xref: /openbmc/qemu/target/arm/cpu.h (revision 9951ba94)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
60 
61 #define ARMV7M_EXCP_RESET   1
62 #define ARMV7M_EXCP_NMI     2
63 #define ARMV7M_EXCP_HARD    3
64 #define ARMV7M_EXCP_MEM     4
65 #define ARMV7M_EXCP_BUS     5
66 #define ARMV7M_EXCP_USAGE   6
67 #define ARMV7M_EXCP_SECURE  7
68 #define ARMV7M_EXCP_SVC     11
69 #define ARMV7M_EXCP_DEBUG   12
70 #define ARMV7M_EXCP_PENDSV  14
71 #define ARMV7M_EXCP_SYSTICK 15
72 
73 /* For M profile, some registers are banked secure vs non-secure;
74  * these are represented as a 2-element array where the first element
75  * is the non-secure copy and the second is the secure copy.
76  * When the CPU does not have implement the security extension then
77  * only the first element is used.
78  * This means that the copy for the current security state can be
79  * accessed via env->registerfield[env->v7m.secure] (whether the security
80  * extension is implemented or not).
81  */
82 enum {
83     M_REG_NS = 0,
84     M_REG_S = 1,
85     M_REG_NUM_BANKS = 2,
86 };
87 
88 /* ARM-specific interrupt pending bits.  */
89 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
90 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
91 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
92 
93 /* The usual mapping for an AArch64 system register to its AArch32
94  * counterpart is for the 32 bit world to have access to the lower
95  * half only (with writes leaving the upper half untouched). It's
96  * therefore useful to be able to pass TCG the offset of the least
97  * significant half of a uint64_t struct member.
98  */
99 #if HOST_BIG_ENDIAN
100 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #define offsetofhigh32(S, M) offsetof(S, M)
102 #else
103 #define offsetoflow32(S, M) offsetof(S, M)
104 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #endif
106 
107 /* Meanings of the ARMCPU object's four inbound GPIO lines */
108 #define ARM_CPU_IRQ 0
109 #define ARM_CPU_FIQ 1
110 #define ARM_CPU_VIRQ 2
111 #define ARM_CPU_VFIQ 3
112 
113 /* ARM-specific extra insn start words:
114  * 1: Conditional execution bits
115  * 2: Partial exception syndrome for data aborts
116  */
117 #define TARGET_INSN_START_EXTRA_WORDS 2
118 
119 /* The 2nd extra word holding syndrome info for data aborts does not use
120  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
121  * help the sleb128 encoder do a better job.
122  * When restoring the CPU state, we shift it back up.
123  */
124 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
125 #define ARM_INSN_START_WORD2_SHIFT 14
126 
127 /* We currently assume float and double are IEEE single and double
128    precision respectively.
129    Doing runtime conversions is tricky because VFP registers may contain
130    integer values (eg. as the result of a FTOSI instruction).
131    s<2n> maps to the least significant half of d<n>
132    s<2n+1> maps to the most significant half of d<n>
133  */
134 
135 /**
136  * DynamicGDBXMLInfo:
137  * @desc: Contains the XML descriptions.
138  * @num: Number of the registers in this XML seen by GDB.
139  * @data: A union with data specific to the set of registers
140  *    @cpregs_keys: Array that contains the corresponding Key of
141  *                  a given cpreg with the same order of the cpreg
142  *                  in the XML description.
143  */
144 typedef struct DynamicGDBXMLInfo {
145     char *desc;
146     int num;
147     union {
148         struct {
149             uint32_t *keys;
150         } cpregs;
151     } data;
152 } DynamicGDBXMLInfo;
153 
154 /* CPU state for each instance of a generic timer (in cp15 c14) */
155 typedef struct ARMGenericTimer {
156     uint64_t cval; /* Timer CompareValue register */
157     uint64_t ctl; /* Timer Control register */
158 } ARMGenericTimer;
159 
160 #define GTIMER_PHYS     0
161 #define GTIMER_VIRT     1
162 #define GTIMER_HYP      2
163 #define GTIMER_SEC      3
164 #define GTIMER_HYPVIRT  4
165 #define NUM_GTIMERS     5
166 
167 typedef struct {
168     uint64_t raw_tcr;
169     uint32_t mask;
170     uint32_t base_mask;
171 } TCR;
172 
173 #define VTCR_NSW (1u << 29)
174 #define VTCR_NSA (1u << 30)
175 #define VSTCR_SW VTCR_NSW
176 #define VSTCR_SA VTCR_NSA
177 
178 /* Define a maximum sized vector register.
179  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
180  * For 64-bit, this is a 2048-bit SVE register.
181  *
182  * Note that the mapping between S, D, and Q views of the register bank
183  * differs between AArch64 and AArch32.
184  * In AArch32:
185  *  Qn = regs[n].d[1]:regs[n].d[0]
186  *  Dn = regs[n / 2].d[n & 1]
187  *  Sn = regs[n / 4].d[n % 4 / 2],
188  *       bits 31..0 for even n, and bits 63..32 for odd n
189  *       (and regs[16] to regs[31] are inaccessible)
190  * In AArch64:
191  *  Zn = regs[n].d[*]
192  *  Qn = regs[n].d[1]:regs[n].d[0]
193  *  Dn = regs[n].d[0]
194  *  Sn = regs[n].d[0] bits 31..0
195  *  Hn = regs[n].d[0] bits 15..0
196  *
197  * This corresponds to the architecturally defined mapping between
198  * the two execution states, and means we do not need to explicitly
199  * map these registers when changing states.
200  *
201  * Align the data for use with TCG host vector operations.
202  */
203 
204 #ifdef TARGET_AARCH64
205 # define ARM_MAX_VQ    16
206 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
207 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
208 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
209 #else
210 # define ARM_MAX_VQ    1
211 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
212 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
213 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
214 #endif
215 
216 typedef struct ARMVectorReg {
217     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
218 } ARMVectorReg;
219 
220 #ifdef TARGET_AARCH64
221 /* In AArch32 mode, predicate registers do not exist at all.  */
222 typedef struct ARMPredicateReg {
223     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
224 } ARMPredicateReg;
225 
226 /* In AArch32 mode, PAC keys do not exist at all.  */
227 typedef struct ARMPACKey {
228     uint64_t lo, hi;
229 } ARMPACKey;
230 #endif
231 
232 /* See the commentary above the TBFLAG field definitions.  */
233 typedef struct CPUARMTBFlags {
234     uint32_t flags;
235     target_ulong flags2;
236 } CPUARMTBFlags;
237 
238 typedef struct CPUArchState {
239     /* Regs for current mode.  */
240     uint32_t regs[16];
241 
242     /* 32/64 switch only happens when taking and returning from
243      * exceptions so the overlap semantics are taken care of then
244      * instead of having a complicated union.
245      */
246     /* Regs for A64 mode.  */
247     uint64_t xregs[32];
248     uint64_t pc;
249     /* PSTATE isn't an architectural register for ARMv8. However, it is
250      * convenient for us to assemble the underlying state into a 32 bit format
251      * identical to the architectural format used for the SPSR. (This is also
252      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
253      * 'pstate' register are.) Of the PSTATE bits:
254      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
255      *    semantics as for AArch32, as described in the comments on each field)
256      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
257      *  DAIF (exception masks) are kept in env->daif
258      *  BTYPE is kept in env->btype
259      *  all other bits are stored in their correct places in env->pstate
260      */
261     uint32_t pstate;
262     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
263     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
264 
265     /* Cached TBFLAGS state.  See below for which bits are included.  */
266     CPUARMTBFlags hflags;
267 
268     /* Frequently accessed CPSR bits are stored separately for efficiency.
269        This contains all the other bits.  Use cpsr_{read,write} to access
270        the whole CPSR.  */
271     uint32_t uncached_cpsr;
272     uint32_t spsr;
273 
274     /* Banked registers.  */
275     uint64_t banked_spsr[8];
276     uint32_t banked_r13[8];
277     uint32_t banked_r14[8];
278 
279     /* These hold r8-r12.  */
280     uint32_t usr_regs[5];
281     uint32_t fiq_regs[5];
282 
283     /* cpsr flag cache for faster execution */
284     uint32_t CF; /* 0 or 1 */
285     uint32_t VF; /* V is the bit 31. All other bits are undefined */
286     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
287     uint32_t ZF; /* Z set if zero.  */
288     uint32_t QF; /* 0 or 1 */
289     uint32_t GE; /* cpsr[19:16] */
290     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
291     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
292     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
293 
294     uint64_t elr_el[4]; /* AArch64 exception link regs  */
295     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
296 
297     /* System control coprocessor (cp15) */
298     struct {
299         uint32_t c0_cpuid;
300         union { /* Cache size selection */
301             struct {
302                 uint64_t _unused_csselr0;
303                 uint64_t csselr_ns;
304                 uint64_t _unused_csselr1;
305                 uint64_t csselr_s;
306             };
307             uint64_t csselr_el[4];
308         };
309         union { /* System control register. */
310             struct {
311                 uint64_t _unused_sctlr;
312                 uint64_t sctlr_ns;
313                 uint64_t hsctlr;
314                 uint64_t sctlr_s;
315             };
316             uint64_t sctlr_el[4];
317         };
318         uint64_t cpacr_el1; /* Architectural feature access control register */
319         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
320         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
321         uint64_t sder; /* Secure debug enable register. */
322         uint32_t nsacr; /* Non-secure access control register. */
323         union { /* MMU translation table base 0. */
324             struct {
325                 uint64_t _unused_ttbr0_0;
326                 uint64_t ttbr0_ns;
327                 uint64_t _unused_ttbr0_1;
328                 uint64_t ttbr0_s;
329             };
330             uint64_t ttbr0_el[4];
331         };
332         union { /* MMU translation table base 1. */
333             struct {
334                 uint64_t _unused_ttbr1_0;
335                 uint64_t ttbr1_ns;
336                 uint64_t _unused_ttbr1_1;
337                 uint64_t ttbr1_s;
338             };
339             uint64_t ttbr1_el[4];
340         };
341         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
342         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
343         /* MMU translation table base control. */
344         TCR tcr_el[4];
345         TCR vtcr_el2; /* Virtualization Translation Control.  */
346         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
347         uint32_t c2_data; /* MPU data cacheable bits.  */
348         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
349         union { /* MMU domain access control register
350                  * MPU write buffer control.
351                  */
352             struct {
353                 uint64_t dacr_ns;
354                 uint64_t dacr_s;
355             };
356             struct {
357                 uint64_t dacr32_el2;
358             };
359         };
360         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
361         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
362         uint64_t hcr_el2; /* Hypervisor configuration register */
363         uint64_t scr_el3; /* Secure configuration register.  */
364         union { /* Fault status registers.  */
365             struct {
366                 uint64_t ifsr_ns;
367                 uint64_t ifsr_s;
368             };
369             struct {
370                 uint64_t ifsr32_el2;
371             };
372         };
373         union {
374             struct {
375                 uint64_t _unused_dfsr;
376                 uint64_t dfsr_ns;
377                 uint64_t hsr;
378                 uint64_t dfsr_s;
379             };
380             uint64_t esr_el[4];
381         };
382         uint32_t c6_region[8]; /* MPU base/size registers.  */
383         union { /* Fault address registers. */
384             struct {
385                 uint64_t _unused_far0;
386 #if HOST_BIG_ENDIAN
387                 uint32_t ifar_ns;
388                 uint32_t dfar_ns;
389                 uint32_t ifar_s;
390                 uint32_t dfar_s;
391 #else
392                 uint32_t dfar_ns;
393                 uint32_t ifar_ns;
394                 uint32_t dfar_s;
395                 uint32_t ifar_s;
396 #endif
397                 uint64_t _unused_far3;
398             };
399             uint64_t far_el[4];
400         };
401         uint64_t hpfar_el2;
402         uint64_t hstr_el2;
403         union { /* Translation result. */
404             struct {
405                 uint64_t _unused_par_0;
406                 uint64_t par_ns;
407                 uint64_t _unused_par_1;
408                 uint64_t par_s;
409             };
410             uint64_t par_el[4];
411         };
412 
413         uint32_t c9_insn; /* Cache lockdown registers.  */
414         uint32_t c9_data;
415         uint64_t c9_pmcr; /* performance monitor control register */
416         uint64_t c9_pmcnten; /* perf monitor counter enables */
417         uint64_t c9_pmovsr; /* perf monitor overflow status */
418         uint64_t c9_pmuserenr; /* perf monitor user enable */
419         uint64_t c9_pmselr; /* perf monitor counter selection register */
420         uint64_t c9_pminten; /* perf monitor interrupt enables */
421         union { /* Memory attribute redirection */
422             struct {
423 #if HOST_BIG_ENDIAN
424                 uint64_t _unused_mair_0;
425                 uint32_t mair1_ns;
426                 uint32_t mair0_ns;
427                 uint64_t _unused_mair_1;
428                 uint32_t mair1_s;
429                 uint32_t mair0_s;
430 #else
431                 uint64_t _unused_mair_0;
432                 uint32_t mair0_ns;
433                 uint32_t mair1_ns;
434                 uint64_t _unused_mair_1;
435                 uint32_t mair0_s;
436                 uint32_t mair1_s;
437 #endif
438             };
439             uint64_t mair_el[4];
440         };
441         union { /* vector base address register */
442             struct {
443                 uint64_t _unused_vbar;
444                 uint64_t vbar_ns;
445                 uint64_t hvbar;
446                 uint64_t vbar_s;
447             };
448             uint64_t vbar_el[4];
449         };
450         uint32_t mvbar; /* (monitor) vector base address register */
451         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
452         struct { /* FCSE PID. */
453             uint32_t fcseidr_ns;
454             uint32_t fcseidr_s;
455         };
456         union { /* Context ID. */
457             struct {
458                 uint64_t _unused_contextidr_0;
459                 uint64_t contextidr_ns;
460                 uint64_t _unused_contextidr_1;
461                 uint64_t contextidr_s;
462             };
463             uint64_t contextidr_el[4];
464         };
465         union { /* User RW Thread register. */
466             struct {
467                 uint64_t tpidrurw_ns;
468                 uint64_t tpidrprw_ns;
469                 uint64_t htpidr;
470                 uint64_t _tpidr_el3;
471             };
472             uint64_t tpidr_el[4];
473         };
474         /* The secure banks of these registers don't map anywhere */
475         uint64_t tpidrurw_s;
476         uint64_t tpidrprw_s;
477         uint64_t tpidruro_s;
478 
479         union { /* User RO Thread register. */
480             uint64_t tpidruro_ns;
481             uint64_t tpidrro_el[1];
482         };
483         uint64_t c14_cntfrq; /* Counter Frequency register */
484         uint64_t c14_cntkctl; /* Timer Control register */
485         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
486         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
487         ARMGenericTimer c14_timer[NUM_GTIMERS];
488         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
489         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
490         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
491         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
492         uint32_t c15_threadid; /* TI debugger thread-ID.  */
493         uint32_t c15_config_base_address; /* SCU base address.  */
494         uint32_t c15_diagnostic; /* diagnostic register */
495         uint32_t c15_power_diagnostic;
496         uint32_t c15_power_control; /* power control */
497         uint64_t dbgbvr[16]; /* breakpoint value registers */
498         uint64_t dbgbcr[16]; /* breakpoint control registers */
499         uint64_t dbgwvr[16]; /* watchpoint value registers */
500         uint64_t dbgwcr[16]; /* watchpoint control registers */
501         uint64_t mdscr_el1;
502         uint64_t oslsr_el1; /* OS Lock Status */
503         uint64_t mdcr_el2;
504         uint64_t mdcr_el3;
505         /* Stores the architectural value of the counter *the last time it was
506          * updated* by pmccntr_op_start. Accesses should always be surrounded
507          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
508          * architecturally-correct value is being read/set.
509          */
510         uint64_t c15_ccnt;
511         /* Stores the delta between the architectural value and the underlying
512          * cycle count during normal operation. It is used to update c15_ccnt
513          * to be the correct architectural value before accesses. During
514          * accesses, c15_ccnt_delta contains the underlying count being used
515          * for the access, after which it reverts to the delta value in
516          * pmccntr_op_finish.
517          */
518         uint64_t c15_ccnt_delta;
519         uint64_t c14_pmevcntr[31];
520         uint64_t c14_pmevcntr_delta[31];
521         uint64_t c14_pmevtyper[31];
522         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
523         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
524         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
525         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
526         uint64_t gcr_el1;
527         uint64_t rgsr_el1;
528     } cp15;
529 
530     struct {
531         /* M profile has up to 4 stack pointers:
532          * a Main Stack Pointer and a Process Stack Pointer for each
533          * of the Secure and Non-Secure states. (If the CPU doesn't support
534          * the security extension then it has only two SPs.)
535          * In QEMU we always store the currently active SP in regs[13],
536          * and the non-active SP for the current security state in
537          * v7m.other_sp. The stack pointers for the inactive security state
538          * are stored in other_ss_msp and other_ss_psp.
539          * switch_v7m_security_state() is responsible for rearranging them
540          * when we change security state.
541          */
542         uint32_t other_sp;
543         uint32_t other_ss_msp;
544         uint32_t other_ss_psp;
545         uint32_t vecbase[M_REG_NUM_BANKS];
546         uint32_t basepri[M_REG_NUM_BANKS];
547         uint32_t control[M_REG_NUM_BANKS];
548         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
549         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
550         uint32_t hfsr; /* HardFault Status */
551         uint32_t dfsr; /* Debug Fault Status Register */
552         uint32_t sfsr; /* Secure Fault Status Register */
553         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
554         uint32_t bfar; /* BusFault Address */
555         uint32_t sfar; /* Secure Fault Address Register */
556         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
557         int exception;
558         uint32_t primask[M_REG_NUM_BANKS];
559         uint32_t faultmask[M_REG_NUM_BANKS];
560         uint32_t aircr; /* only holds r/w state if security extn implemented */
561         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
562         uint32_t csselr[M_REG_NUM_BANKS];
563         uint32_t scr[M_REG_NUM_BANKS];
564         uint32_t msplim[M_REG_NUM_BANKS];
565         uint32_t psplim[M_REG_NUM_BANKS];
566         uint32_t fpcar[M_REG_NUM_BANKS];
567         uint32_t fpccr[M_REG_NUM_BANKS];
568         uint32_t fpdscr[M_REG_NUM_BANKS];
569         uint32_t cpacr[M_REG_NUM_BANKS];
570         uint32_t nsacr;
571         uint32_t ltpsize;
572         uint32_t vpr;
573     } v7m;
574 
575     /* Information associated with an exception about to be taken:
576      * code which raises an exception must set cs->exception_index and
577      * the relevant parts of this structure; the cpu_do_interrupt function
578      * will then set the guest-visible registers as part of the exception
579      * entry process.
580      */
581     struct {
582         uint32_t syndrome; /* AArch64 format syndrome register */
583         uint32_t fsr; /* AArch32 format fault status register info */
584         uint64_t vaddress; /* virtual addr associated with exception, if any */
585         uint32_t target_el; /* EL the exception should be targeted for */
586         /* If we implement EL2 we will also need to store information
587          * about the intermediate physical address for stage 2 faults.
588          */
589     } exception;
590 
591     /* Information associated with an SError */
592     struct {
593         uint8_t pending;
594         uint8_t has_esr;
595         uint64_t esr;
596     } serror;
597 
598     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
599 
600     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
601     uint32_t irq_line_state;
602 
603     /* Thumb-2 EE state.  */
604     uint32_t teecr;
605     uint32_t teehbr;
606 
607     /* VFP coprocessor state.  */
608     struct {
609         ARMVectorReg zregs[32];
610 
611 #ifdef TARGET_AARCH64
612         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
613 #define FFR_PRED_NUM 16
614         ARMPredicateReg pregs[17];
615         /* Scratch space for aa64 sve predicate temporary.  */
616         ARMPredicateReg preg_tmp;
617 #endif
618 
619         /* We store these fpcsr fields separately for convenience.  */
620         uint32_t qc[4] QEMU_ALIGNED(16);
621         int vec_len;
622         int vec_stride;
623 
624         uint32_t xregs[16];
625 
626         /* Scratch space for aa32 neon expansion.  */
627         uint32_t scratch[8];
628 
629         /* There are a number of distinct float control structures:
630          *
631          *  fp_status: is the "normal" fp status.
632          *  fp_status_fp16: used for half-precision calculations
633          *  standard_fp_status : the ARM "Standard FPSCR Value"
634          *  standard_fp_status_fp16 : used for half-precision
635          *       calculations with the ARM "Standard FPSCR Value"
636          *
637          * Half-precision operations are governed by a separate
638          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
639          * status structure to control this.
640          *
641          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
642          * round-to-nearest and is used by any operations (generally
643          * Neon) which the architecture defines as controlled by the
644          * standard FPSCR value rather than the FPSCR.
645          *
646          * The "standard FPSCR but for fp16 ops" is needed because
647          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
648          * using a fixed value for it.
649          *
650          * To avoid having to transfer exception bits around, we simply
651          * say that the FPSCR cumulative exception flags are the logical
652          * OR of the flags in the four fp statuses. This relies on the
653          * only thing which needs to read the exception flags being
654          * an explicit FPSCR read.
655          */
656         float_status fp_status;
657         float_status fp_status_f16;
658         float_status standard_fp_status;
659         float_status standard_fp_status_f16;
660 
661         /* ZCR_EL[1-3] */
662         uint64_t zcr_el[4];
663     } vfp;
664     uint64_t exclusive_addr;
665     uint64_t exclusive_val;
666     uint64_t exclusive_high;
667 
668     /* iwMMXt coprocessor state.  */
669     struct {
670         uint64_t regs[16];
671         uint64_t val;
672 
673         uint32_t cregs[16];
674     } iwmmxt;
675 
676 #ifdef TARGET_AARCH64
677     struct {
678         ARMPACKey apia;
679         ARMPACKey apib;
680         ARMPACKey apda;
681         ARMPACKey apdb;
682         ARMPACKey apga;
683     } keys;
684 #endif
685 
686 #if defined(CONFIG_USER_ONLY)
687     /* For usermode syscall translation.  */
688     int eabi;
689 #endif
690 
691     struct CPUBreakpoint *cpu_breakpoint[16];
692     struct CPUWatchpoint *cpu_watchpoint[16];
693 
694     /* Fields up to this point are cleared by a CPU reset */
695     struct {} end_reset_fields;
696 
697     /* Fields after this point are preserved across CPU reset. */
698 
699     /* Internal CPU feature flags.  */
700     uint64_t features;
701 
702     /* PMSAv7 MPU */
703     struct {
704         uint32_t *drbar;
705         uint32_t *drsr;
706         uint32_t *dracr;
707         uint32_t rnr[M_REG_NUM_BANKS];
708     } pmsav7;
709 
710     /* PMSAv8 MPU */
711     struct {
712         /* The PMSAv8 implementation also shares some PMSAv7 config
713          * and state:
714          *  pmsav7.rnr (region number register)
715          *  pmsav7_dregion (number of configured regions)
716          */
717         uint32_t *rbar[M_REG_NUM_BANKS];
718         uint32_t *rlar[M_REG_NUM_BANKS];
719         uint32_t mair0[M_REG_NUM_BANKS];
720         uint32_t mair1[M_REG_NUM_BANKS];
721     } pmsav8;
722 
723     /* v8M SAU */
724     struct {
725         uint32_t *rbar;
726         uint32_t *rlar;
727         uint32_t rnr;
728         uint32_t ctrl;
729     } sau;
730 
731     void *nvic;
732     const struct arm_boot_info *boot_info;
733     /* Store GICv3CPUState to access from this struct */
734     void *gicv3state;
735 
736 #ifdef TARGET_TAGGED_ADDRESSES
737     /* Linux syscall tagged address support */
738     bool tagged_addr_enable;
739 #endif
740 } CPUARMState;
741 
742 static inline void set_feature(CPUARMState *env, int feature)
743 {
744     env->features |= 1ULL << feature;
745 }
746 
747 static inline void unset_feature(CPUARMState *env, int feature)
748 {
749     env->features &= ~(1ULL << feature);
750 }
751 
752 /**
753  * ARMELChangeHookFn:
754  * type of a function which can be registered via arm_register_el_change_hook()
755  * to get callbacks when the CPU changes its exception level or mode.
756  */
757 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
758 typedef struct ARMELChangeHook ARMELChangeHook;
759 struct ARMELChangeHook {
760     ARMELChangeHookFn *hook;
761     void *opaque;
762     QLIST_ENTRY(ARMELChangeHook) node;
763 };
764 
765 /* These values map onto the return values for
766  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
767 typedef enum ARMPSCIState {
768     PSCI_ON = 0,
769     PSCI_OFF = 1,
770     PSCI_ON_PENDING = 2
771 } ARMPSCIState;
772 
773 typedef struct ARMISARegisters ARMISARegisters;
774 
775 /**
776  * ARMCPU:
777  * @env: #CPUARMState
778  *
779  * An ARM CPU core.
780  */
781 struct ArchCPU {
782     /*< private >*/
783     CPUState parent_obj;
784     /*< public >*/
785 
786     CPUNegativeOffsetState neg;
787     CPUARMState env;
788 
789     /* Coprocessor information */
790     GHashTable *cp_regs;
791     /* For marshalling (mostly coprocessor) register state between the
792      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
793      * we use these arrays.
794      */
795     /* List of register indexes managed via these arrays; (full KVM style
796      * 64 bit indexes, not CPRegInfo 32 bit indexes)
797      */
798     uint64_t *cpreg_indexes;
799     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
800     uint64_t *cpreg_values;
801     /* Length of the indexes, values, reset_values arrays */
802     int32_t cpreg_array_len;
803     /* These are used only for migration: incoming data arrives in
804      * these fields and is sanity checked in post_load before copying
805      * to the working data structures above.
806      */
807     uint64_t *cpreg_vmstate_indexes;
808     uint64_t *cpreg_vmstate_values;
809     int32_t cpreg_vmstate_array_len;
810 
811     DynamicGDBXMLInfo dyn_sysreg_xml;
812     DynamicGDBXMLInfo dyn_svereg_xml;
813 
814     /* Timers used by the generic (architected) timer */
815     QEMUTimer *gt_timer[NUM_GTIMERS];
816     /*
817      * Timer used by the PMU. Its state is restored after migration by
818      * pmu_op_finish() - it does not need other handling during migration
819      */
820     QEMUTimer *pmu_timer;
821     /* GPIO outputs for generic timer */
822     qemu_irq gt_timer_outputs[NUM_GTIMERS];
823     /* GPIO output for GICv3 maintenance interrupt signal */
824     qemu_irq gicv3_maintenance_interrupt;
825     /* GPIO output for the PMU interrupt */
826     qemu_irq pmu_interrupt;
827 
828     /* MemoryRegion to use for secure physical accesses */
829     MemoryRegion *secure_memory;
830 
831     /* MemoryRegion to use for allocation tag accesses */
832     MemoryRegion *tag_memory;
833     MemoryRegion *secure_tag_memory;
834 
835     /* For v8M, pointer to the IDAU interface provided by board/SoC */
836     Object *idau;
837 
838     /* 'compatible' string for this CPU for Linux device trees */
839     const char *dtb_compatible;
840 
841     /* PSCI version for this CPU
842      * Bits[31:16] = Major Version
843      * Bits[15:0] = Minor Version
844      */
845     uint32_t psci_version;
846 
847     /* Current power state, access guarded by BQL */
848     ARMPSCIState power_state;
849 
850     /* CPU has virtualization extension */
851     bool has_el2;
852     /* CPU has security extension */
853     bool has_el3;
854     /* CPU has PMU (Performance Monitor Unit) */
855     bool has_pmu;
856     /* CPU has VFP */
857     bool has_vfp;
858     /* CPU has Neon */
859     bool has_neon;
860     /* CPU has M-profile DSP extension */
861     bool has_dsp;
862 
863     /* CPU has memory protection unit */
864     bool has_mpu;
865     /* PMSAv7 MPU number of supported regions */
866     uint32_t pmsav7_dregion;
867     /* v8M SAU number of supported regions */
868     uint32_t sau_sregion;
869 
870     /* PSCI conduit used to invoke PSCI methods
871      * 0 - disabled, 1 - smc, 2 - hvc
872      */
873     uint32_t psci_conduit;
874 
875     /* For v8M, initial value of the Secure VTOR */
876     uint32_t init_svtor;
877     /* For v8M, initial value of the Non-secure VTOR */
878     uint32_t init_nsvtor;
879 
880     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
881      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
882      */
883     uint32_t kvm_target;
884 
885     /* KVM init features for this CPU */
886     uint32_t kvm_init_features[7];
887 
888     /* KVM CPU state */
889 
890     /* KVM virtual time adjustment */
891     bool kvm_adjvtime;
892     bool kvm_vtime_dirty;
893     uint64_t kvm_vtime;
894 
895     /* KVM steal time */
896     OnOffAuto kvm_steal_time;
897 
898     /* Uniprocessor system with MP extensions */
899     bool mp_is_up;
900 
901     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
902      * and the probe failed (so we need to report the error in realize)
903      */
904     bool host_cpu_probe_failed;
905 
906     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
907      * register.
908      */
909     int32_t core_count;
910 
911     /* The instance init functions for implementation-specific subclasses
912      * set these fields to specify the implementation-dependent values of
913      * various constant registers and reset values of non-constant
914      * registers.
915      * Some of these might become QOM properties eventually.
916      * Field names match the official register names as defined in the
917      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
918      * is used for reset values of non-constant registers; no reset_
919      * prefix means a constant register.
920      * Some of these registers are split out into a substructure that
921      * is shared with the translators to control the ISA.
922      *
923      * Note that if you add an ID register to the ARMISARegisters struct
924      * you need to also update the 32-bit and 64-bit versions of the
925      * kvm_arm_get_host_cpu_features() function to correctly populate the
926      * field by reading the value from the KVM vCPU.
927      */
928     struct ARMISARegisters {
929         uint32_t id_isar0;
930         uint32_t id_isar1;
931         uint32_t id_isar2;
932         uint32_t id_isar3;
933         uint32_t id_isar4;
934         uint32_t id_isar5;
935         uint32_t id_isar6;
936         uint32_t id_mmfr0;
937         uint32_t id_mmfr1;
938         uint32_t id_mmfr2;
939         uint32_t id_mmfr3;
940         uint32_t id_mmfr4;
941         uint32_t id_pfr0;
942         uint32_t id_pfr1;
943         uint32_t id_pfr2;
944         uint32_t mvfr0;
945         uint32_t mvfr1;
946         uint32_t mvfr2;
947         uint32_t id_dfr0;
948         uint32_t dbgdidr;
949         uint64_t id_aa64isar0;
950         uint64_t id_aa64isar1;
951         uint64_t id_aa64pfr0;
952         uint64_t id_aa64pfr1;
953         uint64_t id_aa64mmfr0;
954         uint64_t id_aa64mmfr1;
955         uint64_t id_aa64mmfr2;
956         uint64_t id_aa64dfr0;
957         uint64_t id_aa64dfr1;
958         uint64_t id_aa64zfr0;
959     } isar;
960     uint64_t midr;
961     uint32_t revidr;
962     uint32_t reset_fpsid;
963     uint64_t ctr;
964     uint32_t reset_sctlr;
965     uint64_t pmceid0;
966     uint64_t pmceid1;
967     uint32_t id_afr0;
968     uint64_t id_aa64afr0;
969     uint64_t id_aa64afr1;
970     uint64_t clidr;
971     uint64_t mp_affinity; /* MP ID without feature bits */
972     /* The elements of this array are the CCSIDR values for each cache,
973      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
974      */
975     uint64_t ccsidr[16];
976     uint64_t reset_cbar;
977     uint32_t reset_auxcr;
978     bool reset_hivecs;
979 
980     /*
981      * Intermediate values used during property parsing.
982      * Once finalized, the values should be read from ID_AA64*.
983      */
984     bool prop_pauth;
985     bool prop_pauth_impdef;
986     bool prop_lpa2;
987 
988     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
989     uint32_t dcz_blocksize;
990     uint64_t rvbar_prop; /* Property/input signals.  */
991 
992     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
993     int gic_num_lrs; /* number of list registers */
994     int gic_vpribits; /* number of virtual priority bits */
995     int gic_vprebits; /* number of virtual preemption bits */
996 
997     /* Whether the cfgend input is high (i.e. this CPU should reset into
998      * big-endian mode).  This setting isn't used directly: instead it modifies
999      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1000      * architecture version.
1001      */
1002     bool cfgend;
1003 
1004     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1005     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1006 
1007     int32_t node_id; /* NUMA node this CPU belongs to */
1008 
1009     /* Used to synchronize KVM and QEMU in-kernel device levels */
1010     uint8_t device_irq_level;
1011 
1012     /* Used to set the maximum vector length the cpu will support.  */
1013     uint32_t sve_max_vq;
1014 
1015 #ifdef CONFIG_USER_ONLY
1016     /* Used to set the default vector length at process start. */
1017     uint32_t sve_default_vq;
1018 #endif
1019 
1020     /*
1021      * In sve_vq_map each set bit is a supported vector length of
1022      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1023      * length in quadwords.
1024      *
1025      * While processing properties during initialization, corresponding
1026      * sve_vq_init bits are set for bits in sve_vq_map that have been
1027      * set by properties.
1028      *
1029      * Bits set in sve_vq_supported represent valid vector lengths for
1030      * the CPU type.
1031      */
1032     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1033     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1034     DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1035 
1036     /* Generic timer counter frequency, in Hz */
1037     uint64_t gt_cntfrq_hz;
1038 };
1039 
1040 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1041 
1042 void arm_cpu_post_init(Object *obj);
1043 
1044 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1045 
1046 #ifndef CONFIG_USER_ONLY
1047 extern const VMStateDescription vmstate_arm_cpu;
1048 
1049 void arm_cpu_do_interrupt(CPUState *cpu);
1050 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1051 #endif /* !CONFIG_USER_ONLY */
1052 
1053 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1054                                          MemTxAttrs *attrs);
1055 
1056 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1057 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1058 
1059 /*
1060  * Helpers to dynamically generates XML descriptions of the sysregs
1061  * and SVE registers. Returns the number of registers in each set.
1062  */
1063 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1064 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1065 
1066 /* Returns the dynamically generated XML for the gdb stub.
1067  * Returns a pointer to the XML contents for the specified XML file or NULL
1068  * if the XML name doesn't match the predefined one.
1069  */
1070 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1071 
1072 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1073                              int cpuid, void *opaque);
1074 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1075                              int cpuid, void *opaque);
1076 
1077 #ifdef TARGET_AARCH64
1078 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1079 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1080 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1081 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1082                            int new_el, bool el0_a64);
1083 void aarch64_add_sve_properties(Object *obj);
1084 void aarch64_add_pauth_properties(Object *obj);
1085 
1086 /*
1087  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1088  * The byte at offset i from the start of the in-memory representation contains
1089  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1090  * lowest offsets are stored in the lowest memory addresses, then that nearly
1091  * matches QEMU's representation, which is to use an array of host-endian
1092  * uint64_t's, where the lower offsets are at the lower indices. To complete
1093  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1094  */
1095 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1096 {
1097 #if HOST_BIG_ENDIAN
1098     int i;
1099 
1100     for (i = 0; i < nr; ++i) {
1101         dst[i] = bswap64(src[i]);
1102     }
1103 
1104     return dst;
1105 #else
1106     return src;
1107 #endif
1108 }
1109 
1110 #else
1111 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1112 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1113                                          int n, bool a)
1114 { }
1115 static inline void aarch64_add_sve_properties(Object *obj) { }
1116 #endif
1117 
1118 void aarch64_sync_32_to_64(CPUARMState *env);
1119 void aarch64_sync_64_to_32(CPUARMState *env);
1120 
1121 int fp_exception_el(CPUARMState *env, int cur_el);
1122 int sve_exception_el(CPUARMState *env, int cur_el);
1123 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1124 
1125 static inline bool is_a64(CPUARMState *env)
1126 {
1127     return env->aarch64;
1128 }
1129 
1130 /**
1131  * pmu_op_start/finish
1132  * @env: CPUARMState
1133  *
1134  * Convert all PMU counters between their delta form (the typical mode when
1135  * they are enabled) and the guest-visible values. These two calls must
1136  * surround any action which might affect the counters.
1137  */
1138 void pmu_op_start(CPUARMState *env);
1139 void pmu_op_finish(CPUARMState *env);
1140 
1141 /*
1142  * Called when a PMU counter is due to overflow
1143  */
1144 void arm_pmu_timer_cb(void *opaque);
1145 
1146 /**
1147  * Functions to register as EL change hooks for PMU mode filtering
1148  */
1149 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1150 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1151 
1152 /*
1153  * pmu_init
1154  * @cpu: ARMCPU
1155  *
1156  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1157  * for the current configuration
1158  */
1159 void pmu_init(ARMCPU *cpu);
1160 
1161 /* SCTLR bit meanings. Several bits have been reused in newer
1162  * versions of the architecture; in that case we define constants
1163  * for both old and new bit meanings. Code which tests against those
1164  * bits should probably check or otherwise arrange that the CPU
1165  * is the architectural version it expects.
1166  */
1167 #define SCTLR_M       (1U << 0)
1168 #define SCTLR_A       (1U << 1)
1169 #define SCTLR_C       (1U << 2)
1170 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1171 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1172 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1173 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1174 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1175 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1176 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1177 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1178 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1179 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1180 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1181 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1182 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1183 #define SCTLR_SED     (1U << 8) /* v8 onward */
1184 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1185 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1186 #define SCTLR_F       (1U << 10) /* up to v6 */
1187 #define SCTLR_SW      (1U << 10) /* v7 */
1188 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1189 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1190 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1191 #define SCTLR_I       (1U << 12)
1192 #define SCTLR_V       (1U << 13) /* AArch32 only */
1193 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1194 #define SCTLR_RR      (1U << 14) /* up to v7 */
1195 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1196 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1197 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1198 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1199 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1200 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1201 #define SCTLR_BR      (1U << 17) /* PMSA only */
1202 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1203 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1204 #define SCTLR_WXN     (1U << 19)
1205 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1206 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1207 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1208 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1209 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1210 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1211 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1212 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1213 #define SCTLR_VE      (1U << 24) /* up to v7 */
1214 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1215 #define SCTLR_EE      (1U << 25)
1216 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1217 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1218 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1219 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1220 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1221 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1222 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1223 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1224 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1225 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1226 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1227 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1228 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1229 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1230 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1231 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1232 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1233 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1234 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1235 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1236 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1237 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1238 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1239 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1240 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1241 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1242 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1243 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1244 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1245 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1246 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1247 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1248 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1249 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1250 
1251 #define CPTR_TCPAC    (1U << 31)
1252 #define CPTR_TTA      (1U << 20)
1253 #define CPTR_TFP      (1U << 10)
1254 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1255 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1256 
1257 #define MDCR_EPMAD    (1U << 21)
1258 #define MDCR_EDAD     (1U << 20)
1259 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1260 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1261 #define MDCR_SDD      (1U << 16)
1262 #define MDCR_SPD      (3U << 14)
1263 #define MDCR_TDRA     (1U << 11)
1264 #define MDCR_TDOSA    (1U << 10)
1265 #define MDCR_TDA      (1U << 9)
1266 #define MDCR_TDE      (1U << 8)
1267 #define MDCR_HPME     (1U << 7)
1268 #define MDCR_TPM      (1U << 6)
1269 #define MDCR_TPMCR    (1U << 5)
1270 #define MDCR_HPMN     (0x1fU)
1271 
1272 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1273 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1274 
1275 #define CPSR_M (0x1fU)
1276 #define CPSR_T (1U << 5)
1277 #define CPSR_F (1U << 6)
1278 #define CPSR_I (1U << 7)
1279 #define CPSR_A (1U << 8)
1280 #define CPSR_E (1U << 9)
1281 #define CPSR_IT_2_7 (0xfc00U)
1282 #define CPSR_GE (0xfU << 16)
1283 #define CPSR_IL (1U << 20)
1284 #define CPSR_DIT (1U << 21)
1285 #define CPSR_PAN (1U << 22)
1286 #define CPSR_SSBS (1U << 23)
1287 #define CPSR_J (1U << 24)
1288 #define CPSR_IT_0_1 (3U << 25)
1289 #define CPSR_Q (1U << 27)
1290 #define CPSR_V (1U << 28)
1291 #define CPSR_C (1U << 29)
1292 #define CPSR_Z (1U << 30)
1293 #define CPSR_N (1U << 31)
1294 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1295 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1296 
1297 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1298 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1299     | CPSR_NZCV)
1300 /* Bits writable in user mode.  */
1301 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1302 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1303 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1304 
1305 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1306 #define XPSR_EXCP 0x1ffU
1307 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1308 #define XPSR_IT_2_7 CPSR_IT_2_7
1309 #define XPSR_GE CPSR_GE
1310 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1311 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1312 #define XPSR_IT_0_1 CPSR_IT_0_1
1313 #define XPSR_Q CPSR_Q
1314 #define XPSR_V CPSR_V
1315 #define XPSR_C CPSR_C
1316 #define XPSR_Z CPSR_Z
1317 #define XPSR_N CPSR_N
1318 #define XPSR_NZCV CPSR_NZCV
1319 #define XPSR_IT CPSR_IT
1320 
1321 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1322 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1323 #define TTBCR_PD0    (1U << 4)
1324 #define TTBCR_PD1    (1U << 5)
1325 #define TTBCR_EPD0   (1U << 7)
1326 #define TTBCR_IRGN0  (3U << 8)
1327 #define TTBCR_ORGN0  (3U << 10)
1328 #define TTBCR_SH0    (3U << 12)
1329 #define TTBCR_T1SZ   (3U << 16)
1330 #define TTBCR_A1     (1U << 22)
1331 #define TTBCR_EPD1   (1U << 23)
1332 #define TTBCR_IRGN1  (3U << 24)
1333 #define TTBCR_ORGN1  (3U << 26)
1334 #define TTBCR_SH1    (1U << 28)
1335 #define TTBCR_EAE    (1U << 31)
1336 
1337 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1338  * Only these are valid when in AArch64 mode; in
1339  * AArch32 mode SPSRs are basically CPSR-format.
1340  */
1341 #define PSTATE_SP (1U)
1342 #define PSTATE_M (0xFU)
1343 #define PSTATE_nRW (1U << 4)
1344 #define PSTATE_F (1U << 6)
1345 #define PSTATE_I (1U << 7)
1346 #define PSTATE_A (1U << 8)
1347 #define PSTATE_D (1U << 9)
1348 #define PSTATE_BTYPE (3U << 10)
1349 #define PSTATE_SSBS (1U << 12)
1350 #define PSTATE_IL (1U << 20)
1351 #define PSTATE_SS (1U << 21)
1352 #define PSTATE_PAN (1U << 22)
1353 #define PSTATE_UAO (1U << 23)
1354 #define PSTATE_DIT (1U << 24)
1355 #define PSTATE_TCO (1U << 25)
1356 #define PSTATE_V (1U << 28)
1357 #define PSTATE_C (1U << 29)
1358 #define PSTATE_Z (1U << 30)
1359 #define PSTATE_N (1U << 31)
1360 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1361 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1362 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1363 /* Mode values for AArch64 */
1364 #define PSTATE_MODE_EL3h 13
1365 #define PSTATE_MODE_EL3t 12
1366 #define PSTATE_MODE_EL2h 9
1367 #define PSTATE_MODE_EL2t 8
1368 #define PSTATE_MODE_EL1h 5
1369 #define PSTATE_MODE_EL1t 4
1370 #define PSTATE_MODE_EL0t 0
1371 
1372 /* Write a new value to v7m.exception, thus transitioning into or out
1373  * of Handler mode; this may result in a change of active stack pointer.
1374  */
1375 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1376 
1377 /* Map EL and handler into a PSTATE_MODE.  */
1378 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1379 {
1380     return (el << 2) | handler;
1381 }
1382 
1383 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1384  * interprocessing, so we don't attempt to sync with the cpsr state used by
1385  * the 32 bit decoder.
1386  */
1387 static inline uint32_t pstate_read(CPUARMState *env)
1388 {
1389     int ZF;
1390 
1391     ZF = (env->ZF == 0);
1392     return (env->NF & 0x80000000) | (ZF << 30)
1393         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1394         | env->pstate | env->daif | (env->btype << 10);
1395 }
1396 
1397 static inline void pstate_write(CPUARMState *env, uint32_t val)
1398 {
1399     env->ZF = (~val) & PSTATE_Z;
1400     env->NF = val;
1401     env->CF = (val >> 29) & 1;
1402     env->VF = (val << 3) & 0x80000000;
1403     env->daif = val & PSTATE_DAIF;
1404     env->btype = (val >> 10) & 3;
1405     env->pstate = val & ~CACHED_PSTATE_BITS;
1406 }
1407 
1408 /* Return the current CPSR value.  */
1409 uint32_t cpsr_read(CPUARMState *env);
1410 
1411 typedef enum CPSRWriteType {
1412     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1413     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1414     CPSRWriteRaw = 2,
1415         /* trust values, no reg bank switch, no hflags rebuild */
1416     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1417 } CPSRWriteType;
1418 
1419 /*
1420  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1421  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1422  * correspond to TB flags bits cached in the hflags, unless @write_type
1423  * is CPSRWriteRaw.
1424  */
1425 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1426                 CPSRWriteType write_type);
1427 
1428 /* Return the current xPSR value.  */
1429 static inline uint32_t xpsr_read(CPUARMState *env)
1430 {
1431     int ZF;
1432     ZF = (env->ZF == 0);
1433     return (env->NF & 0x80000000) | (ZF << 30)
1434         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1435         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1436         | ((env->condexec_bits & 0xfc) << 8)
1437         | (env->GE << 16)
1438         | env->v7m.exception;
1439 }
1440 
1441 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1442 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1443 {
1444     if (mask & XPSR_NZCV) {
1445         env->ZF = (~val) & XPSR_Z;
1446         env->NF = val;
1447         env->CF = (val >> 29) & 1;
1448         env->VF = (val << 3) & 0x80000000;
1449     }
1450     if (mask & XPSR_Q) {
1451         env->QF = ((val & XPSR_Q) != 0);
1452     }
1453     if (mask & XPSR_GE) {
1454         env->GE = (val & XPSR_GE) >> 16;
1455     }
1456 #ifndef CONFIG_USER_ONLY
1457     if (mask & XPSR_T) {
1458         env->thumb = ((val & XPSR_T) != 0);
1459     }
1460     if (mask & XPSR_IT_0_1) {
1461         env->condexec_bits &= ~3;
1462         env->condexec_bits |= (val >> 25) & 3;
1463     }
1464     if (mask & XPSR_IT_2_7) {
1465         env->condexec_bits &= 3;
1466         env->condexec_bits |= (val >> 8) & 0xfc;
1467     }
1468     if (mask & XPSR_EXCP) {
1469         /* Note that this only happens on exception exit */
1470         write_v7m_exception(env, val & XPSR_EXCP);
1471     }
1472 #endif
1473 }
1474 
1475 #define HCR_VM        (1ULL << 0)
1476 #define HCR_SWIO      (1ULL << 1)
1477 #define HCR_PTW       (1ULL << 2)
1478 #define HCR_FMO       (1ULL << 3)
1479 #define HCR_IMO       (1ULL << 4)
1480 #define HCR_AMO       (1ULL << 5)
1481 #define HCR_VF        (1ULL << 6)
1482 #define HCR_VI        (1ULL << 7)
1483 #define HCR_VSE       (1ULL << 8)
1484 #define HCR_FB        (1ULL << 9)
1485 #define HCR_BSU_MASK  (3ULL << 10)
1486 #define HCR_DC        (1ULL << 12)
1487 #define HCR_TWI       (1ULL << 13)
1488 #define HCR_TWE       (1ULL << 14)
1489 #define HCR_TID0      (1ULL << 15)
1490 #define HCR_TID1      (1ULL << 16)
1491 #define HCR_TID2      (1ULL << 17)
1492 #define HCR_TID3      (1ULL << 18)
1493 #define HCR_TSC       (1ULL << 19)
1494 #define HCR_TIDCP     (1ULL << 20)
1495 #define HCR_TACR      (1ULL << 21)
1496 #define HCR_TSW       (1ULL << 22)
1497 #define HCR_TPCP      (1ULL << 23)
1498 #define HCR_TPU       (1ULL << 24)
1499 #define HCR_TTLB      (1ULL << 25)
1500 #define HCR_TVM       (1ULL << 26)
1501 #define HCR_TGE       (1ULL << 27)
1502 #define HCR_TDZ       (1ULL << 28)
1503 #define HCR_HCD       (1ULL << 29)
1504 #define HCR_TRVM      (1ULL << 30)
1505 #define HCR_RW        (1ULL << 31)
1506 #define HCR_CD        (1ULL << 32)
1507 #define HCR_ID        (1ULL << 33)
1508 #define HCR_E2H       (1ULL << 34)
1509 #define HCR_TLOR      (1ULL << 35)
1510 #define HCR_TERR      (1ULL << 36)
1511 #define HCR_TEA       (1ULL << 37)
1512 #define HCR_MIOCNCE   (1ULL << 38)
1513 /* RES0 bit 39 */
1514 #define HCR_APK       (1ULL << 40)
1515 #define HCR_API       (1ULL << 41)
1516 #define HCR_NV        (1ULL << 42)
1517 #define HCR_NV1       (1ULL << 43)
1518 #define HCR_AT        (1ULL << 44)
1519 #define HCR_NV2       (1ULL << 45)
1520 #define HCR_FWB       (1ULL << 46)
1521 #define HCR_FIEN      (1ULL << 47)
1522 /* RES0 bit 48 */
1523 #define HCR_TID4      (1ULL << 49)
1524 #define HCR_TICAB     (1ULL << 50)
1525 #define HCR_AMVOFFEN  (1ULL << 51)
1526 #define HCR_TOCU      (1ULL << 52)
1527 #define HCR_ENSCXT    (1ULL << 53)
1528 #define HCR_TTLBIS    (1ULL << 54)
1529 #define HCR_TTLBOS    (1ULL << 55)
1530 #define HCR_ATA       (1ULL << 56)
1531 #define HCR_DCT       (1ULL << 57)
1532 #define HCR_TID5      (1ULL << 58)
1533 #define HCR_TWEDEN    (1ULL << 59)
1534 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1535 
1536 #define HPFAR_NS      (1ULL << 63)
1537 
1538 #define SCR_NS                (1U << 0)
1539 #define SCR_IRQ               (1U << 1)
1540 #define SCR_FIQ               (1U << 2)
1541 #define SCR_EA                (1U << 3)
1542 #define SCR_FW                (1U << 4)
1543 #define SCR_AW                (1U << 5)
1544 #define SCR_NET               (1U << 6)
1545 #define SCR_SMD               (1U << 7)
1546 #define SCR_HCE               (1U << 8)
1547 #define SCR_SIF               (1U << 9)
1548 #define SCR_RW                (1U << 10)
1549 #define SCR_ST                (1U << 11)
1550 #define SCR_TWI               (1U << 12)
1551 #define SCR_TWE               (1U << 13)
1552 #define SCR_TLOR              (1U << 14)
1553 #define SCR_TERR              (1U << 15)
1554 #define SCR_APK               (1U << 16)
1555 #define SCR_API               (1U << 17)
1556 #define SCR_EEL2              (1U << 18)
1557 #define SCR_EASE              (1U << 19)
1558 #define SCR_NMEA              (1U << 20)
1559 #define SCR_FIEN              (1U << 21)
1560 #define SCR_ENSCXT            (1U << 25)
1561 #define SCR_ATA               (1U << 26)
1562 #define SCR_FGTEN             (1U << 27)
1563 #define SCR_ECVEN             (1U << 28)
1564 #define SCR_TWEDEN            (1U << 29)
1565 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1566 #define SCR_TME               (1ULL << 34)
1567 #define SCR_AMVOFFEN          (1ULL << 35)
1568 #define SCR_ENAS0             (1ULL << 36)
1569 #define SCR_ADEN              (1ULL << 37)
1570 #define SCR_HXEN              (1ULL << 38)
1571 #define SCR_TRNDR             (1ULL << 40)
1572 #define SCR_ENTP2             (1ULL << 41)
1573 #define SCR_GPF               (1ULL << 48)
1574 
1575 #define HSTR_TTEE (1 << 16)
1576 #define HSTR_TJDBX (1 << 17)
1577 
1578 /* Return the current FPSCR value.  */
1579 uint32_t vfp_get_fpscr(CPUARMState *env);
1580 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1581 
1582 /* FPCR, Floating Point Control Register
1583  * FPSR, Floating Poiht Status Register
1584  *
1585  * For A64 the FPSCR is split into two logically distinct registers,
1586  * FPCR and FPSR. However since they still use non-overlapping bits
1587  * we store the underlying state in fpscr and just mask on read/write.
1588  */
1589 #define FPSR_MASK 0xf800009f
1590 #define FPCR_MASK 0x07ff9f00
1591 
1592 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1593 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1594 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1595 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1596 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1597 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1598 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1599 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1600 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1601 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1602 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1603 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1604 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1605 #define FPCR_C      (1 << 29)   /* FP carry flag */
1606 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1607 #define FPCR_N      (1 << 31)   /* FP negative flag */
1608 
1609 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1610 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1611 #define FPCR_LTPSIZE_LENGTH 3
1612 
1613 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1614 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1615 
1616 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1617 {
1618     return vfp_get_fpscr(env) & FPSR_MASK;
1619 }
1620 
1621 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1622 {
1623     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1624     vfp_set_fpscr(env, new_fpscr);
1625 }
1626 
1627 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1628 {
1629     return vfp_get_fpscr(env) & FPCR_MASK;
1630 }
1631 
1632 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1633 {
1634     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1635     vfp_set_fpscr(env, new_fpscr);
1636 }
1637 
1638 enum arm_cpu_mode {
1639   ARM_CPU_MODE_USR = 0x10,
1640   ARM_CPU_MODE_FIQ = 0x11,
1641   ARM_CPU_MODE_IRQ = 0x12,
1642   ARM_CPU_MODE_SVC = 0x13,
1643   ARM_CPU_MODE_MON = 0x16,
1644   ARM_CPU_MODE_ABT = 0x17,
1645   ARM_CPU_MODE_HYP = 0x1a,
1646   ARM_CPU_MODE_UND = 0x1b,
1647   ARM_CPU_MODE_SYS = 0x1f
1648 };
1649 
1650 /* VFP system registers.  */
1651 #define ARM_VFP_FPSID   0
1652 #define ARM_VFP_FPSCR   1
1653 #define ARM_VFP_MVFR2   5
1654 #define ARM_VFP_MVFR1   6
1655 #define ARM_VFP_MVFR0   7
1656 #define ARM_VFP_FPEXC   8
1657 #define ARM_VFP_FPINST  9
1658 #define ARM_VFP_FPINST2 10
1659 /* These ones are M-profile only */
1660 #define ARM_VFP_FPSCR_NZCVQC 2
1661 #define ARM_VFP_VPR 12
1662 #define ARM_VFP_P0 13
1663 #define ARM_VFP_FPCXT_NS 14
1664 #define ARM_VFP_FPCXT_S 15
1665 
1666 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1667 #define QEMU_VFP_FPSCR_NZCV 0xffff
1668 
1669 /* iwMMXt coprocessor control registers.  */
1670 #define ARM_IWMMXT_wCID  0
1671 #define ARM_IWMMXT_wCon  1
1672 #define ARM_IWMMXT_wCSSF 2
1673 #define ARM_IWMMXT_wCASF 3
1674 #define ARM_IWMMXT_wCGR0 8
1675 #define ARM_IWMMXT_wCGR1 9
1676 #define ARM_IWMMXT_wCGR2 10
1677 #define ARM_IWMMXT_wCGR3 11
1678 
1679 /* V7M CCR bits */
1680 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1681 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1682 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1683 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1684 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1685 FIELD(V7M_CCR, STKALIGN, 9, 1)
1686 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1687 FIELD(V7M_CCR, DC, 16, 1)
1688 FIELD(V7M_CCR, IC, 17, 1)
1689 FIELD(V7M_CCR, BP, 18, 1)
1690 FIELD(V7M_CCR, LOB, 19, 1)
1691 FIELD(V7M_CCR, TRD, 20, 1)
1692 
1693 /* V7M SCR bits */
1694 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1695 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1696 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1697 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1698 
1699 /* V7M AIRCR bits */
1700 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1701 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1702 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1703 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1704 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1705 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1706 FIELD(V7M_AIRCR, PRIS, 14, 1)
1707 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1708 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1709 
1710 /* V7M CFSR bits for MMFSR */
1711 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1712 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1713 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1714 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1715 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1716 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1717 
1718 /* V7M CFSR bits for BFSR */
1719 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1720 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1721 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1722 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1723 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1724 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1725 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1726 
1727 /* V7M CFSR bits for UFSR */
1728 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1729 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1730 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1731 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1732 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1733 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1734 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1735 
1736 /* V7M CFSR bit masks covering all of the subregister bits */
1737 FIELD(V7M_CFSR, MMFSR, 0, 8)
1738 FIELD(V7M_CFSR, BFSR, 8, 8)
1739 FIELD(V7M_CFSR, UFSR, 16, 16)
1740 
1741 /* V7M HFSR bits */
1742 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1743 FIELD(V7M_HFSR, FORCED, 30, 1)
1744 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1745 
1746 /* V7M DFSR bits */
1747 FIELD(V7M_DFSR, HALTED, 0, 1)
1748 FIELD(V7M_DFSR, BKPT, 1, 1)
1749 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1750 FIELD(V7M_DFSR, VCATCH, 3, 1)
1751 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1752 
1753 /* V7M SFSR bits */
1754 FIELD(V7M_SFSR, INVEP, 0, 1)
1755 FIELD(V7M_SFSR, INVIS, 1, 1)
1756 FIELD(V7M_SFSR, INVER, 2, 1)
1757 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1758 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1759 FIELD(V7M_SFSR, LSPERR, 5, 1)
1760 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1761 FIELD(V7M_SFSR, LSERR, 7, 1)
1762 
1763 /* v7M MPU_CTRL bits */
1764 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1765 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1766 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1767 
1768 /* v7M CLIDR bits */
1769 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1770 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1771 FIELD(V7M_CLIDR, LOC, 24, 3)
1772 FIELD(V7M_CLIDR, LOUU, 27, 3)
1773 FIELD(V7M_CLIDR, ICB, 30, 2)
1774 
1775 FIELD(V7M_CSSELR, IND, 0, 1)
1776 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1777 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1778  * define a mask for this and check that it doesn't permit running off
1779  * the end of the array.
1780  */
1781 FIELD(V7M_CSSELR, INDEX, 0, 4)
1782 
1783 /* v7M FPCCR bits */
1784 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1785 FIELD(V7M_FPCCR, USER, 1, 1)
1786 FIELD(V7M_FPCCR, S, 2, 1)
1787 FIELD(V7M_FPCCR, THREAD, 3, 1)
1788 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1789 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1790 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1791 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1792 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1793 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1794 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1795 FIELD(V7M_FPCCR, RES0, 11, 15)
1796 FIELD(V7M_FPCCR, TS, 26, 1)
1797 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1798 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1799 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1800 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1801 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1802 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1803 #define R_V7M_FPCCR_BANKED_MASK                 \
1804     (R_V7M_FPCCR_LSPACT_MASK |                  \
1805      R_V7M_FPCCR_USER_MASK |                    \
1806      R_V7M_FPCCR_THREAD_MASK |                  \
1807      R_V7M_FPCCR_MMRDY_MASK |                   \
1808      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1809      R_V7M_FPCCR_UFRDY_MASK |                   \
1810      R_V7M_FPCCR_ASPEN_MASK)
1811 
1812 /* v7M VPR bits */
1813 FIELD(V7M_VPR, P0, 0, 16)
1814 FIELD(V7M_VPR, MASK01, 16, 4)
1815 FIELD(V7M_VPR, MASK23, 20, 4)
1816 
1817 /*
1818  * System register ID fields.
1819  */
1820 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1821 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1822 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1823 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1824 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1825 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1826 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1827 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1828 FIELD(CLIDR_EL1, LOC, 24, 3)
1829 FIELD(CLIDR_EL1, LOUU, 27, 3)
1830 FIELD(CLIDR_EL1, ICB, 30, 3)
1831 
1832 /* When FEAT_CCIDX is implemented */
1833 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1834 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1835 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1836 
1837 /* When FEAT_CCIDX is not implemented */
1838 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1839 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1840 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1841 
1842 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1843 FIELD(CTR_EL0,  L1IP, 14, 2)
1844 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1845 FIELD(CTR_EL0,  ERG, 20, 4)
1846 FIELD(CTR_EL0,  CWG, 24, 4)
1847 FIELD(CTR_EL0,  IDC, 28, 1)
1848 FIELD(CTR_EL0,  DIC, 29, 1)
1849 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1850 
1851 FIELD(MIDR_EL1, REVISION, 0, 4)
1852 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1853 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1854 FIELD(MIDR_EL1, VARIANT, 20, 4)
1855 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1856 
1857 FIELD(ID_ISAR0, SWAP, 0, 4)
1858 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1859 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1860 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1861 FIELD(ID_ISAR0, COPROC, 16, 4)
1862 FIELD(ID_ISAR0, DEBUG, 20, 4)
1863 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1864 
1865 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1866 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1867 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1868 FIELD(ID_ISAR1, EXTEND, 12, 4)
1869 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1870 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1871 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1872 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1873 
1874 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1875 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1876 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1877 FIELD(ID_ISAR2, MULT, 12, 4)
1878 FIELD(ID_ISAR2, MULTS, 16, 4)
1879 FIELD(ID_ISAR2, MULTU, 20, 4)
1880 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1881 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1882 
1883 FIELD(ID_ISAR3, SATURATE, 0, 4)
1884 FIELD(ID_ISAR3, SIMD, 4, 4)
1885 FIELD(ID_ISAR3, SVC, 8, 4)
1886 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1887 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1888 FIELD(ID_ISAR3, T32COPY, 20, 4)
1889 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1890 FIELD(ID_ISAR3, T32EE, 28, 4)
1891 
1892 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1893 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1894 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1895 FIELD(ID_ISAR4, SMC, 12, 4)
1896 FIELD(ID_ISAR4, BARRIER, 16, 4)
1897 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1898 FIELD(ID_ISAR4, PSR_M, 24, 4)
1899 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1900 
1901 FIELD(ID_ISAR5, SEVL, 0, 4)
1902 FIELD(ID_ISAR5, AES, 4, 4)
1903 FIELD(ID_ISAR5, SHA1, 8, 4)
1904 FIELD(ID_ISAR5, SHA2, 12, 4)
1905 FIELD(ID_ISAR5, CRC32, 16, 4)
1906 FIELD(ID_ISAR5, RDM, 24, 4)
1907 FIELD(ID_ISAR5, VCMA, 28, 4)
1908 
1909 FIELD(ID_ISAR6, JSCVT, 0, 4)
1910 FIELD(ID_ISAR6, DP, 4, 4)
1911 FIELD(ID_ISAR6, FHM, 8, 4)
1912 FIELD(ID_ISAR6, SB, 12, 4)
1913 FIELD(ID_ISAR6, SPECRES, 16, 4)
1914 FIELD(ID_ISAR6, BF16, 20, 4)
1915 FIELD(ID_ISAR6, I8MM, 24, 4)
1916 
1917 FIELD(ID_MMFR0, VMSA, 0, 4)
1918 FIELD(ID_MMFR0, PMSA, 4, 4)
1919 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1920 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1921 FIELD(ID_MMFR0, TCM, 16, 4)
1922 FIELD(ID_MMFR0, AUXREG, 20, 4)
1923 FIELD(ID_MMFR0, FCSE, 24, 4)
1924 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1925 
1926 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1927 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1928 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1929 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1930 FIELD(ID_MMFR1, L1HVD, 16, 4)
1931 FIELD(ID_MMFR1, L1UNI, 20, 4)
1932 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1933 FIELD(ID_MMFR1, BPRED, 28, 4)
1934 
1935 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1936 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1937 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1938 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1939 FIELD(ID_MMFR2, UNITLB, 16, 4)
1940 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1941 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1942 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1943 
1944 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1945 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1946 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1947 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1948 FIELD(ID_MMFR3, PAN, 16, 4)
1949 FIELD(ID_MMFR3, COHWALK, 20, 4)
1950 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1951 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1952 
1953 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1954 FIELD(ID_MMFR4, AC2, 4, 4)
1955 FIELD(ID_MMFR4, XNX, 8, 4)
1956 FIELD(ID_MMFR4, CNP, 12, 4)
1957 FIELD(ID_MMFR4, HPDS, 16, 4)
1958 FIELD(ID_MMFR4, LSM, 20, 4)
1959 FIELD(ID_MMFR4, CCIDX, 24, 4)
1960 FIELD(ID_MMFR4, EVT, 28, 4)
1961 
1962 FIELD(ID_MMFR5, ETS, 0, 4)
1963 FIELD(ID_MMFR5, NTLBPA, 4, 4)
1964 
1965 FIELD(ID_PFR0, STATE0, 0, 4)
1966 FIELD(ID_PFR0, STATE1, 4, 4)
1967 FIELD(ID_PFR0, STATE2, 8, 4)
1968 FIELD(ID_PFR0, STATE3, 12, 4)
1969 FIELD(ID_PFR0, CSV2, 16, 4)
1970 FIELD(ID_PFR0, AMU, 20, 4)
1971 FIELD(ID_PFR0, DIT, 24, 4)
1972 FIELD(ID_PFR0, RAS, 28, 4)
1973 
1974 FIELD(ID_PFR1, PROGMOD, 0, 4)
1975 FIELD(ID_PFR1, SECURITY, 4, 4)
1976 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1977 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1978 FIELD(ID_PFR1, GENTIMER, 16, 4)
1979 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1980 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1981 FIELD(ID_PFR1, GIC, 28, 4)
1982 
1983 FIELD(ID_PFR2, CSV3, 0, 4)
1984 FIELD(ID_PFR2, SSBS, 4, 4)
1985 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1986 
1987 FIELD(ID_AA64ISAR0, AES, 4, 4)
1988 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1989 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1990 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1991 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1992 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1993 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1994 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1995 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1996 FIELD(ID_AA64ISAR0, DP, 44, 4)
1997 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1998 FIELD(ID_AA64ISAR0, TS, 52, 4)
1999 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2000 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2001 
2002 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2003 FIELD(ID_AA64ISAR1, APA, 4, 4)
2004 FIELD(ID_AA64ISAR1, API, 8, 4)
2005 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2006 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2007 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2008 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2009 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2010 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2011 FIELD(ID_AA64ISAR1, SB, 36, 4)
2012 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2013 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2014 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2015 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2016 FIELD(ID_AA64ISAR1, XS, 56, 4)
2017 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2018 
2019 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2020 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2021 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2022 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2023 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2024 FIELD(ID_AA64ISAR2, BC, 20, 4)
2025 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2026 
2027 FIELD(ID_AA64PFR0, EL0, 0, 4)
2028 FIELD(ID_AA64PFR0, EL1, 4, 4)
2029 FIELD(ID_AA64PFR0, EL2, 8, 4)
2030 FIELD(ID_AA64PFR0, EL3, 12, 4)
2031 FIELD(ID_AA64PFR0, FP, 16, 4)
2032 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2033 FIELD(ID_AA64PFR0, GIC, 24, 4)
2034 FIELD(ID_AA64PFR0, RAS, 28, 4)
2035 FIELD(ID_AA64PFR0, SVE, 32, 4)
2036 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2037 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2038 FIELD(ID_AA64PFR0, AMU, 44, 4)
2039 FIELD(ID_AA64PFR0, DIT, 48, 4)
2040 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2041 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2042 
2043 FIELD(ID_AA64PFR1, BT, 0, 4)
2044 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2045 FIELD(ID_AA64PFR1, MTE, 8, 4)
2046 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2047 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2048 FIELD(ID_AA64PFR1, SME, 24, 4)
2049 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2050 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2051 FIELD(ID_AA64PFR1, NMI, 36, 4)
2052 
2053 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2054 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2055 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2056 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2057 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2058 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2059 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2060 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2061 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2062 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2063 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2064 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2065 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2066 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2067 
2068 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2069 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2070 FIELD(ID_AA64MMFR1, VH, 8, 4)
2071 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2072 FIELD(ID_AA64MMFR1, LO, 16, 4)
2073 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2074 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2075 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2076 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2077 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2078 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2079 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2080 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2081 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2082 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2083 
2084 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2085 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2086 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2087 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2088 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2089 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2090 FIELD(ID_AA64MMFR2, NV, 24, 4)
2091 FIELD(ID_AA64MMFR2, ST, 28, 4)
2092 FIELD(ID_AA64MMFR2, AT, 32, 4)
2093 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2094 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2095 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2096 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2097 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2098 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2099 
2100 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2101 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2102 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2103 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2104 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2105 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2106 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2107 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2108 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2109 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2110 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2111 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2112 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2113 
2114 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2115 FIELD(ID_AA64ZFR0, AES, 4, 4)
2116 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2117 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2118 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2119 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2120 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2121 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2122 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2123 
2124 FIELD(ID_DFR0, COPDBG, 0, 4)
2125 FIELD(ID_DFR0, COPSDBG, 4, 4)
2126 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2127 FIELD(ID_DFR0, COPTRC, 12, 4)
2128 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2129 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2130 FIELD(ID_DFR0, PERFMON, 24, 4)
2131 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2132 
2133 FIELD(ID_DFR1, MTPMU, 0, 4)
2134 FIELD(ID_DFR1, HPMN0, 4, 4)
2135 
2136 FIELD(DBGDIDR, SE_IMP, 12, 1)
2137 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2138 FIELD(DBGDIDR, VERSION, 16, 4)
2139 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2140 FIELD(DBGDIDR, BRPS, 24, 4)
2141 FIELD(DBGDIDR, WRPS, 28, 4)
2142 
2143 FIELD(MVFR0, SIMDREG, 0, 4)
2144 FIELD(MVFR0, FPSP, 4, 4)
2145 FIELD(MVFR0, FPDP, 8, 4)
2146 FIELD(MVFR0, FPTRAP, 12, 4)
2147 FIELD(MVFR0, FPDIVIDE, 16, 4)
2148 FIELD(MVFR0, FPSQRT, 20, 4)
2149 FIELD(MVFR0, FPSHVEC, 24, 4)
2150 FIELD(MVFR0, FPROUND, 28, 4)
2151 
2152 FIELD(MVFR1, FPFTZ, 0, 4)
2153 FIELD(MVFR1, FPDNAN, 4, 4)
2154 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2155 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2156 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2157 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2158 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2159 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2160 FIELD(MVFR1, FPHP, 24, 4)
2161 FIELD(MVFR1, SIMDFMAC, 28, 4)
2162 
2163 FIELD(MVFR2, SIMDMISC, 0, 4)
2164 FIELD(MVFR2, FPMISC, 4, 4)
2165 
2166 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2167 
2168 /* If adding a feature bit which corresponds to a Linux ELF
2169  * HWCAP bit, remember to update the feature-bit-to-hwcap
2170  * mapping in linux-user/elfload.c:get_elf_hwcap().
2171  */
2172 enum arm_features {
2173     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2174     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2175     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2176     ARM_FEATURE_V6,
2177     ARM_FEATURE_V6K,
2178     ARM_FEATURE_V7,
2179     ARM_FEATURE_THUMB2,
2180     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2181     ARM_FEATURE_NEON,
2182     ARM_FEATURE_M, /* Microcontroller profile.  */
2183     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2184     ARM_FEATURE_THUMB2EE,
2185     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2186     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2187     ARM_FEATURE_V4T,
2188     ARM_FEATURE_V5,
2189     ARM_FEATURE_STRONGARM,
2190     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2191     ARM_FEATURE_GENERIC_TIMER,
2192     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2193     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2194     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2195     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2196     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2197     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2198     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2199     ARM_FEATURE_V8,
2200     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2201     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2202     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2203     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2204     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2205     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2206     ARM_FEATURE_PMU, /* has PMU support */
2207     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2208     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2209     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2210     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2211 };
2212 
2213 static inline int arm_feature(CPUARMState *env, int feature)
2214 {
2215     return (env->features & (1ULL << feature)) != 0;
2216 }
2217 
2218 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2219 
2220 #if !defined(CONFIG_USER_ONLY)
2221 /* Return true if exception levels below EL3 are in secure state,
2222  * or would be following an exception return to that level.
2223  * Unlike arm_is_secure() (which is always a question about the
2224  * _current_ state of the CPU) this doesn't care about the current
2225  * EL or mode.
2226  */
2227 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2228 {
2229     if (arm_feature(env, ARM_FEATURE_EL3)) {
2230         return !(env->cp15.scr_el3 & SCR_NS);
2231     } else {
2232         /* If EL3 is not supported then the secure state is implementation
2233          * defined, in which case QEMU defaults to non-secure.
2234          */
2235         return false;
2236     }
2237 }
2238 
2239 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2240 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2241 {
2242     if (arm_feature(env, ARM_FEATURE_EL3)) {
2243         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2244             /* CPU currently in AArch64 state and EL3 */
2245             return true;
2246         } else if (!is_a64(env) &&
2247                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2248             /* CPU currently in AArch32 state and monitor mode */
2249             return true;
2250         }
2251     }
2252     return false;
2253 }
2254 
2255 /* Return true if the processor is in secure state */
2256 static inline bool arm_is_secure(CPUARMState *env)
2257 {
2258     if (arm_is_el3_or_mon(env)) {
2259         return true;
2260     }
2261     return arm_is_secure_below_el3(env);
2262 }
2263 
2264 /*
2265  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2266  * This corresponds to the pseudocode EL2Enabled()
2267  */
2268 static inline bool arm_is_el2_enabled(CPUARMState *env)
2269 {
2270     if (arm_feature(env, ARM_FEATURE_EL2)) {
2271         if (arm_is_secure_below_el3(env)) {
2272             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2273         }
2274         return true;
2275     }
2276     return false;
2277 }
2278 
2279 #else
2280 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2281 {
2282     return false;
2283 }
2284 
2285 static inline bool arm_is_secure(CPUARMState *env)
2286 {
2287     return false;
2288 }
2289 
2290 static inline bool arm_is_el2_enabled(CPUARMState *env)
2291 {
2292     return false;
2293 }
2294 #endif
2295 
2296 /**
2297  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2298  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2299  * "for all purposes other than a direct read or write access of HCR_EL2."
2300  * Not included here is HCR_RW.
2301  */
2302 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2303 
2304 /* Return true if the specified exception level is running in AArch64 state. */
2305 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2306 {
2307     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2308      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2309      */
2310     assert(el >= 1 && el <= 3);
2311     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2312 
2313     /* The highest exception level is always at the maximum supported
2314      * register width, and then lower levels have a register width controlled
2315      * by bits in the SCR or HCR registers.
2316      */
2317     if (el == 3) {
2318         return aa64;
2319     }
2320 
2321     if (arm_feature(env, ARM_FEATURE_EL3) &&
2322         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2323         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2324     }
2325 
2326     if (el == 2) {
2327         return aa64;
2328     }
2329 
2330     if (arm_is_el2_enabled(env)) {
2331         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2332     }
2333 
2334     return aa64;
2335 }
2336 
2337 /* Function for determing whether guest cp register reads and writes should
2338  * access the secure or non-secure bank of a cp register.  When EL3 is
2339  * operating in AArch32 state, the NS-bit determines whether the secure
2340  * instance of a cp register should be used. When EL3 is AArch64 (or if
2341  * it doesn't exist at all) then there is no register banking, and all
2342  * accesses are to the non-secure version.
2343  */
2344 static inline bool access_secure_reg(CPUARMState *env)
2345 {
2346     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2347                 !arm_el_is_aa64(env, 3) &&
2348                 !(env->cp15.scr_el3 & SCR_NS));
2349 
2350     return ret;
2351 }
2352 
2353 /* Macros for accessing a specified CP register bank */
2354 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2355     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2356 
2357 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2358     do {                                                \
2359         if (_secure) {                                   \
2360             (_env)->cp15._regname##_s = (_val);            \
2361         } else {                                        \
2362             (_env)->cp15._regname##_ns = (_val);           \
2363         }                                               \
2364     } while (0)
2365 
2366 /* Macros for automatically accessing a specific CP register bank depending on
2367  * the current secure state of the system.  These macros are not intended for
2368  * supporting instruction translation reads/writes as these are dependent
2369  * solely on the SCR.NS bit and not the mode.
2370  */
2371 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2372     A32_BANKED_REG_GET((_env), _regname,                \
2373                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2374 
2375 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2376     A32_BANKED_REG_SET((_env), _regname,                                    \
2377                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2378                        (_val))
2379 
2380 void arm_cpu_list(void);
2381 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2382                                  uint32_t cur_el, bool secure);
2383 
2384 /* Interface between CPU and Interrupt controller.  */
2385 #ifndef CONFIG_USER_ONLY
2386 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2387 #else
2388 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2389 {
2390     return true;
2391 }
2392 #endif
2393 /**
2394  * armv7m_nvic_set_pending: mark the specified exception as pending
2395  * @opaque: the NVIC
2396  * @irq: the exception number to mark pending
2397  * @secure: false for non-banked exceptions or for the nonsecure
2398  * version of a banked exception, true for the secure version of a banked
2399  * exception.
2400  *
2401  * Marks the specified exception as pending. Note that we will assert()
2402  * if @secure is true and @irq does not specify one of the fixed set
2403  * of architecturally banked exceptions.
2404  */
2405 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2406 /**
2407  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2408  * @opaque: the NVIC
2409  * @irq: the exception number to mark pending
2410  * @secure: false for non-banked exceptions or for the nonsecure
2411  * version of a banked exception, true for the secure version of a banked
2412  * exception.
2413  *
2414  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2415  * exceptions (exceptions generated in the course of trying to take
2416  * a different exception).
2417  */
2418 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2419 /**
2420  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2421  * @opaque: the NVIC
2422  * @irq: the exception number to mark pending
2423  * @secure: false for non-banked exceptions or for the nonsecure
2424  * version of a banked exception, true for the secure version of a banked
2425  * exception.
2426  *
2427  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2428  * generated in the course of lazy stacking of FP registers.
2429  */
2430 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2431 /**
2432  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2433  *    exception, and whether it targets Secure state
2434  * @opaque: the NVIC
2435  * @pirq: set to pending exception number
2436  * @ptargets_secure: set to whether pending exception targets Secure
2437  *
2438  * This function writes the number of the highest priority pending
2439  * exception (the one which would be made active by
2440  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2441  * to true if the current highest priority pending exception should
2442  * be taken to Secure state, false for NS.
2443  */
2444 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2445                                       bool *ptargets_secure);
2446 /**
2447  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2448  * @opaque: the NVIC
2449  *
2450  * Move the current highest priority pending exception from the pending
2451  * state to the active state, and update v7m.exception to indicate that
2452  * it is the exception currently being handled.
2453  */
2454 void armv7m_nvic_acknowledge_irq(void *opaque);
2455 /**
2456  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2457  * @opaque: the NVIC
2458  * @irq: the exception number to complete
2459  * @secure: true if this exception was secure
2460  *
2461  * Returns: -1 if the irq was not active
2462  *           1 if completing this irq brought us back to base (no active irqs)
2463  *           0 if there is still an irq active after this one was completed
2464  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2465  */
2466 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2467 /**
2468  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2469  * @opaque: the NVIC
2470  * @irq: the exception number to mark pending
2471  * @secure: false for non-banked exceptions or for the nonsecure
2472  * version of a banked exception, true for the secure version of a banked
2473  * exception.
2474  *
2475  * Return whether an exception is "ready", i.e. whether the exception is
2476  * enabled and is configured at a priority which would allow it to
2477  * interrupt the current execution priority. This controls whether the
2478  * RDY bit for it in the FPCCR is set.
2479  */
2480 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2481 /**
2482  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2483  * @opaque: the NVIC
2484  *
2485  * Returns: the raw execution priority as defined by the v8M architecture.
2486  * This is the execution priority minus the effects of AIRCR.PRIS,
2487  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2488  * (v8M ARM ARM I_PKLD.)
2489  */
2490 int armv7m_nvic_raw_execution_priority(void *opaque);
2491 /**
2492  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2493  * priority is negative for the specified security state.
2494  * @opaque: the NVIC
2495  * @secure: the security state to test
2496  * This corresponds to the pseudocode IsReqExecPriNeg().
2497  */
2498 #ifndef CONFIG_USER_ONLY
2499 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2500 #else
2501 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2502 {
2503     return false;
2504 }
2505 #endif
2506 
2507 /* Interface for defining coprocessor registers.
2508  * Registers are defined in tables of arm_cp_reginfo structs
2509  * which are passed to define_arm_cp_regs().
2510  */
2511 
2512 /* When looking up a coprocessor register we look for it
2513  * via an integer which encodes all of:
2514  *  coprocessor number
2515  *  Crn, Crm, opc1, opc2 fields
2516  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2517  *    or via MRRC/MCRR?)
2518  *  non-secure/secure bank (AArch32 only)
2519  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2520  * (In this case crn and opc2 should be zero.)
2521  * For AArch64, there is no 32/64 bit size distinction;
2522  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2523  * and 4 bit CRn and CRm. The encoding patterns are chosen
2524  * to be easy to convert to and from the KVM encodings, and also
2525  * so that the hashtable can contain both AArch32 and AArch64
2526  * registers (to allow for interprocessing where we might run
2527  * 32 bit code on a 64 bit core).
2528  */
2529 /* This bit is private to our hashtable cpreg; in KVM register
2530  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2531  * in the upper bits of the 64 bit ID.
2532  */
2533 #define CP_REG_AA64_SHIFT 28
2534 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2535 
2536 /* To enable banking of coprocessor registers depending on ns-bit we
2537  * add a bit to distinguish between secure and non-secure cpregs in the
2538  * hashtable.
2539  */
2540 #define CP_REG_NS_SHIFT 29
2541 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2542 
2543 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2544     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2545      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2546 
2547 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2548     (CP_REG_AA64_MASK |                                 \
2549      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2550      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2551      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2552      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2553      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2554      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2555 
2556 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2557  * version used as a key for the coprocessor register hashtable
2558  */
2559 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2560 {
2561     uint32_t cpregid = kvmid;
2562     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2563         cpregid |= CP_REG_AA64_MASK;
2564     } else {
2565         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2566             cpregid |= (1 << 15);
2567         }
2568 
2569         /* KVM is always non-secure so add the NS flag on AArch32 register
2570          * entries.
2571          */
2572          cpregid |= 1 << CP_REG_NS_SHIFT;
2573     }
2574     return cpregid;
2575 }
2576 
2577 /* Convert a truncated 32 bit hashtable key into the full
2578  * 64 bit KVM register ID.
2579  */
2580 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2581 {
2582     uint64_t kvmid;
2583 
2584     if (cpregid & CP_REG_AA64_MASK) {
2585         kvmid = cpregid & ~CP_REG_AA64_MASK;
2586         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2587     } else {
2588         kvmid = cpregid & ~(1 << 15);
2589         if (cpregid & (1 << 15)) {
2590             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2591         } else {
2592             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2593         }
2594     }
2595     return kvmid;
2596 }
2597 
2598 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2599  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2600  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2601  * TCG can assume the value to be constant (ie load at translate time)
2602  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2603  * indicates that the TB should not be ended after a write to this register
2604  * (the default is that the TB ends after cp writes). OVERRIDE permits
2605  * a register definition to override a previous definition for the
2606  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2607  * old must have the OVERRIDE bit set.
2608  * ALIAS indicates that this register is an alias view of some underlying
2609  * state which is also visible via another register, and that the other
2610  * register is handling migration and reset; registers marked ALIAS will not be
2611  * migrated but may have their state set by syncing of register state from KVM.
2612  * NO_RAW indicates that this register has no underlying state and does not
2613  * support raw access for state saving/loading; it will not be used for either
2614  * migration or KVM state synchronization. (Typically this is for "registers"
2615  * which are actually used as instructions for cache maintenance and so on.)
2616  * IO indicates that this register does I/O and therefore its accesses
2617  * need to be marked with gen_io_start() and also end the TB. In particular,
2618  * registers which implement clocks or timers require this.
2619  * RAISES_EXC is for when the read or write hook might raise an exception;
2620  * the generated code will synchronize the CPU state before calling the hook
2621  * so that it is safe for the hook to call raise_exception().
2622  * NEWEL is for writes to registers that might change the exception
2623  * level - typically on older ARM chips. For those cases we need to
2624  * re-read the new el when recomputing the translation flags.
2625  */
2626 #define ARM_CP_SPECIAL           0x0001
2627 #define ARM_CP_CONST             0x0002
2628 #define ARM_CP_64BIT             0x0004
2629 #define ARM_CP_SUPPRESS_TB_END   0x0008
2630 #define ARM_CP_OVERRIDE          0x0010
2631 #define ARM_CP_ALIAS             0x0020
2632 #define ARM_CP_IO                0x0040
2633 #define ARM_CP_NO_RAW            0x0080
2634 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2635 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2636 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2637 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2638 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2639 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2640 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2641 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2642 #define ARM_CP_FPU               0x1000
2643 #define ARM_CP_SVE               0x2000
2644 #define ARM_CP_NO_GDB            0x4000
2645 #define ARM_CP_RAISES_EXC        0x8000
2646 #define ARM_CP_NEWEL             0x10000
2647 /* Used only as a terminator for ARMCPRegInfo lists */
2648 #define ARM_CP_SENTINEL          0xfffff
2649 /* Mask of only the flag bits in a type field */
2650 #define ARM_CP_FLAG_MASK         0x1f0ff
2651 
2652 /* Valid values for ARMCPRegInfo state field, indicating which of
2653  * the AArch32 and AArch64 execution states this register is visible in.
2654  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2655  * If the reginfo is declared to be visible in both states then a second
2656  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2657  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2658  * Note that we rely on the values of these enums as we iterate through
2659  * the various states in some places.
2660  */
2661 enum {
2662     ARM_CP_STATE_AA32 = 0,
2663     ARM_CP_STATE_AA64 = 1,
2664     ARM_CP_STATE_BOTH = 2,
2665 };
2666 
2667 /* ARM CP register secure state flags.  These flags identify security state
2668  * attributes for a given CP register entry.
2669  * The existence of both or neither secure and non-secure flags indicates that
2670  * the register has both a secure and non-secure hash entry.  A single one of
2671  * these flags causes the register to only be hashed for the specified
2672  * security state.
2673  * Although definitions may have any combination of the S/NS bits, each
2674  * registered entry will only have one to identify whether the entry is secure
2675  * or non-secure.
2676  */
2677 enum {
2678     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2679     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2680 };
2681 
2682 /* Return true if cptype is a valid type field. This is used to try to
2683  * catch errors where the sentinel has been accidentally left off the end
2684  * of a list of registers.
2685  */
2686 static inline bool cptype_valid(int cptype)
2687 {
2688     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2689         || ((cptype & ARM_CP_SPECIAL) &&
2690             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2691 }
2692 
2693 /* Access rights:
2694  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2695  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2696  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2697  * (ie any of the privileged modes in Secure state, or Monitor mode).
2698  * If a register is accessible in one privilege level it's always accessible
2699  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2700  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2701  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2702  * terminology a little and call this PL3.
2703  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2704  * with the ELx exception levels.
2705  *
2706  * If access permissions for a register are more complex than can be
2707  * described with these bits, then use a laxer set of restrictions, and
2708  * do the more restrictive/complex check inside a helper function.
2709  */
2710 #define PL3_R 0x80
2711 #define PL3_W 0x40
2712 #define PL2_R (0x20 | PL3_R)
2713 #define PL2_W (0x10 | PL3_W)
2714 #define PL1_R (0x08 | PL2_R)
2715 #define PL1_W (0x04 | PL2_W)
2716 #define PL0_R (0x02 | PL1_R)
2717 #define PL0_W (0x01 | PL1_W)
2718 
2719 /*
2720  * For user-mode some registers are accessible to EL0 via a kernel
2721  * trap-and-emulate ABI. In this case we define the read permissions
2722  * as actually being PL0_R. However some bits of any given register
2723  * may still be masked.
2724  */
2725 #ifdef CONFIG_USER_ONLY
2726 #define PL0U_R PL0_R
2727 #else
2728 #define PL0U_R PL1_R
2729 #endif
2730 
2731 #define PL3_RW (PL3_R | PL3_W)
2732 #define PL2_RW (PL2_R | PL2_W)
2733 #define PL1_RW (PL1_R | PL1_W)
2734 #define PL0_RW (PL0_R | PL0_W)
2735 
2736 /* Return the highest implemented Exception Level */
2737 static inline int arm_highest_el(CPUARMState *env)
2738 {
2739     if (arm_feature(env, ARM_FEATURE_EL3)) {
2740         return 3;
2741     }
2742     if (arm_feature(env, ARM_FEATURE_EL2)) {
2743         return 2;
2744     }
2745     return 1;
2746 }
2747 
2748 /* Return true if a v7M CPU is in Handler mode */
2749 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2750 {
2751     return env->v7m.exception != 0;
2752 }
2753 
2754 /* Return the current Exception Level (as per ARMv8; note that this differs
2755  * from the ARMv7 Privilege Level).
2756  */
2757 static inline int arm_current_el(CPUARMState *env)
2758 {
2759     if (arm_feature(env, ARM_FEATURE_M)) {
2760         return arm_v7m_is_handler_mode(env) ||
2761             !(env->v7m.control[env->v7m.secure] & 1);
2762     }
2763 
2764     if (is_a64(env)) {
2765         return extract32(env->pstate, 2, 2);
2766     }
2767 
2768     switch (env->uncached_cpsr & 0x1f) {
2769     case ARM_CPU_MODE_USR:
2770         return 0;
2771     case ARM_CPU_MODE_HYP:
2772         return 2;
2773     case ARM_CPU_MODE_MON:
2774         return 3;
2775     default:
2776         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2777             /* If EL3 is 32-bit then all secure privileged modes run in
2778              * EL3
2779              */
2780             return 3;
2781         }
2782 
2783         return 1;
2784     }
2785 }
2786 
2787 typedef struct ARMCPRegInfo ARMCPRegInfo;
2788 
2789 typedef enum CPAccessResult {
2790     /* Access is permitted */
2791     CP_ACCESS_OK = 0,
2792     /* Access fails due to a configurable trap or enable which would
2793      * result in a categorized exception syndrome giving information about
2794      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2795      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2796      * PL1 if in EL0, otherwise to the current EL).
2797      */
2798     CP_ACCESS_TRAP = 1,
2799     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2800      * Note that this is not a catch-all case -- the set of cases which may
2801      * result in this failure is specifically defined by the architecture.
2802      */
2803     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2804     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2805     CP_ACCESS_TRAP_EL2 = 3,
2806     CP_ACCESS_TRAP_EL3 = 4,
2807     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2808     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2809     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2810 } CPAccessResult;
2811 
2812 /* Access functions for coprocessor registers. These cannot fail and
2813  * may not raise exceptions.
2814  */
2815 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2816 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2817                        uint64_t value);
2818 /* Access permission check functions for coprocessor registers. */
2819 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2820                                   const ARMCPRegInfo *opaque,
2821                                   bool isread);
2822 /* Hook function for register reset */
2823 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2824 
2825 #define CP_ANY 0xff
2826 
2827 /* Definition of an ARM coprocessor register */
2828 struct ARMCPRegInfo {
2829     /* Name of register (useful mainly for debugging, need not be unique) */
2830     const char *name;
2831     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2832      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2833      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2834      * will be decoded to this register. The register read and write
2835      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2836      * used by the program, so it is possible to register a wildcard and
2837      * then behave differently on read/write if necessary.
2838      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2839      * must both be zero.
2840      * For AArch64-visible registers, opc0 is also used.
2841      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2842      * way to distinguish (for KVM's benefit) guest-visible system registers
2843      * from demuxed ones provided to preserve the "no side effects on
2844      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2845      * visible (to match KVM's encoding); cp==0 will be converted to
2846      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2847      */
2848     uint8_t cp;
2849     uint8_t crn;
2850     uint8_t crm;
2851     uint8_t opc0;
2852     uint8_t opc1;
2853     uint8_t opc2;
2854     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2855     int state;
2856     /* Register type: ARM_CP_* bits/values */
2857     int type;
2858     /* Access rights: PL*_[RW] */
2859     int access;
2860     /* Security state: ARM_CP_SECSTATE_* bits/values */
2861     int secure;
2862     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2863      * this register was defined: can be used to hand data through to the
2864      * register read/write functions, since they are passed the ARMCPRegInfo*.
2865      */
2866     void *opaque;
2867     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2868      * fieldoffset is non-zero, the reset value of the register.
2869      */
2870     uint64_t resetvalue;
2871     /* Offset of the field in CPUARMState for this register.
2872      *
2873      * This is not needed if either:
2874      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2875      *  2. both readfn and writefn are specified
2876      */
2877     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2878 
2879     /* Offsets of the secure and non-secure fields in CPUARMState for the
2880      * register if it is banked.  These fields are only used during the static
2881      * registration of a register.  During hashing the bank associated
2882      * with a given security state is copied to fieldoffset which is used from
2883      * there on out.
2884      *
2885      * It is expected that register definitions use either fieldoffset or
2886      * bank_fieldoffsets in the definition but not both.  It is also expected
2887      * that both bank offsets are set when defining a banked register.  This
2888      * use indicates that a register is banked.
2889      */
2890     ptrdiff_t bank_fieldoffsets[2];
2891 
2892     /* Function for making any access checks for this register in addition to
2893      * those specified by the 'access' permissions bits. If NULL, no extra
2894      * checks required. The access check is performed at runtime, not at
2895      * translate time.
2896      */
2897     CPAccessFn *accessfn;
2898     /* Function for handling reads of this register. If NULL, then reads
2899      * will be done by loading from the offset into CPUARMState specified
2900      * by fieldoffset.
2901      */
2902     CPReadFn *readfn;
2903     /* Function for handling writes of this register. If NULL, then writes
2904      * will be done by writing to the offset into CPUARMState specified
2905      * by fieldoffset.
2906      */
2907     CPWriteFn *writefn;
2908     /* Function for doing a "raw" read; used when we need to copy
2909      * coprocessor state to the kernel for KVM or out for
2910      * migration. This only needs to be provided if there is also a
2911      * readfn and it has side effects (for instance clear-on-read bits).
2912      */
2913     CPReadFn *raw_readfn;
2914     /* Function for doing a "raw" write; used when we need to copy KVM
2915      * kernel coprocessor state into userspace, or for inbound
2916      * migration. This only needs to be provided if there is also a
2917      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2918      * or similar behaviour.
2919      */
2920     CPWriteFn *raw_writefn;
2921     /* Function for resetting the register. If NULL, then reset will be done
2922      * by writing resetvalue to the field specified in fieldoffset. If
2923      * fieldoffset is 0 then no reset will be done.
2924      */
2925     CPResetFn *resetfn;
2926 
2927     /*
2928      * "Original" writefn and readfn.
2929      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2930      * accessor functions of various EL1/EL0 to perform the runtime
2931      * check for which sysreg should actually be modified, and then
2932      * forwards the operation.  Before overwriting the accessors,
2933      * the original function is copied here, so that accesses that
2934      * really do go to the EL1/EL0 version proceed normally.
2935      * (The corresponding EL2 register is linked via opaque.)
2936      */
2937     CPReadFn *orig_readfn;
2938     CPWriteFn *orig_writefn;
2939 };
2940 
2941 /* Macros which are lvalues for the field in CPUARMState for the
2942  * ARMCPRegInfo *ri.
2943  */
2944 #define CPREG_FIELD32(env, ri) \
2945     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2946 #define CPREG_FIELD64(env, ri) \
2947     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2948 
2949 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2950 
2951 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2952                                     const ARMCPRegInfo *regs, void *opaque);
2953 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2954                                        const ARMCPRegInfo *regs, void *opaque);
2955 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2956 {
2957     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2958 }
2959 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2960 {
2961     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2962 }
2963 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2964 
2965 /*
2966  * Definition of an ARM co-processor register as viewed from
2967  * userspace. This is used for presenting sanitised versions of
2968  * registers to userspace when emulating the Linux AArch64 CPU
2969  * ID/feature ABI (advertised as HWCAP_CPUID).
2970  */
2971 typedef struct ARMCPRegUserSpaceInfo {
2972     /* Name of register */
2973     const char *name;
2974 
2975     /* Is the name actually a glob pattern */
2976     bool is_glob;
2977 
2978     /* Only some bits are exported to user space */
2979     uint64_t exported_bits;
2980 
2981     /* Fixed bits are applied after the mask */
2982     uint64_t fixed_bits;
2983 } ARMCPRegUserSpaceInfo;
2984 
2985 #define REGUSERINFO_SENTINEL { .name = NULL }
2986 
2987 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2988 
2989 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2990 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2991                          uint64_t value);
2992 /* CPReadFn that can be used for read-as-zero behaviour */
2993 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2994 
2995 /* CPResetFn that does nothing, for use if no reset is required even
2996  * if fieldoffset is non zero.
2997  */
2998 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2999 
3000 /* Return true if this reginfo struct's field in the cpu state struct
3001  * is 64 bits wide.
3002  */
3003 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
3004 {
3005     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
3006 }
3007 
3008 static inline bool cp_access_ok(int current_el,
3009                                 const ARMCPRegInfo *ri, int isread)
3010 {
3011     return (ri->access >> ((current_el * 2) + isread)) & 1;
3012 }
3013 
3014 /* Raw read of a coprocessor register (as needed for migration, etc) */
3015 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
3016 
3017 /**
3018  * write_list_to_cpustate
3019  * @cpu: ARMCPU
3020  *
3021  * For each register listed in the ARMCPU cpreg_indexes list, write
3022  * its value from the cpreg_values list into the ARMCPUState structure.
3023  * This updates TCG's working data structures from KVM data or
3024  * from incoming migration state.
3025  *
3026  * Returns: true if all register values were updated correctly,
3027  * false if some register was unknown or could not be written.
3028  * Note that we do not stop early on failure -- we will attempt
3029  * writing all registers in the list.
3030  */
3031 bool write_list_to_cpustate(ARMCPU *cpu);
3032 
3033 /**
3034  * write_cpustate_to_list:
3035  * @cpu: ARMCPU
3036  * @kvm_sync: true if this is for syncing back to KVM
3037  *
3038  * For each register listed in the ARMCPU cpreg_indexes list, write
3039  * its value from the ARMCPUState structure into the cpreg_values list.
3040  * This is used to copy info from TCG's working data structures into
3041  * KVM or for outbound migration.
3042  *
3043  * @kvm_sync is true if we are doing this in order to sync the
3044  * register state back to KVM. In this case we will only update
3045  * values in the list if the previous list->cpustate sync actually
3046  * successfully wrote the CPU state. Otherwise we will keep the value
3047  * that is in the list.
3048  *
3049  * Returns: true if all register values were read correctly,
3050  * false if some register was unknown or could not be read.
3051  * Note that we do not stop early on failure -- we will attempt
3052  * reading all registers in the list.
3053  */
3054 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
3055 
3056 #define ARM_CPUID_TI915T      0x54029152
3057 #define ARM_CPUID_TI925T      0x54029252
3058 
3059 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3060 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
3061 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
3062 
3063 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
3064 
3065 #define cpu_list arm_cpu_list
3066 
3067 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
3068  *
3069  * If EL3 is 64-bit:
3070  *  + NonSecure EL1 & 0 stage 1
3071  *  + NonSecure EL1 & 0 stage 2
3072  *  + NonSecure EL2
3073  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
3074  *  + Secure EL1 & 0
3075  *  + Secure EL3
3076  * If EL3 is 32-bit:
3077  *  + NonSecure PL1 & 0 stage 1
3078  *  + NonSecure PL1 & 0 stage 2
3079  *  + NonSecure PL2
3080  *  + Secure PL0
3081  *  + Secure PL1
3082  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3083  *
3084  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3085  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3086  *     because they may differ in access permissions even if the VA->PA map is
3087  *     the same
3088  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3089  *     translation, which means that we have one mmu_idx that deals with two
3090  *     concatenated translation regimes [this sort of combined s1+2 TLB is
3091  *     architecturally permitted]
3092  *  3. we don't need to allocate an mmu_idx to translations that we won't be
3093  *     handling via the TLB. The only way to do a stage 1 translation without
3094  *     the immediate stage 2 translation is via the ATS or AT system insns,
3095  *     which can be slow-pathed and always do a page table walk.
3096  *     The only use of stage 2 translations is either as part of an s1+2
3097  *     lookup or when loading the descriptors during a stage 1 page table walk,
3098  *     and in both those cases we don't use the TLB.
3099  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3100  *     translation regimes, because they map reasonably well to each other
3101  *     and they can't both be active at the same time.
3102  *  5. we want to be able to use the TLB for accesses done as part of a
3103  *     stage1 page table walk, rather than having to walk the stage2 page
3104  *     table over and over.
3105  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3106  *     Never (PAN) bit within PSTATE.
3107  *
3108  * This gives us the following list of cases:
3109  *
3110  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3111  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3112  * NS EL1 EL1&0 stage 1+2 +PAN
3113  * NS EL0 EL2&0
3114  * NS EL2 EL2&0
3115  * NS EL2 EL2&0 +PAN
3116  * NS EL2 (aka NS PL2)
3117  * S EL0 EL1&0 (aka S PL0)
3118  * S EL1 EL1&0 (not used if EL3 is 32 bit)
3119  * S EL1 EL1&0 +PAN
3120  * S EL3 (aka S PL1)
3121  *
3122  * for a total of 11 different mmu_idx.
3123  *
3124  * R profile CPUs have an MPU, but can use the same set of MMU indexes
3125  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3126  * NS EL2 if we ever model a Cortex-R52).
3127  *
3128  * M profile CPUs are rather different as they do not have a true MMU.
3129  * They have the following different MMU indexes:
3130  *  User
3131  *  Privileged
3132  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3133  *  Privileged, execution priority negative (ditto)
3134  * If the CPU supports the v8M Security Extension then there are also:
3135  *  Secure User
3136  *  Secure Privileged
3137  *  Secure User, execution priority negative
3138  *  Secure Privileged, execution priority negative
3139  *
3140  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3141  * are not quite the same -- different CPU types (most notably M profile
3142  * vs A/R profile) would like to use MMU indexes with different semantics,
3143  * but since we don't ever need to use all of those in a single CPU we
3144  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3145  * modes + total number of M profile MMU modes". The lower bits of
3146  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3147  * the same for any particular CPU.
3148  * Variables of type ARMMUIdx are always full values, and the core
3149  * index values are in variables of type 'int'.
3150  *
3151  * Our enumeration includes at the end some entries which are not "true"
3152  * mmu_idx values in that they don't have corresponding TLBs and are only
3153  * valid for doing slow path page table walks.
3154  *
3155  * The constant names here are patterned after the general style of the names
3156  * of the AT/ATS operations.
3157  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3158  * For M profile we arrange them to have a bit for priv, a bit for negpri
3159  * and a bit for secure.
3160  */
3161 #define ARM_MMU_IDX_A     0x10  /* A profile */
3162 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3163 #define ARM_MMU_IDX_M     0x40  /* M profile */
3164 
3165 /* Meanings of the bits for A profile mmu idx values */
3166 #define ARM_MMU_IDX_A_NS     0x8
3167 
3168 /* Meanings of the bits for M profile mmu idx values */
3169 #define ARM_MMU_IDX_M_PRIV   0x1
3170 #define ARM_MMU_IDX_M_NEGPRI 0x2
3171 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3172 
3173 #define ARM_MMU_IDX_TYPE_MASK \
3174     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3175 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3176 
3177 typedef enum ARMMMUIdx {
3178     /*
3179      * A-profile.
3180      */
3181     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3182     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3183     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3184     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3185     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3186     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3187     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3188     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3189 
3190     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3191     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3192     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3193     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3194     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3195     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3196     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3197 
3198     /*
3199      * These are not allocated TLBs and are used only for AT system
3200      * instructions or for the first stage of an S12 page table walk.
3201      */
3202     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3203     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3204     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3205     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3206     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3207     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3208     /*
3209      * Not allocated a TLB: used only for second stage of an S12 page
3210      * table walk, or for descriptor loads during first stage of an S1
3211      * page table walk. Note that if we ever want to have a TLB for this
3212      * then various TLB flush insns which currently are no-ops or flush
3213      * only stage 1 MMU indexes will need to change to flush stage 2.
3214      */
3215     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3216     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3217 
3218     /*
3219      * M-profile.
3220      */
3221     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3222     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3223     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3224     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3225     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3226     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3227     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3228     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3229 } ARMMMUIdx;
3230 
3231 /*
3232  * Bit macros for the core-mmu-index values for each index,
3233  * for use when calling tlb_flush_by_mmuidx() and friends.
3234  */
3235 #define TO_CORE_BIT(NAME) \
3236     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3237 
3238 typedef enum ARMMMUIdxBit {
3239     TO_CORE_BIT(E10_0),
3240     TO_CORE_BIT(E20_0),
3241     TO_CORE_BIT(E10_1),
3242     TO_CORE_BIT(E10_1_PAN),
3243     TO_CORE_BIT(E2),
3244     TO_CORE_BIT(E20_2),
3245     TO_CORE_BIT(E20_2_PAN),
3246     TO_CORE_BIT(SE10_0),
3247     TO_CORE_BIT(SE20_0),
3248     TO_CORE_BIT(SE10_1),
3249     TO_CORE_BIT(SE20_2),
3250     TO_CORE_BIT(SE10_1_PAN),
3251     TO_CORE_BIT(SE20_2_PAN),
3252     TO_CORE_BIT(SE2),
3253     TO_CORE_BIT(SE3),
3254 
3255     TO_CORE_BIT(MUser),
3256     TO_CORE_BIT(MPriv),
3257     TO_CORE_BIT(MUserNegPri),
3258     TO_CORE_BIT(MPrivNegPri),
3259     TO_CORE_BIT(MSUser),
3260     TO_CORE_BIT(MSPriv),
3261     TO_CORE_BIT(MSUserNegPri),
3262     TO_CORE_BIT(MSPrivNegPri),
3263 } ARMMMUIdxBit;
3264 
3265 #undef TO_CORE_BIT
3266 
3267 #define MMU_USER_IDX 0
3268 
3269 /* Indexes used when registering address spaces with cpu_address_space_init */
3270 typedef enum ARMASIdx {
3271     ARMASIdx_NS = 0,
3272     ARMASIdx_S = 1,
3273     ARMASIdx_TagNS = 2,
3274     ARMASIdx_TagS = 3,
3275 } ARMASIdx;
3276 
3277 /* Return the Exception Level targeted by debug exceptions. */
3278 static inline int arm_debug_target_el(CPUARMState *env)
3279 {
3280     bool secure = arm_is_secure(env);
3281     bool route_to_el2 = false;
3282 
3283     if (arm_is_el2_enabled(env)) {
3284         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3285                        env->cp15.mdcr_el2 & MDCR_TDE;
3286     }
3287 
3288     if (route_to_el2) {
3289         return 2;
3290     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3291                !arm_el_is_aa64(env, 3) && secure) {
3292         return 3;
3293     } else {
3294         return 1;
3295     }
3296 }
3297 
3298 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3299 {
3300     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3301      * CSSELR is RAZ/WI.
3302      */
3303     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3304 }
3305 
3306 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3307 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3308 {
3309     int cur_el = arm_current_el(env);
3310     int debug_el;
3311 
3312     if (cur_el == 3) {
3313         return false;
3314     }
3315 
3316     /* MDCR_EL3.SDD disables debug events from Secure state */
3317     if (arm_is_secure_below_el3(env)
3318         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3319         return false;
3320     }
3321 
3322     /*
3323      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3324      * while not masking the (D)ebug bit in DAIF.
3325      */
3326     debug_el = arm_debug_target_el(env);
3327 
3328     if (cur_el == debug_el) {
3329         return extract32(env->cp15.mdscr_el1, 13, 1)
3330             && !(env->daif & PSTATE_D);
3331     }
3332 
3333     /* Otherwise the debug target needs to be a higher EL */
3334     return debug_el > cur_el;
3335 }
3336 
3337 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3338 {
3339     int el = arm_current_el(env);
3340 
3341     if (el == 0 && arm_el_is_aa64(env, 1)) {
3342         return aa64_generate_debug_exceptions(env);
3343     }
3344 
3345     if (arm_is_secure(env)) {
3346         int spd;
3347 
3348         if (el == 0 && (env->cp15.sder & 1)) {
3349             /* SDER.SUIDEN means debug exceptions from Secure EL0
3350              * are always enabled. Otherwise they are controlled by
3351              * SDCR.SPD like those from other Secure ELs.
3352              */
3353             return true;
3354         }
3355 
3356         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3357         switch (spd) {
3358         case 1:
3359             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3360         case 0:
3361             /* For 0b00 we return true if external secure invasive debug
3362              * is enabled. On real hardware this is controlled by external
3363              * signals to the core. QEMU always permits debug, and behaves
3364              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3365              */
3366             return true;
3367         case 2:
3368             return false;
3369         case 3:
3370             return true;
3371         }
3372     }
3373 
3374     return el != 2;
3375 }
3376 
3377 /* Return true if debugging exceptions are currently enabled.
3378  * This corresponds to what in ARM ARM pseudocode would be
3379  *    if UsingAArch32() then
3380  *        return AArch32.GenerateDebugExceptions()
3381  *    else
3382  *        return AArch64.GenerateDebugExceptions()
3383  * We choose to push the if() down into this function for clarity,
3384  * since the pseudocode has it at all callsites except for the one in
3385  * CheckSoftwareStep(), where it is elided because both branches would
3386  * always return the same value.
3387  */
3388 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3389 {
3390     if (env->aarch64) {
3391         return aa64_generate_debug_exceptions(env);
3392     } else {
3393         return aa32_generate_debug_exceptions(env);
3394     }
3395 }
3396 
3397 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3398  * implicitly means this always returns false in pre-v8 CPUs.)
3399  */
3400 static inline bool arm_singlestep_active(CPUARMState *env)
3401 {
3402     return extract32(env->cp15.mdscr_el1, 0, 1)
3403         && arm_el_is_aa64(env, arm_debug_target_el(env))
3404         && arm_generate_debug_exceptions(env);
3405 }
3406 
3407 static inline bool arm_sctlr_b(CPUARMState *env)
3408 {
3409     return
3410         /* We need not implement SCTLR.ITD in user-mode emulation, so
3411          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3412          * This lets people run BE32 binaries with "-cpu any".
3413          */
3414 #ifndef CONFIG_USER_ONLY
3415         !arm_feature(env, ARM_FEATURE_V7) &&
3416 #endif
3417         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3418 }
3419 
3420 uint64_t arm_sctlr(CPUARMState *env, int el);
3421 
3422 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3423                                                   bool sctlr_b)
3424 {
3425 #ifdef CONFIG_USER_ONLY
3426     /*
3427      * In system mode, BE32 is modelled in line with the
3428      * architecture (as word-invariant big-endianness), where loads
3429      * and stores are done little endian but from addresses which
3430      * are adjusted by XORing with the appropriate constant. So the
3431      * endianness to use for the raw data access is not affected by
3432      * SCTLR.B.
3433      * In user mode, however, we model BE32 as byte-invariant
3434      * big-endianness (because user-only code cannot tell the
3435      * difference), and so we need to use a data access endianness
3436      * that depends on SCTLR.B.
3437      */
3438     if (sctlr_b) {
3439         return true;
3440     }
3441 #endif
3442     /* In 32bit endianness is determined by looking at CPSR's E bit */
3443     return env->uncached_cpsr & CPSR_E;
3444 }
3445 
3446 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3447 {
3448     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3449 }
3450 
3451 /* Return true if the processor is in big-endian mode. */
3452 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3453 {
3454     if (!is_a64(env)) {
3455         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3456     } else {
3457         int cur_el = arm_current_el(env);
3458         uint64_t sctlr = arm_sctlr(env, cur_el);
3459         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3460     }
3461 }
3462 
3463 #include "exec/cpu-all.h"
3464 
3465 /*
3466  * We have more than 32-bits worth of state per TB, so we split the data
3467  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3468  * We collect these two parts in CPUARMTBFlags where they are named
3469  * flags and flags2 respectively.
3470  *
3471  * The flags that are shared between all execution modes, TBFLAG_ANY,
3472  * are stored in flags.  The flags that are specific to a given mode
3473  * are stores in flags2.  Since cs_base is sized on the configured
3474  * address size, flags2 always has 64-bits for A64, and a minimum of
3475  * 32-bits for A32 and M32.
3476  *
3477  * The bits for 32-bit A-profile and M-profile partially overlap:
3478  *
3479  *  31         23         11 10             0
3480  * +-------------+----------+----------------+
3481  * |             |          |   TBFLAG_A32   |
3482  * | TBFLAG_AM32 |          +-----+----------+
3483  * |             |                |TBFLAG_M32|
3484  * +-------------+----------------+----------+
3485  *  31         23                6 5        0
3486  *
3487  * Unless otherwise noted, these bits are cached in env->hflags.
3488  */
3489 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3490 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3491 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3492 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3493 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3494 /* Target EL if we take a floating-point-disabled exception */
3495 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3496 /* For A-profile only, target EL for debug exceptions.  */
3497 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3498 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3499 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3500 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3501 
3502 /*
3503  * Bit usage when in AArch32 state, both A- and M-profile.
3504  */
3505 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3506 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3507 
3508 /*
3509  * Bit usage when in AArch32 state, for A-profile only.
3510  */
3511 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3512 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3513 /*
3514  * We store the bottom two bits of the CPAR as TB flags and handle
3515  * checks on the other bits at runtime. This shares the same bits as
3516  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3517  * Not cached, because VECLEN+VECSTRIDE are not cached.
3518  */
3519 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3520 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3521 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3522 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3523 /*
3524  * Indicates whether cp register reads and writes by guest code should access
3525  * the secure or nonsecure bank of banked registers; note that this is not
3526  * the same thing as the current security state of the processor!
3527  */
3528 FIELD(TBFLAG_A32, NS, 10, 1)
3529 
3530 /*
3531  * Bit usage when in AArch32 state, for M-profile only.
3532  */
3533 /* Handler (ie not Thread) mode */
3534 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3535 /* Whether we should generate stack-limit checks */
3536 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3537 /* Set if FPCCR.LSPACT is set */
3538 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3539 /* Set if we must create a new FP context */
3540 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3541 /* Set if FPCCR.S does not match current security state */
3542 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3543 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3544 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3545 
3546 /*
3547  * Bit usage when in AArch64 state
3548  */
3549 FIELD(TBFLAG_A64, TBII, 0, 2)
3550 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3551 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3552 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3553 FIELD(TBFLAG_A64, BT, 9, 1)
3554 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3555 FIELD(TBFLAG_A64, TBID, 12, 2)
3556 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3557 FIELD(TBFLAG_A64, ATA, 15, 1)
3558 FIELD(TBFLAG_A64, TCMA, 16, 2)
3559 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3560 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3561 
3562 /*
3563  * Helpers for using the above.
3564  */
3565 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3566     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3567 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3568     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3569 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3570     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3571 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3572     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3573 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3574     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3575 
3576 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3577 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3578 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3579 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3580 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3581 
3582 /**
3583  * cpu_mmu_index:
3584  * @env: The cpu environment
3585  * @ifetch: True for code access, false for data access.
3586  *
3587  * Return the core mmu index for the current translation regime.
3588  * This function is used by generic TCG code paths.
3589  */
3590 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3591 {
3592     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3593 }
3594 
3595 static inline bool bswap_code(bool sctlr_b)
3596 {
3597 #ifdef CONFIG_USER_ONLY
3598     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3599      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3600      * would also end up as a mixed-endian mode with BE code, LE data.
3601      */
3602     return
3603 #if TARGET_BIG_ENDIAN
3604         1 ^
3605 #endif
3606         sctlr_b;
3607 #else
3608     /* All code access in ARM is little endian, and there are no loaders
3609      * doing swaps that need to be reversed
3610      */
3611     return 0;
3612 #endif
3613 }
3614 
3615 #ifdef CONFIG_USER_ONLY
3616 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3617 {
3618     return
3619 #if TARGET_BIG_ENDIAN
3620        1 ^
3621 #endif
3622        arm_cpu_data_is_big_endian(env);
3623 }
3624 #endif
3625 
3626 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3627                           target_ulong *cs_base, uint32_t *flags);
3628 
3629 enum {
3630     QEMU_PSCI_CONDUIT_DISABLED = 0,
3631     QEMU_PSCI_CONDUIT_SMC = 1,
3632     QEMU_PSCI_CONDUIT_HVC = 2,
3633 };
3634 
3635 #ifndef CONFIG_USER_ONLY
3636 /* Return the address space index to use for a memory access */
3637 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3638 {
3639     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3640 }
3641 
3642 /* Return the AddressSpace to use for a memory access
3643  * (which depends on whether the access is S or NS, and whether
3644  * the board gave us a separate AddressSpace for S accesses).
3645  */
3646 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3647 {
3648     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3649 }
3650 #endif
3651 
3652 /**
3653  * arm_register_pre_el_change_hook:
3654  * Register a hook function which will be called immediately before this
3655  * CPU changes exception level or mode. The hook function will be
3656  * passed a pointer to the ARMCPU and the opaque data pointer passed
3657  * to this function when the hook was registered.
3658  *
3659  * Note that if a pre-change hook is called, any registered post-change hooks
3660  * are guaranteed to subsequently be called.
3661  */
3662 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3663                                  void *opaque);
3664 /**
3665  * arm_register_el_change_hook:
3666  * Register a hook function which will be called immediately after this
3667  * CPU changes exception level or mode. The hook function will be
3668  * passed a pointer to the ARMCPU and the opaque data pointer passed
3669  * to this function when the hook was registered.
3670  *
3671  * Note that any registered hooks registered here are guaranteed to be called
3672  * if pre-change hooks have been.
3673  */
3674 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3675         *opaque);
3676 
3677 /**
3678  * arm_rebuild_hflags:
3679  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3680  */
3681 void arm_rebuild_hflags(CPUARMState *env);
3682 
3683 /**
3684  * aa32_vfp_dreg:
3685  * Return a pointer to the Dn register within env in 32-bit mode.
3686  */
3687 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3688 {
3689     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3690 }
3691 
3692 /**
3693  * aa32_vfp_qreg:
3694  * Return a pointer to the Qn register within env in 32-bit mode.
3695  */
3696 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3697 {
3698     return &env->vfp.zregs[regno].d[0];
3699 }
3700 
3701 /**
3702  * aa64_vfp_qreg:
3703  * Return a pointer to the Qn register within env in 64-bit mode.
3704  */
3705 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3706 {
3707     return &env->vfp.zregs[regno].d[0];
3708 }
3709 
3710 /* Shared between translate-sve.c and sve_helper.c.  */
3711 extern const uint64_t pred_esz_masks[4];
3712 
3713 /* Helper for the macros below, validating the argument type. */
3714 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3715 {
3716     return x;
3717 }
3718 
3719 /*
3720  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3721  * Using these should be a bit more self-documenting than using the
3722  * generic target bits directly.
3723  */
3724 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3725 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3726 
3727 /*
3728  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3729  */
3730 #define PAGE_BTI  PAGE_TARGET_1
3731 #define PAGE_MTE  PAGE_TARGET_2
3732 
3733 #ifdef TARGET_TAGGED_ADDRESSES
3734 /**
3735  * cpu_untagged_addr:
3736  * @cs: CPU context
3737  * @x: tagged address
3738  *
3739  * Remove any address tag from @x.  This is explicitly related to the
3740  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3741  *
3742  * There should be a better place to put this, but we need this in
3743  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3744  */
3745 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3746 {
3747     ARMCPU *cpu = ARM_CPU(cs);
3748     if (cpu->env.tagged_addr_enable) {
3749         /*
3750          * TBI is enabled for userspace but not kernelspace addresses.
3751          * Only clear the tag if bit 55 is clear.
3752          */
3753         x &= sextract64(x, 0, 56);
3754     }
3755     return x;
3756 }
3757 #endif
3758 
3759 /*
3760  * Naming convention for isar_feature functions:
3761  * Functions which test 32-bit ID registers should have _aa32_ in
3762  * their name. Functions which test 64-bit ID registers should have
3763  * _aa64_ in their name. These must only be used in code where we
3764  * know for certain that the CPU has AArch32 or AArch64 respectively
3765  * or where the correct answer for a CPU which doesn't implement that
3766  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3767  * system registers that are specific to that CPU state, for "should
3768  * we let this system register bit be set" tests where the 32-bit
3769  * flavour of the register doesn't have the bit, and so on).
3770  * Functions which simply ask "does this feature exist at all" have
3771  * _any_ in their name, and always return the logical OR of the _aa64_
3772  * and the _aa32_ function.
3773  */
3774 
3775 /*
3776  * 32-bit feature tests via id registers.
3777  */
3778 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3779 {
3780     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3781 }
3782 
3783 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3784 {
3785     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3786 }
3787 
3788 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3789 {
3790     /* (M-profile) low-overhead loops and branch future */
3791     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3792 }
3793 
3794 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3795 {
3796     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3797 }
3798 
3799 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3800 {
3801     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3802 }
3803 
3804 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3805 {
3806     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3807 }
3808 
3809 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3810 {
3811     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3812 }
3813 
3814 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3815 {
3816     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3817 }
3818 
3819 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3820 {
3821     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3822 }
3823 
3824 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3825 {
3826     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3827 }
3828 
3829 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3830 {
3831     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3832 }
3833 
3834 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3835 {
3836     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3837 }
3838 
3839 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3840 {
3841     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3842 }
3843 
3844 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3845 {
3846     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3847 }
3848 
3849 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3850 {
3851     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3852 }
3853 
3854 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3855 {
3856     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3857 }
3858 
3859 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3860 {
3861     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3862 }
3863 
3864 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3865 {
3866     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3867 }
3868 
3869 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3870 {
3871     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3872 }
3873 
3874 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3875 {
3876     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3877 }
3878 
3879 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3880 {
3881     /*
3882      * Return true if M-profile state handling insns
3883      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3884      */
3885     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3886 }
3887 
3888 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3889 {
3890     /* Sadly this is encoded differently for A-profile and M-profile */
3891     if (isar_feature_aa32_mprofile(id)) {
3892         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3893     } else {
3894         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3895     }
3896 }
3897 
3898 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3899 {
3900     /*
3901      * Return true if MVE is supported (either integer or floating point).
3902      * We must check for M-profile as the MVFR1 field means something
3903      * else for A-profile.
3904      */
3905     return isar_feature_aa32_mprofile(id) &&
3906         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3907 }
3908 
3909 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3910 {
3911     /*
3912      * Return true if MVE is supported (either integer or floating point).
3913      * We must check for M-profile as the MVFR1 field means something
3914      * else for A-profile.
3915      */
3916     return isar_feature_aa32_mprofile(id) &&
3917         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3918 }
3919 
3920 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3921 {
3922     /*
3923      * Return true if either VFP or SIMD is implemented.
3924      * In this case, a minimum of VFP w/ D0-D15.
3925      */
3926     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3927 }
3928 
3929 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3930 {
3931     /* Return true if D16-D31 are implemented */
3932     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3933 }
3934 
3935 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3936 {
3937     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3938 }
3939 
3940 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3941 {
3942     /* Return true if CPU supports single precision floating point, VFPv2 */
3943     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3944 }
3945 
3946 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3947 {
3948     /* Return true if CPU supports single precision floating point, VFPv3 */
3949     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3950 }
3951 
3952 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3953 {
3954     /* Return true if CPU supports double precision floating point, VFPv2 */
3955     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3956 }
3957 
3958 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3959 {
3960     /* Return true if CPU supports double precision floating point, VFPv3 */
3961     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3962 }
3963 
3964 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3965 {
3966     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3967 }
3968 
3969 /*
3970  * We always set the FP and SIMD FP16 fields to indicate identical
3971  * levels of support (assuming SIMD is implemented at all), so
3972  * we only need one set of accessors.
3973  */
3974 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3975 {
3976     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3977 }
3978 
3979 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3980 {
3981     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3982 }
3983 
3984 /*
3985  * Note that this ID register field covers both VFP and Neon FMAC,
3986  * so should usually be tested in combination with some other
3987  * check that confirms the presence of whichever of VFP or Neon is
3988  * relevant, to avoid accidentally enabling a Neon feature on
3989  * a VFP-no-Neon core or vice-versa.
3990  */
3991 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3992 {
3993     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3994 }
3995 
3996 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3997 {
3998     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3999 }
4000 
4001 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
4002 {
4003     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
4004 }
4005 
4006 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
4007 {
4008     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
4009 }
4010 
4011 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
4012 {
4013     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
4014 }
4015 
4016 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
4017 {
4018     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
4019 }
4020 
4021 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
4022 {
4023     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
4024 }
4025 
4026 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
4027 {
4028     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
4029 }
4030 
4031 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
4032 {
4033     /* 0xf means "non-standard IMPDEF PMU" */
4034     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
4035         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
4036 }
4037 
4038 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
4039 {
4040     /* 0xf means "non-standard IMPDEF PMU" */
4041     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
4042         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
4043 }
4044 
4045 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
4046 {
4047     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
4048 }
4049 
4050 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
4051 {
4052     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
4053 }
4054 
4055 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
4056 {
4057     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
4058 }
4059 
4060 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4061 {
4062     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4063 }
4064 
4065 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4066 {
4067     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4068 }
4069 
4070 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4071 {
4072     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4073 }
4074 
4075 /*
4076  * 64-bit feature tests via id registers.
4077  */
4078 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4079 {
4080     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4081 }
4082 
4083 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4084 {
4085     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4086 }
4087 
4088 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4089 {
4090     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4091 }
4092 
4093 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4094 {
4095     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4096 }
4097 
4098 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4099 {
4100     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4101 }
4102 
4103 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4104 {
4105     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4106 }
4107 
4108 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4109 {
4110     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4111 }
4112 
4113 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4114 {
4115     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4116 }
4117 
4118 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4119 {
4120     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4121 }
4122 
4123 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4124 {
4125     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4126 }
4127 
4128 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4129 {
4130     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4131 }
4132 
4133 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4134 {
4135     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4136 }
4137 
4138 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4139 {
4140     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4141 }
4142 
4143 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4144 {
4145     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4146 }
4147 
4148 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4149 {
4150     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4151 }
4152 
4153 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4154 {
4155     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4156 }
4157 
4158 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4159 {
4160     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4161 }
4162 
4163 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4164 {
4165     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4166 }
4167 
4168 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4169 {
4170     /*
4171      * Return true if any form of pauth is enabled, as this
4172      * predicate controls migration of the 128-bit keys.
4173      */
4174     return (id->id_aa64isar1 &
4175             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4176              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4177              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4178              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4179 }
4180 
4181 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4182 {
4183     /*
4184      * Return true if pauth is enabled with the architected QARMA algorithm.
4185      * QEMU will always set APA+GPA to the same value.
4186      */
4187     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4188 }
4189 
4190 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4191 {
4192     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4193 }
4194 
4195 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4196 {
4197     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4198 }
4199 
4200 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4201 {
4202     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4203 }
4204 
4205 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4206 {
4207     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4208 }
4209 
4210 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4211 {
4212     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4213 }
4214 
4215 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4216 {
4217     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4218 }
4219 
4220 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4221 {
4222     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4223 }
4224 
4225 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4226 {
4227     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4228 }
4229 
4230 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4231 {
4232     /* We always set the AdvSIMD and FP fields identically.  */
4233     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4234 }
4235 
4236 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4237 {
4238     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4239     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4240 }
4241 
4242 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4243 {
4244     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4245 }
4246 
4247 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4248 {
4249     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4250 }
4251 
4252 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4253 {
4254     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4255 }
4256 
4257 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4258 {
4259     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4260 }
4261 
4262 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4263 {
4264     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4265 }
4266 
4267 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4268 {
4269     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4270 }
4271 
4272 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4273 {
4274     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4275 }
4276 
4277 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4278 {
4279     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4280 }
4281 
4282 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4283 {
4284     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4285 }
4286 
4287 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4288 {
4289     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4290 }
4291 
4292 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4293 {
4294     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4295 }
4296 
4297 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4298 {
4299     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4300 }
4301 
4302 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4303 {
4304     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4305 }
4306 
4307 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4308 {
4309     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4310         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4311 }
4312 
4313 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4314 {
4315     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4316         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4317 }
4318 
4319 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4320 {
4321     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4322 }
4323 
4324 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4325 {
4326     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4327 }
4328 
4329 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4330 {
4331     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4332 }
4333 
4334 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4335 {
4336     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4337 }
4338 
4339 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4340 {
4341     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4342     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4343 }
4344 
4345 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4346 {
4347     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4348 }
4349 
4350 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4351 {
4352     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4353     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4354 }
4355 
4356 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4357 {
4358     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4359 }
4360 
4361 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4362 {
4363     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4364 }
4365 
4366 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4367 {
4368     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4369 }
4370 
4371 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4372 {
4373     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4374 }
4375 
4376 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4377 {
4378     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4379 }
4380 
4381 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4382 {
4383     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4384 }
4385 
4386 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4387 {
4388     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4389 }
4390 
4391 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4392 {
4393     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4394 }
4395 
4396 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4397 {
4398     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4399 }
4400 
4401 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4402 {
4403     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4404 }
4405 
4406 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4407 {
4408     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4409 }
4410 
4411 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4412 {
4413     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4414 }
4415 
4416 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4417 {
4418     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4419 }
4420 
4421 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4422 {
4423     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4424 }
4425 
4426 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4427 {
4428     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4429 }
4430 
4431 /*
4432  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4433  */
4434 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4435 {
4436     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4437 }
4438 
4439 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4440 {
4441     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4442 }
4443 
4444 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4445 {
4446     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4447 }
4448 
4449 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4450 {
4451     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4452 }
4453 
4454 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4455 {
4456     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4457 }
4458 
4459 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4460 {
4461     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4462 }
4463 
4464 /*
4465  * Forward to the above feature tests given an ARMCPU pointer.
4466  */
4467 #define cpu_isar_feature(name, cpu) \
4468     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4469 
4470 #endif
4471