xref: /openbmc/qemu/target/arm/cpu.h (revision a7d8244be9f9a0fde9f694a46bdd04aabbbb5b4a)
1  /*
2   * ARM virtual CPU header
3   *
4   *  Copyright (c) 2003 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #ifndef ARM_CPU_H
21  #define ARM_CPU_H
22  
23  #include "kvm-consts.h"
24  #include "qemu/cpu-float.h"
25  #include "hw/registerfields.h"
26  #include "cpu-qom.h"
27  #include "exec/cpu-defs.h"
28  #include "exec/gdbstub.h"
29  #include "exec/page-protection.h"
30  #include "qapi/qapi-types-common.h"
31  #include "target/arm/multiprocessing.h"
32  #include "target/arm/gtimer.h"
33  
34  #ifdef TARGET_AARCH64
35  #define KVM_HAVE_MCE_INJECTION 1
36  #endif
37  
38  #define EXCP_UDEF            1   /* undefined instruction */
39  #define EXCP_SWI             2   /* software interrupt */
40  #define EXCP_PREFETCH_ABORT  3
41  #define EXCP_DATA_ABORT      4
42  #define EXCP_IRQ             5
43  #define EXCP_FIQ             6
44  #define EXCP_BKPT            7
45  #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46  #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47  #define EXCP_HVC            11   /* HyperVisor Call */
48  #define EXCP_HYP_TRAP       12
49  #define EXCP_SMC            13   /* Secure Monitor Call */
50  #define EXCP_VIRQ           14
51  #define EXCP_VFIQ           15
52  #define EXCP_SEMIHOST       16   /* semihosting call */
53  #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54  #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55  #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56  #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57  #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58  #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59  #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60  #define EXCP_VSERR          24
61  #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62  #define EXCP_NMI            26
63  #define EXCP_VINMI          27
64  #define EXCP_VFNMI          28
65  /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66  
67  #define ARMV7M_EXCP_RESET   1
68  #define ARMV7M_EXCP_NMI     2
69  #define ARMV7M_EXCP_HARD    3
70  #define ARMV7M_EXCP_MEM     4
71  #define ARMV7M_EXCP_BUS     5
72  #define ARMV7M_EXCP_USAGE   6
73  #define ARMV7M_EXCP_SECURE  7
74  #define ARMV7M_EXCP_SVC     11
75  #define ARMV7M_EXCP_DEBUG   12
76  #define ARMV7M_EXCP_PENDSV  14
77  #define ARMV7M_EXCP_SYSTICK 15
78  
79  /* ARM-specific interrupt pending bits.  */
80  #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81  #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82  #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83  #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84  #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85  #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86  #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87  
88  /* The usual mapping for an AArch64 system register to its AArch32
89   * counterpart is for the 32 bit world to have access to the lower
90   * half only (with writes leaving the upper half untouched). It's
91   * therefore useful to be able to pass TCG the offset of the least
92   * significant half of a uint64_t struct member.
93   */
94  #if HOST_BIG_ENDIAN
95  #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96  #define offsetofhigh32(S, M) offsetof(S, M)
97  #else
98  #define offsetoflow32(S, M) offsetof(S, M)
99  #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100  #endif
101  
102  /* ARM-specific extra insn start words:
103   * 1: Conditional execution bits
104   * 2: Partial exception syndrome for data aborts
105   */
106  #define TARGET_INSN_START_EXTRA_WORDS 2
107  
108  /* The 2nd extra word holding syndrome info for data aborts does not use
109   * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
110   * help the sleb128 encoder do a better job.
111   * When restoring the CPU state, we shift it back up.
112   */
113  #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
114  #define ARM_INSN_START_WORD2_SHIFT 13
115  
116  /* We currently assume float and double are IEEE single and double
117     precision respectively.
118     Doing runtime conversions is tricky because VFP registers may contain
119     integer values (eg. as the result of a FTOSI instruction).
120     s<2n> maps to the least significant half of d<n>
121     s<2n+1> maps to the most significant half of d<n>
122   */
123  
124  /**
125   * DynamicGDBFeatureInfo:
126   * @desc: Contains the feature descriptions.
127   * @data: A union with data specific to the set of registers
128   *    @cpregs_keys: Array that contains the corresponding Key of
129   *                  a given cpreg with the same order of the cpreg
130   *                  in the XML description.
131   */
132  typedef struct DynamicGDBFeatureInfo {
133      GDBFeature desc;
134      union {
135          struct {
136              uint32_t *keys;
137          } cpregs;
138      } data;
139  } DynamicGDBFeatureInfo;
140  
141  /* CPU state for each instance of a generic timer (in cp15 c14) */
142  typedef struct ARMGenericTimer {
143      uint64_t cval; /* Timer CompareValue register */
144      uint64_t ctl; /* Timer Control register */
145  } ARMGenericTimer;
146  
147  /* Define a maximum sized vector register.
148   * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149   * For 64-bit, this is a 2048-bit SVE register.
150   *
151   * Note that the mapping between S, D, and Q views of the register bank
152   * differs between AArch64 and AArch32.
153   * In AArch32:
154   *  Qn = regs[n].d[1]:regs[n].d[0]
155   *  Dn = regs[n / 2].d[n & 1]
156   *  Sn = regs[n / 4].d[n % 4 / 2],
157   *       bits 31..0 for even n, and bits 63..32 for odd n
158   *       (and regs[16] to regs[31] are inaccessible)
159   * In AArch64:
160   *  Zn = regs[n].d[*]
161   *  Qn = regs[n].d[1]:regs[n].d[0]
162   *  Dn = regs[n].d[0]
163   *  Sn = regs[n].d[0] bits 31..0
164   *  Hn = regs[n].d[0] bits 15..0
165   *
166   * This corresponds to the architecturally defined mapping between
167   * the two execution states, and means we do not need to explicitly
168   * map these registers when changing states.
169   *
170   * Align the data for use with TCG host vector operations.
171   */
172  
173  #ifdef TARGET_AARCH64
174  # define ARM_MAX_VQ    16
175  #else
176  # define ARM_MAX_VQ    1
177  #endif
178  
179  typedef struct ARMVectorReg {
180      uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181  } ARMVectorReg;
182  
183  #ifdef TARGET_AARCH64
184  /* In AArch32 mode, predicate registers do not exist at all.  */
185  typedef struct ARMPredicateReg {
186      uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
187  } ARMPredicateReg;
188  
189  /* In AArch32 mode, PAC keys do not exist at all.  */
190  typedef struct ARMPACKey {
191      uint64_t lo, hi;
192  } ARMPACKey;
193  #endif
194  
195  /* See the commentary above the TBFLAG field definitions.  */
196  typedef struct CPUARMTBFlags {
197      uint32_t flags;
198      target_ulong flags2;
199  } CPUARMTBFlags;
200  
201  typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202  
203  typedef struct NVICState NVICState;
204  
205  typedef struct CPUArchState {
206      /* Regs for current mode.  */
207      uint32_t regs[16];
208  
209      /* 32/64 switch only happens when taking and returning from
210       * exceptions so the overlap semantics are taken care of then
211       * instead of having a complicated union.
212       */
213      /* Regs for A64 mode.  */
214      uint64_t xregs[32];
215      uint64_t pc;
216      /* PSTATE isn't an architectural register for ARMv8. However, it is
217       * convenient for us to assemble the underlying state into a 32 bit format
218       * identical to the architectural format used for the SPSR. (This is also
219       * what the Linux kernel's 'pstate' field in signal handlers and KVM's
220       * 'pstate' register are.) Of the PSTATE bits:
221       *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
222       *    semantics as for AArch32, as described in the comments on each field)
223       *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
224       *  DAIF (exception masks) are kept in env->daif
225       *  BTYPE is kept in env->btype
226       *  SM and ZA are kept in env->svcr
227       *  all other bits are stored in their correct places in env->pstate
228       */
229      uint32_t pstate;
230      bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
231      bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
232  
233      /* Cached TBFLAGS state.  See below for which bits are included.  */
234      CPUARMTBFlags hflags;
235  
236      /* Frequently accessed CPSR bits are stored separately for efficiency.
237         This contains all the other bits.  Use cpsr_{read,write} to access
238         the whole CPSR.  */
239      uint32_t uncached_cpsr;
240      uint32_t spsr;
241  
242      /* Banked registers.  */
243      uint64_t banked_spsr[8];
244      uint32_t banked_r13[8];
245      uint32_t banked_r14[8];
246  
247      /* These hold r8-r12.  */
248      uint32_t usr_regs[5];
249      uint32_t fiq_regs[5];
250  
251      /* cpsr flag cache for faster execution */
252      uint32_t CF; /* 0 or 1 */
253      uint32_t VF; /* V is the bit 31. All other bits are undefined */
254      uint32_t NF; /* N is bit 31. All other bits are undefined.  */
255      uint32_t ZF; /* Z set if zero.  */
256      uint32_t QF; /* 0 or 1 */
257      uint32_t GE; /* cpsr[19:16] */
258      uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259      uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260      uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261      uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
262  
263      uint64_t elr_el[4]; /* AArch64 exception link regs  */
264      uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265  
266      /* System control coprocessor (cp15) */
267      struct {
268          uint32_t c0_cpuid;
269          union { /* Cache size selection */
270              struct {
271                  uint64_t _unused_csselr0;
272                  uint64_t csselr_ns;
273                  uint64_t _unused_csselr1;
274                  uint64_t csselr_s;
275              };
276              uint64_t csselr_el[4];
277          };
278          union { /* System control register. */
279              struct {
280                  uint64_t _unused_sctlr;
281                  uint64_t sctlr_ns;
282                  uint64_t hsctlr;
283                  uint64_t sctlr_s;
284              };
285              uint64_t sctlr_el[4];
286          };
287          uint64_t vsctlr; /* Virtualization System control register. */
288          uint64_t cpacr_el1; /* Architectural feature access control register */
289          uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
290          uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
291          uint64_t sder; /* Secure debug enable register. */
292          uint32_t nsacr; /* Non-secure access control register. */
293          union { /* MMU translation table base 0. */
294              struct {
295                  uint64_t _unused_ttbr0_0;
296                  uint64_t ttbr0_ns;
297                  uint64_t _unused_ttbr0_1;
298                  uint64_t ttbr0_s;
299              };
300              uint64_t ttbr0_el[4];
301          };
302          union { /* MMU translation table base 1. */
303              struct {
304                  uint64_t _unused_ttbr1_0;
305                  uint64_t ttbr1_ns;
306                  uint64_t _unused_ttbr1_1;
307                  uint64_t ttbr1_s;
308              };
309              uint64_t ttbr1_el[4];
310          };
311          uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
312          uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
313          /* MMU translation table base control. */
314          uint64_t tcr_el[4];
315          uint64_t vtcr_el2; /* Virtualization Translation Control.  */
316          uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
317          uint32_t c2_data; /* MPU data cacheable bits.  */
318          uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319          union { /* MMU domain access control register
320                   * MPU write buffer control.
321                   */
322              struct {
323                  uint64_t dacr_ns;
324                  uint64_t dacr_s;
325              };
326              struct {
327                  uint64_t dacr32_el2;
328              };
329          };
330          uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331          uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332          uint64_t hcr_el2; /* Hypervisor configuration register */
333          uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
334          uint64_t scr_el3; /* Secure configuration register.  */
335          union { /* Fault status registers.  */
336              struct {
337                  uint64_t ifsr_ns;
338                  uint64_t ifsr_s;
339              };
340              struct {
341                  uint64_t ifsr32_el2;
342              };
343          };
344          union {
345              struct {
346                  uint64_t _unused_dfsr;
347                  uint64_t dfsr_ns;
348                  uint64_t hsr;
349                  uint64_t dfsr_s;
350              };
351              uint64_t esr_el[4];
352          };
353          uint32_t c6_region[8]; /* MPU base/size registers.  */
354          union { /* Fault address registers. */
355              struct {
356                  uint64_t _unused_far0;
357  #if HOST_BIG_ENDIAN
358                  uint32_t ifar_ns;
359                  uint32_t dfar_ns;
360                  uint32_t ifar_s;
361                  uint32_t dfar_s;
362  #else
363                  uint32_t dfar_ns;
364                  uint32_t ifar_ns;
365                  uint32_t dfar_s;
366                  uint32_t ifar_s;
367  #endif
368                  uint64_t _unused_far3;
369              };
370              uint64_t far_el[4];
371          };
372          uint64_t hpfar_el2;
373          uint64_t hstr_el2;
374          union { /* Translation result. */
375              struct {
376                  uint64_t _unused_par_0;
377                  uint64_t par_ns;
378                  uint64_t _unused_par_1;
379                  uint64_t par_s;
380              };
381              uint64_t par_el[4];
382          };
383  
384          uint32_t c9_insn; /* Cache lockdown registers.  */
385          uint32_t c9_data;
386          uint64_t c9_pmcr; /* performance monitor control register */
387          uint64_t c9_pmcnten; /* perf monitor counter enables */
388          uint64_t c9_pmovsr; /* perf monitor overflow status */
389          uint64_t c9_pmuserenr; /* perf monitor user enable */
390          uint64_t c9_pmselr; /* perf monitor counter selection register */
391          uint64_t c9_pminten; /* perf monitor interrupt enables */
392          union { /* Memory attribute redirection */
393              struct {
394  #if HOST_BIG_ENDIAN
395                  uint64_t _unused_mair_0;
396                  uint32_t mair1_ns;
397                  uint32_t mair0_ns;
398                  uint64_t _unused_mair_1;
399                  uint32_t mair1_s;
400                  uint32_t mair0_s;
401  #else
402                  uint64_t _unused_mair_0;
403                  uint32_t mair0_ns;
404                  uint32_t mair1_ns;
405                  uint64_t _unused_mair_1;
406                  uint32_t mair0_s;
407                  uint32_t mair1_s;
408  #endif
409              };
410              uint64_t mair_el[4];
411          };
412          union { /* vector base address register */
413              struct {
414                  uint64_t _unused_vbar;
415                  uint64_t vbar_ns;
416                  uint64_t hvbar;
417                  uint64_t vbar_s;
418              };
419              uint64_t vbar_el[4];
420          };
421          uint32_t mvbar; /* (monitor) vector base address register */
422          uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
423          struct { /* FCSE PID. */
424              uint32_t fcseidr_ns;
425              uint32_t fcseidr_s;
426          };
427          union { /* Context ID. */
428              struct {
429                  uint64_t _unused_contextidr_0;
430                  uint64_t contextidr_ns;
431                  uint64_t _unused_contextidr_1;
432                  uint64_t contextidr_s;
433              };
434              uint64_t contextidr_el[4];
435          };
436          union { /* User RW Thread register. */
437              struct {
438                  uint64_t tpidrurw_ns;
439                  uint64_t tpidrprw_ns;
440                  uint64_t htpidr;
441                  uint64_t _tpidr_el3;
442              };
443              uint64_t tpidr_el[4];
444          };
445          uint64_t tpidr2_el0;
446          /* The secure banks of these registers don't map anywhere */
447          uint64_t tpidrurw_s;
448          uint64_t tpidrprw_s;
449          uint64_t tpidruro_s;
450  
451          union { /* User RO Thread register. */
452              uint64_t tpidruro_ns;
453              uint64_t tpidrro_el[1];
454          };
455          uint64_t c14_cntfrq; /* Counter Frequency register */
456          uint64_t c14_cntkctl; /* Timer Control register */
457          uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458          uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459          uint64_t cntpoff_el2; /* Counter Physical Offset register */
460          ARMGenericTimer c14_timer[NUM_GTIMERS];
461          uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462          uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463          uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464          uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465          uint32_t c15_threadid; /* TI debugger thread-ID.  */
466          uint32_t c15_config_base_address; /* SCU base address.  */
467          uint32_t c15_diagnostic; /* diagnostic register */
468          uint32_t c15_power_diagnostic;
469          uint32_t c15_power_control; /* power control */
470          uint64_t dbgbvr[16]; /* breakpoint value registers */
471          uint64_t dbgbcr[16]; /* breakpoint control registers */
472          uint64_t dbgwvr[16]; /* watchpoint value registers */
473          uint64_t dbgwcr[16]; /* watchpoint control registers */
474          uint64_t dbgclaim;   /* DBGCLAIM bits */
475          uint64_t mdscr_el1;
476          uint64_t oslsr_el1; /* OS Lock Status */
477          uint64_t osdlr_el1; /* OS DoubleLock status */
478          uint64_t mdcr_el2;
479          uint64_t mdcr_el3;
480          /* Stores the architectural value of the counter *the last time it was
481           * updated* by pmccntr_op_start. Accesses should always be surrounded
482           * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483           * architecturally-correct value is being read/set.
484           */
485          uint64_t c15_ccnt;
486          /* Stores the delta between the architectural value and the underlying
487           * cycle count during normal operation. It is used to update c15_ccnt
488           * to be the correct architectural value before accesses. During
489           * accesses, c15_ccnt_delta contains the underlying count being used
490           * for the access, after which it reverts to the delta value in
491           * pmccntr_op_finish.
492           */
493          uint64_t c15_ccnt_delta;
494          uint64_t c14_pmevcntr[31];
495          uint64_t c14_pmevcntr_delta[31];
496          uint64_t c14_pmevtyper[31];
497          uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
498          uint64_t vpidr_el2; /* Virtualization Processor ID Register */
499          uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
500          uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
501          uint64_t gcr_el1;
502          uint64_t rgsr_el1;
503  
504          /* Minimal RAS registers */
505          uint64_t disr_el1;
506          uint64_t vdisr_el2;
507          uint64_t vsesr_el2;
508  
509          /*
510           * Fine-Grained Trap registers. We store these as arrays so the
511           * access checking code doesn't have to manually select
512           * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513           * FEAT_FGT2 will add more elements to these arrays.
514           */
515          uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516          uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517          uint64_t fgt_exec[1]; /* HFGITR */
518  
519          /* RME registers */
520          uint64_t gpccr_el3;
521          uint64_t gptbr_el3;
522          uint64_t mfar_el3;
523  
524          /* NV2 register */
525          uint64_t vncr_el2;
526      } cp15;
527  
528      struct {
529          /* M profile has up to 4 stack pointers:
530           * a Main Stack Pointer and a Process Stack Pointer for each
531           * of the Secure and Non-Secure states. (If the CPU doesn't support
532           * the security extension then it has only two SPs.)
533           * In QEMU we always store the currently active SP in regs[13],
534           * and the non-active SP for the current security state in
535           * v7m.other_sp. The stack pointers for the inactive security state
536           * are stored in other_ss_msp and other_ss_psp.
537           * switch_v7m_security_state() is responsible for rearranging them
538           * when we change security state.
539           */
540          uint32_t other_sp;
541          uint32_t other_ss_msp;
542          uint32_t other_ss_psp;
543          uint32_t vecbase[M_REG_NUM_BANKS];
544          uint32_t basepri[M_REG_NUM_BANKS];
545          uint32_t control[M_REG_NUM_BANKS];
546          uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547          uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
548          uint32_t hfsr; /* HardFault Status */
549          uint32_t dfsr; /* Debug Fault Status Register */
550          uint32_t sfsr; /* Secure Fault Status Register */
551          uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
552          uint32_t bfar; /* BusFault Address */
553          uint32_t sfar; /* Secure Fault Address Register */
554          unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
555          int exception;
556          uint32_t primask[M_REG_NUM_BANKS];
557          uint32_t faultmask[M_REG_NUM_BANKS];
558          uint32_t aircr; /* only holds r/w state if security extn implemented */
559          uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
560          uint32_t csselr[M_REG_NUM_BANKS];
561          uint32_t scr[M_REG_NUM_BANKS];
562          uint32_t msplim[M_REG_NUM_BANKS];
563          uint32_t psplim[M_REG_NUM_BANKS];
564          uint32_t fpcar[M_REG_NUM_BANKS];
565          uint32_t fpccr[M_REG_NUM_BANKS];
566          uint32_t fpdscr[M_REG_NUM_BANKS];
567          uint32_t cpacr[M_REG_NUM_BANKS];
568          uint32_t nsacr;
569          uint32_t ltpsize;
570          uint32_t vpr;
571      } v7m;
572  
573      /* Information associated with an exception about to be taken:
574       * code which raises an exception must set cs->exception_index and
575       * the relevant parts of this structure; the cpu_do_interrupt function
576       * will then set the guest-visible registers as part of the exception
577       * entry process.
578       */
579      struct {
580          uint32_t syndrome; /* AArch64 format syndrome register */
581          uint32_t fsr; /* AArch32 format fault status register info */
582          uint64_t vaddress; /* virtual addr associated with exception, if any */
583          uint32_t target_el; /* EL the exception should be targeted for */
584          /* If we implement EL2 we will also need to store information
585           * about the intermediate physical address for stage 2 faults.
586           */
587      } exception;
588  
589      /* Information associated with an SError */
590      struct {
591          uint8_t pending;
592          uint8_t has_esr;
593          uint64_t esr;
594      } serror;
595  
596      uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597  
598      /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599      uint32_t irq_line_state;
600  
601      /* Thumb-2 EE state.  */
602      uint32_t teecr;
603      uint32_t teehbr;
604  
605      /* VFP coprocessor state.  */
606      struct {
607          ARMVectorReg zregs[32];
608  
609  #ifdef TARGET_AARCH64
610          /* Store FFR as pregs[16] to make it easier to treat as any other.  */
611  #define FFR_PRED_NUM 16
612          ARMPredicateReg pregs[17];
613          /* Scratch space for aa64 sve predicate temporary.  */
614          ARMPredicateReg preg_tmp;
615  #endif
616  
617          /* We store these fpcsr fields separately for convenience.  */
618          uint32_t qc[4] QEMU_ALIGNED(16);
619          int vec_len;
620          int vec_stride;
621  
622          uint32_t xregs[16];
623  
624          /* Scratch space for aa32 neon expansion.  */
625          uint32_t scratch[8];
626  
627          /* There are a number of distinct float control structures:
628           *
629           *  fp_status: is the "normal" fp status.
630           *  fp_status_fp16: used for half-precision calculations
631           *  standard_fp_status : the ARM "Standard FPSCR Value"
632           *  standard_fp_status_fp16 : used for half-precision
633           *       calculations with the ARM "Standard FPSCR Value"
634           *
635           * Half-precision operations are governed by a separate
636           * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
637           * status structure to control this.
638           *
639           * The "Standard FPSCR", ie default-NaN, flush-to-zero,
640           * round-to-nearest and is used by any operations (generally
641           * Neon) which the architecture defines as controlled by the
642           * standard FPSCR value rather than the FPSCR.
643           *
644           * The "standard FPSCR but for fp16 ops" is needed because
645           * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
646           * using a fixed value for it.
647           *
648           * To avoid having to transfer exception bits around, we simply
649           * say that the FPSCR cumulative exception flags are the logical
650           * OR of the flags in the four fp statuses. This relies on the
651           * only thing which needs to read the exception flags being
652           * an explicit FPSCR read.
653           */
654          float_status fp_status;
655          float_status fp_status_f16;
656          float_status standard_fp_status;
657          float_status standard_fp_status_f16;
658  
659          uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
660          uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
661      } vfp;
662  
663      uint64_t exclusive_addr;
664      uint64_t exclusive_val;
665      /*
666       * Contains the 'val' for the second 64-bit register of LDXP, which comes
667       * from the higher address, not the high part of a complete 128-bit value.
668       * In some ways it might be more convenient to record the exclusive value
669       * as the low and high halves of a 128 bit data value, but the current
670       * semantics of these fields are baked into the migration format.
671       */
672      uint64_t exclusive_high;
673  
674      /* iwMMXt coprocessor state.  */
675      struct {
676          uint64_t regs[16];
677          uint64_t val;
678  
679          uint32_t cregs[16];
680      } iwmmxt;
681  
682  #ifdef TARGET_AARCH64
683      struct {
684          ARMPACKey apia;
685          ARMPACKey apib;
686          ARMPACKey apda;
687          ARMPACKey apdb;
688          ARMPACKey apga;
689      } keys;
690  
691      uint64_t scxtnum_el[4];
692  
693      /*
694       * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
695       * as we do with vfp.zregs[].  This corresponds to the architectural ZA
696       * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
697       * When SVL is less than the architectural maximum, the accessible
698       * storage is restricted, such that if the SVL is X bytes the guest can
699       * see only the bottom X elements of zarray[], and only the least
700       * significant X bytes of each element of the array. (In other words,
701       * the observable part is always square.)
702       *
703       * The ZA storage can also be considered as a set of square tiles of
704       * elements of different sizes. The mapping from tiles to the ZA array
705       * is architecturally defined, such that for tiles of elements of esz
706       * bytes, the Nth row (or "horizontal slice") of tile T is in
707       * ZA[T + N * esz]. Note that this means that each tile is not contiguous
708       * in the ZA storage, because its rows are striped through the ZA array.
709       *
710       * Because this is so large, keep this toward the end of the reset area,
711       * to keep the offsets into the rest of the structure smaller.
712       */
713      ARMVectorReg zarray[ARM_MAX_VQ * 16];
714  #endif
715  
716      struct CPUBreakpoint *cpu_breakpoint[16];
717      struct CPUWatchpoint *cpu_watchpoint[16];
718  
719      /* Optional fault info across tlb lookup. */
720      ARMMMUFaultInfo *tlb_fi;
721  
722      /* Fields up to this point are cleared by a CPU reset */
723      struct {} end_reset_fields;
724  
725      /* Fields after this point are preserved across CPU reset. */
726  
727      /* Internal CPU feature flags.  */
728      uint64_t features;
729  
730      /* PMSAv7 MPU */
731      struct {
732          uint32_t *drbar;
733          uint32_t *drsr;
734          uint32_t *dracr;
735          uint32_t rnr[M_REG_NUM_BANKS];
736      } pmsav7;
737  
738      /* PMSAv8 MPU */
739      struct {
740          /* The PMSAv8 implementation also shares some PMSAv7 config
741           * and state:
742           *  pmsav7.rnr (region number register)
743           *  pmsav7_dregion (number of configured regions)
744           */
745          uint32_t *rbar[M_REG_NUM_BANKS];
746          uint32_t *rlar[M_REG_NUM_BANKS];
747          uint32_t *hprbar;
748          uint32_t *hprlar;
749          uint32_t mair0[M_REG_NUM_BANKS];
750          uint32_t mair1[M_REG_NUM_BANKS];
751          uint32_t hprselr;
752      } pmsav8;
753  
754      /* v8M SAU */
755      struct {
756          uint32_t *rbar;
757          uint32_t *rlar;
758          uint32_t rnr;
759          uint32_t ctrl;
760      } sau;
761  
762  #if !defined(CONFIG_USER_ONLY)
763      NVICState *nvic;
764      const struct arm_boot_info *boot_info;
765      /* Store GICv3CPUState to access from this struct */
766      void *gicv3state;
767  #else /* CONFIG_USER_ONLY */
768      /* For usermode syscall translation.  */
769      bool eabi;
770  #endif /* CONFIG_USER_ONLY */
771  
772  #ifdef TARGET_TAGGED_ADDRESSES
773      /* Linux syscall tagged address support */
774      bool tagged_addr_enable;
775  #endif
776  } CPUARMState;
777  
778  static inline void set_feature(CPUARMState *env, int feature)
779  {
780      env->features |= 1ULL << feature;
781  }
782  
783  static inline void unset_feature(CPUARMState *env, int feature)
784  {
785      env->features &= ~(1ULL << feature);
786  }
787  
788  /**
789   * ARMELChangeHookFn:
790   * type of a function which can be registered via arm_register_el_change_hook()
791   * to get callbacks when the CPU changes its exception level or mode.
792   */
793  typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
794  typedef struct ARMELChangeHook ARMELChangeHook;
795  struct ARMELChangeHook {
796      ARMELChangeHookFn *hook;
797      void *opaque;
798      QLIST_ENTRY(ARMELChangeHook) node;
799  };
800  
801  /* These values map onto the return values for
802   * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
803  typedef enum ARMPSCIState {
804      PSCI_ON = 0,
805      PSCI_OFF = 1,
806      PSCI_ON_PENDING = 2
807  } ARMPSCIState;
808  
809  typedef struct ARMISARegisters ARMISARegisters;
810  
811  /*
812   * In map, each set bit is a supported vector length of (bit-number + 1) * 16
813   * bytes, i.e. each bit number + 1 is the vector length in quadwords.
814   *
815   * While processing properties during initialization, corresponding init bits
816   * are set for bits in sve_vq_map that have been set by properties.
817   *
818   * Bits set in supported represent valid vector lengths for the CPU type.
819   */
820  typedef struct {
821      uint32_t map, init, supported;
822  } ARMVQMap;
823  
824  /**
825   * ARMCPU:
826   * @env: #CPUARMState
827   *
828   * An ARM CPU core.
829   */
830  struct ArchCPU {
831      CPUState parent_obj;
832  
833      CPUARMState env;
834  
835      /* Coprocessor information */
836      GHashTable *cp_regs;
837      /* For marshalling (mostly coprocessor) register state between the
838       * kernel and QEMU (for KVM) and between two QEMUs (for migration),
839       * we use these arrays.
840       */
841      /* List of register indexes managed via these arrays; (full KVM style
842       * 64 bit indexes, not CPRegInfo 32 bit indexes)
843       */
844      uint64_t *cpreg_indexes;
845      /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
846      uint64_t *cpreg_values;
847      /* Length of the indexes, values, reset_values arrays */
848      int32_t cpreg_array_len;
849      /* These are used only for migration: incoming data arrives in
850       * these fields and is sanity checked in post_load before copying
851       * to the working data structures above.
852       */
853      uint64_t *cpreg_vmstate_indexes;
854      uint64_t *cpreg_vmstate_values;
855      int32_t cpreg_vmstate_array_len;
856  
857      DynamicGDBFeatureInfo dyn_sysreg_feature;
858      DynamicGDBFeatureInfo dyn_svereg_feature;
859      DynamicGDBFeatureInfo dyn_m_systemreg_feature;
860      DynamicGDBFeatureInfo dyn_m_secextreg_feature;
861  
862      /* Timers used by the generic (architected) timer */
863      QEMUTimer *gt_timer[NUM_GTIMERS];
864      /*
865       * Timer used by the PMU. Its state is restored after migration by
866       * pmu_op_finish() - it does not need other handling during migration
867       */
868      QEMUTimer *pmu_timer;
869      /* Timer used for WFxT timeouts */
870      QEMUTimer *wfxt_timer;
871  
872      /* GPIO outputs for generic timer */
873      qemu_irq gt_timer_outputs[NUM_GTIMERS];
874      /* GPIO output for GICv3 maintenance interrupt signal */
875      qemu_irq gicv3_maintenance_interrupt;
876      /* GPIO output for the PMU interrupt */
877      qemu_irq pmu_interrupt;
878  
879      /* MemoryRegion to use for secure physical accesses */
880      MemoryRegion *secure_memory;
881  
882      /* MemoryRegion to use for allocation tag accesses */
883      MemoryRegion *tag_memory;
884      MemoryRegion *secure_tag_memory;
885  
886      /* For v8M, pointer to the IDAU interface provided by board/SoC */
887      Object *idau;
888  
889      /* 'compatible' string for this CPU for Linux device trees */
890      const char *dtb_compatible;
891  
892      /* PSCI version for this CPU
893       * Bits[31:16] = Major Version
894       * Bits[15:0] = Minor Version
895       */
896      uint32_t psci_version;
897  
898      /* Current power state, access guarded by BQL */
899      ARMPSCIState power_state;
900  
901      /* CPU has virtualization extension */
902      bool has_el2;
903      /* CPU has security extension */
904      bool has_el3;
905      /* CPU has PMU (Performance Monitor Unit) */
906      bool has_pmu;
907      /* CPU has VFP */
908      bool has_vfp;
909      /* CPU has 32 VFP registers */
910      bool has_vfp_d32;
911      /* CPU has Neon */
912      bool has_neon;
913      /* CPU has M-profile DSP extension */
914      bool has_dsp;
915  
916      /* CPU has memory protection unit */
917      bool has_mpu;
918      /* PMSAv7 MPU number of supported regions */
919      uint32_t pmsav7_dregion;
920      /* PMSAv8 MPU number of supported hyp regions */
921      uint32_t pmsav8r_hdregion;
922      /* v8M SAU number of supported regions */
923      uint32_t sau_sregion;
924  
925      /* PSCI conduit used to invoke PSCI methods
926       * 0 - disabled, 1 - smc, 2 - hvc
927       */
928      uint32_t psci_conduit;
929  
930      /* For v8M, initial value of the Secure VTOR */
931      uint32_t init_svtor;
932      /* For v8M, initial value of the Non-secure VTOR */
933      uint32_t init_nsvtor;
934  
935      /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
936       * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
937       */
938      uint32_t kvm_target;
939  
940  #ifdef CONFIG_KVM
941      /* KVM init features for this CPU */
942      uint32_t kvm_init_features[7];
943  
944      /* KVM CPU state */
945  
946      /* KVM virtual time adjustment */
947      bool kvm_adjvtime;
948      bool kvm_vtime_dirty;
949      uint64_t kvm_vtime;
950  
951      /* KVM steal time */
952      OnOffAuto kvm_steal_time;
953  #endif /* CONFIG_KVM */
954  
955      /* Uniprocessor system with MP extensions */
956      bool mp_is_up;
957  
958      /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
959       * and the probe failed (so we need to report the error in realize)
960       */
961      bool host_cpu_probe_failed;
962  
963      /* QOM property to indicate we should use the back-compat CNTFRQ default */
964      bool backcompat_cntfrq;
965  
966      /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
967       * register.
968       */
969      int32_t core_count;
970  
971      /* The instance init functions for implementation-specific subclasses
972       * set these fields to specify the implementation-dependent values of
973       * various constant registers and reset values of non-constant
974       * registers.
975       * Some of these might become QOM properties eventually.
976       * Field names match the official register names as defined in the
977       * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
978       * is used for reset values of non-constant registers; no reset_
979       * prefix means a constant register.
980       * Some of these registers are split out into a substructure that
981       * is shared with the translators to control the ISA.
982       *
983       * Note that if you add an ID register to the ARMISARegisters struct
984       * you need to also update the 32-bit and 64-bit versions of the
985       * kvm_arm_get_host_cpu_features() function to correctly populate the
986       * field by reading the value from the KVM vCPU.
987       */
988      struct ARMISARegisters {
989          uint32_t id_isar0;
990          uint32_t id_isar1;
991          uint32_t id_isar2;
992          uint32_t id_isar3;
993          uint32_t id_isar4;
994          uint32_t id_isar5;
995          uint32_t id_isar6;
996          uint32_t id_mmfr0;
997          uint32_t id_mmfr1;
998          uint32_t id_mmfr2;
999          uint32_t id_mmfr3;
1000          uint32_t id_mmfr4;
1001          uint32_t id_mmfr5;
1002          uint32_t id_pfr0;
1003          uint32_t id_pfr1;
1004          uint32_t id_pfr2;
1005          uint32_t mvfr0;
1006          uint32_t mvfr1;
1007          uint32_t mvfr2;
1008          uint32_t id_dfr0;
1009          uint32_t id_dfr1;
1010          uint32_t dbgdidr;
1011          uint32_t dbgdevid;
1012          uint32_t dbgdevid1;
1013          uint64_t id_aa64isar0;
1014          uint64_t id_aa64isar1;
1015          uint64_t id_aa64isar2;
1016          uint64_t id_aa64pfr0;
1017          uint64_t id_aa64pfr1;
1018          uint64_t id_aa64mmfr0;
1019          uint64_t id_aa64mmfr1;
1020          uint64_t id_aa64mmfr2;
1021          uint64_t id_aa64mmfr3;
1022          uint64_t id_aa64dfr0;
1023          uint64_t id_aa64dfr1;
1024          uint64_t id_aa64zfr0;
1025          uint64_t id_aa64smfr0;
1026          uint64_t reset_pmcr_el0;
1027      } isar;
1028      uint64_t midr;
1029      uint32_t revidr;
1030      uint32_t reset_fpsid;
1031      uint64_t ctr;
1032      uint32_t reset_sctlr;
1033      uint64_t pmceid0;
1034      uint64_t pmceid1;
1035      uint32_t id_afr0;
1036      uint64_t id_aa64afr0;
1037      uint64_t id_aa64afr1;
1038      uint64_t clidr;
1039      uint64_t mp_affinity; /* MP ID without feature bits */
1040      /* The elements of this array are the CCSIDR values for each cache,
1041       * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1042       */
1043      uint64_t ccsidr[16];
1044      uint64_t reset_cbar;
1045      uint32_t reset_auxcr;
1046      bool reset_hivecs;
1047      uint8_t reset_l0gptsz;
1048  
1049      /*
1050       * Intermediate values used during property parsing.
1051       * Once finalized, the values should be read from ID_AA64*.
1052       */
1053      bool prop_pauth;
1054      bool prop_pauth_impdef;
1055      bool prop_pauth_qarma3;
1056      bool prop_lpa2;
1057  
1058      /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1059      uint8_t dcz_blocksize;
1060      /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1061      uint8_t gm_blocksize;
1062  
1063      uint64_t rvbar_prop; /* Property/input signals.  */
1064  
1065      /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1066      int gic_num_lrs; /* number of list registers */
1067      int gic_vpribits; /* number of virtual priority bits */
1068      int gic_vprebits; /* number of virtual preemption bits */
1069      int gic_pribits; /* number of physical priority bits */
1070  
1071      /* Whether the cfgend input is high (i.e. this CPU should reset into
1072       * big-endian mode).  This setting isn't used directly: instead it modifies
1073       * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1074       * architecture version.
1075       */
1076      bool cfgend;
1077  
1078      QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1079      QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1080  
1081      int32_t node_id; /* NUMA node this CPU belongs to */
1082  
1083      /* Used to synchronize KVM and QEMU in-kernel device levels */
1084      uint8_t device_irq_level;
1085  
1086      /* Used to set the maximum vector length the cpu will support.  */
1087      uint32_t sve_max_vq;
1088  
1089  #ifdef CONFIG_USER_ONLY
1090      /* Used to set the default vector length at process start. */
1091      uint32_t sve_default_vq;
1092      uint32_t sme_default_vq;
1093  #endif
1094  
1095      ARMVQMap sve_vq;
1096      ARMVQMap sme_vq;
1097  
1098      /* Generic timer counter frequency, in Hz */
1099      uint64_t gt_cntfrq_hz;
1100  };
1101  
1102  typedef struct ARMCPUInfo {
1103      const char *name;
1104      void (*initfn)(Object *obj);
1105      void (*class_init)(ObjectClass *oc, void *data);
1106  } ARMCPUInfo;
1107  
1108  /**
1109   * ARMCPUClass:
1110   * @parent_realize: The parent class' realize handler.
1111   * @parent_phases: The parent class' reset phase handlers.
1112   *
1113   * An ARM CPU model.
1114   */
1115  struct ARMCPUClass {
1116      CPUClass parent_class;
1117  
1118      const ARMCPUInfo *info;
1119      DeviceRealize parent_realize;
1120      ResettablePhases parent_phases;
1121  };
1122  
1123  struct AArch64CPUClass {
1124      ARMCPUClass parent_class;
1125  };
1126  
1127  /* Callback functions for the generic timer's timers. */
1128  void arm_gt_ptimer_cb(void *opaque);
1129  void arm_gt_vtimer_cb(void *opaque);
1130  void arm_gt_htimer_cb(void *opaque);
1131  void arm_gt_stimer_cb(void *opaque);
1132  void arm_gt_hvtimer_cb(void *opaque);
1133  
1134  unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1135  void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1136  
1137  void arm_cpu_post_init(Object *obj);
1138  
1139  #define ARM_AFF0_SHIFT 0
1140  #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1141  #define ARM_AFF1_SHIFT 8
1142  #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1143  #define ARM_AFF2_SHIFT 16
1144  #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1145  #define ARM_AFF3_SHIFT 32
1146  #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1147  #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1148  
1149  #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1150  #define ARM64_AFFINITY_MASK \
1151      (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1152  #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1153  
1154  uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1155  
1156  #ifndef CONFIG_USER_ONLY
1157  extern const VMStateDescription vmstate_arm_cpu;
1158  
1159  void arm_cpu_do_interrupt(CPUState *cpu);
1160  void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1161  
1162  hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1163                                           MemTxAttrs *attrs);
1164  #endif /* !CONFIG_USER_ONLY */
1165  
1166  int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1167  int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1168  
1169  int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1170                               int cpuid, DumpState *s);
1171  int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1172                               int cpuid, DumpState *s);
1173  
1174  /**
1175   * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1176   * @cpu: CPU (which must have been freshly reset)
1177   * @target_el: exception level to put the CPU into
1178   * @secure: whether to put the CPU in secure state
1179   *
1180   * When QEMU is directly running a guest kernel at a lower level than
1181   * EL3 it implicitly emulates some aspects of the guest firmware.
1182   * This includes that on reset we need to configure the parts of the
1183   * CPU corresponding to EL3 so that the real guest code can run at its
1184   * lower exception level. This function does that post-reset CPU setup,
1185   * for when we do direct boot of a guest kernel, and for when we
1186   * emulate PSCI and similar firmware interfaces starting a CPU at a
1187   * lower exception level.
1188   *
1189   * @target_el must be an EL implemented by the CPU between 1 and 3.
1190   * We do not support dropping into a Secure EL other than 3.
1191   *
1192   * It is the responsibility of the caller to call arm_rebuild_hflags().
1193   */
1194  void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1195  
1196  #ifdef TARGET_AARCH64
1197  int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1198  int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1199  void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1200  void aarch64_sve_change_el(CPUARMState *env, int old_el,
1201                             int new_el, bool el0_a64);
1202  void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1203  
1204  /*
1205   * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1206   * The byte at offset i from the start of the in-memory representation contains
1207   * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1208   * lowest offsets are stored in the lowest memory addresses, then that nearly
1209   * matches QEMU's representation, which is to use an array of host-endian
1210   * uint64_t's, where the lower offsets are at the lower indices. To complete
1211   * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1212   */
1213  static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1214  {
1215  #if HOST_BIG_ENDIAN
1216      int i;
1217  
1218      for (i = 0; i < nr; ++i) {
1219          dst[i] = bswap64(src[i]);
1220      }
1221  
1222      return dst;
1223  #else
1224      return src;
1225  #endif
1226  }
1227  
1228  #else
1229  static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1230  static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1231                                           int n, bool a)
1232  { }
1233  #endif
1234  
1235  void aarch64_sync_32_to_64(CPUARMState *env);
1236  void aarch64_sync_64_to_32(CPUARMState *env);
1237  
1238  int fp_exception_el(CPUARMState *env, int cur_el);
1239  int sve_exception_el(CPUARMState *env, int cur_el);
1240  int sme_exception_el(CPUARMState *env, int cur_el);
1241  
1242  /**
1243   * sve_vqm1_for_el_sm:
1244   * @env: CPUARMState
1245   * @el: exception level
1246   * @sm: streaming mode
1247   *
1248   * Compute the current vector length for @el & @sm, in units of
1249   * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1250   * If @sm, compute for SVL, otherwise NVL.
1251   */
1252  uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1253  
1254  /* Likewise, but using @sm = PSTATE.SM. */
1255  uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1256  
1257  static inline bool is_a64(CPUARMState *env)
1258  {
1259      return env->aarch64;
1260  }
1261  
1262  /**
1263   * pmu_op_start/finish
1264   * @env: CPUARMState
1265   *
1266   * Convert all PMU counters between their delta form (the typical mode when
1267   * they are enabled) and the guest-visible values. These two calls must
1268   * surround any action which might affect the counters.
1269   */
1270  void pmu_op_start(CPUARMState *env);
1271  void pmu_op_finish(CPUARMState *env);
1272  
1273  /*
1274   * Called when a PMU counter is due to overflow
1275   */
1276  void arm_pmu_timer_cb(void *opaque);
1277  
1278  /**
1279   * Functions to register as EL change hooks for PMU mode filtering
1280   */
1281  void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1282  void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1283  
1284  /*
1285   * pmu_init
1286   * @cpu: ARMCPU
1287   *
1288   * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1289   * for the current configuration
1290   */
1291  void pmu_init(ARMCPU *cpu);
1292  
1293  /* SCTLR bit meanings. Several bits have been reused in newer
1294   * versions of the architecture; in that case we define constants
1295   * for both old and new bit meanings. Code which tests against those
1296   * bits should probably check or otherwise arrange that the CPU
1297   * is the architectural version it expects.
1298   */
1299  #define SCTLR_M       (1U << 0)
1300  #define SCTLR_A       (1U << 1)
1301  #define SCTLR_C       (1U << 2)
1302  #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1303  #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1304  #define SCTLR_SA      (1U << 3) /* AArch64 only */
1305  #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1306  #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1307  #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1308  #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1309  #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1310  #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1311  #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1312  #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1313  #define SCTLR_ITD     (1U << 7) /* v8 onward */
1314  #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1315  #define SCTLR_SED     (1U << 8) /* v8 onward */
1316  #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1317  #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1318  #define SCTLR_F       (1U << 10) /* up to v6 */
1319  #define SCTLR_SW      (1U << 10) /* v7 */
1320  #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1321  #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1322  #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1323  #define SCTLR_I       (1U << 12)
1324  #define SCTLR_V       (1U << 13) /* AArch32 only */
1325  #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1326  #define SCTLR_RR      (1U << 14) /* up to v7 */
1327  #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1328  #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1329  #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1330  #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1331  #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1332  #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1333  #define SCTLR_BR      (1U << 17) /* PMSA only */
1334  #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1335  #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1336  #define SCTLR_WXN     (1U << 19)
1337  #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1338  #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1339  #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1340  #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1341  #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1342  #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1343  #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1344  #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1345  #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1346  #define SCTLR_VE      (1U << 24) /* up to v7 */
1347  #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1348  #define SCTLR_EE      (1U << 25)
1349  #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1350  #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1351  #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1352  #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1353  #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1354  #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1355  #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1356  #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1357  #define SCTLR_TE      (1U << 30) /* AArch32 only */
1358  #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1359  #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1360  #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1361  #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1362  #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1363  #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1364  #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1365  #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1366  #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1367  #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1368  #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1369  #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1370  #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1371  #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1372  #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1373  #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1374  #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1375  #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1376  #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1377  #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1378  #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1379  #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1380  #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1381  #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1382  #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1383  #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1384  
1385  #define CPSR_M (0x1fU)
1386  #define CPSR_T (1U << 5)
1387  #define CPSR_F (1U << 6)
1388  #define CPSR_I (1U << 7)
1389  #define CPSR_A (1U << 8)
1390  #define CPSR_E (1U << 9)
1391  #define CPSR_IT_2_7 (0xfc00U)
1392  #define CPSR_GE (0xfU << 16)
1393  #define CPSR_IL (1U << 20)
1394  #define CPSR_DIT (1U << 21)
1395  #define CPSR_PAN (1U << 22)
1396  #define CPSR_SSBS (1U << 23)
1397  #define CPSR_J (1U << 24)
1398  #define CPSR_IT_0_1 (3U << 25)
1399  #define CPSR_Q (1U << 27)
1400  #define CPSR_V (1U << 28)
1401  #define CPSR_C (1U << 29)
1402  #define CPSR_Z (1U << 30)
1403  #define CPSR_N (1U << 31)
1404  #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1405  #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1406  #define ISR_FS (1U << 9)
1407  #define ISR_IS (1U << 10)
1408  
1409  #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1410  #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1411      | CPSR_NZCV)
1412  /* Bits writable in user mode.  */
1413  #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1414  /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1415  #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1416  
1417  /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1418  #define XPSR_EXCP 0x1ffU
1419  #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1420  #define XPSR_IT_2_7 CPSR_IT_2_7
1421  #define XPSR_GE CPSR_GE
1422  #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1423  #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1424  #define XPSR_IT_0_1 CPSR_IT_0_1
1425  #define XPSR_Q CPSR_Q
1426  #define XPSR_V CPSR_V
1427  #define XPSR_C CPSR_C
1428  #define XPSR_Z CPSR_Z
1429  #define XPSR_N CPSR_N
1430  #define XPSR_NZCV CPSR_NZCV
1431  #define XPSR_IT CPSR_IT
1432  
1433  /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1434   * Only these are valid when in AArch64 mode; in
1435   * AArch32 mode SPSRs are basically CPSR-format.
1436   */
1437  #define PSTATE_SP (1U)
1438  #define PSTATE_M (0xFU)
1439  #define PSTATE_nRW (1U << 4)
1440  #define PSTATE_F (1U << 6)
1441  #define PSTATE_I (1U << 7)
1442  #define PSTATE_A (1U << 8)
1443  #define PSTATE_D (1U << 9)
1444  #define PSTATE_BTYPE (3U << 10)
1445  #define PSTATE_SSBS (1U << 12)
1446  #define PSTATE_ALLINT (1U << 13)
1447  #define PSTATE_IL (1U << 20)
1448  #define PSTATE_SS (1U << 21)
1449  #define PSTATE_PAN (1U << 22)
1450  #define PSTATE_UAO (1U << 23)
1451  #define PSTATE_DIT (1U << 24)
1452  #define PSTATE_TCO (1U << 25)
1453  #define PSTATE_V (1U << 28)
1454  #define PSTATE_C (1U << 29)
1455  #define PSTATE_Z (1U << 30)
1456  #define PSTATE_N (1U << 31)
1457  #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1458  #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1459  #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1460  /* Mode values for AArch64 */
1461  #define PSTATE_MODE_EL3h 13
1462  #define PSTATE_MODE_EL3t 12
1463  #define PSTATE_MODE_EL2h 9
1464  #define PSTATE_MODE_EL2t 8
1465  #define PSTATE_MODE_EL1h 5
1466  #define PSTATE_MODE_EL1t 4
1467  #define PSTATE_MODE_EL0t 0
1468  
1469  /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1470  FIELD(SVCR, SM, 0, 1)
1471  FIELD(SVCR, ZA, 1, 1)
1472  
1473  /* Fields for SMCR_ELx. */
1474  FIELD(SMCR, LEN, 0, 4)
1475  FIELD(SMCR, FA64, 31, 1)
1476  
1477  /* Write a new value to v7m.exception, thus transitioning into or out
1478   * of Handler mode; this may result in a change of active stack pointer.
1479   */
1480  void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1481  
1482  /* Map EL and handler into a PSTATE_MODE.  */
1483  static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1484  {
1485      return (el << 2) | handler;
1486  }
1487  
1488  /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1489   * interprocessing, so we don't attempt to sync with the cpsr state used by
1490   * the 32 bit decoder.
1491   */
1492  static inline uint32_t pstate_read(CPUARMState *env)
1493  {
1494      int ZF;
1495  
1496      ZF = (env->ZF == 0);
1497      return (env->NF & 0x80000000) | (ZF << 30)
1498          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1499          | env->pstate | env->daif | (env->btype << 10);
1500  }
1501  
1502  static inline void pstate_write(CPUARMState *env, uint32_t val)
1503  {
1504      env->ZF = (~val) & PSTATE_Z;
1505      env->NF = val;
1506      env->CF = (val >> 29) & 1;
1507      env->VF = (val << 3) & 0x80000000;
1508      env->daif = val & PSTATE_DAIF;
1509      env->btype = (val >> 10) & 3;
1510      env->pstate = val & ~CACHED_PSTATE_BITS;
1511  }
1512  
1513  /* Return the current CPSR value.  */
1514  uint32_t cpsr_read(CPUARMState *env);
1515  
1516  typedef enum CPSRWriteType {
1517      CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1518      CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1519      CPSRWriteRaw = 2,
1520          /* trust values, no reg bank switch, no hflags rebuild */
1521      CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1522  } CPSRWriteType;
1523  
1524  /*
1525   * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1526   * This will do an arm_rebuild_hflags() if any of the bits in @mask
1527   * correspond to TB flags bits cached in the hflags, unless @write_type
1528   * is CPSRWriteRaw.
1529   */
1530  void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1531                  CPSRWriteType write_type);
1532  
1533  /* Return the current xPSR value.  */
1534  static inline uint32_t xpsr_read(CPUARMState *env)
1535  {
1536      int ZF;
1537      ZF = (env->ZF == 0);
1538      return (env->NF & 0x80000000) | (ZF << 30)
1539          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1540          | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1541          | ((env->condexec_bits & 0xfc) << 8)
1542          | (env->GE << 16)
1543          | env->v7m.exception;
1544  }
1545  
1546  /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1547  static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1548  {
1549      if (mask & XPSR_NZCV) {
1550          env->ZF = (~val) & XPSR_Z;
1551          env->NF = val;
1552          env->CF = (val >> 29) & 1;
1553          env->VF = (val << 3) & 0x80000000;
1554      }
1555      if (mask & XPSR_Q) {
1556          env->QF = ((val & XPSR_Q) != 0);
1557      }
1558      if (mask & XPSR_GE) {
1559          env->GE = (val & XPSR_GE) >> 16;
1560      }
1561  #ifndef CONFIG_USER_ONLY
1562      if (mask & XPSR_T) {
1563          env->thumb = ((val & XPSR_T) != 0);
1564      }
1565      if (mask & XPSR_IT_0_1) {
1566          env->condexec_bits &= ~3;
1567          env->condexec_bits |= (val >> 25) & 3;
1568      }
1569      if (mask & XPSR_IT_2_7) {
1570          env->condexec_bits &= 3;
1571          env->condexec_bits |= (val >> 8) & 0xfc;
1572      }
1573      if (mask & XPSR_EXCP) {
1574          /* Note that this only happens on exception exit */
1575          write_v7m_exception(env, val & XPSR_EXCP);
1576      }
1577  #endif
1578  }
1579  
1580  #define HCR_VM        (1ULL << 0)
1581  #define HCR_SWIO      (1ULL << 1)
1582  #define HCR_PTW       (1ULL << 2)
1583  #define HCR_FMO       (1ULL << 3)
1584  #define HCR_IMO       (1ULL << 4)
1585  #define HCR_AMO       (1ULL << 5)
1586  #define HCR_VF        (1ULL << 6)
1587  #define HCR_VI        (1ULL << 7)
1588  #define HCR_VSE       (1ULL << 8)
1589  #define HCR_FB        (1ULL << 9)
1590  #define HCR_BSU_MASK  (3ULL << 10)
1591  #define HCR_DC        (1ULL << 12)
1592  #define HCR_TWI       (1ULL << 13)
1593  #define HCR_TWE       (1ULL << 14)
1594  #define HCR_TID0      (1ULL << 15)
1595  #define HCR_TID1      (1ULL << 16)
1596  #define HCR_TID2      (1ULL << 17)
1597  #define HCR_TID3      (1ULL << 18)
1598  #define HCR_TSC       (1ULL << 19)
1599  #define HCR_TIDCP     (1ULL << 20)
1600  #define HCR_TACR      (1ULL << 21)
1601  #define HCR_TSW       (1ULL << 22)
1602  #define HCR_TPCP      (1ULL << 23)
1603  #define HCR_TPU       (1ULL << 24)
1604  #define HCR_TTLB      (1ULL << 25)
1605  #define HCR_TVM       (1ULL << 26)
1606  #define HCR_TGE       (1ULL << 27)
1607  #define HCR_TDZ       (1ULL << 28)
1608  #define HCR_HCD       (1ULL << 29)
1609  #define HCR_TRVM      (1ULL << 30)
1610  #define HCR_RW        (1ULL << 31)
1611  #define HCR_CD        (1ULL << 32)
1612  #define HCR_ID        (1ULL << 33)
1613  #define HCR_E2H       (1ULL << 34)
1614  #define HCR_TLOR      (1ULL << 35)
1615  #define HCR_TERR      (1ULL << 36)
1616  #define HCR_TEA       (1ULL << 37)
1617  #define HCR_MIOCNCE   (1ULL << 38)
1618  #define HCR_TME       (1ULL << 39)
1619  #define HCR_APK       (1ULL << 40)
1620  #define HCR_API       (1ULL << 41)
1621  #define HCR_NV        (1ULL << 42)
1622  #define HCR_NV1       (1ULL << 43)
1623  #define HCR_AT        (1ULL << 44)
1624  #define HCR_NV2       (1ULL << 45)
1625  #define HCR_FWB       (1ULL << 46)
1626  #define HCR_FIEN      (1ULL << 47)
1627  #define HCR_GPF       (1ULL << 48)
1628  #define HCR_TID4      (1ULL << 49)
1629  #define HCR_TICAB     (1ULL << 50)
1630  #define HCR_AMVOFFEN  (1ULL << 51)
1631  #define HCR_TOCU      (1ULL << 52)
1632  #define HCR_ENSCXT    (1ULL << 53)
1633  #define HCR_TTLBIS    (1ULL << 54)
1634  #define HCR_TTLBOS    (1ULL << 55)
1635  #define HCR_ATA       (1ULL << 56)
1636  #define HCR_DCT       (1ULL << 57)
1637  #define HCR_TID5      (1ULL << 58)
1638  #define HCR_TWEDEN    (1ULL << 59)
1639  #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1640  
1641  #define SCR_NS                (1ULL << 0)
1642  #define SCR_IRQ               (1ULL << 1)
1643  #define SCR_FIQ               (1ULL << 2)
1644  #define SCR_EA                (1ULL << 3)
1645  #define SCR_FW                (1ULL << 4)
1646  #define SCR_AW                (1ULL << 5)
1647  #define SCR_NET               (1ULL << 6)
1648  #define SCR_SMD               (1ULL << 7)
1649  #define SCR_HCE               (1ULL << 8)
1650  #define SCR_SIF               (1ULL << 9)
1651  #define SCR_RW                (1ULL << 10)
1652  #define SCR_ST                (1ULL << 11)
1653  #define SCR_TWI               (1ULL << 12)
1654  #define SCR_TWE               (1ULL << 13)
1655  #define SCR_TLOR              (1ULL << 14)
1656  #define SCR_TERR              (1ULL << 15)
1657  #define SCR_APK               (1ULL << 16)
1658  #define SCR_API               (1ULL << 17)
1659  #define SCR_EEL2              (1ULL << 18)
1660  #define SCR_EASE              (1ULL << 19)
1661  #define SCR_NMEA              (1ULL << 20)
1662  #define SCR_FIEN              (1ULL << 21)
1663  #define SCR_ENSCXT            (1ULL << 25)
1664  #define SCR_ATA               (1ULL << 26)
1665  #define SCR_FGTEN             (1ULL << 27)
1666  #define SCR_ECVEN             (1ULL << 28)
1667  #define SCR_TWEDEN            (1ULL << 29)
1668  #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1669  #define SCR_TME               (1ULL << 34)
1670  #define SCR_AMVOFFEN          (1ULL << 35)
1671  #define SCR_ENAS0             (1ULL << 36)
1672  #define SCR_ADEN              (1ULL << 37)
1673  #define SCR_HXEN              (1ULL << 38)
1674  #define SCR_TRNDR             (1ULL << 40)
1675  #define SCR_ENTP2             (1ULL << 41)
1676  #define SCR_GPF               (1ULL << 48)
1677  #define SCR_NSE               (1ULL << 62)
1678  
1679  /* Return the current FPSCR value.  */
1680  uint32_t vfp_get_fpscr(CPUARMState *env);
1681  void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1682  
1683  /* FPCR, Floating Point Control Register
1684   * FPSR, Floating Poiht Status Register
1685   *
1686   * For A64 the FPSCR is split into two logically distinct registers,
1687   * FPCR and FPSR. However since they still use non-overlapping bits
1688   * we store the underlying state in fpscr and just mask on read/write.
1689   */
1690  #define FPSR_MASK 0xf800009f
1691  #define FPCR_MASK 0x07ff9f00
1692  
1693  #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1694  #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1695  #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1696  #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1697  #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1698  #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1699  #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1700  #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1701  #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1702  #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1703  #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1704  #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1705  #define FPCR_V      (1 << 28)   /* FP overflow flag */
1706  #define FPCR_C      (1 << 29)   /* FP carry flag */
1707  #define FPCR_Z      (1 << 30)   /* FP zero flag */
1708  #define FPCR_N      (1 << 31)   /* FP negative flag */
1709  
1710  #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1711  #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1712  #define FPCR_LTPSIZE_LENGTH 3
1713  
1714  #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1715  #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1716  
1717  static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1718  {
1719      return vfp_get_fpscr(env) & FPSR_MASK;
1720  }
1721  
1722  static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1723  {
1724      uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1725      vfp_set_fpscr(env, new_fpscr);
1726  }
1727  
1728  static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1729  {
1730      return vfp_get_fpscr(env) & FPCR_MASK;
1731  }
1732  
1733  static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1734  {
1735      uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1736      vfp_set_fpscr(env, new_fpscr);
1737  }
1738  
1739  enum arm_cpu_mode {
1740    ARM_CPU_MODE_USR = 0x10,
1741    ARM_CPU_MODE_FIQ = 0x11,
1742    ARM_CPU_MODE_IRQ = 0x12,
1743    ARM_CPU_MODE_SVC = 0x13,
1744    ARM_CPU_MODE_MON = 0x16,
1745    ARM_CPU_MODE_ABT = 0x17,
1746    ARM_CPU_MODE_HYP = 0x1a,
1747    ARM_CPU_MODE_UND = 0x1b,
1748    ARM_CPU_MODE_SYS = 0x1f
1749  };
1750  
1751  /* VFP system registers.  */
1752  #define ARM_VFP_FPSID   0
1753  #define ARM_VFP_FPSCR   1
1754  #define ARM_VFP_MVFR2   5
1755  #define ARM_VFP_MVFR1   6
1756  #define ARM_VFP_MVFR0   7
1757  #define ARM_VFP_FPEXC   8
1758  #define ARM_VFP_FPINST  9
1759  #define ARM_VFP_FPINST2 10
1760  /* These ones are M-profile only */
1761  #define ARM_VFP_FPSCR_NZCVQC 2
1762  #define ARM_VFP_VPR 12
1763  #define ARM_VFP_P0 13
1764  #define ARM_VFP_FPCXT_NS 14
1765  #define ARM_VFP_FPCXT_S 15
1766  
1767  /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1768  #define QEMU_VFP_FPSCR_NZCV 0xffff
1769  
1770  /* iwMMXt coprocessor control registers.  */
1771  #define ARM_IWMMXT_wCID  0
1772  #define ARM_IWMMXT_wCon  1
1773  #define ARM_IWMMXT_wCSSF 2
1774  #define ARM_IWMMXT_wCASF 3
1775  #define ARM_IWMMXT_wCGR0 8
1776  #define ARM_IWMMXT_wCGR1 9
1777  #define ARM_IWMMXT_wCGR2 10
1778  #define ARM_IWMMXT_wCGR3 11
1779  
1780  /* V7M CCR bits */
1781  FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1782  FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1783  FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1784  FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1785  FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1786  FIELD(V7M_CCR, STKALIGN, 9, 1)
1787  FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1788  FIELD(V7M_CCR, DC, 16, 1)
1789  FIELD(V7M_CCR, IC, 17, 1)
1790  FIELD(V7M_CCR, BP, 18, 1)
1791  FIELD(V7M_CCR, LOB, 19, 1)
1792  FIELD(V7M_CCR, TRD, 20, 1)
1793  
1794  /* V7M SCR bits */
1795  FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1796  FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1797  FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1798  FIELD(V7M_SCR, SEVONPEND, 4, 1)
1799  
1800  /* V7M AIRCR bits */
1801  FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1802  FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1803  FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1804  FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1805  FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1806  FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1807  FIELD(V7M_AIRCR, PRIS, 14, 1)
1808  FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1809  FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1810  
1811  /* V7M CFSR bits for MMFSR */
1812  FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1813  FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1814  FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1815  FIELD(V7M_CFSR, MSTKERR, 4, 1)
1816  FIELD(V7M_CFSR, MLSPERR, 5, 1)
1817  FIELD(V7M_CFSR, MMARVALID, 7, 1)
1818  
1819  /* V7M CFSR bits for BFSR */
1820  FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1821  FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1822  FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1823  FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1824  FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1825  FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1826  FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1827  
1828  /* V7M CFSR bits for UFSR */
1829  FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1830  FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1831  FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1832  FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1833  FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1834  FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1835  FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1836  
1837  /* V7M CFSR bit masks covering all of the subregister bits */
1838  FIELD(V7M_CFSR, MMFSR, 0, 8)
1839  FIELD(V7M_CFSR, BFSR, 8, 8)
1840  FIELD(V7M_CFSR, UFSR, 16, 16)
1841  
1842  /* V7M HFSR bits */
1843  FIELD(V7M_HFSR, VECTTBL, 1, 1)
1844  FIELD(V7M_HFSR, FORCED, 30, 1)
1845  FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1846  
1847  /* V7M DFSR bits */
1848  FIELD(V7M_DFSR, HALTED, 0, 1)
1849  FIELD(V7M_DFSR, BKPT, 1, 1)
1850  FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1851  FIELD(V7M_DFSR, VCATCH, 3, 1)
1852  FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1853  
1854  /* V7M SFSR bits */
1855  FIELD(V7M_SFSR, INVEP, 0, 1)
1856  FIELD(V7M_SFSR, INVIS, 1, 1)
1857  FIELD(V7M_SFSR, INVER, 2, 1)
1858  FIELD(V7M_SFSR, AUVIOL, 3, 1)
1859  FIELD(V7M_SFSR, INVTRAN, 4, 1)
1860  FIELD(V7M_SFSR, LSPERR, 5, 1)
1861  FIELD(V7M_SFSR, SFARVALID, 6, 1)
1862  FIELD(V7M_SFSR, LSERR, 7, 1)
1863  
1864  /* v7M MPU_CTRL bits */
1865  FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1866  FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1867  FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1868  
1869  /* v7M CLIDR bits */
1870  FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1871  FIELD(V7M_CLIDR, LOUIS, 21, 3)
1872  FIELD(V7M_CLIDR, LOC, 24, 3)
1873  FIELD(V7M_CLIDR, LOUU, 27, 3)
1874  FIELD(V7M_CLIDR, ICB, 30, 2)
1875  
1876  FIELD(V7M_CSSELR, IND, 0, 1)
1877  FIELD(V7M_CSSELR, LEVEL, 1, 3)
1878  /* We use the combination of InD and Level to index into cpu->ccsidr[];
1879   * define a mask for this and check that it doesn't permit running off
1880   * the end of the array.
1881   */
1882  FIELD(V7M_CSSELR, INDEX, 0, 4)
1883  
1884  /* v7M FPCCR bits */
1885  FIELD(V7M_FPCCR, LSPACT, 0, 1)
1886  FIELD(V7M_FPCCR, USER, 1, 1)
1887  FIELD(V7M_FPCCR, S, 2, 1)
1888  FIELD(V7M_FPCCR, THREAD, 3, 1)
1889  FIELD(V7M_FPCCR, HFRDY, 4, 1)
1890  FIELD(V7M_FPCCR, MMRDY, 5, 1)
1891  FIELD(V7M_FPCCR, BFRDY, 6, 1)
1892  FIELD(V7M_FPCCR, SFRDY, 7, 1)
1893  FIELD(V7M_FPCCR, MONRDY, 8, 1)
1894  FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1895  FIELD(V7M_FPCCR, UFRDY, 10, 1)
1896  FIELD(V7M_FPCCR, RES0, 11, 15)
1897  FIELD(V7M_FPCCR, TS, 26, 1)
1898  FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1899  FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1900  FIELD(V7M_FPCCR, LSPENS, 29, 1)
1901  FIELD(V7M_FPCCR, LSPEN, 30, 1)
1902  FIELD(V7M_FPCCR, ASPEN, 31, 1)
1903  /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1904  #define R_V7M_FPCCR_BANKED_MASK                 \
1905      (R_V7M_FPCCR_LSPACT_MASK |                  \
1906       R_V7M_FPCCR_USER_MASK |                    \
1907       R_V7M_FPCCR_THREAD_MASK |                  \
1908       R_V7M_FPCCR_MMRDY_MASK |                   \
1909       R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1910       R_V7M_FPCCR_UFRDY_MASK |                   \
1911       R_V7M_FPCCR_ASPEN_MASK)
1912  
1913  /* v7M VPR bits */
1914  FIELD(V7M_VPR, P0, 0, 16)
1915  FIELD(V7M_VPR, MASK01, 16, 4)
1916  FIELD(V7M_VPR, MASK23, 20, 4)
1917  
1918  /*
1919   * System register ID fields.
1920   */
1921  FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1922  FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1923  FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1924  FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1925  FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1926  FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1927  FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1928  FIELD(CLIDR_EL1, LOUIS, 21, 3)
1929  FIELD(CLIDR_EL1, LOC, 24, 3)
1930  FIELD(CLIDR_EL1, LOUU, 27, 3)
1931  FIELD(CLIDR_EL1, ICB, 30, 3)
1932  
1933  /* When FEAT_CCIDX is implemented */
1934  FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1935  FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1936  FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1937  
1938  /* When FEAT_CCIDX is not implemented */
1939  FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1940  FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1941  FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1942  
1943  FIELD(CTR_EL0,  IMINLINE, 0, 4)
1944  FIELD(CTR_EL0,  L1IP, 14, 2)
1945  FIELD(CTR_EL0,  DMINLINE, 16, 4)
1946  FIELD(CTR_EL0,  ERG, 20, 4)
1947  FIELD(CTR_EL0,  CWG, 24, 4)
1948  FIELD(CTR_EL0,  IDC, 28, 1)
1949  FIELD(CTR_EL0,  DIC, 29, 1)
1950  FIELD(CTR_EL0,  TMINLINE, 32, 6)
1951  
1952  FIELD(MIDR_EL1, REVISION, 0, 4)
1953  FIELD(MIDR_EL1, PARTNUM, 4, 12)
1954  FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1955  FIELD(MIDR_EL1, VARIANT, 20, 4)
1956  FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1957  
1958  FIELD(ID_ISAR0, SWAP, 0, 4)
1959  FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1960  FIELD(ID_ISAR0, BITFIELD, 8, 4)
1961  FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1962  FIELD(ID_ISAR0, COPROC, 16, 4)
1963  FIELD(ID_ISAR0, DEBUG, 20, 4)
1964  FIELD(ID_ISAR0, DIVIDE, 24, 4)
1965  
1966  FIELD(ID_ISAR1, ENDIAN, 0, 4)
1967  FIELD(ID_ISAR1, EXCEPT, 4, 4)
1968  FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1969  FIELD(ID_ISAR1, EXTEND, 12, 4)
1970  FIELD(ID_ISAR1, IFTHEN, 16, 4)
1971  FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1972  FIELD(ID_ISAR1, INTERWORK, 24, 4)
1973  FIELD(ID_ISAR1, JAZELLE, 28, 4)
1974  
1975  FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1976  FIELD(ID_ISAR2, MEMHINT, 4, 4)
1977  FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1978  FIELD(ID_ISAR2, MULT, 12, 4)
1979  FIELD(ID_ISAR2, MULTS, 16, 4)
1980  FIELD(ID_ISAR2, MULTU, 20, 4)
1981  FIELD(ID_ISAR2, PSR_AR, 24, 4)
1982  FIELD(ID_ISAR2, REVERSAL, 28, 4)
1983  
1984  FIELD(ID_ISAR3, SATURATE, 0, 4)
1985  FIELD(ID_ISAR3, SIMD, 4, 4)
1986  FIELD(ID_ISAR3, SVC, 8, 4)
1987  FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1988  FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1989  FIELD(ID_ISAR3, T32COPY, 20, 4)
1990  FIELD(ID_ISAR3, TRUENOP, 24, 4)
1991  FIELD(ID_ISAR3, T32EE, 28, 4)
1992  
1993  FIELD(ID_ISAR4, UNPRIV, 0, 4)
1994  FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1995  FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1996  FIELD(ID_ISAR4, SMC, 12, 4)
1997  FIELD(ID_ISAR4, BARRIER, 16, 4)
1998  FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1999  FIELD(ID_ISAR4, PSR_M, 24, 4)
2000  FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2001  
2002  FIELD(ID_ISAR5, SEVL, 0, 4)
2003  FIELD(ID_ISAR5, AES, 4, 4)
2004  FIELD(ID_ISAR5, SHA1, 8, 4)
2005  FIELD(ID_ISAR5, SHA2, 12, 4)
2006  FIELD(ID_ISAR5, CRC32, 16, 4)
2007  FIELD(ID_ISAR5, RDM, 24, 4)
2008  FIELD(ID_ISAR5, VCMA, 28, 4)
2009  
2010  FIELD(ID_ISAR6, JSCVT, 0, 4)
2011  FIELD(ID_ISAR6, DP, 4, 4)
2012  FIELD(ID_ISAR6, FHM, 8, 4)
2013  FIELD(ID_ISAR6, SB, 12, 4)
2014  FIELD(ID_ISAR6, SPECRES, 16, 4)
2015  FIELD(ID_ISAR6, BF16, 20, 4)
2016  FIELD(ID_ISAR6, I8MM, 24, 4)
2017  
2018  FIELD(ID_MMFR0, VMSA, 0, 4)
2019  FIELD(ID_MMFR0, PMSA, 4, 4)
2020  FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2021  FIELD(ID_MMFR0, SHARELVL, 12, 4)
2022  FIELD(ID_MMFR0, TCM, 16, 4)
2023  FIELD(ID_MMFR0, AUXREG, 20, 4)
2024  FIELD(ID_MMFR0, FCSE, 24, 4)
2025  FIELD(ID_MMFR0, INNERSHR, 28, 4)
2026  
2027  FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2028  FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2029  FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2030  FIELD(ID_MMFR1, L1UNISW, 12, 4)
2031  FIELD(ID_MMFR1, L1HVD, 16, 4)
2032  FIELD(ID_MMFR1, L1UNI, 20, 4)
2033  FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2034  FIELD(ID_MMFR1, BPRED, 28, 4)
2035  
2036  FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2037  FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2038  FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2039  FIELD(ID_MMFR2, HVDTLB, 12, 4)
2040  FIELD(ID_MMFR2, UNITLB, 16, 4)
2041  FIELD(ID_MMFR2, MEMBARR, 20, 4)
2042  FIELD(ID_MMFR2, WFISTALL, 24, 4)
2043  FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2044  
2045  FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2046  FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2047  FIELD(ID_MMFR3, BPMAINT, 8, 4)
2048  FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2049  FIELD(ID_MMFR3, PAN, 16, 4)
2050  FIELD(ID_MMFR3, COHWALK, 20, 4)
2051  FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2052  FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2053  
2054  FIELD(ID_MMFR4, SPECSEI, 0, 4)
2055  FIELD(ID_MMFR4, AC2, 4, 4)
2056  FIELD(ID_MMFR4, XNX, 8, 4)
2057  FIELD(ID_MMFR4, CNP, 12, 4)
2058  FIELD(ID_MMFR4, HPDS, 16, 4)
2059  FIELD(ID_MMFR4, LSM, 20, 4)
2060  FIELD(ID_MMFR4, CCIDX, 24, 4)
2061  FIELD(ID_MMFR4, EVT, 28, 4)
2062  
2063  FIELD(ID_MMFR5, ETS, 0, 4)
2064  FIELD(ID_MMFR5, NTLBPA, 4, 4)
2065  
2066  FIELD(ID_PFR0, STATE0, 0, 4)
2067  FIELD(ID_PFR0, STATE1, 4, 4)
2068  FIELD(ID_PFR0, STATE2, 8, 4)
2069  FIELD(ID_PFR0, STATE3, 12, 4)
2070  FIELD(ID_PFR0, CSV2, 16, 4)
2071  FIELD(ID_PFR0, AMU, 20, 4)
2072  FIELD(ID_PFR0, DIT, 24, 4)
2073  FIELD(ID_PFR0, RAS, 28, 4)
2074  
2075  FIELD(ID_PFR1, PROGMOD, 0, 4)
2076  FIELD(ID_PFR1, SECURITY, 4, 4)
2077  FIELD(ID_PFR1, MPROGMOD, 8, 4)
2078  FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2079  FIELD(ID_PFR1, GENTIMER, 16, 4)
2080  FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2081  FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2082  FIELD(ID_PFR1, GIC, 28, 4)
2083  
2084  FIELD(ID_PFR2, CSV3, 0, 4)
2085  FIELD(ID_PFR2, SSBS, 4, 4)
2086  FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2087  
2088  FIELD(ID_AA64ISAR0, AES, 4, 4)
2089  FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2090  FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2091  FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2092  FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2093  FIELD(ID_AA64ISAR0, TME, 24, 4)
2094  FIELD(ID_AA64ISAR0, RDM, 28, 4)
2095  FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2096  FIELD(ID_AA64ISAR0, SM3, 36, 4)
2097  FIELD(ID_AA64ISAR0, SM4, 40, 4)
2098  FIELD(ID_AA64ISAR0, DP, 44, 4)
2099  FIELD(ID_AA64ISAR0, FHM, 48, 4)
2100  FIELD(ID_AA64ISAR0, TS, 52, 4)
2101  FIELD(ID_AA64ISAR0, TLB, 56, 4)
2102  FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2103  
2104  FIELD(ID_AA64ISAR1, DPB, 0, 4)
2105  FIELD(ID_AA64ISAR1, APA, 4, 4)
2106  FIELD(ID_AA64ISAR1, API, 8, 4)
2107  FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2108  FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2109  FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2110  FIELD(ID_AA64ISAR1, GPA, 24, 4)
2111  FIELD(ID_AA64ISAR1, GPI, 28, 4)
2112  FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2113  FIELD(ID_AA64ISAR1, SB, 36, 4)
2114  FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2115  FIELD(ID_AA64ISAR1, BF16, 44, 4)
2116  FIELD(ID_AA64ISAR1, DGH, 48, 4)
2117  FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2118  FIELD(ID_AA64ISAR1, XS, 56, 4)
2119  FIELD(ID_AA64ISAR1, LS64, 60, 4)
2120  
2121  FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2122  FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2123  FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2124  FIELD(ID_AA64ISAR2, APA3, 12, 4)
2125  FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2126  FIELD(ID_AA64ISAR2, BC, 20, 4)
2127  FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2128  FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2129  FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2130  FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2131  FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2132  FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2133  FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2134  FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2135  
2136  FIELD(ID_AA64PFR0, EL0, 0, 4)
2137  FIELD(ID_AA64PFR0, EL1, 4, 4)
2138  FIELD(ID_AA64PFR0, EL2, 8, 4)
2139  FIELD(ID_AA64PFR0, EL3, 12, 4)
2140  FIELD(ID_AA64PFR0, FP, 16, 4)
2141  FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2142  FIELD(ID_AA64PFR0, GIC, 24, 4)
2143  FIELD(ID_AA64PFR0, RAS, 28, 4)
2144  FIELD(ID_AA64PFR0, SVE, 32, 4)
2145  FIELD(ID_AA64PFR0, SEL2, 36, 4)
2146  FIELD(ID_AA64PFR0, MPAM, 40, 4)
2147  FIELD(ID_AA64PFR0, AMU, 44, 4)
2148  FIELD(ID_AA64PFR0, DIT, 48, 4)
2149  FIELD(ID_AA64PFR0, RME, 52, 4)
2150  FIELD(ID_AA64PFR0, CSV2, 56, 4)
2151  FIELD(ID_AA64PFR0, CSV3, 60, 4)
2152  
2153  FIELD(ID_AA64PFR1, BT, 0, 4)
2154  FIELD(ID_AA64PFR1, SSBS, 4, 4)
2155  FIELD(ID_AA64PFR1, MTE, 8, 4)
2156  FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2157  FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2158  FIELD(ID_AA64PFR1, SME, 24, 4)
2159  FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2160  FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2161  FIELD(ID_AA64PFR1, NMI, 36, 4)
2162  FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2163  FIELD(ID_AA64PFR1, GCS, 44, 4)
2164  FIELD(ID_AA64PFR1, THE, 48, 4)
2165  FIELD(ID_AA64PFR1, MTEX, 52, 4)
2166  FIELD(ID_AA64PFR1, DF2, 56, 4)
2167  FIELD(ID_AA64PFR1, PFAR, 60, 4)
2168  
2169  FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2170  FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2171  FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2172  FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2173  FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2174  FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2175  FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2176  FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2177  FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2178  FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2179  FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2180  FIELD(ID_AA64MMFR0, EXS, 44, 4)
2181  FIELD(ID_AA64MMFR0, FGT, 56, 4)
2182  FIELD(ID_AA64MMFR0, ECV, 60, 4)
2183  
2184  FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2185  FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2186  FIELD(ID_AA64MMFR1, VH, 8, 4)
2187  FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2188  FIELD(ID_AA64MMFR1, LO, 16, 4)
2189  FIELD(ID_AA64MMFR1, PAN, 20, 4)
2190  FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2191  FIELD(ID_AA64MMFR1, XNX, 28, 4)
2192  FIELD(ID_AA64MMFR1, TWED, 32, 4)
2193  FIELD(ID_AA64MMFR1, ETS, 36, 4)
2194  FIELD(ID_AA64MMFR1, HCX, 40, 4)
2195  FIELD(ID_AA64MMFR1, AFP, 44, 4)
2196  FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2197  FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2198  FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2199  FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2200  
2201  FIELD(ID_AA64MMFR2, CNP, 0, 4)
2202  FIELD(ID_AA64MMFR2, UAO, 4, 4)
2203  FIELD(ID_AA64MMFR2, LSM, 8, 4)
2204  FIELD(ID_AA64MMFR2, IESB, 12, 4)
2205  FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2206  FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2207  FIELD(ID_AA64MMFR2, NV, 24, 4)
2208  FIELD(ID_AA64MMFR2, ST, 28, 4)
2209  FIELD(ID_AA64MMFR2, AT, 32, 4)
2210  FIELD(ID_AA64MMFR2, IDS, 36, 4)
2211  FIELD(ID_AA64MMFR2, FWB, 40, 4)
2212  FIELD(ID_AA64MMFR2, TTL, 48, 4)
2213  FIELD(ID_AA64MMFR2, BBM, 52, 4)
2214  FIELD(ID_AA64MMFR2, EVT, 56, 4)
2215  FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2216  
2217  FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2218  FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2219  FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2220  FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2221  FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2222  FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2223  FIELD(ID_AA64MMFR3, AIE, 24, 4)
2224  FIELD(ID_AA64MMFR3, MEC, 28, 4)
2225  FIELD(ID_AA64MMFR3, D128, 32, 4)
2226  FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2227  FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2228  FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2229  FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2230  FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2231  FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2232  
2233  FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2234  FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2235  FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2236  FIELD(ID_AA64DFR0, BRPS, 12, 4)
2237  FIELD(ID_AA64DFR0, PMSS, 16, 4)
2238  FIELD(ID_AA64DFR0, WRPS, 20, 4)
2239  FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2240  FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2241  FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2242  FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2243  FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2244  FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2245  FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2246  FIELD(ID_AA64DFR0, BRBE, 52, 4)
2247  FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2248  FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2249  
2250  FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2251  FIELD(ID_AA64ZFR0, AES, 4, 4)
2252  FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2253  FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2254  FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2255  FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2256  FIELD(ID_AA64ZFR0, SM4, 40, 4)
2257  FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2258  FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2259  FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2260  
2261  FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2262  FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2263  FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2264  FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2265  FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2266  FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2267  FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2268  FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2269  FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2270  FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2271  FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2272  FIELD(ID_AA64SMFR0, FA64, 63, 1)
2273  
2274  FIELD(ID_DFR0, COPDBG, 0, 4)
2275  FIELD(ID_DFR0, COPSDBG, 4, 4)
2276  FIELD(ID_DFR0, MMAPDBG, 8, 4)
2277  FIELD(ID_DFR0, COPTRC, 12, 4)
2278  FIELD(ID_DFR0, MMAPTRC, 16, 4)
2279  FIELD(ID_DFR0, MPROFDBG, 20, 4)
2280  FIELD(ID_DFR0, PERFMON, 24, 4)
2281  FIELD(ID_DFR0, TRACEFILT, 28, 4)
2282  
2283  FIELD(ID_DFR1, MTPMU, 0, 4)
2284  FIELD(ID_DFR1, HPMN0, 4, 4)
2285  
2286  FIELD(DBGDIDR, SE_IMP, 12, 1)
2287  FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2288  FIELD(DBGDIDR, VERSION, 16, 4)
2289  FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2290  FIELD(DBGDIDR, BRPS, 24, 4)
2291  FIELD(DBGDIDR, WRPS, 28, 4)
2292  
2293  FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2294  FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2295  FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2296  FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2297  FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2298  FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2299  FIELD(DBGDEVID, AUXREGS, 24, 4)
2300  FIELD(DBGDEVID, CIDMASK, 28, 4)
2301  
2302  FIELD(MVFR0, SIMDREG, 0, 4)
2303  FIELD(MVFR0, FPSP, 4, 4)
2304  FIELD(MVFR0, FPDP, 8, 4)
2305  FIELD(MVFR0, FPTRAP, 12, 4)
2306  FIELD(MVFR0, FPDIVIDE, 16, 4)
2307  FIELD(MVFR0, FPSQRT, 20, 4)
2308  FIELD(MVFR0, FPSHVEC, 24, 4)
2309  FIELD(MVFR0, FPROUND, 28, 4)
2310  
2311  FIELD(MVFR1, FPFTZ, 0, 4)
2312  FIELD(MVFR1, FPDNAN, 4, 4)
2313  FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2314  FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2315  FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2316  FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2317  FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2318  FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2319  FIELD(MVFR1, FPHP, 24, 4)
2320  FIELD(MVFR1, SIMDFMAC, 28, 4)
2321  
2322  FIELD(MVFR2, SIMDMISC, 0, 4)
2323  FIELD(MVFR2, FPMISC, 4, 4)
2324  
2325  FIELD(GPCCR, PPS, 0, 3)
2326  FIELD(GPCCR, IRGN, 8, 2)
2327  FIELD(GPCCR, ORGN, 10, 2)
2328  FIELD(GPCCR, SH, 12, 2)
2329  FIELD(GPCCR, PGS, 14, 2)
2330  FIELD(GPCCR, GPC, 16, 1)
2331  FIELD(GPCCR, GPCP, 17, 1)
2332  FIELD(GPCCR, L0GPTSZ, 20, 4)
2333  
2334  FIELD(MFAR, FPA, 12, 40)
2335  FIELD(MFAR, NSE, 62, 1)
2336  FIELD(MFAR, NS, 63, 1)
2337  
2338  QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2339  
2340  /* If adding a feature bit which corresponds to a Linux ELF
2341   * HWCAP bit, remember to update the feature-bit-to-hwcap
2342   * mapping in linux-user/elfload.c:get_elf_hwcap().
2343   */
2344  enum arm_features {
2345      ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2346      ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2347      ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2348      ARM_FEATURE_V6,
2349      ARM_FEATURE_V6K,
2350      ARM_FEATURE_V7,
2351      ARM_FEATURE_THUMB2,
2352      ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2353      ARM_FEATURE_NEON,
2354      ARM_FEATURE_M, /* Microcontroller profile.  */
2355      ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2356      ARM_FEATURE_THUMB2EE,
2357      ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2358      ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2359      ARM_FEATURE_V4T,
2360      ARM_FEATURE_V5,
2361      ARM_FEATURE_STRONGARM,
2362      ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2363      ARM_FEATURE_GENERIC_TIMER,
2364      ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2365      ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2366      ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2367      ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2368      ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2369      ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2370      ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2371      ARM_FEATURE_V8,
2372      ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2373      ARM_FEATURE_CBAR, /* has cp15 CBAR */
2374      ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2375      ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2376      ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2377      ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2378      ARM_FEATURE_PMU, /* has PMU support */
2379      ARM_FEATURE_VBAR, /* has cp15 VBAR */
2380      ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2381      ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2382      ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2383      /*
2384       * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2385       * if the board doesn't set a value, instead of 1GHz. It is for backwards
2386       * compatibility and used only with CPU definitions that were already
2387       * in QEMU before we changed the default. It should not be set on any
2388       * CPU types added in future.
2389       */
2390      ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2391  };
2392  
2393  static inline int arm_feature(CPUARMState *env, int feature)
2394  {
2395      return (env->features & (1ULL << feature)) != 0;
2396  }
2397  
2398  void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2399  
2400  /*
2401   * ARM v9 security states.
2402   * The ordering of the enumeration corresponds to the low 2 bits
2403   * of the GPI value, and (except for Root) the concat of NSE:NS.
2404   */
2405  
2406  typedef enum ARMSecuritySpace {
2407      ARMSS_Secure     = 0,
2408      ARMSS_NonSecure  = 1,
2409      ARMSS_Root       = 2,
2410      ARMSS_Realm      = 3,
2411  } ARMSecuritySpace;
2412  
2413  /* Return true if @space is secure, in the pre-v9 sense. */
2414  static inline bool arm_space_is_secure(ARMSecuritySpace space)
2415  {
2416      return space == ARMSS_Secure || space == ARMSS_Root;
2417  }
2418  
2419  /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2420  static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2421  {
2422      return secure ? ARMSS_Secure : ARMSS_NonSecure;
2423  }
2424  
2425  #if !defined(CONFIG_USER_ONLY)
2426  /**
2427   * arm_security_space_below_el3:
2428   * @env: cpu context
2429   *
2430   * Return the security space of exception levels below EL3, following
2431   * an exception return to those levels.  Unlike arm_security_space,
2432   * this doesn't care about the current EL.
2433   */
2434  ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2435  
2436  /**
2437   * arm_is_secure_below_el3:
2438   * @env: cpu context
2439   *
2440   * Return true if exception levels below EL3 are in secure state,
2441   * or would be following an exception return to those levels.
2442   */
2443  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2444  {
2445      ARMSecuritySpace ss = arm_security_space_below_el3(env);
2446      return ss == ARMSS_Secure;
2447  }
2448  
2449  /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2450  static inline bool arm_is_el3_or_mon(CPUARMState *env)
2451  {
2452      assert(!arm_feature(env, ARM_FEATURE_M));
2453      if (arm_feature(env, ARM_FEATURE_EL3)) {
2454          if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2455              /* CPU currently in AArch64 state and EL3 */
2456              return true;
2457          } else if (!is_a64(env) &&
2458                  (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2459              /* CPU currently in AArch32 state and monitor mode */
2460              return true;
2461          }
2462      }
2463      return false;
2464  }
2465  
2466  /**
2467   * arm_security_space:
2468   * @env: cpu context
2469   *
2470   * Return the current security space of the cpu.
2471   */
2472  ARMSecuritySpace arm_security_space(CPUARMState *env);
2473  
2474  /**
2475   * arm_is_secure:
2476   * @env: cpu context
2477   *
2478   * Return true if the processor is in secure state.
2479   */
2480  static inline bool arm_is_secure(CPUARMState *env)
2481  {
2482      return arm_space_is_secure(arm_security_space(env));
2483  }
2484  
2485  /*
2486   * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2487   * This corresponds to the pseudocode EL2Enabled().
2488   */
2489  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2490                                                 ARMSecuritySpace space)
2491  {
2492      assert(space != ARMSS_Root);
2493      return arm_feature(env, ARM_FEATURE_EL2)
2494             && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2495  }
2496  
2497  static inline bool arm_is_el2_enabled(CPUARMState *env)
2498  {
2499      return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2500  }
2501  
2502  #else
2503  static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2504  {
2505      return ARMSS_NonSecure;
2506  }
2507  
2508  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2509  {
2510      return false;
2511  }
2512  
2513  static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2514  {
2515      return ARMSS_NonSecure;
2516  }
2517  
2518  static inline bool arm_is_secure(CPUARMState *env)
2519  {
2520      return false;
2521  }
2522  
2523  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2524                                                 ARMSecuritySpace space)
2525  {
2526      return false;
2527  }
2528  
2529  static inline bool arm_is_el2_enabled(CPUARMState *env)
2530  {
2531      return false;
2532  }
2533  #endif
2534  
2535  /**
2536   * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2537   * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2538   * "for all purposes other than a direct read or write access of HCR_EL2."
2539   * Not included here is HCR_RW.
2540   */
2541  uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2542  uint64_t arm_hcr_el2_eff(CPUARMState *env);
2543  uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2544  
2545  /* Return true if the specified exception level is running in AArch64 state. */
2546  static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2547  {
2548      /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2549       * and if we're not in EL0 then the state of EL0 isn't well defined.)
2550       */
2551      assert(el >= 1 && el <= 3);
2552      bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2553  
2554      /* The highest exception level is always at the maximum supported
2555       * register width, and then lower levels have a register width controlled
2556       * by bits in the SCR or HCR registers.
2557       */
2558      if (el == 3) {
2559          return aa64;
2560      }
2561  
2562      if (arm_feature(env, ARM_FEATURE_EL3) &&
2563          ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2564          aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2565      }
2566  
2567      if (el == 2) {
2568          return aa64;
2569      }
2570  
2571      if (arm_is_el2_enabled(env)) {
2572          aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2573      }
2574  
2575      return aa64;
2576  }
2577  
2578  /* Function for determining whether guest cp register reads and writes should
2579   * access the secure or non-secure bank of a cp register.  When EL3 is
2580   * operating in AArch32 state, the NS-bit determines whether the secure
2581   * instance of a cp register should be used. When EL3 is AArch64 (or if
2582   * it doesn't exist at all) then there is no register banking, and all
2583   * accesses are to the non-secure version.
2584   */
2585  static inline bool access_secure_reg(CPUARMState *env)
2586  {
2587      bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2588                  !arm_el_is_aa64(env, 3) &&
2589                  !(env->cp15.scr_el3 & SCR_NS));
2590  
2591      return ret;
2592  }
2593  
2594  /* Macros for accessing a specified CP register bank */
2595  #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2596      ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2597  
2598  #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2599      do {                                                \
2600          if (_secure) {                                   \
2601              (_env)->cp15._regname##_s = (_val);            \
2602          } else {                                        \
2603              (_env)->cp15._regname##_ns = (_val);           \
2604          }                                               \
2605      } while (0)
2606  
2607  /* Macros for automatically accessing a specific CP register bank depending on
2608   * the current secure state of the system.  These macros are not intended for
2609   * supporting instruction translation reads/writes as these are dependent
2610   * solely on the SCR.NS bit and not the mode.
2611   */
2612  #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2613      A32_BANKED_REG_GET((_env), _regname,                \
2614                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2615  
2616  #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2617      A32_BANKED_REG_SET((_env), _regname,                                    \
2618                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2619                         (_val))
2620  
2621  uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2622                                   uint32_t cur_el, bool secure);
2623  
2624  /* Return the highest implemented Exception Level */
2625  static inline int arm_highest_el(CPUARMState *env)
2626  {
2627      if (arm_feature(env, ARM_FEATURE_EL3)) {
2628          return 3;
2629      }
2630      if (arm_feature(env, ARM_FEATURE_EL2)) {
2631          return 2;
2632      }
2633      return 1;
2634  }
2635  
2636  /* Return true if a v7M CPU is in Handler mode */
2637  static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2638  {
2639      return env->v7m.exception != 0;
2640  }
2641  
2642  /* Return the current Exception Level (as per ARMv8; note that this differs
2643   * from the ARMv7 Privilege Level).
2644   */
2645  static inline int arm_current_el(CPUARMState *env)
2646  {
2647      if (arm_feature(env, ARM_FEATURE_M)) {
2648          return arm_v7m_is_handler_mode(env) ||
2649              !(env->v7m.control[env->v7m.secure] & 1);
2650      }
2651  
2652      if (is_a64(env)) {
2653          return extract32(env->pstate, 2, 2);
2654      }
2655  
2656      switch (env->uncached_cpsr & 0x1f) {
2657      case ARM_CPU_MODE_USR:
2658          return 0;
2659      case ARM_CPU_MODE_HYP:
2660          return 2;
2661      case ARM_CPU_MODE_MON:
2662          return 3;
2663      default:
2664          if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2665              /* If EL3 is 32-bit then all secure privileged modes run in
2666               * EL3
2667               */
2668              return 3;
2669          }
2670  
2671          return 1;
2672      }
2673  }
2674  
2675  /**
2676   * write_list_to_cpustate
2677   * @cpu: ARMCPU
2678   *
2679   * For each register listed in the ARMCPU cpreg_indexes list, write
2680   * its value from the cpreg_values list into the ARMCPUState structure.
2681   * This updates TCG's working data structures from KVM data or
2682   * from incoming migration state.
2683   *
2684   * Returns: true if all register values were updated correctly,
2685   * false if some register was unknown or could not be written.
2686   * Note that we do not stop early on failure -- we will attempt
2687   * writing all registers in the list.
2688   */
2689  bool write_list_to_cpustate(ARMCPU *cpu);
2690  
2691  /**
2692   * write_cpustate_to_list:
2693   * @cpu: ARMCPU
2694   * @kvm_sync: true if this is for syncing back to KVM
2695   *
2696   * For each register listed in the ARMCPU cpreg_indexes list, write
2697   * its value from the ARMCPUState structure into the cpreg_values list.
2698   * This is used to copy info from TCG's working data structures into
2699   * KVM or for outbound migration.
2700   *
2701   * @kvm_sync is true if we are doing this in order to sync the
2702   * register state back to KVM. In this case we will only update
2703   * values in the list if the previous list->cpustate sync actually
2704   * successfully wrote the CPU state. Otherwise we will keep the value
2705   * that is in the list.
2706   *
2707   * Returns: true if all register values were read correctly,
2708   * false if some register was unknown or could not be read.
2709   * Note that we do not stop early on failure -- we will attempt
2710   * reading all registers in the list.
2711   */
2712  bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2713  
2714  #define ARM_CPUID_TI915T      0x54029152
2715  #define ARM_CPUID_TI925T      0x54029252
2716  
2717  #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2718  
2719  #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2720  
2721  /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2722   *
2723   * If EL3 is 64-bit:
2724   *  + NonSecure EL1 & 0 stage 1
2725   *  + NonSecure EL1 & 0 stage 2
2726   *  + NonSecure EL2
2727   *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2728   *  + Secure EL1 & 0
2729   *  + Secure EL3
2730   * If EL3 is 32-bit:
2731   *  + NonSecure PL1 & 0 stage 1
2732   *  + NonSecure PL1 & 0 stage 2
2733   *  + NonSecure PL2
2734   *  + Secure PL0
2735   *  + Secure PL1
2736   * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2737   *
2738   * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2739   *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2740   *     because they may differ in access permissions even if the VA->PA map is
2741   *     the same
2742   *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2743   *     translation, which means that we have one mmu_idx that deals with two
2744   *     concatenated translation regimes [this sort of combined s1+2 TLB is
2745   *     architecturally permitted]
2746   *  3. we don't need to allocate an mmu_idx to translations that we won't be
2747   *     handling via the TLB. The only way to do a stage 1 translation without
2748   *     the immediate stage 2 translation is via the ATS or AT system insns,
2749   *     which can be slow-pathed and always do a page table walk.
2750   *     The only use of stage 2 translations is either as part of an s1+2
2751   *     lookup or when loading the descriptors during a stage 1 page table walk,
2752   *     and in both those cases we don't use the TLB.
2753   *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2754   *     translation regimes, because they map reasonably well to each other
2755   *     and they can't both be active at the same time.
2756   *  5. we want to be able to use the TLB for accesses done as part of a
2757   *     stage1 page table walk, rather than having to walk the stage2 page
2758   *     table over and over.
2759   *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2760   *     Never (PAN) bit within PSTATE.
2761   *  7. we fold together the secure and non-secure regimes for A-profile,
2762   *     because there are no banked system registers for aarch64, so the
2763   *     process of switching between secure and non-secure is
2764   *     already heavyweight.
2765   *
2766   * This gives us the following list of cases:
2767   *
2768   * EL0 EL1&0 stage 1+2 (aka NS PL0)
2769   * EL1 EL1&0 stage 1+2 (aka NS PL1)
2770   * EL1 EL1&0 stage 1+2 +PAN
2771   * EL0 EL2&0
2772   * EL2 EL2&0
2773   * EL2 EL2&0 +PAN
2774   * EL2 (aka NS PL2)
2775   * EL3 (aka S PL1)
2776   * Physical (NS & S)
2777   * Stage2 (NS & S)
2778   *
2779   * for a total of 12 different mmu_idx.
2780   *
2781   * R profile CPUs have an MPU, but can use the same set of MMU indexes
2782   * as A profile. They only need to distinguish EL0 and EL1 (and
2783   * EL2 if we ever model a Cortex-R52).
2784   *
2785   * M profile CPUs are rather different as they do not have a true MMU.
2786   * They have the following different MMU indexes:
2787   *  User
2788   *  Privileged
2789   *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2790   *  Privileged, execution priority negative (ditto)
2791   * If the CPU supports the v8M Security Extension then there are also:
2792   *  Secure User
2793   *  Secure Privileged
2794   *  Secure User, execution priority negative
2795   *  Secure Privileged, execution priority negative
2796   *
2797   * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2798   * are not quite the same -- different CPU types (most notably M profile
2799   * vs A/R profile) would like to use MMU indexes with different semantics,
2800   * but since we don't ever need to use all of those in a single CPU we
2801   * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2802   * modes + total number of M profile MMU modes". The lower bits of
2803   * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2804   * the same for any particular CPU.
2805   * Variables of type ARMMUIdx are always full values, and the core
2806   * index values are in variables of type 'int'.
2807   *
2808   * Our enumeration includes at the end some entries which are not "true"
2809   * mmu_idx values in that they don't have corresponding TLBs and are only
2810   * valid for doing slow path page table walks.
2811   *
2812   * The constant names here are patterned after the general style of the names
2813   * of the AT/ATS operations.
2814   * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2815   * For M profile we arrange them to have a bit for priv, a bit for negpri
2816   * and a bit for secure.
2817   */
2818  #define ARM_MMU_IDX_A     0x10  /* A profile */
2819  #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2820  #define ARM_MMU_IDX_M     0x40  /* M profile */
2821  
2822  /* Meanings of the bits for M profile mmu idx values */
2823  #define ARM_MMU_IDX_M_PRIV   0x1
2824  #define ARM_MMU_IDX_M_NEGPRI 0x2
2825  #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2826  
2827  #define ARM_MMU_IDX_TYPE_MASK \
2828      (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2829  #define ARM_MMU_IDX_COREIDX_MASK 0xf
2830  
2831  typedef enum ARMMMUIdx {
2832      /*
2833       * A-profile.
2834       */
2835      ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2836      ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2837      ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2838      ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2839      ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2840      ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2841      ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2842      ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2843  
2844      /*
2845       * Used for second stage of an S12 page table walk, or for descriptor
2846       * loads during first stage of an S1 page table walk.  Note that both
2847       * are in use simultaneously for SecureEL2: the security state for
2848       * the S2 ptw is selected by the NS bit from the S1 ptw.
2849       */
2850      ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2851      ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2852  
2853      /* TLBs with 1-1 mapping to the physical address spaces. */
2854      ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2855      ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2856      ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2857      ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2858  
2859      /*
2860       * These are not allocated TLBs and are used only for AT system
2861       * instructions or for the first stage of an S12 page table walk.
2862       */
2863      ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2864      ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2865      ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2866  
2867      /*
2868       * M-profile.
2869       */
2870      ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2871      ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2872      ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2873      ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2874      ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2875      ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2876      ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2877      ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2878  } ARMMMUIdx;
2879  
2880  /*
2881   * Bit macros for the core-mmu-index values for each index,
2882   * for use when calling tlb_flush_by_mmuidx() and friends.
2883   */
2884  #define TO_CORE_BIT(NAME) \
2885      ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2886  
2887  typedef enum ARMMMUIdxBit {
2888      TO_CORE_BIT(E10_0),
2889      TO_CORE_BIT(E20_0),
2890      TO_CORE_BIT(E10_1),
2891      TO_CORE_BIT(E10_1_PAN),
2892      TO_CORE_BIT(E2),
2893      TO_CORE_BIT(E20_2),
2894      TO_CORE_BIT(E20_2_PAN),
2895      TO_CORE_BIT(E3),
2896      TO_CORE_BIT(Stage2),
2897      TO_CORE_BIT(Stage2_S),
2898  
2899      TO_CORE_BIT(MUser),
2900      TO_CORE_BIT(MPriv),
2901      TO_CORE_BIT(MUserNegPri),
2902      TO_CORE_BIT(MPrivNegPri),
2903      TO_CORE_BIT(MSUser),
2904      TO_CORE_BIT(MSPriv),
2905      TO_CORE_BIT(MSUserNegPri),
2906      TO_CORE_BIT(MSPrivNegPri),
2907  } ARMMMUIdxBit;
2908  
2909  #undef TO_CORE_BIT
2910  
2911  #define MMU_USER_IDX 0
2912  
2913  /* Indexes used when registering address spaces with cpu_address_space_init */
2914  typedef enum ARMASIdx {
2915      ARMASIdx_NS = 0,
2916      ARMASIdx_S = 1,
2917      ARMASIdx_TagNS = 2,
2918      ARMASIdx_TagS = 3,
2919  } ARMASIdx;
2920  
2921  static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2922  {
2923      /* Assert the relative order of the physical mmu indexes. */
2924      QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2925      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2926      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2927      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2928  
2929      return ARMMMUIdx_Phys_S + space;
2930  }
2931  
2932  static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2933  {
2934      assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2935      return idx - ARMMMUIdx_Phys_S;
2936  }
2937  
2938  static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2939  {
2940      /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2941       * CSSELR is RAZ/WI.
2942       */
2943      return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2944  }
2945  
2946  static inline bool arm_sctlr_b(CPUARMState *env)
2947  {
2948      return
2949          /* We need not implement SCTLR.ITD in user-mode emulation, so
2950           * let linux-user ignore the fact that it conflicts with SCTLR_B.
2951           * This lets people run BE32 binaries with "-cpu any".
2952           */
2953  #ifndef CONFIG_USER_ONLY
2954          !arm_feature(env, ARM_FEATURE_V7) &&
2955  #endif
2956          (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2957  }
2958  
2959  uint64_t arm_sctlr(CPUARMState *env, int el);
2960  
2961  static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2962                                                    bool sctlr_b)
2963  {
2964  #ifdef CONFIG_USER_ONLY
2965      /*
2966       * In system mode, BE32 is modelled in line with the
2967       * architecture (as word-invariant big-endianness), where loads
2968       * and stores are done little endian but from addresses which
2969       * are adjusted by XORing with the appropriate constant. So the
2970       * endianness to use for the raw data access is not affected by
2971       * SCTLR.B.
2972       * In user mode, however, we model BE32 as byte-invariant
2973       * big-endianness (because user-only code cannot tell the
2974       * difference), and so we need to use a data access endianness
2975       * that depends on SCTLR.B.
2976       */
2977      if (sctlr_b) {
2978          return true;
2979      }
2980  #endif
2981      /* In 32bit endianness is determined by looking at CPSR's E bit */
2982      return env->uncached_cpsr & CPSR_E;
2983  }
2984  
2985  static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2986  {
2987      return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2988  }
2989  
2990  /* Return true if the processor is in big-endian mode. */
2991  static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2992  {
2993      if (!is_a64(env)) {
2994          return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2995      } else {
2996          int cur_el = arm_current_el(env);
2997          uint64_t sctlr = arm_sctlr(env, cur_el);
2998          return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2999      }
3000  }
3001  
3002  #include "exec/cpu-all.h"
3003  
3004  /*
3005   * We have more than 32-bits worth of state per TB, so we split the data
3006   * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3007   * We collect these two parts in CPUARMTBFlags where they are named
3008   * flags and flags2 respectively.
3009   *
3010   * The flags that are shared between all execution modes, TBFLAG_ANY,
3011   * are stored in flags.  The flags that are specific to a given mode
3012   * are stores in flags2.  Since cs_base is sized on the configured
3013   * address size, flags2 always has 64-bits for A64, and a minimum of
3014   * 32-bits for A32 and M32.
3015   *
3016   * The bits for 32-bit A-profile and M-profile partially overlap:
3017   *
3018   *  31         23         11 10             0
3019   * +-------------+----------+----------------+
3020   * |             |          |   TBFLAG_A32   |
3021   * | TBFLAG_AM32 |          +-----+----------+
3022   * |             |                |TBFLAG_M32|
3023   * +-------------+----------------+----------+
3024   *  31         23                6 5        0
3025   *
3026   * Unless otherwise noted, these bits are cached in env->hflags.
3027   */
3028  FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3029  FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3030  FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3031  FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3032  FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3033  /* Target EL if we take a floating-point-disabled exception */
3034  FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3035  /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3036  FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3037  FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3038  FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3039  FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3040  
3041  /*
3042   * Bit usage when in AArch32 state, both A- and M-profile.
3043   */
3044  FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3045  FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3046  
3047  /*
3048   * Bit usage when in AArch32 state, for A-profile only.
3049   */
3050  FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3051  FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3052  /*
3053   * We store the bottom two bits of the CPAR as TB flags and handle
3054   * checks on the other bits at runtime. This shares the same bits as
3055   * VECSTRIDE, which is OK as no XScale CPU has VFP.
3056   * Not cached, because VECLEN+VECSTRIDE are not cached.
3057   */
3058  FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3059  FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3060  FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3061  FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3062  /*
3063   * Indicates whether cp register reads and writes by guest code should access
3064   * the secure or nonsecure bank of banked registers; note that this is not
3065   * the same thing as the current security state of the processor!
3066   */
3067  FIELD(TBFLAG_A32, NS, 10, 1)
3068  /*
3069   * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3070   * This requires an SME trap from AArch32 mode when using NEON.
3071   */
3072  FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3073  
3074  /*
3075   * Bit usage when in AArch32 state, for M-profile only.
3076   */
3077  /* Handler (ie not Thread) mode */
3078  FIELD(TBFLAG_M32, HANDLER, 0, 1)
3079  /* Whether we should generate stack-limit checks */
3080  FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3081  /* Set if FPCCR.LSPACT is set */
3082  FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3083  /* Set if we must create a new FP context */
3084  FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3085  /* Set if FPCCR.S does not match current security state */
3086  FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3087  /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3088  FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3089  /* Set if in secure mode */
3090  FIELD(TBFLAG_M32, SECURE, 6, 1)
3091  
3092  /*
3093   * Bit usage when in AArch64 state
3094   */
3095  FIELD(TBFLAG_A64, TBII, 0, 2)
3096  FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3097  /* The current vector length, either NVL or SVL. */
3098  FIELD(TBFLAG_A64, VL, 4, 4)
3099  FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3100  FIELD(TBFLAG_A64, BT, 9, 1)
3101  FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3102  FIELD(TBFLAG_A64, TBID, 12, 2)
3103  FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3104  FIELD(TBFLAG_A64, ATA, 15, 1)
3105  FIELD(TBFLAG_A64, TCMA, 16, 2)
3106  FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3107  FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3108  FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3109  FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3110  FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3111  FIELD(TBFLAG_A64, SVL, 24, 4)
3112  /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3113  FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3114  FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3115  FIELD(TBFLAG_A64, NAA, 30, 1)
3116  FIELD(TBFLAG_A64, ATA0, 31, 1)
3117  FIELD(TBFLAG_A64, NV, 32, 1)
3118  FIELD(TBFLAG_A64, NV1, 33, 1)
3119  FIELD(TBFLAG_A64, NV2, 34, 1)
3120  /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3121  FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3122  /* Set if FEAT_NV2 RAM accesses are big-endian */
3123  FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3124  
3125  /*
3126   * Helpers for using the above. Note that only the A64 accessors use
3127   * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3128   * word either is or might be 32 bits only.
3129   */
3130  #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3131      (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3132  #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3133      (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3134  #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3135      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3136  #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3137      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3138  #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3139      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3140  
3141  #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3142  #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3143  #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3144  #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3145  #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3146  
3147  /**
3148   * sve_vq
3149   * @env: the cpu context
3150   *
3151   * Return the VL cached within env->hflags, in units of quadwords.
3152   */
3153  static inline int sve_vq(CPUARMState *env)
3154  {
3155      return EX_TBFLAG_A64(env->hflags, VL) + 1;
3156  }
3157  
3158  /**
3159   * sme_vq
3160   * @env: the cpu context
3161   *
3162   * Return the SVL cached within env->hflags, in units of quadwords.
3163   */
3164  static inline int sme_vq(CPUARMState *env)
3165  {
3166      return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3167  }
3168  
3169  static inline bool bswap_code(bool sctlr_b)
3170  {
3171  #ifdef CONFIG_USER_ONLY
3172      /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3173       * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3174       * would also end up as a mixed-endian mode with BE code, LE data.
3175       */
3176      return TARGET_BIG_ENDIAN ^ sctlr_b;
3177  #else
3178      /* All code access in ARM is little endian, and there are no loaders
3179       * doing swaps that need to be reversed
3180       */
3181      return 0;
3182  #endif
3183  }
3184  
3185  #ifdef CONFIG_USER_ONLY
3186  static inline bool arm_cpu_bswap_data(CPUARMState *env)
3187  {
3188      return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3189  }
3190  #endif
3191  
3192  void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3193                            uint64_t *cs_base, uint32_t *flags);
3194  
3195  enum {
3196      QEMU_PSCI_CONDUIT_DISABLED = 0,
3197      QEMU_PSCI_CONDUIT_SMC = 1,
3198      QEMU_PSCI_CONDUIT_HVC = 2,
3199  };
3200  
3201  #ifndef CONFIG_USER_ONLY
3202  /* Return the address space index to use for a memory access */
3203  static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3204  {
3205      return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3206  }
3207  
3208  /* Return the AddressSpace to use for a memory access
3209   * (which depends on whether the access is S or NS, and whether
3210   * the board gave us a separate AddressSpace for S accesses).
3211   */
3212  static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3213  {
3214      return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3215  }
3216  #endif
3217  
3218  /**
3219   * arm_register_pre_el_change_hook:
3220   * Register a hook function which will be called immediately before this
3221   * CPU changes exception level or mode. The hook function will be
3222   * passed a pointer to the ARMCPU and the opaque data pointer passed
3223   * to this function when the hook was registered.
3224   *
3225   * Note that if a pre-change hook is called, any registered post-change hooks
3226   * are guaranteed to subsequently be called.
3227   */
3228  void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3229                                   void *opaque);
3230  /**
3231   * arm_register_el_change_hook:
3232   * Register a hook function which will be called immediately after this
3233   * CPU changes exception level or mode. The hook function will be
3234   * passed a pointer to the ARMCPU and the opaque data pointer passed
3235   * to this function when the hook was registered.
3236   *
3237   * Note that any registered hooks registered here are guaranteed to be called
3238   * if pre-change hooks have been.
3239   */
3240  void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3241          *opaque);
3242  
3243  /**
3244   * arm_rebuild_hflags:
3245   * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3246   */
3247  void arm_rebuild_hflags(CPUARMState *env);
3248  
3249  /**
3250   * aa32_vfp_dreg:
3251   * Return a pointer to the Dn register within env in 32-bit mode.
3252   */
3253  static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3254  {
3255      return &env->vfp.zregs[regno >> 1].d[regno & 1];
3256  }
3257  
3258  /**
3259   * aa32_vfp_qreg:
3260   * Return a pointer to the Qn register within env in 32-bit mode.
3261   */
3262  static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3263  {
3264      return &env->vfp.zregs[regno].d[0];
3265  }
3266  
3267  /**
3268   * aa64_vfp_qreg:
3269   * Return a pointer to the Qn register within env in 64-bit mode.
3270   */
3271  static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3272  {
3273      return &env->vfp.zregs[regno].d[0];
3274  }
3275  
3276  /* Shared between translate-sve.c and sve_helper.c.  */
3277  extern const uint64_t pred_esz_masks[5];
3278  
3279  /*
3280   * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3281   * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3282   * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3283   */
3284  #define PAGE_BTI            PAGE_TARGET_1
3285  #define PAGE_MTE            PAGE_TARGET_2
3286  #define PAGE_TARGET_STICKY  PAGE_MTE
3287  
3288  /* We associate one allocation tag per 16 bytes, the minimum.  */
3289  #define LOG2_TAG_GRANULE 4
3290  #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3291  
3292  #ifdef CONFIG_USER_ONLY
3293  #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3294  #endif
3295  
3296  #ifdef TARGET_TAGGED_ADDRESSES
3297  /**
3298   * cpu_untagged_addr:
3299   * @cs: CPU context
3300   * @x: tagged address
3301   *
3302   * Remove any address tag from @x.  This is explicitly related to the
3303   * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3304   *
3305   * There should be a better place to put this, but we need this in
3306   * include/exec/cpu_ldst.h, and not some place linux-user specific.
3307   */
3308  static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3309  {
3310      ARMCPU *cpu = ARM_CPU(cs);
3311      if (cpu->env.tagged_addr_enable) {
3312          /*
3313           * TBI is enabled for userspace but not kernelspace addresses.
3314           * Only clear the tag if bit 55 is clear.
3315           */
3316          x &= sextract64(x, 0, 56);
3317      }
3318      return x;
3319  }
3320  #endif
3321  
3322  #endif
3323