xref: /openbmc/qemu/target/arm/cpu.h (revision 935fe442dc234c7b3fa52d346ced7a614696107e)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 
94 /* The usual mapping for an AArch64 system register to its AArch32
95  * counterpart is for the 32 bit world to have access to the lower
96  * half only (with writes leaving the upper half untouched). It's
97  * therefore useful to be able to pass TCG the offset of the least
98  * significant half of a uint64_t struct member.
99  */
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
107 
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
113 
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141  * @cpregs_keys: Array that contains the corresponding Key of
142  * a given cpreg with the same order of the cpreg in the XML description.
143  */
144 typedef struct DynamicGDBXMLInfo {
145     char *desc;
146     int num_cpregs;
147     uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
149 
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152     uint64_t cval; /* Timer CompareValue register */
153     uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
155 
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP  2
159 #define GTIMER_SEC  3
160 #define NUM_GTIMERS 4
161 
162 typedef struct {
163     uint64_t raw_tcr;
164     uint32_t mask;
165     uint32_t base_mask;
166 } TCR;
167 
168 /* Define a maximum sized vector register.
169  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170  * For 64-bit, this is a 2048-bit SVE register.
171  *
172  * Note that the mapping between S, D, and Q views of the register bank
173  * differs between AArch64 and AArch32.
174  * In AArch32:
175  *  Qn = regs[n].d[1]:regs[n].d[0]
176  *  Dn = regs[n / 2].d[n & 1]
177  *  Sn = regs[n / 4].d[n % 4 / 2],
178  *       bits 31..0 for even n, and bits 63..32 for odd n
179  *       (and regs[16] to regs[31] are inaccessible)
180  * In AArch64:
181  *  Zn = regs[n].d[*]
182  *  Qn = regs[n].d[1]:regs[n].d[0]
183  *  Dn = regs[n].d[0]
184  *  Sn = regs[n].d[0] bits 31..0
185  *  Hn = regs[n].d[0] bits 15..0
186  *
187  * This corresponds to the architecturally defined mapping between
188  * the two execution states, and means we do not need to explicitly
189  * map these registers when changing states.
190  *
191  * Align the data for use with TCG host vector operations.
192  */
193 
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ    16
196 #else
197 # define ARM_MAX_VQ    1
198 #endif
199 
200 typedef struct ARMVectorReg {
201     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
203 
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all.  */
206 typedef struct ARMPredicateReg {
207     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
209 
210 /* In AArch32 mode, PAC keys do not exist at all.  */
211 typedef struct ARMPACKey {
212     uint64_t lo, hi;
213 } ARMPACKey;
214 #endif
215 
216 
217 typedef struct CPUARMState {
218     /* Regs for current mode.  */
219     uint32_t regs[16];
220 
221     /* 32/64 switch only happens when taking and returning from
222      * exceptions so the overlap semantics are taken care of then
223      * instead of having a complicated union.
224      */
225     /* Regs for A64 mode.  */
226     uint64_t xregs[32];
227     uint64_t pc;
228     /* PSTATE isn't an architectural register for ARMv8. However, it is
229      * convenient for us to assemble the underlying state into a 32 bit format
230      * identical to the architectural format used for the SPSR. (This is also
231      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232      * 'pstate' register are.) Of the PSTATE bits:
233      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234      *    semantics as for AArch32, as described in the comments on each field)
235      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
236      *  DAIF (exception masks) are kept in env->daif
237      *  BTYPE is kept in env->btype
238      *  all other bits are stored in their correct places in env->pstate
239      */
240     uint32_t pstate;
241     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242 
243     /* Frequently accessed CPSR bits are stored separately for efficiency.
244        This contains all the other bits.  Use cpsr_{read,write} to access
245        the whole CPSR.  */
246     uint32_t uncached_cpsr;
247     uint32_t spsr;
248 
249     /* Banked registers.  */
250     uint64_t banked_spsr[8];
251     uint32_t banked_r13[8];
252     uint32_t banked_r14[8];
253 
254     /* These hold r8-r12.  */
255     uint32_t usr_regs[5];
256     uint32_t fiq_regs[5];
257 
258     /* cpsr flag cache for faster execution */
259     uint32_t CF; /* 0 or 1 */
260     uint32_t VF; /* V is the bit 31. All other bits are undefined */
261     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
262     uint32_t ZF; /* Z set if zero.  */
263     uint32_t QF; /* 0 or 1 */
264     uint32_t GE; /* cpsr[19:16] */
265     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
266     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
267     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
268     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
269 
270     uint64_t elr_el[4]; /* AArch64 exception link regs  */
271     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
272 
273     /* System control coprocessor (cp15) */
274     struct {
275         uint32_t c0_cpuid;
276         union { /* Cache size selection */
277             struct {
278                 uint64_t _unused_csselr0;
279                 uint64_t csselr_ns;
280                 uint64_t _unused_csselr1;
281                 uint64_t csselr_s;
282             };
283             uint64_t csselr_el[4];
284         };
285         union { /* System control register. */
286             struct {
287                 uint64_t _unused_sctlr;
288                 uint64_t sctlr_ns;
289                 uint64_t hsctlr;
290                 uint64_t sctlr_s;
291             };
292             uint64_t sctlr_el[4];
293         };
294         uint64_t cpacr_el1; /* Architectural feature access control register */
295         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
296         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
297         uint64_t sder; /* Secure debug enable register. */
298         uint32_t nsacr; /* Non-secure access control register. */
299         union { /* MMU translation table base 0. */
300             struct {
301                 uint64_t _unused_ttbr0_0;
302                 uint64_t ttbr0_ns;
303                 uint64_t _unused_ttbr0_1;
304                 uint64_t ttbr0_s;
305             };
306             uint64_t ttbr0_el[4];
307         };
308         union { /* MMU translation table base 1. */
309             struct {
310                 uint64_t _unused_ttbr1_0;
311                 uint64_t ttbr1_ns;
312                 uint64_t _unused_ttbr1_1;
313                 uint64_t ttbr1_s;
314             };
315             uint64_t ttbr1_el[4];
316         };
317         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
318         /* MMU translation table base control. */
319         TCR tcr_el[4];
320         TCR vtcr_el2; /* Virtualization Translation Control.  */
321         uint32_t c2_data; /* MPU data cacheable bits.  */
322         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
323         union { /* MMU domain access control register
324                  * MPU write buffer control.
325                  */
326             struct {
327                 uint64_t dacr_ns;
328                 uint64_t dacr_s;
329             };
330             struct {
331                 uint64_t dacr32_el2;
332             };
333         };
334         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
336         uint64_t hcr_el2; /* Hypervisor configuration register */
337         uint64_t scr_el3; /* Secure configuration register.  */
338         union { /* Fault status registers.  */
339             struct {
340                 uint64_t ifsr_ns;
341                 uint64_t ifsr_s;
342             };
343             struct {
344                 uint64_t ifsr32_el2;
345             };
346         };
347         union {
348             struct {
349                 uint64_t _unused_dfsr;
350                 uint64_t dfsr_ns;
351                 uint64_t hsr;
352                 uint64_t dfsr_s;
353             };
354             uint64_t esr_el[4];
355         };
356         uint32_t c6_region[8]; /* MPU base/size registers.  */
357         union { /* Fault address registers. */
358             struct {
359                 uint64_t _unused_far0;
360 #ifdef HOST_WORDS_BIGENDIAN
361                 uint32_t ifar_ns;
362                 uint32_t dfar_ns;
363                 uint32_t ifar_s;
364                 uint32_t dfar_s;
365 #else
366                 uint32_t dfar_ns;
367                 uint32_t ifar_ns;
368                 uint32_t dfar_s;
369                 uint32_t ifar_s;
370 #endif
371                 uint64_t _unused_far3;
372             };
373             uint64_t far_el[4];
374         };
375         uint64_t hpfar_el2;
376         uint64_t hstr_el2;
377         union { /* Translation result. */
378             struct {
379                 uint64_t _unused_par_0;
380                 uint64_t par_ns;
381                 uint64_t _unused_par_1;
382                 uint64_t par_s;
383             };
384             uint64_t par_el[4];
385         };
386 
387         uint32_t c9_insn; /* Cache lockdown registers.  */
388         uint32_t c9_data;
389         uint64_t c9_pmcr; /* performance monitor control register */
390         uint64_t c9_pmcnten; /* perf monitor counter enables */
391         uint64_t c9_pmovsr; /* perf monitor overflow status */
392         uint64_t c9_pmuserenr; /* perf monitor user enable */
393         uint64_t c9_pmselr; /* perf monitor counter selection register */
394         uint64_t c9_pminten; /* perf monitor interrupt enables */
395         union { /* Memory attribute redirection */
396             struct {
397 #ifdef HOST_WORDS_BIGENDIAN
398                 uint64_t _unused_mair_0;
399                 uint32_t mair1_ns;
400                 uint32_t mair0_ns;
401                 uint64_t _unused_mair_1;
402                 uint32_t mair1_s;
403                 uint32_t mair0_s;
404 #else
405                 uint64_t _unused_mair_0;
406                 uint32_t mair0_ns;
407                 uint32_t mair1_ns;
408                 uint64_t _unused_mair_1;
409                 uint32_t mair0_s;
410                 uint32_t mair1_s;
411 #endif
412             };
413             uint64_t mair_el[4];
414         };
415         union { /* vector base address register */
416             struct {
417                 uint64_t _unused_vbar;
418                 uint64_t vbar_ns;
419                 uint64_t hvbar;
420                 uint64_t vbar_s;
421             };
422             uint64_t vbar_el[4];
423         };
424         uint32_t mvbar; /* (monitor) vector base address register */
425         struct { /* FCSE PID. */
426             uint32_t fcseidr_ns;
427             uint32_t fcseidr_s;
428         };
429         union { /* Context ID. */
430             struct {
431                 uint64_t _unused_contextidr_0;
432                 uint64_t contextidr_ns;
433                 uint64_t _unused_contextidr_1;
434                 uint64_t contextidr_s;
435             };
436             uint64_t contextidr_el[4];
437         };
438         union { /* User RW Thread register. */
439             struct {
440                 uint64_t tpidrurw_ns;
441                 uint64_t tpidrprw_ns;
442                 uint64_t htpidr;
443                 uint64_t _tpidr_el3;
444             };
445             uint64_t tpidr_el[4];
446         };
447         /* The secure banks of these registers don't map anywhere */
448         uint64_t tpidrurw_s;
449         uint64_t tpidrprw_s;
450         uint64_t tpidruro_s;
451 
452         union { /* User RO Thread register. */
453             uint64_t tpidruro_ns;
454             uint64_t tpidrro_el[1];
455         };
456         uint64_t c14_cntfrq; /* Counter Frequency register */
457         uint64_t c14_cntkctl; /* Timer Control register */
458         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
459         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
460         ARMGenericTimer c14_timer[NUM_GTIMERS];
461         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465         uint32_t c15_threadid; /* TI debugger thread-ID.  */
466         uint32_t c15_config_base_address; /* SCU base address.  */
467         uint32_t c15_diagnostic; /* diagnostic register */
468         uint32_t c15_power_diagnostic;
469         uint32_t c15_power_control; /* power control */
470         uint64_t dbgbvr[16]; /* breakpoint value registers */
471         uint64_t dbgbcr[16]; /* breakpoint control registers */
472         uint64_t dbgwvr[16]; /* watchpoint value registers */
473         uint64_t dbgwcr[16]; /* watchpoint control registers */
474         uint64_t mdscr_el1;
475         uint64_t oslsr_el1; /* OS Lock Status */
476         uint64_t mdcr_el2;
477         uint64_t mdcr_el3;
478         /* Stores the architectural value of the counter *the last time it was
479          * updated* by pmccntr_op_start. Accesses should always be surrounded
480          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481          * architecturally-correct value is being read/set.
482          */
483         uint64_t c15_ccnt;
484         /* Stores the delta between the architectural value and the underlying
485          * cycle count during normal operation. It is used to update c15_ccnt
486          * to be the correct architectural value before accesses. During
487          * accesses, c15_ccnt_delta contains the underlying count being used
488          * for the access, after which it reverts to the delta value in
489          * pmccntr_op_finish.
490          */
491         uint64_t c15_ccnt_delta;
492         uint64_t c14_pmevcntr[31];
493         uint64_t c14_pmevcntr_delta[31];
494         uint64_t c14_pmevtyper[31];
495         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
496         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
497         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
498     } cp15;
499 
500     struct {
501         /* M profile has up to 4 stack pointers:
502          * a Main Stack Pointer and a Process Stack Pointer for each
503          * of the Secure and Non-Secure states. (If the CPU doesn't support
504          * the security extension then it has only two SPs.)
505          * In QEMU we always store the currently active SP in regs[13],
506          * and the non-active SP for the current security state in
507          * v7m.other_sp. The stack pointers for the inactive security state
508          * are stored in other_ss_msp and other_ss_psp.
509          * switch_v7m_security_state() is responsible for rearranging them
510          * when we change security state.
511          */
512         uint32_t other_sp;
513         uint32_t other_ss_msp;
514         uint32_t other_ss_psp;
515         uint32_t vecbase[M_REG_NUM_BANKS];
516         uint32_t basepri[M_REG_NUM_BANKS];
517         uint32_t control[M_REG_NUM_BANKS];
518         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
520         uint32_t hfsr; /* HardFault Status */
521         uint32_t dfsr; /* Debug Fault Status Register */
522         uint32_t sfsr; /* Secure Fault Status Register */
523         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
524         uint32_t bfar; /* BusFault Address */
525         uint32_t sfar; /* Secure Fault Address Register */
526         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
527         int exception;
528         uint32_t primask[M_REG_NUM_BANKS];
529         uint32_t faultmask[M_REG_NUM_BANKS];
530         uint32_t aircr; /* only holds r/w state if security extn implemented */
531         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
532         uint32_t csselr[M_REG_NUM_BANKS];
533         uint32_t scr[M_REG_NUM_BANKS];
534         uint32_t msplim[M_REG_NUM_BANKS];
535         uint32_t psplim[M_REG_NUM_BANKS];
536     } v7m;
537 
538     /* Information associated with an exception about to be taken:
539      * code which raises an exception must set cs->exception_index and
540      * the relevant parts of this structure; the cpu_do_interrupt function
541      * will then set the guest-visible registers as part of the exception
542      * entry process.
543      */
544     struct {
545         uint32_t syndrome; /* AArch64 format syndrome register */
546         uint32_t fsr; /* AArch32 format fault status register info */
547         uint64_t vaddress; /* virtual addr associated with exception, if any */
548         uint32_t target_el; /* EL the exception should be targeted for */
549         /* If we implement EL2 we will also need to store information
550          * about the intermediate physical address for stage 2 faults.
551          */
552     } exception;
553 
554     /* Information associated with an SError */
555     struct {
556         uint8_t pending;
557         uint8_t has_esr;
558         uint64_t esr;
559     } serror;
560 
561     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
562     uint32_t irq_line_state;
563 
564     /* Thumb-2 EE state.  */
565     uint32_t teecr;
566     uint32_t teehbr;
567 
568     /* VFP coprocessor state.  */
569     struct {
570         ARMVectorReg zregs[32];
571 
572 #ifdef TARGET_AARCH64
573         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
574 #define FFR_PRED_NUM 16
575         ARMPredicateReg pregs[17];
576         /* Scratch space for aa64 sve predicate temporary.  */
577         ARMPredicateReg preg_tmp;
578 #endif
579 
580         uint32_t xregs[16];
581         /* We store these fpcsr fields separately for convenience.  */
582         int vec_len;
583         int vec_stride;
584 
585         /* Scratch space for aa32 neon expansion.  */
586         uint32_t scratch[8];
587 
588         /* There are a number of distinct float control structures:
589          *
590          *  fp_status: is the "normal" fp status.
591          *  fp_status_fp16: used for half-precision calculations
592          *  standard_fp_status : the ARM "Standard FPSCR Value"
593          *
594          * Half-precision operations are governed by a separate
595          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
596          * status structure to control this.
597          *
598          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
599          * round-to-nearest and is used by any operations (generally
600          * Neon) which the architecture defines as controlled by the
601          * standard FPSCR value rather than the FPSCR.
602          *
603          * To avoid having to transfer exception bits around, we simply
604          * say that the FPSCR cumulative exception flags are the logical
605          * OR of the flags in the three fp statuses. This relies on the
606          * only thing which needs to read the exception flags being
607          * an explicit FPSCR read.
608          */
609         float_status fp_status;
610         float_status fp_status_f16;
611         float_status standard_fp_status;
612 
613         /* ZCR_EL[1-3] */
614         uint64_t zcr_el[4];
615     } vfp;
616     uint64_t exclusive_addr;
617     uint64_t exclusive_val;
618     uint64_t exclusive_high;
619 
620     /* iwMMXt coprocessor state.  */
621     struct {
622         uint64_t regs[16];
623         uint64_t val;
624 
625         uint32_t cregs[16];
626     } iwmmxt;
627 
628 #ifdef TARGET_AARCH64
629     ARMPACKey apia_key;
630     ARMPACKey apib_key;
631     ARMPACKey apda_key;
632     ARMPACKey apdb_key;
633     ARMPACKey apga_key;
634 #endif
635 
636 #if defined(CONFIG_USER_ONLY)
637     /* For usermode syscall translation.  */
638     int eabi;
639 #endif
640 
641     struct CPUBreakpoint *cpu_breakpoint[16];
642     struct CPUWatchpoint *cpu_watchpoint[16];
643 
644     /* Fields up to this point are cleared by a CPU reset */
645     struct {} end_reset_fields;
646 
647     CPU_COMMON
648 
649     /* Fields after CPU_COMMON are preserved across CPU reset. */
650 
651     /* Internal CPU feature flags.  */
652     uint64_t features;
653 
654     /* PMSAv7 MPU */
655     struct {
656         uint32_t *drbar;
657         uint32_t *drsr;
658         uint32_t *dracr;
659         uint32_t rnr[M_REG_NUM_BANKS];
660     } pmsav7;
661 
662     /* PMSAv8 MPU */
663     struct {
664         /* The PMSAv8 implementation also shares some PMSAv7 config
665          * and state:
666          *  pmsav7.rnr (region number register)
667          *  pmsav7_dregion (number of configured regions)
668          */
669         uint32_t *rbar[M_REG_NUM_BANKS];
670         uint32_t *rlar[M_REG_NUM_BANKS];
671         uint32_t mair0[M_REG_NUM_BANKS];
672         uint32_t mair1[M_REG_NUM_BANKS];
673     } pmsav8;
674 
675     /* v8M SAU */
676     struct {
677         uint32_t *rbar;
678         uint32_t *rlar;
679         uint32_t rnr;
680         uint32_t ctrl;
681     } sau;
682 
683     void *nvic;
684     const struct arm_boot_info *boot_info;
685     /* Store GICv3CPUState to access from this struct */
686     void *gicv3state;
687 } CPUARMState;
688 
689 /**
690  * ARMELChangeHookFn:
691  * type of a function which can be registered via arm_register_el_change_hook()
692  * to get callbacks when the CPU changes its exception level or mode.
693  */
694 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
695 typedef struct ARMELChangeHook ARMELChangeHook;
696 struct ARMELChangeHook {
697     ARMELChangeHookFn *hook;
698     void *opaque;
699     QLIST_ENTRY(ARMELChangeHook) node;
700 };
701 
702 /* These values map onto the return values for
703  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
704 typedef enum ARMPSCIState {
705     PSCI_ON = 0,
706     PSCI_OFF = 1,
707     PSCI_ON_PENDING = 2
708 } ARMPSCIState;
709 
710 typedef struct ARMISARegisters ARMISARegisters;
711 
712 /**
713  * ARMCPU:
714  * @env: #CPUARMState
715  *
716  * An ARM CPU core.
717  */
718 struct ARMCPU {
719     /*< private >*/
720     CPUState parent_obj;
721     /*< public >*/
722 
723     CPUARMState env;
724 
725     /* Coprocessor information */
726     GHashTable *cp_regs;
727     /* For marshalling (mostly coprocessor) register state between the
728      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
729      * we use these arrays.
730      */
731     /* List of register indexes managed via these arrays; (full KVM style
732      * 64 bit indexes, not CPRegInfo 32 bit indexes)
733      */
734     uint64_t *cpreg_indexes;
735     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
736     uint64_t *cpreg_values;
737     /* Length of the indexes, values, reset_values arrays */
738     int32_t cpreg_array_len;
739     /* These are used only for migration: incoming data arrives in
740      * these fields and is sanity checked in post_load before copying
741      * to the working data structures above.
742      */
743     uint64_t *cpreg_vmstate_indexes;
744     uint64_t *cpreg_vmstate_values;
745     int32_t cpreg_vmstate_array_len;
746 
747     DynamicGDBXMLInfo dyn_xml;
748 
749     /* Timers used by the generic (architected) timer */
750     QEMUTimer *gt_timer[NUM_GTIMERS];
751     /*
752      * Timer used by the PMU. Its state is restored after migration by
753      * pmu_op_finish() - it does not need other handling during migration
754      */
755     QEMUTimer *pmu_timer;
756     /* GPIO outputs for generic timer */
757     qemu_irq gt_timer_outputs[NUM_GTIMERS];
758     /* GPIO output for GICv3 maintenance interrupt signal */
759     qemu_irq gicv3_maintenance_interrupt;
760     /* GPIO output for the PMU interrupt */
761     qemu_irq pmu_interrupt;
762 
763     /* MemoryRegion to use for secure physical accesses */
764     MemoryRegion *secure_memory;
765 
766     /* For v8M, pointer to the IDAU interface provided by board/SoC */
767     Object *idau;
768 
769     /* 'compatible' string for this CPU for Linux device trees */
770     const char *dtb_compatible;
771 
772     /* PSCI version for this CPU
773      * Bits[31:16] = Major Version
774      * Bits[15:0] = Minor Version
775      */
776     uint32_t psci_version;
777 
778     /* Should CPU start in PSCI powered-off state? */
779     bool start_powered_off;
780 
781     /* Current power state, access guarded by BQL */
782     ARMPSCIState power_state;
783 
784     /* CPU has virtualization extension */
785     bool has_el2;
786     /* CPU has security extension */
787     bool has_el3;
788     /* CPU has PMU (Performance Monitor Unit) */
789     bool has_pmu;
790 
791     /* CPU has memory protection unit */
792     bool has_mpu;
793     /* PMSAv7 MPU number of supported regions */
794     uint32_t pmsav7_dregion;
795     /* v8M SAU number of supported regions */
796     uint32_t sau_sregion;
797 
798     /* PSCI conduit used to invoke PSCI methods
799      * 0 - disabled, 1 - smc, 2 - hvc
800      */
801     uint32_t psci_conduit;
802 
803     /* For v8M, initial value of the Secure VTOR */
804     uint32_t init_svtor;
805 
806     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
807      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
808      */
809     uint32_t kvm_target;
810 
811     /* KVM init features for this CPU */
812     uint32_t kvm_init_features[7];
813 
814     /* Uniprocessor system with MP extensions */
815     bool mp_is_up;
816 
817     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
818      * and the probe failed (so we need to report the error in realize)
819      */
820     bool host_cpu_probe_failed;
821 
822     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
823      * register.
824      */
825     int32_t core_count;
826 
827     /* The instance init functions for implementation-specific subclasses
828      * set these fields to specify the implementation-dependent values of
829      * various constant registers and reset values of non-constant
830      * registers.
831      * Some of these might become QOM properties eventually.
832      * Field names match the official register names as defined in the
833      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
834      * is used for reset values of non-constant registers; no reset_
835      * prefix means a constant register.
836      * Some of these registers are split out into a substructure that
837      * is shared with the translators to control the ISA.
838      */
839     struct ARMISARegisters {
840         uint32_t id_isar0;
841         uint32_t id_isar1;
842         uint32_t id_isar2;
843         uint32_t id_isar3;
844         uint32_t id_isar4;
845         uint32_t id_isar5;
846         uint32_t id_isar6;
847         uint32_t mvfr0;
848         uint32_t mvfr1;
849         uint32_t mvfr2;
850         uint64_t id_aa64isar0;
851         uint64_t id_aa64isar1;
852         uint64_t id_aa64pfr0;
853         uint64_t id_aa64pfr1;
854         uint64_t id_aa64mmfr0;
855         uint64_t id_aa64mmfr1;
856     } isar;
857     uint32_t midr;
858     uint32_t revidr;
859     uint32_t reset_fpsid;
860     uint32_t ctr;
861     uint32_t reset_sctlr;
862     uint32_t id_pfr0;
863     uint32_t id_pfr1;
864     uint32_t id_dfr0;
865     uint64_t pmceid0;
866     uint64_t pmceid1;
867     uint32_t id_afr0;
868     uint32_t id_mmfr0;
869     uint32_t id_mmfr1;
870     uint32_t id_mmfr2;
871     uint32_t id_mmfr3;
872     uint32_t id_mmfr4;
873     uint64_t id_aa64dfr0;
874     uint64_t id_aa64dfr1;
875     uint64_t id_aa64afr0;
876     uint64_t id_aa64afr1;
877     uint32_t dbgdidr;
878     uint32_t clidr;
879     uint64_t mp_affinity; /* MP ID without feature bits */
880     /* The elements of this array are the CCSIDR values for each cache,
881      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
882      */
883     uint32_t ccsidr[16];
884     uint64_t reset_cbar;
885     uint32_t reset_auxcr;
886     bool reset_hivecs;
887     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
888     uint32_t dcz_blocksize;
889     uint64_t rvbar;
890 
891     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
892     int gic_num_lrs; /* number of list registers */
893     int gic_vpribits; /* number of virtual priority bits */
894     int gic_vprebits; /* number of virtual preemption bits */
895 
896     /* Whether the cfgend input is high (i.e. this CPU should reset into
897      * big-endian mode).  This setting isn't used directly: instead it modifies
898      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
899      * architecture version.
900      */
901     bool cfgend;
902 
903     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
904     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
905 
906     int32_t node_id; /* NUMA node this CPU belongs to */
907 
908     /* Used to synchronize KVM and QEMU in-kernel device levels */
909     uint8_t device_irq_level;
910 
911     /* Used to set the maximum vector length the cpu will support.  */
912     uint32_t sve_max_vq;
913 };
914 
915 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
916 {
917     return container_of(env, ARMCPU, env);
918 }
919 
920 void arm_cpu_post_init(Object *obj);
921 
922 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
923 
924 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
925 
926 #define ENV_OFFSET offsetof(ARMCPU, env)
927 
928 #ifndef CONFIG_USER_ONLY
929 extern const struct VMStateDescription vmstate_arm_cpu;
930 #endif
931 
932 void arm_cpu_do_interrupt(CPUState *cpu);
933 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
934 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
935 
936 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
937                         int flags);
938 
939 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
940                                          MemTxAttrs *attrs);
941 
942 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
943 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
944 
945 /* Dynamically generates for gdb stub an XML description of the sysregs from
946  * the cp_regs hashtable. Returns the registered sysregs number.
947  */
948 int arm_gen_dynamic_xml(CPUState *cpu);
949 
950 /* Returns the dynamically generated XML for the gdb stub.
951  * Returns a pointer to the XML contents for the specified XML file or NULL
952  * if the XML name doesn't match the predefined one.
953  */
954 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
955 
956 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
957                              int cpuid, void *opaque);
958 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
959                              int cpuid, void *opaque);
960 
961 #ifdef TARGET_AARCH64
962 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
963 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
964 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
965 void aarch64_sve_change_el(CPUARMState *env, int old_el,
966                            int new_el, bool el0_a64);
967 #else
968 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
969 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
970                                          int n, bool a)
971 { }
972 #endif
973 
974 target_ulong do_arm_semihosting(CPUARMState *env);
975 void aarch64_sync_32_to_64(CPUARMState *env);
976 void aarch64_sync_64_to_32(CPUARMState *env);
977 
978 int fp_exception_el(CPUARMState *env, int cur_el);
979 int sve_exception_el(CPUARMState *env, int cur_el);
980 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
981 
982 static inline bool is_a64(CPUARMState *env)
983 {
984     return env->aarch64;
985 }
986 
987 /* you can call this signal handler from your SIGBUS and SIGSEGV
988    signal handlers to inform the virtual CPU of exceptions. non zero
989    is returned if the signal was handled by the virtual CPU.  */
990 int cpu_arm_signal_handler(int host_signum, void *pinfo,
991                            void *puc);
992 
993 /**
994  * pmccntr_op_start/finish
995  * @env: CPUARMState
996  *
997  * Convert the counter in the PMCCNTR between its delta form (the typical mode
998  * when it's enabled) and the guest-visible value. These two calls must always
999  * surround any action which might affect the counter.
1000  */
1001 void pmccntr_op_start(CPUARMState *env);
1002 void pmccntr_op_finish(CPUARMState *env);
1003 
1004 /**
1005  * pmu_op_start/finish
1006  * @env: CPUARMState
1007  *
1008  * Convert all PMU counters between their delta form (the typical mode when
1009  * they are enabled) and the guest-visible values. These two calls must
1010  * surround any action which might affect the counters.
1011  */
1012 void pmu_op_start(CPUARMState *env);
1013 void pmu_op_finish(CPUARMState *env);
1014 
1015 /*
1016  * Called when a PMU counter is due to overflow
1017  */
1018 void arm_pmu_timer_cb(void *opaque);
1019 
1020 /**
1021  * Functions to register as EL change hooks for PMU mode filtering
1022  */
1023 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1024 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1025 
1026 /*
1027  * pmu_init
1028  * @cpu: ARMCPU
1029  *
1030  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1031  * for the current configuration
1032  */
1033 void pmu_init(ARMCPU *cpu);
1034 
1035 /* SCTLR bit meanings. Several bits have been reused in newer
1036  * versions of the architecture; in that case we define constants
1037  * for both old and new bit meanings. Code which tests against those
1038  * bits should probably check or otherwise arrange that the CPU
1039  * is the architectural version it expects.
1040  */
1041 #define SCTLR_M       (1U << 0)
1042 #define SCTLR_A       (1U << 1)
1043 #define SCTLR_C       (1U << 2)
1044 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1045 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1046 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1047 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1048 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1049 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1050 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1051 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1052 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1053 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1054 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1055 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1056 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1057 #define SCTLR_SED     (1U << 8) /* v8 onward */
1058 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1059 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1060 #define SCTLR_F       (1U << 10) /* up to v6 */
1061 #define SCTLR_SW      (1U << 10) /* v7, RES0 in v8 */
1062 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1063 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1064 #define SCTLR_I       (1U << 12)
1065 #define SCTLR_V       (1U << 13) /* AArch32 only */
1066 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1067 #define SCTLR_RR      (1U << 14) /* up to v7 */
1068 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1069 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1070 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1071 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1072 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1073 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1074 #define SCTLR_BR      (1U << 17) /* PMSA only */
1075 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1076 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1077 #define SCTLR_WXN     (1U << 19)
1078 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1079 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1080 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1081 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1082 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1083 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1084 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1085 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1086 #define SCTLR_VE      (1U << 24) /* up to v7 */
1087 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1088 #define SCTLR_EE      (1U << 25)
1089 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1090 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1091 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1092 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1093 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1094 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1095 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1096 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1097 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1098 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1099 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1100 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1101 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1102 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1103 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1104 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1105 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1106 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1107 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1108 
1109 #define CPTR_TCPAC    (1U << 31)
1110 #define CPTR_TTA      (1U << 20)
1111 #define CPTR_TFP      (1U << 10)
1112 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1113 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1114 
1115 #define MDCR_EPMAD    (1U << 21)
1116 #define MDCR_EDAD     (1U << 20)
1117 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1118 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1119 #define MDCR_SDD      (1U << 16)
1120 #define MDCR_SPD      (3U << 14)
1121 #define MDCR_TDRA     (1U << 11)
1122 #define MDCR_TDOSA    (1U << 10)
1123 #define MDCR_TDA      (1U << 9)
1124 #define MDCR_TDE      (1U << 8)
1125 #define MDCR_HPME     (1U << 7)
1126 #define MDCR_TPM      (1U << 6)
1127 #define MDCR_TPMCR    (1U << 5)
1128 #define MDCR_HPMN     (0x1fU)
1129 
1130 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1131 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1132 
1133 #define CPSR_M (0x1fU)
1134 #define CPSR_T (1U << 5)
1135 #define CPSR_F (1U << 6)
1136 #define CPSR_I (1U << 7)
1137 #define CPSR_A (1U << 8)
1138 #define CPSR_E (1U << 9)
1139 #define CPSR_IT_2_7 (0xfc00U)
1140 #define CPSR_GE (0xfU << 16)
1141 #define CPSR_IL (1U << 20)
1142 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1143  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1144  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1145  * where it is live state but not accessible to the AArch32 code.
1146  */
1147 #define CPSR_RESERVED (0x7U << 21)
1148 #define CPSR_J (1U << 24)
1149 #define CPSR_IT_0_1 (3U << 25)
1150 #define CPSR_Q (1U << 27)
1151 #define CPSR_V (1U << 28)
1152 #define CPSR_C (1U << 29)
1153 #define CPSR_Z (1U << 30)
1154 #define CPSR_N (1U << 31)
1155 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1156 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1157 
1158 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1159 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1160     | CPSR_NZCV)
1161 /* Bits writable in user mode.  */
1162 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1163 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1164 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1165 /* Mask of bits which may be set by exception return copying them from SPSR */
1166 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1167 
1168 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1169 #define XPSR_EXCP 0x1ffU
1170 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1171 #define XPSR_IT_2_7 CPSR_IT_2_7
1172 #define XPSR_GE CPSR_GE
1173 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1174 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1175 #define XPSR_IT_0_1 CPSR_IT_0_1
1176 #define XPSR_Q CPSR_Q
1177 #define XPSR_V CPSR_V
1178 #define XPSR_C CPSR_C
1179 #define XPSR_Z CPSR_Z
1180 #define XPSR_N CPSR_N
1181 #define XPSR_NZCV CPSR_NZCV
1182 #define XPSR_IT CPSR_IT
1183 
1184 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1185 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1186 #define TTBCR_PD0    (1U << 4)
1187 #define TTBCR_PD1    (1U << 5)
1188 #define TTBCR_EPD0   (1U << 7)
1189 #define TTBCR_IRGN0  (3U << 8)
1190 #define TTBCR_ORGN0  (3U << 10)
1191 #define TTBCR_SH0    (3U << 12)
1192 #define TTBCR_T1SZ   (3U << 16)
1193 #define TTBCR_A1     (1U << 22)
1194 #define TTBCR_EPD1   (1U << 23)
1195 #define TTBCR_IRGN1  (3U << 24)
1196 #define TTBCR_ORGN1  (3U << 26)
1197 #define TTBCR_SH1    (1U << 28)
1198 #define TTBCR_EAE    (1U << 31)
1199 
1200 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1201  * Only these are valid when in AArch64 mode; in
1202  * AArch32 mode SPSRs are basically CPSR-format.
1203  */
1204 #define PSTATE_SP (1U)
1205 #define PSTATE_M (0xFU)
1206 #define PSTATE_nRW (1U << 4)
1207 #define PSTATE_F (1U << 6)
1208 #define PSTATE_I (1U << 7)
1209 #define PSTATE_A (1U << 8)
1210 #define PSTATE_D (1U << 9)
1211 #define PSTATE_BTYPE (3U << 10)
1212 #define PSTATE_IL (1U << 20)
1213 #define PSTATE_SS (1U << 21)
1214 #define PSTATE_V (1U << 28)
1215 #define PSTATE_C (1U << 29)
1216 #define PSTATE_Z (1U << 30)
1217 #define PSTATE_N (1U << 31)
1218 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1219 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1220 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1221 /* Mode values for AArch64 */
1222 #define PSTATE_MODE_EL3h 13
1223 #define PSTATE_MODE_EL3t 12
1224 #define PSTATE_MODE_EL2h 9
1225 #define PSTATE_MODE_EL2t 8
1226 #define PSTATE_MODE_EL1h 5
1227 #define PSTATE_MODE_EL1t 4
1228 #define PSTATE_MODE_EL0t 0
1229 
1230 /* Write a new value to v7m.exception, thus transitioning into or out
1231  * of Handler mode; this may result in a change of active stack pointer.
1232  */
1233 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1234 
1235 /* Map EL and handler into a PSTATE_MODE.  */
1236 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1237 {
1238     return (el << 2) | handler;
1239 }
1240 
1241 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1242  * interprocessing, so we don't attempt to sync with the cpsr state used by
1243  * the 32 bit decoder.
1244  */
1245 static inline uint32_t pstate_read(CPUARMState *env)
1246 {
1247     int ZF;
1248 
1249     ZF = (env->ZF == 0);
1250     return (env->NF & 0x80000000) | (ZF << 30)
1251         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1252         | env->pstate | env->daif | (env->btype << 10);
1253 }
1254 
1255 static inline void pstate_write(CPUARMState *env, uint32_t val)
1256 {
1257     env->ZF = (~val) & PSTATE_Z;
1258     env->NF = val;
1259     env->CF = (val >> 29) & 1;
1260     env->VF = (val << 3) & 0x80000000;
1261     env->daif = val & PSTATE_DAIF;
1262     env->btype = (val >> 10) & 3;
1263     env->pstate = val & ~CACHED_PSTATE_BITS;
1264 }
1265 
1266 /* Return the current CPSR value.  */
1267 uint32_t cpsr_read(CPUARMState *env);
1268 
1269 typedef enum CPSRWriteType {
1270     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1271     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1272     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1273     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1274 } CPSRWriteType;
1275 
1276 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1277 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1278                 CPSRWriteType write_type);
1279 
1280 /* Return the current xPSR value.  */
1281 static inline uint32_t xpsr_read(CPUARMState *env)
1282 {
1283     int ZF;
1284     ZF = (env->ZF == 0);
1285     return (env->NF & 0x80000000) | (ZF << 30)
1286         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1287         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1288         | ((env->condexec_bits & 0xfc) << 8)
1289         | env->v7m.exception;
1290 }
1291 
1292 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1293 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1294 {
1295     if (mask & XPSR_NZCV) {
1296         env->ZF = (~val) & XPSR_Z;
1297         env->NF = val;
1298         env->CF = (val >> 29) & 1;
1299         env->VF = (val << 3) & 0x80000000;
1300     }
1301     if (mask & XPSR_Q) {
1302         env->QF = ((val & XPSR_Q) != 0);
1303     }
1304     if (mask & XPSR_T) {
1305         env->thumb = ((val & XPSR_T) != 0);
1306     }
1307     if (mask & XPSR_IT_0_1) {
1308         env->condexec_bits &= ~3;
1309         env->condexec_bits |= (val >> 25) & 3;
1310     }
1311     if (mask & XPSR_IT_2_7) {
1312         env->condexec_bits &= 3;
1313         env->condexec_bits |= (val >> 8) & 0xfc;
1314     }
1315     if (mask & XPSR_EXCP) {
1316         /* Note that this only happens on exception exit */
1317         write_v7m_exception(env, val & XPSR_EXCP);
1318     }
1319 }
1320 
1321 #define HCR_VM        (1ULL << 0)
1322 #define HCR_SWIO      (1ULL << 1)
1323 #define HCR_PTW       (1ULL << 2)
1324 #define HCR_FMO       (1ULL << 3)
1325 #define HCR_IMO       (1ULL << 4)
1326 #define HCR_AMO       (1ULL << 5)
1327 #define HCR_VF        (1ULL << 6)
1328 #define HCR_VI        (1ULL << 7)
1329 #define HCR_VSE       (1ULL << 8)
1330 #define HCR_FB        (1ULL << 9)
1331 #define HCR_BSU_MASK  (3ULL << 10)
1332 #define HCR_DC        (1ULL << 12)
1333 #define HCR_TWI       (1ULL << 13)
1334 #define HCR_TWE       (1ULL << 14)
1335 #define HCR_TID0      (1ULL << 15)
1336 #define HCR_TID1      (1ULL << 16)
1337 #define HCR_TID2      (1ULL << 17)
1338 #define HCR_TID3      (1ULL << 18)
1339 #define HCR_TSC       (1ULL << 19)
1340 #define HCR_TIDCP     (1ULL << 20)
1341 #define HCR_TACR      (1ULL << 21)
1342 #define HCR_TSW       (1ULL << 22)
1343 #define HCR_TPCP      (1ULL << 23)
1344 #define HCR_TPU       (1ULL << 24)
1345 #define HCR_TTLB      (1ULL << 25)
1346 #define HCR_TVM       (1ULL << 26)
1347 #define HCR_TGE       (1ULL << 27)
1348 #define HCR_TDZ       (1ULL << 28)
1349 #define HCR_HCD       (1ULL << 29)
1350 #define HCR_TRVM      (1ULL << 30)
1351 #define HCR_RW        (1ULL << 31)
1352 #define HCR_CD        (1ULL << 32)
1353 #define HCR_ID        (1ULL << 33)
1354 #define HCR_E2H       (1ULL << 34)
1355 #define HCR_TLOR      (1ULL << 35)
1356 #define HCR_TERR      (1ULL << 36)
1357 #define HCR_TEA       (1ULL << 37)
1358 #define HCR_MIOCNCE   (1ULL << 38)
1359 #define HCR_APK       (1ULL << 40)
1360 #define HCR_API       (1ULL << 41)
1361 #define HCR_NV        (1ULL << 42)
1362 #define HCR_NV1       (1ULL << 43)
1363 #define HCR_AT        (1ULL << 44)
1364 #define HCR_NV2       (1ULL << 45)
1365 #define HCR_FWB       (1ULL << 46)
1366 #define HCR_FIEN      (1ULL << 47)
1367 #define HCR_TID4      (1ULL << 49)
1368 #define HCR_TICAB     (1ULL << 50)
1369 #define HCR_TOCU      (1ULL << 52)
1370 #define HCR_TTLBIS    (1ULL << 54)
1371 #define HCR_TTLBOS    (1ULL << 55)
1372 #define HCR_ATA       (1ULL << 56)
1373 #define HCR_DCT       (1ULL << 57)
1374 
1375 /*
1376  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1377  * HCR_MASK and then clear it again if the feature bit is not set in
1378  * hcr_write().
1379  */
1380 #define HCR_MASK      ((1ULL << 34) - 1)
1381 
1382 #define SCR_NS                (1U << 0)
1383 #define SCR_IRQ               (1U << 1)
1384 #define SCR_FIQ               (1U << 2)
1385 #define SCR_EA                (1U << 3)
1386 #define SCR_FW                (1U << 4)
1387 #define SCR_AW                (1U << 5)
1388 #define SCR_NET               (1U << 6)
1389 #define SCR_SMD               (1U << 7)
1390 #define SCR_HCE               (1U << 8)
1391 #define SCR_SIF               (1U << 9)
1392 #define SCR_RW                (1U << 10)
1393 #define SCR_ST                (1U << 11)
1394 #define SCR_TWI               (1U << 12)
1395 #define SCR_TWE               (1U << 13)
1396 #define SCR_TLOR              (1U << 14)
1397 #define SCR_TERR              (1U << 15)
1398 #define SCR_APK               (1U << 16)
1399 #define SCR_API               (1U << 17)
1400 #define SCR_EEL2              (1U << 18)
1401 #define SCR_EASE              (1U << 19)
1402 #define SCR_NMEA              (1U << 20)
1403 #define SCR_FIEN              (1U << 21)
1404 #define SCR_ENSCXT            (1U << 25)
1405 #define SCR_ATA               (1U << 26)
1406 
1407 /* Return the current FPSCR value.  */
1408 uint32_t vfp_get_fpscr(CPUARMState *env);
1409 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1410 
1411 /* FPCR, Floating Point Control Register
1412  * FPSR, Floating Poiht Status Register
1413  *
1414  * For A64 the FPSCR is split into two logically distinct registers,
1415  * FPCR and FPSR. However since they still use non-overlapping bits
1416  * we store the underlying state in fpscr and just mask on read/write.
1417  */
1418 #define FPSR_MASK 0xf800009f
1419 #define FPCR_MASK 0x07ff9f00
1420 
1421 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1422 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1423 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1424 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1425 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1426 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1427 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1428 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1429 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1430 
1431 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1432 {
1433     return vfp_get_fpscr(env) & FPSR_MASK;
1434 }
1435 
1436 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1437 {
1438     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1439     vfp_set_fpscr(env, new_fpscr);
1440 }
1441 
1442 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1443 {
1444     return vfp_get_fpscr(env) & FPCR_MASK;
1445 }
1446 
1447 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1448 {
1449     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1450     vfp_set_fpscr(env, new_fpscr);
1451 }
1452 
1453 enum arm_cpu_mode {
1454   ARM_CPU_MODE_USR = 0x10,
1455   ARM_CPU_MODE_FIQ = 0x11,
1456   ARM_CPU_MODE_IRQ = 0x12,
1457   ARM_CPU_MODE_SVC = 0x13,
1458   ARM_CPU_MODE_MON = 0x16,
1459   ARM_CPU_MODE_ABT = 0x17,
1460   ARM_CPU_MODE_HYP = 0x1a,
1461   ARM_CPU_MODE_UND = 0x1b,
1462   ARM_CPU_MODE_SYS = 0x1f
1463 };
1464 
1465 /* VFP system registers.  */
1466 #define ARM_VFP_FPSID   0
1467 #define ARM_VFP_FPSCR   1
1468 #define ARM_VFP_MVFR2   5
1469 #define ARM_VFP_MVFR1   6
1470 #define ARM_VFP_MVFR0   7
1471 #define ARM_VFP_FPEXC   8
1472 #define ARM_VFP_FPINST  9
1473 #define ARM_VFP_FPINST2 10
1474 
1475 /* iwMMXt coprocessor control registers.  */
1476 #define ARM_IWMMXT_wCID  0
1477 #define ARM_IWMMXT_wCon  1
1478 #define ARM_IWMMXT_wCSSF 2
1479 #define ARM_IWMMXT_wCASF 3
1480 #define ARM_IWMMXT_wCGR0 8
1481 #define ARM_IWMMXT_wCGR1 9
1482 #define ARM_IWMMXT_wCGR2 10
1483 #define ARM_IWMMXT_wCGR3 11
1484 
1485 /* V7M CCR bits */
1486 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1487 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1488 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1489 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1490 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1491 FIELD(V7M_CCR, STKALIGN, 9, 1)
1492 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1493 FIELD(V7M_CCR, DC, 16, 1)
1494 FIELD(V7M_CCR, IC, 17, 1)
1495 FIELD(V7M_CCR, BP, 18, 1)
1496 
1497 /* V7M SCR bits */
1498 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1499 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1500 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1501 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1502 
1503 /* V7M AIRCR bits */
1504 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1505 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1506 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1507 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1508 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1509 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1510 FIELD(V7M_AIRCR, PRIS, 14, 1)
1511 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1512 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1513 
1514 /* V7M CFSR bits for MMFSR */
1515 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1516 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1517 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1518 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1519 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1520 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1521 
1522 /* V7M CFSR bits for BFSR */
1523 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1524 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1525 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1526 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1527 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1528 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1529 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1530 
1531 /* V7M CFSR bits for UFSR */
1532 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1533 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1534 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1535 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1536 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1537 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1538 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1539 
1540 /* V7M CFSR bit masks covering all of the subregister bits */
1541 FIELD(V7M_CFSR, MMFSR, 0, 8)
1542 FIELD(V7M_CFSR, BFSR, 8, 8)
1543 FIELD(V7M_CFSR, UFSR, 16, 16)
1544 
1545 /* V7M HFSR bits */
1546 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1547 FIELD(V7M_HFSR, FORCED, 30, 1)
1548 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1549 
1550 /* V7M DFSR bits */
1551 FIELD(V7M_DFSR, HALTED, 0, 1)
1552 FIELD(V7M_DFSR, BKPT, 1, 1)
1553 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1554 FIELD(V7M_DFSR, VCATCH, 3, 1)
1555 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1556 
1557 /* V7M SFSR bits */
1558 FIELD(V7M_SFSR, INVEP, 0, 1)
1559 FIELD(V7M_SFSR, INVIS, 1, 1)
1560 FIELD(V7M_SFSR, INVER, 2, 1)
1561 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1562 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1563 FIELD(V7M_SFSR, LSPERR, 5, 1)
1564 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1565 FIELD(V7M_SFSR, LSERR, 7, 1)
1566 
1567 /* v7M MPU_CTRL bits */
1568 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1569 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1570 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1571 
1572 /* v7M CLIDR bits */
1573 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1574 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1575 FIELD(V7M_CLIDR, LOC, 24, 3)
1576 FIELD(V7M_CLIDR, LOUU, 27, 3)
1577 FIELD(V7M_CLIDR, ICB, 30, 2)
1578 
1579 FIELD(V7M_CSSELR, IND, 0, 1)
1580 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1581 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1582  * define a mask for this and check that it doesn't permit running off
1583  * the end of the array.
1584  */
1585 FIELD(V7M_CSSELR, INDEX, 0, 4)
1586 
1587 /*
1588  * System register ID fields.
1589  */
1590 FIELD(ID_ISAR0, SWAP, 0, 4)
1591 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1592 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1593 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1594 FIELD(ID_ISAR0, COPROC, 16, 4)
1595 FIELD(ID_ISAR0, DEBUG, 20, 4)
1596 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1597 
1598 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1599 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1600 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1601 FIELD(ID_ISAR1, EXTEND, 12, 4)
1602 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1603 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1604 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1605 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1606 
1607 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1608 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1609 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1610 FIELD(ID_ISAR2, MULT, 12, 4)
1611 FIELD(ID_ISAR2, MULTS, 16, 4)
1612 FIELD(ID_ISAR2, MULTU, 20, 4)
1613 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1614 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1615 
1616 FIELD(ID_ISAR3, SATURATE, 0, 4)
1617 FIELD(ID_ISAR3, SIMD, 4, 4)
1618 FIELD(ID_ISAR3, SVC, 8, 4)
1619 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1620 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1621 FIELD(ID_ISAR3, T32COPY, 20, 4)
1622 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1623 FIELD(ID_ISAR3, T32EE, 28, 4)
1624 
1625 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1626 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1627 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1628 FIELD(ID_ISAR4, SMC, 12, 4)
1629 FIELD(ID_ISAR4, BARRIER, 16, 4)
1630 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1631 FIELD(ID_ISAR4, PSR_M, 24, 4)
1632 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1633 
1634 FIELD(ID_ISAR5, SEVL, 0, 4)
1635 FIELD(ID_ISAR5, AES, 4, 4)
1636 FIELD(ID_ISAR5, SHA1, 8, 4)
1637 FIELD(ID_ISAR5, SHA2, 12, 4)
1638 FIELD(ID_ISAR5, CRC32, 16, 4)
1639 FIELD(ID_ISAR5, RDM, 24, 4)
1640 FIELD(ID_ISAR5, VCMA, 28, 4)
1641 
1642 FIELD(ID_ISAR6, JSCVT, 0, 4)
1643 FIELD(ID_ISAR6, DP, 4, 4)
1644 FIELD(ID_ISAR6, FHM, 8, 4)
1645 FIELD(ID_ISAR6, SB, 12, 4)
1646 FIELD(ID_ISAR6, SPECRES, 16, 4)
1647 
1648 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1649 FIELD(ID_MMFR4, AC2, 4, 4)
1650 FIELD(ID_MMFR4, XNX, 8, 4)
1651 FIELD(ID_MMFR4, CNP, 12, 4)
1652 FIELD(ID_MMFR4, HPDS, 16, 4)
1653 FIELD(ID_MMFR4, LSM, 20, 4)
1654 FIELD(ID_MMFR4, CCIDX, 24, 4)
1655 FIELD(ID_MMFR4, EVT, 28, 4)
1656 
1657 FIELD(ID_AA64ISAR0, AES, 4, 4)
1658 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1659 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1660 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1661 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1662 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1663 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1664 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1665 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1666 FIELD(ID_AA64ISAR0, DP, 44, 4)
1667 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1668 FIELD(ID_AA64ISAR0, TS, 52, 4)
1669 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1670 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1671 
1672 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1673 FIELD(ID_AA64ISAR1, APA, 4, 4)
1674 FIELD(ID_AA64ISAR1, API, 8, 4)
1675 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1676 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1677 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1678 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1679 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1680 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1681 FIELD(ID_AA64ISAR1, SB, 36, 4)
1682 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1683 
1684 FIELD(ID_AA64PFR0, EL0, 0, 4)
1685 FIELD(ID_AA64PFR0, EL1, 4, 4)
1686 FIELD(ID_AA64PFR0, EL2, 8, 4)
1687 FIELD(ID_AA64PFR0, EL3, 12, 4)
1688 FIELD(ID_AA64PFR0, FP, 16, 4)
1689 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1690 FIELD(ID_AA64PFR0, GIC, 24, 4)
1691 FIELD(ID_AA64PFR0, RAS, 28, 4)
1692 FIELD(ID_AA64PFR0, SVE, 32, 4)
1693 
1694 FIELD(ID_AA64PFR1, BT, 0, 4)
1695 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1696 FIELD(ID_AA64PFR1, MTE, 8, 4)
1697 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1698 
1699 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1700 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1701 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1702 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1703 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1704 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1705 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1706 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1707 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1708 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1709 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1710 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1711 
1712 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1713 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1714 FIELD(ID_AA64MMFR1, VH, 8, 4)
1715 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1716 FIELD(ID_AA64MMFR1, LO, 16, 4)
1717 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1718 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1719 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1720 
1721 FIELD(ID_DFR0, COPDBG, 0, 4)
1722 FIELD(ID_DFR0, COPSDBG, 4, 4)
1723 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1724 FIELD(ID_DFR0, COPTRC, 12, 4)
1725 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1726 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1727 FIELD(ID_DFR0, PERFMON, 24, 4)
1728 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1729 
1730 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1731 
1732 /* If adding a feature bit which corresponds to a Linux ELF
1733  * HWCAP bit, remember to update the feature-bit-to-hwcap
1734  * mapping in linux-user/elfload.c:get_elf_hwcap().
1735  */
1736 enum arm_features {
1737     ARM_FEATURE_VFP,
1738     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1739     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1740     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1741     ARM_FEATURE_V6,
1742     ARM_FEATURE_V6K,
1743     ARM_FEATURE_V7,
1744     ARM_FEATURE_THUMB2,
1745     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1746     ARM_FEATURE_VFP3,
1747     ARM_FEATURE_VFP_FP16,
1748     ARM_FEATURE_NEON,
1749     ARM_FEATURE_M, /* Microcontroller profile.  */
1750     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1751     ARM_FEATURE_THUMB2EE,
1752     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1753     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1754     ARM_FEATURE_V4T,
1755     ARM_FEATURE_V5,
1756     ARM_FEATURE_STRONGARM,
1757     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1758     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1759     ARM_FEATURE_GENERIC_TIMER,
1760     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1761     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1762     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1763     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1764     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1765     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1766     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1767     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1768     ARM_FEATURE_V8,
1769     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1770     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1771     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1772     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1773     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1774     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1775     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1776     ARM_FEATURE_PMU, /* has PMU support */
1777     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1778     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1779     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1780 };
1781 
1782 static inline int arm_feature(CPUARMState *env, int feature)
1783 {
1784     return (env->features & (1ULL << feature)) != 0;
1785 }
1786 
1787 #if !defined(CONFIG_USER_ONLY)
1788 /* Return true if exception levels below EL3 are in secure state,
1789  * or would be following an exception return to that level.
1790  * Unlike arm_is_secure() (which is always a question about the
1791  * _current_ state of the CPU) this doesn't care about the current
1792  * EL or mode.
1793  */
1794 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1795 {
1796     if (arm_feature(env, ARM_FEATURE_EL3)) {
1797         return !(env->cp15.scr_el3 & SCR_NS);
1798     } else {
1799         /* If EL3 is not supported then the secure state is implementation
1800          * defined, in which case QEMU defaults to non-secure.
1801          */
1802         return false;
1803     }
1804 }
1805 
1806 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1807 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1808 {
1809     if (arm_feature(env, ARM_FEATURE_EL3)) {
1810         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1811             /* CPU currently in AArch64 state and EL3 */
1812             return true;
1813         } else if (!is_a64(env) &&
1814                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1815             /* CPU currently in AArch32 state and monitor mode */
1816             return true;
1817         }
1818     }
1819     return false;
1820 }
1821 
1822 /* Return true if the processor is in secure state */
1823 static inline bool arm_is_secure(CPUARMState *env)
1824 {
1825     if (arm_is_el3_or_mon(env)) {
1826         return true;
1827     }
1828     return arm_is_secure_below_el3(env);
1829 }
1830 
1831 #else
1832 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1833 {
1834     return false;
1835 }
1836 
1837 static inline bool arm_is_secure(CPUARMState *env)
1838 {
1839     return false;
1840 }
1841 #endif
1842 
1843 /**
1844  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1845  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1846  * "for all purposes other than a direct read or write access of HCR_EL2."
1847  * Not included here is HCR_RW.
1848  */
1849 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1850 
1851 /* Return true if the specified exception level is running in AArch64 state. */
1852 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1853 {
1854     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1855      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1856      */
1857     assert(el >= 1 && el <= 3);
1858     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1859 
1860     /* The highest exception level is always at the maximum supported
1861      * register width, and then lower levels have a register width controlled
1862      * by bits in the SCR or HCR registers.
1863      */
1864     if (el == 3) {
1865         return aa64;
1866     }
1867 
1868     if (arm_feature(env, ARM_FEATURE_EL3)) {
1869         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1870     }
1871 
1872     if (el == 2) {
1873         return aa64;
1874     }
1875 
1876     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1877         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1878     }
1879 
1880     return aa64;
1881 }
1882 
1883 /* Function for determing whether guest cp register reads and writes should
1884  * access the secure or non-secure bank of a cp register.  When EL3 is
1885  * operating in AArch32 state, the NS-bit determines whether the secure
1886  * instance of a cp register should be used. When EL3 is AArch64 (or if
1887  * it doesn't exist at all) then there is no register banking, and all
1888  * accesses are to the non-secure version.
1889  */
1890 static inline bool access_secure_reg(CPUARMState *env)
1891 {
1892     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1893                 !arm_el_is_aa64(env, 3) &&
1894                 !(env->cp15.scr_el3 & SCR_NS));
1895 
1896     return ret;
1897 }
1898 
1899 /* Macros for accessing a specified CP register bank */
1900 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1901     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1902 
1903 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1904     do {                                                \
1905         if (_secure) {                                   \
1906             (_env)->cp15._regname##_s = (_val);            \
1907         } else {                                        \
1908             (_env)->cp15._regname##_ns = (_val);           \
1909         }                                               \
1910     } while (0)
1911 
1912 /* Macros for automatically accessing a specific CP register bank depending on
1913  * the current secure state of the system.  These macros are not intended for
1914  * supporting instruction translation reads/writes as these are dependent
1915  * solely on the SCR.NS bit and not the mode.
1916  */
1917 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1918     A32_BANKED_REG_GET((_env), _regname,                \
1919                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1920 
1921 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1922     A32_BANKED_REG_SET((_env), _regname,                                    \
1923                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1924                        (_val))
1925 
1926 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1927 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1928                                  uint32_t cur_el, bool secure);
1929 
1930 /* Interface between CPU and Interrupt controller.  */
1931 #ifndef CONFIG_USER_ONLY
1932 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1933 #else
1934 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1935 {
1936     return true;
1937 }
1938 #endif
1939 /**
1940  * armv7m_nvic_set_pending: mark the specified exception as pending
1941  * @opaque: the NVIC
1942  * @irq: the exception number to mark pending
1943  * @secure: false for non-banked exceptions or for the nonsecure
1944  * version of a banked exception, true for the secure version of a banked
1945  * exception.
1946  *
1947  * Marks the specified exception as pending. Note that we will assert()
1948  * if @secure is true and @irq does not specify one of the fixed set
1949  * of architecturally banked exceptions.
1950  */
1951 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1952 /**
1953  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1954  * @opaque: the NVIC
1955  * @irq: the exception number to mark pending
1956  * @secure: false for non-banked exceptions or for the nonsecure
1957  * version of a banked exception, true for the secure version of a banked
1958  * exception.
1959  *
1960  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1961  * exceptions (exceptions generated in the course of trying to take
1962  * a different exception).
1963  */
1964 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1965 /**
1966  * armv7m_nvic_get_pending_irq_info: return highest priority pending
1967  *    exception, and whether it targets Secure state
1968  * @opaque: the NVIC
1969  * @pirq: set to pending exception number
1970  * @ptargets_secure: set to whether pending exception targets Secure
1971  *
1972  * This function writes the number of the highest priority pending
1973  * exception (the one which would be made active by
1974  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1975  * to true if the current highest priority pending exception should
1976  * be taken to Secure state, false for NS.
1977  */
1978 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1979                                       bool *ptargets_secure);
1980 /**
1981  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1982  * @opaque: the NVIC
1983  *
1984  * Move the current highest priority pending exception from the pending
1985  * state to the active state, and update v7m.exception to indicate that
1986  * it is the exception currently being handled.
1987  */
1988 void armv7m_nvic_acknowledge_irq(void *opaque);
1989 /**
1990  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1991  * @opaque: the NVIC
1992  * @irq: the exception number to complete
1993  * @secure: true if this exception was secure
1994  *
1995  * Returns: -1 if the irq was not active
1996  *           1 if completing this irq brought us back to base (no active irqs)
1997  *           0 if there is still an irq active after this one was completed
1998  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1999  */
2000 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2001 /**
2002  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2003  * @opaque: the NVIC
2004  *
2005  * Returns: the raw execution priority as defined by the v8M architecture.
2006  * This is the execution priority minus the effects of AIRCR.PRIS,
2007  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2008  * (v8M ARM ARM I_PKLD.)
2009  */
2010 int armv7m_nvic_raw_execution_priority(void *opaque);
2011 /**
2012  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2013  * priority is negative for the specified security state.
2014  * @opaque: the NVIC
2015  * @secure: the security state to test
2016  * This corresponds to the pseudocode IsReqExecPriNeg().
2017  */
2018 #ifndef CONFIG_USER_ONLY
2019 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2020 #else
2021 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2022 {
2023     return false;
2024 }
2025 #endif
2026 
2027 /* Interface for defining coprocessor registers.
2028  * Registers are defined in tables of arm_cp_reginfo structs
2029  * which are passed to define_arm_cp_regs().
2030  */
2031 
2032 /* When looking up a coprocessor register we look for it
2033  * via an integer which encodes all of:
2034  *  coprocessor number
2035  *  Crn, Crm, opc1, opc2 fields
2036  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2037  *    or via MRRC/MCRR?)
2038  *  non-secure/secure bank (AArch32 only)
2039  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2040  * (In this case crn and opc2 should be zero.)
2041  * For AArch64, there is no 32/64 bit size distinction;
2042  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2043  * and 4 bit CRn and CRm. The encoding patterns are chosen
2044  * to be easy to convert to and from the KVM encodings, and also
2045  * so that the hashtable can contain both AArch32 and AArch64
2046  * registers (to allow for interprocessing where we might run
2047  * 32 bit code on a 64 bit core).
2048  */
2049 /* This bit is private to our hashtable cpreg; in KVM register
2050  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2051  * in the upper bits of the 64 bit ID.
2052  */
2053 #define CP_REG_AA64_SHIFT 28
2054 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2055 
2056 /* To enable banking of coprocessor registers depending on ns-bit we
2057  * add a bit to distinguish between secure and non-secure cpregs in the
2058  * hashtable.
2059  */
2060 #define CP_REG_NS_SHIFT 29
2061 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2062 
2063 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2064     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2065      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2066 
2067 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2068     (CP_REG_AA64_MASK |                                 \
2069      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2070      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2071      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2072      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2073      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2074      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2075 
2076 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2077  * version used as a key for the coprocessor register hashtable
2078  */
2079 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2080 {
2081     uint32_t cpregid = kvmid;
2082     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2083         cpregid |= CP_REG_AA64_MASK;
2084     } else {
2085         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2086             cpregid |= (1 << 15);
2087         }
2088 
2089         /* KVM is always non-secure so add the NS flag on AArch32 register
2090          * entries.
2091          */
2092          cpregid |= 1 << CP_REG_NS_SHIFT;
2093     }
2094     return cpregid;
2095 }
2096 
2097 /* Convert a truncated 32 bit hashtable key into the full
2098  * 64 bit KVM register ID.
2099  */
2100 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2101 {
2102     uint64_t kvmid;
2103 
2104     if (cpregid & CP_REG_AA64_MASK) {
2105         kvmid = cpregid & ~CP_REG_AA64_MASK;
2106         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2107     } else {
2108         kvmid = cpregid & ~(1 << 15);
2109         if (cpregid & (1 << 15)) {
2110             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2111         } else {
2112             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2113         }
2114     }
2115     return kvmid;
2116 }
2117 
2118 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2119  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2120  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2121  * TCG can assume the value to be constant (ie load at translate time)
2122  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2123  * indicates that the TB should not be ended after a write to this register
2124  * (the default is that the TB ends after cp writes). OVERRIDE permits
2125  * a register definition to override a previous definition for the
2126  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2127  * old must have the OVERRIDE bit set.
2128  * ALIAS indicates that this register is an alias view of some underlying
2129  * state which is also visible via another register, and that the other
2130  * register is handling migration and reset; registers marked ALIAS will not be
2131  * migrated but may have their state set by syncing of register state from KVM.
2132  * NO_RAW indicates that this register has no underlying state and does not
2133  * support raw access for state saving/loading; it will not be used for either
2134  * migration or KVM state synchronization. (Typically this is for "registers"
2135  * which are actually used as instructions for cache maintenance and so on.)
2136  * IO indicates that this register does I/O and therefore its accesses
2137  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2138  * registers which implement clocks or timers require this.
2139  */
2140 #define ARM_CP_SPECIAL           0x0001
2141 #define ARM_CP_CONST             0x0002
2142 #define ARM_CP_64BIT             0x0004
2143 #define ARM_CP_SUPPRESS_TB_END   0x0008
2144 #define ARM_CP_OVERRIDE          0x0010
2145 #define ARM_CP_ALIAS             0x0020
2146 #define ARM_CP_IO                0x0040
2147 #define ARM_CP_NO_RAW            0x0080
2148 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2149 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2150 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2151 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2152 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2153 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2154 #define ARM_CP_FPU               0x1000
2155 #define ARM_CP_SVE               0x2000
2156 #define ARM_CP_NO_GDB            0x4000
2157 /* Used only as a terminator for ARMCPRegInfo lists */
2158 #define ARM_CP_SENTINEL          0xffff
2159 /* Mask of only the flag bits in a type field */
2160 #define ARM_CP_FLAG_MASK         0x70ff
2161 
2162 /* Valid values for ARMCPRegInfo state field, indicating which of
2163  * the AArch32 and AArch64 execution states this register is visible in.
2164  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2165  * If the reginfo is declared to be visible in both states then a second
2166  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2167  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2168  * Note that we rely on the values of these enums as we iterate through
2169  * the various states in some places.
2170  */
2171 enum {
2172     ARM_CP_STATE_AA32 = 0,
2173     ARM_CP_STATE_AA64 = 1,
2174     ARM_CP_STATE_BOTH = 2,
2175 };
2176 
2177 /* ARM CP register secure state flags.  These flags identify security state
2178  * attributes for a given CP register entry.
2179  * The existence of both or neither secure and non-secure flags indicates that
2180  * the register has both a secure and non-secure hash entry.  A single one of
2181  * these flags causes the register to only be hashed for the specified
2182  * security state.
2183  * Although definitions may have any combination of the S/NS bits, each
2184  * registered entry will only have one to identify whether the entry is secure
2185  * or non-secure.
2186  */
2187 enum {
2188     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2189     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2190 };
2191 
2192 /* Return true if cptype is a valid type field. This is used to try to
2193  * catch errors where the sentinel has been accidentally left off the end
2194  * of a list of registers.
2195  */
2196 static inline bool cptype_valid(int cptype)
2197 {
2198     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2199         || ((cptype & ARM_CP_SPECIAL) &&
2200             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2201 }
2202 
2203 /* Access rights:
2204  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2205  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2206  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2207  * (ie any of the privileged modes in Secure state, or Monitor mode).
2208  * If a register is accessible in one privilege level it's always accessible
2209  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2210  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2211  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2212  * terminology a little and call this PL3.
2213  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2214  * with the ELx exception levels.
2215  *
2216  * If access permissions for a register are more complex than can be
2217  * described with these bits, then use a laxer set of restrictions, and
2218  * do the more restrictive/complex check inside a helper function.
2219  */
2220 #define PL3_R 0x80
2221 #define PL3_W 0x40
2222 #define PL2_R (0x20 | PL3_R)
2223 #define PL2_W (0x10 | PL3_W)
2224 #define PL1_R (0x08 | PL2_R)
2225 #define PL1_W (0x04 | PL2_W)
2226 #define PL0_R (0x02 | PL1_R)
2227 #define PL0_W (0x01 | PL1_W)
2228 
2229 /*
2230  * For user-mode some registers are accessible to EL0 via a kernel
2231  * trap-and-emulate ABI. In this case we define the read permissions
2232  * as actually being PL0_R. However some bits of any given register
2233  * may still be masked.
2234  */
2235 #ifdef CONFIG_USER_ONLY
2236 #define PL0U_R PL0_R
2237 #else
2238 #define PL0U_R PL1_R
2239 #endif
2240 
2241 #define PL3_RW (PL3_R | PL3_W)
2242 #define PL2_RW (PL2_R | PL2_W)
2243 #define PL1_RW (PL1_R | PL1_W)
2244 #define PL0_RW (PL0_R | PL0_W)
2245 
2246 /* Return the highest implemented Exception Level */
2247 static inline int arm_highest_el(CPUARMState *env)
2248 {
2249     if (arm_feature(env, ARM_FEATURE_EL3)) {
2250         return 3;
2251     }
2252     if (arm_feature(env, ARM_FEATURE_EL2)) {
2253         return 2;
2254     }
2255     return 1;
2256 }
2257 
2258 /* Return true if a v7M CPU is in Handler mode */
2259 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2260 {
2261     return env->v7m.exception != 0;
2262 }
2263 
2264 /* Return the current Exception Level (as per ARMv8; note that this differs
2265  * from the ARMv7 Privilege Level).
2266  */
2267 static inline int arm_current_el(CPUARMState *env)
2268 {
2269     if (arm_feature(env, ARM_FEATURE_M)) {
2270         return arm_v7m_is_handler_mode(env) ||
2271             !(env->v7m.control[env->v7m.secure] & 1);
2272     }
2273 
2274     if (is_a64(env)) {
2275         return extract32(env->pstate, 2, 2);
2276     }
2277 
2278     switch (env->uncached_cpsr & 0x1f) {
2279     case ARM_CPU_MODE_USR:
2280         return 0;
2281     case ARM_CPU_MODE_HYP:
2282         return 2;
2283     case ARM_CPU_MODE_MON:
2284         return 3;
2285     default:
2286         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2287             /* If EL3 is 32-bit then all secure privileged modes run in
2288              * EL3
2289              */
2290             return 3;
2291         }
2292 
2293         return 1;
2294     }
2295 }
2296 
2297 typedef struct ARMCPRegInfo ARMCPRegInfo;
2298 
2299 typedef enum CPAccessResult {
2300     /* Access is permitted */
2301     CP_ACCESS_OK = 0,
2302     /* Access fails due to a configurable trap or enable which would
2303      * result in a categorized exception syndrome giving information about
2304      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2305      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2306      * PL1 if in EL0, otherwise to the current EL).
2307      */
2308     CP_ACCESS_TRAP = 1,
2309     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2310      * Note that this is not a catch-all case -- the set of cases which may
2311      * result in this failure is specifically defined by the architecture.
2312      */
2313     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2314     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2315     CP_ACCESS_TRAP_EL2 = 3,
2316     CP_ACCESS_TRAP_EL3 = 4,
2317     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2318     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2319     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2320     /* Access fails and results in an exception syndrome for an FP access,
2321      * trapped directly to EL2 or EL3
2322      */
2323     CP_ACCESS_TRAP_FP_EL2 = 7,
2324     CP_ACCESS_TRAP_FP_EL3 = 8,
2325 } CPAccessResult;
2326 
2327 /* Access functions for coprocessor registers. These cannot fail and
2328  * may not raise exceptions.
2329  */
2330 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2331 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2332                        uint64_t value);
2333 /* Access permission check functions for coprocessor registers. */
2334 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2335                                   const ARMCPRegInfo *opaque,
2336                                   bool isread);
2337 /* Hook function for register reset */
2338 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2339 
2340 #define CP_ANY 0xff
2341 
2342 /* Definition of an ARM coprocessor register */
2343 struct ARMCPRegInfo {
2344     /* Name of register (useful mainly for debugging, need not be unique) */
2345     const char *name;
2346     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2347      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2348      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2349      * will be decoded to this register. The register read and write
2350      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2351      * used by the program, so it is possible to register a wildcard and
2352      * then behave differently on read/write if necessary.
2353      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2354      * must both be zero.
2355      * For AArch64-visible registers, opc0 is also used.
2356      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2357      * way to distinguish (for KVM's benefit) guest-visible system registers
2358      * from demuxed ones provided to preserve the "no side effects on
2359      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2360      * visible (to match KVM's encoding); cp==0 will be converted to
2361      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2362      */
2363     uint8_t cp;
2364     uint8_t crn;
2365     uint8_t crm;
2366     uint8_t opc0;
2367     uint8_t opc1;
2368     uint8_t opc2;
2369     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2370     int state;
2371     /* Register type: ARM_CP_* bits/values */
2372     int type;
2373     /* Access rights: PL*_[RW] */
2374     int access;
2375     /* Security state: ARM_CP_SECSTATE_* bits/values */
2376     int secure;
2377     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2378      * this register was defined: can be used to hand data through to the
2379      * register read/write functions, since they are passed the ARMCPRegInfo*.
2380      */
2381     void *opaque;
2382     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2383      * fieldoffset is non-zero, the reset value of the register.
2384      */
2385     uint64_t resetvalue;
2386     /* Offset of the field in CPUARMState for this register.
2387      *
2388      * This is not needed if either:
2389      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2390      *  2. both readfn and writefn are specified
2391      */
2392     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2393 
2394     /* Offsets of the secure and non-secure fields in CPUARMState for the
2395      * register if it is banked.  These fields are only used during the static
2396      * registration of a register.  During hashing the bank associated
2397      * with a given security state is copied to fieldoffset which is used from
2398      * there on out.
2399      *
2400      * It is expected that register definitions use either fieldoffset or
2401      * bank_fieldoffsets in the definition but not both.  It is also expected
2402      * that both bank offsets are set when defining a banked register.  This
2403      * use indicates that a register is banked.
2404      */
2405     ptrdiff_t bank_fieldoffsets[2];
2406 
2407     /* Function for making any access checks for this register in addition to
2408      * those specified by the 'access' permissions bits. If NULL, no extra
2409      * checks required. The access check is performed at runtime, not at
2410      * translate time.
2411      */
2412     CPAccessFn *accessfn;
2413     /* Function for handling reads of this register. If NULL, then reads
2414      * will be done by loading from the offset into CPUARMState specified
2415      * by fieldoffset.
2416      */
2417     CPReadFn *readfn;
2418     /* Function for handling writes of this register. If NULL, then writes
2419      * will be done by writing to the offset into CPUARMState specified
2420      * by fieldoffset.
2421      */
2422     CPWriteFn *writefn;
2423     /* Function for doing a "raw" read; used when we need to copy
2424      * coprocessor state to the kernel for KVM or out for
2425      * migration. This only needs to be provided if there is also a
2426      * readfn and it has side effects (for instance clear-on-read bits).
2427      */
2428     CPReadFn *raw_readfn;
2429     /* Function for doing a "raw" write; used when we need to copy KVM
2430      * kernel coprocessor state into userspace, or for inbound
2431      * migration. This only needs to be provided if there is also a
2432      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2433      * or similar behaviour.
2434      */
2435     CPWriteFn *raw_writefn;
2436     /* Function for resetting the register. If NULL, then reset will be done
2437      * by writing resetvalue to the field specified in fieldoffset. If
2438      * fieldoffset is 0 then no reset will be done.
2439      */
2440     CPResetFn *resetfn;
2441 };
2442 
2443 /* Macros which are lvalues for the field in CPUARMState for the
2444  * ARMCPRegInfo *ri.
2445  */
2446 #define CPREG_FIELD32(env, ri) \
2447     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2448 #define CPREG_FIELD64(env, ri) \
2449     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2450 
2451 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2452 
2453 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2454                                     const ARMCPRegInfo *regs, void *opaque);
2455 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2456                                        const ARMCPRegInfo *regs, void *opaque);
2457 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2458 {
2459     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2460 }
2461 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2462 {
2463     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2464 }
2465 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2466 
2467 /*
2468  * Definition of an ARM co-processor register as viewed from
2469  * userspace. This is used for presenting sanitised versions of
2470  * registers to userspace when emulating the Linux AArch64 CPU
2471  * ID/feature ABI (advertised as HWCAP_CPUID).
2472  */
2473 typedef struct ARMCPRegUserSpaceInfo {
2474     /* Name of register */
2475     const char *name;
2476 
2477     /* Is the name actually a glob pattern */
2478     bool is_glob;
2479 
2480     /* Only some bits are exported to user space */
2481     uint64_t exported_bits;
2482 
2483     /* Fixed bits are applied after the mask */
2484     uint64_t fixed_bits;
2485 } ARMCPRegUserSpaceInfo;
2486 
2487 #define REGUSERINFO_SENTINEL { .name = NULL }
2488 
2489 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2490 
2491 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2492 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2493                          uint64_t value);
2494 /* CPReadFn that can be used for read-as-zero behaviour */
2495 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2496 
2497 /* CPResetFn that does nothing, for use if no reset is required even
2498  * if fieldoffset is non zero.
2499  */
2500 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2501 
2502 /* Return true if this reginfo struct's field in the cpu state struct
2503  * is 64 bits wide.
2504  */
2505 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2506 {
2507     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2508 }
2509 
2510 static inline bool cp_access_ok(int current_el,
2511                                 const ARMCPRegInfo *ri, int isread)
2512 {
2513     return (ri->access >> ((current_el * 2) + isread)) & 1;
2514 }
2515 
2516 /* Raw read of a coprocessor register (as needed for migration, etc) */
2517 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2518 
2519 /**
2520  * write_list_to_cpustate
2521  * @cpu: ARMCPU
2522  *
2523  * For each register listed in the ARMCPU cpreg_indexes list, write
2524  * its value from the cpreg_values list into the ARMCPUState structure.
2525  * This updates TCG's working data structures from KVM data or
2526  * from incoming migration state.
2527  *
2528  * Returns: true if all register values were updated correctly,
2529  * false if some register was unknown or could not be written.
2530  * Note that we do not stop early on failure -- we will attempt
2531  * writing all registers in the list.
2532  */
2533 bool write_list_to_cpustate(ARMCPU *cpu);
2534 
2535 /**
2536  * write_cpustate_to_list:
2537  * @cpu: ARMCPU
2538  * @kvm_sync: true if this is for syncing back to KVM
2539  *
2540  * For each register listed in the ARMCPU cpreg_indexes list, write
2541  * its value from the ARMCPUState structure into the cpreg_values list.
2542  * This is used to copy info from TCG's working data structures into
2543  * KVM or for outbound migration.
2544  *
2545  * @kvm_sync is true if we are doing this in order to sync the
2546  * register state back to KVM. In this case we will only update
2547  * values in the list if the previous list->cpustate sync actually
2548  * successfully wrote the CPU state. Otherwise we will keep the value
2549  * that is in the list.
2550  *
2551  * Returns: true if all register values were read correctly,
2552  * false if some register was unknown or could not be read.
2553  * Note that we do not stop early on failure -- we will attempt
2554  * reading all registers in the list.
2555  */
2556 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2557 
2558 #define ARM_CPUID_TI915T      0x54029152
2559 #define ARM_CPUID_TI925T      0x54029252
2560 
2561 #if defined(CONFIG_USER_ONLY)
2562 #define TARGET_PAGE_BITS 12
2563 #else
2564 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2565  * have to support 1K tiny pages.
2566  */
2567 #define TARGET_PAGE_BITS_VARY
2568 #define TARGET_PAGE_BITS_MIN 10
2569 #endif
2570 
2571 #if defined(TARGET_AARCH64)
2572 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2573 #  define TARGET_VIRT_ADDR_SPACE_BITS 48
2574 #else
2575 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2576 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2577 #endif
2578 
2579 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2580                                      unsigned int target_el)
2581 {
2582     CPUARMState *env = cs->env_ptr;
2583     unsigned int cur_el = arm_current_el(env);
2584     bool secure = arm_is_secure(env);
2585     bool pstate_unmasked;
2586     int8_t unmasked = 0;
2587     uint64_t hcr_el2;
2588 
2589     /* Don't take exceptions if they target a lower EL.
2590      * This check should catch any exceptions that would not be taken but left
2591      * pending.
2592      */
2593     if (cur_el > target_el) {
2594         return false;
2595     }
2596 
2597     hcr_el2 = arm_hcr_el2_eff(env);
2598 
2599     switch (excp_idx) {
2600     case EXCP_FIQ:
2601         pstate_unmasked = !(env->daif & PSTATE_F);
2602         break;
2603 
2604     case EXCP_IRQ:
2605         pstate_unmasked = !(env->daif & PSTATE_I);
2606         break;
2607 
2608     case EXCP_VFIQ:
2609         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2610             /* VFIQs are only taken when hypervized and non-secure.  */
2611             return false;
2612         }
2613         return !(env->daif & PSTATE_F);
2614     case EXCP_VIRQ:
2615         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2616             /* VIRQs are only taken when hypervized and non-secure.  */
2617             return false;
2618         }
2619         return !(env->daif & PSTATE_I);
2620     default:
2621         g_assert_not_reached();
2622     }
2623 
2624     /* Use the target EL, current execution state and SCR/HCR settings to
2625      * determine whether the corresponding CPSR bit is used to mask the
2626      * interrupt.
2627      */
2628     if ((target_el > cur_el) && (target_el != 1)) {
2629         /* Exceptions targeting a higher EL may not be maskable */
2630         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2631             /* 64-bit masking rules are simple: exceptions to EL3
2632              * can't be masked, and exceptions to EL2 can only be
2633              * masked from Secure state. The HCR and SCR settings
2634              * don't affect the masking logic, only the interrupt routing.
2635              */
2636             if (target_el == 3 || !secure) {
2637                 unmasked = 1;
2638             }
2639         } else {
2640             /* The old 32-bit-only environment has a more complicated
2641              * masking setup. HCR and SCR bits not only affect interrupt
2642              * routing but also change the behaviour of masking.
2643              */
2644             bool hcr, scr;
2645 
2646             switch (excp_idx) {
2647             case EXCP_FIQ:
2648                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2649                  * we override the CPSR.F in determining if the exception is
2650                  * masked or not. If neither of these are set then we fall back
2651                  * to the CPSR.F setting otherwise we further assess the state
2652                  * below.
2653                  */
2654                 hcr = hcr_el2 & HCR_FMO;
2655                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2656 
2657                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2658                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2659                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2660                  * when non-secure but only when FIQs are only routed to EL3.
2661                  */
2662                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2663                 break;
2664             case EXCP_IRQ:
2665                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2666                  * we may override the CPSR.I masking when in non-secure state.
2667                  * The SCR.IRQ setting has already been taken into consideration
2668                  * when setting the target EL, so it does not have a further
2669                  * affect here.
2670                  */
2671                 hcr = hcr_el2 & HCR_IMO;
2672                 scr = false;
2673                 break;
2674             default:
2675                 g_assert_not_reached();
2676             }
2677 
2678             if ((scr || hcr) && !secure) {
2679                 unmasked = 1;
2680             }
2681         }
2682     }
2683 
2684     /* The PSTATE bits only mask the interrupt if we have not overriden the
2685      * ability above.
2686      */
2687     return unmasked || pstate_unmasked;
2688 }
2689 
2690 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2691 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2692 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2693 
2694 #define cpu_signal_handler cpu_arm_signal_handler
2695 #define cpu_list arm_cpu_list
2696 
2697 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2698  *
2699  * If EL3 is 64-bit:
2700  *  + NonSecure EL1 & 0 stage 1
2701  *  + NonSecure EL1 & 0 stage 2
2702  *  + NonSecure EL2
2703  *  + Secure EL1 & EL0
2704  *  + Secure EL3
2705  * If EL3 is 32-bit:
2706  *  + NonSecure PL1 & 0 stage 1
2707  *  + NonSecure PL1 & 0 stage 2
2708  *  + NonSecure PL2
2709  *  + Secure PL0 & PL1
2710  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2711  *
2712  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2713  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2714  *     may differ in access permissions even if the VA->PA map is the same
2715  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2716  *     translation, which means that we have one mmu_idx that deals with two
2717  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2718  *     architecturally permitted]
2719  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2720  *     handling via the TLB. The only way to do a stage 1 translation without
2721  *     the immediate stage 2 translation is via the ATS or AT system insns,
2722  *     which can be slow-pathed and always do a page table walk.
2723  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2724  *     translation regimes, because they map reasonably well to each other
2725  *     and they can't both be active at the same time.
2726  * This gives us the following list of mmu_idx values:
2727  *
2728  * NS EL0 (aka NS PL0) stage 1+2
2729  * NS EL1 (aka NS PL1) stage 1+2
2730  * NS EL2 (aka NS PL2)
2731  * S EL3 (aka S PL1)
2732  * S EL0 (aka S PL0)
2733  * S EL1 (not used if EL3 is 32 bit)
2734  * NS EL0+1 stage 2
2735  *
2736  * (The last of these is an mmu_idx because we want to be able to use the TLB
2737  * for the accesses done as part of a stage 1 page table walk, rather than
2738  * having to walk the stage 2 page table over and over.)
2739  *
2740  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2741  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2742  * NS EL2 if we ever model a Cortex-R52).
2743  *
2744  * M profile CPUs are rather different as they do not have a true MMU.
2745  * They have the following different MMU indexes:
2746  *  User
2747  *  Privileged
2748  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2749  *  Privileged, execution priority negative (ditto)
2750  * If the CPU supports the v8M Security Extension then there are also:
2751  *  Secure User
2752  *  Secure Privileged
2753  *  Secure User, execution priority negative
2754  *  Secure Privileged, execution priority negative
2755  *
2756  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2757  * are not quite the same -- different CPU types (most notably M profile
2758  * vs A/R profile) would like to use MMU indexes with different semantics,
2759  * but since we don't ever need to use all of those in a single CPU we
2760  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2761  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2762  * the same for any particular CPU.
2763  * Variables of type ARMMUIdx are always full values, and the core
2764  * index values are in variables of type 'int'.
2765  *
2766  * Our enumeration includes at the end some entries which are not "true"
2767  * mmu_idx values in that they don't have corresponding TLBs and are only
2768  * valid for doing slow path page table walks.
2769  *
2770  * The constant names here are patterned after the general style of the names
2771  * of the AT/ATS operations.
2772  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2773  * For M profile we arrange them to have a bit for priv, a bit for negpri
2774  * and a bit for secure.
2775  */
2776 #define ARM_MMU_IDX_A 0x10 /* A profile */
2777 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2778 #define ARM_MMU_IDX_M 0x40 /* M profile */
2779 
2780 /* meanings of the bits for M profile mmu idx values */
2781 #define ARM_MMU_IDX_M_PRIV 0x1
2782 #define ARM_MMU_IDX_M_NEGPRI 0x2
2783 #define ARM_MMU_IDX_M_S 0x4
2784 
2785 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2786 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2787 
2788 typedef enum ARMMMUIdx {
2789     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2790     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2791     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2792     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2793     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2794     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2795     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2796     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2797     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2798     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2799     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2800     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2801     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2802     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2803     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2804     /* Indexes below here don't have TLBs and are used only for AT system
2805      * instructions or for the first stage of an S12 page table walk.
2806      */
2807     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2808     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2809 } ARMMMUIdx;
2810 
2811 /* Bit macros for the core-mmu-index values for each index,
2812  * for use when calling tlb_flush_by_mmuidx() and friends.
2813  */
2814 typedef enum ARMMMUIdxBit {
2815     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2816     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2817     ARMMMUIdxBit_S1E2 = 1 << 2,
2818     ARMMMUIdxBit_S1E3 = 1 << 3,
2819     ARMMMUIdxBit_S1SE0 = 1 << 4,
2820     ARMMMUIdxBit_S1SE1 = 1 << 5,
2821     ARMMMUIdxBit_S2NS = 1 << 6,
2822     ARMMMUIdxBit_MUser = 1 << 0,
2823     ARMMMUIdxBit_MPriv = 1 << 1,
2824     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2825     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2826     ARMMMUIdxBit_MSUser = 1 << 4,
2827     ARMMMUIdxBit_MSPriv = 1 << 5,
2828     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2829     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2830 } ARMMMUIdxBit;
2831 
2832 #define MMU_USER_IDX 0
2833 
2834 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2835 {
2836     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2837 }
2838 
2839 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2840 {
2841     if (arm_feature(env, ARM_FEATURE_M)) {
2842         return mmu_idx | ARM_MMU_IDX_M;
2843     } else {
2844         return mmu_idx | ARM_MMU_IDX_A;
2845     }
2846 }
2847 
2848 /* Return the exception level we're running at if this is our mmu_idx */
2849 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2850 {
2851     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2852     case ARM_MMU_IDX_A:
2853         return mmu_idx & 3;
2854     case ARM_MMU_IDX_M:
2855         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2856     default:
2857         g_assert_not_reached();
2858     }
2859 }
2860 
2861 /* Return the MMU index for a v7M CPU in the specified security and
2862  * privilege state.
2863  */
2864 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2865                                                 bool secstate, bool priv);
2866 
2867 /* Return the MMU index for a v7M CPU in the specified security state */
2868 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2869 
2870 /**
2871  * cpu_mmu_index:
2872  * @env: The cpu environment
2873  * @ifetch: True for code access, false for data access.
2874  *
2875  * Return the core mmu index for the current translation regime.
2876  * This function is used by generic TCG code paths.
2877  */
2878 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2879 
2880 /* Indexes used when registering address spaces with cpu_address_space_init */
2881 typedef enum ARMASIdx {
2882     ARMASIdx_NS = 0,
2883     ARMASIdx_S = 1,
2884 } ARMASIdx;
2885 
2886 /* Return the Exception Level targeted by debug exceptions. */
2887 static inline int arm_debug_target_el(CPUARMState *env)
2888 {
2889     bool secure = arm_is_secure(env);
2890     bool route_to_el2 = false;
2891 
2892     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2893         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2894                        env->cp15.mdcr_el2 & MDCR_TDE;
2895     }
2896 
2897     if (route_to_el2) {
2898         return 2;
2899     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2900                !arm_el_is_aa64(env, 3) && secure) {
2901         return 3;
2902     } else {
2903         return 1;
2904     }
2905 }
2906 
2907 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2908 {
2909     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2910      * CSSELR is RAZ/WI.
2911      */
2912     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2913 }
2914 
2915 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2916 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2917 {
2918     int cur_el = arm_current_el(env);
2919     int debug_el;
2920 
2921     if (cur_el == 3) {
2922         return false;
2923     }
2924 
2925     /* MDCR_EL3.SDD disables debug events from Secure state */
2926     if (arm_is_secure_below_el3(env)
2927         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2928         return false;
2929     }
2930 
2931     /*
2932      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2933      * while not masking the (D)ebug bit in DAIF.
2934      */
2935     debug_el = arm_debug_target_el(env);
2936 
2937     if (cur_el == debug_el) {
2938         return extract32(env->cp15.mdscr_el1, 13, 1)
2939             && !(env->daif & PSTATE_D);
2940     }
2941 
2942     /* Otherwise the debug target needs to be a higher EL */
2943     return debug_el > cur_el;
2944 }
2945 
2946 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2947 {
2948     int el = arm_current_el(env);
2949 
2950     if (el == 0 && arm_el_is_aa64(env, 1)) {
2951         return aa64_generate_debug_exceptions(env);
2952     }
2953 
2954     if (arm_is_secure(env)) {
2955         int spd;
2956 
2957         if (el == 0 && (env->cp15.sder & 1)) {
2958             /* SDER.SUIDEN means debug exceptions from Secure EL0
2959              * are always enabled. Otherwise they are controlled by
2960              * SDCR.SPD like those from other Secure ELs.
2961              */
2962             return true;
2963         }
2964 
2965         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2966         switch (spd) {
2967         case 1:
2968             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2969         case 0:
2970             /* For 0b00 we return true if external secure invasive debug
2971              * is enabled. On real hardware this is controlled by external
2972              * signals to the core. QEMU always permits debug, and behaves
2973              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2974              */
2975             return true;
2976         case 2:
2977             return false;
2978         case 3:
2979             return true;
2980         }
2981     }
2982 
2983     return el != 2;
2984 }
2985 
2986 /* Return true if debugging exceptions are currently enabled.
2987  * This corresponds to what in ARM ARM pseudocode would be
2988  *    if UsingAArch32() then
2989  *        return AArch32.GenerateDebugExceptions()
2990  *    else
2991  *        return AArch64.GenerateDebugExceptions()
2992  * We choose to push the if() down into this function for clarity,
2993  * since the pseudocode has it at all callsites except for the one in
2994  * CheckSoftwareStep(), where it is elided because both branches would
2995  * always return the same value.
2996  */
2997 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2998 {
2999     if (env->aarch64) {
3000         return aa64_generate_debug_exceptions(env);
3001     } else {
3002         return aa32_generate_debug_exceptions(env);
3003     }
3004 }
3005 
3006 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3007  * implicitly means this always returns false in pre-v8 CPUs.)
3008  */
3009 static inline bool arm_singlestep_active(CPUARMState *env)
3010 {
3011     return extract32(env->cp15.mdscr_el1, 0, 1)
3012         && arm_el_is_aa64(env, arm_debug_target_el(env))
3013         && arm_generate_debug_exceptions(env);
3014 }
3015 
3016 static inline bool arm_sctlr_b(CPUARMState *env)
3017 {
3018     return
3019         /* We need not implement SCTLR.ITD in user-mode emulation, so
3020          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3021          * This lets people run BE32 binaries with "-cpu any".
3022          */
3023 #ifndef CONFIG_USER_ONLY
3024         !arm_feature(env, ARM_FEATURE_V7) &&
3025 #endif
3026         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3027 }
3028 
3029 /* Return true if the processor is in big-endian mode. */
3030 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3031 {
3032     int cur_el;
3033 
3034     /* In 32bit endianness is determined by looking at CPSR's E bit */
3035     if (!is_a64(env)) {
3036         return
3037 #ifdef CONFIG_USER_ONLY
3038             /* In system mode, BE32 is modelled in line with the
3039              * architecture (as word-invariant big-endianness), where loads
3040              * and stores are done little endian but from addresses which
3041              * are adjusted by XORing with the appropriate constant. So the
3042              * endianness to use for the raw data access is not affected by
3043              * SCTLR.B.
3044              * In user mode, however, we model BE32 as byte-invariant
3045              * big-endianness (because user-only code cannot tell the
3046              * difference), and so we need to use a data access endianness
3047              * that depends on SCTLR.B.
3048              */
3049             arm_sctlr_b(env) ||
3050 #endif
3051                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3052     }
3053 
3054     cur_el = arm_current_el(env);
3055 
3056     if (cur_el == 0) {
3057         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
3058     }
3059 
3060     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
3061 }
3062 
3063 #include "exec/cpu-all.h"
3064 
3065 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3066  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3067  * We put flags which are shared between 32 and 64 bit mode at the top
3068  * of the word, and flags which apply to only one mode at the bottom.
3069  */
3070 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3071 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3072 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3073 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3074 /* Target EL if we take a floating-point-disabled exception */
3075 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3076 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3077 
3078 /* Bit usage when in AArch32 state: */
3079 FIELD(TBFLAG_A32, THUMB, 0, 1)
3080 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3081 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3082 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3083 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3084 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3085 /* We store the bottom two bits of the CPAR as TB flags and handle
3086  * checks on the other bits at runtime
3087  */
3088 FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3089 /* Indicates whether cp register reads and writes by guest code should access
3090  * the secure or nonsecure bank of banked registers; note that this is not
3091  * the same thing as the current security state of the processor!
3092  */
3093 FIELD(TBFLAG_A32, NS, 19, 1)
3094 /* For M profile only, Handler (ie not Thread) mode */
3095 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3096 /* For M profile only, whether we should generate stack-limit checks */
3097 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3098 
3099 /* Bit usage when in AArch64 state */
3100 FIELD(TBFLAG_A64, TBII, 0, 2)
3101 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3102 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3103 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3104 FIELD(TBFLAG_A64, BT, 9, 1)
3105 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3106 FIELD(TBFLAG_A64, TBID, 12, 2)
3107 
3108 static inline bool bswap_code(bool sctlr_b)
3109 {
3110 #ifdef CONFIG_USER_ONLY
3111     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3112      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3113      * would also end up as a mixed-endian mode with BE code, LE data.
3114      */
3115     return
3116 #ifdef TARGET_WORDS_BIGENDIAN
3117         1 ^
3118 #endif
3119         sctlr_b;
3120 #else
3121     /* All code access in ARM is little endian, and there are no loaders
3122      * doing swaps that need to be reversed
3123      */
3124     return 0;
3125 #endif
3126 }
3127 
3128 #ifdef CONFIG_USER_ONLY
3129 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3130 {
3131     return
3132 #ifdef TARGET_WORDS_BIGENDIAN
3133        1 ^
3134 #endif
3135        arm_cpu_data_is_big_endian(env);
3136 }
3137 #endif
3138 
3139 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3140                           target_ulong *cs_base, uint32_t *flags);
3141 
3142 enum {
3143     QEMU_PSCI_CONDUIT_DISABLED = 0,
3144     QEMU_PSCI_CONDUIT_SMC = 1,
3145     QEMU_PSCI_CONDUIT_HVC = 2,
3146 };
3147 
3148 #ifndef CONFIG_USER_ONLY
3149 /* Return the address space index to use for a memory access */
3150 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3151 {
3152     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3153 }
3154 
3155 /* Return the AddressSpace to use for a memory access
3156  * (which depends on whether the access is S or NS, and whether
3157  * the board gave us a separate AddressSpace for S accesses).
3158  */
3159 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3160 {
3161     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3162 }
3163 #endif
3164 
3165 /**
3166  * arm_register_pre_el_change_hook:
3167  * Register a hook function which will be called immediately before this
3168  * CPU changes exception level or mode. The hook function will be
3169  * passed a pointer to the ARMCPU and the opaque data pointer passed
3170  * to this function when the hook was registered.
3171  *
3172  * Note that if a pre-change hook is called, any registered post-change hooks
3173  * are guaranteed to subsequently be called.
3174  */
3175 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3176                                  void *opaque);
3177 /**
3178  * arm_register_el_change_hook:
3179  * Register a hook function which will be called immediately after this
3180  * CPU changes exception level or mode. The hook function will be
3181  * passed a pointer to the ARMCPU and the opaque data pointer passed
3182  * to this function when the hook was registered.
3183  *
3184  * Note that any registered hooks registered here are guaranteed to be called
3185  * if pre-change hooks have been.
3186  */
3187 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3188         *opaque);
3189 
3190 /**
3191  * aa32_vfp_dreg:
3192  * Return a pointer to the Dn register within env in 32-bit mode.
3193  */
3194 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3195 {
3196     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3197 }
3198 
3199 /**
3200  * aa32_vfp_qreg:
3201  * Return a pointer to the Qn register within env in 32-bit mode.
3202  */
3203 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3204 {
3205     return &env->vfp.zregs[regno].d[0];
3206 }
3207 
3208 /**
3209  * aa64_vfp_qreg:
3210  * Return a pointer to the Qn register within env in 64-bit mode.
3211  */
3212 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3213 {
3214     return &env->vfp.zregs[regno].d[0];
3215 }
3216 
3217 /* Shared between translate-sve.c and sve_helper.c.  */
3218 extern const uint64_t pred_esz_masks[4];
3219 
3220 /*
3221  * 32-bit feature tests via id registers.
3222  */
3223 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3224 {
3225     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3226 }
3227 
3228 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3229 {
3230     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3231 }
3232 
3233 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3234 {
3235     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3236 }
3237 
3238 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3239 {
3240     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3241 }
3242 
3243 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3244 {
3245     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3246 }
3247 
3248 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3249 {
3250     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3251 }
3252 
3253 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3254 {
3255     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3256 }
3257 
3258 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3259 {
3260     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3261 }
3262 
3263 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3264 {
3265     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3266 }
3267 
3268 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3269 {
3270     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3271 }
3272 
3273 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3274 {
3275     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3276 }
3277 
3278 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3279 {
3280     /*
3281      * This is a placeholder for use by VCMA until the rest of
3282      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3283      * At which point we can properly set and check MVFR1.FPHP.
3284      */
3285     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3286 }
3287 
3288 /*
3289  * 64-bit feature tests via id registers.
3290  */
3291 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3292 {
3293     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3294 }
3295 
3296 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3297 {
3298     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3299 }
3300 
3301 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3302 {
3303     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3304 }
3305 
3306 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3307 {
3308     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3309 }
3310 
3311 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3312 {
3313     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3314 }
3315 
3316 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3317 {
3318     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3319 }
3320 
3321 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3322 {
3323     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3324 }
3325 
3326 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3327 {
3328     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3329 }
3330 
3331 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3332 {
3333     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3334 }
3335 
3336 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3337 {
3338     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3339 }
3340 
3341 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3342 {
3343     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3344 }
3345 
3346 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3347 {
3348     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3349 }
3350 
3351 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3352 {
3353     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3354 }
3355 
3356 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3357 {
3358     /*
3359      * Note that while QEMU will only implement the architected algorithm
3360      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3361      * defined algorithms, and thus API+GPI, and this predicate controls
3362      * migration of the 128-bit keys.
3363      */
3364     return (id->id_aa64isar1 &
3365             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3366              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3367              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3368              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3369 }
3370 
3371 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3372 {
3373     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3374     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3375 }
3376 
3377 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3378 {
3379     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3380 }
3381 
3382 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3383 {
3384     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3385 }
3386 
3387 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3388 {
3389     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3390 }
3391 
3392 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3393 {
3394     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3395 }
3396 
3397 /*
3398  * Forward to the above feature tests given an ARMCPU pointer.
3399  */
3400 #define cpu_isar_feature(name, cpu) \
3401     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3402 
3403 #endif
3404