Called when a PMU counter is due to overflow
1212  */
1213 void arm_pmu_timer_cb(void *opaque);
1214 
1215 /**
1216  * Functions to register as EL change hooks for PMU mode filtering
1217  */
1218 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1219 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1220 
1221 /*
1222  * pmu_init
1223  * @cpu: ARMCPU
1224  *
1225  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1226  * for the current configuration
1227  */
1228 void pmu_init(ARMCPU *cpu);
1229 
1230 /* SCTLR bit meanings. Several bits have been reused in newer
1231  * versions of the architecture; in that case we define constants
1232  * for both old and new bit meanings. Code which tests against those
1233  * bits should probably check or otherwise arrange that the CPU
1234  * is the architectural version it expects.
1235  */
1236 #define SCTLR_M       (1U << 0)
1237 #define SCTLR_A       (1U << 1)
1238 #define SCTLR_C       (1U << 2)
1239 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1240 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1241 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1242 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1243 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1244 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1245 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1246 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1247 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1248 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1249 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1250 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1251 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1252 #define SCTLR_SED     (1U << 8) /* v8 onward */
1253 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1254 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1255 #define SCTLR_F       (1U << 10) /* up to v6 */
1256 #define SCTLR_SW      (1U << 10) /* v7 */
1257 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1258 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1259 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1260 #define SCTLR_I       (1U << 12)
1261 #define SCTLR_V       (1U << 13) /* AArch32 only */
1262 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1263 #define SCTLR_RR      (1U << 14) /* up to v7 */
1264 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1265 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1266 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1267 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1268 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1269 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1270 #define SCTLR_BR      (1U << 17) /* PMSA only */
1271 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1272 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1273 #define SCTLR_WXN     (1U << 19)
1274 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1275 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1276 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1277 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1278 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1279 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1280 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1281 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1282 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1283 #define SCTLR_VE      (1U << 24) /* up to v7 */
1284 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1285 #define SCTLR_EE      (1U << 25)
1286 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1287 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1288 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1289 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1290 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1291 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1292 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1293 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1294 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1295 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1296 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1297 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1298 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1299 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1300 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1301 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1302 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1303 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1304 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1305 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1306 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1307 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1308 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1309 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1310 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1311 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1312 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1313 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1314 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1315 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1316 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1317 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1318 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1319 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1320 
1321 /* Bit definitions for CPACR (AArch32 only) */
1322 FIELD(CPACR, CP10, 20, 2)
1323 FIELD(CPACR, CP11, 22, 2)
1324 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1325 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1326 FIELD(CPACR, ASEDIS, 31, 1)
1327 
1328 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1329 FIELD(CPACR_EL1, ZEN, 16, 2)
1330 FIELD(CPACR_EL1, FPEN, 20, 2)
1331 FIELD(CPACR_EL1, SMEN, 24, 2)
1332 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1333 
1334 /* Bit definitions for HCPTR (AArch32 only) */
1335 FIELD(HCPTR, TCP10, 10, 1)
1336 FIELD(HCPTR, TCP11, 11, 1)
1337 FIELD(HCPTR, TASE, 15, 1)
1338 FIELD(HCPTR, TTA, 20, 1)
1339 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1340 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1341 
1342 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1343 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1344 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1345 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1346 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1347 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1348 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1349 FIELD(CPTR_EL2, TTA, 28, 1)
1350 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1351 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1352 
1353 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1354 FIELD(CPTR_EL3, EZ, 8, 1)
1355 FIELD(CPTR_EL3, TFP, 10, 1)
1356 FIELD(CPTR_EL3, ESM, 12, 1)
1357 FIELD(CPTR_EL3, TTA, 20, 1)
1358 FIELD(CPTR_EL3, TAM, 30, 1)
1359 FIELD(CPTR_EL3, TCPAC, 31, 1)
1360 
1361 #define MDCR_MTPME    (1U << 28)
1362 #define MDCR_TDCC     (1U << 27)
1363 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1364 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1365 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1366 #define MDCR_EPMAD    (1U << 21)
1367 #define MDCR_EDAD     (1U << 20)
1368 #define MDCR_TTRF     (1U << 19)
1369 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1370 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1371 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1372 #define MDCR_SDD      (1U << 16)
1373 #define MDCR_SPD      (3U << 14)
1374 #define MDCR_TDRA     (1U << 11)
1375 #define MDCR_TDOSA    (1U << 10)
1376 #define MDCR_TDA      (1U << 9)
1377 #define MDCR_TDE      (1U << 8)
1378 #define MDCR_HPME     (1U << 7)
1379 #define MDCR_TPM      (1U << 6)
1380 #define MDCR_TPMCR    (1U << 5)
1381 #define MDCR_HPMN     (0x1fU)
1382 
1383 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1384 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1385                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1386                          MDCR_STE | MDCR_SPME | MDCR_SPD)
1387 
1388 #define CPSR_M (0x1fU)
1389 #define CPSR_T (1U << 5)
1390 #define CPSR_F (1U << 6)
1391 #define CPSR_I (1U << 7)
1392 #define CPSR_A (1U << 8)
1393 #define CPSR_E (1U << 9)
1394 #define CPSR_IT_2_7 (0xfc00U)
1395 #define CPSR_GE (0xfU << 16)
1396 #define CPSR_IL (1U << 20)
1397 #define CPSR_DIT (1U << 21)
1398 #define CPSR_PAN (1U << 22)
1399 #define CPSR_SSBS (1U << 23)
1400 #define CPSR_J (1U << 24)
1401 #define CPSR_IT_0_1 (3U << 25)
1402 #define CPSR_Q (1U << 27)
1403 #define CPSR_V (1U << 28)
1404 #define CPSR_C (1U << 29)
1405 #define CPSR_Z (1U << 30)
1406 #define CPSR_N (1U << 31)
1407 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1408 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1409 
1410 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1411 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1412     | CPSR_NZCV)
1413 /* Bits writable in user mode.  */
1414 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1415 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1416 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1417 
1418 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1419 #define XPSR_EXCP 0x1ffU
1420 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1421 #define XPSR_IT_2_7 CPSR_IT_2_7
1422 #define XPSR_GE CPSR_GE
1423 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1424 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1425 #define XPSR_IT_0_1 CPSR_IT_0_1
1426 #define XPSR_Q CPSR_Q
1427 #define XPSR_V CPSR_V
1428 #define XPSR_C CPSR_C
1429 #define XPSR_Z CPSR_Z
1430 #define XPSR_N CPSR_N
1431 #define XPSR_NZCV CPSR_NZCV
1432 #define XPSR_IT CPSR_IT
1433 
1434 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1435 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1436 #define TTBCR_PD0    (1U << 4)
1437 #define TTBCR_PD1    (1U << 5)
1438 #define TTBCR_EPD0   (1U << 7)
1439 #define TTBCR_IRGN0  (3U << 8)
1440 #define TTBCR_ORGN0  (3U << 10)
1441 #define TTBCR_SH0    (3U << 12)
1442 #define TTBCR_T1SZ   (3U << 16)
1443 #define TTBCR_A1     (1U << 22)
1444 #define TTBCR_EPD1   (1U << 23)
1445 #define TTBCR_IRGN1  (3U << 24)
1446 #define TTBCR_ORGN1  (3U << 26)
1447 #define TTBCR_SH1    (1U << 28)
1448 #define TTBCR_EAE    (1U << 31)
1449 
1450 FIELD(VTCR, T0SZ, 0, 6)
1451 FIELD(VTCR, SL0, 6, 2)
1452 FIELD(VTCR, IRGN0, 8, 2)
1453 FIELD(VTCR, ORGN0, 10, 2)
1454 FIELD(VTCR, SH0, 12, 2)
1455 FIELD(VTCR, TG0, 14, 2)
1456 FIELD(VTCR, PS, 16, 3)
1457 FIELD(VTCR, VS, 19, 1)
1458 FIELD(VTCR, HA, 21, 1)
1459 FIELD(VTCR, HD, 22, 1)
1460 FIELD(VTCR, HWU59, 25, 1)
1461 FIELD(VTCR, HWU60, 26, 1)
1462 FIELD(VTCR, HWU61, 27, 1)
1463 FIELD(VTCR, HWU62, 28, 1)
1464 FIELD(VTCR, NSW, 29, 1)
1465 FIELD(VTCR, NSA, 30, 1)
1466 FIELD(VTCR, DS, 32, 1)
1467 FIELD(VTCR, SL2, 33, 1)
1468 
1469 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1470  * Only these are valid when in AArch64 mode; in
1471  * AArch32 mode SPSRs are basically CPSR-format.
1472  */
1473 #define PSTATE_SP (1U)
1474 #define PSTATE_M (0xFU)
1475 #define PSTATE_nRW (1U << 4)
1476 #define PSTATE_F (1U << 6)
1477 #define PSTATE_I (1U << 7)
1478 #define PSTATE_A (1U << 8)
1479 #define PSTATE_D (1U << 9)
1480 #define PSTATE_BTYPE (3U << 10)
1481 #define PSTATE_SSBS (1U << 12)
1482 #define PSTATE_IL (1U << 20)
1483 #define PSTATE_SS (1U << 21)
1484 #define PSTATE_PAN (1U << 22)
1485 #define PSTATE_UAO (1U << 23)
1486 #define PSTATE_DIT (1U << 24)
1487 #define PSTATE_TCO (1U << 25)
1488 #define PSTATE_V (1U << 28)
1489 #define PSTATE_C (1U << 29)
1490 #define PSTATE_Z (1U << 30)
1491 #define PSTATE_N (1U << 31)
1492 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1493 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1494 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1495 /* Mode values for AArch64 */
1496 #define PSTATE_MODE_EL3h 13
1497 #define PSTATE_MODE_EL3t 12
1498 #define PSTATE_MODE_EL2h 9
1499 #define PSTATE_MODE_EL2t 8
1500 #define PSTATE_MODE_EL1h 5
1501 #define PSTATE_MODE_EL1t 4
1502 #define PSTATE_MODE_EL0t 0
1503 
1504 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1505 FIELD(SVCR, SM, 0, 1)
1506 FIELD(SVCR, ZA, 1, 1)
1507 
1508 /* Fields for SMCR_ELx. */
1509 FIELD(SMCR, LEN, 0, 4)
1510 FIELD(SMCR, FA64, 31, 1)
1511 
1512 /* Write a new value to v7m.exception, thus transitioning into or out
1513  * of Handler mode; this may result in a change of active stack pointer.
1514  */
1515 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1516 
1517 /* Map EL and handler into a PSTATE_MODE.  */
1518 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1519 {
1520     return (el << 2) | handler;
1521 }
1522 
1523 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1524  * interprocessing, so we don't attempt to sync with the cpsr state used by
1525  * the 32 bit decoder.
1526  */
1527 static inline uint32_t pstate_read(CPUARMState *env)
1528 {
1529     int ZF;
1530 
1531     ZF = (env->ZF == 0);
1532     return (env->NF & 0x80000000) | (ZF << 30)
1533         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1534         | env->pstate | env->daif | (env->btype << 10);
1535 }
1536 
1537 static inline void pstate_write(CPUARMState *env, uint32_t val)
1538 {
1539     env->ZF = (~val) & PSTATE_Z;
1540     env->NF = val;
1541     env->CF = (val >> 29) & 1;
1542     env->VF = (val << 3) & 0x80000000;
1543     env->daif = val & PSTATE_DAIF;
1544     env->btype = (val >> 10) & 3;
1545     env->pstate = val & ~CACHED_PSTATE_BITS;
1546 }
1547 
1548 /* Return the current CPSR value.  */
1549 uint32_t cpsr_read(CPUARMState *env);
1550 
1551 typedef enum CPSRWriteType {
1552     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1553     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1554     CPSRWriteRaw = 2,
1555         /* trust values, no reg bank switch, no hflags rebuild */
1556     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1557 } CPSRWriteType;
1558 
1559 /*
1560  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1561  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1562  * correspond to TB flags bits cached in the hflags, unless @write_type
1563  * is CPSRWriteRaw.
1564  */
1565 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1566                 CPSRWriteType write_type);
1567 
1568 /* Return the current xPSR value.  */
1569 static inline uint32_t xpsr_read(CPUARMState *env)
1570 {
1571     int ZF;
1572     ZF = (env->ZF == 0);
1573     return (env->NF & 0x80000000) | (ZF << 30)
1574         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1575         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1576         | ((env->condexec_bits & 0xfc) << 8)
1577         | (env->GE << 16)
1578         | env->v7m.exception;
1579 }
1580 
1581 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1582 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1583 {
1584     if (mask & XPSR_NZCV) {
1585         env->ZF = (~val) & XPSR_Z;
1586         env->NF = val;
1587         env->CF = (val >> 29) & 1;
1588         env->VF = (val << 3) & 0x80000000;
1589     }
1590     if (mask & XPSR_Q) {
1591         env->QF = ((val & XPSR_Q) != 0);
1592     }
1593     if (mask & XPSR_GE) {
1594         env->GE = (val & XPSR_GE) >> 16;
1595     }
1596 #ifndef CONFIG_USER_ONLY
1597     if (mask & XPSR_T) {
1598         env->thumb = ((val & XPSR_T) != 0);
1599     }
1600     if (mask & XPSR_IT_0_1) {
1601         env->condexec_bits &= ~3;
1602         env->condexec_bits |= (val >> 25) & 3;
1603     }
1604     if (mask & XPSR_IT_2_7) {
1605         env->condexec_bits &= 3;
1606         env->condexec_bits |= (val >> 8) & 0xfc;
1607     }
1608     if (mask & XPSR_EXCP) {
1609         /* Note that this only happens on exception exit */
1610         write_v7m_exception(env, val & XPSR_EXCP);
1611     }
1612 #endif
1613 }
1614 
1615 #define HCR_VM        (1ULL << 0)
1616 #define HCR_SWIO      (1ULL << 1)
1617 #define HCR_PTW       (1ULL << 2)
1618 #define HCR_FMO       (1ULL << 3)
1619 #define HCR_IMO       (1ULL << 4)
1620 #define HCR_AMO       (1ULL << 5)
1621 #define HCR_VF        (1ULL << 6)
1622 #define HCR_VI        (1ULL << 7)
1623 #define HCR_VSE       (1ULL << 8)
1624 #define HCR_FB        (1ULL << 9)
1625 #define HCR_BSU_MASK  (3ULL << 10)
1626 #define HCR_DC        (1ULL << 12)
1627 #define HCR_TWI       (1ULL << 13)
1628 #define HCR_TWE       (1ULL << 14)
1629 #define HCR_TID0      (1ULL << 15)
1630 #define HCR_TID1      (1ULL << 16)
1631 #define HCR_TID2      (1ULL << 17)
1632 #define HCR_TID3      (1ULL << 18)
1633 #define HCR_TSC       (1ULL << 19)
1634 #define HCR_TIDCP     (1ULL << 20)
1635 #define HCR_TACR      (1ULL << 21)
1636 #define HCR_TSW       (1ULL << 22)
1637 #define HCR_TPCP      (1ULL << 23)
1638 #define HCR_TPU       (1ULL << 24)
1639 #define HCR_TTLB      (1ULL << 25)
1640 #define HCR_TVM       (1ULL << 26)
1641 #define HCR_TGE       (1ULL << 27)
1642 #define HCR_TDZ       (1ULL << 28)
1643 #define HCR_HCD       (1ULL << 29)
1644 #define HCR_TRVM      (1ULL << 30)
1645 #define HCR_RW        (1ULL << 31)
1646 #define HCR_CD        (1ULL << 32)
1647 #define HCR_ID        (1ULL << 33)
1648 #define HCR_E2H       (1ULL << 34)
1649 #define HCR_TLOR      (1ULL << 35)
1650 #define HCR_TERR      (1ULL << 36)
1651 #define HCR_TEA       (1ULL << 37)
1652 #define HCR_MIOCNCE   (1ULL << 38)
1653 /* RES0 bit 39 */
1654 #define HCR_APK       (1ULL << 40)
1655 #define HCR_API       (1ULL << 41)
1656 #define HCR_NV        (1ULL << 42)
1657 #define HCR_NV1       (1ULL << 43)
1658 #define HCR_AT        (1ULL << 44)
1659 #define HCR_NV2       (1ULL << 45)
1660 #define HCR_FWB       (1ULL << 46)
1661 #define HCR_FIEN      (1ULL << 47)
1662 /* RES0 bit 48 */
1663 #define HCR_TID4      (1ULL << 49)
1664 #define HCR_TICAB     (1ULL << 50)
1665 #define HCR_AMVOFFEN  (1ULL << 51)
1666 #define HCR_TOCU      (1ULL << 52)
1667 #define HCR_ENSCXT    (1ULL << 53)
1668 #define HCR_TTLBIS    (1ULL << 54)
1669 #define HCR_TTLBOS    (1ULL << 55)
1670 #define HCR_ATA       (1ULL << 56)
1671 #define HCR_DCT       (1ULL << 57)
1672 #define HCR_TID5      (1ULL << 58)
1673 #define HCR_TWEDEN    (1ULL << 59)
1674 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1675 
1676 #define HCRX_ENAS0    (1ULL << 0)
1677 #define HCRX_ENALS    (1ULL << 1)
1678 #define HCRX_ENASR    (1ULL << 2)
1679 #define HCRX_FNXS     (1ULL << 3)
1680 #define HCRX_FGTNXS   (1ULL << 4)
1681 #define HCRX_SMPME    (1ULL << 5)
1682 #define HCRX_TALLINT  (1ULL << 6)
1683 #define HCRX_VINMI    (1ULL << 7)
1684 #define HCRX_VFNMI    (1ULL << 8)
1685 #define HCRX_CMOW     (1ULL << 9)
1686 #define HCRX_MCE2     (1ULL << 10)
1687 #define HCRX_MSCEN    (1ULL << 11)
1688 
1689 #define HPFAR_NS      (1ULL << 63)
1690 
1691 #define SCR_NS                (1ULL << 0)
1692 #define SCR_IRQ               (1ULL << 1)
1693 #define SCR_FIQ               (1ULL << 2)
1694 #define SCR_EA                (1ULL << 3)
1695 #define SCR_FW                (1ULL << 4)
1696 #define SCR_AW                (1ULL << 5)
1697 #define SCR_NET               (1ULL << 6)
1698 #define SCR_SMD               (1ULL << 7)
1699 #define SCR_HCE               (1ULL << 8)
1700 #define SCR_SIF               (1ULL << 9)
1701 #define SCR_RW                (1ULL << 10)
1702 #define SCR_ST                (1ULL << 11)
1703 #define SCR_TWI               (1ULL << 12)
1704 #define SCR_TWE               (1ULL << 13)
1705 #define SCR_TLOR              (1ULL << 14)
1706 #define SCR_TERR              (1ULL << 15)
1707 #define SCR_APK               (1ULL << 16)
1708 #define SCR_API               (1ULL << 17)
1709 #define SCR_EEL2              (1ULL << 18)
1710 #define SCR_EASE              (1ULL << 19)
1711 #define SCR_NMEA              (1ULL << 20)
1712 #define SCR_FIEN              (1ULL << 21)
1713 #define SCR_ENSCXT            (1ULL << 25)
1714 #define SCR_ATA               (1ULL << 26)
1715 #define SCR_FGTEN             (1ULL << 27)
1716 #define SCR_ECVEN             (1ULL << 28)
1717 #define SCR_TWEDEN            (1ULL << 29)
1718 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1719 #define SCR_TME               (1ULL << 34)
1720 #define SCR_AMVOFFEN          (1ULL << 35)
1721 #define SCR_ENAS0             (1ULL << 36)
1722 #define SCR_ADEN              (1ULL << 37)
1723 #define SCR_HXEN              (1ULL << 38)
1724 #define SCR_TRNDR             (1ULL << 40)
1725 #define SCR_ENTP2             (1ULL << 41)
1726 #define SCR_GPF               (1ULL << 48)
1727 
1728 #define HSTR_TTEE (1 << 16)
1729 #define HSTR_TJDBX (1 << 17)
1730 
1731 /* Return the current FPSCR value.  */
1732 uint32_t vfp_get_fpscr(CPUARMState *env);
1733 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1734 
1735 /* FPCR, Floating Point Control Register
1736  * FPSR, Floating Poiht Status Register
1737  *
1738  * For A64 the FPSCR is split into two logically distinct registers,
1739  * FPCR and FPSR. However since they still use non-overlapping bits
1740  * we store the underlying state in fpscr and just mask on read/write.
1741  */
1742 #define FPSR_MASK 0xf800009f
1743 #define FPCR_MASK 0x07ff9f00
1744 
1745 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1746 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1747 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1748 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1749 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1750 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1751 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1752 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1753 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1754 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1755 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1756 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1757 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1758 #define FPCR_C      (1 << 29)   /* FP carry flag */
1759 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1760 #define FPCR_N      (1 << 31)   /* FP negative flag */
1761 
1762 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1763 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1764 #define FPCR_LTPSIZE_LENGTH 3
1765 
1766 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1767 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1768 
1769 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1770 {
1771     return vfp_get_fpscr(env) & FPSR_MASK;
1772 }
1773 
1774 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1775 {
1776     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1777     vfp_set_fpscr(env, new_fpscr);
1778 }
1779 
1780 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1781 {
1782     return vfp_get_fpscr(env) & FPCR_MASK;
1783 }
1784 
1785 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1786 {
1787     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1788     vfp_set_fpscr(env, new_fpscr);
1789 }
1790 
1791 enum arm_cpu_mode {
1792   ARM_CPU_MODE_USR = 0x10,
1793   ARM_CPU_MODE_FIQ = 0x11,
1794   ARM_CPU_MODE_IRQ = 0x12,
1795   ARM_CPU_MODE_SVC = 0x13,
1796   ARM_CPU_MODE_MON = 0x16,
1797   ARM_CPU_MODE_ABT = 0x17,
1798   ARM_CPU_MODE_HYP = 0x1a,
1799   ARM_CPU_MODE_UND = 0x1b,
1800   ARM_CPU_MODE_SYS = 0x1f
1801 };
1802 
1803 /* VFP system registers.  */
1804 #define ARM_VFP_FPSID   0
1805 #define ARM_VFP_FPSCR   1
1806 #define ARM_VFP_MVFR2   5
1807 #define ARM_VFP_MVFR1   6
1808 #define ARM_VFP_MVFR0   7
1809 #define ARM_VFP_FPEXC   8
1810 #define ARM_VFP_FPINST  9
1811 #define ARM_VFP_FPINST2 10
1812 /* These ones are M-profile only */
1813 #define ARM_VFP_FPSCR_NZCVQC 2
1814 #define ARM_VFP_VPR 12
1815 #define ARM_VFP_P0 13
1816 #define ARM_VFP_FPCXT_NS 14
1817 #define ARM_VFP_FPCXT_S 15
1818 
1819 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1820 #define QEMU_VFP_FPSCR_NZCV 0xffff
1821 
1822 /* iwMMXt coprocessor control registers.  */
1823 #define ARM_IWMMXT_wCID  0
1824 #define ARM_IWMMXT_wCon  1
1825 #define ARM_IWMMXT_wCSSF 2
1826 #define ARM_IWMMXT_wCASF 3
1827 #define ARM_IWMMXT_wCGR0 8
1828 #define ARM_IWMMXT_wCGR1 9
1829 #define ARM_IWMMXT_wCGR2 10
1830 #define ARM_IWMMXT_wCGR3 11
1831 
1832 /* V7M CCR bits */
1833 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1834 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1835 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1836 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1837 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1838 FIELD(V7M_CCR, STKALIGN, 9, 1)
1839 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1840 FIELD(V7M_CCR, DC, 16, 1)
1841 FIELD(V7M_CCR, IC, 17, 1)
1842 FIELD(V7M_CCR, BP, 18, 1)
1843 FIELD(V7M_CCR, LOB, 19, 1)
1844 FIELD(V7M_CCR, TRD, 20, 1)
1845 
1846 /* V7M SCR bits */
1847 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1848 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1849 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1850 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1851 
1852 /* V7M AIRCR bits */
1853 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1854 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1855 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1856 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1857 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1858 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1859 FIELD(V7M_AIRCR, PRIS, 14, 1)
1860 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1861 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1862 
1863 /* V7M CFSR bits for MMFSR */
1864 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1865 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1866 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1867 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1868 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1869 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1870 
1871 /* V7M CFSR bits for BFSR */
1872 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1873 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1874 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1875 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1876 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1877 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1878 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1879 
1880 /* V7M CFSR bits for UFSR */
1881 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1882 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1883 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1884 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1885 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1886 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1887 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1888 
1889 /* V7M CFSR bit masks covering all of the subregister bits */
1890 FIELD(V7M_CFSR, MMFSR, 0, 8)
1891 FIELD(V7M_CFSR, BFSR, 8, 8)
1892 FIELD(V7M_CFSR, UFSR, 16, 16)
1893 
1894 /* V7M HFSR bits */
1895 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1896 FIELD(V7M_HFSR, FORCED, 30, 1)
1897 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1898 
1899 /* V7M DFSR bits */
1900 FIELD(V7M_DFSR, HALTED, 0, 1)
1901 FIELD(V7M_DFSR, BKPT, 1, 1)
1902 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1903 FIELD(V7M_DFSR, VCATCH, 3, 1)
1904 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1905 
1906 /* V7M SFSR bits */
1907 FIELD(V7M_SFSR, INVEP, 0, 1)
1908 FIELD(V7M_SFSR, INVIS, 1, 1)
1909 FIELD(V7M_SFSR, INVER, 2, 1)
1910 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1911 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1912 FIELD(V7M_SFSR, LSPERR, 5, 1)
1913 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1914 FIELD(V7M_SFSR, LSERR, 7, 1)
1915 
1916 /* v7M MPU_CTRL bits */
1917 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1918 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1919 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1920 
1921 /* v7M CLIDR bits */
1922 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1923 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1924 FIELD(V7M_CLIDR, LOC, 24, 3)
1925 FIELD(V7M_CLIDR, LOUU, 27, 3)
1926 FIELD(V7M_CLIDR, ICB, 30, 2)
1927 
1928 FIELD(V7M_CSSELR, IND, 0, 1)
1929 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1930 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1931  * define a mask for this and check that it doesn't permit running off
1932  * the end of the array.
1933  */
1934 FIELD(V7M_CSSELR, INDEX, 0, 4)
1935 
1936 /* v7M FPCCR bits */
1937 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1938 FIELD(V7M_FPCCR, USER, 1, 1)
1939 FIELD(V7M_FPCCR, S, 2, 1)
1940 FIELD(V7M_FPCCR, THREAD, 3, 1)
1941 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1942 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1943 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1944 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1945 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1946 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1947 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1948 FIELD(V7M_FPCCR, RES0, 11, 15)
1949 FIELD(V7M_FPCCR, TS, 26, 1)
1950 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1951 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1952 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1953 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1954 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1955 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1956 #define R_V7M_FPCCR_BANKED_MASK                 \
1957     (R_V7M_FPCCR_LSPACT_MASK |                  \
1958      R_V7M_FPCCR_USER_MASK |                    \
1959      R_V7M_FPCCR_THREAD_MASK |                  \
1960      R_V7M_FPCCR_MMRDY_MASK |                   \
1961      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1962      R_V7M_FPCCR_UFRDY_MASK |                   \
1963      R_V7M_FPCCR_ASPEN_MASK)
1964 
1965 /* v7M VPR bits */
1966 FIELD(V7M_VPR, P0, 0, 16)
1967 FIELD(V7M_VPR, MASK01, 16, 4)
1968 FIELD(V7M_VPR, MASK23, 20, 4)
1969 
1970 /*
1971  * System register ID fields.
1972  */
1973 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1974 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1975 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1976 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1977 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1978 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1979 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1980 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1981 FIELD(CLIDR_EL1, LOC, 24, 3)
1982 FIELD(CLIDR_EL1, LOUU, 27, 3)
1983 FIELD(CLIDR_EL1, ICB, 30, 3)
1984 
1985 /* When FEAT_CCIDX is implemented */
1986 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1987 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1988 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1989 
1990 /* When FEAT_CCIDX is not implemented */
1991 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1992 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1993 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1994 
1995 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1996 FIELD(CTR_EL0,  L1IP, 14, 2)
1997 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1998 FIELD(CTR_EL0,  ERG, 20, 4)
1999 FIELD(CTR_EL0,  CWG, 24, 4)
2000 FIELD(CTR_EL0,  IDC, 28, 1)
2001 FIELD(CTR_EL0,  DIC, 29, 1)
2002 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2003 
2004 FIELD(MIDR_EL1, REVISION, 0, 4)
2005 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2006 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2007 FIELD(MIDR_EL1, VARIANT, 20, 4)
2008 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2009 
2010 FIELD(ID_ISAR0, SWAP, 0, 4)
2011 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2012 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2013 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2014 FIELD(ID_ISAR0, COPROC, 16, 4)
2015 FIELD(ID_ISAR0, DEBUG, 20, 4)
2016 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2017 
2018 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2019 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2020 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2021 FIELD(ID_ISAR1, EXTEND, 12, 4)
2022 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2023 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2024 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2025 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2026 
2027 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2028 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2029 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2030 FIELD(ID_ISAR2, MULT, 12, 4)
2031 FIELD(ID_ISAR2, MULTS, 16, 4)
2032 FIELD(ID_ISAR2, MULTU, 20, 4)
2033 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2034 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2035 
2036 FIELD(ID_ISAR3, SATURATE, 0, 4)
2037 FIELD(ID_ISAR3, SIMD, 4, 4)
2038 FIELD(ID_ISAR3, SVC, 8, 4)
2039 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2040 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2041 FIELD(ID_ISAR3, T32COPY, 20, 4)
2042 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2043 FIELD(ID_ISAR3, T32EE, 28, 4)
2044 
2045 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2046 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2047 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2048 FIELD(ID_ISAR4, SMC, 12, 4)
2049 FIELD(ID_ISAR4, BARRIER, 16, 4)
2050 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2051 FIELD(ID_ISAR4, PSR_M, 24, 4)
2052 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2053 
2054 FIELD(ID_ISAR5, SEVL, 0, 4)
2055 FIELD(ID_ISAR5, AES, 4, 4)
2056 FIELD(ID_ISAR5, SHA1, 8, 4)
2057 FIELD(ID_ISAR5, SHA2, 12, 4)
2058 FIELD(ID_ISAR5, CRC32, 16, 4)
2059 FIELD(ID_ISAR5, RDM, 24, 4)
2060 FIELD(ID_ISAR5, VCMA, 28, 4)
2061 
2062 FIELD(ID_ISAR6, JSCVT, 0, 4)
2063 FIELD(ID_ISAR6, DP, 4, 4)
2064 FIELD(ID_ISAR6, FHM, 8, 4)
2065 FIELD(ID_ISAR6, SB, 12, 4)
2066 FIELD(ID_ISAR6, SPECRES, 16, 4)
2067 FIELD(ID_ISAR6, BF16, 20, 4)
2068 FIELD(ID_ISAR6, I8MM, 24, 4)
2069 
2070 FIELD(ID_MMFR0, VMSA, 0, 4)
2071 FIELD(ID_MMFR0, PMSA, 4, 4)
2072 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2073 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2074 FIELD(ID_MMFR0, TCM, 16, 4)
2075 FIELD(ID_MMFR0, AUXREG, 20, 4)
2076 FIELD(ID_MMFR0, FCSE, 24, 4)
2077 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2078 
2079 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2080 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2081 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2082 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2083 FIELD(ID_MMFR1, L1HVD, 16, 4)
2084 FIELD(ID_MMFR1, L1UNI, 20, 4)
2085 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2086 FIELD(ID_MMFR1, BPRED, 28, 4)
2087 
2088 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2089 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2090 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2091 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2092 FIELD(ID_MMFR2, UNITLB, 16, 4)
2093 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2094 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2095 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2096 
2097 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2098 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2099 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2100 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2101 FIELD(ID_MMFR3, PAN, 16, 4)
2102 FIELD(ID_MMFR3, COHWALK, 20, 4)
2103 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2104 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2105 
2106 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2107 FIELD(ID_MMFR4, AC2, 4, 4)
2108 FIELD(ID_MMFR4, XNX, 8, 4)
2109 FIELD(ID_MMFR4, CNP, 12, 4)
2110 FIELD(ID_MMFR4, HPDS, 16, 4)
2111 FIELD(ID_MMFR4, LSM, 20, 4)
2112 FIELD(ID_MMFR4, CCIDX, 24, 4)
2113 FIELD(ID_MMFR4, EVT, 28, 4)
2114 
2115 FIELD(ID_MMFR5, ETS, 0, 4)
2116 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2117 
2118 FIELD(ID_PFR0, STATE0, 0, 4)
2119 FIELD(ID_PFR0, STATE1, 4, 4)
2120 FIELD(ID_PFR0, STATE2, 8, 4)
2121 FIELD(ID_PFR0, STATE3, 12, 4)
2122 FIELD(ID_PFR0, CSV2, 16, 4)
2123 FIELD(ID_PFR0, AMU, 20, 4)
2124 FIELD(ID_PFR0, DIT, 24, 4)
2125 FIELD(ID_PFR0, RAS, 28, 4)
2126 
2127 FIELD(ID_PFR1, PROGMOD, 0, 4)
2128 FIELD(ID_PFR1, SECURITY, 4, 4)
2129 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2130 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2131 FIELD(ID_PFR1, GENTIMER, 16, 4)
2132 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2133 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2134 FIELD(ID_PFR1, GIC, 28, 4)
2135 
2136 FIELD(ID_PFR2, CSV3, 0, 4)
2137 FIELD(ID_PFR2, SSBS, 4, 4)
2138 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2139 
2140 FIELD(ID_AA64ISAR0, AES, 4, 4)
2141 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2142 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2143 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2144 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2145 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2146 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2147 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2148 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2149 FIELD(ID_AA64ISAR0, DP, 44, 4)
2150 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2151 FIELD(ID_AA64ISAR0, TS, 52, 4)
2152 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2153 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2154 
2155 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2156 FIELD(ID_AA64ISAR1, APA, 4, 4)
2157 FIELD(ID_AA64ISAR1, API, 8, 4)
2158 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2159 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2160 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2161 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2162 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2163 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2164 FIELD(ID_AA64ISAR1, SB, 36, 4)
2165 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2166 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2167 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2168 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2169 FIELD(ID_AA64ISAR1, XS, 56, 4)
2170 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2171 
2172 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2173 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2174 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2175 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2176 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2177 FIELD(ID_AA64ISAR2, BC, 20, 4)
2178 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2179 
2180 FIELD(ID_AA64PFR0, EL0, 0, 4)
2181 FIELD(ID_AA64PFR0, EL1, 4, 4)
2182 FIELD(ID_AA64PFR0, EL2, 8, 4)
2183 FIELD(ID_AA64PFR0, EL3, 12, 4)
2184 FIELD(ID_AA64PFR0, FP, 16, 4)
2185 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2186 FIELD(ID_AA64PFR0, GIC, 24, 4)
2187 FIELD(ID_AA64PFR0, RAS, 28, 4)
2188 FIELD(ID_AA64PFR0, SVE, 32, 4)
2189 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2190 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2191 FIELD(ID_AA64PFR0, AMU, 44, 4)
2192 FIELD(ID_AA64PFR0, DIT, 48, 4)
2193 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2194 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2195 
2196 FIELD(ID_AA64PFR1, BT, 0, 4)
2197 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2198 FIELD(ID_AA64PFR1, MTE, 8, 4)
2199 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2200 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2201 FIELD(ID_AA64PFR1, SME, 24, 4)
2202 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2203 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2204 FIELD(ID_AA64PFR1, NMI, 36, 4)
2205 
2206 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2207 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2208 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2209 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2210 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2211 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2212 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2213 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2214 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2215 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2216 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2217 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2218 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2219 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2220 
2221 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2222 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2223 FIELD(ID_AA64MMFR1, VH, 8, 4)
2224 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2225 FIELD(ID_AA64MMFR1, LO, 16, 4)
2226 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2227 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2228 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2229 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2230 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2231 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2232 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2233 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2234 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2235 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2236 
2237 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2238 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2239 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2240 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2241 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2242 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2243 FIELD(ID_AA64MMFR2, NV, 24, 4)
2244 FIELD(ID_AA64MMFR2, ST, 28, 4)
2245 FIELD(ID_AA64MMFR2, AT, 32, 4)
2246 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2247 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2248 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2249 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2250 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2251 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2252 
2253 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2254 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2255 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2256 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2257 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2258 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2259 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2260 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2261 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2262 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2263 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2264 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2265 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2266 
2267 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2268 FIELD(ID_AA64ZFR0, AES, 4, 4)
2269 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2270 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2271 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2272 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2273 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2274 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2275 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2276 
2277 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2278 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2279 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2280 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2281 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2282 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2283 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2284 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2285 
2286 FIELD(ID_DFR0, COPDBG, 0, 4)
2287 FIELD(ID_DFR0, COPSDBG, 4, 4)
2288 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2289 FIELD(ID_DFR0, COPTRC, 12, 4)
2290 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2291 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2292 FIELD(ID_DFR0, PERFMON, 24, 4)
2293 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2294 
2295 FIELD(ID_DFR1, MTPMU, 0, 4)
2296 FIELD(ID_DFR1, HPMN0, 4, 4)
2297 
2298 FIELD(DBGDIDR, SE_IMP, 12, 1)
2299 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2300 FIELD(DBGDIDR, VERSION, 16, 4)
2301 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2302 FIELD(DBGDIDR, BRPS, 24, 4)
2303 FIELD(DBGDIDR, WRPS, 28, 4)
2304 
2305 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2306 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2307 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2308 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2309 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2310 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2311 FIELD(DBGDEVID, AUXREGS, 24, 4)
2312 FIELD(DBGDEVID, CIDMASK, 28, 4)
2313 
2314 FIELD(MVFR0, SIMDREG, 0, 4)
2315 FIELD(MVFR0, FPSP, 4, 4)
2316 FIELD(MVFR0, FPDP, 8, 4)
2317 FIELD(MVFR0, FPTRAP, 12, 4)
2318 FIELD(MVFR0, FPDIVIDE, 16, 4)
2319 FIELD(MVFR0, FPSQRT, 20, 4)
2320 FIELD(MVFR0, FPSHVEC, 24, 4)
2321 FIELD(MVFR0, FPROUND, 28, 4)
2322 
2323 FIELD(MVFR1, FPFTZ, 0, 4)
2324 FIELD(MVFR1, FPDNAN, 4, 4)
2325 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2326 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2327 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2328 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2329 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2330 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2331 FIELD(MVFR1, FPHP, 24, 4)
2332 FIELD(MVFR1, SIMDFMAC, 28, 4)
2333 
2334 FIELD(MVFR2, SIMDMISC, 0, 4)
2335 FIELD(MVFR2, FPMISC, 4, 4)
2336 
2337 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2338 
2339 /* If adding a feature bit which corresponds to a Linux ELF
2340  * HWCAP bit, remember to update the feature-bit-to-hwcap
2341  * mapping in linux-user/elfload.c:get_elf_hwcap().
2342  */
2343 enum arm_features {
2344     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2345     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2346     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2347     ARM_FEATURE_V6,
2348     ARM_FEATURE_V6K,
2349     ARM_FEATURE_V7,
2350     ARM_FEATURE_THUMB2,
2351     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2352     ARM_FEATURE_NEON,
2353     ARM_FEATURE_M, /* Microcontroller profile.  */
2354     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2355     ARM_FEATURE_THUMB2EE,
2356     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2357     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2358     ARM_FEATURE_V4T,
2359     ARM_FEATURE_V5,
2360     ARM_FEATURE_STRONGARM,
2361     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2362     ARM_FEATURE_GENERIC_TIMER,
2363     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2364     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2365     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2366     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2367     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2368     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2369     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2370     ARM_FEATURE_V8,
2371     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2372     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2373     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2374     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2375     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2376     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2377     ARM_FEATURE_PMU, /* has PMU support */
2378     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2379     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2380     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2381     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2382 };
2383 
2384 static inline int arm_feature(CPUARMState *env, int feature)
2385 {
2386     return (env->features & (1ULL << feature)) != 0;
2387 }
2388 
2389 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2390 
2391 #if !defined(CONFIG_USER_ONLY)
2392 /* Return true if exception levels below EL3 are in secure state,
2393  * or would be following an exception return to that level.
2394  * Unlike arm_is_secure() (which is always a question about the
2395  * _current_ state of the CPU) this doesn't care about the current
2396  * EL or mode.
2397  */
2398 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2399 {
2400     if (arm_feature(env, ARM_FEATURE_EL3)) {
2401         return !(env->cp15.scr_el3 & SCR_NS);
2402     } else {
2403         /* If EL3 is not supported then the secure state is implementation
2404          * defined, in which case QEMU defaults to non-secure.
2405          */
2406         return false;
2407     }
2408 }
2409 
2410 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2411 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2412 {
2413     if (arm_feature(env, ARM_FEATURE_EL3)) {
2414         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2415             /* CPU currently in AArch64 state and EL3 */
2416             return true;
2417         } else if (!is_a64(env) &&
2418                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2419             /* CPU currently in AArch32 state and monitor mode */
2420             return true;
2421         }
2422     }
2423     return false;
2424 }
2425 
2426 /* Return true if the processor is in secure state */
2427 static inline bool arm_is_secure(CPUARMState *env)
2428 {
2429     if (arm_is_el3_or_mon(env)) {
2430         return true;
2431     }
2432     return arm_is_secure_below_el3(env);
2433 }
2434 
2435 /*
2436  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2437  * This corresponds to the pseudocode EL2Enabled()
2438  */
2439 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2440 {
2441     return arm_feature(env, ARM_FEATURE_EL2)
2442            && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2443 }
2444 
2445 static inline bool arm_is_el2_enabled(CPUARMState *env)
2446 {
2447     return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
2448 }
2449 
2450 #else
2451 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2452 {
2453     return false;
2454 }
2455 
2456 static inline bool arm_is_secure(CPUARMState *env)
2457 {
2458     return false;
2459 }
2460 
2461 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2462 {
2463     return false;
2464 }
2465 
2466 static inline bool arm_is_el2_enabled(CPUARMState *env)
2467 {
2468     return false;
2469 }
2470 #endif
2471 
2472 /**
2473  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2474  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2475  * "for all purposes other than a direct read or write access of HCR_EL2."
2476  * Not included here is HCR_RW.
2477  */
2478 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
2479 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2480 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2481 
2482 /* Return true if the specified exception level is running in AArch64 state. */
2483 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2484 {
2485     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2486      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2487      */
2488     assert(el >= 1 && el <= 3);
2489     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2490 
2491     /* The highest exception level is always at the maximum supported
2492      * register width, and then lower levels have a register width controlled
2493      * by bits in the SCR or HCR registers.
2494      */
2495     if (el == 3) {
2496         return aa64;
2497     }
2498 
2499     if (arm_feature(env, ARM_FEATURE_EL3) &&
2500         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2501         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2502     }
2503 
2504     if (el == 2) {
2505         return aa64;
2506     }
2507 
2508     if (arm_is_el2_enabled(env)) {
2509         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2510     }
2511 
2512     return aa64;
2513 }
2514 
2515 /* Function for determing whether guest cp register reads and writes should
2516  * access the secure or non-secure bank of a cp register.  When EL3 is
2517  * operating in AArch32 state, the NS-bit determines whether the secure
2518  * instance of a cp register should be used. When EL3 is AArch64 (or if
2519  * it doesn't exist at all) then there is no register banking, and all
2520  * accesses are to the non-secure version.
2521  */
2522 static inline bool access_secure_reg(CPUARMState *env)
2523 {
2524     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2525                 !arm_el_is_aa64(env, 3) &&
2526                 !(env->cp15.scr_el3 & SCR_NS));
2527 
2528     return ret;
2529 }
2530 
2531 /* Macros for accessing a specified CP register bank */
2532 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2533     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2534 
2535 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2536     do {                                                \
2537         if (_secure) {                                   \
2538             (_env)->cp15._regname##_s = (_val);            \
2539         } else {                                        \
2540             (_env)->cp15._regname##_ns = (_val);           \
2541         }                                               \
2542     } while (0)
2543 
2544 /* Macros for automatically accessing a specific CP register bank depending on
2545  * the current secure state of the system.  These macros are not intended for
2546  * supporting instruction translation reads/writes as these are dependent
2547  * solely on the SCR.NS bit and not the mode.
2548  */
2549 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2550     A32_BANKED_REG_GET((_env), _regname,                \
2551                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2552 
2553 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2554     A32_BANKED_REG_SET((_env), _regname,                                    \
2555                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2556                        (_val))
2557 
2558 void arm_cpu_list(void);
2559 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2560                                  uint32_t cur_el, bool secure);
2561 
2562 /* Return the highest implemented Exception Level */
2563 static inline int arm_highest_el(CPUARMState *env)
2564 {
2565     if (arm_feature(env, ARM_FEATURE_EL3)) {
2566         return 3;
2567     }
2568     if (arm_feature(env, ARM_FEATURE_EL2)) {
2569         return 2;
2570     }
2571     return 1;
2572 }
2573 
2574 /* Return true if a v7M CPU is in Handler mode */
2575 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2576 {
2577     return env->v7m.exception != 0;
2578 }
2579 
2580 /* Return the current Exception Level (as per ARMv8; note that this differs
2581  * from the ARMv7 Privilege Level).
2582  */
2583 static inline int arm_current_el(CPUARMState *env)
2584 {
2585     if (arm_feature(env, ARM_FEATURE_M)) {
2586         return arm_v7m_is_handler_mode(env) ||
2587             !(env->v7m.control[env->v7m.secure] & 1);
2588     }
2589 
2590     if (is_a64(env)) {
2591         return extract32(env->pstate, 2, 2);
2592     }
2593 
2594     switch (env->uncached_cpsr & 0x1f) {
2595     case ARM_CPU_MODE_USR:
2596         return 0;
2597     case ARM_CPU_MODE_HYP:
2598         return 2;
2599     case ARM_CPU_MODE_MON:
2600         return 3;
2601     default:
2602         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2603             /* If EL3 is 32-bit then all secure privileged modes run in
2604              * EL3
2605              */
2606             return 3;
2607         }
2608 
2609         return 1;
2610     }
2611 }
2612 
2613 /**
2614  * write_list_to_cpustate
2615  * @cpu: ARMCPU
2616  *
2617  * For each register listed in the ARMCPU cpreg_indexes list, write
2618  * its value from the cpreg_values list into the ARMCPUState structure.
2619  * This updates TCG's working data structures from KVM data or
2620  * from incoming migration state.
2621  *
2622  * Returns: true if all register values were updated correctly,
2623  * false if some register was unknown or could not be written.
2624  * Note that we do not stop early on failure -- we will attempt
2625  * writing all registers in the list.
2626  */
2627 bool write_list_to_cpustate(ARMCPU *cpu);
2628 
2629 /**
2630  * write_cpustate_to_list:
2631  * @cpu: ARMCPU
2632  * @kvm_sync: true if this is for syncing back to KVM
2633  *
2634  * For each register listed in the ARMCPU cpreg_indexes list, write
2635  * its value from the ARMCPUState structure into the cpreg_values list.
2636  * This is used to copy info from TCG's working data structures into
2637  * KVM or for outbound migration.
2638  *
2639  * @kvm_sync is true if we are doing this in order to sync the
2640  * register state back to KVM. In this case we will only update
2641  * values in the list if the previous list->cpustate sync actually
2642  * successfully wrote the CPU state. Otherwise we will keep the value
2643  * that is in the list.
2644  *
2645  * Returns: true if all register values were read correctly,
2646  * false if some register was unknown or could not be read.
2647  * Note that we do not stop early on failure -- we will attempt
2648  * reading all registers in the list.
2649  */
2650 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2651 
2652 #define ARM_CPUID_TI915T      0x54029152
2653 #define ARM_CPUID_TI925T      0x54029252
2654 
2655 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2656 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2657 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2658 
2659 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2660 
2661 #define cpu_list arm_cpu_list
2662 
2663 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2664  *
2665  * If EL3 is 64-bit:
2666  *  + NonSecure EL1 & 0 stage 1
2667  *  + NonSecure EL1 & 0 stage 2
2668  *  + NonSecure EL2
2669  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2670  *  + Secure EL1 & 0
2671  *  + Secure EL3
2672  * If EL3 is 32-bit:
2673  *  + NonSecure PL1 & 0 stage 1
2674  *  + NonSecure PL1 & 0 stage 2
2675  *  + NonSecure PL2
2676  *  + Secure PL0
2677  *  + Secure PL1
2678  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2679  *
2680  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2681  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2682  *     because they may differ in access permissions even if the VA->PA map is
2683  *     the same
2684  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2685  *     translation, which means that we have one mmu_idx that deals with two
2686  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2687  *     architecturally permitted]
2688  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2689  *     handling via the TLB. The only way to do a stage 1 translation without
2690  *     the immediate stage 2 translation is via the ATS or AT system insns,
2691  *     which can be slow-pathed and always do a page table walk.
2692  *     The only use of stage 2 translations is either as part of an s1+2
2693  *     lookup or when loading the descriptors during a stage 1 page table walk,
2694  *     and in both those cases we don't use the TLB.
2695  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2696  *     translation regimes, because they map reasonably well to each other
2697  *     and they can't both be active at the same time.
2698  *  5. we want to be able to use the TLB for accesses done as part of a
2699  *     stage1 page table walk, rather than having to walk the stage2 page
2700  *     table over and over.
2701  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2702  *     Never (PAN) bit within PSTATE.
2703  *  7. we fold together the secure and non-secure regimes for A-profile,
2704  *     because there are no banked system registers for aarch64, so the
2705  *     process of switching between secure and non-secure is
2706  *     already heavyweight.
2707  *
2708  * This gives us the following list of cases:
2709  *
2710  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2711  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2712  * EL1 EL1&0 stage 1+2 +PAN
2713  * EL0 EL2&0
2714  * EL2 EL2&0
2715  * EL2 EL2&0 +PAN
2716  * EL2 (aka NS PL2)
2717  * EL3 (aka S PL1)
2718  * Physical (NS & S)
2719  * Stage2 (NS & S)
2720  *
2721  * for a total of 12 different mmu_idx.
2722  *
2723  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2724  * as A profile. They only need to distinguish EL0 and EL1 (and
2725  * EL2 if we ever model a Cortex-R52).
2726  *
2727  * M profile CPUs are rather different as they do not have a true MMU.
2728  * They have the following different MMU indexes:
2729  *  User
2730  *  Privileged
2731  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2732  *  Privileged, execution priority negative (ditto)
2733  * If the CPU supports the v8M Security Extension then there are also:
2734  *  Secure User
2735  *  Secure Privileged
2736  *  Secure User, execution priority negative
2737  *  Secure Privileged, execution priority negative
2738  *
2739  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2740  * are not quite the same -- different CPU types (most notably M profile
2741  * vs A/R profile) would like to use MMU indexes with different semantics,
2742  * but since we don't ever need to use all of those in a single CPU we
2743  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2744  * modes + total number of M profile MMU modes". The lower bits of
2745  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2746  * the same for any particular CPU.
2747  * Variables of type ARMMUIdx are always full values, and the core
2748  * index values are in variables of type 'int'.
2749  *
2750  * Our enumeration includes at the end some entries which are not "true"
2751  * mmu_idx values in that they don't have corresponding TLBs and are only
2752  * valid for doing slow path page table walks.
2753  *
2754  * The constant names here are patterned after the general style of the names
2755  * of the AT/ATS operations.
2756  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2757  * For M profile we arrange them to have a bit for priv, a bit for negpri
2758  * and a bit for secure.
2759  */
2760 #define ARM_MMU_IDX_A     0x10  /* A profile */
2761 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2762 #define ARM_MMU_IDX_M     0x40  /* M profile */
2763 
2764 /* Meanings of the bits for M profile mmu idx values */
2765 #define ARM_MMU_IDX_M_PRIV   0x1
2766 #define ARM_MMU_IDX_M_NEGPRI 0x2
2767 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2768 
2769 #define ARM_MMU_IDX_TYPE_MASK \
2770     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2771 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2772 
2773 typedef enum ARMMMUIdx {
2774     /*
2775      * A-profile.
2776      */
2777     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2778     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2779     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2780     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2781     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2782     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2783     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2784     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2785 
2786     /* TLBs with 1-1 mapping to the physical address spaces. */
2787     ARMMMUIdx_Phys_NS   = 8 | ARM_MMU_IDX_A,
2788     ARMMMUIdx_Phys_S    = 9 | ARM_MMU_IDX_A,
2789 
2790     /*
2791      * Used for second stage of an S12 page table walk, or for descriptor
2792      * loads during first stage of an S1 page table walk.  Note that both
2793      * are in use simultaneously for SecureEL2: the security state for
2794      * the S2 ptw is selected by the NS bit from the S1 ptw.
2795      */
2796     ARMMMUIdx_Stage2    = 10 | ARM_MMU_IDX_A,
2797     ARMMMUIdx_Stage2_S  = 11 | ARM_MMU_IDX_A,
2798 
2799     /*
2800      * These are not allocated TLBs and are used only for AT system
2801      * instructions or for the first stage of an S12 page table walk.
2802      */
2803     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2804     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2805     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2806 
2807     /*
2808      * M-profile.
2809      */
2810     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2811     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2812     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2813     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2814     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2815     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2816     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2817     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2818 } ARMMMUIdx;
2819 
2820 /*
2821  * Bit macros for the core-mmu-index values for each index,
2822  * for use when calling tlb_flush_by_mmuidx() and friends.
2823  */
2824 #define TO_CORE_BIT(NAME) \
2825     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2826 
2827 typedef enum ARMMMUIdxBit {
2828     TO_CORE_BIT(E10_0),
2829     TO_CORE_BIT(E20_0),
2830     TO_CORE_BIT(E10_1),
2831     TO_CORE_BIT(E10_1_PAN),
2832     TO_CORE_BIT(E2),
2833     TO_CORE_BIT(E20_2),
2834     TO_CORE_BIT(E20_2_PAN),
2835     TO_CORE_BIT(E3),
2836     TO_CORE_BIT(Stage2),
2837     TO_CORE_BIT(Stage2_S),
2838 
2839     TO_CORE_BIT(MUser),
2840     TO_CORE_BIT(MPriv),
2841     TO_CORE_BIT(MUserNegPri),
2842     TO_CORE_BIT(MPrivNegPri),
2843     TO_CORE_BIT(MSUser),
2844     TO_CORE_BIT(MSPriv),
2845     TO_CORE_BIT(MSUserNegPri),
2846     TO_CORE_BIT(MSPrivNegPri),
2847 } ARMMMUIdxBit;
2848 
2849 #undef TO_CORE_BIT
2850 
2851 #define MMU_USER_IDX 0
2852 
2853 /* Indexes used when registering address spaces with cpu_address_space_init */
2854 typedef enum ARMASIdx {
2855     ARMASIdx_NS = 0,
2856     ARMASIdx_S = 1,
2857     ARMASIdx_TagNS = 2,
2858     ARMASIdx_TagS = 3,
2859 } ARMASIdx;
2860 
2861 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2862 {
2863     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2864      * CSSELR is RAZ/WI.
2865      */
2866     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2867 }
2868 
2869 static inline bool arm_sctlr_b(CPUARMState *env)
2870 {
2871     return
2872         /* We need not implement SCTLR.ITD in user-mode emulation, so
2873          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2874          * This lets people run BE32 binaries with "-cpu any".
2875          */
2876 #ifndef CONFIG_USER_ONLY
2877         !arm_feature(env, ARM_FEATURE_V7) &&
2878 #endif
2879         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2880 }
2881 
2882 uint64_t arm_sctlr(CPUARMState *env, int el);
2883 
2884 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2885                                                   bool sctlr_b)
2886 {
2887 #ifdef CONFIG_USER_ONLY
2888     /*
2889      * In system mode, BE32 is modelled in line with the
2890      * architecture (as word-invariant big-endianness), where loads
2891      * and stores are done little endian but from addresses which
2892      * are adjusted by XORing with the appropriate constant. So the
2893      * endianness to use for the raw data access is not affected by
2894      * SCTLR.B.
2895      * In user mode, however, we model BE32 as byte-invariant
2896      * big-endianness (because user-only code cannot tell the
2897      * difference), and so we need to use a data access endianness
2898      * that depends on SCTLR.B.
2899      */
2900     if (sctlr_b) {
2901         return true;
2902     }
2903 #endif
2904     /* In 32bit endianness is determined by looking at CPSR's E bit */
2905     return env->uncached_cpsr & CPSR_E;
2906 }
2907 
2908 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2909 {
2910     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2911 }
2912 
2913 /* Return true if the processor is in big-endian mode. */
2914 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2915 {
2916     if (!is_a64(env)) {
2917         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2918     } else {
2919         int cur_el = arm_current_el(env);
2920         uint64_t sctlr = arm_sctlr(env, cur_el);
2921         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2922     }
2923 }
2924 
2925 #include "exec/cpu-all.h"
2926 
2927 /*
2928  * We have more than 32-bits worth of state per TB, so we split the data
2929  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2930  * We collect these two parts in CPUARMTBFlags where they are named
2931  * flags and flags2 respectively.
2932  *
2933  * The flags that are shared between all execution modes, TBFLAG_ANY,
2934  * are stored in flags.  The flags that are specific to a given mode
2935  * are stores in flags2.  Since cs_base is sized on the configured
2936  * address size, flags2 always has 64-bits for A64, and a minimum of
2937  * 32-bits for A32 and M32.
2938  *
2939  * The bits for 32-bit A-profile and M-profile partially overlap:
2940  *
2941  *  31         23         11 10             0
2942  * +-------------+----------+----------------+
2943  * |             |          |   TBFLAG_A32   |
2944  * | TBFLAG_AM32 |          +-----+----------+
2945  * |             |                |TBFLAG_M32|
2946  * +-------------+----------------+----------+
2947  *  31         23                6 5        0
2948  *
2949  * Unless otherwise noted, these bits are cached in env->hflags.
2950  */
2951 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2952 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2953 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
2954 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2955 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
2956 /* Target EL if we take a floating-point-disabled exception */
2957 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
2958 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
2959 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
2960 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
2961 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
2962 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
2963 
2964 /*
2965  * Bit usage when in AArch32 state, both A- and M-profile.
2966  */
2967 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
2968 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
2969 
2970 /*
2971  * Bit usage when in AArch32 state, for A-profile only.
2972  */
2973 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
2974 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
2975 /*
2976  * We store the bottom two bits of the CPAR as TB flags and handle
2977  * checks on the other bits at runtime. This shares the same bits as
2978  * VECSTRIDE, which is OK as no XScale CPU has VFP.
2979  * Not cached, because VECLEN+VECSTRIDE are not cached.
2980  */
2981 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
2982 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
2983 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
2984 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
2985 /*
2986  * Indicates whether cp register reads and writes by guest code should access
2987  * the secure or nonsecure bank of banked registers; note that this is not
2988  * the same thing as the current security state of the processor!
2989  */
2990 FIELD(TBFLAG_A32, NS, 10, 1)
2991 /*
2992  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
2993  * This requires an SME trap from AArch32 mode when using NEON.
2994  */
2995 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
2996 
2997 /*
2998  * Bit usage when in AArch32 state, for M-profile only.
2999  */
3000 /* Handler (ie not Thread) mode */
3001 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3002 /* Whether we should generate stack-limit checks */
3003 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3004 /* Set if FPCCR.LSPACT is set */
3005 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3006 /* Set if we must create a new FP context */
3007 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3008 /* Set if FPCCR.S does not match current security state */
3009 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3010 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3011 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3012 /* Set if in secure mode */
3013 FIELD(TBFLAG_M32, SECURE, 6, 1)
3014 
3015 /*
3016  * Bit usage when in AArch64 state
3017  */
3018 FIELD(TBFLAG_A64, TBII, 0, 2)
3019 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3020 /* The current vector length, either NVL or SVL. */
3021 FIELD(TBFLAG_A64, VL, 4, 4)
3022 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3023 FIELD(TBFLAG_A64, BT, 9, 1)
3024 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3025 FIELD(TBFLAG_A64, TBID, 12, 2)
3026 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3027 FIELD(TBFLAG_A64, ATA, 15, 1)
3028 FIELD(TBFLAG_A64, TCMA, 16, 2)
3029 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3030 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3031 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3032 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3033 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3034 FIELD(TBFLAG_A64, SVL, 24, 4)
3035 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3036 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3037 FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3038 
3039 /*
3040  * Helpers for using the above.
3041  */
3042 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3043     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3044 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3045     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3046 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3047     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3048 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3049     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3050 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3051     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3052 
3053 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3054 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3055 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3056 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3057 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3058 
3059 /**
3060  * cpu_mmu_index:
3061  * @env: The cpu environment
3062  * @ifetch: True for code access, false for data access.
3063  *
3064  * Return the core mmu index for the current translation regime.
3065  * This function is used by generic TCG code paths.
3066  */
3067 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3068 {
3069     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3070 }
3071 
3072 /**
3073  * sve_vq
3074  * @env: the cpu context
3075  *
3076  * Return the VL cached within env->hflags, in units of quadwords.
3077  */
3078 static inline int sve_vq(CPUARMState *env)
3079 {
3080     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3081 }
3082 
3083 /**
3084  * sme_vq
3085  * @env: the cpu context
3086  *
3087  * Return the SVL cached within env->hflags, in units of quadwords.
3088  */
3089 static inline int sme_vq(CPUARMState *env)
3090 {
3091     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3092 }
3093 
3094 static inline bool bswap_code(bool sctlr_b)
3095 {
3096 #ifdef CONFIG_USER_ONLY
3097     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3098      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3099      * would also end up as a mixed-endian mode with BE code, LE data.
3100      */
3101     return
3102 #if TARGET_BIG_ENDIAN
3103         1 ^
3104 #endif
3105         sctlr_b;
3106 #else
3107     /* All code access in ARM is little endian, and there are no loaders
3108      * doing swaps that need to be reversed
3109      */
3110     return 0;
3111 #endif
3112 }
3113 
3114 #ifdef CONFIG_USER_ONLY
3115 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3116 {
3117     return
3118 #if TARGET_BIG_ENDIAN
3119        1 ^
3120 #endif
3121        arm_cpu_data_is_big_endian(env);
3122 }
3123 #endif
3124 
3125 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3126                           target_ulong *cs_base, uint32_t *flags);
3127 
3128 enum {
3129     QEMU_PSCI_CONDUIT_DISABLED = 0,
3130     QEMU_PSCI_CONDUIT_SMC = 1,
3131     QEMU_PSCI_CONDUIT_HVC = 2,
3132 };
3133 
3134 #ifndef CONFIG_USER_ONLY
3135 /* Return the address space index to use for a memory access */
3136 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3137 {
3138     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3139 }
3140 
3141 /* Return the AddressSpace to use for a memory access
3142  * (which depends on whether the access is S or NS, and whether
3143  * the board gave us a separate AddressSpace for S accesses).
3144  */
3145 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3146 {
3147     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3148 }
3149 #endif
3150 
3151 /**
3152  * arm_register_pre_el_change_hook:
3153  * Register a hook function which will be called immediately before this
3154  * CPU changes exception level or mode. The hook function will be
3155  * passed a pointer to the ARMCPU and the opaque data pointer passed
3156  * to this function when the hook was registered.
3157  *
3158  * Note that if a pre-change hook is called, any registered post-change hooks
3159  * are guaranteed to subsequently be called.
3160  */
3161 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3162                                  void *opaque);
3163 /**
3164  * arm_register_el_change_hook:
3165  * Register a hook function which will be called immediately after this
3166  * CPU changes exception level or mode. The hook function will be
3167  * passed a pointer to the ARMCPU and the opaque data pointer passed
3168  * to this function when the hook was registered.
3169  *
3170  * Note that any registered hooks registered here are guaranteed to be called
3171  * if pre-change hooks have been.
3172  */
3173 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3174         *opaque);
3175 
3176 /**
3177  * arm_rebuild_hflags:
3178  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3179  */
3180 void arm_rebuild_hflags(CPUARMState *env);
3181 
3182 /**
3183  * aa32_vfp_dreg:
3184  * Return a pointer to the Dn register within env in 32-bit mode.
3185  */
3186 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3187 {
3188     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3189 }
3190 
3191 /**
3192  * aa32_vfp_qreg:
3193  * Return a pointer to the Qn register within env in 32-bit mode.
3194  */
3195 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3196 {
3197     return &env->vfp.zregs[regno].d[0];
3198 }
3199 
3200 /**
3201  * aa64_vfp_qreg:
3202  * Return a pointer to the Qn register within env in 64-bit mode.
3203  */
3204 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3205 {
3206     return &env->vfp.zregs[regno].d[0];
3207 }
3208 
3209 /* Shared between translate-sve.c and sve_helper.c.  */
3210 extern const uint64_t pred_esz_masks[5];
3211 
3212 /*
3213  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3214  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3215  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3216  */
3217 #define PAGE_BTI            PAGE_TARGET_1
3218 #define PAGE_MTE            PAGE_TARGET_2
3219 #define PAGE_TARGET_STICKY  PAGE_MTE
3220 
3221 /* We associate one allocation tag per 16 bytes, the minimum.  */
3222 #define LOG2_TAG_GRANULE 4
3223 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3224 
3225 #ifdef CONFIG_USER_ONLY
3226 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3227 #endif
3228 
3229 #ifdef TARGET_TAGGED_ADDRESSES
3230 /**
3231  * cpu_untagged_addr:
3232  * @cs: CPU context
3233  * @x: tagged address
3234  *
3235  * Remove any address tag from @x.  This is explicitly related to the
3236  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3237  *
3238  * There should be a better place to put this, but we need this in
3239  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3240  */
3241 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3242 {
3243     ARMCPU *cpu = ARM_CPU(cs);
3244     if (cpu->env.tagged_addr_enable) {
3245         /*
3246          * TBI is enabled for userspace but not kernelspace addresses.
3247          * Only clear the tag if bit 55 is clear.
3248          */
3249         x &= sextract64(x, 0, 56);
3250     }
3251     return x;
3252 }
3253 #endif
3254 
3255 /*
3256  * Naming convention for isar_feature functions:
3257  * Functions which test 32-bit ID registers should have _aa32_ in
3258  * their name. Functions which test 64-bit ID registers should have
3259  * _aa64_ in their name. These must only be used in code where we
3260  * know for certain that the CPU has AArch32 or AArch64 respectively
3261  * or where the correct answer for a CPU which doesn't implement that
3262  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3263  * system registers that are specific to that CPU state, for "should
3264  * we let this system register bit be set" tests where the 32-bit
3265  * flavour of the register doesn't have the bit, and so on).
3266  * Functions which simply ask "does this feature exist at all" have
3267  * _any_ in their name, and always return the logical OR of the _aa64_
3268  * and the _aa32_ function.
3269  */
3270 
3271 /*
3272  * 32-bit feature tests via id registers.
3273  */
3274 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3275 {
3276     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3277 }
3278 
3279 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3280 {
3281     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3282 }
3283 
3284 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3285 {
3286     /* (M-profile) low-overhead loops and branch future */
3287     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3288 }
3289 
3290 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3291 {
3292     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3293 }
3294 
3295 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3296 {
3297     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3298 }
3299 
3300 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3301 {
3302     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3303 }
3304 
3305 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3306 {
3307     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3308 }
3309 
3310 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3311 {
3312     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3313 }
3314 
3315 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3316 {
3317     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3318 }
3319 
3320 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3321 {
3322     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3323 }
3324 
3325 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3326 {
3327     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3328 }
3329 
3330 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3331 {
3332     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3333 }
3334 
3335 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3336 {
3337     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3338 }
3339 
3340 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3341 {
3342     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3343 }
3344 
3345 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3346 {
3347     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3348 }
3349 
3350 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3351 {
3352     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3353 }
3354 
3355 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3356 {
3357     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3358 }
3359 
3360 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3361 {
3362     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3363 }
3364 
3365 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3366 {
3367     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3368 }
3369 
3370 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3371 {
3372     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3373 }
3374 
3375 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3376 {
3377     /*
3378      * Return true if M-profile state handling insns
3379      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3380      */
3381     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3382 }
3383 
3384 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3385 {
3386     /* Sadly this is encoded differently for A-profile and M-profile */
3387     if (isar_feature_aa32_mprofile(id)) {
3388         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3389     } else {
3390         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3391     }
3392 }
3393 
3394 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3395 {
3396     /*
3397      * Return true if MVE is supported (either integer or floating point).
3398      * We must check for M-profile as the MVFR1 field means something
3399      * else for A-profile.
3400      */
3401     return isar_feature_aa32_mprofile(id) &&
3402         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3403 }
3404 
3405 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3406 {
3407     /*
3408      * Return true if MVE is supported (either integer or floating point).
3409      * We must check for M-profile as the MVFR1 field means something
3410      * else for A-profile.
3411      */
3412     return isar_feature_aa32_mprofile(id) &&
3413         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3414 }
3415 
3416 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3417 {
3418     /*
3419      * Return true if either VFP or SIMD is implemented.
3420      * In this case, a minimum of VFP w/ D0-D15.
3421      */
3422     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3423 }
3424 
3425 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3426 {
3427     /* Return true if D16-D31 are implemented */
3428     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3429 }
3430 
3431 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3432 {
3433     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3434 }
3435 
3436 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3437 {
3438     /* Return true if CPU supports single precision floating point, VFPv2 */
3439     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3440 }
3441 
3442 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3443 {
3444     /* Return true if CPU supports single precision floating point, VFPv3 */
3445     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3446 }
3447 
3448 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3449 {
3450     /* Return true if CPU supports double precision floating point, VFPv2 */
3451     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3452 }
3453 
3454 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3455 {
3456     /* Return true if CPU supports double precision floating point, VFPv3 */
3457     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3458 }
3459 
3460 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3461 {
3462     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3463 }
3464 
3465 /*
3466  * We always set the FP and SIMD FP16 fields to indicate identical
3467  * levels of support (assuming SIMD is implemented at all), so
3468  * we only need one set of accessors.
3469  */
3470 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3471 {
3472     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3473 }
3474 
3475 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3476 {
3477     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3478 }
3479 
3480 /*
3481  * Note that this ID register field covers both VFP and Neon FMAC,
3482  * so should usually be tested in combination with some other
3483  * check that confirms the presence of whichever of VFP or Neon is
3484  * relevant, to avoid accidentally enabling a Neon feature on
3485  * a VFP-no-Neon core or vice-versa.
3486  */
3487 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3488 {
3489     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3490 }
3491 
3492 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3493 {
3494     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3495 }
3496 
3497 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3498 {
3499     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3500 }
3501 
3502 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3503 {
3504     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3505 }
3506 
3507 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3510 }
3511 
3512 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3513 {
3514     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3515 }
3516 
3517 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3518 {
3519     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3520 }
3521 
3522 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3523 {
3524     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3525 }
3526 
3527 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3528 {
3529     /* 0xf means "non-standard IMPDEF PMU" */
3530     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3531         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3532 }
3533 
3534 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3535 {
3536     /* 0xf means "non-standard IMPDEF PMU" */
3537     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3538         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3539 }
3540 
3541 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3542 {
3543     /* 0xf means "non-standard IMPDEF PMU" */
3544     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3545         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3546 }
3547 
3548 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3549 {
3550     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3551 }
3552 
3553 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3554 {
3555     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3556 }
3557 
3558 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3559 {
3560     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3561 }
3562 
3563 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3564 {
3565     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3566 }
3567 
3568 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3569 {
3570     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3571 }
3572 
3573 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3574 {
3575     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3576 }
3577 
3578 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3579 {
3580     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3581 }
3582 
3583 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3584 {
3585     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3586 }
3587 
3588 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3589 {
3590     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3591 }
3592 
3593 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3594 {
3595     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3596 }
3597 
3598 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3599 {
3600     return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3601 }
3602 
3603 /*
3604  * 64-bit feature tests via id registers.
3605  */
3606 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3607 {
3608     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3609 }
3610 
3611 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3612 {
3613     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3614 }
3615 
3616 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3617 {
3618     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3619 }
3620 
3621 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3622 {
3623     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3624 }
3625 
3626 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3627 {
3628     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3629 }
3630 
3631 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3632 {
3633     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3634 }
3635 
3636 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3637 {
3638     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3639 }
3640 
3641 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3642 {
3643     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3644 }
3645 
3646 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3647 {
3648     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3649 }
3650 
3651 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3652 {
3653     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3654 }
3655 
3656 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3657 {
3658     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3659 }
3660 
3661 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3662 {
3663     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3664 }
3665 
3666 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3667 {
3668     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3669 }
3670 
3671 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3672 {
3673     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3674 }
3675 
3676 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3677 {
3678     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3679 }
3680 
3681 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3682 {
3683     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3684 }
3685 
3686 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3687 {
3688     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3689 }
3690 
3691 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3692 {
3693     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3694 }
3695 
3696 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3697 {
3698     /*
3699      * Return true if any form of pauth is enabled, as this
3700      * predicate controls migration of the 128-bit keys.
3701      */
3702     return (id->id_aa64isar1 &
3703             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3704              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3705              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3706              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3707 }
3708 
3709 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3710 {
3711     /*
3712      * Return true if pauth is enabled with the architected QARMA algorithm.
3713      * QEMU will always set APA+GPA to the same value.
3714      */
3715     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3716 }
3717 
3718 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3719 {
3720     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3721 }
3722 
3723 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3724 {
3725     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3726 }
3727 
3728 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3729 {
3730     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3731 }
3732 
3733 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3734 {
3735     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3736 }
3737 
3738 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3739 {
3740     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3741 }
3742 
3743 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3744 {
3745     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3746 }
3747 
3748 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3749 {
3750     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3751 }
3752 
3753 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3754 {
3755     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3756 }
3757 
3758 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3759 {
3760     /* We always set the AdvSIMD and FP fields identically.  */
3761     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3762 }
3763 
3764 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3765 {
3766     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3767     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3768 }
3769 
3770 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3771 {
3772     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3773 }
3774 
3775 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3778 }
3779 
3780 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3783 }
3784 
3785 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3786 {
3787     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3788 }
3789 
3790 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3791 {
3792     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3793 }
3794 
3795 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3796 {
3797     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3798 }
3799 
3800 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3801 {
3802     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3803 }
3804 
3805 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3806 {
3807     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3808 }
3809 
3810 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3811 {
3812     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3813 }
3814 
3815 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3816 {
3817     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3818 }
3819 
3820 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3821 {
3822     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3823 }
3824 
3825 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3826 {
3827     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3828 }
3829 
3830 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3831 {
3832     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3833 }
3834 
3835 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3836 {
3837     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3838 }
3839 
3840 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3841 {
3842     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3843 }
3844 
3845 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3846 {
3847     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3848 }
3849 
3850 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3851 {
3852     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3853 }
3854 
3855 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3856 {
3857     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3858 }
3859 
3860 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3861 {
3862     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3863 }
3864 
3865 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3866 {
3867     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3868 }
3869 
3870 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3871 {
3872     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3873 }
3874 
3875 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3876 {
3877     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3878 }
3879 
3880 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
3881 {
3882     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3883         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3884 }
3885 
3886 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
3887 {
3888     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3889         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3890 }
3891 
3892 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
3893 {
3894     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
3895         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3896 }
3897 
3898 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3899 {
3900     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3901 }
3902 
3903 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3904 {
3905     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3906 }
3907 
3908 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3909 {
3910     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3911 }
3912 
3913 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3914 {
3915     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3916 }
3917 
3918 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3919 {
3920     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3921     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3922 }
3923 
3924 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
3925 {
3926     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
3927 }
3928 
3929 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
3930 {
3931     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
3932     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
3933 }
3934 
3935 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
3936 {
3937     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
3938 }
3939 
3940 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
3941 {
3942     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
3943 }
3944 
3945 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
3946 {
3947     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
3948 }
3949 
3950 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
3951 {
3952     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3953     return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
3954 }
3955 
3956 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
3957 {
3958     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
3959     return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
3960 }
3961 
3962 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
3963 {
3964     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
3965     return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
3966 }
3967 
3968 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
3969 {
3970     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
3971 }
3972 
3973 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3974 {
3975     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3976 }
3977 
3978 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
3979 {
3980     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
3981 }
3982 
3983 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
3984 {
3985     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
3986 }
3987 
3988 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
3989 {
3990     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
3991 }
3992 
3993 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
3994 {
3995     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
3996 }
3997 
3998 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3999 {
4000     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4001 }
4002 
4003 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4004 {
4005     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4006 }
4007 
4008 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4009 {
4010     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4011     if (key >= 2) {
4012         return true;      /* FEAT_CSV2_2 */
4013     }
4014     if (key == 1) {
4015         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4016         return key >= 2;  /* FEAT_CSV2_1p2 */
4017     }
4018     return false;
4019 }
4020 
4021 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4022 {
4023     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4024 }
4025 
4026 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4027 {
4028     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4029 }
4030 
4031 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4032 {
4033     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4034 }
4035 
4036 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4037 {
4038     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4039 }
4040 
4041 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4042 {
4043     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4044 }
4045 
4046 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4047 {
4048     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4049 }
4050 
4051 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4052 {
4053     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4054 }
4055 
4056 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4057 {
4058     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4059 }
4060 
4061 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4062 {
4063     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4064 }
4065 
4066 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4067 {
4068     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4069 }
4070 
4071 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4072 {
4073     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4074 }
4075 
4076 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4077 {
4078     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4079 }
4080 
4081 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4082 {
4083     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4084 }
4085 
4086 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4087 {
4088     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4089 }
4090 
4091 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4092 {
4093     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4094 }
4095 
4096 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4097 {
4098     return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4099 }
4100 
4101 /*
4102  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4103  */
4104 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4105 {
4106     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4107 }
4108 
4109 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4110 {
4111     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4112 }
4113 
4114 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4115 {
4116     return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4117 }
4118 
4119 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4120 {
4121     return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4122 }
4123 
4124 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4125 {
4126     return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4127 }
4128 
4129 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4130 {
4131     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4132 }
4133 
4134 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4135 {
4136     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4137 }
4138 
4139 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4140 {
4141     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4142 }
4143 
4144 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4145 {
4146     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4147 }
4148 
4149 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4150 {
4151     return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4152 }
4153 
4154 static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4155 {
4156     return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4157 }
4158 
4159 /*
4160  * Forward to the above feature tests given an ARMCPU pointer.
4161  */
4162 #define cpu_isar_feature(name, cpu) \
4163     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4164 
4165 #endif
4166