xref: /openbmc/qemu/target/arm/cpu.h (revision aa09b3d5)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 #define VTCR_NSW (1u << 29)
170 #define VTCR_NSA (1u << 30)
171 #define VSTCR_SW VTCR_NSW
172 #define VSTCR_SA VTCR_NSA
173 
174 /* Define a maximum sized vector register.
175  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176  * For 64-bit, this is a 2048-bit SVE register.
177  *
178  * Note that the mapping between S, D, and Q views of the register bank
179  * differs between AArch64 and AArch32.
180  * In AArch32:
181  *  Qn = regs[n].d[1]:regs[n].d[0]
182  *  Dn = regs[n / 2].d[n & 1]
183  *  Sn = regs[n / 4].d[n % 4 / 2],
184  *       bits 31..0 for even n, and bits 63..32 for odd n
185  *       (and regs[16] to regs[31] are inaccessible)
186  * In AArch64:
187  *  Zn = regs[n].d[*]
188  *  Qn = regs[n].d[1]:regs[n].d[0]
189  *  Dn = regs[n].d[0]
190  *  Sn = regs[n].d[0] bits 31..0
191  *  Hn = regs[n].d[0] bits 15..0
192  *
193  * This corresponds to the architecturally defined mapping between
194  * the two execution states, and means we do not need to explicitly
195  * map these registers when changing states.
196  *
197  * Align the data for use with TCG host vector operations.
198  */
199 
200 #ifdef TARGET_AARCH64
201 # define ARM_MAX_VQ    16
202 #else
203 # define ARM_MAX_VQ    1
204 #endif
205 
206 typedef struct ARMVectorReg {
207     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208 } ARMVectorReg;
209 
210 #ifdef TARGET_AARCH64
211 /* In AArch32 mode, predicate registers do not exist at all.  */
212 typedef struct ARMPredicateReg {
213     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
214 } ARMPredicateReg;
215 
216 /* In AArch32 mode, PAC keys do not exist at all.  */
217 typedef struct ARMPACKey {
218     uint64_t lo, hi;
219 } ARMPACKey;
220 #endif
221 
222 /* See the commentary above the TBFLAG field definitions.  */
223 typedef struct CPUARMTBFlags {
224     uint32_t flags;
225     target_ulong flags2;
226 } CPUARMTBFlags;
227 
228 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229 
230 typedef struct CPUArchState {
231     /* Regs for current mode.  */
232     uint32_t regs[16];
233 
234     /* 32/64 switch only happens when taking and returning from
235      * exceptions so the overlap semantics are taken care of then
236      * instead of having a complicated union.
237      */
238     /* Regs for A64 mode.  */
239     uint64_t xregs[32];
240     uint64_t pc;
241     /* PSTATE isn't an architectural register for ARMv8. However, it is
242      * convenient for us to assemble the underlying state into a 32 bit format
243      * identical to the architectural format used for the SPSR. (This is also
244      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
245      * 'pstate' register are.) Of the PSTATE bits:
246      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
247      *    semantics as for AArch32, as described in the comments on each field)
248      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
249      *  DAIF (exception masks) are kept in env->daif
250      *  BTYPE is kept in env->btype
251      *  SM and ZA are kept in env->svcr
252      *  all other bits are stored in their correct places in env->pstate
253      */
254     uint32_t pstate;
255     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
256     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
257 
258     /* Cached TBFLAGS state.  See below for which bits are included.  */
259     CPUARMTBFlags hflags;
260 
261     /* Frequently accessed CPSR bits are stored separately for efficiency.
262        This contains all the other bits.  Use cpsr_{read,write} to access
263        the whole CPSR.  */
264     uint32_t uncached_cpsr;
265     uint32_t spsr;
266 
267     /* Banked registers.  */
268     uint64_t banked_spsr[8];
269     uint32_t banked_r13[8];
270     uint32_t banked_r14[8];
271 
272     /* These hold r8-r12.  */
273     uint32_t usr_regs[5];
274     uint32_t fiq_regs[5];
275 
276     /* cpsr flag cache for faster execution */
277     uint32_t CF; /* 0 or 1 */
278     uint32_t VF; /* V is the bit 31. All other bits are undefined */
279     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
280     uint32_t ZF; /* Z set if zero.  */
281     uint32_t QF; /* 0 or 1 */
282     uint32_t GE; /* cpsr[19:16] */
283     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
284     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
285     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
286     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
287 
288     uint64_t elr_el[4]; /* AArch64 exception link regs  */
289     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
290 
291     /* System control coprocessor (cp15) */
292     struct {
293         uint32_t c0_cpuid;
294         union { /* Cache size selection */
295             struct {
296                 uint64_t _unused_csselr0;
297                 uint64_t csselr_ns;
298                 uint64_t _unused_csselr1;
299                 uint64_t csselr_s;
300             };
301             uint64_t csselr_el[4];
302         };
303         union { /* System control register. */
304             struct {
305                 uint64_t _unused_sctlr;
306                 uint64_t sctlr_ns;
307                 uint64_t hsctlr;
308                 uint64_t sctlr_s;
309             };
310             uint64_t sctlr_el[4];
311         };
312         uint64_t vsctlr; /* Virtualization System control register. */
313         uint64_t cpacr_el1; /* Architectural feature access control register */
314         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
315         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
316         uint64_t sder; /* Secure debug enable register. */
317         uint32_t nsacr; /* Non-secure access control register. */
318         union { /* MMU translation table base 0. */
319             struct {
320                 uint64_t _unused_ttbr0_0;
321                 uint64_t ttbr0_ns;
322                 uint64_t _unused_ttbr0_1;
323                 uint64_t ttbr0_s;
324             };
325             uint64_t ttbr0_el[4];
326         };
327         union { /* MMU translation table base 1. */
328             struct {
329                 uint64_t _unused_ttbr1_0;
330                 uint64_t ttbr1_ns;
331                 uint64_t _unused_ttbr1_1;
332                 uint64_t ttbr1_s;
333             };
334             uint64_t ttbr1_el[4];
335         };
336         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
337         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
338         /* MMU translation table base control. */
339         uint64_t tcr_el[4];
340         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
341         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
342         uint32_t c2_data; /* MPU data cacheable bits.  */
343         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
344         union { /* MMU domain access control register
345                  * MPU write buffer control.
346                  */
347             struct {
348                 uint64_t dacr_ns;
349                 uint64_t dacr_s;
350             };
351             struct {
352                 uint64_t dacr32_el2;
353             };
354         };
355         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
356         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
357         uint64_t hcr_el2; /* Hypervisor configuration register */
358         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
359         uint64_t scr_el3; /* Secure configuration register.  */
360         union { /* Fault status registers.  */
361             struct {
362                 uint64_t ifsr_ns;
363                 uint64_t ifsr_s;
364             };
365             struct {
366                 uint64_t ifsr32_el2;
367             };
368         };
369         union {
370             struct {
371                 uint64_t _unused_dfsr;
372                 uint64_t dfsr_ns;
373                 uint64_t hsr;
374                 uint64_t dfsr_s;
375             };
376             uint64_t esr_el[4];
377         };
378         uint32_t c6_region[8]; /* MPU base/size registers.  */
379         union { /* Fault address registers. */
380             struct {
381                 uint64_t _unused_far0;
382 #if HOST_BIG_ENDIAN
383                 uint32_t ifar_ns;
384                 uint32_t dfar_ns;
385                 uint32_t ifar_s;
386                 uint32_t dfar_s;
387 #else
388                 uint32_t dfar_ns;
389                 uint32_t ifar_ns;
390                 uint32_t dfar_s;
391                 uint32_t ifar_s;
392 #endif
393                 uint64_t _unused_far3;
394             };
395             uint64_t far_el[4];
396         };
397         uint64_t hpfar_el2;
398         uint64_t hstr_el2;
399         union { /* Translation result. */
400             struct {
401                 uint64_t _unused_par_0;
402                 uint64_t par_ns;
403                 uint64_t _unused_par_1;
404                 uint64_t par_s;
405             };
406             uint64_t par_el[4];
407         };
408 
409         uint32_t c9_insn; /* Cache lockdown registers.  */
410         uint32_t c9_data;
411         uint64_t c9_pmcr; /* performance monitor control register */
412         uint64_t c9_pmcnten; /* perf monitor counter enables */
413         uint64_t c9_pmovsr; /* perf monitor overflow status */
414         uint64_t c9_pmuserenr; /* perf monitor user enable */
415         uint64_t c9_pmselr; /* perf monitor counter selection register */
416         uint64_t c9_pminten; /* perf monitor interrupt enables */
417         union { /* Memory attribute redirection */
418             struct {
419 #if HOST_BIG_ENDIAN
420                 uint64_t _unused_mair_0;
421                 uint32_t mair1_ns;
422                 uint32_t mair0_ns;
423                 uint64_t _unused_mair_1;
424                 uint32_t mair1_s;
425                 uint32_t mair0_s;
426 #else
427                 uint64_t _unused_mair_0;
428                 uint32_t mair0_ns;
429                 uint32_t mair1_ns;
430                 uint64_t _unused_mair_1;
431                 uint32_t mair0_s;
432                 uint32_t mair1_s;
433 #endif
434             };
435             uint64_t mair_el[4];
436         };
437         union { /* vector base address register */
438             struct {
439                 uint64_t _unused_vbar;
440                 uint64_t vbar_ns;
441                 uint64_t hvbar;
442                 uint64_t vbar_s;
443             };
444             uint64_t vbar_el[4];
445         };
446         uint32_t mvbar; /* (monitor) vector base address register */
447         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
448         struct { /* FCSE PID. */
449             uint32_t fcseidr_ns;
450             uint32_t fcseidr_s;
451         };
452         union { /* Context ID. */
453             struct {
454                 uint64_t _unused_contextidr_0;
455                 uint64_t contextidr_ns;
456                 uint64_t _unused_contextidr_1;
457                 uint64_t contextidr_s;
458             };
459             uint64_t contextidr_el[4];
460         };
461         union { /* User RW Thread register. */
462             struct {
463                 uint64_t tpidrurw_ns;
464                 uint64_t tpidrprw_ns;
465                 uint64_t htpidr;
466                 uint64_t _tpidr_el3;
467             };
468             uint64_t tpidr_el[4];
469         };
470         uint64_t tpidr2_el0;
471         /* The secure banks of these registers don't map anywhere */
472         uint64_t tpidrurw_s;
473         uint64_t tpidrprw_s;
474         uint64_t tpidruro_s;
475 
476         union { /* User RO Thread register. */
477             uint64_t tpidruro_ns;
478             uint64_t tpidrro_el[1];
479         };
480         uint64_t c14_cntfrq; /* Counter Frequency register */
481         uint64_t c14_cntkctl; /* Timer Control register */
482         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
483         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
484         ARMGenericTimer c14_timer[NUM_GTIMERS];
485         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
486         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
487         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
488         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
489         uint32_t c15_threadid; /* TI debugger thread-ID.  */
490         uint32_t c15_config_base_address; /* SCU base address.  */
491         uint32_t c15_diagnostic; /* diagnostic register */
492         uint32_t c15_power_diagnostic;
493         uint32_t c15_power_control; /* power control */
494         uint64_t dbgbvr[16]; /* breakpoint value registers */
495         uint64_t dbgbcr[16]; /* breakpoint control registers */
496         uint64_t dbgwvr[16]; /* watchpoint value registers */
497         uint64_t dbgwcr[16]; /* watchpoint control registers */
498         uint64_t dbgclaim;   /* DBGCLAIM bits */
499         uint64_t mdscr_el1;
500         uint64_t oslsr_el1; /* OS Lock Status */
501         uint64_t osdlr_el1; /* OS DoubleLock status */
502         uint64_t mdcr_el2;
503         uint64_t mdcr_el3;
504         /* Stores the architectural value of the counter *the last time it was
505          * updated* by pmccntr_op_start. Accesses should always be surrounded
506          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
507          * architecturally-correct value is being read/set.
508          */
509         uint64_t c15_ccnt;
510         /* Stores the delta between the architectural value and the underlying
511          * cycle count during normal operation. It is used to update c15_ccnt
512          * to be the correct architectural value before accesses. During
513          * accesses, c15_ccnt_delta contains the underlying count being used
514          * for the access, after which it reverts to the delta value in
515          * pmccntr_op_finish.
516          */
517         uint64_t c15_ccnt_delta;
518         uint64_t c14_pmevcntr[31];
519         uint64_t c14_pmevcntr_delta[31];
520         uint64_t c14_pmevtyper[31];
521         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
522         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
523         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
524         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
525         uint64_t gcr_el1;
526         uint64_t rgsr_el1;
527 
528         /* Minimal RAS registers */
529         uint64_t disr_el1;
530         uint64_t vdisr_el2;
531         uint64_t vsesr_el2;
532     } cp15;
533 
534     struct {
535         /* M profile has up to 4 stack pointers:
536          * a Main Stack Pointer and a Process Stack Pointer for each
537          * of the Secure and Non-Secure states. (If the CPU doesn't support
538          * the security extension then it has only two SPs.)
539          * In QEMU we always store the currently active SP in regs[13],
540          * and the non-active SP for the current security state in
541          * v7m.other_sp. The stack pointers for the inactive security state
542          * are stored in other_ss_msp and other_ss_psp.
543          * switch_v7m_security_state() is responsible for rearranging them
544          * when we change security state.
545          */
546         uint32_t other_sp;
547         uint32_t other_ss_msp;
548         uint32_t other_ss_psp;
549         uint32_t vecbase[M_REG_NUM_BANKS];
550         uint32_t basepri[M_REG_NUM_BANKS];
551         uint32_t control[M_REG_NUM_BANKS];
552         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
553         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
554         uint32_t hfsr; /* HardFault Status */
555         uint32_t dfsr; /* Debug Fault Status Register */
556         uint32_t sfsr; /* Secure Fault Status Register */
557         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
558         uint32_t bfar; /* BusFault Address */
559         uint32_t sfar; /* Secure Fault Address Register */
560         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
561         int exception;
562         uint32_t primask[M_REG_NUM_BANKS];
563         uint32_t faultmask[M_REG_NUM_BANKS];
564         uint32_t aircr; /* only holds r/w state if security extn implemented */
565         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
566         uint32_t csselr[M_REG_NUM_BANKS];
567         uint32_t scr[M_REG_NUM_BANKS];
568         uint32_t msplim[M_REG_NUM_BANKS];
569         uint32_t psplim[M_REG_NUM_BANKS];
570         uint32_t fpcar[M_REG_NUM_BANKS];
571         uint32_t fpccr[M_REG_NUM_BANKS];
572         uint32_t fpdscr[M_REG_NUM_BANKS];
573         uint32_t cpacr[M_REG_NUM_BANKS];
574         uint32_t nsacr;
575         uint32_t ltpsize;
576         uint32_t vpr;
577     } v7m;
578 
579     /* Information associated with an exception about to be taken:
580      * code which raises an exception must set cs->exception_index and
581      * the relevant parts of this structure; the cpu_do_interrupt function
582      * will then set the guest-visible registers as part of the exception
583      * entry process.
584      */
585     struct {
586         uint32_t syndrome; /* AArch64 format syndrome register */
587         uint32_t fsr; /* AArch32 format fault status register info */
588         uint64_t vaddress; /* virtual addr associated with exception, if any */
589         uint32_t target_el; /* EL the exception should be targeted for */
590         /* If we implement EL2 we will also need to store information
591          * about the intermediate physical address for stage 2 faults.
592          */
593     } exception;
594 
595     /* Information associated with an SError */
596     struct {
597         uint8_t pending;
598         uint8_t has_esr;
599         uint64_t esr;
600     } serror;
601 
602     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
603 
604     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
605     uint32_t irq_line_state;
606 
607     /* Thumb-2 EE state.  */
608     uint32_t teecr;
609     uint32_t teehbr;
610 
611     /* VFP coprocessor state.  */
612     struct {
613         ARMVectorReg zregs[32];
614 
615 #ifdef TARGET_AARCH64
616         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
617 #define FFR_PRED_NUM 16
618         ARMPredicateReg pregs[17];
619         /* Scratch space for aa64 sve predicate temporary.  */
620         ARMPredicateReg preg_tmp;
621 #endif
622 
623         /* We store these fpcsr fields separately for convenience.  */
624         uint32_t qc[4] QEMU_ALIGNED(16);
625         int vec_len;
626         int vec_stride;
627 
628         uint32_t xregs[16];
629 
630         /* Scratch space for aa32 neon expansion.  */
631         uint32_t scratch[8];
632 
633         /* There are a number of distinct float control structures:
634          *
635          *  fp_status: is the "normal" fp status.
636          *  fp_status_fp16: used for half-precision calculations
637          *  standard_fp_status : the ARM "Standard FPSCR Value"
638          *  standard_fp_status_fp16 : used for half-precision
639          *       calculations with the ARM "Standard FPSCR Value"
640          *
641          * Half-precision operations are governed by a separate
642          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
643          * status structure to control this.
644          *
645          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
646          * round-to-nearest and is used by any operations (generally
647          * Neon) which the architecture defines as controlled by the
648          * standard FPSCR value rather than the FPSCR.
649          *
650          * The "standard FPSCR but for fp16 ops" is needed because
651          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
652          * using a fixed value for it.
653          *
654          * To avoid having to transfer exception bits around, we simply
655          * say that the FPSCR cumulative exception flags are the logical
656          * OR of the flags in the four fp statuses. This relies on the
657          * only thing which needs to read the exception flags being
658          * an explicit FPSCR read.
659          */
660         float_status fp_status;
661         float_status fp_status_f16;
662         float_status standard_fp_status;
663         float_status standard_fp_status_f16;
664 
665         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
666         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
667     } vfp;
668     uint64_t exclusive_addr;
669     uint64_t exclusive_val;
670     uint64_t exclusive_high;
671 
672     /* iwMMXt coprocessor state.  */
673     struct {
674         uint64_t regs[16];
675         uint64_t val;
676 
677         uint32_t cregs[16];
678     } iwmmxt;
679 
680 #ifdef TARGET_AARCH64
681     struct {
682         ARMPACKey apia;
683         ARMPACKey apib;
684         ARMPACKey apda;
685         ARMPACKey apdb;
686         ARMPACKey apga;
687     } keys;
688 
689     uint64_t scxtnum_el[4];
690 
691     /*
692      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
693      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
694      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
695      * When SVL is less than the architectural maximum, the accessible
696      * storage is restricted, such that if the SVL is X bytes the guest can
697      * see only the bottom X elements of zarray[], and only the least
698      * significant X bytes of each element of the array. (In other words,
699      * the observable part is always square.)
700      *
701      * The ZA storage can also be considered as a set of square tiles of
702      * elements of different sizes. The mapping from tiles to the ZA array
703      * is architecturally defined, such that for tiles of elements of esz
704      * bytes, the Nth row (or "horizontal slice") of tile T is in
705      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
706      * in the ZA storage, because its rows are striped through the ZA array.
707      *
708      * Because this is so large, keep this toward the end of the reset area,
709      * to keep the offsets into the rest of the structure smaller.
710      */
711     ARMVectorReg zarray[ARM_MAX_VQ * 16];
712 #endif
713 
714 #if defined(CONFIG_USER_ONLY)
715     /* For usermode syscall translation.  */
716     int eabi;
717 #endif
718 
719     struct CPUBreakpoint *cpu_breakpoint[16];
720     struct CPUWatchpoint *cpu_watchpoint[16];
721 
722     /* Optional fault info across tlb lookup. */
723     ARMMMUFaultInfo *tlb_fi;
724 
725     /* Fields up to this point are cleared by a CPU reset */
726     struct {} end_reset_fields;
727 
728     /* Fields after this point are preserved across CPU reset. */
729 
730     /* Internal CPU feature flags.  */
731     uint64_t features;
732 
733     /* PMSAv7 MPU */
734     struct {
735         uint32_t *drbar;
736         uint32_t *drsr;
737         uint32_t *dracr;
738         uint32_t rnr[M_REG_NUM_BANKS];
739     } pmsav7;
740 
741     /* PMSAv8 MPU */
742     struct {
743         /* The PMSAv8 implementation also shares some PMSAv7 config
744          * and state:
745          *  pmsav7.rnr (region number register)
746          *  pmsav7_dregion (number of configured regions)
747          */
748         uint32_t *rbar[M_REG_NUM_BANKS];
749         uint32_t *rlar[M_REG_NUM_BANKS];
750         uint32_t *hprbar;
751         uint32_t *hprlar;
752         uint32_t mair0[M_REG_NUM_BANKS];
753         uint32_t mair1[M_REG_NUM_BANKS];
754         uint32_t hprselr;
755     } pmsav8;
756 
757     /* v8M SAU */
758     struct {
759         uint32_t *rbar;
760         uint32_t *rlar;
761         uint32_t rnr;
762         uint32_t ctrl;
763     } sau;
764 
765     void *nvic;
766     const struct arm_boot_info *boot_info;
767     /* Store GICv3CPUState to access from this struct */
768     void *gicv3state;
769 
770 #ifdef TARGET_TAGGED_ADDRESSES
771     /* Linux syscall tagged address support */
772     bool tagged_addr_enable;
773 #endif
774 } CPUARMState;
775 
776 static inline void set_feature(CPUARMState *env, int feature)
777 {
778     env->features |= 1ULL << feature;
779 }
780 
781 static inline void unset_feature(CPUARMState *env, int feature)
782 {
783     env->features &= ~(1ULL << feature);
784 }
785 
786 /**
787  * ARMELChangeHookFn:
788  * type of a function which can be registered via arm_register_el_change_hook()
789  * to get callbacks when the CPU changes its exception level or mode.
790  */
791 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
792 typedef struct ARMELChangeHook ARMELChangeHook;
793 struct ARMELChangeHook {
794     ARMELChangeHookFn *hook;
795     void *opaque;
796     QLIST_ENTRY(ARMELChangeHook) node;
797 };
798 
799 /* These values map onto the return values for
800  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
801 typedef enum ARMPSCIState {
802     PSCI_ON = 0,
803     PSCI_OFF = 1,
804     PSCI_ON_PENDING = 2
805 } ARMPSCIState;
806 
807 typedef struct ARMISARegisters ARMISARegisters;
808 
809 /*
810  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
811  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
812  *
813  * While processing properties during initialization, corresponding init bits
814  * are set for bits in sve_vq_map that have been set by properties.
815  *
816  * Bits set in supported represent valid vector lengths for the CPU type.
817  */
818 typedef struct {
819     uint32_t map, init, supported;
820 } ARMVQMap;
821 
822 /**
823  * ARMCPU:
824  * @env: #CPUARMState
825  *
826  * An ARM CPU core.
827  */
828 struct ArchCPU {
829     /*< private >*/
830     CPUState parent_obj;
831     /*< public >*/
832 
833     CPUNegativeOffsetState neg;
834     CPUARMState env;
835 
836     /* Coprocessor information */
837     GHashTable *cp_regs;
838     /* For marshalling (mostly coprocessor) register state between the
839      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
840      * we use these arrays.
841      */
842     /* List of register indexes managed via these arrays; (full KVM style
843      * 64 bit indexes, not CPRegInfo 32 bit indexes)
844      */
845     uint64_t *cpreg_indexes;
846     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
847     uint64_t *cpreg_values;
848     /* Length of the indexes, values, reset_values arrays */
849     int32_t cpreg_array_len;
850     /* These are used only for migration: incoming data arrives in
851      * these fields and is sanity checked in post_load before copying
852      * to the working data structures above.
853      */
854     uint64_t *cpreg_vmstate_indexes;
855     uint64_t *cpreg_vmstate_values;
856     int32_t cpreg_vmstate_array_len;
857 
858     DynamicGDBXMLInfo dyn_sysreg_xml;
859     DynamicGDBXMLInfo dyn_svereg_xml;
860 
861     /* Timers used by the generic (architected) timer */
862     QEMUTimer *gt_timer[NUM_GTIMERS];
863     /*
864      * Timer used by the PMU. Its state is restored after migration by
865      * pmu_op_finish() - it does not need other handling during migration
866      */
867     QEMUTimer *pmu_timer;
868     /* GPIO outputs for generic timer */
869     qemu_irq gt_timer_outputs[NUM_GTIMERS];
870     /* GPIO output for GICv3 maintenance interrupt signal */
871     qemu_irq gicv3_maintenance_interrupt;
872     /* GPIO output for the PMU interrupt */
873     qemu_irq pmu_interrupt;
874 
875     /* MemoryRegion to use for secure physical accesses */
876     MemoryRegion *secure_memory;
877 
878     /* MemoryRegion to use for allocation tag accesses */
879     MemoryRegion *tag_memory;
880     MemoryRegion *secure_tag_memory;
881 
882     /* For v8M, pointer to the IDAU interface provided by board/SoC */
883     Object *idau;
884 
885     /* 'compatible' string for this CPU for Linux device trees */
886     const char *dtb_compatible;
887 
888     /* PSCI version for this CPU
889      * Bits[31:16] = Major Version
890      * Bits[15:0] = Minor Version
891      */
892     uint32_t psci_version;
893 
894     /* Current power state, access guarded by BQL */
895     ARMPSCIState power_state;
896 
897     /* CPU has virtualization extension */
898     bool has_el2;
899     /* CPU has security extension */
900     bool has_el3;
901     /* CPU has PMU (Performance Monitor Unit) */
902     bool has_pmu;
903     /* CPU has VFP */
904     bool has_vfp;
905     /* CPU has Neon */
906     bool has_neon;
907     /* CPU has M-profile DSP extension */
908     bool has_dsp;
909 
910     /* CPU has memory protection unit */
911     bool has_mpu;
912     /* PMSAv7 MPU number of supported regions */
913     uint32_t pmsav7_dregion;
914     /* PMSAv8 MPU number of supported hyp regions */
915     uint32_t pmsav8r_hdregion;
916     /* v8M SAU number of supported regions */
917     uint32_t sau_sregion;
918 
919     /* PSCI conduit used to invoke PSCI methods
920      * 0 - disabled, 1 - smc, 2 - hvc
921      */
922     uint32_t psci_conduit;
923 
924     /* For v8M, initial value of the Secure VTOR */
925     uint32_t init_svtor;
926     /* For v8M, initial value of the Non-secure VTOR */
927     uint32_t init_nsvtor;
928 
929     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
930      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
931      */
932     uint32_t kvm_target;
933 
934     /* KVM init features for this CPU */
935     uint32_t kvm_init_features[7];
936 
937     /* KVM CPU state */
938 
939     /* KVM virtual time adjustment */
940     bool kvm_adjvtime;
941     bool kvm_vtime_dirty;
942     uint64_t kvm_vtime;
943 
944     /* KVM steal time */
945     OnOffAuto kvm_steal_time;
946 
947     /* Uniprocessor system with MP extensions */
948     bool mp_is_up;
949 
950     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
951      * and the probe failed (so we need to report the error in realize)
952      */
953     bool host_cpu_probe_failed;
954 
955     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
956      * register.
957      */
958     int32_t core_count;
959 
960     /* The instance init functions for implementation-specific subclasses
961      * set these fields to specify the implementation-dependent values of
962      * various constant registers and reset values of non-constant
963      * registers.
964      * Some of these might become QOM properties eventually.
965      * Field names match the official register names as defined in the
966      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
967      * is used for reset values of non-constant registers; no reset_
968      * prefix means a constant register.
969      * Some of these registers are split out into a substructure that
970      * is shared with the translators to control the ISA.
971      *
972      * Note that if you add an ID register to the ARMISARegisters struct
973      * you need to also update the 32-bit and 64-bit versions of the
974      * kvm_arm_get_host_cpu_features() function to correctly populate the
975      * field by reading the value from the KVM vCPU.
976      */
977     struct ARMISARegisters {
978         uint32_t id_isar0;
979         uint32_t id_isar1;
980         uint32_t id_isar2;
981         uint32_t id_isar3;
982         uint32_t id_isar4;
983         uint32_t id_isar5;
984         uint32_t id_isar6;
985         uint32_t id_mmfr0;
986         uint32_t id_mmfr1;
987         uint32_t id_mmfr2;
988         uint32_t id_mmfr3;
989         uint32_t id_mmfr4;
990         uint32_t id_mmfr5;
991         uint32_t id_pfr0;
992         uint32_t id_pfr1;
993         uint32_t id_pfr2;
994         uint32_t mvfr0;
995         uint32_t mvfr1;
996         uint32_t mvfr2;
997         uint32_t id_dfr0;
998         uint32_t id_dfr1;
999         uint32_t dbgdidr;
1000         uint32_t dbgdevid;
1001         uint32_t dbgdevid1;
1002         uint64_t id_aa64isar0;
1003         uint64_t id_aa64isar1;
1004         uint64_t id_aa64pfr0;
1005         uint64_t id_aa64pfr1;
1006         uint64_t id_aa64mmfr0;
1007         uint64_t id_aa64mmfr1;
1008         uint64_t id_aa64mmfr2;
1009         uint64_t id_aa64dfr0;
1010         uint64_t id_aa64dfr1;
1011         uint64_t id_aa64zfr0;
1012         uint64_t id_aa64smfr0;
1013         uint64_t reset_pmcr_el0;
1014     } isar;
1015     uint64_t midr;
1016     uint32_t revidr;
1017     uint32_t reset_fpsid;
1018     uint64_t ctr;
1019     uint32_t reset_sctlr;
1020     uint64_t pmceid0;
1021     uint64_t pmceid1;
1022     uint32_t id_afr0;
1023     uint64_t id_aa64afr0;
1024     uint64_t id_aa64afr1;
1025     uint64_t clidr;
1026     uint64_t mp_affinity; /* MP ID without feature bits */
1027     /* The elements of this array are the CCSIDR values for each cache,
1028      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1029      */
1030     uint64_t ccsidr[16];
1031     uint64_t reset_cbar;
1032     uint32_t reset_auxcr;
1033     bool reset_hivecs;
1034 
1035     /*
1036      * Intermediate values used during property parsing.
1037      * Once finalized, the values should be read from ID_AA64*.
1038      */
1039     bool prop_pauth;
1040     bool prop_pauth_impdef;
1041     bool prop_lpa2;
1042 
1043     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1044     uint32_t dcz_blocksize;
1045     uint64_t rvbar_prop; /* Property/input signals.  */
1046 
1047     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1048     int gic_num_lrs; /* number of list registers */
1049     int gic_vpribits; /* number of virtual priority bits */
1050     int gic_vprebits; /* number of virtual preemption bits */
1051     int gic_pribits; /* number of physical priority bits */
1052 
1053     /* Whether the cfgend input is high (i.e. this CPU should reset into
1054      * big-endian mode).  This setting isn't used directly: instead it modifies
1055      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1056      * architecture version.
1057      */
1058     bool cfgend;
1059 
1060     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1061     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1062 
1063     int32_t node_id; /* NUMA node this CPU belongs to */
1064 
1065     /* Used to synchronize KVM and QEMU in-kernel device levels */
1066     uint8_t device_irq_level;
1067 
1068     /* Used to set the maximum vector length the cpu will support.  */
1069     uint32_t sve_max_vq;
1070 
1071 #ifdef CONFIG_USER_ONLY
1072     /* Used to set the default vector length at process start. */
1073     uint32_t sve_default_vq;
1074     uint32_t sme_default_vq;
1075 #endif
1076 
1077     ARMVQMap sve_vq;
1078     ARMVQMap sme_vq;
1079 
1080     /* Generic timer counter frequency, in Hz */
1081     uint64_t gt_cntfrq_hz;
1082 };
1083 
1084 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1085 
1086 void arm_cpu_post_init(Object *obj);
1087 
1088 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1089 
1090 #ifndef CONFIG_USER_ONLY
1091 extern const VMStateDescription vmstate_arm_cpu;
1092 
1093 void arm_cpu_do_interrupt(CPUState *cpu);
1094 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1095 #endif /* !CONFIG_USER_ONLY */
1096 
1097 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1098                                          MemTxAttrs *attrs);
1099 
1100 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1101 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1102 
1103 /*
1104  * Helpers to dynamically generates XML descriptions of the sysregs
1105  * and SVE registers. Returns the number of registers in each set.
1106  */
1107 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1108 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1109 
1110 /* Returns the dynamically generated XML for the gdb stub.
1111  * Returns a pointer to the XML contents for the specified XML file or NULL
1112  * if the XML name doesn't match the predefined one.
1113  */
1114 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1115 
1116 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1117                              int cpuid, DumpState *s);
1118 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1119                              int cpuid, DumpState *s);
1120 
1121 #ifdef TARGET_AARCH64
1122 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1123 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1124 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1125 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1126                            int new_el, bool el0_a64);
1127 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1128 
1129 /*
1130  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1131  * The byte at offset i from the start of the in-memory representation contains
1132  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1133  * lowest offsets are stored in the lowest memory addresses, then that nearly
1134  * matches QEMU's representation, which is to use an array of host-endian
1135  * uint64_t's, where the lower offsets are at the lower indices. To complete
1136  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1137  */
1138 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1139 {
1140 #if HOST_BIG_ENDIAN
1141     int i;
1142 
1143     for (i = 0; i < nr; ++i) {
1144         dst[i] = bswap64(src[i]);
1145     }
1146 
1147     return dst;
1148 #else
1149     return src;
1150 #endif
1151 }
1152 
1153 #else
1154 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1155 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1156                                          int n, bool a)
1157 { }
1158 #endif
1159 
1160 void aarch64_sync_32_to_64(CPUARMState *env);
1161 void aarch64_sync_64_to_32(CPUARMState *env);
1162 
1163 int fp_exception_el(CPUARMState *env, int cur_el);
1164 int sve_exception_el(CPUARMState *env, int cur_el);
1165 int sme_exception_el(CPUARMState *env, int cur_el);
1166 
1167 /**
1168  * sve_vqm1_for_el_sm:
1169  * @env: CPUARMState
1170  * @el: exception level
1171  * @sm: streaming mode
1172  *
1173  * Compute the current vector length for @el & @sm, in units of
1174  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1175  * If @sm, compute for SVL, otherwise NVL.
1176  */
1177 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1178 
1179 /* Likewise, but using @sm = PSTATE.SM. */
1180 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1181 
1182 static inline bool is_a64(CPUARMState *env)
1183 {
1184     return env->aarch64;
1185 }
1186 
1187 /**
1188  * pmu_op_start/finish
1189  * @env: CPUARMState
1190  *
1191  * Convert all PMU counters between their delta form (the typical mode when
1192  * they are enabled) and the guest-visible values. These two calls must
1193  * surround any action which might affect the counters.
1194  */
1195 void pmu_op_start(CPUARMState *env);
1196 void pmu_op_finish(CPUARMState *env);
1197 
1198 /*
1199  * Called when a PMU counter is due to overflow
1200  */
1201 void arm_pmu_timer_cb(void *opaque);
1202 
1203 /**
1204  * Functions to register as EL change hooks for PMU mode filtering
1205  */
1206 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1207 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1208 
1209 /*
1210  * pmu_init
1211  * @cpu: ARMCPU
1212  *
1213  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1214  * for the current configuration
1215  */
1216 void pmu_init(ARMCPU *cpu);
1217 
1218 /* SCTLR bit meanings. Several bits have been reused in newer
1219  * versions of the architecture; in that case we define constants
1220  * for both old and new bit meanings. Code which tests against those
1221  * bits should probably check or otherwise arrange that the CPU
1222  * is the architectural version it expects.
1223  */
1224 #define SCTLR_M       (1U << 0)
1225 #define SCTLR_A       (1U << 1)
1226 #define SCTLR_C       (1U << 2)
1227 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1228 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1229 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1230 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1231 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1232 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1233 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1234 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1235 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1236 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1237 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1238 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1239 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1240 #define SCTLR_SED     (1U << 8) /* v8 onward */
1241 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1242 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1243 #define SCTLR_F       (1U << 10) /* up to v6 */
1244 #define SCTLR_SW      (1U << 10) /* v7 */
1245 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1246 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1247 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1248 #define SCTLR_I       (1U << 12)
1249 #define SCTLR_V       (1U << 13) /* AArch32 only */
1250 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1251 #define SCTLR_RR      (1U << 14) /* up to v7 */
1252 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1253 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1254 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1255 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1256 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1257 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1258 #define SCTLR_BR      (1U << 17) /* PMSA only */
1259 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1260 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1261 #define SCTLR_WXN     (1U << 19)
1262 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1263 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1264 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1265 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1266 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1267 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1268 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1269 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1270 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1271 #define SCTLR_VE      (1U << 24) /* up to v7 */
1272 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1273 #define SCTLR_EE      (1U << 25)
1274 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1275 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1276 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1277 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1278 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1279 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1280 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1281 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1282 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1283 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1284 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1285 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1286 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1287 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1288 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1289 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1290 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1291 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1292 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1293 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1294 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1295 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1296 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1297 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1298 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1299 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1300 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1301 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1302 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1303 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1304 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1305 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1306 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1307 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1308 
1309 /* Bit definitions for CPACR (AArch32 only) */
1310 FIELD(CPACR, CP10, 20, 2)
1311 FIELD(CPACR, CP11, 22, 2)
1312 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1313 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1314 FIELD(CPACR, ASEDIS, 31, 1)
1315 
1316 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1317 FIELD(CPACR_EL1, ZEN, 16, 2)
1318 FIELD(CPACR_EL1, FPEN, 20, 2)
1319 FIELD(CPACR_EL1, SMEN, 24, 2)
1320 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1321 
1322 /* Bit definitions for HCPTR (AArch32 only) */
1323 FIELD(HCPTR, TCP10, 10, 1)
1324 FIELD(HCPTR, TCP11, 11, 1)
1325 FIELD(HCPTR, TASE, 15, 1)
1326 FIELD(HCPTR, TTA, 20, 1)
1327 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1328 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1329 
1330 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1331 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1332 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1333 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1334 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1335 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1336 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1337 FIELD(CPTR_EL2, TTA, 28, 1)
1338 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1339 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1340 
1341 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1342 FIELD(CPTR_EL3, EZ, 8, 1)
1343 FIELD(CPTR_EL3, TFP, 10, 1)
1344 FIELD(CPTR_EL3, ESM, 12, 1)
1345 FIELD(CPTR_EL3, TTA, 20, 1)
1346 FIELD(CPTR_EL3, TAM, 30, 1)
1347 FIELD(CPTR_EL3, TCPAC, 31, 1)
1348 
1349 #define MDCR_MTPME    (1U << 28)
1350 #define MDCR_TDCC     (1U << 27)
1351 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1352 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1353 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1354 #define MDCR_EPMAD    (1U << 21)
1355 #define MDCR_EDAD     (1U << 20)
1356 #define MDCR_TTRF     (1U << 19)
1357 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1358 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1359 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1360 #define MDCR_SDD      (1U << 16)
1361 #define MDCR_SPD      (3U << 14)
1362 #define MDCR_TDRA     (1U << 11)
1363 #define MDCR_TDOSA    (1U << 10)
1364 #define MDCR_TDA      (1U << 9)
1365 #define MDCR_TDE      (1U << 8)
1366 #define MDCR_HPME     (1U << 7)
1367 #define MDCR_TPM      (1U << 6)
1368 #define MDCR_TPMCR    (1U << 5)
1369 #define MDCR_HPMN     (0x1fU)
1370 
1371 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1372 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1373                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1374                          MDCR_STE | MDCR_SPME | MDCR_SPD)
1375 
1376 #define CPSR_M (0x1fU)
1377 #define CPSR_T (1U << 5)
1378 #define CPSR_F (1U << 6)
1379 #define CPSR_I (1U << 7)
1380 #define CPSR_A (1U << 8)
1381 #define CPSR_E (1U << 9)
1382 #define CPSR_IT_2_7 (0xfc00U)
1383 #define CPSR_GE (0xfU << 16)
1384 #define CPSR_IL (1U << 20)
1385 #define CPSR_DIT (1U << 21)
1386 #define CPSR_PAN (1U << 22)
1387 #define CPSR_SSBS (1U << 23)
1388 #define CPSR_J (1U << 24)
1389 #define CPSR_IT_0_1 (3U << 25)
1390 #define CPSR_Q (1U << 27)
1391 #define CPSR_V (1U << 28)
1392 #define CPSR_C (1U << 29)
1393 #define CPSR_Z (1U << 30)
1394 #define CPSR_N (1U << 31)
1395 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1396 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1397 
1398 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1399 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1400     | CPSR_NZCV)
1401 /* Bits writable in user mode.  */
1402 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1403 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1404 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1405 
1406 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1407 #define XPSR_EXCP 0x1ffU
1408 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1409 #define XPSR_IT_2_7 CPSR_IT_2_7
1410 #define XPSR_GE CPSR_GE
1411 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1412 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1413 #define XPSR_IT_0_1 CPSR_IT_0_1
1414 #define XPSR_Q CPSR_Q
1415 #define XPSR_V CPSR_V
1416 #define XPSR_C CPSR_C
1417 #define XPSR_Z CPSR_Z
1418 #define XPSR_N CPSR_N
1419 #define XPSR_NZCV CPSR_NZCV
1420 #define XPSR_IT CPSR_IT
1421 
1422 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1423 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1424 #define TTBCR_PD0    (1U << 4)
1425 #define TTBCR_PD1    (1U << 5)
1426 #define TTBCR_EPD0   (1U << 7)
1427 #define TTBCR_IRGN0  (3U << 8)
1428 #define TTBCR_ORGN0  (3U << 10)
1429 #define TTBCR_SH0    (3U << 12)
1430 #define TTBCR_T1SZ   (3U << 16)
1431 #define TTBCR_A1     (1U << 22)
1432 #define TTBCR_EPD1   (1U << 23)
1433 #define TTBCR_IRGN1  (3U << 24)
1434 #define TTBCR_ORGN1  (3U << 26)
1435 #define TTBCR_SH1    (1U << 28)
1436 #define TTBCR_EAE    (1U << 31)
1437 
1438 FIELD(VTCR, T0SZ, 0, 6)
1439 FIELD(VTCR, SL0, 6, 2)
1440 FIELD(VTCR, IRGN0, 8, 2)
1441 FIELD(VTCR, ORGN0, 10, 2)
1442 FIELD(VTCR, SH0, 12, 2)
1443 FIELD(VTCR, TG0, 14, 2)
1444 FIELD(VTCR, PS, 16, 3)
1445 FIELD(VTCR, VS, 19, 1)
1446 FIELD(VTCR, HA, 21, 1)
1447 FIELD(VTCR, HD, 22, 1)
1448 FIELD(VTCR, HWU59, 25, 1)
1449 FIELD(VTCR, HWU60, 26, 1)
1450 FIELD(VTCR, HWU61, 27, 1)
1451 FIELD(VTCR, HWU62, 28, 1)
1452 FIELD(VTCR, NSW, 29, 1)
1453 FIELD(VTCR, NSA, 30, 1)
1454 FIELD(VTCR, DS, 32, 1)
1455 FIELD(VTCR, SL2, 33, 1)
1456 
1457 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1458  * Only these are valid when in AArch64 mode; in
1459  * AArch32 mode SPSRs are basically CPSR-format.
1460  */
1461 #define PSTATE_SP (1U)
1462 #define PSTATE_M (0xFU)
1463 #define PSTATE_nRW (1U << 4)
1464 #define PSTATE_F (1U << 6)
1465 #define PSTATE_I (1U << 7)
1466 #define PSTATE_A (1U << 8)
1467 #define PSTATE_D (1U << 9)
1468 #define PSTATE_BTYPE (3U << 10)
1469 #define PSTATE_SSBS (1U << 12)
1470 #define PSTATE_IL (1U << 20)
1471 #define PSTATE_SS (1U << 21)
1472 #define PSTATE_PAN (1U << 22)
1473 #define PSTATE_UAO (1U << 23)
1474 #define PSTATE_DIT (1U << 24)
1475 #define PSTATE_TCO (1U << 25)
1476 #define PSTATE_V (1U << 28)
1477 #define PSTATE_C (1U << 29)
1478 #define PSTATE_Z (1U << 30)
1479 #define PSTATE_N (1U << 31)
1480 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1481 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1482 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1483 /* Mode values for AArch64 */
1484 #define PSTATE_MODE_EL3h 13
1485 #define PSTATE_MODE_EL3t 12
1486 #define PSTATE_MODE_EL2h 9
1487 #define PSTATE_MODE_EL2t 8
1488 #define PSTATE_MODE_EL1h 5
1489 #define PSTATE_MODE_EL1t 4
1490 #define PSTATE_MODE_EL0t 0
1491 
1492 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1493 FIELD(SVCR, SM, 0, 1)
1494 FIELD(SVCR, ZA, 1, 1)
1495 
1496 /* Fields for SMCR_ELx. */
1497 FIELD(SMCR, LEN, 0, 4)
1498 FIELD(SMCR, FA64, 31, 1)
1499 
1500 /* Write a new value to v7m.exception, thus transitioning into or out
1501  * of Handler mode; this may result in a change of active stack pointer.
1502  */
1503 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1504 
1505 /* Map EL and handler into a PSTATE_MODE.  */
1506 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1507 {
1508     return (el << 2) | handler;
1509 }
1510 
1511 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1512  * interprocessing, so we don't attempt to sync with the cpsr state used by
1513  * the 32 bit decoder.
1514  */
1515 static inline uint32_t pstate_read(CPUARMState *env)
1516 {
1517     int ZF;
1518 
1519     ZF = (env->ZF == 0);
1520     return (env->NF & 0x80000000) | (ZF << 30)
1521         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1522         | env->pstate | env->daif | (env->btype << 10);
1523 }
1524 
1525 static inline void pstate_write(CPUARMState *env, uint32_t val)
1526 {
1527     env->ZF = (~val) & PSTATE_Z;
1528     env->NF = val;
1529     env->CF = (val >> 29) & 1;
1530     env->VF = (val << 3) & 0x80000000;
1531     env->daif = val & PSTATE_DAIF;
1532     env->btype = (val >> 10) & 3;
1533     env->pstate = val & ~CACHED_PSTATE_BITS;
1534 }
1535 
1536 /* Return the current CPSR value.  */
1537 uint32_t cpsr_read(CPUARMState *env);
1538 
1539 typedef enum CPSRWriteType {
1540     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1541     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1542     CPSRWriteRaw = 2,
1543         /* trust values, no reg bank switch, no hflags rebuild */
1544     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1545 } CPSRWriteType;
1546 
1547 /*
1548  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1549  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1550  * correspond to TB flags bits cached in the hflags, unless @write_type
1551  * is CPSRWriteRaw.
1552  */
1553 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1554                 CPSRWriteType write_type);
1555 
1556 /* Return the current xPSR value.  */
1557 static inline uint32_t xpsr_read(CPUARMState *env)
1558 {
1559     int ZF;
1560     ZF = (env->ZF == 0);
1561     return (env->NF & 0x80000000) | (ZF << 30)
1562         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1563         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1564         | ((env->condexec_bits & 0xfc) << 8)
1565         | (env->GE << 16)
1566         | env->v7m.exception;
1567 }
1568 
1569 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1570 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1571 {
1572     if (mask & XPSR_NZCV) {
1573         env->ZF = (~val) & XPSR_Z;
1574         env->NF = val;
1575         env->CF = (val >> 29) & 1;
1576         env->VF = (val << 3) & 0x80000000;
1577     }
1578     if (mask & XPSR_Q) {
1579         env->QF = ((val & XPSR_Q) != 0);
1580     }
1581     if (mask & XPSR_GE) {
1582         env->GE = (val & XPSR_GE) >> 16;
1583     }
1584 #ifndef CONFIG_USER_ONLY
1585     if (mask & XPSR_T) {
1586         env->thumb = ((val & XPSR_T) != 0);
1587     }
1588     if (mask & XPSR_IT_0_1) {
1589         env->condexec_bits &= ~3;
1590         env->condexec_bits |= (val >> 25) & 3;
1591     }
1592     if (mask & XPSR_IT_2_7) {
1593         env->condexec_bits &= 3;
1594         env->condexec_bits |= (val >> 8) & 0xfc;
1595     }
1596     if (mask & XPSR_EXCP) {
1597         /* Note that this only happens on exception exit */
1598         write_v7m_exception(env, val & XPSR_EXCP);
1599     }
1600 #endif
1601 }
1602 
1603 #define HCR_VM        (1ULL << 0)
1604 #define HCR_SWIO      (1ULL << 1)
1605 #define HCR_PTW       (1ULL << 2)
1606 #define HCR_FMO       (1ULL << 3)
1607 #define HCR_IMO       (1ULL << 4)
1608 #define HCR_AMO       (1ULL << 5)
1609 #define HCR_VF        (1ULL << 6)
1610 #define HCR_VI        (1ULL << 7)
1611 #define HCR_VSE       (1ULL << 8)
1612 #define HCR_FB        (1ULL << 9)
1613 #define HCR_BSU_MASK  (3ULL << 10)
1614 #define HCR_DC        (1ULL << 12)
1615 #define HCR_TWI       (1ULL << 13)
1616 #define HCR_TWE       (1ULL << 14)
1617 #define HCR_TID0      (1ULL << 15)
1618 #define HCR_TID1      (1ULL << 16)
1619 #define HCR_TID2      (1ULL << 17)
1620 #define HCR_TID3      (1ULL << 18)
1621 #define HCR_TSC       (1ULL << 19)
1622 #define HCR_TIDCP     (1ULL << 20)
1623 #define HCR_TACR      (1ULL << 21)
1624 #define HCR_TSW       (1ULL << 22)
1625 #define HCR_TPCP      (1ULL << 23)
1626 #define HCR_TPU       (1ULL << 24)
1627 #define HCR_TTLB      (1ULL << 25)
1628 #define HCR_TVM       (1ULL << 26)
1629 #define HCR_TGE       (1ULL << 27)
1630 #define HCR_TDZ       (1ULL << 28)
1631 #define HCR_HCD       (1ULL << 29)
1632 #define HCR_TRVM      (1ULL << 30)
1633 #define HCR_RW        (1ULL << 31)
1634 #define HCR_CD        (1ULL << 32)
1635 #define HCR_ID        (1ULL << 33)
1636 #define HCR_E2H       (1ULL << 34)
1637 #define HCR_TLOR      (1ULL << 35)
1638 #define HCR_TERR      (1ULL << 36)
1639 #define HCR_TEA       (1ULL << 37)
1640 #define HCR_MIOCNCE   (1ULL << 38)
1641 /* RES0 bit 39 */
1642 #define HCR_APK       (1ULL << 40)
1643 #define HCR_API       (1ULL << 41)
1644 #define HCR_NV        (1ULL << 42)
1645 #define HCR_NV1       (1ULL << 43)
1646 #define HCR_AT        (1ULL << 44)
1647 #define HCR_NV2       (1ULL << 45)
1648 #define HCR_FWB       (1ULL << 46)
1649 #define HCR_FIEN      (1ULL << 47)
1650 /* RES0 bit 48 */
1651 #define HCR_TID4      (1ULL << 49)
1652 #define HCR_TICAB     (1ULL << 50)
1653 #define HCR_AMVOFFEN  (1ULL << 51)
1654 #define HCR_TOCU      (1ULL << 52)
1655 #define HCR_ENSCXT    (1ULL << 53)
1656 #define HCR_TTLBIS    (1ULL << 54)
1657 #define HCR_TTLBOS    (1ULL << 55)
1658 #define HCR_ATA       (1ULL << 56)
1659 #define HCR_DCT       (1ULL << 57)
1660 #define HCR_TID5      (1ULL << 58)
1661 #define HCR_TWEDEN    (1ULL << 59)
1662 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1663 
1664 #define HCRX_ENAS0    (1ULL << 0)
1665 #define HCRX_ENALS    (1ULL << 1)
1666 #define HCRX_ENASR    (1ULL << 2)
1667 #define HCRX_FNXS     (1ULL << 3)
1668 #define HCRX_FGTNXS   (1ULL << 4)
1669 #define HCRX_SMPME    (1ULL << 5)
1670 #define HCRX_TALLINT  (1ULL << 6)
1671 #define HCRX_VINMI    (1ULL << 7)
1672 #define HCRX_VFNMI    (1ULL << 8)
1673 #define HCRX_CMOW     (1ULL << 9)
1674 #define HCRX_MCE2     (1ULL << 10)
1675 #define HCRX_MSCEN    (1ULL << 11)
1676 
1677 #define HPFAR_NS      (1ULL << 63)
1678 
1679 #define SCR_NS                (1ULL << 0)
1680 #define SCR_IRQ               (1ULL << 1)
1681 #define SCR_FIQ               (1ULL << 2)
1682 #define SCR_EA                (1ULL << 3)
1683 #define SCR_FW                (1ULL << 4)
1684 #define SCR_AW                (1ULL << 5)
1685 #define SCR_NET               (1ULL << 6)
1686 #define SCR_SMD               (1ULL << 7)
1687 #define SCR_HCE               (1ULL << 8)
1688 #define SCR_SIF               (1ULL << 9)
1689 #define SCR_RW                (1ULL << 10)
1690 #define SCR_ST                (1ULL << 11)
1691 #define SCR_TWI               (1ULL << 12)
1692 #define SCR_TWE               (1ULL << 13)
1693 #define SCR_TLOR              (1ULL << 14)
1694 #define SCR_TERR              (1ULL << 15)
1695 #define SCR_APK               (1ULL << 16)
1696 #define SCR_API               (1ULL << 17)
1697 #define SCR_EEL2              (1ULL << 18)
1698 #define SCR_EASE              (1ULL << 19)
1699 #define SCR_NMEA              (1ULL << 20)
1700 #define SCR_FIEN              (1ULL << 21)
1701 #define SCR_ENSCXT            (1ULL << 25)
1702 #define SCR_ATA               (1ULL << 26)
1703 #define SCR_FGTEN             (1ULL << 27)
1704 #define SCR_ECVEN             (1ULL << 28)
1705 #define SCR_TWEDEN            (1ULL << 29)
1706 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1707 #define SCR_TME               (1ULL << 34)
1708 #define SCR_AMVOFFEN          (1ULL << 35)
1709 #define SCR_ENAS0             (1ULL << 36)
1710 #define SCR_ADEN              (1ULL << 37)
1711 #define SCR_HXEN              (1ULL << 38)
1712 #define SCR_TRNDR             (1ULL << 40)
1713 #define SCR_ENTP2             (1ULL << 41)
1714 #define SCR_GPF               (1ULL << 48)
1715 
1716 #define HSTR_TTEE (1 << 16)
1717 #define HSTR_TJDBX (1 << 17)
1718 
1719 /* Return the current FPSCR value.  */
1720 uint32_t vfp_get_fpscr(CPUARMState *env);
1721 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1722 
1723 /* FPCR, Floating Point Control Register
1724  * FPSR, Floating Poiht Status Register
1725  *
1726  * For A64 the FPSCR is split into two logically distinct registers,
1727  * FPCR and FPSR. However since they still use non-overlapping bits
1728  * we store the underlying state in fpscr and just mask on read/write.
1729  */
1730 #define FPSR_MASK 0xf800009f
1731 #define FPCR_MASK 0x07ff9f00
1732 
1733 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1734 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1735 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1736 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1737 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1738 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1739 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1740 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1741 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1742 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1743 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1744 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1745 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1746 #define FPCR_C      (1 << 29)   /* FP carry flag */
1747 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1748 #define FPCR_N      (1 << 31)   /* FP negative flag */
1749 
1750 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1751 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1752 #define FPCR_LTPSIZE_LENGTH 3
1753 
1754 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1755 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1756 
1757 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1758 {
1759     return vfp_get_fpscr(env) & FPSR_MASK;
1760 }
1761 
1762 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1763 {
1764     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1765     vfp_set_fpscr(env, new_fpscr);
1766 }
1767 
1768 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1769 {
1770     return vfp_get_fpscr(env) & FPCR_MASK;
1771 }
1772 
1773 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1774 {
1775     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1776     vfp_set_fpscr(env, new_fpscr);
1777 }
1778 
1779 enum arm_cpu_mode {
1780   ARM_CPU_MODE_USR = 0x10,
1781   ARM_CPU_MODE_FIQ = 0x11,
1782   ARM_CPU_MODE_IRQ = 0x12,
1783   ARM_CPU_MODE_SVC = 0x13,
1784   ARM_CPU_MODE_MON = 0x16,
1785   ARM_CPU_MODE_ABT = 0x17,
1786   ARM_CPU_MODE_HYP = 0x1a,
1787   ARM_CPU_MODE_UND = 0x1b,
1788   ARM_CPU_MODE_SYS = 0x1f
1789 };
1790 
1791 /* VFP system registers.  */
1792 #define ARM_VFP_FPSID   0
1793 #define ARM_VFP_FPSCR   1
1794 #define ARM_VFP_MVFR2   5
1795 #define ARM_VFP_MVFR1   6
1796 #define ARM_VFP_MVFR0   7
1797 #define ARM_VFP_FPEXC   8
1798 #define ARM_VFP_FPINST  9
1799 #define ARM_VFP_FPINST2 10
1800 /* These ones are M-profile only */
1801 #define ARM_VFP_FPSCR_NZCVQC 2
1802 #define ARM_VFP_VPR 12
1803 #define ARM_VFP_P0 13
1804 #define ARM_VFP_FPCXT_NS 14
1805 #define ARM_VFP_FPCXT_S 15
1806 
1807 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1808 #define QEMU_VFP_FPSCR_NZCV 0xffff
1809 
1810 /* iwMMXt coprocessor control registers.  */
1811 #define ARM_IWMMXT_wCID  0
1812 #define ARM_IWMMXT_wCon  1
1813 #define ARM_IWMMXT_wCSSF 2
1814 #define ARM_IWMMXT_wCASF 3
1815 #define ARM_IWMMXT_wCGR0 8
1816 #define ARM_IWMMXT_wCGR1 9
1817 #define ARM_IWMMXT_wCGR2 10
1818 #define ARM_IWMMXT_wCGR3 11
1819 
1820 /* V7M CCR bits */
1821 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1822 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1823 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1824 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1825 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1826 FIELD(V7M_CCR, STKALIGN, 9, 1)
1827 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1828 FIELD(V7M_CCR, DC, 16, 1)
1829 FIELD(V7M_CCR, IC, 17, 1)
1830 FIELD(V7M_CCR, BP, 18, 1)
1831 FIELD(V7M_CCR, LOB, 19, 1)
1832 FIELD(V7M_CCR, TRD, 20, 1)
1833 
1834 /* V7M SCR bits */
1835 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1836 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1837 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1838 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1839 
1840 /* V7M AIRCR bits */
1841 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1842 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1843 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1844 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1845 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1846 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1847 FIELD(V7M_AIRCR, PRIS, 14, 1)
1848 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1849 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1850 
1851 /* V7M CFSR bits for MMFSR */
1852 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1853 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1854 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1855 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1856 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1857 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1858 
1859 /* V7M CFSR bits for BFSR */
1860 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1861 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1862 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1863 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1864 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1865 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1866 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1867 
1868 /* V7M CFSR bits for UFSR */
1869 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1870 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1871 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1872 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1873 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1874 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1875 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1876 
1877 /* V7M CFSR bit masks covering all of the subregister bits */
1878 FIELD(V7M_CFSR, MMFSR, 0, 8)
1879 FIELD(V7M_CFSR, BFSR, 8, 8)
1880 FIELD(V7M_CFSR, UFSR, 16, 16)
1881 
1882 /* V7M HFSR bits */
1883 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1884 FIELD(V7M_HFSR, FORCED, 30, 1)
1885 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1886 
1887 /* V7M DFSR bits */
1888 FIELD(V7M_DFSR, HALTED, 0, 1)
1889 FIELD(V7M_DFSR, BKPT, 1, 1)
1890 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1891 FIELD(V7M_DFSR, VCATCH, 3, 1)
1892 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1893 
1894 /* V7M SFSR bits */
1895 FIELD(V7M_SFSR, INVEP, 0, 1)
1896 FIELD(V7M_SFSR, INVIS, 1, 1)
1897 FIELD(V7M_SFSR, INVER, 2, 1)
1898 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1899 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1900 FIELD(V7M_SFSR, LSPERR, 5, 1)
1901 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1902 FIELD(V7M_SFSR, LSERR, 7, 1)
1903 
1904 /* v7M MPU_CTRL bits */
1905 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1906 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1907 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1908 
1909 /* v7M CLIDR bits */
1910 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1911 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1912 FIELD(V7M_CLIDR, LOC, 24, 3)
1913 FIELD(V7M_CLIDR, LOUU, 27, 3)
1914 FIELD(V7M_CLIDR, ICB, 30, 2)
1915 
1916 FIELD(V7M_CSSELR, IND, 0, 1)
1917 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1918 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1919  * define a mask for this and check that it doesn't permit running off
1920  * the end of the array.
1921  */
1922 FIELD(V7M_CSSELR, INDEX, 0, 4)
1923 
1924 /* v7M FPCCR bits */
1925 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1926 FIELD(V7M_FPCCR, USER, 1, 1)
1927 FIELD(V7M_FPCCR, S, 2, 1)
1928 FIELD(V7M_FPCCR, THREAD, 3, 1)
1929 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1930 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1931 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1932 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1933 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1934 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1935 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1936 FIELD(V7M_FPCCR, RES0, 11, 15)
1937 FIELD(V7M_FPCCR, TS, 26, 1)
1938 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1939 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1940 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1941 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1942 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1943 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1944 #define R_V7M_FPCCR_BANKED_MASK                 \
1945     (R_V7M_FPCCR_LSPACT_MASK |                  \
1946      R_V7M_FPCCR_USER_MASK |                    \
1947      R_V7M_FPCCR_THREAD_MASK |                  \
1948      R_V7M_FPCCR_MMRDY_MASK |                   \
1949      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1950      R_V7M_FPCCR_UFRDY_MASK |                   \
1951      R_V7M_FPCCR_ASPEN_MASK)
1952 
1953 /* v7M VPR bits */
1954 FIELD(V7M_VPR, P0, 0, 16)
1955 FIELD(V7M_VPR, MASK01, 16, 4)
1956 FIELD(V7M_VPR, MASK23, 20, 4)
1957 
1958 /*
1959  * System register ID fields.
1960  */
1961 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1962 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1963 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1964 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1965 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1966 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1967 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1968 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1969 FIELD(CLIDR_EL1, LOC, 24, 3)
1970 FIELD(CLIDR_EL1, LOUU, 27, 3)
1971 FIELD(CLIDR_EL1, ICB, 30, 3)
1972 
1973 /* When FEAT_CCIDX is implemented */
1974 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1975 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1976 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1977 
1978 /* When FEAT_CCIDX is not implemented */
1979 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1980 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1981 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1982 
1983 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1984 FIELD(CTR_EL0,  L1IP, 14, 2)
1985 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1986 FIELD(CTR_EL0,  ERG, 20, 4)
1987 FIELD(CTR_EL0,  CWG, 24, 4)
1988 FIELD(CTR_EL0,  IDC, 28, 1)
1989 FIELD(CTR_EL0,  DIC, 29, 1)
1990 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1991 
1992 FIELD(MIDR_EL1, REVISION, 0, 4)
1993 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1994 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1995 FIELD(MIDR_EL1, VARIANT, 20, 4)
1996 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1997 
1998 FIELD(ID_ISAR0, SWAP, 0, 4)
1999 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2000 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2001 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2002 FIELD(ID_ISAR0, COPROC, 16, 4)
2003 FIELD(ID_ISAR0, DEBUG, 20, 4)
2004 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2005 
2006 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2007 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2008 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2009 FIELD(ID_ISAR1, EXTEND, 12, 4)
2010 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2011 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2012 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2013 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2014 
2015 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2016 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2017 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2018 FIELD(ID_ISAR2, MULT, 12, 4)
2019 FIELD(ID_ISAR2, MULTS, 16, 4)
2020 FIELD(ID_ISAR2, MULTU, 20, 4)
2021 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2022 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2023 
2024 FIELD(ID_ISAR3, SATURATE, 0, 4)
2025 FIELD(ID_ISAR3, SIMD, 4, 4)
2026 FIELD(ID_ISAR3, SVC, 8, 4)
2027 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2028 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2029 FIELD(ID_ISAR3, T32COPY, 20, 4)
2030 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2031 FIELD(ID_ISAR3, T32EE, 28, 4)
2032 
2033 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2034 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2035 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2036 FIELD(ID_ISAR4, SMC, 12, 4)
2037 FIELD(ID_ISAR4, BARRIER, 16, 4)
2038 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2039 FIELD(ID_ISAR4, PSR_M, 24, 4)
2040 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2041 
2042 FIELD(ID_ISAR5, SEVL, 0, 4)
2043 FIELD(ID_ISAR5, AES, 4, 4)
2044 FIELD(ID_ISAR5, SHA1, 8, 4)
2045 FIELD(ID_ISAR5, SHA2, 12, 4)
2046 FIELD(ID_ISAR5, CRC32, 16, 4)
2047 FIELD(ID_ISAR5, RDM, 24, 4)
2048 FIELD(ID_ISAR5, VCMA, 28, 4)
2049 
2050 FIELD(ID_ISAR6, JSCVT, 0, 4)
2051 FIELD(ID_ISAR6, DP, 4, 4)
2052 FIELD(ID_ISAR6, FHM, 8, 4)
2053 FIELD(ID_ISAR6, SB, 12, 4)
2054 FIELD(ID_ISAR6, SPECRES, 16, 4)
2055 FIELD(ID_ISAR6, BF16, 20, 4)
2056 FIELD(ID_ISAR6, I8MM, 24, 4)
2057 
2058 FIELD(ID_MMFR0, VMSA, 0, 4)
2059 FIELD(ID_MMFR0, PMSA, 4, 4)
2060 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2061 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2062 FIELD(ID_MMFR0, TCM, 16, 4)
2063 FIELD(ID_MMFR0, AUXREG, 20, 4)
2064 FIELD(ID_MMFR0, FCSE, 24, 4)
2065 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2066 
2067 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2068 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2069 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2070 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2071 FIELD(ID_MMFR1, L1HVD, 16, 4)
2072 FIELD(ID_MMFR1, L1UNI, 20, 4)
2073 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2074 FIELD(ID_MMFR1, BPRED, 28, 4)
2075 
2076 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2077 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2078 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2079 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2080 FIELD(ID_MMFR2, UNITLB, 16, 4)
2081 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2082 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2083 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2084 
2085 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2086 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2087 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2088 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2089 FIELD(ID_MMFR3, PAN, 16, 4)
2090 FIELD(ID_MMFR3, COHWALK, 20, 4)
2091 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2092 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2093 
2094 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2095 FIELD(ID_MMFR4, AC2, 4, 4)
2096 FIELD(ID_MMFR4, XNX, 8, 4)
2097 FIELD(ID_MMFR4, CNP, 12, 4)
2098 FIELD(ID_MMFR4, HPDS, 16, 4)
2099 FIELD(ID_MMFR4, LSM, 20, 4)
2100 FIELD(ID_MMFR4, CCIDX, 24, 4)
2101 FIELD(ID_MMFR4, EVT, 28, 4)
2102 
2103 FIELD(ID_MMFR5, ETS, 0, 4)
2104 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2105 
2106 FIELD(ID_PFR0, STATE0, 0, 4)
2107 FIELD(ID_PFR0, STATE1, 4, 4)
2108 FIELD(ID_PFR0, STATE2, 8, 4)
2109 FIELD(ID_PFR0, STATE3, 12, 4)
2110 FIELD(ID_PFR0, CSV2, 16, 4)
2111 FIELD(ID_PFR0, AMU, 20, 4)
2112 FIELD(ID_PFR0, DIT, 24, 4)
2113 FIELD(ID_PFR0, RAS, 28, 4)
2114 
2115 FIELD(ID_PFR1, PROGMOD, 0, 4)
2116 FIELD(ID_PFR1, SECURITY, 4, 4)
2117 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2118 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2119 FIELD(ID_PFR1, GENTIMER, 16, 4)
2120 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2121 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2122 FIELD(ID_PFR1, GIC, 28, 4)
2123 
2124 FIELD(ID_PFR2, CSV3, 0, 4)
2125 FIELD(ID_PFR2, SSBS, 4, 4)
2126 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2127 
2128 FIELD(ID_AA64ISAR0, AES, 4, 4)
2129 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2130 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2131 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2132 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2133 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2134 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2135 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2136 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2137 FIELD(ID_AA64ISAR0, DP, 44, 4)
2138 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2139 FIELD(ID_AA64ISAR0, TS, 52, 4)
2140 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2141 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2142 
2143 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2144 FIELD(ID_AA64ISAR1, APA, 4, 4)
2145 FIELD(ID_AA64ISAR1, API, 8, 4)
2146 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2147 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2148 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2149 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2150 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2151 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2152 FIELD(ID_AA64ISAR1, SB, 36, 4)
2153 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2154 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2155 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2156 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2157 FIELD(ID_AA64ISAR1, XS, 56, 4)
2158 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2159 
2160 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2161 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2162 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2163 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2164 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2165 FIELD(ID_AA64ISAR2, BC, 20, 4)
2166 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2167 
2168 FIELD(ID_AA64PFR0, EL0, 0, 4)
2169 FIELD(ID_AA64PFR0, EL1, 4, 4)
2170 FIELD(ID_AA64PFR0, EL2, 8, 4)
2171 FIELD(ID_AA64PFR0, EL3, 12, 4)
2172 FIELD(ID_AA64PFR0, FP, 16, 4)
2173 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2174 FIELD(ID_AA64PFR0, GIC, 24, 4)
2175 FIELD(ID_AA64PFR0, RAS, 28, 4)
2176 FIELD(ID_AA64PFR0, SVE, 32, 4)
2177 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2178 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2179 FIELD(ID_AA64PFR0, AMU, 44, 4)
2180 FIELD(ID_AA64PFR0, DIT, 48, 4)
2181 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2182 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2183 
2184 FIELD(ID_AA64PFR1, BT, 0, 4)
2185 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2186 FIELD(ID_AA64PFR1, MTE, 8, 4)
2187 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2188 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2189 FIELD(ID_AA64PFR1, SME, 24, 4)
2190 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2191 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2192 FIELD(ID_AA64PFR1, NMI, 36, 4)
2193 
2194 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2195 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2196 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2197 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2198 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2199 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2200 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2201 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2202 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2203 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2204 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2205 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2206 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2207 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2208 
2209 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2210 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2211 FIELD(ID_AA64MMFR1, VH, 8, 4)
2212 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2213 FIELD(ID_AA64MMFR1, LO, 16, 4)
2214 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2215 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2216 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2217 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2218 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2219 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2220 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2221 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2222 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2223 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2224 
2225 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2226 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2227 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2228 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2229 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2230 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2231 FIELD(ID_AA64MMFR2, NV, 24, 4)
2232 FIELD(ID_AA64MMFR2, ST, 28, 4)
2233 FIELD(ID_AA64MMFR2, AT, 32, 4)
2234 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2235 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2236 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2237 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2238 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2239 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2240 
2241 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2242 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2243 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2244 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2245 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2246 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2247 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2248 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2249 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2250 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2251 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2252 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2253 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2254 
2255 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2256 FIELD(ID_AA64ZFR0, AES, 4, 4)
2257 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2258 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2259 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2260 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2261 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2262 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2263 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2264 
2265 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2266 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2267 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2268 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2269 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2270 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2271 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2272 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2273 
2274 FIELD(ID_DFR0, COPDBG, 0, 4)
2275 FIELD(ID_DFR0, COPSDBG, 4, 4)
2276 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2277 FIELD(ID_DFR0, COPTRC, 12, 4)
2278 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2279 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2280 FIELD(ID_DFR0, PERFMON, 24, 4)
2281 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2282 
2283 FIELD(ID_DFR1, MTPMU, 0, 4)
2284 FIELD(ID_DFR1, HPMN0, 4, 4)
2285 
2286 FIELD(DBGDIDR, SE_IMP, 12, 1)
2287 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2288 FIELD(DBGDIDR, VERSION, 16, 4)
2289 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2290 FIELD(DBGDIDR, BRPS, 24, 4)
2291 FIELD(DBGDIDR, WRPS, 28, 4)
2292 
2293 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2294 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2295 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2296 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2297 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2298 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2299 FIELD(DBGDEVID, AUXREGS, 24, 4)
2300 FIELD(DBGDEVID, CIDMASK, 28, 4)
2301 
2302 FIELD(MVFR0, SIMDREG, 0, 4)
2303 FIELD(MVFR0, FPSP, 4, 4)
2304 FIELD(MVFR0, FPDP, 8, 4)
2305 FIELD(MVFR0, FPTRAP, 12, 4)
2306 FIELD(MVFR0, FPDIVIDE, 16, 4)
2307 FIELD(MVFR0, FPSQRT, 20, 4)
2308 FIELD(MVFR0, FPSHVEC, 24, 4)
2309 FIELD(MVFR0, FPROUND, 28, 4)
2310 
2311 FIELD(MVFR1, FPFTZ, 0, 4)
2312 FIELD(MVFR1, FPDNAN, 4, 4)
2313 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2314 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2315 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2316 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2317 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2318 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2319 FIELD(MVFR1, FPHP, 24, 4)
2320 FIELD(MVFR1, SIMDFMAC, 28, 4)
2321 
2322 FIELD(MVFR2, SIMDMISC, 0, 4)
2323 FIELD(MVFR2, FPMISC, 4, 4)
2324 
2325 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2326 
2327 /* If adding a feature bit which corresponds to a Linux ELF
2328  * HWCAP bit, remember to update the feature-bit-to-hwcap
2329  * mapping in linux-user/elfload.c:get_elf_hwcap().
2330  */
2331 enum arm_features {
2332     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2333     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2334     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2335     ARM_FEATURE_V6,
2336     ARM_FEATURE_V6K,
2337     ARM_FEATURE_V7,
2338     ARM_FEATURE_THUMB2,
2339     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2340     ARM_FEATURE_NEON,
2341     ARM_FEATURE_M, /* Microcontroller profile.  */
2342     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2343     ARM_FEATURE_THUMB2EE,
2344     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2345     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2346     ARM_FEATURE_V4T,
2347     ARM_FEATURE_V5,
2348     ARM_FEATURE_STRONGARM,
2349     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2350     ARM_FEATURE_GENERIC_TIMER,
2351     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2352     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2353     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2354     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2355     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2356     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2357     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2358     ARM_FEATURE_V8,
2359     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2360     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2361     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2362     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2363     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2364     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2365     ARM_FEATURE_PMU, /* has PMU support */
2366     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2367     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2368     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2369     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2370 };
2371 
2372 static inline int arm_feature(CPUARMState *env, int feature)
2373 {
2374     return (env->features & (1ULL << feature)) != 0;
2375 }
2376 
2377 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2378 
2379 #if !defined(CONFIG_USER_ONLY)
2380 /* Return true if exception levels below EL3 are in secure state,
2381  * or would be following an exception return to that level.
2382  * Unlike arm_is_secure() (which is always a question about the
2383  * _current_ state of the CPU) this doesn't care about the current
2384  * EL or mode.
2385  */
2386 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2387 {
2388     if (arm_feature(env, ARM_FEATURE_EL3)) {
2389         return !(env->cp15.scr_el3 & SCR_NS);
2390     } else {
2391         /* If EL3 is not supported then the secure state is implementation
2392          * defined, in which case QEMU defaults to non-secure.
2393          */
2394         return false;
2395     }
2396 }
2397 
2398 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2399 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2400 {
2401     if (arm_feature(env, ARM_FEATURE_EL3)) {
2402         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2403             /* CPU currently in AArch64 state and EL3 */
2404             return true;
2405         } else if (!is_a64(env) &&
2406                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2407             /* CPU currently in AArch32 state and monitor mode */
2408             return true;
2409         }
2410     }
2411     return false;
2412 }
2413 
2414 /* Return true if the processor is in secure state */
2415 static inline bool arm_is_secure(CPUARMState *env)
2416 {
2417     if (arm_is_el3_or_mon(env)) {
2418         return true;
2419     }
2420     return arm_is_secure_below_el3(env);
2421 }
2422 
2423 /*
2424  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2425  * This corresponds to the pseudocode EL2Enabled()
2426  */
2427 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2428 {
2429     return arm_feature(env, ARM_FEATURE_EL2)
2430            && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2431 }
2432 
2433 static inline bool arm_is_el2_enabled(CPUARMState *env)
2434 {
2435     return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
2436 }
2437 
2438 #else
2439 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2440 {
2441     return false;
2442 }
2443 
2444 static inline bool arm_is_secure(CPUARMState *env)
2445 {
2446     return false;
2447 }
2448 
2449 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2450 {
2451     return false;
2452 }
2453 
2454 static inline bool arm_is_el2_enabled(CPUARMState *env)
2455 {
2456     return false;
2457 }
2458 #endif
2459 
2460 /**
2461  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2462  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2463  * "for all purposes other than a direct read or write access of HCR_EL2."
2464  * Not included here is HCR_RW.
2465  */
2466 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
2467 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2468 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2469 
2470 /* Return true if the specified exception level is running in AArch64 state. */
2471 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2472 {
2473     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2474      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2475      */
2476     assert(el >= 1 && el <= 3);
2477     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2478 
2479     /* The highest exception level is always at the maximum supported
2480      * register width, and then lower levels have a register width controlled
2481      * by bits in the SCR or HCR registers.
2482      */
2483     if (el == 3) {
2484         return aa64;
2485     }
2486 
2487     if (arm_feature(env, ARM_FEATURE_EL3) &&
2488         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2489         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2490     }
2491 
2492     if (el == 2) {
2493         return aa64;
2494     }
2495 
2496     if (arm_is_el2_enabled(env)) {
2497         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2498     }
2499 
2500     return aa64;
2501 }
2502 
2503 /* Function for determing whether guest cp register reads and writes should
2504  * access the secure or non-secure bank of a cp register.  When EL3 is
2505  * operating in AArch32 state, the NS-bit determines whether the secure
2506  * instance of a cp register should be used. When EL3 is AArch64 (or if
2507  * it doesn't exist at all) then there is no register banking, and all
2508  * accesses are to the non-secure version.
2509  */
2510 static inline bool access_secure_reg(CPUARMState *env)
2511 {
2512     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2513                 !arm_el_is_aa64(env, 3) &&
2514                 !(env->cp15.scr_el3 & SCR_NS));
2515 
2516     return ret;
2517 }
2518 
2519 /* Macros for accessing a specified CP register bank */
2520 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2521     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2522 
2523 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2524     do {                                                \
2525         if (_secure) {                                   \
2526             (_env)->cp15._regname##_s = (_val);            \
2527         } else {                                        \
2528             (_env)->cp15._regname##_ns = (_val);           \
2529         }                                               \
2530     } while (0)
2531 
2532 /* Macros for automatically accessing a specific CP register bank depending on
2533  * the current secure state of the system.  These macros are not intended for
2534  * supporting instruction translation reads/writes as these are dependent
2535  * solely on the SCR.NS bit and not the mode.
2536  */
2537 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2538     A32_BANKED_REG_GET((_env), _regname,                \
2539                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2540 
2541 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2542     A32_BANKED_REG_SET((_env), _regname,                                    \
2543                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2544                        (_val))
2545 
2546 void arm_cpu_list(void);
2547 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2548                                  uint32_t cur_el, bool secure);
2549 
2550 /* Interface between CPU and Interrupt controller.  */
2551 #ifndef CONFIG_USER_ONLY
2552 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2553 #else
2554 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2555 {
2556     return true;
2557 }
2558 #endif
2559 /**
2560  * armv7m_nvic_set_pending: mark the specified exception as pending
2561  * @opaque: the NVIC
2562  * @irq: the exception number to mark pending
2563  * @secure: false for non-banked exceptions or for the nonsecure
2564  * version of a banked exception, true for the secure version of a banked
2565  * exception.
2566  *
2567  * Marks the specified exception as pending. Note that we will assert()
2568  * if @secure is true and @irq does not specify one of the fixed set
2569  * of architecturally banked exceptions.
2570  */
2571 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2572 /**
2573  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2574  * @opaque: the NVIC
2575  * @irq: the exception number to mark pending
2576  * @secure: false for non-banked exceptions or for the nonsecure
2577  * version of a banked exception, true for the secure version of a banked
2578  * exception.
2579  *
2580  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2581  * exceptions (exceptions generated in the course of trying to take
2582  * a different exception).
2583  */
2584 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2585 /**
2586  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2587  * @opaque: the NVIC
2588  * @irq: the exception number to mark pending
2589  * @secure: false for non-banked exceptions or for the nonsecure
2590  * version of a banked exception, true for the secure version of a banked
2591  * exception.
2592  *
2593  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2594  * generated in the course of lazy stacking of FP registers.
2595  */
2596 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2597 /**
2598  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2599  *    exception, and whether it targets Secure state
2600  * @opaque: the NVIC
2601  * @pirq: set to pending exception number
2602  * @ptargets_secure: set to whether pending exception targets Secure
2603  *
2604  * This function writes the number of the highest priority pending
2605  * exception (the one which would be made active by
2606  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2607  * to true if the current highest priority pending exception should
2608  * be taken to Secure state, false for NS.
2609  */
2610 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2611                                       bool *ptargets_secure);
2612 /**
2613  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2614  * @opaque: the NVIC
2615  *
2616  * Move the current highest priority pending exception from the pending
2617  * state to the active state, and update v7m.exception to indicate that
2618  * it is the exception currently being handled.
2619  */
2620 void armv7m_nvic_acknowledge_irq(void *opaque);
2621 /**
2622  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2623  * @opaque: the NVIC
2624  * @irq: the exception number to complete
2625  * @secure: true if this exception was secure
2626  *
2627  * Returns: -1 if the irq was not active
2628  *           1 if completing this irq brought us back to base (no active irqs)
2629  *           0 if there is still an irq active after this one was completed
2630  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2631  */
2632 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2633 /**
2634  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2635  * @opaque: the NVIC
2636  * @irq: the exception number to mark pending
2637  * @secure: false for non-banked exceptions or for the nonsecure
2638  * version of a banked exception, true for the secure version of a banked
2639  * exception.
2640  *
2641  * Return whether an exception is "ready", i.e. whether the exception is
2642  * enabled and is configured at a priority which would allow it to
2643  * interrupt the current execution priority. This controls whether the
2644  * RDY bit for it in the FPCCR is set.
2645  */
2646 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2647 /**
2648  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2649  * @opaque: the NVIC
2650  *
2651  * Returns: the raw execution priority as defined by the v8M architecture.
2652  * This is the execution priority minus the effects of AIRCR.PRIS,
2653  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2654  * (v8M ARM ARM I_PKLD.)
2655  */
2656 int armv7m_nvic_raw_execution_priority(void *opaque);
2657 /**
2658  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2659  * priority is negative for the specified security state.
2660  * @opaque: the NVIC
2661  * @secure: the security state to test
2662  * This corresponds to the pseudocode IsReqExecPriNeg().
2663  */
2664 #ifndef CONFIG_USER_ONLY
2665 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2666 #else
2667 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2668 {
2669     return false;
2670 }
2671 #endif
2672 
2673 /* Interface for defining coprocessor registers.
2674  * Registers are defined in tables of arm_cp_reginfo structs
2675  * which are passed to define_arm_cp_regs().
2676  */
2677 
2678 /* When looking up a coprocessor register we look for it
2679  * via an integer which encodes all of:
2680  *  coprocessor number
2681  *  Crn, Crm, opc1, opc2 fields
2682  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2683  *    or via MRRC/MCRR?)
2684  *  non-secure/secure bank (AArch32 only)
2685  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2686  * (In this case crn and opc2 should be zero.)
2687  * For AArch64, there is no 32/64 bit size distinction;
2688  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2689  * and 4 bit CRn and CRm. The encoding patterns are chosen
2690  * to be easy to convert to and from the KVM encodings, and also
2691  * so that the hashtable can contain both AArch32 and AArch64
2692  * registers (to allow for interprocessing where we might run
2693  * 32 bit code on a 64 bit core).
2694  */
2695 /* This bit is private to our hashtable cpreg; in KVM register
2696  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2697  * in the upper bits of the 64 bit ID.
2698  */
2699 #define CP_REG_AA64_SHIFT 28
2700 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2701 
2702 /* To enable banking of coprocessor registers depending on ns-bit we
2703  * add a bit to distinguish between secure and non-secure cpregs in the
2704  * hashtable.
2705  */
2706 #define CP_REG_NS_SHIFT 29
2707 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2708 
2709 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2710     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2711      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2712 
2713 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2714     (CP_REG_AA64_MASK |                                 \
2715      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2716      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2717      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2718      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2719      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2720      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2721 
2722 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2723  * version used as a key for the coprocessor register hashtable
2724  */
2725 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2726 {
2727     uint32_t cpregid = kvmid;
2728     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2729         cpregid |= CP_REG_AA64_MASK;
2730     } else {
2731         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2732             cpregid |= (1 << 15);
2733         }
2734 
2735         /* KVM is always non-secure so add the NS flag on AArch32 register
2736          * entries.
2737          */
2738          cpregid |= 1 << CP_REG_NS_SHIFT;
2739     }
2740     return cpregid;
2741 }
2742 
2743 /* Convert a truncated 32 bit hashtable key into the full
2744  * 64 bit KVM register ID.
2745  */
2746 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2747 {
2748     uint64_t kvmid;
2749 
2750     if (cpregid & CP_REG_AA64_MASK) {
2751         kvmid = cpregid & ~CP_REG_AA64_MASK;
2752         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2753     } else {
2754         kvmid = cpregid & ~(1 << 15);
2755         if (cpregid & (1 << 15)) {
2756             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2757         } else {
2758             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2759         }
2760     }
2761     return kvmid;
2762 }
2763 
2764 /* Return the highest implemented Exception Level */
2765 static inline int arm_highest_el(CPUARMState *env)
2766 {
2767     if (arm_feature(env, ARM_FEATURE_EL3)) {
2768         return 3;
2769     }
2770     if (arm_feature(env, ARM_FEATURE_EL2)) {
2771         return 2;
2772     }
2773     return 1;
2774 }
2775 
2776 /* Return true if a v7M CPU is in Handler mode */
2777 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2778 {
2779     return env->v7m.exception != 0;
2780 }
2781 
2782 /* Return the current Exception Level (as per ARMv8; note that this differs
2783  * from the ARMv7 Privilege Level).
2784  */
2785 static inline int arm_current_el(CPUARMState *env)
2786 {
2787     if (arm_feature(env, ARM_FEATURE_M)) {
2788         return arm_v7m_is_handler_mode(env) ||
2789             !(env->v7m.control[env->v7m.secure] & 1);
2790     }
2791 
2792     if (is_a64(env)) {
2793         return extract32(env->pstate, 2, 2);
2794     }
2795 
2796     switch (env->uncached_cpsr & 0x1f) {
2797     case ARM_CPU_MODE_USR:
2798         return 0;
2799     case ARM_CPU_MODE_HYP:
2800         return 2;
2801     case ARM_CPU_MODE_MON:
2802         return 3;
2803     default:
2804         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2805             /* If EL3 is 32-bit then all secure privileged modes run in
2806              * EL3
2807              */
2808             return 3;
2809         }
2810 
2811         return 1;
2812     }
2813 }
2814 
2815 /**
2816  * write_list_to_cpustate
2817  * @cpu: ARMCPU
2818  *
2819  * For each register listed in the ARMCPU cpreg_indexes list, write
2820  * its value from the cpreg_values list into the ARMCPUState structure.
2821  * This updates TCG's working data structures from KVM data or
2822  * from incoming migration state.
2823  *
2824  * Returns: true if all register values were updated correctly,
2825  * false if some register was unknown or could not be written.
2826  * Note that we do not stop early on failure -- we will attempt
2827  * writing all registers in the list.
2828  */
2829 bool write_list_to_cpustate(ARMCPU *cpu);
2830 
2831 /**
2832  * write_cpustate_to_list:
2833  * @cpu: ARMCPU
2834  * @kvm_sync: true if this is for syncing back to KVM
2835  *
2836  * For each register listed in the ARMCPU cpreg_indexes list, write
2837  * its value from the ARMCPUState structure into the cpreg_values list.
2838  * This is used to copy info from TCG's working data structures into
2839  * KVM or for outbound migration.
2840  *
2841  * @kvm_sync is true if we are doing this in order to sync the
2842  * register state back to KVM. In this case we will only update
2843  * values in the list if the previous list->cpustate sync actually
2844  * successfully wrote the CPU state. Otherwise we will keep the value
2845  * that is in the list.
2846  *
2847  * Returns: true if all register values were read correctly,
2848  * false if some register was unknown or could not be read.
2849  * Note that we do not stop early on failure -- we will attempt
2850  * reading all registers in the list.
2851  */
2852 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2853 
2854 #define ARM_CPUID_TI915T      0x54029152
2855 #define ARM_CPUID_TI925T      0x54029252
2856 
2857 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2858 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2859 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2860 
2861 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2862 
2863 #define cpu_list arm_cpu_list
2864 
2865 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2866  *
2867  * If EL3 is 64-bit:
2868  *  + NonSecure EL1 & 0 stage 1
2869  *  + NonSecure EL1 & 0 stage 2
2870  *  + NonSecure EL2
2871  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2872  *  + Secure EL1 & 0
2873  *  + Secure EL3
2874  * If EL3 is 32-bit:
2875  *  + NonSecure PL1 & 0 stage 1
2876  *  + NonSecure PL1 & 0 stage 2
2877  *  + NonSecure PL2
2878  *  + Secure PL0
2879  *  + Secure PL1
2880  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2881  *
2882  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2883  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2884  *     because they may differ in access permissions even if the VA->PA map is
2885  *     the same
2886  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2887  *     translation, which means that we have one mmu_idx that deals with two
2888  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2889  *     architecturally permitted]
2890  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2891  *     handling via the TLB. The only way to do a stage 1 translation without
2892  *     the immediate stage 2 translation is via the ATS or AT system insns,
2893  *     which can be slow-pathed and always do a page table walk.
2894  *     The only use of stage 2 translations is either as part of an s1+2
2895  *     lookup or when loading the descriptors during a stage 1 page table walk,
2896  *     and in both those cases we don't use the TLB.
2897  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2898  *     translation regimes, because they map reasonably well to each other
2899  *     and they can't both be active at the same time.
2900  *  5. we want to be able to use the TLB for accesses done as part of a
2901  *     stage1 page table walk, rather than having to walk the stage2 page
2902  *     table over and over.
2903  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2904  *     Never (PAN) bit within PSTATE.
2905  *  7. we fold together the secure and non-secure regimes for A-profile,
2906  *     because there are no banked system registers for aarch64, so the
2907  *     process of switching between secure and non-secure is
2908  *     already heavyweight.
2909  *
2910  * This gives us the following list of cases:
2911  *
2912  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2913  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2914  * EL1 EL1&0 stage 1+2 +PAN
2915  * EL0 EL2&0
2916  * EL2 EL2&0
2917  * EL2 EL2&0 +PAN
2918  * EL2 (aka NS PL2)
2919  * EL3 (aka S PL1)
2920  * Physical (NS & S)
2921  * Stage2 (NS & S)
2922  *
2923  * for a total of 12 different mmu_idx.
2924  *
2925  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2926  * as A profile. They only need to distinguish EL0 and EL1 (and
2927  * EL2 if we ever model a Cortex-R52).
2928  *
2929  * M profile CPUs are rather different as they do not have a true MMU.
2930  * They have the following different MMU indexes:
2931  *  User
2932  *  Privileged
2933  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2934  *  Privileged, execution priority negative (ditto)
2935  * If the CPU supports the v8M Security Extension then there are also:
2936  *  Secure User
2937  *  Secure Privileged
2938  *  Secure User, execution priority negative
2939  *  Secure Privileged, execution priority negative
2940  *
2941  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2942  * are not quite the same -- different CPU types (most notably M profile
2943  * vs A/R profile) would like to use MMU indexes with different semantics,
2944  * but since we don't ever need to use all of those in a single CPU we
2945  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2946  * modes + total number of M profile MMU modes". The lower bits of
2947  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2948  * the same for any particular CPU.
2949  * Variables of type ARMMUIdx are always full values, and the core
2950  * index values are in variables of type 'int'.
2951  *
2952  * Our enumeration includes at the end some entries which are not "true"
2953  * mmu_idx values in that they don't have corresponding TLBs and are only
2954  * valid for doing slow path page table walks.
2955  *
2956  * The constant names here are patterned after the general style of the names
2957  * of the AT/ATS operations.
2958  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2959  * For M profile we arrange them to have a bit for priv, a bit for negpri
2960  * and a bit for secure.
2961  */
2962 #define ARM_MMU_IDX_A     0x10  /* A profile */
2963 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2964 #define ARM_MMU_IDX_M     0x40  /* M profile */
2965 
2966 /* Meanings of the bits for M profile mmu idx values */
2967 #define ARM_MMU_IDX_M_PRIV   0x1
2968 #define ARM_MMU_IDX_M_NEGPRI 0x2
2969 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2970 
2971 #define ARM_MMU_IDX_TYPE_MASK \
2972     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2973 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2974 
2975 typedef enum ARMMMUIdx {
2976     /*
2977      * A-profile.
2978      */
2979     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2980     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2981     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2982     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2983     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2984     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2985     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2986     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2987 
2988     /* TLBs with 1-1 mapping to the physical address spaces. */
2989     ARMMMUIdx_Phys_NS   = 8 | ARM_MMU_IDX_A,
2990     ARMMMUIdx_Phys_S    = 9 | ARM_MMU_IDX_A,
2991 
2992     /*
2993      * Used for second stage of an S12 page table walk, or for descriptor
2994      * loads during first stage of an S1 page table walk.  Note that both
2995      * are in use simultaneously for SecureEL2: the security state for
2996      * the S2 ptw is selected by the NS bit from the S1 ptw.
2997      */
2998     ARMMMUIdx_Stage2    = 10 | ARM_MMU_IDX_A,
2999     ARMMMUIdx_Stage2_S  = 11 | ARM_MMU_IDX_A,
3000 
3001     /*
3002      * These are not allocated TLBs and are used only for AT system
3003      * instructions or for the first stage of an S12 page table walk.
3004      */
3005     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3006     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3007     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3008 
3009     /*
3010      * M-profile.
3011      */
3012     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3013     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3014     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3015     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3016     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3017     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3018     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3019     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3020 } ARMMMUIdx;
3021 
3022 /*
3023  * Bit macros for the core-mmu-index values for each index,
3024  * for use when calling tlb_flush_by_mmuidx() and friends.
3025  */
3026 #define TO_CORE_BIT(NAME) \
3027     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3028 
3029 typedef enum ARMMMUIdxBit {
3030     TO_CORE_BIT(E10_0),
3031     TO_CORE_BIT(E20_0),
3032     TO_CORE_BIT(E10_1),
3033     TO_CORE_BIT(E10_1_PAN),
3034     TO_CORE_BIT(E2),
3035     TO_CORE_BIT(E20_2),
3036     TO_CORE_BIT(E20_2_PAN),
3037     TO_CORE_BIT(E3),
3038     TO_CORE_BIT(Stage2),
3039     TO_CORE_BIT(Stage2_S),
3040 
3041     TO_CORE_BIT(MUser),
3042     TO_CORE_BIT(MPriv),
3043     TO_CORE_BIT(MUserNegPri),
3044     TO_CORE_BIT(MPrivNegPri),
3045     TO_CORE_BIT(MSUser),
3046     TO_CORE_BIT(MSPriv),
3047     TO_CORE_BIT(MSUserNegPri),
3048     TO_CORE_BIT(MSPrivNegPri),
3049 } ARMMMUIdxBit;
3050 
3051 #undef TO_CORE_BIT
3052 
3053 #define MMU_USER_IDX 0
3054 
3055 /* Indexes used when registering address spaces with cpu_address_space_init */
3056 typedef enum ARMASIdx {
3057     ARMASIdx_NS = 0,
3058     ARMASIdx_S = 1,
3059     ARMASIdx_TagNS = 2,
3060     ARMASIdx_TagS = 3,
3061 } ARMASIdx;
3062 
3063 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3064 {
3065     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3066      * CSSELR is RAZ/WI.
3067      */
3068     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3069 }
3070 
3071 static inline bool arm_sctlr_b(CPUARMState *env)
3072 {
3073     return
3074         /* We need not implement SCTLR.ITD in user-mode emulation, so
3075          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3076          * This lets people run BE32 binaries with "-cpu any".
3077          */
3078 #ifndef CONFIG_USER_ONLY
3079         !arm_feature(env, ARM_FEATURE_V7) &&
3080 #endif
3081         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3082 }
3083 
3084 uint64_t arm_sctlr(CPUARMState *env, int el);
3085 
3086 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3087                                                   bool sctlr_b)
3088 {
3089 #ifdef CONFIG_USER_ONLY
3090     /*
3091      * In system mode, BE32 is modelled in line with the
3092      * architecture (as word-invariant big-endianness), where loads
3093      * and stores are done little endian but from addresses which
3094      * are adjusted by XORing with the appropriate constant. So the
3095      * endianness to use for the raw data access is not affected by
3096      * SCTLR.B.
3097      * In user mode, however, we model BE32 as byte-invariant
3098      * big-endianness (because user-only code cannot tell the
3099      * difference), and so we need to use a data access endianness
3100      * that depends on SCTLR.B.
3101      */
3102     if (sctlr_b) {
3103         return true;
3104     }
3105 #endif
3106     /* In 32bit endianness is determined by looking at CPSR's E bit */
3107     return env->uncached_cpsr & CPSR_E;
3108 }
3109 
3110 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3111 {
3112     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3113 }
3114 
3115 /* Return true if the processor is in big-endian mode. */
3116 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3117 {
3118     if (!is_a64(env)) {
3119         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3120     } else {
3121         int cur_el = arm_current_el(env);
3122         uint64_t sctlr = arm_sctlr(env, cur_el);
3123         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3124     }
3125 }
3126 
3127 #include "exec/cpu-all.h"
3128 
3129 /*
3130  * We have more than 32-bits worth of state per TB, so we split the data
3131  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3132  * We collect these two parts in CPUARMTBFlags where they are named
3133  * flags and flags2 respectively.
3134  *
3135  * The flags that are shared between all execution modes, TBFLAG_ANY,
3136  * are stored in flags.  The flags that are specific to a given mode
3137  * are stores in flags2.  Since cs_base is sized on the configured
3138  * address size, flags2 always has 64-bits for A64, and a minimum of
3139  * 32-bits for A32 and M32.
3140  *
3141  * The bits for 32-bit A-profile and M-profile partially overlap:
3142  *
3143  *  31         23         11 10             0
3144  * +-------------+----------+----------------+
3145  * |             |          |   TBFLAG_A32   |
3146  * | TBFLAG_AM32 |          +-----+----------+
3147  * |             |                |TBFLAG_M32|
3148  * +-------------+----------------+----------+
3149  *  31         23                6 5        0
3150  *
3151  * Unless otherwise noted, these bits are cached in env->hflags.
3152  */
3153 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3154 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3155 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3156 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3157 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3158 /* Target EL if we take a floating-point-disabled exception */
3159 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3160 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3161 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3162 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3163 
3164 /*
3165  * Bit usage when in AArch32 state, both A- and M-profile.
3166  */
3167 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3168 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3169 
3170 /*
3171  * Bit usage when in AArch32 state, for A-profile only.
3172  */
3173 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3174 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3175 /*
3176  * We store the bottom two bits of the CPAR as TB flags and handle
3177  * checks on the other bits at runtime. This shares the same bits as
3178  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3179  * Not cached, because VECLEN+VECSTRIDE are not cached.
3180  */
3181 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3182 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3183 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3184 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3185 /*
3186  * Indicates whether cp register reads and writes by guest code should access
3187  * the secure or nonsecure bank of banked registers; note that this is not
3188  * the same thing as the current security state of the processor!
3189  */
3190 FIELD(TBFLAG_A32, NS, 10, 1)
3191 /*
3192  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3193  * This requires an SME trap from AArch32 mode when using NEON.
3194  */
3195 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3196 
3197 /*
3198  * Bit usage when in AArch32 state, for M-profile only.
3199  */
3200 /* Handler (ie not Thread) mode */
3201 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3202 /* Whether we should generate stack-limit checks */
3203 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3204 /* Set if FPCCR.LSPACT is set */
3205 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3206 /* Set if we must create a new FP context */
3207 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3208 /* Set if FPCCR.S does not match current security state */
3209 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3210 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3211 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3212 /* Set if in secure mode */
3213 FIELD(TBFLAG_M32, SECURE, 6, 1)
3214 
3215 /*
3216  * Bit usage when in AArch64 state
3217  */
3218 FIELD(TBFLAG_A64, TBII, 0, 2)
3219 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3220 /* The current vector length, either NVL or SVL. */
3221 FIELD(TBFLAG_A64, VL, 4, 4)
3222 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3223 FIELD(TBFLAG_A64, BT, 9, 1)
3224 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3225 FIELD(TBFLAG_A64, TBID, 12, 2)
3226 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3227 FIELD(TBFLAG_A64, ATA, 15, 1)
3228 FIELD(TBFLAG_A64, TCMA, 16, 2)
3229 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3230 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3231 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3232 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3233 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3234 FIELD(TBFLAG_A64, SVL, 24, 4)
3235 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3236 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3237 
3238 /*
3239  * Helpers for using the above.
3240  */
3241 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3242     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3243 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3244     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3245 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3246     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3247 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3248     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3249 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3250     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3251 
3252 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3253 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3254 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3255 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3256 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3257 
3258 /**
3259  * cpu_mmu_index:
3260  * @env: The cpu environment
3261  * @ifetch: True for code access, false for data access.
3262  *
3263  * Return the core mmu index for the current translation regime.
3264  * This function is used by generic TCG code paths.
3265  */
3266 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3267 {
3268     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3269 }
3270 
3271 /**
3272  * sve_vq
3273  * @env: the cpu context
3274  *
3275  * Return the VL cached within env->hflags, in units of quadwords.
3276  */
3277 static inline int sve_vq(CPUARMState *env)
3278 {
3279     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3280 }
3281 
3282 /**
3283  * sme_vq
3284  * @env: the cpu context
3285  *
3286  * Return the SVL cached within env->hflags, in units of quadwords.
3287  */
3288 static inline int sme_vq(CPUARMState *env)
3289 {
3290     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3291 }
3292 
3293 static inline bool bswap_code(bool sctlr_b)
3294 {
3295 #ifdef CONFIG_USER_ONLY
3296     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3297      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3298      * would also end up as a mixed-endian mode with BE code, LE data.
3299      */
3300     return
3301 #if TARGET_BIG_ENDIAN
3302         1 ^
3303 #endif
3304         sctlr_b;
3305 #else
3306     /* All code access in ARM is little endian, and there are no loaders
3307      * doing swaps that need to be reversed
3308      */
3309     return 0;
3310 #endif
3311 }
3312 
3313 #ifdef CONFIG_USER_ONLY
3314 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3315 {
3316     return
3317 #if TARGET_BIG_ENDIAN
3318        1 ^
3319 #endif
3320        arm_cpu_data_is_big_endian(env);
3321 }
3322 #endif
3323 
3324 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3325                           target_ulong *cs_base, uint32_t *flags);
3326 
3327 enum {
3328     QEMU_PSCI_CONDUIT_DISABLED = 0,
3329     QEMU_PSCI_CONDUIT_SMC = 1,
3330     QEMU_PSCI_CONDUIT_HVC = 2,
3331 };
3332 
3333 #ifndef CONFIG_USER_ONLY
3334 /* Return the address space index to use for a memory access */
3335 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3336 {
3337     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3338 }
3339 
3340 /* Return the AddressSpace to use for a memory access
3341  * (which depends on whether the access is S or NS, and whether
3342  * the board gave us a separate AddressSpace for S accesses).
3343  */
3344 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3345 {
3346     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3347 }
3348 #endif
3349 
3350 /**
3351  * arm_register_pre_el_change_hook:
3352  * Register a hook function which will be called immediately before this
3353  * CPU changes exception level or mode. The hook function will be
3354  * passed a pointer to the ARMCPU and the opaque data pointer passed
3355  * to this function when the hook was registered.
3356  *
3357  * Note that if a pre-change hook is called, any registered post-change hooks
3358  * are guaranteed to subsequently be called.
3359  */
3360 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3361                                  void *opaque);
3362 /**
3363  * arm_register_el_change_hook:
3364  * Register a hook function which will be called immediately after this
3365  * CPU changes exception level or mode. The hook function will be
3366  * passed a pointer to the ARMCPU and the opaque data pointer passed
3367  * to this function when the hook was registered.
3368  *
3369  * Note that any registered hooks registered here are guaranteed to be called
3370  * if pre-change hooks have been.
3371  */
3372 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3373         *opaque);
3374 
3375 /**
3376  * arm_rebuild_hflags:
3377  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3378  */
3379 void arm_rebuild_hflags(CPUARMState *env);
3380 
3381 /**
3382  * aa32_vfp_dreg:
3383  * Return a pointer to the Dn register within env in 32-bit mode.
3384  */
3385 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3386 {
3387     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3388 }
3389 
3390 /**
3391  * aa32_vfp_qreg:
3392  * Return a pointer to the Qn register within env in 32-bit mode.
3393  */
3394 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3395 {
3396     return &env->vfp.zregs[regno].d[0];
3397 }
3398 
3399 /**
3400  * aa64_vfp_qreg:
3401  * Return a pointer to the Qn register within env in 64-bit mode.
3402  */
3403 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3404 {
3405     return &env->vfp.zregs[regno].d[0];
3406 }
3407 
3408 /* Shared between translate-sve.c and sve_helper.c.  */
3409 extern const uint64_t pred_esz_masks[5];
3410 
3411 /*
3412  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3413  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3414  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3415  */
3416 #define PAGE_BTI            PAGE_TARGET_1
3417 #define PAGE_MTE            PAGE_TARGET_2
3418 #define PAGE_TARGET_STICKY  PAGE_MTE
3419 
3420 /* We associate one allocation tag per 16 bytes, the minimum.  */
3421 #define LOG2_TAG_GRANULE 4
3422 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3423 
3424 #ifdef CONFIG_USER_ONLY
3425 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3426 #endif
3427 
3428 #ifdef TARGET_TAGGED_ADDRESSES
3429 /**
3430  * cpu_untagged_addr:
3431  * @cs: CPU context
3432  * @x: tagged address
3433  *
3434  * Remove any address tag from @x.  This is explicitly related to the
3435  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3436  *
3437  * There should be a better place to put this, but we need this in
3438  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3439  */
3440 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3441 {
3442     ARMCPU *cpu = ARM_CPU(cs);
3443     if (cpu->env.tagged_addr_enable) {
3444         /*
3445          * TBI is enabled for userspace but not kernelspace addresses.
3446          * Only clear the tag if bit 55 is clear.
3447          */
3448         x &= sextract64(x, 0, 56);
3449     }
3450     return x;
3451 }
3452 #endif
3453 
3454 /*
3455  * Naming convention for isar_feature functions:
3456  * Functions which test 32-bit ID registers should have _aa32_ in
3457  * their name. Functions which test 64-bit ID registers should have
3458  * _aa64_ in their name. These must only be used in code where we
3459  * know for certain that the CPU has AArch32 or AArch64 respectively
3460  * or where the correct answer for a CPU which doesn't implement that
3461  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3462  * system registers that are specific to that CPU state, for "should
3463  * we let this system register bit be set" tests where the 32-bit
3464  * flavour of the register doesn't have the bit, and so on).
3465  * Functions which simply ask "does this feature exist at all" have
3466  * _any_ in their name, and always return the logical OR of the _aa64_
3467  * and the _aa32_ function.
3468  */
3469 
3470 /*
3471  * 32-bit feature tests via id registers.
3472  */
3473 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3476 }
3477 
3478 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3479 {
3480     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3481 }
3482 
3483 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3484 {
3485     /* (M-profile) low-overhead loops and branch future */
3486     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3487 }
3488 
3489 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3490 {
3491     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3492 }
3493 
3494 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3495 {
3496     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3497 }
3498 
3499 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3500 {
3501     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3502 }
3503 
3504 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3505 {
3506     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3507 }
3508 
3509 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3510 {
3511     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3512 }
3513 
3514 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3515 {
3516     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3517 }
3518 
3519 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3520 {
3521     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3522 }
3523 
3524 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3525 {
3526     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3527 }
3528 
3529 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3530 {
3531     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3532 }
3533 
3534 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3535 {
3536     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3537 }
3538 
3539 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3540 {
3541     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3542 }
3543 
3544 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3545 {
3546     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3547 }
3548 
3549 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3550 {
3551     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3552 }
3553 
3554 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3555 {
3556     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3557 }
3558 
3559 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3560 {
3561     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3562 }
3563 
3564 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3565 {
3566     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3567 }
3568 
3569 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3570 {
3571     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3572 }
3573 
3574 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3575 {
3576     /*
3577      * Return true if M-profile state handling insns
3578      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3579      */
3580     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3581 }
3582 
3583 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3584 {
3585     /* Sadly this is encoded differently for A-profile and M-profile */
3586     if (isar_feature_aa32_mprofile(id)) {
3587         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3588     } else {
3589         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3590     }
3591 }
3592 
3593 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3594 {
3595     /*
3596      * Return true if MVE is supported (either integer or floating point).
3597      * We must check for M-profile as the MVFR1 field means something
3598      * else for A-profile.
3599      */
3600     return isar_feature_aa32_mprofile(id) &&
3601         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3602 }
3603 
3604 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3605 {
3606     /*
3607      * Return true if MVE is supported (either integer or floating point).
3608      * We must check for M-profile as the MVFR1 field means something
3609      * else for A-profile.
3610      */
3611     return isar_feature_aa32_mprofile(id) &&
3612         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3613 }
3614 
3615 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3616 {
3617     /*
3618      * Return true if either VFP or SIMD is implemented.
3619      * In this case, a minimum of VFP w/ D0-D15.
3620      */
3621     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3622 }
3623 
3624 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3625 {
3626     /* Return true if D16-D31 are implemented */
3627     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3628 }
3629 
3630 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3631 {
3632     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3633 }
3634 
3635 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3636 {
3637     /* Return true if CPU supports single precision floating point, VFPv2 */
3638     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3639 }
3640 
3641 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3642 {
3643     /* Return true if CPU supports single precision floating point, VFPv3 */
3644     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3645 }
3646 
3647 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3648 {
3649     /* Return true if CPU supports double precision floating point, VFPv2 */
3650     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3651 }
3652 
3653 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3654 {
3655     /* Return true if CPU supports double precision floating point, VFPv3 */
3656     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3657 }
3658 
3659 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3660 {
3661     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3662 }
3663 
3664 /*
3665  * We always set the FP and SIMD FP16 fields to indicate identical
3666  * levels of support (assuming SIMD is implemented at all), so
3667  * we only need one set of accessors.
3668  */
3669 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3670 {
3671     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3672 }
3673 
3674 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3675 {
3676     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3677 }
3678 
3679 /*
3680  * Note that this ID register field covers both VFP and Neon FMAC,
3681  * so should usually be tested in combination with some other
3682  * check that confirms the presence of whichever of VFP or Neon is
3683  * relevant, to avoid accidentally enabling a Neon feature on
3684  * a VFP-no-Neon core or vice-versa.
3685  */
3686 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3687 {
3688     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3689 }
3690 
3691 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3692 {
3693     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3694 }
3695 
3696 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3697 {
3698     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3699 }
3700 
3701 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3702 {
3703     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3704 }
3705 
3706 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3707 {
3708     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3709 }
3710 
3711 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3712 {
3713     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3714 }
3715 
3716 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3717 {
3718     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3719 }
3720 
3721 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3722 {
3723     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3724 }
3725 
3726 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3727 {
3728     /* 0xf means "non-standard IMPDEF PMU" */
3729     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3730         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3731 }
3732 
3733 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3734 {
3735     /* 0xf means "non-standard IMPDEF PMU" */
3736     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3737         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3738 }
3739 
3740 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3741 {
3742     /* 0xf means "non-standard IMPDEF PMU" */
3743     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3744         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3745 }
3746 
3747 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3748 {
3749     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3750 }
3751 
3752 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3753 {
3754     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3755 }
3756 
3757 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3758 {
3759     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3760 }
3761 
3762 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3763 {
3764     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3765 }
3766 
3767 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3768 {
3769     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3770 }
3771 
3772 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3773 {
3774     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3775 }
3776 
3777 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3778 {
3779     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3780 }
3781 
3782 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3783 {
3784     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3785 }
3786 
3787 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3788 {
3789     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3790 }
3791 
3792 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3793 {
3794     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3795 }
3796 
3797 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3798 {
3799     return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3800 }
3801 
3802 /*
3803  * 64-bit feature tests via id registers.
3804  */
3805 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3806 {
3807     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3808 }
3809 
3810 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3811 {
3812     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3813 }
3814 
3815 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3816 {
3817     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3818 }
3819 
3820 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3821 {
3822     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3823 }
3824 
3825 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3826 {
3827     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3828 }
3829 
3830 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3831 {
3832     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3833 }
3834 
3835 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3836 {
3837     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3838 }
3839 
3840 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3841 {
3842     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3843 }
3844 
3845 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3846 {
3847     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3848 }
3849 
3850 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3851 {
3852     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3853 }
3854 
3855 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3856 {
3857     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3858 }
3859 
3860 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3861 {
3862     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3863 }
3864 
3865 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3866 {
3867     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3868 }
3869 
3870 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3871 {
3872     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3873 }
3874 
3875 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3876 {
3877     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3878 }
3879 
3880 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3881 {
3882     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3883 }
3884 
3885 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3886 {
3887     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3888 }
3889 
3890 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3891 {
3892     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3893 }
3894 
3895 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3896 {
3897     /*
3898      * Return true if any form of pauth is enabled, as this
3899      * predicate controls migration of the 128-bit keys.
3900      */
3901     return (id->id_aa64isar1 &
3902             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3903              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3904              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3905              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3906 }
3907 
3908 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3909 {
3910     /*
3911      * Return true if pauth is enabled with the architected QARMA algorithm.
3912      * QEMU will always set APA+GPA to the same value.
3913      */
3914     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3915 }
3916 
3917 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3918 {
3919     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3920 }
3921 
3922 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3923 {
3924     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3925 }
3926 
3927 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3928 {
3929     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3930 }
3931 
3932 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3933 {
3934     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3935 }
3936 
3937 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3938 {
3939     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3940 }
3941 
3942 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3943 {
3944     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3945 }
3946 
3947 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3948 {
3949     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3950 }
3951 
3952 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3953 {
3954     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3955 }
3956 
3957 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3958 {
3959     /* We always set the AdvSIMD and FP fields identically.  */
3960     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3961 }
3962 
3963 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3964 {
3965     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3966     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3967 }
3968 
3969 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3970 {
3971     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3972 }
3973 
3974 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3975 {
3976     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3977 }
3978 
3979 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3980 {
3981     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3982 }
3983 
3984 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3985 {
3986     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3987 }
3988 
3989 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3990 {
3991     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3992 }
3993 
3994 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3995 {
3996     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3997 }
3998 
3999 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4000 {
4001     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4002 }
4003 
4004 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4005 {
4006     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4007 }
4008 
4009 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4010 {
4011     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4012 }
4013 
4014 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4015 {
4016     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4017 }
4018 
4019 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4020 {
4021     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4022 }
4023 
4024 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
4025 {
4026     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
4027 }
4028 
4029 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4030 {
4031     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4032 }
4033 
4034 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4035 {
4036     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4037 }
4038 
4039 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4040 {
4041     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4042 }
4043 
4044 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4045 {
4046     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4047 }
4048 
4049 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
4050 {
4051     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
4052 }
4053 
4054 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
4055 {
4056     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
4057 }
4058 
4059 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4060 {
4061     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4062 }
4063 
4064 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4065 {
4066     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4067 }
4068 
4069 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4070 {
4071     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4072 }
4073 
4074 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4075 {
4076     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4077 }
4078 
4079 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
4080 {
4081     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4082         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4083 }
4084 
4085 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
4086 {
4087     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4088         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4089 }
4090 
4091 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4092 {
4093     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4094         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4095 }
4096 
4097 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4098 {
4099     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4100 }
4101 
4102 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4103 {
4104     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4105 }
4106 
4107 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4108 {
4109     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4110 }
4111 
4112 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4113 {
4114     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4115 }
4116 
4117 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4118 {
4119     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4120     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4121 }
4122 
4123 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4124 {
4125     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4126 }
4127 
4128 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4129 {
4130     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4131     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4132 }
4133 
4134 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4135 {
4136     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4137 }
4138 
4139 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4140 {
4141     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4142 }
4143 
4144 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4145 {
4146     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4147 }
4148 
4149 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4150 {
4151     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4152     return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4153 }
4154 
4155 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4156 {
4157     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4158     return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4159 }
4160 
4161 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4162 {
4163     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4164     return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4165 }
4166 
4167 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4168 {
4169     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4170 }
4171 
4172 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4173 {
4174     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4175 }
4176 
4177 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4178 {
4179     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4180 }
4181 
4182 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4183 {
4184     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4185 }
4186 
4187 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4188 {
4189     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4190 }
4191 
4192 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4193 {
4194     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4195 }
4196 
4197 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4198 {
4199     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4200 }
4201 
4202 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4203 {
4204     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4205     if (key >= 2) {
4206         return true;      /* FEAT_CSV2_2 */
4207     }
4208     if (key == 1) {
4209         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4210         return key >= 2;  /* FEAT_CSV2_1p2 */
4211     }
4212     return false;
4213 }
4214 
4215 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4216 {
4217     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4218 }
4219 
4220 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4221 {
4222     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4223 }
4224 
4225 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4226 {
4227     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4228 }
4229 
4230 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4231 {
4232     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4233 }
4234 
4235 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4236 {
4237     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4238 }
4239 
4240 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4241 {
4242     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4243 }
4244 
4245 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4246 {
4247     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4248 }
4249 
4250 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4251 {
4252     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4253 }
4254 
4255 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4256 {
4257     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4258 }
4259 
4260 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4261 {
4262     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4263 }
4264 
4265 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4266 {
4267     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4268 }
4269 
4270 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4271 {
4272     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4273 }
4274 
4275 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4276 {
4277     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4278 }
4279 
4280 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4281 {
4282     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4283 }
4284 
4285 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4286 {
4287     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4288 }
4289 
4290 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4291 {
4292     return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4293 }
4294 
4295 /*
4296  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4297  */
4298 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4299 {
4300     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4301 }
4302 
4303 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4304 {
4305     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4306 }
4307 
4308 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4309 {
4310     return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4311 }
4312 
4313 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4314 {
4315     return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4316 }
4317 
4318 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4319 {
4320     return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4321 }
4322 
4323 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4324 {
4325     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4326 }
4327 
4328 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4329 {
4330     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4331 }
4332 
4333 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4334 {
4335     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4336 }
4337 
4338 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4339 {
4340     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4341 }
4342 
4343 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4344 {
4345     return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4346 }
4347 
4348 static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4349 {
4350     return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4351 }
4352 
4353 /*
4354  * Forward to the above feature tests given an ARMCPU pointer.
4355  */
4356 #define cpu_isar_feature(name, cpu) \
4357     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4358 
4359 #endif
4360