xref: /openbmc/qemu/target/arm/cpu.h (revision 9bc9e95119445d7a430b0fc8b7daf22a3612bbd3)
1  /*
2   * ARM virtual CPU header
3   *
4   *  Copyright (c) 2003 Fabrice Bellard
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #ifndef ARM_CPU_H
21  #define ARM_CPU_H
22  
23  #include "kvm-consts.h"
24  #include "qemu/cpu-float.h"
25  #include "hw/registerfields.h"
26  #include "cpu-qom.h"
27  #include "exec/cpu-defs.h"
28  #include "exec/gdbstub.h"
29  #include "qapi/qapi-types-common.h"
30  #include "target/arm/multiprocessing.h"
31  #include "target/arm/gtimer.h"
32  
33  /* ARM processors have a weak memory model */
34  #define TCG_GUEST_DEFAULT_MO      (0)
35  
36  #ifdef TARGET_AARCH64
37  #define KVM_HAVE_MCE_INJECTION 1
38  #endif
39  
40  #define EXCP_UDEF            1   /* undefined instruction */
41  #define EXCP_SWI             2   /* software interrupt */
42  #define EXCP_PREFETCH_ABORT  3
43  #define EXCP_DATA_ABORT      4
44  #define EXCP_IRQ             5
45  #define EXCP_FIQ             6
46  #define EXCP_BKPT            7
47  #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
48  #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
49  #define EXCP_HVC            11   /* HyperVisor Call */
50  #define EXCP_HYP_TRAP       12
51  #define EXCP_SMC            13   /* Secure Monitor Call */
52  #define EXCP_VIRQ           14
53  #define EXCP_VFIQ           15
54  #define EXCP_SEMIHOST       16   /* semihosting call */
55  #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
56  #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
57  #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
58  #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
59  #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
60  #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
61  #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
62  #define EXCP_VSERR          24
63  #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
64  /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
65  
66  #define ARMV7M_EXCP_RESET   1
67  #define ARMV7M_EXCP_NMI     2
68  #define ARMV7M_EXCP_HARD    3
69  #define ARMV7M_EXCP_MEM     4
70  #define ARMV7M_EXCP_BUS     5
71  #define ARMV7M_EXCP_USAGE   6
72  #define ARMV7M_EXCP_SECURE  7
73  #define ARMV7M_EXCP_SVC     11
74  #define ARMV7M_EXCP_DEBUG   12
75  #define ARMV7M_EXCP_PENDSV  14
76  #define ARMV7M_EXCP_SYSTICK 15
77  
78  /* ARM-specific interrupt pending bits.  */
79  #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
80  #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
81  #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
82  #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
83  
84  /* The usual mapping for an AArch64 system register to its AArch32
85   * counterpart is for the 32 bit world to have access to the lower
86   * half only (with writes leaving the upper half untouched). It's
87   * therefore useful to be able to pass TCG the offset of the least
88   * significant half of a uint64_t struct member.
89   */
90  #if HOST_BIG_ENDIAN
91  #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
92  #define offsetofhigh32(S, M) offsetof(S, M)
93  #else
94  #define offsetoflow32(S, M) offsetof(S, M)
95  #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96  #endif
97  
98  /* ARM-specific extra insn start words:
99   * 1: Conditional execution bits
100   * 2: Partial exception syndrome for data aborts
101   */
102  #define TARGET_INSN_START_EXTRA_WORDS 2
103  
104  /* The 2nd extra word holding syndrome info for data aborts does not use
105   * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
106   * help the sleb128 encoder do a better job.
107   * When restoring the CPU state, we shift it back up.
108   */
109  #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
110  #define ARM_INSN_START_WORD2_SHIFT 13
111  
112  /* We currently assume float and double are IEEE single and double
113     precision respectively.
114     Doing runtime conversions is tricky because VFP registers may contain
115     integer values (eg. as the result of a FTOSI instruction).
116     s<2n> maps to the least significant half of d<n>
117     s<2n+1> maps to the most significant half of d<n>
118   */
119  
120  /**
121   * DynamicGDBFeatureInfo:
122   * @desc: Contains the feature descriptions.
123   * @data: A union with data specific to the set of registers
124   *    @cpregs_keys: Array that contains the corresponding Key of
125   *                  a given cpreg with the same order of the cpreg
126   *                  in the XML description.
127   */
128  typedef struct DynamicGDBFeatureInfo {
129      GDBFeature desc;
130      union {
131          struct {
132              uint32_t *keys;
133          } cpregs;
134      } data;
135  } DynamicGDBFeatureInfo;
136  
137  /* CPU state for each instance of a generic timer (in cp15 c14) */
138  typedef struct ARMGenericTimer {
139      uint64_t cval; /* Timer CompareValue register */
140      uint64_t ctl; /* Timer Control register */
141  } ARMGenericTimer;
142  
143  /* Define a maximum sized vector register.
144   * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
145   * For 64-bit, this is a 2048-bit SVE register.
146   *
147   * Note that the mapping between S, D, and Q views of the register bank
148   * differs between AArch64 and AArch32.
149   * In AArch32:
150   *  Qn = regs[n].d[1]:regs[n].d[0]
151   *  Dn = regs[n / 2].d[n & 1]
152   *  Sn = regs[n / 4].d[n % 4 / 2],
153   *       bits 31..0 for even n, and bits 63..32 for odd n
154   *       (and regs[16] to regs[31] are inaccessible)
155   * In AArch64:
156   *  Zn = regs[n].d[*]
157   *  Qn = regs[n].d[1]:regs[n].d[0]
158   *  Dn = regs[n].d[0]
159   *  Sn = regs[n].d[0] bits 31..0
160   *  Hn = regs[n].d[0] bits 15..0
161   *
162   * This corresponds to the architecturally defined mapping between
163   * the two execution states, and means we do not need to explicitly
164   * map these registers when changing states.
165   *
166   * Align the data for use with TCG host vector operations.
167   */
168  
169  #ifdef TARGET_AARCH64
170  # define ARM_MAX_VQ    16
171  #else
172  # define ARM_MAX_VQ    1
173  #endif
174  
175  typedef struct ARMVectorReg {
176      uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
177  } ARMVectorReg;
178  
179  #ifdef TARGET_AARCH64
180  /* In AArch32 mode, predicate registers do not exist at all.  */
181  typedef struct ARMPredicateReg {
182      uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
183  } ARMPredicateReg;
184  
185  /* In AArch32 mode, PAC keys do not exist at all.  */
186  typedef struct ARMPACKey {
187      uint64_t lo, hi;
188  } ARMPACKey;
189  #endif
190  
191  /* See the commentary above the TBFLAG field definitions.  */
192  typedef struct CPUARMTBFlags {
193      uint32_t flags;
194      target_ulong flags2;
195  } CPUARMTBFlags;
196  
197  typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
198  
199  typedef struct NVICState NVICState;
200  
201  typedef struct CPUArchState {
202      /* Regs for current mode.  */
203      uint32_t regs[16];
204  
205      /* 32/64 switch only happens when taking and returning from
206       * exceptions so the overlap semantics are taken care of then
207       * instead of having a complicated union.
208       */
209      /* Regs for A64 mode.  */
210      uint64_t xregs[32];
211      uint64_t pc;
212      /* PSTATE isn't an architectural register for ARMv8. However, it is
213       * convenient for us to assemble the underlying state into a 32 bit format
214       * identical to the architectural format used for the SPSR. (This is also
215       * what the Linux kernel's 'pstate' field in signal handlers and KVM's
216       * 'pstate' register are.) Of the PSTATE bits:
217       *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
218       *    semantics as for AArch32, as described in the comments on each field)
219       *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
220       *  DAIF (exception masks) are kept in env->daif
221       *  BTYPE is kept in env->btype
222       *  SM and ZA are kept in env->svcr
223       *  all other bits are stored in their correct places in env->pstate
224       */
225      uint32_t pstate;
226      bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
227      bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
228  
229      /* Cached TBFLAGS state.  See below for which bits are included.  */
230      CPUARMTBFlags hflags;
231  
232      /* Frequently accessed CPSR bits are stored separately for efficiency.
233         This contains all the other bits.  Use cpsr_{read,write} to access
234         the whole CPSR.  */
235      uint32_t uncached_cpsr;
236      uint32_t spsr;
237  
238      /* Banked registers.  */
239      uint64_t banked_spsr[8];
240      uint32_t banked_r13[8];
241      uint32_t banked_r14[8];
242  
243      /* These hold r8-r12.  */
244      uint32_t usr_regs[5];
245      uint32_t fiq_regs[5];
246  
247      /* cpsr flag cache for faster execution */
248      uint32_t CF; /* 0 or 1 */
249      uint32_t VF; /* V is the bit 31. All other bits are undefined */
250      uint32_t NF; /* N is bit 31. All other bits are undefined.  */
251      uint32_t ZF; /* Z set if zero.  */
252      uint32_t QF; /* 0 or 1 */
253      uint32_t GE; /* cpsr[19:16] */
254      uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
255      uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
256      uint64_t daif; /* exception masks, in the bits they are in PSTATE */
257      uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
258  
259      uint64_t elr_el[4]; /* AArch64 exception link regs  */
260      uint64_t sp_el[4]; /* AArch64 banked stack pointers */
261  
262      /* System control coprocessor (cp15) */
263      struct {
264          uint32_t c0_cpuid;
265          union { /* Cache size selection */
266              struct {
267                  uint64_t _unused_csselr0;
268                  uint64_t csselr_ns;
269                  uint64_t _unused_csselr1;
270                  uint64_t csselr_s;
271              };
272              uint64_t csselr_el[4];
273          };
274          union { /* System control register. */
275              struct {
276                  uint64_t _unused_sctlr;
277                  uint64_t sctlr_ns;
278                  uint64_t hsctlr;
279                  uint64_t sctlr_s;
280              };
281              uint64_t sctlr_el[4];
282          };
283          uint64_t vsctlr; /* Virtualization System control register. */
284          uint64_t cpacr_el1; /* Architectural feature access control register */
285          uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
286          uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
287          uint64_t sder; /* Secure debug enable register. */
288          uint32_t nsacr; /* Non-secure access control register. */
289          union { /* MMU translation table base 0. */
290              struct {
291                  uint64_t _unused_ttbr0_0;
292                  uint64_t ttbr0_ns;
293                  uint64_t _unused_ttbr0_1;
294                  uint64_t ttbr0_s;
295              };
296              uint64_t ttbr0_el[4];
297          };
298          union { /* MMU translation table base 1. */
299              struct {
300                  uint64_t _unused_ttbr1_0;
301                  uint64_t ttbr1_ns;
302                  uint64_t _unused_ttbr1_1;
303                  uint64_t ttbr1_s;
304              };
305              uint64_t ttbr1_el[4];
306          };
307          uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
308          uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
309          /* MMU translation table base control. */
310          uint64_t tcr_el[4];
311          uint64_t vtcr_el2; /* Virtualization Translation Control.  */
312          uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
313          uint32_t c2_data; /* MPU data cacheable bits.  */
314          uint32_t c2_insn; /* MPU instruction cacheable bits.  */
315          union { /* MMU domain access control register
316                   * MPU write buffer control.
317                   */
318              struct {
319                  uint64_t dacr_ns;
320                  uint64_t dacr_s;
321              };
322              struct {
323                  uint64_t dacr32_el2;
324              };
325          };
326          uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327          uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
328          uint64_t hcr_el2; /* Hypervisor configuration register */
329          uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
330          uint64_t scr_el3; /* Secure configuration register.  */
331          union { /* Fault status registers.  */
332              struct {
333                  uint64_t ifsr_ns;
334                  uint64_t ifsr_s;
335              };
336              struct {
337                  uint64_t ifsr32_el2;
338              };
339          };
340          union {
341              struct {
342                  uint64_t _unused_dfsr;
343                  uint64_t dfsr_ns;
344                  uint64_t hsr;
345                  uint64_t dfsr_s;
346              };
347              uint64_t esr_el[4];
348          };
349          uint32_t c6_region[8]; /* MPU base/size registers.  */
350          union { /* Fault address registers. */
351              struct {
352                  uint64_t _unused_far0;
353  #if HOST_BIG_ENDIAN
354                  uint32_t ifar_ns;
355                  uint32_t dfar_ns;
356                  uint32_t ifar_s;
357                  uint32_t dfar_s;
358  #else
359                  uint32_t dfar_ns;
360                  uint32_t ifar_ns;
361                  uint32_t dfar_s;
362                  uint32_t ifar_s;
363  #endif
364                  uint64_t _unused_far3;
365              };
366              uint64_t far_el[4];
367          };
368          uint64_t hpfar_el2;
369          uint64_t hstr_el2;
370          union { /* Translation result. */
371              struct {
372                  uint64_t _unused_par_0;
373                  uint64_t par_ns;
374                  uint64_t _unused_par_1;
375                  uint64_t par_s;
376              };
377              uint64_t par_el[4];
378          };
379  
380          uint32_t c9_insn; /* Cache lockdown registers.  */
381          uint32_t c9_data;
382          uint64_t c9_pmcr; /* performance monitor control register */
383          uint64_t c9_pmcnten; /* perf monitor counter enables */
384          uint64_t c9_pmovsr; /* perf monitor overflow status */
385          uint64_t c9_pmuserenr; /* perf monitor user enable */
386          uint64_t c9_pmselr; /* perf monitor counter selection register */
387          uint64_t c9_pminten; /* perf monitor interrupt enables */
388          union { /* Memory attribute redirection */
389              struct {
390  #if HOST_BIG_ENDIAN
391                  uint64_t _unused_mair_0;
392                  uint32_t mair1_ns;
393                  uint32_t mair0_ns;
394                  uint64_t _unused_mair_1;
395                  uint32_t mair1_s;
396                  uint32_t mair0_s;
397  #else
398                  uint64_t _unused_mair_0;
399                  uint32_t mair0_ns;
400                  uint32_t mair1_ns;
401                  uint64_t _unused_mair_1;
402                  uint32_t mair0_s;
403                  uint32_t mair1_s;
404  #endif
405              };
406              uint64_t mair_el[4];
407          };
408          union { /* vector base address register */
409              struct {
410                  uint64_t _unused_vbar;
411                  uint64_t vbar_ns;
412                  uint64_t hvbar;
413                  uint64_t vbar_s;
414              };
415              uint64_t vbar_el[4];
416          };
417          uint32_t mvbar; /* (monitor) vector base address register */
418          uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
419          struct { /* FCSE PID. */
420              uint32_t fcseidr_ns;
421              uint32_t fcseidr_s;
422          };
423          union { /* Context ID. */
424              struct {
425                  uint64_t _unused_contextidr_0;
426                  uint64_t contextidr_ns;
427                  uint64_t _unused_contextidr_1;
428                  uint64_t contextidr_s;
429              };
430              uint64_t contextidr_el[4];
431          };
432          union { /* User RW Thread register. */
433              struct {
434                  uint64_t tpidrurw_ns;
435                  uint64_t tpidrprw_ns;
436                  uint64_t htpidr;
437                  uint64_t _tpidr_el3;
438              };
439              uint64_t tpidr_el[4];
440          };
441          uint64_t tpidr2_el0;
442          /* The secure banks of these registers don't map anywhere */
443          uint64_t tpidrurw_s;
444          uint64_t tpidrprw_s;
445          uint64_t tpidruro_s;
446  
447          union { /* User RO Thread register. */
448              uint64_t tpidruro_ns;
449              uint64_t tpidrro_el[1];
450          };
451          uint64_t c14_cntfrq; /* Counter Frequency register */
452          uint64_t c14_cntkctl; /* Timer Control register */
453          uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
454          uint64_t cntvoff_el2; /* Counter Virtual Offset register */
455          uint64_t cntpoff_el2; /* Counter Physical Offset register */
456          ARMGenericTimer c14_timer[NUM_GTIMERS];
457          uint32_t c15_cpar; /* XScale Coprocessor Access Register */
458          uint32_t c15_ticonfig; /* TI925T configuration byte.  */
459          uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
460          uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
461          uint32_t c15_threadid; /* TI debugger thread-ID.  */
462          uint32_t c15_config_base_address; /* SCU base address.  */
463          uint32_t c15_diagnostic; /* diagnostic register */
464          uint32_t c15_power_diagnostic;
465          uint32_t c15_power_control; /* power control */
466          uint64_t dbgbvr[16]; /* breakpoint value registers */
467          uint64_t dbgbcr[16]; /* breakpoint control registers */
468          uint64_t dbgwvr[16]; /* watchpoint value registers */
469          uint64_t dbgwcr[16]; /* watchpoint control registers */
470          uint64_t dbgclaim;   /* DBGCLAIM bits */
471          uint64_t mdscr_el1;
472          uint64_t oslsr_el1; /* OS Lock Status */
473          uint64_t osdlr_el1; /* OS DoubleLock status */
474          uint64_t mdcr_el2;
475          uint64_t mdcr_el3;
476          /* Stores the architectural value of the counter *the last time it was
477           * updated* by pmccntr_op_start. Accesses should always be surrounded
478           * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
479           * architecturally-correct value is being read/set.
480           */
481          uint64_t c15_ccnt;
482          /* Stores the delta between the architectural value and the underlying
483           * cycle count during normal operation. It is used to update c15_ccnt
484           * to be the correct architectural value before accesses. During
485           * accesses, c15_ccnt_delta contains the underlying count being used
486           * for the access, after which it reverts to the delta value in
487           * pmccntr_op_finish.
488           */
489          uint64_t c15_ccnt_delta;
490          uint64_t c14_pmevcntr[31];
491          uint64_t c14_pmevcntr_delta[31];
492          uint64_t c14_pmevtyper[31];
493          uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
494          uint64_t vpidr_el2; /* Virtualization Processor ID Register */
495          uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
496          uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
497          uint64_t gcr_el1;
498          uint64_t rgsr_el1;
499  
500          /* Minimal RAS registers */
501          uint64_t disr_el1;
502          uint64_t vdisr_el2;
503          uint64_t vsesr_el2;
504  
505          /*
506           * Fine-Grained Trap registers. We store these as arrays so the
507           * access checking code doesn't have to manually select
508           * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
509           * FEAT_FGT2 will add more elements to these arrays.
510           */
511          uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
512          uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
513          uint64_t fgt_exec[1]; /* HFGITR */
514  
515          /* RME registers */
516          uint64_t gpccr_el3;
517          uint64_t gptbr_el3;
518          uint64_t mfar_el3;
519  
520          /* NV2 register */
521          uint64_t vncr_el2;
522      } cp15;
523  
524      struct {
525          /* M profile has up to 4 stack pointers:
526           * a Main Stack Pointer and a Process Stack Pointer for each
527           * of the Secure and Non-Secure states. (If the CPU doesn't support
528           * the security extension then it has only two SPs.)
529           * In QEMU we always store the currently active SP in regs[13],
530           * and the non-active SP for the current security state in
531           * v7m.other_sp. The stack pointers for the inactive security state
532           * are stored in other_ss_msp and other_ss_psp.
533           * switch_v7m_security_state() is responsible for rearranging them
534           * when we change security state.
535           */
536          uint32_t other_sp;
537          uint32_t other_ss_msp;
538          uint32_t other_ss_psp;
539          uint32_t vecbase[M_REG_NUM_BANKS];
540          uint32_t basepri[M_REG_NUM_BANKS];
541          uint32_t control[M_REG_NUM_BANKS];
542          uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
543          uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
544          uint32_t hfsr; /* HardFault Status */
545          uint32_t dfsr; /* Debug Fault Status Register */
546          uint32_t sfsr; /* Secure Fault Status Register */
547          uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
548          uint32_t bfar; /* BusFault Address */
549          uint32_t sfar; /* Secure Fault Address Register */
550          unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
551          int exception;
552          uint32_t primask[M_REG_NUM_BANKS];
553          uint32_t faultmask[M_REG_NUM_BANKS];
554          uint32_t aircr; /* only holds r/w state if security extn implemented */
555          uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
556          uint32_t csselr[M_REG_NUM_BANKS];
557          uint32_t scr[M_REG_NUM_BANKS];
558          uint32_t msplim[M_REG_NUM_BANKS];
559          uint32_t psplim[M_REG_NUM_BANKS];
560          uint32_t fpcar[M_REG_NUM_BANKS];
561          uint32_t fpccr[M_REG_NUM_BANKS];
562          uint32_t fpdscr[M_REG_NUM_BANKS];
563          uint32_t cpacr[M_REG_NUM_BANKS];
564          uint32_t nsacr;
565          uint32_t ltpsize;
566          uint32_t vpr;
567      } v7m;
568  
569      /* Information associated with an exception about to be taken:
570       * code which raises an exception must set cs->exception_index and
571       * the relevant parts of this structure; the cpu_do_interrupt function
572       * will then set the guest-visible registers as part of the exception
573       * entry process.
574       */
575      struct {
576          uint32_t syndrome; /* AArch64 format syndrome register */
577          uint32_t fsr; /* AArch32 format fault status register info */
578          uint64_t vaddress; /* virtual addr associated with exception, if any */
579          uint32_t target_el; /* EL the exception should be targeted for */
580          /* If we implement EL2 we will also need to store information
581           * about the intermediate physical address for stage 2 faults.
582           */
583      } exception;
584  
585      /* Information associated with an SError */
586      struct {
587          uint8_t pending;
588          uint8_t has_esr;
589          uint64_t esr;
590      } serror;
591  
592      uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
593  
594      /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
595      uint32_t irq_line_state;
596  
597      /* Thumb-2 EE state.  */
598      uint32_t teecr;
599      uint32_t teehbr;
600  
601      /* VFP coprocessor state.  */
602      struct {
603          ARMVectorReg zregs[32];
604  
605  #ifdef TARGET_AARCH64
606          /* Store FFR as pregs[16] to make it easier to treat as any other.  */
607  #define FFR_PRED_NUM 16
608          ARMPredicateReg pregs[17];
609          /* Scratch space for aa64 sve predicate temporary.  */
610          ARMPredicateReg preg_tmp;
611  #endif
612  
613          /* We store these fpcsr fields separately for convenience.  */
614          uint32_t qc[4] QEMU_ALIGNED(16);
615          int vec_len;
616          int vec_stride;
617  
618          uint32_t xregs[16];
619  
620          /* Scratch space for aa32 neon expansion.  */
621          uint32_t scratch[8];
622  
623          /* There are a number of distinct float control structures:
624           *
625           *  fp_status: is the "normal" fp status.
626           *  fp_status_fp16: used for half-precision calculations
627           *  standard_fp_status : the ARM "Standard FPSCR Value"
628           *  standard_fp_status_fp16 : used for half-precision
629           *       calculations with the ARM "Standard FPSCR Value"
630           *
631           * Half-precision operations are governed by a separate
632           * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
633           * status structure to control this.
634           *
635           * The "Standard FPSCR", ie default-NaN, flush-to-zero,
636           * round-to-nearest and is used by any operations (generally
637           * Neon) which the architecture defines as controlled by the
638           * standard FPSCR value rather than the FPSCR.
639           *
640           * The "standard FPSCR but for fp16 ops" is needed because
641           * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
642           * using a fixed value for it.
643           *
644           * To avoid having to transfer exception bits around, we simply
645           * say that the FPSCR cumulative exception flags are the logical
646           * OR of the flags in the four fp statuses. This relies on the
647           * only thing which needs to read the exception flags being
648           * an explicit FPSCR read.
649           */
650          float_status fp_status;
651          float_status fp_status_f16;
652          float_status standard_fp_status;
653          float_status standard_fp_status_f16;
654  
655          uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
656          uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
657      } vfp;
658  
659      uint64_t exclusive_addr;
660      uint64_t exclusive_val;
661      /*
662       * Contains the 'val' for the second 64-bit register of LDXP, which comes
663       * from the higher address, not the high part of a complete 128-bit value.
664       * In some ways it might be more convenient to record the exclusive value
665       * as the low and high halves of a 128 bit data value, but the current
666       * semantics of these fields are baked into the migration format.
667       */
668      uint64_t exclusive_high;
669  
670      /* iwMMXt coprocessor state.  */
671      struct {
672          uint64_t regs[16];
673          uint64_t val;
674  
675          uint32_t cregs[16];
676      } iwmmxt;
677  
678  #ifdef TARGET_AARCH64
679      struct {
680          ARMPACKey apia;
681          ARMPACKey apib;
682          ARMPACKey apda;
683          ARMPACKey apdb;
684          ARMPACKey apga;
685      } keys;
686  
687      uint64_t scxtnum_el[4];
688  
689      /*
690       * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
691       * as we do with vfp.zregs[].  This corresponds to the architectural ZA
692       * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
693       * When SVL is less than the architectural maximum, the accessible
694       * storage is restricted, such that if the SVL is X bytes the guest can
695       * see only the bottom X elements of zarray[], and only the least
696       * significant X bytes of each element of the array. (In other words,
697       * the observable part is always square.)
698       *
699       * The ZA storage can also be considered as a set of square tiles of
700       * elements of different sizes. The mapping from tiles to the ZA array
701       * is architecturally defined, such that for tiles of elements of esz
702       * bytes, the Nth row (or "horizontal slice") of tile T is in
703       * ZA[T + N * esz]. Note that this means that each tile is not contiguous
704       * in the ZA storage, because its rows are striped through the ZA array.
705       *
706       * Because this is so large, keep this toward the end of the reset area,
707       * to keep the offsets into the rest of the structure smaller.
708       */
709      ARMVectorReg zarray[ARM_MAX_VQ * 16];
710  #endif
711  
712      struct CPUBreakpoint *cpu_breakpoint[16];
713      struct CPUWatchpoint *cpu_watchpoint[16];
714  
715      /* Optional fault info across tlb lookup. */
716      ARMMMUFaultInfo *tlb_fi;
717  
718      /* Fields up to this point are cleared by a CPU reset */
719      struct {} end_reset_fields;
720  
721      /* Fields after this point are preserved across CPU reset. */
722  
723      /* Internal CPU feature flags.  */
724      uint64_t features;
725  
726      /* PMSAv7 MPU */
727      struct {
728          uint32_t *drbar;
729          uint32_t *drsr;
730          uint32_t *dracr;
731          uint32_t rnr[M_REG_NUM_BANKS];
732      } pmsav7;
733  
734      /* PMSAv8 MPU */
735      struct {
736          /* The PMSAv8 implementation also shares some PMSAv7 config
737           * and state:
738           *  pmsav7.rnr (region number register)
739           *  pmsav7_dregion (number of configured regions)
740           */
741          uint32_t *rbar[M_REG_NUM_BANKS];
742          uint32_t *rlar[M_REG_NUM_BANKS];
743          uint32_t *hprbar;
744          uint32_t *hprlar;
745          uint32_t mair0[M_REG_NUM_BANKS];
746          uint32_t mair1[M_REG_NUM_BANKS];
747          uint32_t hprselr;
748      } pmsav8;
749  
750      /* v8M SAU */
751      struct {
752          uint32_t *rbar;
753          uint32_t *rlar;
754          uint32_t rnr;
755          uint32_t ctrl;
756      } sau;
757  
758  #if !defined(CONFIG_USER_ONLY)
759      NVICState *nvic;
760      const struct arm_boot_info *boot_info;
761      /* Store GICv3CPUState to access from this struct */
762      void *gicv3state;
763  #else /* CONFIG_USER_ONLY */
764      /* For usermode syscall translation.  */
765      bool eabi;
766  #endif /* CONFIG_USER_ONLY */
767  
768  #ifdef TARGET_TAGGED_ADDRESSES
769      /* Linux syscall tagged address support */
770      bool tagged_addr_enable;
771  #endif
772  } CPUARMState;
773  
774  static inline void set_feature(CPUARMState *env, int feature)
775  {
776      env->features |= 1ULL << feature;
777  }
778  
779  static inline void unset_feature(CPUARMState *env, int feature)
780  {
781      env->features &= ~(1ULL << feature);
782  }
783  
784  /**
785   * ARMELChangeHookFn:
786   * type of a function which can be registered via arm_register_el_change_hook()
787   * to get callbacks when the CPU changes its exception level or mode.
788   */
789  typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
790  typedef struct ARMELChangeHook ARMELChangeHook;
791  struct ARMELChangeHook {
792      ARMELChangeHookFn *hook;
793      void *opaque;
794      QLIST_ENTRY(ARMELChangeHook) node;
795  };
796  
797  /* These values map onto the return values for
798   * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
799  typedef enum ARMPSCIState {
800      PSCI_ON = 0,
801      PSCI_OFF = 1,
802      PSCI_ON_PENDING = 2
803  } ARMPSCIState;
804  
805  typedef struct ARMISARegisters ARMISARegisters;
806  
807  /*
808   * In map, each set bit is a supported vector length of (bit-number + 1) * 16
809   * bytes, i.e. each bit number + 1 is the vector length in quadwords.
810   *
811   * While processing properties during initialization, corresponding init bits
812   * are set for bits in sve_vq_map that have been set by properties.
813   *
814   * Bits set in supported represent valid vector lengths for the CPU type.
815   */
816  typedef struct {
817      uint32_t map, init, supported;
818  } ARMVQMap;
819  
820  /**
821   * ARMCPU:
822   * @env: #CPUARMState
823   *
824   * An ARM CPU core.
825   */
826  struct ArchCPU {
827      CPUState parent_obj;
828  
829      CPUARMState env;
830  
831      /* Coprocessor information */
832      GHashTable *cp_regs;
833      /* For marshalling (mostly coprocessor) register state between the
834       * kernel and QEMU (for KVM) and between two QEMUs (for migration),
835       * we use these arrays.
836       */
837      /* List of register indexes managed via these arrays; (full KVM style
838       * 64 bit indexes, not CPRegInfo 32 bit indexes)
839       */
840      uint64_t *cpreg_indexes;
841      /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
842      uint64_t *cpreg_values;
843      /* Length of the indexes, values, reset_values arrays */
844      int32_t cpreg_array_len;
845      /* These are used only for migration: incoming data arrives in
846       * these fields and is sanity checked in post_load before copying
847       * to the working data structures above.
848       */
849      uint64_t *cpreg_vmstate_indexes;
850      uint64_t *cpreg_vmstate_values;
851      int32_t cpreg_vmstate_array_len;
852  
853      DynamicGDBFeatureInfo dyn_sysreg_feature;
854      DynamicGDBFeatureInfo dyn_svereg_feature;
855      DynamicGDBFeatureInfo dyn_m_systemreg_feature;
856      DynamicGDBFeatureInfo dyn_m_secextreg_feature;
857  
858      /* Timers used by the generic (architected) timer */
859      QEMUTimer *gt_timer[NUM_GTIMERS];
860      /*
861       * Timer used by the PMU. Its state is restored after migration by
862       * pmu_op_finish() - it does not need other handling during migration
863       */
864      QEMUTimer *pmu_timer;
865      /* GPIO outputs for generic timer */
866      qemu_irq gt_timer_outputs[NUM_GTIMERS];
867      /* GPIO output for GICv3 maintenance interrupt signal */
868      qemu_irq gicv3_maintenance_interrupt;
869      /* GPIO output for the PMU interrupt */
870      qemu_irq pmu_interrupt;
871  
872      /* MemoryRegion to use for secure physical accesses */
873      MemoryRegion *secure_memory;
874  
875      /* MemoryRegion to use for allocation tag accesses */
876      MemoryRegion *tag_memory;
877      MemoryRegion *secure_tag_memory;
878  
879      /* For v8M, pointer to the IDAU interface provided by board/SoC */
880      Object *idau;
881  
882      /* 'compatible' string for this CPU for Linux device trees */
883      const char *dtb_compatible;
884  
885      /* PSCI version for this CPU
886       * Bits[31:16] = Major Version
887       * Bits[15:0] = Minor Version
888       */
889      uint32_t psci_version;
890  
891      /* Current power state, access guarded by BQL */
892      ARMPSCIState power_state;
893  
894      /* CPU has virtualization extension */
895      bool has_el2;
896      /* CPU has security extension */
897      bool has_el3;
898      /* CPU has PMU (Performance Monitor Unit) */
899      bool has_pmu;
900      /* CPU has VFP */
901      bool has_vfp;
902      /* CPU has 32 VFP registers */
903      bool has_vfp_d32;
904      /* CPU has Neon */
905      bool has_neon;
906      /* CPU has M-profile DSP extension */
907      bool has_dsp;
908  
909      /* CPU has memory protection unit */
910      bool has_mpu;
911      /* PMSAv7 MPU number of supported regions */
912      uint32_t pmsav7_dregion;
913      /* PMSAv8 MPU number of supported hyp regions */
914      uint32_t pmsav8r_hdregion;
915      /* v8M SAU number of supported regions */
916      uint32_t sau_sregion;
917  
918      /* PSCI conduit used to invoke PSCI methods
919       * 0 - disabled, 1 - smc, 2 - hvc
920       */
921      uint32_t psci_conduit;
922  
923      /* For v8M, initial value of the Secure VTOR */
924      uint32_t init_svtor;
925      /* For v8M, initial value of the Non-secure VTOR */
926      uint32_t init_nsvtor;
927  
928      /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
929       * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
930       */
931      uint32_t kvm_target;
932  
933  #ifdef CONFIG_KVM
934      /* KVM init features for this CPU */
935      uint32_t kvm_init_features[7];
936  
937      /* KVM CPU state */
938  
939      /* KVM virtual time adjustment */
940      bool kvm_adjvtime;
941      bool kvm_vtime_dirty;
942      uint64_t kvm_vtime;
943  
944      /* KVM steal time */
945      OnOffAuto kvm_steal_time;
946  #endif /* CONFIG_KVM */
947  
948      /* Uniprocessor system with MP extensions */
949      bool mp_is_up;
950  
951      /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
952       * and the probe failed (so we need to report the error in realize)
953       */
954      bool host_cpu_probe_failed;
955  
956      /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
957       * register.
958       */
959      int32_t core_count;
960  
961      /* The instance init functions for implementation-specific subclasses
962       * set these fields to specify the implementation-dependent values of
963       * various constant registers and reset values of non-constant
964       * registers.
965       * Some of these might become QOM properties eventually.
966       * Field names match the official register names as defined in the
967       * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
968       * is used for reset values of non-constant registers; no reset_
969       * prefix means a constant register.
970       * Some of these registers are split out into a substructure that
971       * is shared with the translators to control the ISA.
972       *
973       * Note that if you add an ID register to the ARMISARegisters struct
974       * you need to also update the 32-bit and 64-bit versions of the
975       * kvm_arm_get_host_cpu_features() function to correctly populate the
976       * field by reading the value from the KVM vCPU.
977       */
978      struct ARMISARegisters {
979          uint32_t id_isar0;
980          uint32_t id_isar1;
981          uint32_t id_isar2;
982          uint32_t id_isar3;
983          uint32_t id_isar4;
984          uint32_t id_isar5;
985          uint32_t id_isar6;
986          uint32_t id_mmfr0;
987          uint32_t id_mmfr1;
988          uint32_t id_mmfr2;
989          uint32_t id_mmfr3;
990          uint32_t id_mmfr4;
991          uint32_t id_mmfr5;
992          uint32_t id_pfr0;
993          uint32_t id_pfr1;
994          uint32_t id_pfr2;
995          uint32_t mvfr0;
996          uint32_t mvfr1;
997          uint32_t mvfr2;
998          uint32_t id_dfr0;
999          uint32_t id_dfr1;
1000          uint32_t dbgdidr;
1001          uint32_t dbgdevid;
1002          uint32_t dbgdevid1;
1003          uint64_t id_aa64isar0;
1004          uint64_t id_aa64isar1;
1005          uint64_t id_aa64isar2;
1006          uint64_t id_aa64pfr0;
1007          uint64_t id_aa64pfr1;
1008          uint64_t id_aa64mmfr0;
1009          uint64_t id_aa64mmfr1;
1010          uint64_t id_aa64mmfr2;
1011          uint64_t id_aa64dfr0;
1012          uint64_t id_aa64dfr1;
1013          uint64_t id_aa64zfr0;
1014          uint64_t id_aa64smfr0;
1015          uint64_t reset_pmcr_el0;
1016      } isar;
1017      uint64_t midr;
1018      uint32_t revidr;
1019      uint32_t reset_fpsid;
1020      uint64_t ctr;
1021      uint32_t reset_sctlr;
1022      uint64_t pmceid0;
1023      uint64_t pmceid1;
1024      uint32_t id_afr0;
1025      uint64_t id_aa64afr0;
1026      uint64_t id_aa64afr1;
1027      uint64_t clidr;
1028      uint64_t mp_affinity; /* MP ID without feature bits */
1029      /* The elements of this array are the CCSIDR values for each cache,
1030       * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1031       */
1032      uint64_t ccsidr[16];
1033      uint64_t reset_cbar;
1034      uint32_t reset_auxcr;
1035      bool reset_hivecs;
1036      uint8_t reset_l0gptsz;
1037  
1038      /*
1039       * Intermediate values used during property parsing.
1040       * Once finalized, the values should be read from ID_AA64*.
1041       */
1042      bool prop_pauth;
1043      bool prop_pauth_impdef;
1044      bool prop_pauth_qarma3;
1045      bool prop_lpa2;
1046  
1047      /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1048      uint8_t dcz_blocksize;
1049      /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1050      uint8_t gm_blocksize;
1051  
1052      uint64_t rvbar_prop; /* Property/input signals.  */
1053  
1054      /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1055      int gic_num_lrs; /* number of list registers */
1056      int gic_vpribits; /* number of virtual priority bits */
1057      int gic_vprebits; /* number of virtual preemption bits */
1058      int gic_pribits; /* number of physical priority bits */
1059  
1060      /* Whether the cfgend input is high (i.e. this CPU should reset into
1061       * big-endian mode).  This setting isn't used directly: instead it modifies
1062       * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1063       * architecture version.
1064       */
1065      bool cfgend;
1066  
1067      QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1068      QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1069  
1070      int32_t node_id; /* NUMA node this CPU belongs to */
1071  
1072      /* Used to synchronize KVM and QEMU in-kernel device levels */
1073      uint8_t device_irq_level;
1074  
1075      /* Used to set the maximum vector length the cpu will support.  */
1076      uint32_t sve_max_vq;
1077  
1078  #ifdef CONFIG_USER_ONLY
1079      /* Used to set the default vector length at process start. */
1080      uint32_t sve_default_vq;
1081      uint32_t sme_default_vq;
1082  #endif
1083  
1084      ARMVQMap sve_vq;
1085      ARMVQMap sme_vq;
1086  
1087      /* Generic timer counter frequency, in Hz */
1088      uint64_t gt_cntfrq_hz;
1089  };
1090  
1091  typedef struct ARMCPUInfo {
1092      const char *name;
1093      void (*initfn)(Object *obj);
1094      void (*class_init)(ObjectClass *oc, void *data);
1095  } ARMCPUInfo;
1096  
1097  /**
1098   * ARMCPUClass:
1099   * @parent_realize: The parent class' realize handler.
1100   * @parent_phases: The parent class' reset phase handlers.
1101   *
1102   * An ARM CPU model.
1103   */
1104  struct ARMCPUClass {
1105      CPUClass parent_class;
1106  
1107      const ARMCPUInfo *info;
1108      DeviceRealize parent_realize;
1109      ResettablePhases parent_phases;
1110  };
1111  
1112  struct AArch64CPUClass {
1113      ARMCPUClass parent_class;
1114  };
1115  
1116  /* Callback functions for the generic timer's timers. */
1117  void arm_gt_ptimer_cb(void *opaque);
1118  void arm_gt_vtimer_cb(void *opaque);
1119  void arm_gt_htimer_cb(void *opaque);
1120  void arm_gt_stimer_cb(void *opaque);
1121  void arm_gt_hvtimer_cb(void *opaque);
1122  
1123  unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1124  void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1125  
1126  void arm_cpu_post_init(Object *obj);
1127  
1128  #define ARM_AFF0_SHIFT 0
1129  #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1130  #define ARM_AFF1_SHIFT 8
1131  #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1132  #define ARM_AFF2_SHIFT 16
1133  #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1134  #define ARM_AFF3_SHIFT 32
1135  #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1136  #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1137  
1138  #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1139  #define ARM64_AFFINITY_MASK \
1140      (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1141  #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1142  
1143  uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1144  
1145  #ifndef CONFIG_USER_ONLY
1146  extern const VMStateDescription vmstate_arm_cpu;
1147  
1148  void arm_cpu_do_interrupt(CPUState *cpu);
1149  void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1150  
1151  hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1152                                           MemTxAttrs *attrs);
1153  #endif /* !CONFIG_USER_ONLY */
1154  
1155  int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1156  int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1157  
1158  int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1159                               int cpuid, DumpState *s);
1160  int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1161                               int cpuid, DumpState *s);
1162  
1163  /**
1164   * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1165   * @cpu: CPU (which must have been freshly reset)
1166   * @target_el: exception level to put the CPU into
1167   * @secure: whether to put the CPU in secure state
1168   *
1169   * When QEMU is directly running a guest kernel at a lower level than
1170   * EL3 it implicitly emulates some aspects of the guest firmware.
1171   * This includes that on reset we need to configure the parts of the
1172   * CPU corresponding to EL3 so that the real guest code can run at its
1173   * lower exception level. This function does that post-reset CPU setup,
1174   * for when we do direct boot of a guest kernel, and for when we
1175   * emulate PSCI and similar firmware interfaces starting a CPU at a
1176   * lower exception level.
1177   *
1178   * @target_el must be an EL implemented by the CPU between 1 and 3.
1179   * We do not support dropping into a Secure EL other than 3.
1180   *
1181   * It is the responsibility of the caller to call arm_rebuild_hflags().
1182   */
1183  void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1184  
1185  #ifdef TARGET_AARCH64
1186  int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1187  int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1188  void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1189  void aarch64_sve_change_el(CPUARMState *env, int old_el,
1190                             int new_el, bool el0_a64);
1191  void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1192  
1193  /*
1194   * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1195   * The byte at offset i from the start of the in-memory representation contains
1196   * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1197   * lowest offsets are stored in the lowest memory addresses, then that nearly
1198   * matches QEMU's representation, which is to use an array of host-endian
1199   * uint64_t's, where the lower offsets are at the lower indices. To complete
1200   * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1201   */
1202  static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1203  {
1204  #if HOST_BIG_ENDIAN
1205      int i;
1206  
1207      for (i = 0; i < nr; ++i) {
1208          dst[i] = bswap64(src[i]);
1209      }
1210  
1211      return dst;
1212  #else
1213      return src;
1214  #endif
1215  }
1216  
1217  #else
1218  static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1219  static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1220                                           int n, bool a)
1221  { }
1222  #endif
1223  
1224  void aarch64_sync_32_to_64(CPUARMState *env);
1225  void aarch64_sync_64_to_32(CPUARMState *env);
1226  
1227  int fp_exception_el(CPUARMState *env, int cur_el);
1228  int sve_exception_el(CPUARMState *env, int cur_el);
1229  int sme_exception_el(CPUARMState *env, int cur_el);
1230  
1231  /**
1232   * sve_vqm1_for_el_sm:
1233   * @env: CPUARMState
1234   * @el: exception level
1235   * @sm: streaming mode
1236   *
1237   * Compute the current vector length for @el & @sm, in units of
1238   * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1239   * If @sm, compute for SVL, otherwise NVL.
1240   */
1241  uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1242  
1243  /* Likewise, but using @sm = PSTATE.SM. */
1244  uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1245  
1246  static inline bool is_a64(CPUARMState *env)
1247  {
1248      return env->aarch64;
1249  }
1250  
1251  /**
1252   * pmu_op_start/finish
1253   * @env: CPUARMState
1254   *
1255   * Convert all PMU counters between their delta form (the typical mode when
1256   * they are enabled) and the guest-visible values. These two calls must
1257   * surround any action which might affect the counters.
1258   */
1259  void pmu_op_start(CPUARMState *env);
1260  void pmu_op_finish(CPUARMState *env);
1261  
1262  /*
1263   * Called when a PMU counter is due to overflow
1264   */
1265  void arm_pmu_timer_cb(void *opaque);
1266  
1267  /**
1268   * Functions to register as EL change hooks for PMU mode filtering
1269   */
1270  void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1271  void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1272  
1273  /*
1274   * pmu_init
1275   * @cpu: ARMCPU
1276   *
1277   * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1278   * for the current configuration
1279   */
1280  void pmu_init(ARMCPU *cpu);
1281  
1282  /* SCTLR bit meanings. Several bits have been reused in newer
1283   * versions of the architecture; in that case we define constants
1284   * for both old and new bit meanings. Code which tests against those
1285   * bits should probably check or otherwise arrange that the CPU
1286   * is the architectural version it expects.
1287   */
1288  #define SCTLR_M       (1U << 0)
1289  #define SCTLR_A       (1U << 1)
1290  #define SCTLR_C       (1U << 2)
1291  #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1292  #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1293  #define SCTLR_SA      (1U << 3) /* AArch64 only */
1294  #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1295  #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1296  #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1297  #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1298  #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1299  #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1300  #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1301  #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1302  #define SCTLR_ITD     (1U << 7) /* v8 onward */
1303  #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1304  #define SCTLR_SED     (1U << 8) /* v8 onward */
1305  #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1306  #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1307  #define SCTLR_F       (1U << 10) /* up to v6 */
1308  #define SCTLR_SW      (1U << 10) /* v7 */
1309  #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1310  #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1311  #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1312  #define SCTLR_I       (1U << 12)
1313  #define SCTLR_V       (1U << 13) /* AArch32 only */
1314  #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1315  #define SCTLR_RR      (1U << 14) /* up to v7 */
1316  #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1317  #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1318  #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1319  #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1320  #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1321  #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1322  #define SCTLR_BR      (1U << 17) /* PMSA only */
1323  #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1324  #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1325  #define SCTLR_WXN     (1U << 19)
1326  #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1327  #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1328  #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1329  #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1330  #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1331  #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1332  #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1333  #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1334  #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1335  #define SCTLR_VE      (1U << 24) /* up to v7 */
1336  #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1337  #define SCTLR_EE      (1U << 25)
1338  #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1339  #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1340  #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1341  #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1342  #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1343  #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1344  #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1345  #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1346  #define SCTLR_TE      (1U << 30) /* AArch32 only */
1347  #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1348  #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1349  #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1350  #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1351  #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1352  #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1353  #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1354  #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1355  #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1356  #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1357  #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1358  #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1359  #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1360  #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1361  #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1362  #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1363  #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1364  #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1365  #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1366  #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1367  #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1368  #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1369  #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1370  #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1371  #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1372  #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1373  
1374  #define CPSR_M (0x1fU)
1375  #define CPSR_T (1U << 5)
1376  #define CPSR_F (1U << 6)
1377  #define CPSR_I (1U << 7)
1378  #define CPSR_A (1U << 8)
1379  #define CPSR_E (1U << 9)
1380  #define CPSR_IT_2_7 (0xfc00U)
1381  #define CPSR_GE (0xfU << 16)
1382  #define CPSR_IL (1U << 20)
1383  #define CPSR_DIT (1U << 21)
1384  #define CPSR_PAN (1U << 22)
1385  #define CPSR_SSBS (1U << 23)
1386  #define CPSR_J (1U << 24)
1387  #define CPSR_IT_0_1 (3U << 25)
1388  #define CPSR_Q (1U << 27)
1389  #define CPSR_V (1U << 28)
1390  #define CPSR_C (1U << 29)
1391  #define CPSR_Z (1U << 30)
1392  #define CPSR_N (1U << 31)
1393  #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1394  #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1395  
1396  #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1397  #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1398      | CPSR_NZCV)
1399  /* Bits writable in user mode.  */
1400  #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1401  /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1402  #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1403  
1404  /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1405  #define XPSR_EXCP 0x1ffU
1406  #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1407  #define XPSR_IT_2_7 CPSR_IT_2_7
1408  #define XPSR_GE CPSR_GE
1409  #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1410  #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1411  #define XPSR_IT_0_1 CPSR_IT_0_1
1412  #define XPSR_Q CPSR_Q
1413  #define XPSR_V CPSR_V
1414  #define XPSR_C CPSR_C
1415  #define XPSR_Z CPSR_Z
1416  #define XPSR_N CPSR_N
1417  #define XPSR_NZCV CPSR_NZCV
1418  #define XPSR_IT CPSR_IT
1419  
1420  /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1421   * Only these are valid when in AArch64 mode; in
1422   * AArch32 mode SPSRs are basically CPSR-format.
1423   */
1424  #define PSTATE_SP (1U)
1425  #define PSTATE_M (0xFU)
1426  #define PSTATE_nRW (1U << 4)
1427  #define PSTATE_F (1U << 6)
1428  #define PSTATE_I (1U << 7)
1429  #define PSTATE_A (1U << 8)
1430  #define PSTATE_D (1U << 9)
1431  #define PSTATE_BTYPE (3U << 10)
1432  #define PSTATE_SSBS (1U << 12)
1433  #define PSTATE_IL (1U << 20)
1434  #define PSTATE_SS (1U << 21)
1435  #define PSTATE_PAN (1U << 22)
1436  #define PSTATE_UAO (1U << 23)
1437  #define PSTATE_DIT (1U << 24)
1438  #define PSTATE_TCO (1U << 25)
1439  #define PSTATE_V (1U << 28)
1440  #define PSTATE_C (1U << 29)
1441  #define PSTATE_Z (1U << 30)
1442  #define PSTATE_N (1U << 31)
1443  #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1444  #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1445  #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1446  /* Mode values for AArch64 */
1447  #define PSTATE_MODE_EL3h 13
1448  #define PSTATE_MODE_EL3t 12
1449  #define PSTATE_MODE_EL2h 9
1450  #define PSTATE_MODE_EL2t 8
1451  #define PSTATE_MODE_EL1h 5
1452  #define PSTATE_MODE_EL1t 4
1453  #define PSTATE_MODE_EL0t 0
1454  
1455  /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1456  FIELD(SVCR, SM, 0, 1)
1457  FIELD(SVCR, ZA, 1, 1)
1458  
1459  /* Fields for SMCR_ELx. */
1460  FIELD(SMCR, LEN, 0, 4)
1461  FIELD(SMCR, FA64, 31, 1)
1462  
1463  /* Write a new value to v7m.exception, thus transitioning into or out
1464   * of Handler mode; this may result in a change of active stack pointer.
1465   */
1466  void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1467  
1468  /* Map EL and handler into a PSTATE_MODE.  */
1469  static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1470  {
1471      return (el << 2) | handler;
1472  }
1473  
1474  /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1475   * interprocessing, so we don't attempt to sync with the cpsr state used by
1476   * the 32 bit decoder.
1477   */
1478  static inline uint32_t pstate_read(CPUARMState *env)
1479  {
1480      int ZF;
1481  
1482      ZF = (env->ZF == 0);
1483      return (env->NF & 0x80000000) | (ZF << 30)
1484          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1485          | env->pstate | env->daif | (env->btype << 10);
1486  }
1487  
1488  static inline void pstate_write(CPUARMState *env, uint32_t val)
1489  {
1490      env->ZF = (~val) & PSTATE_Z;
1491      env->NF = val;
1492      env->CF = (val >> 29) & 1;
1493      env->VF = (val << 3) & 0x80000000;
1494      env->daif = val & PSTATE_DAIF;
1495      env->btype = (val >> 10) & 3;
1496      env->pstate = val & ~CACHED_PSTATE_BITS;
1497  }
1498  
1499  /* Return the current CPSR value.  */
1500  uint32_t cpsr_read(CPUARMState *env);
1501  
1502  typedef enum CPSRWriteType {
1503      CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1504      CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1505      CPSRWriteRaw = 2,
1506          /* trust values, no reg bank switch, no hflags rebuild */
1507      CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1508  } CPSRWriteType;
1509  
1510  /*
1511   * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1512   * This will do an arm_rebuild_hflags() if any of the bits in @mask
1513   * correspond to TB flags bits cached in the hflags, unless @write_type
1514   * is CPSRWriteRaw.
1515   */
1516  void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1517                  CPSRWriteType write_type);
1518  
1519  /* Return the current xPSR value.  */
1520  static inline uint32_t xpsr_read(CPUARMState *env)
1521  {
1522      int ZF;
1523      ZF = (env->ZF == 0);
1524      return (env->NF & 0x80000000) | (ZF << 30)
1525          | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1526          | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1527          | ((env->condexec_bits & 0xfc) << 8)
1528          | (env->GE << 16)
1529          | env->v7m.exception;
1530  }
1531  
1532  /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1533  static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1534  {
1535      if (mask & XPSR_NZCV) {
1536          env->ZF = (~val) & XPSR_Z;
1537          env->NF = val;
1538          env->CF = (val >> 29) & 1;
1539          env->VF = (val << 3) & 0x80000000;
1540      }
1541      if (mask & XPSR_Q) {
1542          env->QF = ((val & XPSR_Q) != 0);
1543      }
1544      if (mask & XPSR_GE) {
1545          env->GE = (val & XPSR_GE) >> 16;
1546      }
1547  #ifndef CONFIG_USER_ONLY
1548      if (mask & XPSR_T) {
1549          env->thumb = ((val & XPSR_T) != 0);
1550      }
1551      if (mask & XPSR_IT_0_1) {
1552          env->condexec_bits &= ~3;
1553          env->condexec_bits |= (val >> 25) & 3;
1554      }
1555      if (mask & XPSR_IT_2_7) {
1556          env->condexec_bits &= 3;
1557          env->condexec_bits |= (val >> 8) & 0xfc;
1558      }
1559      if (mask & XPSR_EXCP) {
1560          /* Note that this only happens on exception exit */
1561          write_v7m_exception(env, val & XPSR_EXCP);
1562      }
1563  #endif
1564  }
1565  
1566  #define HCR_VM        (1ULL << 0)
1567  #define HCR_SWIO      (1ULL << 1)
1568  #define HCR_PTW       (1ULL << 2)
1569  #define HCR_FMO       (1ULL << 3)
1570  #define HCR_IMO       (1ULL << 4)
1571  #define HCR_AMO       (1ULL << 5)
1572  #define HCR_VF        (1ULL << 6)
1573  #define HCR_VI        (1ULL << 7)
1574  #define HCR_VSE       (1ULL << 8)
1575  #define HCR_FB        (1ULL << 9)
1576  #define HCR_BSU_MASK  (3ULL << 10)
1577  #define HCR_DC        (1ULL << 12)
1578  #define HCR_TWI       (1ULL << 13)
1579  #define HCR_TWE       (1ULL << 14)
1580  #define HCR_TID0      (1ULL << 15)
1581  #define HCR_TID1      (1ULL << 16)
1582  #define HCR_TID2      (1ULL << 17)
1583  #define HCR_TID3      (1ULL << 18)
1584  #define HCR_TSC       (1ULL << 19)
1585  #define HCR_TIDCP     (1ULL << 20)
1586  #define HCR_TACR      (1ULL << 21)
1587  #define HCR_TSW       (1ULL << 22)
1588  #define HCR_TPCP      (1ULL << 23)
1589  #define HCR_TPU       (1ULL << 24)
1590  #define HCR_TTLB      (1ULL << 25)
1591  #define HCR_TVM       (1ULL << 26)
1592  #define HCR_TGE       (1ULL << 27)
1593  #define HCR_TDZ       (1ULL << 28)
1594  #define HCR_HCD       (1ULL << 29)
1595  #define HCR_TRVM      (1ULL << 30)
1596  #define HCR_RW        (1ULL << 31)
1597  #define HCR_CD        (1ULL << 32)
1598  #define HCR_ID        (1ULL << 33)
1599  #define HCR_E2H       (1ULL << 34)
1600  #define HCR_TLOR      (1ULL << 35)
1601  #define HCR_TERR      (1ULL << 36)
1602  #define HCR_TEA       (1ULL << 37)
1603  #define HCR_MIOCNCE   (1ULL << 38)
1604  #define HCR_TME       (1ULL << 39)
1605  #define HCR_APK       (1ULL << 40)
1606  #define HCR_API       (1ULL << 41)
1607  #define HCR_NV        (1ULL << 42)
1608  #define HCR_NV1       (1ULL << 43)
1609  #define HCR_AT        (1ULL << 44)
1610  #define HCR_NV2       (1ULL << 45)
1611  #define HCR_FWB       (1ULL << 46)
1612  #define HCR_FIEN      (1ULL << 47)
1613  #define HCR_GPF       (1ULL << 48)
1614  #define HCR_TID4      (1ULL << 49)
1615  #define HCR_TICAB     (1ULL << 50)
1616  #define HCR_AMVOFFEN  (1ULL << 51)
1617  #define HCR_TOCU      (1ULL << 52)
1618  #define HCR_ENSCXT    (1ULL << 53)
1619  #define HCR_TTLBIS    (1ULL << 54)
1620  #define HCR_TTLBOS    (1ULL << 55)
1621  #define HCR_ATA       (1ULL << 56)
1622  #define HCR_DCT       (1ULL << 57)
1623  #define HCR_TID5      (1ULL << 58)
1624  #define HCR_TWEDEN    (1ULL << 59)
1625  #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1626  
1627  #define SCR_NS                (1ULL << 0)
1628  #define SCR_IRQ               (1ULL << 1)
1629  #define SCR_FIQ               (1ULL << 2)
1630  #define SCR_EA                (1ULL << 3)
1631  #define SCR_FW                (1ULL << 4)
1632  #define SCR_AW                (1ULL << 5)
1633  #define SCR_NET               (1ULL << 6)
1634  #define SCR_SMD               (1ULL << 7)
1635  #define SCR_HCE               (1ULL << 8)
1636  #define SCR_SIF               (1ULL << 9)
1637  #define SCR_RW                (1ULL << 10)
1638  #define SCR_ST                (1ULL << 11)
1639  #define SCR_TWI               (1ULL << 12)
1640  #define SCR_TWE               (1ULL << 13)
1641  #define SCR_TLOR              (1ULL << 14)
1642  #define SCR_TERR              (1ULL << 15)
1643  #define SCR_APK               (1ULL << 16)
1644  #define SCR_API               (1ULL << 17)
1645  #define SCR_EEL2              (1ULL << 18)
1646  #define SCR_EASE              (1ULL << 19)
1647  #define SCR_NMEA              (1ULL << 20)
1648  #define SCR_FIEN              (1ULL << 21)
1649  #define SCR_ENSCXT            (1ULL << 25)
1650  #define SCR_ATA               (1ULL << 26)
1651  #define SCR_FGTEN             (1ULL << 27)
1652  #define SCR_ECVEN             (1ULL << 28)
1653  #define SCR_TWEDEN            (1ULL << 29)
1654  #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1655  #define SCR_TME               (1ULL << 34)
1656  #define SCR_AMVOFFEN          (1ULL << 35)
1657  #define SCR_ENAS0             (1ULL << 36)
1658  #define SCR_ADEN              (1ULL << 37)
1659  #define SCR_HXEN              (1ULL << 38)
1660  #define SCR_TRNDR             (1ULL << 40)
1661  #define SCR_ENTP2             (1ULL << 41)
1662  #define SCR_GPF               (1ULL << 48)
1663  #define SCR_NSE               (1ULL << 62)
1664  
1665  /* Return the current FPSCR value.  */
1666  uint32_t vfp_get_fpscr(CPUARMState *env);
1667  void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1668  
1669  /* FPCR, Floating Point Control Register
1670   * FPSR, Floating Poiht Status Register
1671   *
1672   * For A64 the FPSCR is split into two logically distinct registers,
1673   * FPCR and FPSR. However since they still use non-overlapping bits
1674   * we store the underlying state in fpscr and just mask on read/write.
1675   */
1676  #define FPSR_MASK 0xf800009f
1677  #define FPCR_MASK 0x07ff9f00
1678  
1679  #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1680  #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1681  #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1682  #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1683  #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1684  #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1685  #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1686  #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1687  #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1688  #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1689  #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1690  #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1691  #define FPCR_V      (1 << 28)   /* FP overflow flag */
1692  #define FPCR_C      (1 << 29)   /* FP carry flag */
1693  #define FPCR_Z      (1 << 30)   /* FP zero flag */
1694  #define FPCR_N      (1 << 31)   /* FP negative flag */
1695  
1696  #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1697  #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1698  #define FPCR_LTPSIZE_LENGTH 3
1699  
1700  #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1701  #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1702  
1703  static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1704  {
1705      return vfp_get_fpscr(env) & FPSR_MASK;
1706  }
1707  
1708  static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1709  {
1710      uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1711      vfp_set_fpscr(env, new_fpscr);
1712  }
1713  
1714  static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1715  {
1716      return vfp_get_fpscr(env) & FPCR_MASK;
1717  }
1718  
1719  static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1720  {
1721      uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1722      vfp_set_fpscr(env, new_fpscr);
1723  }
1724  
1725  enum arm_cpu_mode {
1726    ARM_CPU_MODE_USR = 0x10,
1727    ARM_CPU_MODE_FIQ = 0x11,
1728    ARM_CPU_MODE_IRQ = 0x12,
1729    ARM_CPU_MODE_SVC = 0x13,
1730    ARM_CPU_MODE_MON = 0x16,
1731    ARM_CPU_MODE_ABT = 0x17,
1732    ARM_CPU_MODE_HYP = 0x1a,
1733    ARM_CPU_MODE_UND = 0x1b,
1734    ARM_CPU_MODE_SYS = 0x1f
1735  };
1736  
1737  /* VFP system registers.  */
1738  #define ARM_VFP_FPSID   0
1739  #define ARM_VFP_FPSCR   1
1740  #define ARM_VFP_MVFR2   5
1741  #define ARM_VFP_MVFR1   6
1742  #define ARM_VFP_MVFR0   7
1743  #define ARM_VFP_FPEXC   8
1744  #define ARM_VFP_FPINST  9
1745  #define ARM_VFP_FPINST2 10
1746  /* These ones are M-profile only */
1747  #define ARM_VFP_FPSCR_NZCVQC 2
1748  #define ARM_VFP_VPR 12
1749  #define ARM_VFP_P0 13
1750  #define ARM_VFP_FPCXT_NS 14
1751  #define ARM_VFP_FPCXT_S 15
1752  
1753  /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1754  #define QEMU_VFP_FPSCR_NZCV 0xffff
1755  
1756  /* iwMMXt coprocessor control registers.  */
1757  #define ARM_IWMMXT_wCID  0
1758  #define ARM_IWMMXT_wCon  1
1759  #define ARM_IWMMXT_wCSSF 2
1760  #define ARM_IWMMXT_wCASF 3
1761  #define ARM_IWMMXT_wCGR0 8
1762  #define ARM_IWMMXT_wCGR1 9
1763  #define ARM_IWMMXT_wCGR2 10
1764  #define ARM_IWMMXT_wCGR3 11
1765  
1766  /* V7M CCR bits */
1767  FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1768  FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1769  FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1770  FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1771  FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1772  FIELD(V7M_CCR, STKALIGN, 9, 1)
1773  FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1774  FIELD(V7M_CCR, DC, 16, 1)
1775  FIELD(V7M_CCR, IC, 17, 1)
1776  FIELD(V7M_CCR, BP, 18, 1)
1777  FIELD(V7M_CCR, LOB, 19, 1)
1778  FIELD(V7M_CCR, TRD, 20, 1)
1779  
1780  /* V7M SCR bits */
1781  FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1782  FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1783  FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1784  FIELD(V7M_SCR, SEVONPEND, 4, 1)
1785  
1786  /* V7M AIRCR bits */
1787  FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1788  FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1789  FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1790  FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1791  FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1792  FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1793  FIELD(V7M_AIRCR, PRIS, 14, 1)
1794  FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1795  FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1796  
1797  /* V7M CFSR bits for MMFSR */
1798  FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1799  FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1800  FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1801  FIELD(V7M_CFSR, MSTKERR, 4, 1)
1802  FIELD(V7M_CFSR, MLSPERR, 5, 1)
1803  FIELD(V7M_CFSR, MMARVALID, 7, 1)
1804  
1805  /* V7M CFSR bits for BFSR */
1806  FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1807  FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1808  FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1809  FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1810  FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1811  FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1812  FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1813  
1814  /* V7M CFSR bits for UFSR */
1815  FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1816  FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1817  FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1818  FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1819  FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1820  FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1821  FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1822  
1823  /* V7M CFSR bit masks covering all of the subregister bits */
1824  FIELD(V7M_CFSR, MMFSR, 0, 8)
1825  FIELD(V7M_CFSR, BFSR, 8, 8)
1826  FIELD(V7M_CFSR, UFSR, 16, 16)
1827  
1828  /* V7M HFSR bits */
1829  FIELD(V7M_HFSR, VECTTBL, 1, 1)
1830  FIELD(V7M_HFSR, FORCED, 30, 1)
1831  FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1832  
1833  /* V7M DFSR bits */
1834  FIELD(V7M_DFSR, HALTED, 0, 1)
1835  FIELD(V7M_DFSR, BKPT, 1, 1)
1836  FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1837  FIELD(V7M_DFSR, VCATCH, 3, 1)
1838  FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1839  
1840  /* V7M SFSR bits */
1841  FIELD(V7M_SFSR, INVEP, 0, 1)
1842  FIELD(V7M_SFSR, INVIS, 1, 1)
1843  FIELD(V7M_SFSR, INVER, 2, 1)
1844  FIELD(V7M_SFSR, AUVIOL, 3, 1)
1845  FIELD(V7M_SFSR, INVTRAN, 4, 1)
1846  FIELD(V7M_SFSR, LSPERR, 5, 1)
1847  FIELD(V7M_SFSR, SFARVALID, 6, 1)
1848  FIELD(V7M_SFSR, LSERR, 7, 1)
1849  
1850  /* v7M MPU_CTRL bits */
1851  FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1852  FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1853  FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1854  
1855  /* v7M CLIDR bits */
1856  FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1857  FIELD(V7M_CLIDR, LOUIS, 21, 3)
1858  FIELD(V7M_CLIDR, LOC, 24, 3)
1859  FIELD(V7M_CLIDR, LOUU, 27, 3)
1860  FIELD(V7M_CLIDR, ICB, 30, 2)
1861  
1862  FIELD(V7M_CSSELR, IND, 0, 1)
1863  FIELD(V7M_CSSELR, LEVEL, 1, 3)
1864  /* We use the combination of InD and Level to index into cpu->ccsidr[];
1865   * define a mask for this and check that it doesn't permit running off
1866   * the end of the array.
1867   */
1868  FIELD(V7M_CSSELR, INDEX, 0, 4)
1869  
1870  /* v7M FPCCR bits */
1871  FIELD(V7M_FPCCR, LSPACT, 0, 1)
1872  FIELD(V7M_FPCCR, USER, 1, 1)
1873  FIELD(V7M_FPCCR, S, 2, 1)
1874  FIELD(V7M_FPCCR, THREAD, 3, 1)
1875  FIELD(V7M_FPCCR, HFRDY, 4, 1)
1876  FIELD(V7M_FPCCR, MMRDY, 5, 1)
1877  FIELD(V7M_FPCCR, BFRDY, 6, 1)
1878  FIELD(V7M_FPCCR, SFRDY, 7, 1)
1879  FIELD(V7M_FPCCR, MONRDY, 8, 1)
1880  FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1881  FIELD(V7M_FPCCR, UFRDY, 10, 1)
1882  FIELD(V7M_FPCCR, RES0, 11, 15)
1883  FIELD(V7M_FPCCR, TS, 26, 1)
1884  FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1885  FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1886  FIELD(V7M_FPCCR, LSPENS, 29, 1)
1887  FIELD(V7M_FPCCR, LSPEN, 30, 1)
1888  FIELD(V7M_FPCCR, ASPEN, 31, 1)
1889  /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1890  #define R_V7M_FPCCR_BANKED_MASK                 \
1891      (R_V7M_FPCCR_LSPACT_MASK |                  \
1892       R_V7M_FPCCR_USER_MASK |                    \
1893       R_V7M_FPCCR_THREAD_MASK |                  \
1894       R_V7M_FPCCR_MMRDY_MASK |                   \
1895       R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1896       R_V7M_FPCCR_UFRDY_MASK |                   \
1897       R_V7M_FPCCR_ASPEN_MASK)
1898  
1899  /* v7M VPR bits */
1900  FIELD(V7M_VPR, P0, 0, 16)
1901  FIELD(V7M_VPR, MASK01, 16, 4)
1902  FIELD(V7M_VPR, MASK23, 20, 4)
1903  
1904  /*
1905   * System register ID fields.
1906   */
1907  FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1908  FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1909  FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1910  FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1911  FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1912  FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1913  FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1914  FIELD(CLIDR_EL1, LOUIS, 21, 3)
1915  FIELD(CLIDR_EL1, LOC, 24, 3)
1916  FIELD(CLIDR_EL1, LOUU, 27, 3)
1917  FIELD(CLIDR_EL1, ICB, 30, 3)
1918  
1919  /* When FEAT_CCIDX is implemented */
1920  FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1921  FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1922  FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1923  
1924  /* When FEAT_CCIDX is not implemented */
1925  FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1926  FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1927  FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1928  
1929  FIELD(CTR_EL0,  IMINLINE, 0, 4)
1930  FIELD(CTR_EL0,  L1IP, 14, 2)
1931  FIELD(CTR_EL0,  DMINLINE, 16, 4)
1932  FIELD(CTR_EL0,  ERG, 20, 4)
1933  FIELD(CTR_EL0,  CWG, 24, 4)
1934  FIELD(CTR_EL0,  IDC, 28, 1)
1935  FIELD(CTR_EL0,  DIC, 29, 1)
1936  FIELD(CTR_EL0,  TMINLINE, 32, 6)
1937  
1938  FIELD(MIDR_EL1, REVISION, 0, 4)
1939  FIELD(MIDR_EL1, PARTNUM, 4, 12)
1940  FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1941  FIELD(MIDR_EL1, VARIANT, 20, 4)
1942  FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1943  
1944  FIELD(ID_ISAR0, SWAP, 0, 4)
1945  FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1946  FIELD(ID_ISAR0, BITFIELD, 8, 4)
1947  FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1948  FIELD(ID_ISAR0, COPROC, 16, 4)
1949  FIELD(ID_ISAR0, DEBUG, 20, 4)
1950  FIELD(ID_ISAR0, DIVIDE, 24, 4)
1951  
1952  FIELD(ID_ISAR1, ENDIAN, 0, 4)
1953  FIELD(ID_ISAR1, EXCEPT, 4, 4)
1954  FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1955  FIELD(ID_ISAR1, EXTEND, 12, 4)
1956  FIELD(ID_ISAR1, IFTHEN, 16, 4)
1957  FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1958  FIELD(ID_ISAR1, INTERWORK, 24, 4)
1959  FIELD(ID_ISAR1, JAZELLE, 28, 4)
1960  
1961  FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1962  FIELD(ID_ISAR2, MEMHINT, 4, 4)
1963  FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1964  FIELD(ID_ISAR2, MULT, 12, 4)
1965  FIELD(ID_ISAR2, MULTS, 16, 4)
1966  FIELD(ID_ISAR2, MULTU, 20, 4)
1967  FIELD(ID_ISAR2, PSR_AR, 24, 4)
1968  FIELD(ID_ISAR2, REVERSAL, 28, 4)
1969  
1970  FIELD(ID_ISAR3, SATURATE, 0, 4)
1971  FIELD(ID_ISAR3, SIMD, 4, 4)
1972  FIELD(ID_ISAR3, SVC, 8, 4)
1973  FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1974  FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1975  FIELD(ID_ISAR3, T32COPY, 20, 4)
1976  FIELD(ID_ISAR3, TRUENOP, 24, 4)
1977  FIELD(ID_ISAR3, T32EE, 28, 4)
1978  
1979  FIELD(ID_ISAR4, UNPRIV, 0, 4)
1980  FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1981  FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1982  FIELD(ID_ISAR4, SMC, 12, 4)
1983  FIELD(ID_ISAR4, BARRIER, 16, 4)
1984  FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1985  FIELD(ID_ISAR4, PSR_M, 24, 4)
1986  FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1987  
1988  FIELD(ID_ISAR5, SEVL, 0, 4)
1989  FIELD(ID_ISAR5, AES, 4, 4)
1990  FIELD(ID_ISAR5, SHA1, 8, 4)
1991  FIELD(ID_ISAR5, SHA2, 12, 4)
1992  FIELD(ID_ISAR5, CRC32, 16, 4)
1993  FIELD(ID_ISAR5, RDM, 24, 4)
1994  FIELD(ID_ISAR5, VCMA, 28, 4)
1995  
1996  FIELD(ID_ISAR6, JSCVT, 0, 4)
1997  FIELD(ID_ISAR6, DP, 4, 4)
1998  FIELD(ID_ISAR6, FHM, 8, 4)
1999  FIELD(ID_ISAR6, SB, 12, 4)
2000  FIELD(ID_ISAR6, SPECRES, 16, 4)
2001  FIELD(ID_ISAR6, BF16, 20, 4)
2002  FIELD(ID_ISAR6, I8MM, 24, 4)
2003  
2004  FIELD(ID_MMFR0, VMSA, 0, 4)
2005  FIELD(ID_MMFR0, PMSA, 4, 4)
2006  FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2007  FIELD(ID_MMFR0, SHARELVL, 12, 4)
2008  FIELD(ID_MMFR0, TCM, 16, 4)
2009  FIELD(ID_MMFR0, AUXREG, 20, 4)
2010  FIELD(ID_MMFR0, FCSE, 24, 4)
2011  FIELD(ID_MMFR0, INNERSHR, 28, 4)
2012  
2013  FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2014  FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2015  FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2016  FIELD(ID_MMFR1, L1UNISW, 12, 4)
2017  FIELD(ID_MMFR1, L1HVD, 16, 4)
2018  FIELD(ID_MMFR1, L1UNI, 20, 4)
2019  FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2020  FIELD(ID_MMFR1, BPRED, 28, 4)
2021  
2022  FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2023  FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2024  FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2025  FIELD(ID_MMFR2, HVDTLB, 12, 4)
2026  FIELD(ID_MMFR2, UNITLB, 16, 4)
2027  FIELD(ID_MMFR2, MEMBARR, 20, 4)
2028  FIELD(ID_MMFR2, WFISTALL, 24, 4)
2029  FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2030  
2031  FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2032  FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2033  FIELD(ID_MMFR3, BPMAINT, 8, 4)
2034  FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2035  FIELD(ID_MMFR3, PAN, 16, 4)
2036  FIELD(ID_MMFR3, COHWALK, 20, 4)
2037  FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2038  FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2039  
2040  FIELD(ID_MMFR4, SPECSEI, 0, 4)
2041  FIELD(ID_MMFR4, AC2, 4, 4)
2042  FIELD(ID_MMFR4, XNX, 8, 4)
2043  FIELD(ID_MMFR4, CNP, 12, 4)
2044  FIELD(ID_MMFR4, HPDS, 16, 4)
2045  FIELD(ID_MMFR4, LSM, 20, 4)
2046  FIELD(ID_MMFR4, CCIDX, 24, 4)
2047  FIELD(ID_MMFR4, EVT, 28, 4)
2048  
2049  FIELD(ID_MMFR5, ETS, 0, 4)
2050  FIELD(ID_MMFR5, NTLBPA, 4, 4)
2051  
2052  FIELD(ID_PFR0, STATE0, 0, 4)
2053  FIELD(ID_PFR0, STATE1, 4, 4)
2054  FIELD(ID_PFR0, STATE2, 8, 4)
2055  FIELD(ID_PFR0, STATE3, 12, 4)
2056  FIELD(ID_PFR0, CSV2, 16, 4)
2057  FIELD(ID_PFR0, AMU, 20, 4)
2058  FIELD(ID_PFR0, DIT, 24, 4)
2059  FIELD(ID_PFR0, RAS, 28, 4)
2060  
2061  FIELD(ID_PFR1, PROGMOD, 0, 4)
2062  FIELD(ID_PFR1, SECURITY, 4, 4)
2063  FIELD(ID_PFR1, MPROGMOD, 8, 4)
2064  FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2065  FIELD(ID_PFR1, GENTIMER, 16, 4)
2066  FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2067  FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2068  FIELD(ID_PFR1, GIC, 28, 4)
2069  
2070  FIELD(ID_PFR2, CSV3, 0, 4)
2071  FIELD(ID_PFR2, SSBS, 4, 4)
2072  FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2073  
2074  FIELD(ID_AA64ISAR0, AES, 4, 4)
2075  FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2076  FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2077  FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2078  FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2079  FIELD(ID_AA64ISAR0, TME, 24, 4)
2080  FIELD(ID_AA64ISAR0, RDM, 28, 4)
2081  FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2082  FIELD(ID_AA64ISAR0, SM3, 36, 4)
2083  FIELD(ID_AA64ISAR0, SM4, 40, 4)
2084  FIELD(ID_AA64ISAR0, DP, 44, 4)
2085  FIELD(ID_AA64ISAR0, FHM, 48, 4)
2086  FIELD(ID_AA64ISAR0, TS, 52, 4)
2087  FIELD(ID_AA64ISAR0, TLB, 56, 4)
2088  FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2089  
2090  FIELD(ID_AA64ISAR1, DPB, 0, 4)
2091  FIELD(ID_AA64ISAR1, APA, 4, 4)
2092  FIELD(ID_AA64ISAR1, API, 8, 4)
2093  FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2094  FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2095  FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2096  FIELD(ID_AA64ISAR1, GPA, 24, 4)
2097  FIELD(ID_AA64ISAR1, GPI, 28, 4)
2098  FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2099  FIELD(ID_AA64ISAR1, SB, 36, 4)
2100  FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2101  FIELD(ID_AA64ISAR1, BF16, 44, 4)
2102  FIELD(ID_AA64ISAR1, DGH, 48, 4)
2103  FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2104  FIELD(ID_AA64ISAR1, XS, 56, 4)
2105  FIELD(ID_AA64ISAR1, LS64, 60, 4)
2106  
2107  FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2108  FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2109  FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2110  FIELD(ID_AA64ISAR2, APA3, 12, 4)
2111  FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2112  FIELD(ID_AA64ISAR2, BC, 20, 4)
2113  FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2114  FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2115  FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2116  FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2117  FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2118  FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2119  FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2120  FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2121  
2122  FIELD(ID_AA64PFR0, EL0, 0, 4)
2123  FIELD(ID_AA64PFR0, EL1, 4, 4)
2124  FIELD(ID_AA64PFR0, EL2, 8, 4)
2125  FIELD(ID_AA64PFR0, EL3, 12, 4)
2126  FIELD(ID_AA64PFR0, FP, 16, 4)
2127  FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2128  FIELD(ID_AA64PFR0, GIC, 24, 4)
2129  FIELD(ID_AA64PFR0, RAS, 28, 4)
2130  FIELD(ID_AA64PFR0, SVE, 32, 4)
2131  FIELD(ID_AA64PFR0, SEL2, 36, 4)
2132  FIELD(ID_AA64PFR0, MPAM, 40, 4)
2133  FIELD(ID_AA64PFR0, AMU, 44, 4)
2134  FIELD(ID_AA64PFR0, DIT, 48, 4)
2135  FIELD(ID_AA64PFR0, RME, 52, 4)
2136  FIELD(ID_AA64PFR0, CSV2, 56, 4)
2137  FIELD(ID_AA64PFR0, CSV3, 60, 4)
2138  
2139  FIELD(ID_AA64PFR1, BT, 0, 4)
2140  FIELD(ID_AA64PFR1, SSBS, 4, 4)
2141  FIELD(ID_AA64PFR1, MTE, 8, 4)
2142  FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2143  FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2144  FIELD(ID_AA64PFR1, SME, 24, 4)
2145  FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2146  FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2147  FIELD(ID_AA64PFR1, NMI, 36, 4)
2148  FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2149  FIELD(ID_AA64PFR1, GCS, 44, 4)
2150  FIELD(ID_AA64PFR1, THE, 48, 4)
2151  FIELD(ID_AA64PFR1, MTEX, 52, 4)
2152  FIELD(ID_AA64PFR1, DF2, 56, 4)
2153  FIELD(ID_AA64PFR1, PFAR, 60, 4)
2154  
2155  FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2156  FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2157  FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2158  FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2159  FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2160  FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2161  FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2162  FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2163  FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2164  FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2165  FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2166  FIELD(ID_AA64MMFR0, EXS, 44, 4)
2167  FIELD(ID_AA64MMFR0, FGT, 56, 4)
2168  FIELD(ID_AA64MMFR0, ECV, 60, 4)
2169  
2170  FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2171  FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2172  FIELD(ID_AA64MMFR1, VH, 8, 4)
2173  FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2174  FIELD(ID_AA64MMFR1, LO, 16, 4)
2175  FIELD(ID_AA64MMFR1, PAN, 20, 4)
2176  FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2177  FIELD(ID_AA64MMFR1, XNX, 28, 4)
2178  FIELD(ID_AA64MMFR1, TWED, 32, 4)
2179  FIELD(ID_AA64MMFR1, ETS, 36, 4)
2180  FIELD(ID_AA64MMFR1, HCX, 40, 4)
2181  FIELD(ID_AA64MMFR1, AFP, 44, 4)
2182  FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2183  FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2184  FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2185  FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2186  
2187  FIELD(ID_AA64MMFR2, CNP, 0, 4)
2188  FIELD(ID_AA64MMFR2, UAO, 4, 4)
2189  FIELD(ID_AA64MMFR2, LSM, 8, 4)
2190  FIELD(ID_AA64MMFR2, IESB, 12, 4)
2191  FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2192  FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2193  FIELD(ID_AA64MMFR2, NV, 24, 4)
2194  FIELD(ID_AA64MMFR2, ST, 28, 4)
2195  FIELD(ID_AA64MMFR2, AT, 32, 4)
2196  FIELD(ID_AA64MMFR2, IDS, 36, 4)
2197  FIELD(ID_AA64MMFR2, FWB, 40, 4)
2198  FIELD(ID_AA64MMFR2, TTL, 48, 4)
2199  FIELD(ID_AA64MMFR2, BBM, 52, 4)
2200  FIELD(ID_AA64MMFR2, EVT, 56, 4)
2201  FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2202  
2203  FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2204  FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2205  FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2206  FIELD(ID_AA64DFR0, BRPS, 12, 4)
2207  FIELD(ID_AA64DFR0, PMSS, 16, 4)
2208  FIELD(ID_AA64DFR0, WRPS, 20, 4)
2209  FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2210  FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2211  FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2212  FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2213  FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2214  FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2215  FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2216  FIELD(ID_AA64DFR0, BRBE, 52, 4)
2217  FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2218  FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2219  
2220  FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2221  FIELD(ID_AA64ZFR0, AES, 4, 4)
2222  FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2223  FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2224  FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2225  FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2226  FIELD(ID_AA64ZFR0, SM4, 40, 4)
2227  FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2228  FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2229  FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2230  
2231  FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2232  FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2233  FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2234  FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2235  FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2236  FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2237  FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2238  FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2239  FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2240  FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2241  FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2242  FIELD(ID_AA64SMFR0, FA64, 63, 1)
2243  
2244  FIELD(ID_DFR0, COPDBG, 0, 4)
2245  FIELD(ID_DFR0, COPSDBG, 4, 4)
2246  FIELD(ID_DFR0, MMAPDBG, 8, 4)
2247  FIELD(ID_DFR0, COPTRC, 12, 4)
2248  FIELD(ID_DFR0, MMAPTRC, 16, 4)
2249  FIELD(ID_DFR0, MPROFDBG, 20, 4)
2250  FIELD(ID_DFR0, PERFMON, 24, 4)
2251  FIELD(ID_DFR0, TRACEFILT, 28, 4)
2252  
2253  FIELD(ID_DFR1, MTPMU, 0, 4)
2254  FIELD(ID_DFR1, HPMN0, 4, 4)
2255  
2256  FIELD(DBGDIDR, SE_IMP, 12, 1)
2257  FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2258  FIELD(DBGDIDR, VERSION, 16, 4)
2259  FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2260  FIELD(DBGDIDR, BRPS, 24, 4)
2261  FIELD(DBGDIDR, WRPS, 28, 4)
2262  
2263  FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2264  FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2265  FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2266  FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2267  FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2268  FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2269  FIELD(DBGDEVID, AUXREGS, 24, 4)
2270  FIELD(DBGDEVID, CIDMASK, 28, 4)
2271  
2272  FIELD(MVFR0, SIMDREG, 0, 4)
2273  FIELD(MVFR0, FPSP, 4, 4)
2274  FIELD(MVFR0, FPDP, 8, 4)
2275  FIELD(MVFR0, FPTRAP, 12, 4)
2276  FIELD(MVFR0, FPDIVIDE, 16, 4)
2277  FIELD(MVFR0, FPSQRT, 20, 4)
2278  FIELD(MVFR0, FPSHVEC, 24, 4)
2279  FIELD(MVFR0, FPROUND, 28, 4)
2280  
2281  FIELD(MVFR1, FPFTZ, 0, 4)
2282  FIELD(MVFR1, FPDNAN, 4, 4)
2283  FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2284  FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2285  FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2286  FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2287  FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2288  FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2289  FIELD(MVFR1, FPHP, 24, 4)
2290  FIELD(MVFR1, SIMDFMAC, 28, 4)
2291  
2292  FIELD(MVFR2, SIMDMISC, 0, 4)
2293  FIELD(MVFR2, FPMISC, 4, 4)
2294  
2295  FIELD(GPCCR, PPS, 0, 3)
2296  FIELD(GPCCR, IRGN, 8, 2)
2297  FIELD(GPCCR, ORGN, 10, 2)
2298  FIELD(GPCCR, SH, 12, 2)
2299  FIELD(GPCCR, PGS, 14, 2)
2300  FIELD(GPCCR, GPC, 16, 1)
2301  FIELD(GPCCR, GPCP, 17, 1)
2302  FIELD(GPCCR, L0GPTSZ, 20, 4)
2303  
2304  FIELD(MFAR, FPA, 12, 40)
2305  FIELD(MFAR, NSE, 62, 1)
2306  FIELD(MFAR, NS, 63, 1)
2307  
2308  QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2309  
2310  /* If adding a feature bit which corresponds to a Linux ELF
2311   * HWCAP bit, remember to update the feature-bit-to-hwcap
2312   * mapping in linux-user/elfload.c:get_elf_hwcap().
2313   */
2314  enum arm_features {
2315      ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2316      ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2317      ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2318      ARM_FEATURE_V6,
2319      ARM_FEATURE_V6K,
2320      ARM_FEATURE_V7,
2321      ARM_FEATURE_THUMB2,
2322      ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2323      ARM_FEATURE_NEON,
2324      ARM_FEATURE_M, /* Microcontroller profile.  */
2325      ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2326      ARM_FEATURE_THUMB2EE,
2327      ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2328      ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2329      ARM_FEATURE_V4T,
2330      ARM_FEATURE_V5,
2331      ARM_FEATURE_STRONGARM,
2332      ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2333      ARM_FEATURE_GENERIC_TIMER,
2334      ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2335      ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2336      ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2337      ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2338      ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2339      ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2340      ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2341      ARM_FEATURE_V8,
2342      ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2343      ARM_FEATURE_CBAR, /* has cp15 CBAR */
2344      ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2345      ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2346      ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2347      ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2348      ARM_FEATURE_PMU, /* has PMU support */
2349      ARM_FEATURE_VBAR, /* has cp15 VBAR */
2350      ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2351      ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2352      ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2353  };
2354  
2355  static inline int arm_feature(CPUARMState *env, int feature)
2356  {
2357      return (env->features & (1ULL << feature)) != 0;
2358  }
2359  
2360  void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2361  
2362  /*
2363   * ARM v9 security states.
2364   * The ordering of the enumeration corresponds to the low 2 bits
2365   * of the GPI value, and (except for Root) the concat of NSE:NS.
2366   */
2367  
2368  typedef enum ARMSecuritySpace {
2369      ARMSS_Secure     = 0,
2370      ARMSS_NonSecure  = 1,
2371      ARMSS_Root       = 2,
2372      ARMSS_Realm      = 3,
2373  } ARMSecuritySpace;
2374  
2375  /* Return true if @space is secure, in the pre-v9 sense. */
2376  static inline bool arm_space_is_secure(ARMSecuritySpace space)
2377  {
2378      return space == ARMSS_Secure || space == ARMSS_Root;
2379  }
2380  
2381  /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2382  static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2383  {
2384      return secure ? ARMSS_Secure : ARMSS_NonSecure;
2385  }
2386  
2387  #if !defined(CONFIG_USER_ONLY)
2388  /**
2389   * arm_security_space_below_el3:
2390   * @env: cpu context
2391   *
2392   * Return the security space of exception levels below EL3, following
2393   * an exception return to those levels.  Unlike arm_security_space,
2394   * this doesn't care about the current EL.
2395   */
2396  ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2397  
2398  /**
2399   * arm_is_secure_below_el3:
2400   * @env: cpu context
2401   *
2402   * Return true if exception levels below EL3 are in secure state,
2403   * or would be following an exception return to those levels.
2404   */
2405  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2406  {
2407      ARMSecuritySpace ss = arm_security_space_below_el3(env);
2408      return ss == ARMSS_Secure;
2409  }
2410  
2411  /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2412  static inline bool arm_is_el3_or_mon(CPUARMState *env)
2413  {
2414      assert(!arm_feature(env, ARM_FEATURE_M));
2415      if (arm_feature(env, ARM_FEATURE_EL3)) {
2416          if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2417              /* CPU currently in AArch64 state and EL3 */
2418              return true;
2419          } else if (!is_a64(env) &&
2420                  (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2421              /* CPU currently in AArch32 state and monitor mode */
2422              return true;
2423          }
2424      }
2425      return false;
2426  }
2427  
2428  /**
2429   * arm_security_space:
2430   * @env: cpu context
2431   *
2432   * Return the current security space of the cpu.
2433   */
2434  ARMSecuritySpace arm_security_space(CPUARMState *env);
2435  
2436  /**
2437   * arm_is_secure:
2438   * @env: cpu context
2439   *
2440   * Return true if the processor is in secure state.
2441   */
2442  static inline bool arm_is_secure(CPUARMState *env)
2443  {
2444      return arm_space_is_secure(arm_security_space(env));
2445  }
2446  
2447  /*
2448   * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2449   * This corresponds to the pseudocode EL2Enabled().
2450   */
2451  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2452                                                 ARMSecuritySpace space)
2453  {
2454      assert(space != ARMSS_Root);
2455      return arm_feature(env, ARM_FEATURE_EL2)
2456             && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2457  }
2458  
2459  static inline bool arm_is_el2_enabled(CPUARMState *env)
2460  {
2461      return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2462  }
2463  
2464  #else
2465  static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2466  {
2467      return ARMSS_NonSecure;
2468  }
2469  
2470  static inline bool arm_is_secure_below_el3(CPUARMState *env)
2471  {
2472      return false;
2473  }
2474  
2475  static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2476  {
2477      return ARMSS_NonSecure;
2478  }
2479  
2480  static inline bool arm_is_secure(CPUARMState *env)
2481  {
2482      return false;
2483  }
2484  
2485  static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2486                                                 ARMSecuritySpace space)
2487  {
2488      return false;
2489  }
2490  
2491  static inline bool arm_is_el2_enabled(CPUARMState *env)
2492  {
2493      return false;
2494  }
2495  #endif
2496  
2497  /**
2498   * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2499   * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2500   * "for all purposes other than a direct read or write access of HCR_EL2."
2501   * Not included here is HCR_RW.
2502   */
2503  uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2504  uint64_t arm_hcr_el2_eff(CPUARMState *env);
2505  uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2506  
2507  /* Return true if the specified exception level is running in AArch64 state. */
2508  static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2509  {
2510      /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2511       * and if we're not in EL0 then the state of EL0 isn't well defined.)
2512       */
2513      assert(el >= 1 && el <= 3);
2514      bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2515  
2516      /* The highest exception level is always at the maximum supported
2517       * register width, and then lower levels have a register width controlled
2518       * by bits in the SCR or HCR registers.
2519       */
2520      if (el == 3) {
2521          return aa64;
2522      }
2523  
2524      if (arm_feature(env, ARM_FEATURE_EL3) &&
2525          ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2526          aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2527      }
2528  
2529      if (el == 2) {
2530          return aa64;
2531      }
2532  
2533      if (arm_is_el2_enabled(env)) {
2534          aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2535      }
2536  
2537      return aa64;
2538  }
2539  
2540  /* Function for determining whether guest cp register reads and writes should
2541   * access the secure or non-secure bank of a cp register.  When EL3 is
2542   * operating in AArch32 state, the NS-bit determines whether the secure
2543   * instance of a cp register should be used. When EL3 is AArch64 (or if
2544   * it doesn't exist at all) then there is no register banking, and all
2545   * accesses are to the non-secure version.
2546   */
2547  static inline bool access_secure_reg(CPUARMState *env)
2548  {
2549      bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2550                  !arm_el_is_aa64(env, 3) &&
2551                  !(env->cp15.scr_el3 & SCR_NS));
2552  
2553      return ret;
2554  }
2555  
2556  /* Macros for accessing a specified CP register bank */
2557  #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2558      ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2559  
2560  #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2561      do {                                                \
2562          if (_secure) {                                   \
2563              (_env)->cp15._regname##_s = (_val);            \
2564          } else {                                        \
2565              (_env)->cp15._regname##_ns = (_val);           \
2566          }                                               \
2567      } while (0)
2568  
2569  /* Macros for automatically accessing a specific CP register bank depending on
2570   * the current secure state of the system.  These macros are not intended for
2571   * supporting instruction translation reads/writes as these are dependent
2572   * solely on the SCR.NS bit and not the mode.
2573   */
2574  #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2575      A32_BANKED_REG_GET((_env), _regname,                \
2576                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2577  
2578  #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2579      A32_BANKED_REG_SET((_env), _regname,                                    \
2580                         (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2581                         (_val))
2582  
2583  uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2584                                   uint32_t cur_el, bool secure);
2585  
2586  /* Return the highest implemented Exception Level */
2587  static inline int arm_highest_el(CPUARMState *env)
2588  {
2589      if (arm_feature(env, ARM_FEATURE_EL3)) {
2590          return 3;
2591      }
2592      if (arm_feature(env, ARM_FEATURE_EL2)) {
2593          return 2;
2594      }
2595      return 1;
2596  }
2597  
2598  /* Return true if a v7M CPU is in Handler mode */
2599  static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2600  {
2601      return env->v7m.exception != 0;
2602  }
2603  
2604  /* Return the current Exception Level (as per ARMv8; note that this differs
2605   * from the ARMv7 Privilege Level).
2606   */
2607  static inline int arm_current_el(CPUARMState *env)
2608  {
2609      if (arm_feature(env, ARM_FEATURE_M)) {
2610          return arm_v7m_is_handler_mode(env) ||
2611              !(env->v7m.control[env->v7m.secure] & 1);
2612      }
2613  
2614      if (is_a64(env)) {
2615          return extract32(env->pstate, 2, 2);
2616      }
2617  
2618      switch (env->uncached_cpsr & 0x1f) {
2619      case ARM_CPU_MODE_USR:
2620          return 0;
2621      case ARM_CPU_MODE_HYP:
2622          return 2;
2623      case ARM_CPU_MODE_MON:
2624          return 3;
2625      default:
2626          if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2627              /* If EL3 is 32-bit then all secure privileged modes run in
2628               * EL3
2629               */
2630              return 3;
2631          }
2632  
2633          return 1;
2634      }
2635  }
2636  
2637  /**
2638   * write_list_to_cpustate
2639   * @cpu: ARMCPU
2640   *
2641   * For each register listed in the ARMCPU cpreg_indexes list, write
2642   * its value from the cpreg_values list into the ARMCPUState structure.
2643   * This updates TCG's working data structures from KVM data or
2644   * from incoming migration state.
2645   *
2646   * Returns: true if all register values were updated correctly,
2647   * false if some register was unknown or could not be written.
2648   * Note that we do not stop early on failure -- we will attempt
2649   * writing all registers in the list.
2650   */
2651  bool write_list_to_cpustate(ARMCPU *cpu);
2652  
2653  /**
2654   * write_cpustate_to_list:
2655   * @cpu: ARMCPU
2656   * @kvm_sync: true if this is for syncing back to KVM
2657   *
2658   * For each register listed in the ARMCPU cpreg_indexes list, write
2659   * its value from the ARMCPUState structure into the cpreg_values list.
2660   * This is used to copy info from TCG's working data structures into
2661   * KVM or for outbound migration.
2662   *
2663   * @kvm_sync is true if we are doing this in order to sync the
2664   * register state back to KVM. In this case we will only update
2665   * values in the list if the previous list->cpustate sync actually
2666   * successfully wrote the CPU state. Otherwise we will keep the value
2667   * that is in the list.
2668   *
2669   * Returns: true if all register values were read correctly,
2670   * false if some register was unknown or could not be read.
2671   * Note that we do not stop early on failure -- we will attempt
2672   * reading all registers in the list.
2673   */
2674  bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2675  
2676  #define ARM_CPUID_TI915T      0x54029152
2677  #define ARM_CPUID_TI925T      0x54029252
2678  
2679  #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2680  
2681  #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2682  
2683  /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2684   *
2685   * If EL3 is 64-bit:
2686   *  + NonSecure EL1 & 0 stage 1
2687   *  + NonSecure EL1 & 0 stage 2
2688   *  + NonSecure EL2
2689   *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2690   *  + Secure EL1 & 0
2691   *  + Secure EL3
2692   * If EL3 is 32-bit:
2693   *  + NonSecure PL1 & 0 stage 1
2694   *  + NonSecure PL1 & 0 stage 2
2695   *  + NonSecure PL2
2696   *  + Secure PL0
2697   *  + Secure PL1
2698   * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2699   *
2700   * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2701   *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2702   *     because they may differ in access permissions even if the VA->PA map is
2703   *     the same
2704   *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2705   *     translation, which means that we have one mmu_idx that deals with two
2706   *     concatenated translation regimes [this sort of combined s1+2 TLB is
2707   *     architecturally permitted]
2708   *  3. we don't need to allocate an mmu_idx to translations that we won't be
2709   *     handling via the TLB. The only way to do a stage 1 translation without
2710   *     the immediate stage 2 translation is via the ATS or AT system insns,
2711   *     which can be slow-pathed and always do a page table walk.
2712   *     The only use of stage 2 translations is either as part of an s1+2
2713   *     lookup or when loading the descriptors during a stage 1 page table walk,
2714   *     and in both those cases we don't use the TLB.
2715   *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2716   *     translation regimes, because they map reasonably well to each other
2717   *     and they can't both be active at the same time.
2718   *  5. we want to be able to use the TLB for accesses done as part of a
2719   *     stage1 page table walk, rather than having to walk the stage2 page
2720   *     table over and over.
2721   *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2722   *     Never (PAN) bit within PSTATE.
2723   *  7. we fold together the secure and non-secure regimes for A-profile,
2724   *     because there are no banked system registers for aarch64, so the
2725   *     process of switching between secure and non-secure is
2726   *     already heavyweight.
2727   *
2728   * This gives us the following list of cases:
2729   *
2730   * EL0 EL1&0 stage 1+2 (aka NS PL0)
2731   * EL1 EL1&0 stage 1+2 (aka NS PL1)
2732   * EL1 EL1&0 stage 1+2 +PAN
2733   * EL0 EL2&0
2734   * EL2 EL2&0
2735   * EL2 EL2&0 +PAN
2736   * EL2 (aka NS PL2)
2737   * EL3 (aka S PL1)
2738   * Physical (NS & S)
2739   * Stage2 (NS & S)
2740   *
2741   * for a total of 12 different mmu_idx.
2742   *
2743   * R profile CPUs have an MPU, but can use the same set of MMU indexes
2744   * as A profile. They only need to distinguish EL0 and EL1 (and
2745   * EL2 if we ever model a Cortex-R52).
2746   *
2747   * M profile CPUs are rather different as they do not have a true MMU.
2748   * They have the following different MMU indexes:
2749   *  User
2750   *  Privileged
2751   *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2752   *  Privileged, execution priority negative (ditto)
2753   * If the CPU supports the v8M Security Extension then there are also:
2754   *  Secure User
2755   *  Secure Privileged
2756   *  Secure User, execution priority negative
2757   *  Secure Privileged, execution priority negative
2758   *
2759   * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2760   * are not quite the same -- different CPU types (most notably M profile
2761   * vs A/R profile) would like to use MMU indexes with different semantics,
2762   * but since we don't ever need to use all of those in a single CPU we
2763   * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2764   * modes + total number of M profile MMU modes". The lower bits of
2765   * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2766   * the same for any particular CPU.
2767   * Variables of type ARMMUIdx are always full values, and the core
2768   * index values are in variables of type 'int'.
2769   *
2770   * Our enumeration includes at the end some entries which are not "true"
2771   * mmu_idx values in that they don't have corresponding TLBs and are only
2772   * valid for doing slow path page table walks.
2773   *
2774   * The constant names here are patterned after the general style of the names
2775   * of the AT/ATS operations.
2776   * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2777   * For M profile we arrange them to have a bit for priv, a bit for negpri
2778   * and a bit for secure.
2779   */
2780  #define ARM_MMU_IDX_A     0x10  /* A profile */
2781  #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2782  #define ARM_MMU_IDX_M     0x40  /* M profile */
2783  
2784  /* Meanings of the bits for M profile mmu idx values */
2785  #define ARM_MMU_IDX_M_PRIV   0x1
2786  #define ARM_MMU_IDX_M_NEGPRI 0x2
2787  #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2788  
2789  #define ARM_MMU_IDX_TYPE_MASK \
2790      (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2791  #define ARM_MMU_IDX_COREIDX_MASK 0xf
2792  
2793  typedef enum ARMMMUIdx {
2794      /*
2795       * A-profile.
2796       */
2797      ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2798      ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2799      ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2800      ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2801      ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2802      ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2803      ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2804      ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2805  
2806      /*
2807       * Used for second stage of an S12 page table walk, or for descriptor
2808       * loads during first stage of an S1 page table walk.  Note that both
2809       * are in use simultaneously for SecureEL2: the security state for
2810       * the S2 ptw is selected by the NS bit from the S1 ptw.
2811       */
2812      ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2813      ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2814  
2815      /* TLBs with 1-1 mapping to the physical address spaces. */
2816      ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2817      ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2818      ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2819      ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2820  
2821      /*
2822       * These are not allocated TLBs and are used only for AT system
2823       * instructions or for the first stage of an S12 page table walk.
2824       */
2825      ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2826      ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2827      ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2828  
2829      /*
2830       * M-profile.
2831       */
2832      ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2833      ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2834      ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2835      ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2836      ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2837      ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2838      ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2839      ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2840  } ARMMMUIdx;
2841  
2842  /*
2843   * Bit macros for the core-mmu-index values for each index,
2844   * for use when calling tlb_flush_by_mmuidx() and friends.
2845   */
2846  #define TO_CORE_BIT(NAME) \
2847      ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2848  
2849  typedef enum ARMMMUIdxBit {
2850      TO_CORE_BIT(E10_0),
2851      TO_CORE_BIT(E20_0),
2852      TO_CORE_BIT(E10_1),
2853      TO_CORE_BIT(E10_1_PAN),
2854      TO_CORE_BIT(E2),
2855      TO_CORE_BIT(E20_2),
2856      TO_CORE_BIT(E20_2_PAN),
2857      TO_CORE_BIT(E3),
2858      TO_CORE_BIT(Stage2),
2859      TO_CORE_BIT(Stage2_S),
2860  
2861      TO_CORE_BIT(MUser),
2862      TO_CORE_BIT(MPriv),
2863      TO_CORE_BIT(MUserNegPri),
2864      TO_CORE_BIT(MPrivNegPri),
2865      TO_CORE_BIT(MSUser),
2866      TO_CORE_BIT(MSPriv),
2867      TO_CORE_BIT(MSUserNegPri),
2868      TO_CORE_BIT(MSPrivNegPri),
2869  } ARMMMUIdxBit;
2870  
2871  #undef TO_CORE_BIT
2872  
2873  #define MMU_USER_IDX 0
2874  
2875  /* Indexes used when registering address spaces with cpu_address_space_init */
2876  typedef enum ARMASIdx {
2877      ARMASIdx_NS = 0,
2878      ARMASIdx_S = 1,
2879      ARMASIdx_TagNS = 2,
2880      ARMASIdx_TagS = 3,
2881  } ARMASIdx;
2882  
2883  static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2884  {
2885      /* Assert the relative order of the physical mmu indexes. */
2886      QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2887      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2888      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2889      QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2890  
2891      return ARMMMUIdx_Phys_S + space;
2892  }
2893  
2894  static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2895  {
2896      assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2897      return idx - ARMMMUIdx_Phys_S;
2898  }
2899  
2900  static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2901  {
2902      /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2903       * CSSELR is RAZ/WI.
2904       */
2905      return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2906  }
2907  
2908  static inline bool arm_sctlr_b(CPUARMState *env)
2909  {
2910      return
2911          /* We need not implement SCTLR.ITD in user-mode emulation, so
2912           * let linux-user ignore the fact that it conflicts with SCTLR_B.
2913           * This lets people run BE32 binaries with "-cpu any".
2914           */
2915  #ifndef CONFIG_USER_ONLY
2916          !arm_feature(env, ARM_FEATURE_V7) &&
2917  #endif
2918          (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2919  }
2920  
2921  uint64_t arm_sctlr(CPUARMState *env, int el);
2922  
2923  static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2924                                                    bool sctlr_b)
2925  {
2926  #ifdef CONFIG_USER_ONLY
2927      /*
2928       * In system mode, BE32 is modelled in line with the
2929       * architecture (as word-invariant big-endianness), where loads
2930       * and stores are done little endian but from addresses which
2931       * are adjusted by XORing with the appropriate constant. So the
2932       * endianness to use for the raw data access is not affected by
2933       * SCTLR.B.
2934       * In user mode, however, we model BE32 as byte-invariant
2935       * big-endianness (because user-only code cannot tell the
2936       * difference), and so we need to use a data access endianness
2937       * that depends on SCTLR.B.
2938       */
2939      if (sctlr_b) {
2940          return true;
2941      }
2942  #endif
2943      /* In 32bit endianness is determined by looking at CPSR's E bit */
2944      return env->uncached_cpsr & CPSR_E;
2945  }
2946  
2947  static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2948  {
2949      return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2950  }
2951  
2952  /* Return true if the processor is in big-endian mode. */
2953  static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2954  {
2955      if (!is_a64(env)) {
2956          return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2957      } else {
2958          int cur_el = arm_current_el(env);
2959          uint64_t sctlr = arm_sctlr(env, cur_el);
2960          return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2961      }
2962  }
2963  
2964  #include "exec/cpu-all.h"
2965  
2966  /*
2967   * We have more than 32-bits worth of state per TB, so we split the data
2968   * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2969   * We collect these two parts in CPUARMTBFlags where they are named
2970   * flags and flags2 respectively.
2971   *
2972   * The flags that are shared between all execution modes, TBFLAG_ANY,
2973   * are stored in flags.  The flags that are specific to a given mode
2974   * are stores in flags2.  Since cs_base is sized on the configured
2975   * address size, flags2 always has 64-bits for A64, and a minimum of
2976   * 32-bits for A32 and M32.
2977   *
2978   * The bits for 32-bit A-profile and M-profile partially overlap:
2979   *
2980   *  31         23         11 10             0
2981   * +-------------+----------+----------------+
2982   * |             |          |   TBFLAG_A32   |
2983   * | TBFLAG_AM32 |          +-----+----------+
2984   * |             |                |TBFLAG_M32|
2985   * +-------------+----------------+----------+
2986   *  31         23                6 5        0
2987   *
2988   * Unless otherwise noted, these bits are cached in env->hflags.
2989   */
2990  FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2991  FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2992  FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
2993  FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2994  FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
2995  /* Target EL if we take a floating-point-disabled exception */
2996  FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
2997  /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
2998  FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
2999  FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3000  FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3001  FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3002  
3003  /*
3004   * Bit usage when in AArch32 state, both A- and M-profile.
3005   */
3006  FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3007  FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3008  
3009  /*
3010   * Bit usage when in AArch32 state, for A-profile only.
3011   */
3012  FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3013  FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3014  /*
3015   * We store the bottom two bits of the CPAR as TB flags and handle
3016   * checks on the other bits at runtime. This shares the same bits as
3017   * VECSTRIDE, which is OK as no XScale CPU has VFP.
3018   * Not cached, because VECLEN+VECSTRIDE are not cached.
3019   */
3020  FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3021  FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3022  FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3023  FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3024  /*
3025   * Indicates whether cp register reads and writes by guest code should access
3026   * the secure or nonsecure bank of banked registers; note that this is not
3027   * the same thing as the current security state of the processor!
3028   */
3029  FIELD(TBFLAG_A32, NS, 10, 1)
3030  /*
3031   * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3032   * This requires an SME trap from AArch32 mode when using NEON.
3033   */
3034  FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3035  
3036  /*
3037   * Bit usage when in AArch32 state, for M-profile only.
3038   */
3039  /* Handler (ie not Thread) mode */
3040  FIELD(TBFLAG_M32, HANDLER, 0, 1)
3041  /* Whether we should generate stack-limit checks */
3042  FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3043  /* Set if FPCCR.LSPACT is set */
3044  FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3045  /* Set if we must create a new FP context */
3046  FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3047  /* Set if FPCCR.S does not match current security state */
3048  FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3049  /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3050  FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3051  /* Set if in secure mode */
3052  FIELD(TBFLAG_M32, SECURE, 6, 1)
3053  
3054  /*
3055   * Bit usage when in AArch64 state
3056   */
3057  FIELD(TBFLAG_A64, TBII, 0, 2)
3058  FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3059  /* The current vector length, either NVL or SVL. */
3060  FIELD(TBFLAG_A64, VL, 4, 4)
3061  FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3062  FIELD(TBFLAG_A64, BT, 9, 1)
3063  FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3064  FIELD(TBFLAG_A64, TBID, 12, 2)
3065  FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3066  FIELD(TBFLAG_A64, ATA, 15, 1)
3067  FIELD(TBFLAG_A64, TCMA, 16, 2)
3068  FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3069  FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3070  FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3071  FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3072  FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3073  FIELD(TBFLAG_A64, SVL, 24, 4)
3074  /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3075  FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3076  FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3077  FIELD(TBFLAG_A64, NAA, 30, 1)
3078  FIELD(TBFLAG_A64, ATA0, 31, 1)
3079  FIELD(TBFLAG_A64, NV, 32, 1)
3080  FIELD(TBFLAG_A64, NV1, 33, 1)
3081  FIELD(TBFLAG_A64, NV2, 34, 1)
3082  /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3083  FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3084  /* Set if FEAT_NV2 RAM accesses are big-endian */
3085  FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3086  
3087  /*
3088   * Helpers for using the above. Note that only the A64 accessors use
3089   * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3090   * word either is or might be 32 bits only.
3091   */
3092  #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3093      (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3094  #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3095      (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3096  #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3097      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3098  #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3099      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3100  #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3101      (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3102  
3103  #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3104  #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3105  #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3106  #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3107  #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3108  
3109  /**
3110   * sve_vq
3111   * @env: the cpu context
3112   *
3113   * Return the VL cached within env->hflags, in units of quadwords.
3114   */
3115  static inline int sve_vq(CPUARMState *env)
3116  {
3117      return EX_TBFLAG_A64(env->hflags, VL) + 1;
3118  }
3119  
3120  /**
3121   * sme_vq
3122   * @env: the cpu context
3123   *
3124   * Return the SVL cached within env->hflags, in units of quadwords.
3125   */
3126  static inline int sme_vq(CPUARMState *env)
3127  {
3128      return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3129  }
3130  
3131  static inline bool bswap_code(bool sctlr_b)
3132  {
3133  #ifdef CONFIG_USER_ONLY
3134      /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3135       * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3136       * would also end up as a mixed-endian mode with BE code, LE data.
3137       */
3138      return TARGET_BIG_ENDIAN ^ sctlr_b;
3139  #else
3140      /* All code access in ARM is little endian, and there are no loaders
3141       * doing swaps that need to be reversed
3142       */
3143      return 0;
3144  #endif
3145  }
3146  
3147  #ifdef CONFIG_USER_ONLY
3148  static inline bool arm_cpu_bswap_data(CPUARMState *env)
3149  {
3150      return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3151  }
3152  #endif
3153  
3154  void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3155                            uint64_t *cs_base, uint32_t *flags);
3156  
3157  enum {
3158      QEMU_PSCI_CONDUIT_DISABLED = 0,
3159      QEMU_PSCI_CONDUIT_SMC = 1,
3160      QEMU_PSCI_CONDUIT_HVC = 2,
3161  };
3162  
3163  #ifndef CONFIG_USER_ONLY
3164  /* Return the address space index to use for a memory access */
3165  static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3166  {
3167      return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3168  }
3169  
3170  /* Return the AddressSpace to use for a memory access
3171   * (which depends on whether the access is S or NS, and whether
3172   * the board gave us a separate AddressSpace for S accesses).
3173   */
3174  static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3175  {
3176      return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3177  }
3178  #endif
3179  
3180  /**
3181   * arm_register_pre_el_change_hook:
3182   * Register a hook function which will be called immediately before this
3183   * CPU changes exception level or mode. The hook function will be
3184   * passed a pointer to the ARMCPU and the opaque data pointer passed
3185   * to this function when the hook was registered.
3186   *
3187   * Note that if a pre-change hook is called, any registered post-change hooks
3188   * are guaranteed to subsequently be called.
3189   */
3190  void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3191                                   void *opaque);
3192  /**
3193   * arm_register_el_change_hook:
3194   * Register a hook function which will be called immediately after this
3195   * CPU changes exception level or mode. The hook function will be
3196   * passed a pointer to the ARMCPU and the opaque data pointer passed
3197   * to this function when the hook was registered.
3198   *
3199   * Note that any registered hooks registered here are guaranteed to be called
3200   * if pre-change hooks have been.
3201   */
3202  void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3203          *opaque);
3204  
3205  /**
3206   * arm_rebuild_hflags:
3207   * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3208   */
3209  void arm_rebuild_hflags(CPUARMState *env);
3210  
3211  /**
3212   * aa32_vfp_dreg:
3213   * Return a pointer to the Dn register within env in 32-bit mode.
3214   */
3215  static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3216  {
3217      return &env->vfp.zregs[regno >> 1].d[regno & 1];
3218  }
3219  
3220  /**
3221   * aa32_vfp_qreg:
3222   * Return a pointer to the Qn register within env in 32-bit mode.
3223   */
3224  static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3225  {
3226      return &env->vfp.zregs[regno].d[0];
3227  }
3228  
3229  /**
3230   * aa64_vfp_qreg:
3231   * Return a pointer to the Qn register within env in 64-bit mode.
3232   */
3233  static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3234  {
3235      return &env->vfp.zregs[regno].d[0];
3236  }
3237  
3238  /* Shared between translate-sve.c and sve_helper.c.  */
3239  extern const uint64_t pred_esz_masks[5];
3240  
3241  /*
3242   * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3243   * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3244   * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3245   */
3246  #define PAGE_BTI            PAGE_TARGET_1
3247  #define PAGE_MTE            PAGE_TARGET_2
3248  #define PAGE_TARGET_STICKY  PAGE_MTE
3249  
3250  /* We associate one allocation tag per 16 bytes, the minimum.  */
3251  #define LOG2_TAG_GRANULE 4
3252  #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3253  
3254  #ifdef CONFIG_USER_ONLY
3255  #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3256  #endif
3257  
3258  #ifdef TARGET_TAGGED_ADDRESSES
3259  /**
3260   * cpu_untagged_addr:
3261   * @cs: CPU context
3262   * @x: tagged address
3263   *
3264   * Remove any address tag from @x.  This is explicitly related to the
3265   * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3266   *
3267   * There should be a better place to put this, but we need this in
3268   * include/exec/cpu_ldst.h, and not some place linux-user specific.
3269   */
3270  static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3271  {
3272      ARMCPU *cpu = ARM_CPU(cs);
3273      if (cpu->env.tagged_addr_enable) {
3274          /*
3275           * TBI is enabled for userspace but not kernelspace addresses.
3276           * Only clear the tag if bit 55 is clear.
3277           */
3278          x &= sextract64(x, 0, 56);
3279      }
3280      return x;
3281  }
3282  #endif
3283  
3284  #endif
3285