xref: /openbmc/qemu/target/arm/cpu.h (revision 979a8902)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS     0
148 #define GTIMER_VIRT     1
149 #define GTIMER_HYP      2
150 #define GTIMER_SEC      3
151 #define GTIMER_HYPVIRT  4
152 #define NUM_GTIMERS     5
153 
154 typedef struct {
155     uint64_t raw_tcr;
156     uint32_t mask;
157     uint32_t base_mask;
158 } TCR;
159 
160 /* Define a maximum sized vector register.
161  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162  * For 64-bit, this is a 2048-bit SVE register.
163  *
164  * Note that the mapping between S, D, and Q views of the register bank
165  * differs between AArch64 and AArch32.
166  * In AArch32:
167  *  Qn = regs[n].d[1]:regs[n].d[0]
168  *  Dn = regs[n / 2].d[n & 1]
169  *  Sn = regs[n / 4].d[n % 4 / 2],
170  *       bits 31..0 for even n, and bits 63..32 for odd n
171  *       (and regs[16] to regs[31] are inaccessible)
172  * In AArch64:
173  *  Zn = regs[n].d[*]
174  *  Qn = regs[n].d[1]:regs[n].d[0]
175  *  Dn = regs[n].d[0]
176  *  Sn = regs[n].d[0] bits 31..0
177  *  Hn = regs[n].d[0] bits 15..0
178  *
179  * This corresponds to the architecturally defined mapping between
180  * the two execution states, and means we do not need to explicitly
181  * map these registers when changing states.
182  *
183  * Align the data for use with TCG host vector operations.
184  */
185 
186 #ifdef TARGET_AARCH64
187 # define ARM_MAX_VQ    16
188 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
189 #else
190 # define ARM_MAX_VQ    1
191 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
192 #endif
193 
194 typedef struct ARMVectorReg {
195     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
196 } ARMVectorReg;
197 
198 #ifdef TARGET_AARCH64
199 /* In AArch32 mode, predicate registers do not exist at all.  */
200 typedef struct ARMPredicateReg {
201     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
202 } ARMPredicateReg;
203 
204 /* In AArch32 mode, PAC keys do not exist at all.  */
205 typedef struct ARMPACKey {
206     uint64_t lo, hi;
207 } ARMPACKey;
208 #endif
209 
210 
211 typedef struct CPUARMState {
212     /* Regs for current mode.  */
213     uint32_t regs[16];
214 
215     /* 32/64 switch only happens when taking and returning from
216      * exceptions so the overlap semantics are taken care of then
217      * instead of having a complicated union.
218      */
219     /* Regs for A64 mode.  */
220     uint64_t xregs[32];
221     uint64_t pc;
222     /* PSTATE isn't an architectural register for ARMv8. However, it is
223      * convenient for us to assemble the underlying state into a 32 bit format
224      * identical to the architectural format used for the SPSR. (This is also
225      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
226      * 'pstate' register are.) Of the PSTATE bits:
227      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
228      *    semantics as for AArch32, as described in the comments on each field)
229      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
230      *  DAIF (exception masks) are kept in env->daif
231      *  BTYPE is kept in env->btype
232      *  all other bits are stored in their correct places in env->pstate
233      */
234     uint32_t pstate;
235     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236 
237     /* Cached TBFLAGS state.  See below for which bits are included.  */
238     uint32_t hflags;
239 
240     /* Frequently accessed CPSR bits are stored separately for efficiency.
241        This contains all the other bits.  Use cpsr_{read,write} to access
242        the whole CPSR.  */
243     uint32_t uncached_cpsr;
244     uint32_t spsr;
245 
246     /* Banked registers.  */
247     uint64_t banked_spsr[8];
248     uint32_t banked_r13[8];
249     uint32_t banked_r14[8];
250 
251     /* These hold r8-r12.  */
252     uint32_t usr_regs[5];
253     uint32_t fiq_regs[5];
254 
255     /* cpsr flag cache for faster execution */
256     uint32_t CF; /* 0 or 1 */
257     uint32_t VF; /* V is the bit 31. All other bits are undefined */
258     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
259     uint32_t ZF; /* Z set if zero.  */
260     uint32_t QF; /* 0 or 1 */
261     uint32_t GE; /* cpsr[19:16] */
262     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
263     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
264     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
265     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
266 
267     uint64_t elr_el[4]; /* AArch64 exception link regs  */
268     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
269 
270     /* System control coprocessor (cp15) */
271     struct {
272         uint32_t c0_cpuid;
273         union { /* Cache size selection */
274             struct {
275                 uint64_t _unused_csselr0;
276                 uint64_t csselr_ns;
277                 uint64_t _unused_csselr1;
278                 uint64_t csselr_s;
279             };
280             uint64_t csselr_el[4];
281         };
282         union { /* System control register. */
283             struct {
284                 uint64_t _unused_sctlr;
285                 uint64_t sctlr_ns;
286                 uint64_t hsctlr;
287                 uint64_t sctlr_s;
288             };
289             uint64_t sctlr_el[4];
290         };
291         uint64_t cpacr_el1; /* Architectural feature access control register */
292         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
293         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
294         uint64_t sder; /* Secure debug enable register. */
295         uint32_t nsacr; /* Non-secure access control register. */
296         union { /* MMU translation table base 0. */
297             struct {
298                 uint64_t _unused_ttbr0_0;
299                 uint64_t ttbr0_ns;
300                 uint64_t _unused_ttbr0_1;
301                 uint64_t ttbr0_s;
302             };
303             uint64_t ttbr0_el[4];
304         };
305         union { /* MMU translation table base 1. */
306             struct {
307                 uint64_t _unused_ttbr1_0;
308                 uint64_t ttbr1_ns;
309                 uint64_t _unused_ttbr1_1;
310                 uint64_t ttbr1_s;
311             };
312             uint64_t ttbr1_el[4];
313         };
314         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
315         /* MMU translation table base control. */
316         TCR tcr_el[4];
317         TCR vtcr_el2; /* Virtualization Translation Control.  */
318         uint32_t c2_data; /* MPU data cacheable bits.  */
319         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
320         union { /* MMU domain access control register
321                  * MPU write buffer control.
322                  */
323             struct {
324                 uint64_t dacr_ns;
325                 uint64_t dacr_s;
326             };
327             struct {
328                 uint64_t dacr32_el2;
329             };
330         };
331         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
332         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
333         uint64_t hcr_el2; /* Hypervisor configuration register */
334         uint64_t scr_el3; /* Secure configuration register.  */
335         union { /* Fault status registers.  */
336             struct {
337                 uint64_t ifsr_ns;
338                 uint64_t ifsr_s;
339             };
340             struct {
341                 uint64_t ifsr32_el2;
342             };
343         };
344         union {
345             struct {
346                 uint64_t _unused_dfsr;
347                 uint64_t dfsr_ns;
348                 uint64_t hsr;
349                 uint64_t dfsr_s;
350             };
351             uint64_t esr_el[4];
352         };
353         uint32_t c6_region[8]; /* MPU base/size registers.  */
354         union { /* Fault address registers. */
355             struct {
356                 uint64_t _unused_far0;
357 #ifdef HOST_WORDS_BIGENDIAN
358                 uint32_t ifar_ns;
359                 uint32_t dfar_ns;
360                 uint32_t ifar_s;
361                 uint32_t dfar_s;
362 #else
363                 uint32_t dfar_ns;
364                 uint32_t ifar_ns;
365                 uint32_t dfar_s;
366                 uint32_t ifar_s;
367 #endif
368                 uint64_t _unused_far3;
369             };
370             uint64_t far_el[4];
371         };
372         uint64_t hpfar_el2;
373         uint64_t hstr_el2;
374         union { /* Translation result. */
375             struct {
376                 uint64_t _unused_par_0;
377                 uint64_t par_ns;
378                 uint64_t _unused_par_1;
379                 uint64_t par_s;
380             };
381             uint64_t par_el[4];
382         };
383 
384         uint32_t c9_insn; /* Cache lockdown registers.  */
385         uint32_t c9_data;
386         uint64_t c9_pmcr; /* performance monitor control register */
387         uint64_t c9_pmcnten; /* perf monitor counter enables */
388         uint64_t c9_pmovsr; /* perf monitor overflow status */
389         uint64_t c9_pmuserenr; /* perf monitor user enable */
390         uint64_t c9_pmselr; /* perf monitor counter selection register */
391         uint64_t c9_pminten; /* perf monitor interrupt enables */
392         union { /* Memory attribute redirection */
393             struct {
394 #ifdef HOST_WORDS_BIGENDIAN
395                 uint64_t _unused_mair_0;
396                 uint32_t mair1_ns;
397                 uint32_t mair0_ns;
398                 uint64_t _unused_mair_1;
399                 uint32_t mair1_s;
400                 uint32_t mair0_s;
401 #else
402                 uint64_t _unused_mair_0;
403                 uint32_t mair0_ns;
404                 uint32_t mair1_ns;
405                 uint64_t _unused_mair_1;
406                 uint32_t mair0_s;
407                 uint32_t mair1_s;
408 #endif
409             };
410             uint64_t mair_el[4];
411         };
412         union { /* vector base address register */
413             struct {
414                 uint64_t _unused_vbar;
415                 uint64_t vbar_ns;
416                 uint64_t hvbar;
417                 uint64_t vbar_s;
418             };
419             uint64_t vbar_el[4];
420         };
421         uint32_t mvbar; /* (monitor) vector base address register */
422         struct { /* FCSE PID. */
423             uint32_t fcseidr_ns;
424             uint32_t fcseidr_s;
425         };
426         union { /* Context ID. */
427             struct {
428                 uint64_t _unused_contextidr_0;
429                 uint64_t contextidr_ns;
430                 uint64_t _unused_contextidr_1;
431                 uint64_t contextidr_s;
432             };
433             uint64_t contextidr_el[4];
434         };
435         union { /* User RW Thread register. */
436             struct {
437                 uint64_t tpidrurw_ns;
438                 uint64_t tpidrprw_ns;
439                 uint64_t htpidr;
440                 uint64_t _tpidr_el3;
441             };
442             uint64_t tpidr_el[4];
443         };
444         /* The secure banks of these registers don't map anywhere */
445         uint64_t tpidrurw_s;
446         uint64_t tpidrprw_s;
447         uint64_t tpidruro_s;
448 
449         union { /* User RO Thread register. */
450             uint64_t tpidruro_ns;
451             uint64_t tpidrro_el[1];
452         };
453         uint64_t c14_cntfrq; /* Counter Frequency register */
454         uint64_t c14_cntkctl; /* Timer Control register */
455         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
456         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
457         ARMGenericTimer c14_timer[NUM_GTIMERS];
458         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
459         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
460         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
461         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
462         uint32_t c15_threadid; /* TI debugger thread-ID.  */
463         uint32_t c15_config_base_address; /* SCU base address.  */
464         uint32_t c15_diagnostic; /* diagnostic register */
465         uint32_t c15_power_diagnostic;
466         uint32_t c15_power_control; /* power control */
467         uint64_t dbgbvr[16]; /* breakpoint value registers */
468         uint64_t dbgbcr[16]; /* breakpoint control registers */
469         uint64_t dbgwvr[16]; /* watchpoint value registers */
470         uint64_t dbgwcr[16]; /* watchpoint control registers */
471         uint64_t mdscr_el1;
472         uint64_t oslsr_el1; /* OS Lock Status */
473         uint64_t mdcr_el2;
474         uint64_t mdcr_el3;
475         /* Stores the architectural value of the counter *the last time it was
476          * updated* by pmccntr_op_start. Accesses should always be surrounded
477          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
478          * architecturally-correct value is being read/set.
479          */
480         uint64_t c15_ccnt;
481         /* Stores the delta between the architectural value and the underlying
482          * cycle count during normal operation. It is used to update c15_ccnt
483          * to be the correct architectural value before accesses. During
484          * accesses, c15_ccnt_delta contains the underlying count being used
485          * for the access, after which it reverts to the delta value in
486          * pmccntr_op_finish.
487          */
488         uint64_t c15_ccnt_delta;
489         uint64_t c14_pmevcntr[31];
490         uint64_t c14_pmevcntr_delta[31];
491         uint64_t c14_pmevtyper[31];
492         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
493         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
494         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
495     } cp15;
496 
497     struct {
498         /* M profile has up to 4 stack pointers:
499          * a Main Stack Pointer and a Process Stack Pointer for each
500          * of the Secure and Non-Secure states. (If the CPU doesn't support
501          * the security extension then it has only two SPs.)
502          * In QEMU we always store the currently active SP in regs[13],
503          * and the non-active SP for the current security state in
504          * v7m.other_sp. The stack pointers for the inactive security state
505          * are stored in other_ss_msp and other_ss_psp.
506          * switch_v7m_security_state() is responsible for rearranging them
507          * when we change security state.
508          */
509         uint32_t other_sp;
510         uint32_t other_ss_msp;
511         uint32_t other_ss_psp;
512         uint32_t vecbase[M_REG_NUM_BANKS];
513         uint32_t basepri[M_REG_NUM_BANKS];
514         uint32_t control[M_REG_NUM_BANKS];
515         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
516         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
517         uint32_t hfsr; /* HardFault Status */
518         uint32_t dfsr; /* Debug Fault Status Register */
519         uint32_t sfsr; /* Secure Fault Status Register */
520         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
521         uint32_t bfar; /* BusFault Address */
522         uint32_t sfar; /* Secure Fault Address Register */
523         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
524         int exception;
525         uint32_t primask[M_REG_NUM_BANKS];
526         uint32_t faultmask[M_REG_NUM_BANKS];
527         uint32_t aircr; /* only holds r/w state if security extn implemented */
528         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
529         uint32_t csselr[M_REG_NUM_BANKS];
530         uint32_t scr[M_REG_NUM_BANKS];
531         uint32_t msplim[M_REG_NUM_BANKS];
532         uint32_t psplim[M_REG_NUM_BANKS];
533         uint32_t fpcar[M_REG_NUM_BANKS];
534         uint32_t fpccr[M_REG_NUM_BANKS];
535         uint32_t fpdscr[M_REG_NUM_BANKS];
536         uint32_t cpacr[M_REG_NUM_BANKS];
537         uint32_t nsacr;
538     } v7m;
539 
540     /* Information associated with an exception about to be taken:
541      * code which raises an exception must set cs->exception_index and
542      * the relevant parts of this structure; the cpu_do_interrupt function
543      * will then set the guest-visible registers as part of the exception
544      * entry process.
545      */
546     struct {
547         uint32_t syndrome; /* AArch64 format syndrome register */
548         uint32_t fsr; /* AArch32 format fault status register info */
549         uint64_t vaddress; /* virtual addr associated with exception, if any */
550         uint32_t target_el; /* EL the exception should be targeted for */
551         /* If we implement EL2 we will also need to store information
552          * about the intermediate physical address for stage 2 faults.
553          */
554     } exception;
555 
556     /* Information associated with an SError */
557     struct {
558         uint8_t pending;
559         uint8_t has_esr;
560         uint64_t esr;
561     } serror;
562 
563     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
564     uint32_t irq_line_state;
565 
566     /* Thumb-2 EE state.  */
567     uint32_t teecr;
568     uint32_t teehbr;
569 
570     /* VFP coprocessor state.  */
571     struct {
572         ARMVectorReg zregs[32];
573 
574 #ifdef TARGET_AARCH64
575         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
576 #define FFR_PRED_NUM 16
577         ARMPredicateReg pregs[17];
578         /* Scratch space for aa64 sve predicate temporary.  */
579         ARMPredicateReg preg_tmp;
580 #endif
581 
582         /* We store these fpcsr fields separately for convenience.  */
583         uint32_t qc[4] QEMU_ALIGNED(16);
584         int vec_len;
585         int vec_stride;
586 
587         uint32_t xregs[16];
588 
589         /* Scratch space for aa32 neon expansion.  */
590         uint32_t scratch[8];
591 
592         /* There are a number of distinct float control structures:
593          *
594          *  fp_status: is the "normal" fp status.
595          *  fp_status_fp16: used for half-precision calculations
596          *  standard_fp_status : the ARM "Standard FPSCR Value"
597          *
598          * Half-precision operations are governed by a separate
599          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
600          * status structure to control this.
601          *
602          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
603          * round-to-nearest and is used by any operations (generally
604          * Neon) which the architecture defines as controlled by the
605          * standard FPSCR value rather than the FPSCR.
606          *
607          * To avoid having to transfer exception bits around, we simply
608          * say that the FPSCR cumulative exception flags are the logical
609          * OR of the flags in the three fp statuses. This relies on the
610          * only thing which needs to read the exception flags being
611          * an explicit FPSCR read.
612          */
613         float_status fp_status;
614         float_status fp_status_f16;
615         float_status standard_fp_status;
616 
617         /* ZCR_EL[1-3] */
618         uint64_t zcr_el[4];
619     } vfp;
620     uint64_t exclusive_addr;
621     uint64_t exclusive_val;
622     uint64_t exclusive_high;
623 
624     /* iwMMXt coprocessor state.  */
625     struct {
626         uint64_t regs[16];
627         uint64_t val;
628 
629         uint32_t cregs[16];
630     } iwmmxt;
631 
632 #ifdef TARGET_AARCH64
633     struct {
634         ARMPACKey apia;
635         ARMPACKey apib;
636         ARMPACKey apda;
637         ARMPACKey apdb;
638         ARMPACKey apga;
639     } keys;
640 #endif
641 
642 #if defined(CONFIG_USER_ONLY)
643     /* For usermode syscall translation.  */
644     int eabi;
645 #endif
646 
647     struct CPUBreakpoint *cpu_breakpoint[16];
648     struct CPUWatchpoint *cpu_watchpoint[16];
649 
650     /* Fields up to this point are cleared by a CPU reset */
651     struct {} end_reset_fields;
652 
653     /* Fields after this point are preserved across CPU reset. */
654 
655     /* Internal CPU feature flags.  */
656     uint64_t features;
657 
658     /* PMSAv7 MPU */
659     struct {
660         uint32_t *drbar;
661         uint32_t *drsr;
662         uint32_t *dracr;
663         uint32_t rnr[M_REG_NUM_BANKS];
664     } pmsav7;
665 
666     /* PMSAv8 MPU */
667     struct {
668         /* The PMSAv8 implementation also shares some PMSAv7 config
669          * and state:
670          *  pmsav7.rnr (region number register)
671          *  pmsav7_dregion (number of configured regions)
672          */
673         uint32_t *rbar[M_REG_NUM_BANKS];
674         uint32_t *rlar[M_REG_NUM_BANKS];
675         uint32_t mair0[M_REG_NUM_BANKS];
676         uint32_t mair1[M_REG_NUM_BANKS];
677     } pmsav8;
678 
679     /* v8M SAU */
680     struct {
681         uint32_t *rbar;
682         uint32_t *rlar;
683         uint32_t rnr;
684         uint32_t ctrl;
685     } sau;
686 
687     void *nvic;
688     const struct arm_boot_info *boot_info;
689     /* Store GICv3CPUState to access from this struct */
690     void *gicv3state;
691 } CPUARMState;
692 
693 /**
694  * ARMELChangeHookFn:
695  * type of a function which can be registered via arm_register_el_change_hook()
696  * to get callbacks when the CPU changes its exception level or mode.
697  */
698 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
699 typedef struct ARMELChangeHook ARMELChangeHook;
700 struct ARMELChangeHook {
701     ARMELChangeHookFn *hook;
702     void *opaque;
703     QLIST_ENTRY(ARMELChangeHook) node;
704 };
705 
706 /* These values map onto the return values for
707  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
708 typedef enum ARMPSCIState {
709     PSCI_ON = 0,
710     PSCI_OFF = 1,
711     PSCI_ON_PENDING = 2
712 } ARMPSCIState;
713 
714 typedef struct ARMISARegisters ARMISARegisters;
715 
716 /**
717  * ARMCPU:
718  * @env: #CPUARMState
719  *
720  * An ARM CPU core.
721  */
722 struct ARMCPU {
723     /*< private >*/
724     CPUState parent_obj;
725     /*< public >*/
726 
727     CPUNegativeOffsetState neg;
728     CPUARMState env;
729 
730     /* Coprocessor information */
731     GHashTable *cp_regs;
732     /* For marshalling (mostly coprocessor) register state between the
733      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
734      * we use these arrays.
735      */
736     /* List of register indexes managed via these arrays; (full KVM style
737      * 64 bit indexes, not CPRegInfo 32 bit indexes)
738      */
739     uint64_t *cpreg_indexes;
740     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
741     uint64_t *cpreg_values;
742     /* Length of the indexes, values, reset_values arrays */
743     int32_t cpreg_array_len;
744     /* These are used only for migration: incoming data arrives in
745      * these fields and is sanity checked in post_load before copying
746      * to the working data structures above.
747      */
748     uint64_t *cpreg_vmstate_indexes;
749     uint64_t *cpreg_vmstate_values;
750     int32_t cpreg_vmstate_array_len;
751 
752     DynamicGDBXMLInfo dyn_xml;
753 
754     /* Timers used by the generic (architected) timer */
755     QEMUTimer *gt_timer[NUM_GTIMERS];
756     /*
757      * Timer used by the PMU. Its state is restored after migration by
758      * pmu_op_finish() - it does not need other handling during migration
759      */
760     QEMUTimer *pmu_timer;
761     /* GPIO outputs for generic timer */
762     qemu_irq gt_timer_outputs[NUM_GTIMERS];
763     /* GPIO output for GICv3 maintenance interrupt signal */
764     qemu_irq gicv3_maintenance_interrupt;
765     /* GPIO output for the PMU interrupt */
766     qemu_irq pmu_interrupt;
767 
768     /* MemoryRegion to use for secure physical accesses */
769     MemoryRegion *secure_memory;
770 
771     /* For v8M, pointer to the IDAU interface provided by board/SoC */
772     Object *idau;
773 
774     /* 'compatible' string for this CPU for Linux device trees */
775     const char *dtb_compatible;
776 
777     /* PSCI version for this CPU
778      * Bits[31:16] = Major Version
779      * Bits[15:0] = Minor Version
780      */
781     uint32_t psci_version;
782 
783     /* Should CPU start in PSCI powered-off state? */
784     bool start_powered_off;
785 
786     /* Current power state, access guarded by BQL */
787     ARMPSCIState power_state;
788 
789     /* CPU has virtualization extension */
790     bool has_el2;
791     /* CPU has security extension */
792     bool has_el3;
793     /* CPU has PMU (Performance Monitor Unit) */
794     bool has_pmu;
795     /* CPU has VFP */
796     bool has_vfp;
797     /* CPU has Neon */
798     bool has_neon;
799     /* CPU has M-profile DSP extension */
800     bool has_dsp;
801 
802     /* CPU has memory protection unit */
803     bool has_mpu;
804     /* PMSAv7 MPU number of supported regions */
805     uint32_t pmsav7_dregion;
806     /* v8M SAU number of supported regions */
807     uint32_t sau_sregion;
808 
809     /* PSCI conduit used to invoke PSCI methods
810      * 0 - disabled, 1 - smc, 2 - hvc
811      */
812     uint32_t psci_conduit;
813 
814     /* For v8M, initial value of the Secure VTOR */
815     uint32_t init_svtor;
816 
817     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
818      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
819      */
820     uint32_t kvm_target;
821 
822     /* KVM init features for this CPU */
823     uint32_t kvm_init_features[7];
824 
825     /* KVM CPU state */
826 
827     /* KVM virtual time adjustment */
828     bool kvm_adjvtime;
829     bool kvm_vtime_dirty;
830     uint64_t kvm_vtime;
831 
832     /* Uniprocessor system with MP extensions */
833     bool mp_is_up;
834 
835     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
836      * and the probe failed (so we need to report the error in realize)
837      */
838     bool host_cpu_probe_failed;
839 
840     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
841      * register.
842      */
843     int32_t core_count;
844 
845     /* The instance init functions for implementation-specific subclasses
846      * set these fields to specify the implementation-dependent values of
847      * various constant registers and reset values of non-constant
848      * registers.
849      * Some of these might become QOM properties eventually.
850      * Field names match the official register names as defined in the
851      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
852      * is used for reset values of non-constant registers; no reset_
853      * prefix means a constant register.
854      * Some of these registers are split out into a substructure that
855      * is shared with the translators to control the ISA.
856      */
857     struct ARMISARegisters {
858         uint32_t id_isar0;
859         uint32_t id_isar1;
860         uint32_t id_isar2;
861         uint32_t id_isar3;
862         uint32_t id_isar4;
863         uint32_t id_isar5;
864         uint32_t id_isar6;
865         uint32_t mvfr0;
866         uint32_t mvfr1;
867         uint32_t mvfr2;
868         uint64_t id_aa64isar0;
869         uint64_t id_aa64isar1;
870         uint64_t id_aa64pfr0;
871         uint64_t id_aa64pfr1;
872         uint64_t id_aa64mmfr0;
873         uint64_t id_aa64mmfr1;
874     } isar;
875     uint32_t midr;
876     uint32_t revidr;
877     uint32_t reset_fpsid;
878     uint32_t ctr;
879     uint32_t reset_sctlr;
880     uint32_t id_pfr0;
881     uint32_t id_pfr1;
882     uint32_t id_dfr0;
883     uint64_t pmceid0;
884     uint64_t pmceid1;
885     uint32_t id_afr0;
886     uint32_t id_mmfr0;
887     uint32_t id_mmfr1;
888     uint32_t id_mmfr2;
889     uint32_t id_mmfr3;
890     uint32_t id_mmfr4;
891     uint64_t id_aa64dfr0;
892     uint64_t id_aa64dfr1;
893     uint64_t id_aa64afr0;
894     uint64_t id_aa64afr1;
895     uint32_t dbgdidr;
896     uint32_t clidr;
897     uint64_t mp_affinity; /* MP ID without feature bits */
898     /* The elements of this array are the CCSIDR values for each cache,
899      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
900      */
901     uint32_t ccsidr[16];
902     uint64_t reset_cbar;
903     uint32_t reset_auxcr;
904     bool reset_hivecs;
905     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
906     uint32_t dcz_blocksize;
907     uint64_t rvbar;
908 
909     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
910     int gic_num_lrs; /* number of list registers */
911     int gic_vpribits; /* number of virtual priority bits */
912     int gic_vprebits; /* number of virtual preemption bits */
913 
914     /* Whether the cfgend input is high (i.e. this CPU should reset into
915      * big-endian mode).  This setting isn't used directly: instead it modifies
916      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
917      * architecture version.
918      */
919     bool cfgend;
920 
921     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
922     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
923 
924     int32_t node_id; /* NUMA node this CPU belongs to */
925 
926     /* Used to synchronize KVM and QEMU in-kernel device levels */
927     uint8_t device_irq_level;
928 
929     /* Used to set the maximum vector length the cpu will support.  */
930     uint32_t sve_max_vq;
931 
932     /*
933      * In sve_vq_map each set bit is a supported vector length of
934      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
935      * length in quadwords.
936      *
937      * While processing properties during initialization, corresponding
938      * sve_vq_init bits are set for bits in sve_vq_map that have been
939      * set by properties.
940      */
941     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
942     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
943 
944     /* Generic timer counter frequency, in Hz */
945     uint64_t gt_cntfrq_hz;
946 };
947 
948 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
949 
950 void arm_cpu_post_init(Object *obj);
951 
952 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
953 
954 #ifndef CONFIG_USER_ONLY
955 extern const VMStateDescription vmstate_arm_cpu;
956 #endif
957 
958 void arm_cpu_do_interrupt(CPUState *cpu);
959 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
960 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
961 
962 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
963                                          MemTxAttrs *attrs);
964 
965 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
966 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
967 
968 /* Dynamically generates for gdb stub an XML description of the sysregs from
969  * the cp_regs hashtable. Returns the registered sysregs number.
970  */
971 int arm_gen_dynamic_xml(CPUState *cpu);
972 
973 /* Returns the dynamically generated XML for the gdb stub.
974  * Returns a pointer to the XML contents for the specified XML file or NULL
975  * if the XML name doesn't match the predefined one.
976  */
977 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
978 
979 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
980                              int cpuid, void *opaque);
981 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
982                              int cpuid, void *opaque);
983 
984 #ifdef TARGET_AARCH64
985 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
986 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
987 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
988 void aarch64_sve_change_el(CPUARMState *env, int old_el,
989                            int new_el, bool el0_a64);
990 void aarch64_add_sve_properties(Object *obj);
991 
992 /*
993  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
994  * The byte at offset i from the start of the in-memory representation contains
995  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
996  * lowest offsets are stored in the lowest memory addresses, then that nearly
997  * matches QEMU's representation, which is to use an array of host-endian
998  * uint64_t's, where the lower offsets are at the lower indices. To complete
999  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1000  */
1001 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1002 {
1003 #ifdef HOST_WORDS_BIGENDIAN
1004     int i;
1005 
1006     for (i = 0; i < nr; ++i) {
1007         dst[i] = bswap64(src[i]);
1008     }
1009 
1010     return dst;
1011 #else
1012     return src;
1013 #endif
1014 }
1015 
1016 #else
1017 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1018 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1019                                          int n, bool a)
1020 { }
1021 static inline void aarch64_add_sve_properties(Object *obj) { }
1022 #endif
1023 
1024 #if !defined(CONFIG_TCG)
1025 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1026 {
1027     g_assert_not_reached();
1028 }
1029 #else
1030 target_ulong do_arm_semihosting(CPUARMState *env);
1031 #endif
1032 void aarch64_sync_32_to_64(CPUARMState *env);
1033 void aarch64_sync_64_to_32(CPUARMState *env);
1034 
1035 int fp_exception_el(CPUARMState *env, int cur_el);
1036 int sve_exception_el(CPUARMState *env, int cur_el);
1037 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1038 
1039 static inline bool is_a64(CPUARMState *env)
1040 {
1041     return env->aarch64;
1042 }
1043 
1044 /* you can call this signal handler from your SIGBUS and SIGSEGV
1045    signal handlers to inform the virtual CPU of exceptions. non zero
1046    is returned if the signal was handled by the virtual CPU.  */
1047 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1048                            void *puc);
1049 
1050 /**
1051  * pmu_op_start/finish
1052  * @env: CPUARMState
1053  *
1054  * Convert all PMU counters between their delta form (the typical mode when
1055  * they are enabled) and the guest-visible values. These two calls must
1056  * surround any action which might affect the counters.
1057  */
1058 void pmu_op_start(CPUARMState *env);
1059 void pmu_op_finish(CPUARMState *env);
1060 
1061 /*
1062  * Called when a PMU counter is due to overflow
1063  */
1064 void arm_pmu_timer_cb(void *opaque);
1065 
1066 /**
1067  * Functions to register as EL change hooks for PMU mode filtering
1068  */
1069 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1070 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1071 
1072 /*
1073  * pmu_init
1074  * @cpu: ARMCPU
1075  *
1076  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1077  * for the current configuration
1078  */
1079 void pmu_init(ARMCPU *cpu);
1080 
1081 /* SCTLR bit meanings. Several bits have been reused in newer
1082  * versions of the architecture; in that case we define constants
1083  * for both old and new bit meanings. Code which tests against those
1084  * bits should probably check or otherwise arrange that the CPU
1085  * is the architectural version it expects.
1086  */
1087 #define SCTLR_M       (1U << 0)
1088 #define SCTLR_A       (1U << 1)
1089 #define SCTLR_C       (1U << 2)
1090 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1091 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1092 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1093 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1094 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1095 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1096 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1097 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1098 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1099 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1100 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1101 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1102 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1103 #define SCTLR_SED     (1U << 8) /* v8 onward */
1104 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1105 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1106 #define SCTLR_F       (1U << 10) /* up to v6 */
1107 #define SCTLR_SW      (1U << 10) /* v7 */
1108 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1109 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1110 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1111 #define SCTLR_I       (1U << 12)
1112 #define SCTLR_V       (1U << 13) /* AArch32 only */
1113 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1114 #define SCTLR_RR      (1U << 14) /* up to v7 */
1115 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1116 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1117 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1118 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1119 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1120 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1121 #define SCTLR_BR      (1U << 17) /* PMSA only */
1122 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1123 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1124 #define SCTLR_WXN     (1U << 19)
1125 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1126 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1127 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1128 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1129 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1130 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1131 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1132 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1133 #define SCTLR_VE      (1U << 24) /* up to v7 */
1134 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1135 #define SCTLR_EE      (1U << 25)
1136 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1137 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1138 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1139 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1140 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1141 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1142 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1143 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1144 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1145 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1146 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1147 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1148 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1149 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1150 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1151 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1152 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1153 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1154 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1155 
1156 #define CPTR_TCPAC    (1U << 31)
1157 #define CPTR_TTA      (1U << 20)
1158 #define CPTR_TFP      (1U << 10)
1159 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1160 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1161 
1162 #define MDCR_EPMAD    (1U << 21)
1163 #define MDCR_EDAD     (1U << 20)
1164 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1165 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1166 #define MDCR_SDD      (1U << 16)
1167 #define MDCR_SPD      (3U << 14)
1168 #define MDCR_TDRA     (1U << 11)
1169 #define MDCR_TDOSA    (1U << 10)
1170 #define MDCR_TDA      (1U << 9)
1171 #define MDCR_TDE      (1U << 8)
1172 #define MDCR_HPME     (1U << 7)
1173 #define MDCR_TPM      (1U << 6)
1174 #define MDCR_TPMCR    (1U << 5)
1175 #define MDCR_HPMN     (0x1fU)
1176 
1177 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1178 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1179 
1180 #define CPSR_M (0x1fU)
1181 #define CPSR_T (1U << 5)
1182 #define CPSR_F (1U << 6)
1183 #define CPSR_I (1U << 7)
1184 #define CPSR_A (1U << 8)
1185 #define CPSR_E (1U << 9)
1186 #define CPSR_IT_2_7 (0xfc00U)
1187 #define CPSR_GE (0xfU << 16)
1188 #define CPSR_IL (1U << 20)
1189 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1190  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1191  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1192  * where it is live state but not accessible to the AArch32 code.
1193  */
1194 #define CPSR_RESERVED (0x7U << 21)
1195 #define CPSR_J (1U << 24)
1196 #define CPSR_IT_0_1 (3U << 25)
1197 #define CPSR_Q (1U << 27)
1198 #define CPSR_V (1U << 28)
1199 #define CPSR_C (1U << 29)
1200 #define CPSR_Z (1U << 30)
1201 #define CPSR_N (1U << 31)
1202 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1203 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1204 
1205 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1206 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1207     | CPSR_NZCV)
1208 /* Bits writable in user mode.  */
1209 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1210 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1211 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1212 /* Mask of bits which may be set by exception return copying them from SPSR */
1213 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1214 
1215 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1216 #define XPSR_EXCP 0x1ffU
1217 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1218 #define XPSR_IT_2_7 CPSR_IT_2_7
1219 #define XPSR_GE CPSR_GE
1220 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1221 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1222 #define XPSR_IT_0_1 CPSR_IT_0_1
1223 #define XPSR_Q CPSR_Q
1224 #define XPSR_V CPSR_V
1225 #define XPSR_C CPSR_C
1226 #define XPSR_Z CPSR_Z
1227 #define XPSR_N CPSR_N
1228 #define XPSR_NZCV CPSR_NZCV
1229 #define XPSR_IT CPSR_IT
1230 
1231 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1232 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1233 #define TTBCR_PD0    (1U << 4)
1234 #define TTBCR_PD1    (1U << 5)
1235 #define TTBCR_EPD0   (1U << 7)
1236 #define TTBCR_IRGN0  (3U << 8)
1237 #define TTBCR_ORGN0  (3U << 10)
1238 #define TTBCR_SH0    (3U << 12)
1239 #define TTBCR_T1SZ   (3U << 16)
1240 #define TTBCR_A1     (1U << 22)
1241 #define TTBCR_EPD1   (1U << 23)
1242 #define TTBCR_IRGN1  (3U << 24)
1243 #define TTBCR_ORGN1  (3U << 26)
1244 #define TTBCR_SH1    (1U << 28)
1245 #define TTBCR_EAE    (1U << 31)
1246 
1247 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1248  * Only these are valid when in AArch64 mode; in
1249  * AArch32 mode SPSRs are basically CPSR-format.
1250  */
1251 #define PSTATE_SP (1U)
1252 #define PSTATE_M (0xFU)
1253 #define PSTATE_nRW (1U << 4)
1254 #define PSTATE_F (1U << 6)
1255 #define PSTATE_I (1U << 7)
1256 #define PSTATE_A (1U << 8)
1257 #define PSTATE_D (1U << 9)
1258 #define PSTATE_BTYPE (3U << 10)
1259 #define PSTATE_IL (1U << 20)
1260 #define PSTATE_SS (1U << 21)
1261 #define PSTATE_V (1U << 28)
1262 #define PSTATE_C (1U << 29)
1263 #define PSTATE_Z (1U << 30)
1264 #define PSTATE_N (1U << 31)
1265 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1266 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1267 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1268 /* Mode values for AArch64 */
1269 #define PSTATE_MODE_EL3h 13
1270 #define PSTATE_MODE_EL3t 12
1271 #define PSTATE_MODE_EL2h 9
1272 #define PSTATE_MODE_EL2t 8
1273 #define PSTATE_MODE_EL1h 5
1274 #define PSTATE_MODE_EL1t 4
1275 #define PSTATE_MODE_EL0t 0
1276 
1277 /* Write a new value to v7m.exception, thus transitioning into or out
1278  * of Handler mode; this may result in a change of active stack pointer.
1279  */
1280 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1281 
1282 /* Map EL and handler into a PSTATE_MODE.  */
1283 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1284 {
1285     return (el << 2) | handler;
1286 }
1287 
1288 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1289  * interprocessing, so we don't attempt to sync with the cpsr state used by
1290  * the 32 bit decoder.
1291  */
1292 static inline uint32_t pstate_read(CPUARMState *env)
1293 {
1294     int ZF;
1295 
1296     ZF = (env->ZF == 0);
1297     return (env->NF & 0x80000000) | (ZF << 30)
1298         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1299         | env->pstate | env->daif | (env->btype << 10);
1300 }
1301 
1302 static inline void pstate_write(CPUARMState *env, uint32_t val)
1303 {
1304     env->ZF = (~val) & PSTATE_Z;
1305     env->NF = val;
1306     env->CF = (val >> 29) & 1;
1307     env->VF = (val << 3) & 0x80000000;
1308     env->daif = val & PSTATE_DAIF;
1309     env->btype = (val >> 10) & 3;
1310     env->pstate = val & ~CACHED_PSTATE_BITS;
1311 }
1312 
1313 /* Return the current CPSR value.  */
1314 uint32_t cpsr_read(CPUARMState *env);
1315 
1316 typedef enum CPSRWriteType {
1317     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1318     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1319     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1320     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1321 } CPSRWriteType;
1322 
1323 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1324 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1325                 CPSRWriteType write_type);
1326 
1327 /* Return the current xPSR value.  */
1328 static inline uint32_t xpsr_read(CPUARMState *env)
1329 {
1330     int ZF;
1331     ZF = (env->ZF == 0);
1332     return (env->NF & 0x80000000) | (ZF << 30)
1333         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1334         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1335         | ((env->condexec_bits & 0xfc) << 8)
1336         | (env->GE << 16)
1337         | env->v7m.exception;
1338 }
1339 
1340 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1341 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1342 {
1343     if (mask & XPSR_NZCV) {
1344         env->ZF = (~val) & XPSR_Z;
1345         env->NF = val;
1346         env->CF = (val >> 29) & 1;
1347         env->VF = (val << 3) & 0x80000000;
1348     }
1349     if (mask & XPSR_Q) {
1350         env->QF = ((val & XPSR_Q) != 0);
1351     }
1352     if (mask & XPSR_GE) {
1353         env->GE = (val & XPSR_GE) >> 16;
1354     }
1355 #ifndef CONFIG_USER_ONLY
1356     if (mask & XPSR_T) {
1357         env->thumb = ((val & XPSR_T) != 0);
1358     }
1359     if (mask & XPSR_IT_0_1) {
1360         env->condexec_bits &= ~3;
1361         env->condexec_bits |= (val >> 25) & 3;
1362     }
1363     if (mask & XPSR_IT_2_7) {
1364         env->condexec_bits &= 3;
1365         env->condexec_bits |= (val >> 8) & 0xfc;
1366     }
1367     if (mask & XPSR_EXCP) {
1368         /* Note that this only happens on exception exit */
1369         write_v7m_exception(env, val & XPSR_EXCP);
1370     }
1371 #endif
1372 }
1373 
1374 #define HCR_VM        (1ULL << 0)
1375 #define HCR_SWIO      (1ULL << 1)
1376 #define HCR_PTW       (1ULL << 2)
1377 #define HCR_FMO       (1ULL << 3)
1378 #define HCR_IMO       (1ULL << 4)
1379 #define HCR_AMO       (1ULL << 5)
1380 #define HCR_VF        (1ULL << 6)
1381 #define HCR_VI        (1ULL << 7)
1382 #define HCR_VSE       (1ULL << 8)
1383 #define HCR_FB        (1ULL << 9)
1384 #define HCR_BSU_MASK  (3ULL << 10)
1385 #define HCR_DC        (1ULL << 12)
1386 #define HCR_TWI       (1ULL << 13)
1387 #define HCR_TWE       (1ULL << 14)
1388 #define HCR_TID0      (1ULL << 15)
1389 #define HCR_TID1      (1ULL << 16)
1390 #define HCR_TID2      (1ULL << 17)
1391 #define HCR_TID3      (1ULL << 18)
1392 #define HCR_TSC       (1ULL << 19)
1393 #define HCR_TIDCP     (1ULL << 20)
1394 #define HCR_TACR      (1ULL << 21)
1395 #define HCR_TSW       (1ULL << 22)
1396 #define HCR_TPCP      (1ULL << 23)
1397 #define HCR_TPU       (1ULL << 24)
1398 #define HCR_TTLB      (1ULL << 25)
1399 #define HCR_TVM       (1ULL << 26)
1400 #define HCR_TGE       (1ULL << 27)
1401 #define HCR_TDZ       (1ULL << 28)
1402 #define HCR_HCD       (1ULL << 29)
1403 #define HCR_TRVM      (1ULL << 30)
1404 #define HCR_RW        (1ULL << 31)
1405 #define HCR_CD        (1ULL << 32)
1406 #define HCR_ID        (1ULL << 33)
1407 #define HCR_E2H       (1ULL << 34)
1408 #define HCR_TLOR      (1ULL << 35)
1409 #define HCR_TERR      (1ULL << 36)
1410 #define HCR_TEA       (1ULL << 37)
1411 #define HCR_MIOCNCE   (1ULL << 38)
1412 #define HCR_APK       (1ULL << 40)
1413 #define HCR_API       (1ULL << 41)
1414 #define HCR_NV        (1ULL << 42)
1415 #define HCR_NV1       (1ULL << 43)
1416 #define HCR_AT        (1ULL << 44)
1417 #define HCR_NV2       (1ULL << 45)
1418 #define HCR_FWB       (1ULL << 46)
1419 #define HCR_FIEN      (1ULL << 47)
1420 #define HCR_TID4      (1ULL << 49)
1421 #define HCR_TICAB     (1ULL << 50)
1422 #define HCR_TOCU      (1ULL << 52)
1423 #define HCR_TTLBIS    (1ULL << 54)
1424 #define HCR_TTLBOS    (1ULL << 55)
1425 #define HCR_ATA       (1ULL << 56)
1426 #define HCR_DCT       (1ULL << 57)
1427 
1428 #define SCR_NS                (1U << 0)
1429 #define SCR_IRQ               (1U << 1)
1430 #define SCR_FIQ               (1U << 2)
1431 #define SCR_EA                (1U << 3)
1432 #define SCR_FW                (1U << 4)
1433 #define SCR_AW                (1U << 5)
1434 #define SCR_NET               (1U << 6)
1435 #define SCR_SMD               (1U << 7)
1436 #define SCR_HCE               (1U << 8)
1437 #define SCR_SIF               (1U << 9)
1438 #define SCR_RW                (1U << 10)
1439 #define SCR_ST                (1U << 11)
1440 #define SCR_TWI               (1U << 12)
1441 #define SCR_TWE               (1U << 13)
1442 #define SCR_TLOR              (1U << 14)
1443 #define SCR_TERR              (1U << 15)
1444 #define SCR_APK               (1U << 16)
1445 #define SCR_API               (1U << 17)
1446 #define SCR_EEL2              (1U << 18)
1447 #define SCR_EASE              (1U << 19)
1448 #define SCR_NMEA              (1U << 20)
1449 #define SCR_FIEN              (1U << 21)
1450 #define SCR_ENSCXT            (1U << 25)
1451 #define SCR_ATA               (1U << 26)
1452 
1453 /* Return the current FPSCR value.  */
1454 uint32_t vfp_get_fpscr(CPUARMState *env);
1455 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1456 
1457 /* FPCR, Floating Point Control Register
1458  * FPSR, Floating Poiht Status Register
1459  *
1460  * For A64 the FPSCR is split into two logically distinct registers,
1461  * FPCR and FPSR. However since they still use non-overlapping bits
1462  * we store the underlying state in fpscr and just mask on read/write.
1463  */
1464 #define FPSR_MASK 0xf800009f
1465 #define FPCR_MASK 0x07ff9f00
1466 
1467 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1468 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1469 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1470 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1471 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1472 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1473 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1474 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1475 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1476 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1477 
1478 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1479 {
1480     return vfp_get_fpscr(env) & FPSR_MASK;
1481 }
1482 
1483 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1484 {
1485     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1486     vfp_set_fpscr(env, new_fpscr);
1487 }
1488 
1489 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1490 {
1491     return vfp_get_fpscr(env) & FPCR_MASK;
1492 }
1493 
1494 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1495 {
1496     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1497     vfp_set_fpscr(env, new_fpscr);
1498 }
1499 
1500 enum arm_cpu_mode {
1501   ARM_CPU_MODE_USR = 0x10,
1502   ARM_CPU_MODE_FIQ = 0x11,
1503   ARM_CPU_MODE_IRQ = 0x12,
1504   ARM_CPU_MODE_SVC = 0x13,
1505   ARM_CPU_MODE_MON = 0x16,
1506   ARM_CPU_MODE_ABT = 0x17,
1507   ARM_CPU_MODE_HYP = 0x1a,
1508   ARM_CPU_MODE_UND = 0x1b,
1509   ARM_CPU_MODE_SYS = 0x1f
1510 };
1511 
1512 /* VFP system registers.  */
1513 #define ARM_VFP_FPSID   0
1514 #define ARM_VFP_FPSCR   1
1515 #define ARM_VFP_MVFR2   5
1516 #define ARM_VFP_MVFR1   6
1517 #define ARM_VFP_MVFR0   7
1518 #define ARM_VFP_FPEXC   8
1519 #define ARM_VFP_FPINST  9
1520 #define ARM_VFP_FPINST2 10
1521 
1522 /* iwMMXt coprocessor control registers.  */
1523 #define ARM_IWMMXT_wCID  0
1524 #define ARM_IWMMXT_wCon  1
1525 #define ARM_IWMMXT_wCSSF 2
1526 #define ARM_IWMMXT_wCASF 3
1527 #define ARM_IWMMXT_wCGR0 8
1528 #define ARM_IWMMXT_wCGR1 9
1529 #define ARM_IWMMXT_wCGR2 10
1530 #define ARM_IWMMXT_wCGR3 11
1531 
1532 /* V7M CCR bits */
1533 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1534 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1535 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1536 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1537 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1538 FIELD(V7M_CCR, STKALIGN, 9, 1)
1539 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1540 FIELD(V7M_CCR, DC, 16, 1)
1541 FIELD(V7M_CCR, IC, 17, 1)
1542 FIELD(V7M_CCR, BP, 18, 1)
1543 
1544 /* V7M SCR bits */
1545 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1546 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1547 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1548 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1549 
1550 /* V7M AIRCR bits */
1551 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1552 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1553 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1554 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1555 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1556 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1557 FIELD(V7M_AIRCR, PRIS, 14, 1)
1558 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1559 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1560 
1561 /* V7M CFSR bits for MMFSR */
1562 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1563 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1564 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1565 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1566 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1567 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1568 
1569 /* V7M CFSR bits for BFSR */
1570 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1571 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1572 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1573 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1574 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1575 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1576 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1577 
1578 /* V7M CFSR bits for UFSR */
1579 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1580 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1581 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1582 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1583 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1584 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1585 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1586 
1587 /* V7M CFSR bit masks covering all of the subregister bits */
1588 FIELD(V7M_CFSR, MMFSR, 0, 8)
1589 FIELD(V7M_CFSR, BFSR, 8, 8)
1590 FIELD(V7M_CFSR, UFSR, 16, 16)
1591 
1592 /* V7M HFSR bits */
1593 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1594 FIELD(V7M_HFSR, FORCED, 30, 1)
1595 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1596 
1597 /* V7M DFSR bits */
1598 FIELD(V7M_DFSR, HALTED, 0, 1)
1599 FIELD(V7M_DFSR, BKPT, 1, 1)
1600 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1601 FIELD(V7M_DFSR, VCATCH, 3, 1)
1602 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1603 
1604 /* V7M SFSR bits */
1605 FIELD(V7M_SFSR, INVEP, 0, 1)
1606 FIELD(V7M_SFSR, INVIS, 1, 1)
1607 FIELD(V7M_SFSR, INVER, 2, 1)
1608 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1609 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1610 FIELD(V7M_SFSR, LSPERR, 5, 1)
1611 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1612 FIELD(V7M_SFSR, LSERR, 7, 1)
1613 
1614 /* v7M MPU_CTRL bits */
1615 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1616 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1617 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1618 
1619 /* v7M CLIDR bits */
1620 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1621 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1622 FIELD(V7M_CLIDR, LOC, 24, 3)
1623 FIELD(V7M_CLIDR, LOUU, 27, 3)
1624 FIELD(V7M_CLIDR, ICB, 30, 2)
1625 
1626 FIELD(V7M_CSSELR, IND, 0, 1)
1627 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1628 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1629  * define a mask for this and check that it doesn't permit running off
1630  * the end of the array.
1631  */
1632 FIELD(V7M_CSSELR, INDEX, 0, 4)
1633 
1634 /* v7M FPCCR bits */
1635 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1636 FIELD(V7M_FPCCR, USER, 1, 1)
1637 FIELD(V7M_FPCCR, S, 2, 1)
1638 FIELD(V7M_FPCCR, THREAD, 3, 1)
1639 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1640 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1641 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1642 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1643 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1644 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1645 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1646 FIELD(V7M_FPCCR, RES0, 11, 15)
1647 FIELD(V7M_FPCCR, TS, 26, 1)
1648 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1649 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1650 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1651 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1652 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1653 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1654 #define R_V7M_FPCCR_BANKED_MASK                 \
1655     (R_V7M_FPCCR_LSPACT_MASK |                  \
1656      R_V7M_FPCCR_USER_MASK |                    \
1657      R_V7M_FPCCR_THREAD_MASK |                  \
1658      R_V7M_FPCCR_MMRDY_MASK |                   \
1659      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1660      R_V7M_FPCCR_UFRDY_MASK |                   \
1661      R_V7M_FPCCR_ASPEN_MASK)
1662 
1663 /*
1664  * System register ID fields.
1665  */
1666 FIELD(MIDR_EL1, REVISION, 0, 4)
1667 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1668 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1669 FIELD(MIDR_EL1, VARIANT, 20, 4)
1670 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1671 
1672 FIELD(ID_ISAR0, SWAP, 0, 4)
1673 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1674 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1675 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1676 FIELD(ID_ISAR0, COPROC, 16, 4)
1677 FIELD(ID_ISAR0, DEBUG, 20, 4)
1678 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1679 
1680 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1681 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1682 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1683 FIELD(ID_ISAR1, EXTEND, 12, 4)
1684 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1685 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1686 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1687 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1688 
1689 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1690 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1691 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1692 FIELD(ID_ISAR2, MULT, 12, 4)
1693 FIELD(ID_ISAR2, MULTS, 16, 4)
1694 FIELD(ID_ISAR2, MULTU, 20, 4)
1695 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1696 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1697 
1698 FIELD(ID_ISAR3, SATURATE, 0, 4)
1699 FIELD(ID_ISAR3, SIMD, 4, 4)
1700 FIELD(ID_ISAR3, SVC, 8, 4)
1701 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1702 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1703 FIELD(ID_ISAR3, T32COPY, 20, 4)
1704 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1705 FIELD(ID_ISAR3, T32EE, 28, 4)
1706 
1707 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1708 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1709 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1710 FIELD(ID_ISAR4, SMC, 12, 4)
1711 FIELD(ID_ISAR4, BARRIER, 16, 4)
1712 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1713 FIELD(ID_ISAR4, PSR_M, 24, 4)
1714 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1715 
1716 FIELD(ID_ISAR5, SEVL, 0, 4)
1717 FIELD(ID_ISAR5, AES, 4, 4)
1718 FIELD(ID_ISAR5, SHA1, 8, 4)
1719 FIELD(ID_ISAR5, SHA2, 12, 4)
1720 FIELD(ID_ISAR5, CRC32, 16, 4)
1721 FIELD(ID_ISAR5, RDM, 24, 4)
1722 FIELD(ID_ISAR5, VCMA, 28, 4)
1723 
1724 FIELD(ID_ISAR6, JSCVT, 0, 4)
1725 FIELD(ID_ISAR6, DP, 4, 4)
1726 FIELD(ID_ISAR6, FHM, 8, 4)
1727 FIELD(ID_ISAR6, SB, 12, 4)
1728 FIELD(ID_ISAR6, SPECRES, 16, 4)
1729 
1730 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1731 FIELD(ID_MMFR4, AC2, 4, 4)
1732 FIELD(ID_MMFR4, XNX, 8, 4)
1733 FIELD(ID_MMFR4, CNP, 12, 4)
1734 FIELD(ID_MMFR4, HPDS, 16, 4)
1735 FIELD(ID_MMFR4, LSM, 20, 4)
1736 FIELD(ID_MMFR4, CCIDX, 24, 4)
1737 FIELD(ID_MMFR4, EVT, 28, 4)
1738 
1739 FIELD(ID_AA64ISAR0, AES, 4, 4)
1740 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1741 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1742 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1743 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1744 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1745 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1746 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1747 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1748 FIELD(ID_AA64ISAR0, DP, 44, 4)
1749 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1750 FIELD(ID_AA64ISAR0, TS, 52, 4)
1751 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1752 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1753 
1754 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1755 FIELD(ID_AA64ISAR1, APA, 4, 4)
1756 FIELD(ID_AA64ISAR1, API, 8, 4)
1757 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1758 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1759 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1760 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1761 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1762 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1763 FIELD(ID_AA64ISAR1, SB, 36, 4)
1764 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1765 
1766 FIELD(ID_AA64PFR0, EL0, 0, 4)
1767 FIELD(ID_AA64PFR0, EL1, 4, 4)
1768 FIELD(ID_AA64PFR0, EL2, 8, 4)
1769 FIELD(ID_AA64PFR0, EL3, 12, 4)
1770 FIELD(ID_AA64PFR0, FP, 16, 4)
1771 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1772 FIELD(ID_AA64PFR0, GIC, 24, 4)
1773 FIELD(ID_AA64PFR0, RAS, 28, 4)
1774 FIELD(ID_AA64PFR0, SVE, 32, 4)
1775 
1776 FIELD(ID_AA64PFR1, BT, 0, 4)
1777 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1778 FIELD(ID_AA64PFR1, MTE, 8, 4)
1779 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1780 
1781 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1782 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1783 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1784 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1785 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1786 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1787 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1788 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1789 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1790 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1791 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1792 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1793 
1794 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1795 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1796 FIELD(ID_AA64MMFR1, VH, 8, 4)
1797 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1798 FIELD(ID_AA64MMFR1, LO, 16, 4)
1799 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1800 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1801 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1802 
1803 FIELD(ID_DFR0, COPDBG, 0, 4)
1804 FIELD(ID_DFR0, COPSDBG, 4, 4)
1805 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1806 FIELD(ID_DFR0, COPTRC, 12, 4)
1807 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1808 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1809 FIELD(ID_DFR0, PERFMON, 24, 4)
1810 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1811 
1812 FIELD(MVFR0, SIMDREG, 0, 4)
1813 FIELD(MVFR0, FPSP, 4, 4)
1814 FIELD(MVFR0, FPDP, 8, 4)
1815 FIELD(MVFR0, FPTRAP, 12, 4)
1816 FIELD(MVFR0, FPDIVIDE, 16, 4)
1817 FIELD(MVFR0, FPSQRT, 20, 4)
1818 FIELD(MVFR0, FPSHVEC, 24, 4)
1819 FIELD(MVFR0, FPROUND, 28, 4)
1820 
1821 FIELD(MVFR1, FPFTZ, 0, 4)
1822 FIELD(MVFR1, FPDNAN, 4, 4)
1823 FIELD(MVFR1, SIMDLS, 8, 4)
1824 FIELD(MVFR1, SIMDINT, 12, 4)
1825 FIELD(MVFR1, SIMDSP, 16, 4)
1826 FIELD(MVFR1, SIMDHP, 20, 4)
1827 FIELD(MVFR1, FPHP, 24, 4)
1828 FIELD(MVFR1, SIMDFMAC, 28, 4)
1829 
1830 FIELD(MVFR2, SIMDMISC, 0, 4)
1831 FIELD(MVFR2, FPMISC, 4, 4)
1832 
1833 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1834 
1835 /* If adding a feature bit which corresponds to a Linux ELF
1836  * HWCAP bit, remember to update the feature-bit-to-hwcap
1837  * mapping in linux-user/elfload.c:get_elf_hwcap().
1838  */
1839 enum arm_features {
1840     ARM_FEATURE_VFP,
1841     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1842     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1843     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1844     ARM_FEATURE_V6,
1845     ARM_FEATURE_V6K,
1846     ARM_FEATURE_V7,
1847     ARM_FEATURE_THUMB2,
1848     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1849     ARM_FEATURE_VFP3,
1850     ARM_FEATURE_NEON,
1851     ARM_FEATURE_M, /* Microcontroller profile.  */
1852     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1853     ARM_FEATURE_THUMB2EE,
1854     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1855     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1856     ARM_FEATURE_V4T,
1857     ARM_FEATURE_V5,
1858     ARM_FEATURE_STRONGARM,
1859     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1860     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1861     ARM_FEATURE_GENERIC_TIMER,
1862     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1863     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1864     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1865     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1866     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1867     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1868     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1869     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1870     ARM_FEATURE_V8,
1871     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1872     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1873     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1874     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1875     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1876     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1877     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1878     ARM_FEATURE_PMU, /* has PMU support */
1879     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1880     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1881     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1882 };
1883 
1884 static inline int arm_feature(CPUARMState *env, int feature)
1885 {
1886     return (env->features & (1ULL << feature)) != 0;
1887 }
1888 
1889 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1890 
1891 #if !defined(CONFIG_USER_ONLY)
1892 /* Return true if exception levels below EL3 are in secure state,
1893  * or would be following an exception return to that level.
1894  * Unlike arm_is_secure() (which is always a question about the
1895  * _current_ state of the CPU) this doesn't care about the current
1896  * EL or mode.
1897  */
1898 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1899 {
1900     if (arm_feature(env, ARM_FEATURE_EL3)) {
1901         return !(env->cp15.scr_el3 & SCR_NS);
1902     } else {
1903         /* If EL3 is not supported then the secure state is implementation
1904          * defined, in which case QEMU defaults to non-secure.
1905          */
1906         return false;
1907     }
1908 }
1909 
1910 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1911 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1912 {
1913     if (arm_feature(env, ARM_FEATURE_EL3)) {
1914         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1915             /* CPU currently in AArch64 state and EL3 */
1916             return true;
1917         } else if (!is_a64(env) &&
1918                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1919             /* CPU currently in AArch32 state and monitor mode */
1920             return true;
1921         }
1922     }
1923     return false;
1924 }
1925 
1926 /* Return true if the processor is in secure state */
1927 static inline bool arm_is_secure(CPUARMState *env)
1928 {
1929     if (arm_is_el3_or_mon(env)) {
1930         return true;
1931     }
1932     return arm_is_secure_below_el3(env);
1933 }
1934 
1935 #else
1936 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1937 {
1938     return false;
1939 }
1940 
1941 static inline bool arm_is_secure(CPUARMState *env)
1942 {
1943     return false;
1944 }
1945 #endif
1946 
1947 /**
1948  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1949  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1950  * "for all purposes other than a direct read or write access of HCR_EL2."
1951  * Not included here is HCR_RW.
1952  */
1953 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1954 
1955 /* Return true if the specified exception level is running in AArch64 state. */
1956 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1957 {
1958     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1959      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1960      */
1961     assert(el >= 1 && el <= 3);
1962     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1963 
1964     /* The highest exception level is always at the maximum supported
1965      * register width, and then lower levels have a register width controlled
1966      * by bits in the SCR or HCR registers.
1967      */
1968     if (el == 3) {
1969         return aa64;
1970     }
1971 
1972     if (arm_feature(env, ARM_FEATURE_EL3)) {
1973         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1974     }
1975 
1976     if (el == 2) {
1977         return aa64;
1978     }
1979 
1980     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1981         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1982     }
1983 
1984     return aa64;
1985 }
1986 
1987 /* Function for determing whether guest cp register reads and writes should
1988  * access the secure or non-secure bank of a cp register.  When EL3 is
1989  * operating in AArch32 state, the NS-bit determines whether the secure
1990  * instance of a cp register should be used. When EL3 is AArch64 (or if
1991  * it doesn't exist at all) then there is no register banking, and all
1992  * accesses are to the non-secure version.
1993  */
1994 static inline bool access_secure_reg(CPUARMState *env)
1995 {
1996     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1997                 !arm_el_is_aa64(env, 3) &&
1998                 !(env->cp15.scr_el3 & SCR_NS));
1999 
2000     return ret;
2001 }
2002 
2003 /* Macros for accessing a specified CP register bank */
2004 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2005     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2006 
2007 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2008     do {                                                \
2009         if (_secure) {                                   \
2010             (_env)->cp15._regname##_s = (_val);            \
2011         } else {                                        \
2012             (_env)->cp15._regname##_ns = (_val);           \
2013         }                                               \
2014     } while (0)
2015 
2016 /* Macros for automatically accessing a specific CP register bank depending on
2017  * the current secure state of the system.  These macros are not intended for
2018  * supporting instruction translation reads/writes as these are dependent
2019  * solely on the SCR.NS bit and not the mode.
2020  */
2021 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2022     A32_BANKED_REG_GET((_env), _regname,                \
2023                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2024 
2025 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2026     A32_BANKED_REG_SET((_env), _regname,                                    \
2027                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2028                        (_val))
2029 
2030 void arm_cpu_list(void);
2031 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2032                                  uint32_t cur_el, bool secure);
2033 
2034 /* Interface between CPU and Interrupt controller.  */
2035 #ifndef CONFIG_USER_ONLY
2036 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2037 #else
2038 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2039 {
2040     return true;
2041 }
2042 #endif
2043 /**
2044  * armv7m_nvic_set_pending: mark the specified exception as pending
2045  * @opaque: the NVIC
2046  * @irq: the exception number to mark pending
2047  * @secure: false for non-banked exceptions or for the nonsecure
2048  * version of a banked exception, true for the secure version of a banked
2049  * exception.
2050  *
2051  * Marks the specified exception as pending. Note that we will assert()
2052  * if @secure is true and @irq does not specify one of the fixed set
2053  * of architecturally banked exceptions.
2054  */
2055 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2056 /**
2057  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2058  * @opaque: the NVIC
2059  * @irq: the exception number to mark pending
2060  * @secure: false for non-banked exceptions or for the nonsecure
2061  * version of a banked exception, true for the secure version of a banked
2062  * exception.
2063  *
2064  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2065  * exceptions (exceptions generated in the course of trying to take
2066  * a different exception).
2067  */
2068 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2069 /**
2070  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2071  * @opaque: the NVIC
2072  * @irq: the exception number to mark pending
2073  * @secure: false for non-banked exceptions or for the nonsecure
2074  * version of a banked exception, true for the secure version of a banked
2075  * exception.
2076  *
2077  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2078  * generated in the course of lazy stacking of FP registers.
2079  */
2080 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2081 /**
2082  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2083  *    exception, and whether it targets Secure state
2084  * @opaque: the NVIC
2085  * @pirq: set to pending exception number
2086  * @ptargets_secure: set to whether pending exception targets Secure
2087  *
2088  * This function writes the number of the highest priority pending
2089  * exception (the one which would be made active by
2090  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2091  * to true if the current highest priority pending exception should
2092  * be taken to Secure state, false for NS.
2093  */
2094 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2095                                       bool *ptargets_secure);
2096 /**
2097  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2098  * @opaque: the NVIC
2099  *
2100  * Move the current highest priority pending exception from the pending
2101  * state to the active state, and update v7m.exception to indicate that
2102  * it is the exception currently being handled.
2103  */
2104 void armv7m_nvic_acknowledge_irq(void *opaque);
2105 /**
2106  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2107  * @opaque: the NVIC
2108  * @irq: the exception number to complete
2109  * @secure: true if this exception was secure
2110  *
2111  * Returns: -1 if the irq was not active
2112  *           1 if completing this irq brought us back to base (no active irqs)
2113  *           0 if there is still an irq active after this one was completed
2114  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2115  */
2116 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2117 /**
2118  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2119  * @opaque: the NVIC
2120  * @irq: the exception number to mark pending
2121  * @secure: false for non-banked exceptions or for the nonsecure
2122  * version of a banked exception, true for the secure version of a banked
2123  * exception.
2124  *
2125  * Return whether an exception is "ready", i.e. whether the exception is
2126  * enabled and is configured at a priority which would allow it to
2127  * interrupt the current execution priority. This controls whether the
2128  * RDY bit for it in the FPCCR is set.
2129  */
2130 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2131 /**
2132  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2133  * @opaque: the NVIC
2134  *
2135  * Returns: the raw execution priority as defined by the v8M architecture.
2136  * This is the execution priority minus the effects of AIRCR.PRIS,
2137  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2138  * (v8M ARM ARM I_PKLD.)
2139  */
2140 int armv7m_nvic_raw_execution_priority(void *opaque);
2141 /**
2142  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2143  * priority is negative for the specified security state.
2144  * @opaque: the NVIC
2145  * @secure: the security state to test
2146  * This corresponds to the pseudocode IsReqExecPriNeg().
2147  */
2148 #ifndef CONFIG_USER_ONLY
2149 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2150 #else
2151 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2152 {
2153     return false;
2154 }
2155 #endif
2156 
2157 /* Interface for defining coprocessor registers.
2158  * Registers are defined in tables of arm_cp_reginfo structs
2159  * which are passed to define_arm_cp_regs().
2160  */
2161 
2162 /* When looking up a coprocessor register we look for it
2163  * via an integer which encodes all of:
2164  *  coprocessor number
2165  *  Crn, Crm, opc1, opc2 fields
2166  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2167  *    or via MRRC/MCRR?)
2168  *  non-secure/secure bank (AArch32 only)
2169  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2170  * (In this case crn and opc2 should be zero.)
2171  * For AArch64, there is no 32/64 bit size distinction;
2172  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2173  * and 4 bit CRn and CRm. The encoding patterns are chosen
2174  * to be easy to convert to and from the KVM encodings, and also
2175  * so that the hashtable can contain both AArch32 and AArch64
2176  * registers (to allow for interprocessing where we might run
2177  * 32 bit code on a 64 bit core).
2178  */
2179 /* This bit is private to our hashtable cpreg; in KVM register
2180  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2181  * in the upper bits of the 64 bit ID.
2182  */
2183 #define CP_REG_AA64_SHIFT 28
2184 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2185 
2186 /* To enable banking of coprocessor registers depending on ns-bit we
2187  * add a bit to distinguish between secure and non-secure cpregs in the
2188  * hashtable.
2189  */
2190 #define CP_REG_NS_SHIFT 29
2191 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2192 
2193 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2194     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2195      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2196 
2197 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2198     (CP_REG_AA64_MASK |                                 \
2199      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2200      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2201      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2202      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2203      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2204      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2205 
2206 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2207  * version used as a key for the coprocessor register hashtable
2208  */
2209 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2210 {
2211     uint32_t cpregid = kvmid;
2212     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2213         cpregid |= CP_REG_AA64_MASK;
2214     } else {
2215         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2216             cpregid |= (1 << 15);
2217         }
2218 
2219         /* KVM is always non-secure so add the NS flag on AArch32 register
2220          * entries.
2221          */
2222          cpregid |= 1 << CP_REG_NS_SHIFT;
2223     }
2224     return cpregid;
2225 }
2226 
2227 /* Convert a truncated 32 bit hashtable key into the full
2228  * 64 bit KVM register ID.
2229  */
2230 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2231 {
2232     uint64_t kvmid;
2233 
2234     if (cpregid & CP_REG_AA64_MASK) {
2235         kvmid = cpregid & ~CP_REG_AA64_MASK;
2236         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2237     } else {
2238         kvmid = cpregid & ~(1 << 15);
2239         if (cpregid & (1 << 15)) {
2240             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2241         } else {
2242             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2243         }
2244     }
2245     return kvmid;
2246 }
2247 
2248 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2249  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2250  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2251  * TCG can assume the value to be constant (ie load at translate time)
2252  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2253  * indicates that the TB should not be ended after a write to this register
2254  * (the default is that the TB ends after cp writes). OVERRIDE permits
2255  * a register definition to override a previous definition for the
2256  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2257  * old must have the OVERRIDE bit set.
2258  * ALIAS indicates that this register is an alias view of some underlying
2259  * state which is also visible via another register, and that the other
2260  * register is handling migration and reset; registers marked ALIAS will not be
2261  * migrated but may have their state set by syncing of register state from KVM.
2262  * NO_RAW indicates that this register has no underlying state and does not
2263  * support raw access for state saving/loading; it will not be used for either
2264  * migration or KVM state synchronization. (Typically this is for "registers"
2265  * which are actually used as instructions for cache maintenance and so on.)
2266  * IO indicates that this register does I/O and therefore its accesses
2267  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2268  * registers which implement clocks or timers require this.
2269  * RAISES_EXC is for when the read or write hook might raise an exception;
2270  * the generated code will synchronize the CPU state before calling the hook
2271  * so that it is safe for the hook to call raise_exception().
2272  * NEWEL is for writes to registers that might change the exception
2273  * level - typically on older ARM chips. For those cases we need to
2274  * re-read the new el when recomputing the translation flags.
2275  */
2276 #define ARM_CP_SPECIAL           0x0001
2277 #define ARM_CP_CONST             0x0002
2278 #define ARM_CP_64BIT             0x0004
2279 #define ARM_CP_SUPPRESS_TB_END   0x0008
2280 #define ARM_CP_OVERRIDE          0x0010
2281 #define ARM_CP_ALIAS             0x0020
2282 #define ARM_CP_IO                0x0040
2283 #define ARM_CP_NO_RAW            0x0080
2284 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2285 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2286 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2287 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2288 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2289 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2290 #define ARM_CP_FPU               0x1000
2291 #define ARM_CP_SVE               0x2000
2292 #define ARM_CP_NO_GDB            0x4000
2293 #define ARM_CP_RAISES_EXC        0x8000
2294 #define ARM_CP_NEWEL             0x10000
2295 /* Used only as a terminator for ARMCPRegInfo lists */
2296 #define ARM_CP_SENTINEL          0xfffff
2297 /* Mask of only the flag bits in a type field */
2298 #define ARM_CP_FLAG_MASK         0x1f0ff
2299 
2300 /* Valid values for ARMCPRegInfo state field, indicating which of
2301  * the AArch32 and AArch64 execution states this register is visible in.
2302  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2303  * If the reginfo is declared to be visible in both states then a second
2304  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2305  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2306  * Note that we rely on the values of these enums as we iterate through
2307  * the various states in some places.
2308  */
2309 enum {
2310     ARM_CP_STATE_AA32 = 0,
2311     ARM_CP_STATE_AA64 = 1,
2312     ARM_CP_STATE_BOTH = 2,
2313 };
2314 
2315 /* ARM CP register secure state flags.  These flags identify security state
2316  * attributes for a given CP register entry.
2317  * The existence of both or neither secure and non-secure flags indicates that
2318  * the register has both a secure and non-secure hash entry.  A single one of
2319  * these flags causes the register to only be hashed for the specified
2320  * security state.
2321  * Although definitions may have any combination of the S/NS bits, each
2322  * registered entry will only have one to identify whether the entry is secure
2323  * or non-secure.
2324  */
2325 enum {
2326     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2327     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2328 };
2329 
2330 /* Return true if cptype is a valid type field. This is used to try to
2331  * catch errors where the sentinel has been accidentally left off the end
2332  * of a list of registers.
2333  */
2334 static inline bool cptype_valid(int cptype)
2335 {
2336     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2337         || ((cptype & ARM_CP_SPECIAL) &&
2338             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2339 }
2340 
2341 /* Access rights:
2342  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2343  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2344  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2345  * (ie any of the privileged modes in Secure state, or Monitor mode).
2346  * If a register is accessible in one privilege level it's always accessible
2347  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2348  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2349  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2350  * terminology a little and call this PL3.
2351  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2352  * with the ELx exception levels.
2353  *
2354  * If access permissions for a register are more complex than can be
2355  * described with these bits, then use a laxer set of restrictions, and
2356  * do the more restrictive/complex check inside a helper function.
2357  */
2358 #define PL3_R 0x80
2359 #define PL3_W 0x40
2360 #define PL2_R (0x20 | PL3_R)
2361 #define PL2_W (0x10 | PL3_W)
2362 #define PL1_R (0x08 | PL2_R)
2363 #define PL1_W (0x04 | PL2_W)
2364 #define PL0_R (0x02 | PL1_R)
2365 #define PL0_W (0x01 | PL1_W)
2366 
2367 /*
2368  * For user-mode some registers are accessible to EL0 via a kernel
2369  * trap-and-emulate ABI. In this case we define the read permissions
2370  * as actually being PL0_R. However some bits of any given register
2371  * may still be masked.
2372  */
2373 #ifdef CONFIG_USER_ONLY
2374 #define PL0U_R PL0_R
2375 #else
2376 #define PL0U_R PL1_R
2377 #endif
2378 
2379 #define PL3_RW (PL3_R | PL3_W)
2380 #define PL2_RW (PL2_R | PL2_W)
2381 #define PL1_RW (PL1_R | PL1_W)
2382 #define PL0_RW (PL0_R | PL0_W)
2383 
2384 /* Return the highest implemented Exception Level */
2385 static inline int arm_highest_el(CPUARMState *env)
2386 {
2387     if (arm_feature(env, ARM_FEATURE_EL3)) {
2388         return 3;
2389     }
2390     if (arm_feature(env, ARM_FEATURE_EL2)) {
2391         return 2;
2392     }
2393     return 1;
2394 }
2395 
2396 /* Return true if a v7M CPU is in Handler mode */
2397 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2398 {
2399     return env->v7m.exception != 0;
2400 }
2401 
2402 /* Return the current Exception Level (as per ARMv8; note that this differs
2403  * from the ARMv7 Privilege Level).
2404  */
2405 static inline int arm_current_el(CPUARMState *env)
2406 {
2407     if (arm_feature(env, ARM_FEATURE_M)) {
2408         return arm_v7m_is_handler_mode(env) ||
2409             !(env->v7m.control[env->v7m.secure] & 1);
2410     }
2411 
2412     if (is_a64(env)) {
2413         return extract32(env->pstate, 2, 2);
2414     }
2415 
2416     switch (env->uncached_cpsr & 0x1f) {
2417     case ARM_CPU_MODE_USR:
2418         return 0;
2419     case ARM_CPU_MODE_HYP:
2420         return 2;
2421     case ARM_CPU_MODE_MON:
2422         return 3;
2423     default:
2424         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2425             /* If EL3 is 32-bit then all secure privileged modes run in
2426              * EL3
2427              */
2428             return 3;
2429         }
2430 
2431         return 1;
2432     }
2433 }
2434 
2435 typedef struct ARMCPRegInfo ARMCPRegInfo;
2436 
2437 typedef enum CPAccessResult {
2438     /* Access is permitted */
2439     CP_ACCESS_OK = 0,
2440     /* Access fails due to a configurable trap or enable which would
2441      * result in a categorized exception syndrome giving information about
2442      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2443      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2444      * PL1 if in EL0, otherwise to the current EL).
2445      */
2446     CP_ACCESS_TRAP = 1,
2447     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2448      * Note that this is not a catch-all case -- the set of cases which may
2449      * result in this failure is specifically defined by the architecture.
2450      */
2451     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2452     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2453     CP_ACCESS_TRAP_EL2 = 3,
2454     CP_ACCESS_TRAP_EL3 = 4,
2455     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2456     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2457     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2458     /* Access fails and results in an exception syndrome for an FP access,
2459      * trapped directly to EL2 or EL3
2460      */
2461     CP_ACCESS_TRAP_FP_EL2 = 7,
2462     CP_ACCESS_TRAP_FP_EL3 = 8,
2463 } CPAccessResult;
2464 
2465 /* Access functions for coprocessor registers. These cannot fail and
2466  * may not raise exceptions.
2467  */
2468 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2469 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2470                        uint64_t value);
2471 /* Access permission check functions for coprocessor registers. */
2472 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2473                                   const ARMCPRegInfo *opaque,
2474                                   bool isread);
2475 /* Hook function for register reset */
2476 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2477 
2478 #define CP_ANY 0xff
2479 
2480 /* Definition of an ARM coprocessor register */
2481 struct ARMCPRegInfo {
2482     /* Name of register (useful mainly for debugging, need not be unique) */
2483     const char *name;
2484     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2485      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2486      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2487      * will be decoded to this register. The register read and write
2488      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2489      * used by the program, so it is possible to register a wildcard and
2490      * then behave differently on read/write if necessary.
2491      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2492      * must both be zero.
2493      * For AArch64-visible registers, opc0 is also used.
2494      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2495      * way to distinguish (for KVM's benefit) guest-visible system registers
2496      * from demuxed ones provided to preserve the "no side effects on
2497      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2498      * visible (to match KVM's encoding); cp==0 will be converted to
2499      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2500      */
2501     uint8_t cp;
2502     uint8_t crn;
2503     uint8_t crm;
2504     uint8_t opc0;
2505     uint8_t opc1;
2506     uint8_t opc2;
2507     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2508     int state;
2509     /* Register type: ARM_CP_* bits/values */
2510     int type;
2511     /* Access rights: PL*_[RW] */
2512     int access;
2513     /* Security state: ARM_CP_SECSTATE_* bits/values */
2514     int secure;
2515     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2516      * this register was defined: can be used to hand data through to the
2517      * register read/write functions, since they are passed the ARMCPRegInfo*.
2518      */
2519     void *opaque;
2520     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2521      * fieldoffset is non-zero, the reset value of the register.
2522      */
2523     uint64_t resetvalue;
2524     /* Offset of the field in CPUARMState for this register.
2525      *
2526      * This is not needed if either:
2527      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2528      *  2. both readfn and writefn are specified
2529      */
2530     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2531 
2532     /* Offsets of the secure and non-secure fields in CPUARMState for the
2533      * register if it is banked.  These fields are only used during the static
2534      * registration of a register.  During hashing the bank associated
2535      * with a given security state is copied to fieldoffset which is used from
2536      * there on out.
2537      *
2538      * It is expected that register definitions use either fieldoffset or
2539      * bank_fieldoffsets in the definition but not both.  It is also expected
2540      * that both bank offsets are set when defining a banked register.  This
2541      * use indicates that a register is banked.
2542      */
2543     ptrdiff_t bank_fieldoffsets[2];
2544 
2545     /* Function for making any access checks for this register in addition to
2546      * those specified by the 'access' permissions bits. If NULL, no extra
2547      * checks required. The access check is performed at runtime, not at
2548      * translate time.
2549      */
2550     CPAccessFn *accessfn;
2551     /* Function for handling reads of this register. If NULL, then reads
2552      * will be done by loading from the offset into CPUARMState specified
2553      * by fieldoffset.
2554      */
2555     CPReadFn *readfn;
2556     /* Function for handling writes of this register. If NULL, then writes
2557      * will be done by writing to the offset into CPUARMState specified
2558      * by fieldoffset.
2559      */
2560     CPWriteFn *writefn;
2561     /* Function for doing a "raw" read; used when we need to copy
2562      * coprocessor state to the kernel for KVM or out for
2563      * migration. This only needs to be provided if there is also a
2564      * readfn and it has side effects (for instance clear-on-read bits).
2565      */
2566     CPReadFn *raw_readfn;
2567     /* Function for doing a "raw" write; used when we need to copy KVM
2568      * kernel coprocessor state into userspace, or for inbound
2569      * migration. This only needs to be provided if there is also a
2570      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2571      * or similar behaviour.
2572      */
2573     CPWriteFn *raw_writefn;
2574     /* Function for resetting the register. If NULL, then reset will be done
2575      * by writing resetvalue to the field specified in fieldoffset. If
2576      * fieldoffset is 0 then no reset will be done.
2577      */
2578     CPResetFn *resetfn;
2579 
2580     /*
2581      * "Original" writefn and readfn.
2582      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2583      * accessor functions of various EL1/EL0 to perform the runtime
2584      * check for which sysreg should actually be modified, and then
2585      * forwards the operation.  Before overwriting the accessors,
2586      * the original function is copied here, so that accesses that
2587      * really do go to the EL1/EL0 version proceed normally.
2588      * (The corresponding EL2 register is linked via opaque.)
2589      */
2590     CPReadFn *orig_readfn;
2591     CPWriteFn *orig_writefn;
2592 };
2593 
2594 /* Macros which are lvalues for the field in CPUARMState for the
2595  * ARMCPRegInfo *ri.
2596  */
2597 #define CPREG_FIELD32(env, ri) \
2598     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2599 #define CPREG_FIELD64(env, ri) \
2600     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2601 
2602 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2603 
2604 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2605                                     const ARMCPRegInfo *regs, void *opaque);
2606 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2607                                        const ARMCPRegInfo *regs, void *opaque);
2608 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2609 {
2610     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2611 }
2612 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2613 {
2614     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2615 }
2616 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2617 
2618 /*
2619  * Definition of an ARM co-processor register as viewed from
2620  * userspace. This is used for presenting sanitised versions of
2621  * registers to userspace when emulating the Linux AArch64 CPU
2622  * ID/feature ABI (advertised as HWCAP_CPUID).
2623  */
2624 typedef struct ARMCPRegUserSpaceInfo {
2625     /* Name of register */
2626     const char *name;
2627 
2628     /* Is the name actually a glob pattern */
2629     bool is_glob;
2630 
2631     /* Only some bits are exported to user space */
2632     uint64_t exported_bits;
2633 
2634     /* Fixed bits are applied after the mask */
2635     uint64_t fixed_bits;
2636 } ARMCPRegUserSpaceInfo;
2637 
2638 #define REGUSERINFO_SENTINEL { .name = NULL }
2639 
2640 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2641 
2642 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2643 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2644                          uint64_t value);
2645 /* CPReadFn that can be used for read-as-zero behaviour */
2646 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2647 
2648 /* CPResetFn that does nothing, for use if no reset is required even
2649  * if fieldoffset is non zero.
2650  */
2651 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2652 
2653 /* Return true if this reginfo struct's field in the cpu state struct
2654  * is 64 bits wide.
2655  */
2656 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2657 {
2658     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2659 }
2660 
2661 static inline bool cp_access_ok(int current_el,
2662                                 const ARMCPRegInfo *ri, int isread)
2663 {
2664     return (ri->access >> ((current_el * 2) + isread)) & 1;
2665 }
2666 
2667 /* Raw read of a coprocessor register (as needed for migration, etc) */
2668 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2669 
2670 /**
2671  * write_list_to_cpustate
2672  * @cpu: ARMCPU
2673  *
2674  * For each register listed in the ARMCPU cpreg_indexes list, write
2675  * its value from the cpreg_values list into the ARMCPUState structure.
2676  * This updates TCG's working data structures from KVM data or
2677  * from incoming migration state.
2678  *
2679  * Returns: true if all register values were updated correctly,
2680  * false if some register was unknown or could not be written.
2681  * Note that we do not stop early on failure -- we will attempt
2682  * writing all registers in the list.
2683  */
2684 bool write_list_to_cpustate(ARMCPU *cpu);
2685 
2686 /**
2687  * write_cpustate_to_list:
2688  * @cpu: ARMCPU
2689  * @kvm_sync: true if this is for syncing back to KVM
2690  *
2691  * For each register listed in the ARMCPU cpreg_indexes list, write
2692  * its value from the ARMCPUState structure into the cpreg_values list.
2693  * This is used to copy info from TCG's working data structures into
2694  * KVM or for outbound migration.
2695  *
2696  * @kvm_sync is true if we are doing this in order to sync the
2697  * register state back to KVM. In this case we will only update
2698  * values in the list if the previous list->cpustate sync actually
2699  * successfully wrote the CPU state. Otherwise we will keep the value
2700  * that is in the list.
2701  *
2702  * Returns: true if all register values were read correctly,
2703  * false if some register was unknown or could not be read.
2704  * Note that we do not stop early on failure -- we will attempt
2705  * reading all registers in the list.
2706  */
2707 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2708 
2709 #define ARM_CPUID_TI915T      0x54029152
2710 #define ARM_CPUID_TI925T      0x54029252
2711 
2712 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2713 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2714 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2715 
2716 #define cpu_signal_handler cpu_arm_signal_handler
2717 #define cpu_list arm_cpu_list
2718 
2719 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2720  *
2721  * If EL3 is 64-bit:
2722  *  + NonSecure EL1 & 0 stage 1
2723  *  + NonSecure EL1 & 0 stage 2
2724  *  + NonSecure EL2
2725  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2726  *  + Secure EL1 & 0
2727  *  + Secure EL3
2728  * If EL3 is 32-bit:
2729  *  + NonSecure PL1 & 0 stage 1
2730  *  + NonSecure PL1 & 0 stage 2
2731  *  + NonSecure PL2
2732  *  + Secure PL0
2733  *  + Secure PL1
2734  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2735  *
2736  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2737  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2738  *     because they may differ in access permissions even if the VA->PA map is
2739  *     the same
2740  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2741  *     translation, which means that we have one mmu_idx that deals with two
2742  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2743  *     architecturally permitted]
2744  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2745  *     handling via the TLB. The only way to do a stage 1 translation without
2746  *     the immediate stage 2 translation is via the ATS or AT system insns,
2747  *     which can be slow-pathed and always do a page table walk.
2748  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2749  *     translation regimes, because they map reasonably well to each other
2750  *     and they can't both be active at the same time.
2751  *  5. we want to be able to use the TLB for accesses done as part of a
2752  *     stage1 page table walk, rather than having to walk the stage2 page
2753  *     table over and over.
2754  *
2755  * This gives us the following list of cases:
2756  *
2757  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2758  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2759  * NS EL0 EL2&0
2760  * NS EL2 EL2&0
2761  * NS EL2 (aka NS PL2)
2762  * S EL0 EL1&0 (aka S PL0)
2763  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2764  * S EL3 (aka S PL1)
2765  * NS EL1&0 stage 2
2766  *
2767  * for a total of 9 different mmu_idx.
2768  *
2769  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2770  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2771  * NS EL2 if we ever model a Cortex-R52).
2772  *
2773  * M profile CPUs are rather different as they do not have a true MMU.
2774  * They have the following different MMU indexes:
2775  *  User
2776  *  Privileged
2777  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2778  *  Privileged, execution priority negative (ditto)
2779  * If the CPU supports the v8M Security Extension then there are also:
2780  *  Secure User
2781  *  Secure Privileged
2782  *  Secure User, execution priority negative
2783  *  Secure Privileged, execution priority negative
2784  *
2785  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2786  * are not quite the same -- different CPU types (most notably M profile
2787  * vs A/R profile) would like to use MMU indexes with different semantics,
2788  * but since we don't ever need to use all of those in a single CPU we
2789  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2790  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2791  * the same for any particular CPU.
2792  * Variables of type ARMMUIdx are always full values, and the core
2793  * index values are in variables of type 'int'.
2794  *
2795  * Our enumeration includes at the end some entries which are not "true"
2796  * mmu_idx values in that they don't have corresponding TLBs and are only
2797  * valid for doing slow path page table walks.
2798  *
2799  * The constant names here are patterned after the general style of the names
2800  * of the AT/ATS operations.
2801  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2802  * For M profile we arrange them to have a bit for priv, a bit for negpri
2803  * and a bit for secure.
2804  */
2805 #define ARM_MMU_IDX_A     0x10  /* A profile */
2806 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2807 #define ARM_MMU_IDX_M     0x40  /* M profile */
2808 
2809 /* Meanings of the bits for M profile mmu idx values */
2810 #define ARM_MMU_IDX_M_PRIV   0x1
2811 #define ARM_MMU_IDX_M_NEGPRI 0x2
2812 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2813 
2814 #define ARM_MMU_IDX_TYPE_MASK \
2815     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2816 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2817 
2818 typedef enum ARMMMUIdx {
2819     /*
2820      * A-profile.
2821      */
2822     ARMMMUIdx_E10_0 =  0 | ARM_MMU_IDX_A,
2823     ARMMMUIdx_E20_0 =  1 | ARM_MMU_IDX_A,
2824 
2825     ARMMMUIdx_E10_1 =  2 | ARM_MMU_IDX_A,
2826 
2827     ARMMMUIdx_E2 =     3 | ARM_MMU_IDX_A,
2828     ARMMMUIdx_E20_2 =  4 | ARM_MMU_IDX_A,
2829 
2830     ARMMMUIdx_SE10_0 = 5 | ARM_MMU_IDX_A,
2831     ARMMMUIdx_SE10_1 = 6 | ARM_MMU_IDX_A,
2832     ARMMMUIdx_SE3 =    7 | ARM_MMU_IDX_A,
2833 
2834     ARMMMUIdx_Stage2 = 8 | ARM_MMU_IDX_A,
2835 
2836     /*
2837      * These are not allocated TLBs and are used only for AT system
2838      * instructions or for the first stage of an S12 page table walk.
2839      */
2840     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2841     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2842 
2843     /*
2844      * M-profile.
2845      */
2846     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2847     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2848     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2849     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2850     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2851     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2852     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2853     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2854 } ARMMMUIdx;
2855 
2856 /*
2857  * Bit macros for the core-mmu-index values for each index,
2858  * for use when calling tlb_flush_by_mmuidx() and friends.
2859  */
2860 #define TO_CORE_BIT(NAME) \
2861     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2862 
2863 typedef enum ARMMMUIdxBit {
2864     TO_CORE_BIT(E10_0),
2865     TO_CORE_BIT(E20_0),
2866     TO_CORE_BIT(E10_1),
2867     TO_CORE_BIT(E2),
2868     TO_CORE_BIT(E20_2),
2869     TO_CORE_BIT(SE10_0),
2870     TO_CORE_BIT(SE10_1),
2871     TO_CORE_BIT(SE3),
2872     TO_CORE_BIT(Stage2),
2873 
2874     TO_CORE_BIT(MUser),
2875     TO_CORE_BIT(MPriv),
2876     TO_CORE_BIT(MUserNegPri),
2877     TO_CORE_BIT(MPrivNegPri),
2878     TO_CORE_BIT(MSUser),
2879     TO_CORE_BIT(MSPriv),
2880     TO_CORE_BIT(MSUserNegPri),
2881     TO_CORE_BIT(MSPrivNegPri),
2882 } ARMMMUIdxBit;
2883 
2884 #undef TO_CORE_BIT
2885 
2886 #define MMU_USER_IDX 0
2887 
2888 /**
2889  * cpu_mmu_index:
2890  * @env: The cpu environment
2891  * @ifetch: True for code access, false for data access.
2892  *
2893  * Return the core mmu index for the current translation regime.
2894  * This function is used by generic TCG code paths.
2895  */
2896 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2897 
2898 /* Indexes used when registering address spaces with cpu_address_space_init */
2899 typedef enum ARMASIdx {
2900     ARMASIdx_NS = 0,
2901     ARMASIdx_S = 1,
2902 } ARMASIdx;
2903 
2904 /* Return the Exception Level targeted by debug exceptions. */
2905 static inline int arm_debug_target_el(CPUARMState *env)
2906 {
2907     bool secure = arm_is_secure(env);
2908     bool route_to_el2 = false;
2909 
2910     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2911         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2912                        env->cp15.mdcr_el2 & MDCR_TDE;
2913     }
2914 
2915     if (route_to_el2) {
2916         return 2;
2917     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2918                !arm_el_is_aa64(env, 3) && secure) {
2919         return 3;
2920     } else {
2921         return 1;
2922     }
2923 }
2924 
2925 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2926 {
2927     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2928      * CSSELR is RAZ/WI.
2929      */
2930     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2931 }
2932 
2933 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2934 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2935 {
2936     int cur_el = arm_current_el(env);
2937     int debug_el;
2938 
2939     if (cur_el == 3) {
2940         return false;
2941     }
2942 
2943     /* MDCR_EL3.SDD disables debug events from Secure state */
2944     if (arm_is_secure_below_el3(env)
2945         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2946         return false;
2947     }
2948 
2949     /*
2950      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2951      * while not masking the (D)ebug bit in DAIF.
2952      */
2953     debug_el = arm_debug_target_el(env);
2954 
2955     if (cur_el == debug_el) {
2956         return extract32(env->cp15.mdscr_el1, 13, 1)
2957             && !(env->daif & PSTATE_D);
2958     }
2959 
2960     /* Otherwise the debug target needs to be a higher EL */
2961     return debug_el > cur_el;
2962 }
2963 
2964 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2965 {
2966     int el = arm_current_el(env);
2967 
2968     if (el == 0 && arm_el_is_aa64(env, 1)) {
2969         return aa64_generate_debug_exceptions(env);
2970     }
2971 
2972     if (arm_is_secure(env)) {
2973         int spd;
2974 
2975         if (el == 0 && (env->cp15.sder & 1)) {
2976             /* SDER.SUIDEN means debug exceptions from Secure EL0
2977              * are always enabled. Otherwise they are controlled by
2978              * SDCR.SPD like those from other Secure ELs.
2979              */
2980             return true;
2981         }
2982 
2983         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2984         switch (spd) {
2985         case 1:
2986             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2987         case 0:
2988             /* For 0b00 we return true if external secure invasive debug
2989              * is enabled. On real hardware this is controlled by external
2990              * signals to the core. QEMU always permits debug, and behaves
2991              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2992              */
2993             return true;
2994         case 2:
2995             return false;
2996         case 3:
2997             return true;
2998         }
2999     }
3000 
3001     return el != 2;
3002 }
3003 
3004 /* Return true if debugging exceptions are currently enabled.
3005  * This corresponds to what in ARM ARM pseudocode would be
3006  *    if UsingAArch32() then
3007  *        return AArch32.GenerateDebugExceptions()
3008  *    else
3009  *        return AArch64.GenerateDebugExceptions()
3010  * We choose to push the if() down into this function for clarity,
3011  * since the pseudocode has it at all callsites except for the one in
3012  * CheckSoftwareStep(), where it is elided because both branches would
3013  * always return the same value.
3014  */
3015 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3016 {
3017     if (env->aarch64) {
3018         return aa64_generate_debug_exceptions(env);
3019     } else {
3020         return aa32_generate_debug_exceptions(env);
3021     }
3022 }
3023 
3024 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3025  * implicitly means this always returns false in pre-v8 CPUs.)
3026  */
3027 static inline bool arm_singlestep_active(CPUARMState *env)
3028 {
3029     return extract32(env->cp15.mdscr_el1, 0, 1)
3030         && arm_el_is_aa64(env, arm_debug_target_el(env))
3031         && arm_generate_debug_exceptions(env);
3032 }
3033 
3034 static inline bool arm_sctlr_b(CPUARMState *env)
3035 {
3036     return
3037         /* We need not implement SCTLR.ITD in user-mode emulation, so
3038          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3039          * This lets people run BE32 binaries with "-cpu any".
3040          */
3041 #ifndef CONFIG_USER_ONLY
3042         !arm_feature(env, ARM_FEATURE_V7) &&
3043 #endif
3044         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3045 }
3046 
3047 uint64_t arm_sctlr(CPUARMState *env, int el);
3048 
3049 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3050                                                   bool sctlr_b)
3051 {
3052 #ifdef CONFIG_USER_ONLY
3053     /*
3054      * In system mode, BE32 is modelled in line with the
3055      * architecture (as word-invariant big-endianness), where loads
3056      * and stores are done little endian but from addresses which
3057      * are adjusted by XORing with the appropriate constant. So the
3058      * endianness to use for the raw data access is not affected by
3059      * SCTLR.B.
3060      * In user mode, however, we model BE32 as byte-invariant
3061      * big-endianness (because user-only code cannot tell the
3062      * difference), and so we need to use a data access endianness
3063      * that depends on SCTLR.B.
3064      */
3065     if (sctlr_b) {
3066         return true;
3067     }
3068 #endif
3069     /* In 32bit endianness is determined by looking at CPSR's E bit */
3070     return env->uncached_cpsr & CPSR_E;
3071 }
3072 
3073 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3074 {
3075     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3076 }
3077 
3078 /* Return true if the processor is in big-endian mode. */
3079 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3080 {
3081     if (!is_a64(env)) {
3082         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3083     } else {
3084         int cur_el = arm_current_el(env);
3085         uint64_t sctlr = arm_sctlr(env, cur_el);
3086         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3087     }
3088 }
3089 
3090 typedef CPUARMState CPUArchState;
3091 typedef ARMCPU ArchCPU;
3092 
3093 #include "exec/cpu-all.h"
3094 
3095 /*
3096  * Bit usage in the TB flags field: bit 31 indicates whether we are
3097  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3098  * We put flags which are shared between 32 and 64 bit mode at the top
3099  * of the word, and flags which apply to only one mode at the bottom.
3100  *
3101  *  31          20    18    14          9              0
3102  * +--------------+-----+-----+----------+--------------+
3103  * |              |     |   TBFLAG_A32   |              |
3104  * |              |     +-----+----------+  TBFLAG_AM32 |
3105  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3106  * |              |         +-+----------+--------------|
3107  * |              |         |         TBFLAG_A64        |
3108  * +--------------+---------+---------------------------+
3109  *  31          20        15                           0
3110  *
3111  * Unless otherwise noted, these bits are cached in env->hflags.
3112  */
3113 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3114 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3115 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3116 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3117 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3118 /* Target EL if we take a floating-point-disabled exception */
3119 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3120 /* For A-profile only, target EL for debug exceptions.  */
3121 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3122 
3123 /*
3124  * Bit usage when in AArch32 state, both A- and M-profile.
3125  */
3126 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3127 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3128 
3129 /*
3130  * Bit usage when in AArch32 state, for A-profile only.
3131  */
3132 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3133 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3134 /*
3135  * We store the bottom two bits of the CPAR as TB flags and handle
3136  * checks on the other bits at runtime. This shares the same bits as
3137  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3138  * Not cached, because VECLEN+VECSTRIDE are not cached.
3139  */
3140 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3141 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3142 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3143 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3144 /*
3145  * Indicates whether cp register reads and writes by guest code should access
3146  * the secure or nonsecure bank of banked registers; note that this is not
3147  * the same thing as the current security state of the processor!
3148  */
3149 FIELD(TBFLAG_A32, NS, 17, 1)
3150 
3151 /*
3152  * Bit usage when in AArch32 state, for M-profile only.
3153  */
3154 /* Handler (ie not Thread) mode */
3155 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3156 /* Whether we should generate stack-limit checks */
3157 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3158 /* Set if FPCCR.LSPACT is set */
3159 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3160 /* Set if we must create a new FP context */
3161 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3162 /* Set if FPCCR.S does not match current security state */
3163 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3164 
3165 /*
3166  * Bit usage when in AArch64 state
3167  */
3168 FIELD(TBFLAG_A64, TBII, 0, 2)
3169 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3170 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3171 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3172 FIELD(TBFLAG_A64, BT, 9, 1)
3173 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3174 FIELD(TBFLAG_A64, TBID, 12, 2)
3175 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3176 
3177 static inline bool bswap_code(bool sctlr_b)
3178 {
3179 #ifdef CONFIG_USER_ONLY
3180     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3181      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3182      * would also end up as a mixed-endian mode with BE code, LE data.
3183      */
3184     return
3185 #ifdef TARGET_WORDS_BIGENDIAN
3186         1 ^
3187 #endif
3188         sctlr_b;
3189 #else
3190     /* All code access in ARM is little endian, and there are no loaders
3191      * doing swaps that need to be reversed
3192      */
3193     return 0;
3194 #endif
3195 }
3196 
3197 #ifdef CONFIG_USER_ONLY
3198 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3199 {
3200     return
3201 #ifdef TARGET_WORDS_BIGENDIAN
3202        1 ^
3203 #endif
3204        arm_cpu_data_is_big_endian(env);
3205 }
3206 #endif
3207 
3208 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3209                           target_ulong *cs_base, uint32_t *flags);
3210 
3211 enum {
3212     QEMU_PSCI_CONDUIT_DISABLED = 0,
3213     QEMU_PSCI_CONDUIT_SMC = 1,
3214     QEMU_PSCI_CONDUIT_HVC = 2,
3215 };
3216 
3217 #ifndef CONFIG_USER_ONLY
3218 /* Return the address space index to use for a memory access */
3219 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3220 {
3221     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3222 }
3223 
3224 /* Return the AddressSpace to use for a memory access
3225  * (which depends on whether the access is S or NS, and whether
3226  * the board gave us a separate AddressSpace for S accesses).
3227  */
3228 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3229 {
3230     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3231 }
3232 #endif
3233 
3234 /**
3235  * arm_register_pre_el_change_hook:
3236  * Register a hook function which will be called immediately before this
3237  * CPU changes exception level or mode. The hook function will be
3238  * passed a pointer to the ARMCPU and the opaque data pointer passed
3239  * to this function when the hook was registered.
3240  *
3241  * Note that if a pre-change hook is called, any registered post-change hooks
3242  * are guaranteed to subsequently be called.
3243  */
3244 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3245                                  void *opaque);
3246 /**
3247  * arm_register_el_change_hook:
3248  * Register a hook function which will be called immediately after this
3249  * CPU changes exception level or mode. The hook function will be
3250  * passed a pointer to the ARMCPU and the opaque data pointer passed
3251  * to this function when the hook was registered.
3252  *
3253  * Note that any registered hooks registered here are guaranteed to be called
3254  * if pre-change hooks have been.
3255  */
3256 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3257         *opaque);
3258 
3259 /**
3260  * arm_rebuild_hflags:
3261  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3262  */
3263 void arm_rebuild_hflags(CPUARMState *env);
3264 
3265 /**
3266  * aa32_vfp_dreg:
3267  * Return a pointer to the Dn register within env in 32-bit mode.
3268  */
3269 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3270 {
3271     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3272 }
3273 
3274 /**
3275  * aa32_vfp_qreg:
3276  * Return a pointer to the Qn register within env in 32-bit mode.
3277  */
3278 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3279 {
3280     return &env->vfp.zregs[regno].d[0];
3281 }
3282 
3283 /**
3284  * aa64_vfp_qreg:
3285  * Return a pointer to the Qn register within env in 64-bit mode.
3286  */
3287 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3288 {
3289     return &env->vfp.zregs[regno].d[0];
3290 }
3291 
3292 /* Shared between translate-sve.c and sve_helper.c.  */
3293 extern const uint64_t pred_esz_masks[4];
3294 
3295 /*
3296  * 32-bit feature tests via id registers.
3297  */
3298 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3299 {
3300     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3301 }
3302 
3303 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3304 {
3305     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3306 }
3307 
3308 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3309 {
3310     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3311 }
3312 
3313 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3314 {
3315     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3316 }
3317 
3318 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3319 {
3320     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3321 }
3322 
3323 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3324 {
3325     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3326 }
3327 
3328 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3329 {
3330     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3331 }
3332 
3333 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3334 {
3335     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3336 }
3337 
3338 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3339 {
3340     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3341 }
3342 
3343 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3344 {
3345     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3346 }
3347 
3348 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3349 {
3350     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3351 }
3352 
3353 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3354 {
3355     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3356 }
3357 
3358 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3359 {
3360     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3361 }
3362 
3363 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3364 {
3365     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3366 }
3367 
3368 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3369 {
3370     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3371 }
3372 
3373 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3374 {
3375     /*
3376      * This is a placeholder for use by VCMA until the rest of
3377      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3378      * At which point we can properly set and check MVFR1.FPHP.
3379      */
3380     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3381 }
3382 
3383 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3384 {
3385     /* Return true if D16-D31 are implemented */
3386     return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3387 }
3388 
3389 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3390 {
3391     return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3392 }
3393 
3394 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3395 {
3396     /* Return true if CPU supports double precision floating point */
3397     return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3398 }
3399 
3400 /*
3401  * We always set the FP and SIMD FP16 fields to indicate identical
3402  * levels of support (assuming SIMD is implemented at all), so
3403  * we only need one set of accessors.
3404  */
3405 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3406 {
3407     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3408 }
3409 
3410 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3411 {
3412     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3413 }
3414 
3415 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3416 {
3417     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3418 }
3419 
3420 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3421 {
3422     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3423 }
3424 
3425 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3426 {
3427     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3428 }
3429 
3430 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3431 {
3432     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3433 }
3434 
3435 /*
3436  * 64-bit feature tests via id registers.
3437  */
3438 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3439 {
3440     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3441 }
3442 
3443 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3444 {
3445     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3446 }
3447 
3448 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3449 {
3450     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3451 }
3452 
3453 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3454 {
3455     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3456 }
3457 
3458 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3459 {
3460     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3461 }
3462 
3463 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3464 {
3465     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3466 }
3467 
3468 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3469 {
3470     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3471 }
3472 
3473 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3476 }
3477 
3478 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3479 {
3480     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3481 }
3482 
3483 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3484 {
3485     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3486 }
3487 
3488 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3489 {
3490     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3491 }
3492 
3493 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3496 }
3497 
3498 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3499 {
3500     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3501 }
3502 
3503 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3504 {
3505     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3506 }
3507 
3508 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3509 {
3510     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3511 }
3512 
3513 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3514 {
3515     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3516 }
3517 
3518 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3519 {
3520     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3521 }
3522 
3523 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3524 {
3525     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3526 }
3527 
3528 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3529 {
3530     /*
3531      * Note that while QEMU will only implement the architected algorithm
3532      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3533      * defined algorithms, and thus API+GPI, and this predicate controls
3534      * migration of the 128-bit keys.
3535      */
3536     return (id->id_aa64isar1 &
3537             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3538              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3539              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3540              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3541 }
3542 
3543 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3544 {
3545     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3546 }
3547 
3548 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3549 {
3550     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3551 }
3552 
3553 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3554 {
3555     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3556 }
3557 
3558 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3559 {
3560     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3561 }
3562 
3563 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3564 {
3565     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3566 }
3567 
3568 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3569 {
3570     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3571     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3572 }
3573 
3574 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3575 {
3576     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3577 }
3578 
3579 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3580 {
3581     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3582 }
3583 
3584 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3585 {
3586     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3587 }
3588 
3589 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3590 {
3591     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3592 }
3593 
3594 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3595 {
3596     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3597 }
3598 
3599 /*
3600  * Forward to the above feature tests given an ARMCPU pointer.
3601  */
3602 #define cpu_isar_feature(name, cpu) \
3603     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3604 
3605 #endif
3606