xref: /openbmc/qemu/target/arm/cpu.h (revision 91aef87a)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP  2
150 #define GTIMER_SEC  3
151 #define NUM_GTIMERS 4
152 
153 typedef struct {
154     uint64_t raw_tcr;
155     uint32_t mask;
156     uint32_t base_mask;
157 } TCR;
158 
159 /* Define a maximum sized vector register.
160  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161  * For 64-bit, this is a 2048-bit SVE register.
162  *
163  * Note that the mapping between S, D, and Q views of the register bank
164  * differs between AArch64 and AArch32.
165  * In AArch32:
166  *  Qn = regs[n].d[1]:regs[n].d[0]
167  *  Dn = regs[n / 2].d[n & 1]
168  *  Sn = regs[n / 4].d[n % 4 / 2],
169  *       bits 31..0 for even n, and bits 63..32 for odd n
170  *       (and regs[16] to regs[31] are inaccessible)
171  * In AArch64:
172  *  Zn = regs[n].d[*]
173  *  Qn = regs[n].d[1]:regs[n].d[0]
174  *  Dn = regs[n].d[0]
175  *  Sn = regs[n].d[0] bits 31..0
176  *  Hn = regs[n].d[0] bits 15..0
177  *
178  * This corresponds to the architecturally defined mapping between
179  * the two execution states, and means we do not need to explicitly
180  * map these registers when changing states.
181  *
182  * Align the data for use with TCG host vector operations.
183  */
184 
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ    16
187 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
188 #else
189 # define ARM_MAX_VQ    1
190 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
191 #endif
192 
193 typedef struct ARMVectorReg {
194     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
195 } ARMVectorReg;
196 
197 #ifdef TARGET_AARCH64
198 /* In AArch32 mode, predicate registers do not exist at all.  */
199 typedef struct ARMPredicateReg {
200     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
201 } ARMPredicateReg;
202 
203 /* In AArch32 mode, PAC keys do not exist at all.  */
204 typedef struct ARMPACKey {
205     uint64_t lo, hi;
206 } ARMPACKey;
207 #endif
208 
209 
210 typedef struct CPUARMState {
211     /* Regs for current mode.  */
212     uint32_t regs[16];
213 
214     /* 32/64 switch only happens when taking and returning from
215      * exceptions so the overlap semantics are taken care of then
216      * instead of having a complicated union.
217      */
218     /* Regs for A64 mode.  */
219     uint64_t xregs[32];
220     uint64_t pc;
221     /* PSTATE isn't an architectural register for ARMv8. However, it is
222      * convenient for us to assemble the underlying state into a 32 bit format
223      * identical to the architectural format used for the SPSR. (This is also
224      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
225      * 'pstate' register are.) Of the PSTATE bits:
226      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
227      *    semantics as for AArch32, as described in the comments on each field)
228      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
229      *  DAIF (exception masks) are kept in env->daif
230      *  BTYPE is kept in env->btype
231      *  all other bits are stored in their correct places in env->pstate
232      */
233     uint32_t pstate;
234     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
235 
236     /* Cached TBFLAGS state.  See below for which bits are included.  */
237     uint32_t hflags;
238 
239     /* Frequently accessed CPSR bits are stored separately for efficiency.
240        This contains all the other bits.  Use cpsr_{read,write} to access
241        the whole CPSR.  */
242     uint32_t uncached_cpsr;
243     uint32_t spsr;
244 
245     /* Banked registers.  */
246     uint64_t banked_spsr[8];
247     uint32_t banked_r13[8];
248     uint32_t banked_r14[8];
249 
250     /* These hold r8-r12.  */
251     uint32_t usr_regs[5];
252     uint32_t fiq_regs[5];
253 
254     /* cpsr flag cache for faster execution */
255     uint32_t CF; /* 0 or 1 */
256     uint32_t VF; /* V is the bit 31. All other bits are undefined */
257     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
258     uint32_t ZF; /* Z set if zero.  */
259     uint32_t QF; /* 0 or 1 */
260     uint32_t GE; /* cpsr[19:16] */
261     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
262     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
263     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
264     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
265 
266     uint64_t elr_el[4]; /* AArch64 exception link regs  */
267     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
268 
269     /* System control coprocessor (cp15) */
270     struct {
271         uint32_t c0_cpuid;
272         union { /* Cache size selection */
273             struct {
274                 uint64_t _unused_csselr0;
275                 uint64_t csselr_ns;
276                 uint64_t _unused_csselr1;
277                 uint64_t csselr_s;
278             };
279             uint64_t csselr_el[4];
280         };
281         union { /* System control register. */
282             struct {
283                 uint64_t _unused_sctlr;
284                 uint64_t sctlr_ns;
285                 uint64_t hsctlr;
286                 uint64_t sctlr_s;
287             };
288             uint64_t sctlr_el[4];
289         };
290         uint64_t cpacr_el1; /* Architectural feature access control register */
291         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
292         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
293         uint64_t sder; /* Secure debug enable register. */
294         uint32_t nsacr; /* Non-secure access control register. */
295         union { /* MMU translation table base 0. */
296             struct {
297                 uint64_t _unused_ttbr0_0;
298                 uint64_t ttbr0_ns;
299                 uint64_t _unused_ttbr0_1;
300                 uint64_t ttbr0_s;
301             };
302             uint64_t ttbr0_el[4];
303         };
304         union { /* MMU translation table base 1. */
305             struct {
306                 uint64_t _unused_ttbr1_0;
307                 uint64_t ttbr1_ns;
308                 uint64_t _unused_ttbr1_1;
309                 uint64_t ttbr1_s;
310             };
311             uint64_t ttbr1_el[4];
312         };
313         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
314         /* MMU translation table base control. */
315         TCR tcr_el[4];
316         TCR vtcr_el2; /* Virtualization Translation Control.  */
317         uint32_t c2_data; /* MPU data cacheable bits.  */
318         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319         union { /* MMU domain access control register
320                  * MPU write buffer control.
321                  */
322             struct {
323                 uint64_t dacr_ns;
324                 uint64_t dacr_s;
325             };
326             struct {
327                 uint64_t dacr32_el2;
328             };
329         };
330         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332         uint64_t hcr_el2; /* Hypervisor configuration register */
333         uint64_t scr_el3; /* Secure configuration register.  */
334         union { /* Fault status registers.  */
335             struct {
336                 uint64_t ifsr_ns;
337                 uint64_t ifsr_s;
338             };
339             struct {
340                 uint64_t ifsr32_el2;
341             };
342         };
343         union {
344             struct {
345                 uint64_t _unused_dfsr;
346                 uint64_t dfsr_ns;
347                 uint64_t hsr;
348                 uint64_t dfsr_s;
349             };
350             uint64_t esr_el[4];
351         };
352         uint32_t c6_region[8]; /* MPU base/size registers.  */
353         union { /* Fault address registers. */
354             struct {
355                 uint64_t _unused_far0;
356 #ifdef HOST_WORDS_BIGENDIAN
357                 uint32_t ifar_ns;
358                 uint32_t dfar_ns;
359                 uint32_t ifar_s;
360                 uint32_t dfar_s;
361 #else
362                 uint32_t dfar_ns;
363                 uint32_t ifar_ns;
364                 uint32_t dfar_s;
365                 uint32_t ifar_s;
366 #endif
367                 uint64_t _unused_far3;
368             };
369             uint64_t far_el[4];
370         };
371         uint64_t hpfar_el2;
372         uint64_t hstr_el2;
373         union { /* Translation result. */
374             struct {
375                 uint64_t _unused_par_0;
376                 uint64_t par_ns;
377                 uint64_t _unused_par_1;
378                 uint64_t par_s;
379             };
380             uint64_t par_el[4];
381         };
382 
383         uint32_t c9_insn; /* Cache lockdown registers.  */
384         uint32_t c9_data;
385         uint64_t c9_pmcr; /* performance monitor control register */
386         uint64_t c9_pmcnten; /* perf monitor counter enables */
387         uint64_t c9_pmovsr; /* perf monitor overflow status */
388         uint64_t c9_pmuserenr; /* perf monitor user enable */
389         uint64_t c9_pmselr; /* perf monitor counter selection register */
390         uint64_t c9_pminten; /* perf monitor interrupt enables */
391         union { /* Memory attribute redirection */
392             struct {
393 #ifdef HOST_WORDS_BIGENDIAN
394                 uint64_t _unused_mair_0;
395                 uint32_t mair1_ns;
396                 uint32_t mair0_ns;
397                 uint64_t _unused_mair_1;
398                 uint32_t mair1_s;
399                 uint32_t mair0_s;
400 #else
401                 uint64_t _unused_mair_0;
402                 uint32_t mair0_ns;
403                 uint32_t mair1_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair0_s;
406                 uint32_t mair1_s;
407 #endif
408             };
409             uint64_t mair_el[4];
410         };
411         union { /* vector base address register */
412             struct {
413                 uint64_t _unused_vbar;
414                 uint64_t vbar_ns;
415                 uint64_t hvbar;
416                 uint64_t vbar_s;
417             };
418             uint64_t vbar_el[4];
419         };
420         uint32_t mvbar; /* (monitor) vector base address register */
421         struct { /* FCSE PID. */
422             uint32_t fcseidr_ns;
423             uint32_t fcseidr_s;
424         };
425         union { /* Context ID. */
426             struct {
427                 uint64_t _unused_contextidr_0;
428                 uint64_t contextidr_ns;
429                 uint64_t _unused_contextidr_1;
430                 uint64_t contextidr_s;
431             };
432             uint64_t contextidr_el[4];
433         };
434         union { /* User RW Thread register. */
435             struct {
436                 uint64_t tpidrurw_ns;
437                 uint64_t tpidrprw_ns;
438                 uint64_t htpidr;
439                 uint64_t _tpidr_el3;
440             };
441             uint64_t tpidr_el[4];
442         };
443         /* The secure banks of these registers don't map anywhere */
444         uint64_t tpidrurw_s;
445         uint64_t tpidrprw_s;
446         uint64_t tpidruro_s;
447 
448         union { /* User RO Thread register. */
449             uint64_t tpidruro_ns;
450             uint64_t tpidrro_el[1];
451         };
452         uint64_t c14_cntfrq; /* Counter Frequency register */
453         uint64_t c14_cntkctl; /* Timer Control register */
454         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
455         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
456         ARMGenericTimer c14_timer[NUM_GTIMERS];
457         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
458         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
459         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
460         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
461         uint32_t c15_threadid; /* TI debugger thread-ID.  */
462         uint32_t c15_config_base_address; /* SCU base address.  */
463         uint32_t c15_diagnostic; /* diagnostic register */
464         uint32_t c15_power_diagnostic;
465         uint32_t c15_power_control; /* power control */
466         uint64_t dbgbvr[16]; /* breakpoint value registers */
467         uint64_t dbgbcr[16]; /* breakpoint control registers */
468         uint64_t dbgwvr[16]; /* watchpoint value registers */
469         uint64_t dbgwcr[16]; /* watchpoint control registers */
470         uint64_t mdscr_el1;
471         uint64_t oslsr_el1; /* OS Lock Status */
472         uint64_t mdcr_el2;
473         uint64_t mdcr_el3;
474         /* Stores the architectural value of the counter *the last time it was
475          * updated* by pmccntr_op_start. Accesses should always be surrounded
476          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
477          * architecturally-correct value is being read/set.
478          */
479         uint64_t c15_ccnt;
480         /* Stores the delta between the architectural value and the underlying
481          * cycle count during normal operation. It is used to update c15_ccnt
482          * to be the correct architectural value before accesses. During
483          * accesses, c15_ccnt_delta contains the underlying count being used
484          * for the access, after which it reverts to the delta value in
485          * pmccntr_op_finish.
486          */
487         uint64_t c15_ccnt_delta;
488         uint64_t c14_pmevcntr[31];
489         uint64_t c14_pmevcntr_delta[31];
490         uint64_t c14_pmevtyper[31];
491         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
492         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
493         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
494     } cp15;
495 
496     struct {
497         /* M profile has up to 4 stack pointers:
498          * a Main Stack Pointer and a Process Stack Pointer for each
499          * of the Secure and Non-Secure states. (If the CPU doesn't support
500          * the security extension then it has only two SPs.)
501          * In QEMU we always store the currently active SP in regs[13],
502          * and the non-active SP for the current security state in
503          * v7m.other_sp. The stack pointers for the inactive security state
504          * are stored in other_ss_msp and other_ss_psp.
505          * switch_v7m_security_state() is responsible for rearranging them
506          * when we change security state.
507          */
508         uint32_t other_sp;
509         uint32_t other_ss_msp;
510         uint32_t other_ss_psp;
511         uint32_t vecbase[M_REG_NUM_BANKS];
512         uint32_t basepri[M_REG_NUM_BANKS];
513         uint32_t control[M_REG_NUM_BANKS];
514         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
515         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
516         uint32_t hfsr; /* HardFault Status */
517         uint32_t dfsr; /* Debug Fault Status Register */
518         uint32_t sfsr; /* Secure Fault Status Register */
519         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
520         uint32_t bfar; /* BusFault Address */
521         uint32_t sfar; /* Secure Fault Address Register */
522         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
523         int exception;
524         uint32_t primask[M_REG_NUM_BANKS];
525         uint32_t faultmask[M_REG_NUM_BANKS];
526         uint32_t aircr; /* only holds r/w state if security extn implemented */
527         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
528         uint32_t csselr[M_REG_NUM_BANKS];
529         uint32_t scr[M_REG_NUM_BANKS];
530         uint32_t msplim[M_REG_NUM_BANKS];
531         uint32_t psplim[M_REG_NUM_BANKS];
532         uint32_t fpcar[M_REG_NUM_BANKS];
533         uint32_t fpccr[M_REG_NUM_BANKS];
534         uint32_t fpdscr[M_REG_NUM_BANKS];
535         uint32_t cpacr[M_REG_NUM_BANKS];
536         uint32_t nsacr;
537     } v7m;
538 
539     /* Information associated with an exception about to be taken:
540      * code which raises an exception must set cs->exception_index and
541      * the relevant parts of this structure; the cpu_do_interrupt function
542      * will then set the guest-visible registers as part of the exception
543      * entry process.
544      */
545     struct {
546         uint32_t syndrome; /* AArch64 format syndrome register */
547         uint32_t fsr; /* AArch32 format fault status register info */
548         uint64_t vaddress; /* virtual addr associated with exception, if any */
549         uint32_t target_el; /* EL the exception should be targeted for */
550         /* If we implement EL2 we will also need to store information
551          * about the intermediate physical address for stage 2 faults.
552          */
553     } exception;
554 
555     /* Information associated with an SError */
556     struct {
557         uint8_t pending;
558         uint8_t has_esr;
559         uint64_t esr;
560     } serror;
561 
562     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
563     uint32_t irq_line_state;
564 
565     /* Thumb-2 EE state.  */
566     uint32_t teecr;
567     uint32_t teehbr;
568 
569     /* VFP coprocessor state.  */
570     struct {
571         ARMVectorReg zregs[32];
572 
573 #ifdef TARGET_AARCH64
574         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
575 #define FFR_PRED_NUM 16
576         ARMPredicateReg pregs[17];
577         /* Scratch space for aa64 sve predicate temporary.  */
578         ARMPredicateReg preg_tmp;
579 #endif
580 
581         /* We store these fpcsr fields separately for convenience.  */
582         uint32_t qc[4] QEMU_ALIGNED(16);
583         int vec_len;
584         int vec_stride;
585 
586         uint32_t xregs[16];
587 
588         /* Scratch space for aa32 neon expansion.  */
589         uint32_t scratch[8];
590 
591         /* There are a number of distinct float control structures:
592          *
593          *  fp_status: is the "normal" fp status.
594          *  fp_status_fp16: used for half-precision calculations
595          *  standard_fp_status : the ARM "Standard FPSCR Value"
596          *
597          * Half-precision operations are governed by a separate
598          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
599          * status structure to control this.
600          *
601          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
602          * round-to-nearest and is used by any operations (generally
603          * Neon) which the architecture defines as controlled by the
604          * standard FPSCR value rather than the FPSCR.
605          *
606          * To avoid having to transfer exception bits around, we simply
607          * say that the FPSCR cumulative exception flags are the logical
608          * OR of the flags in the three fp statuses. This relies on the
609          * only thing which needs to read the exception flags being
610          * an explicit FPSCR read.
611          */
612         float_status fp_status;
613         float_status fp_status_f16;
614         float_status standard_fp_status;
615 
616         /* ZCR_EL[1-3] */
617         uint64_t zcr_el[4];
618     } vfp;
619     uint64_t exclusive_addr;
620     uint64_t exclusive_val;
621     uint64_t exclusive_high;
622 
623     /* iwMMXt coprocessor state.  */
624     struct {
625         uint64_t regs[16];
626         uint64_t val;
627 
628         uint32_t cregs[16];
629     } iwmmxt;
630 
631 #ifdef TARGET_AARCH64
632     struct {
633         ARMPACKey apia;
634         ARMPACKey apib;
635         ARMPACKey apda;
636         ARMPACKey apdb;
637         ARMPACKey apga;
638     } keys;
639 #endif
640 
641 #if defined(CONFIG_USER_ONLY)
642     /* For usermode syscall translation.  */
643     int eabi;
644 #endif
645 
646     struct CPUBreakpoint *cpu_breakpoint[16];
647     struct CPUWatchpoint *cpu_watchpoint[16];
648 
649     /* Fields up to this point are cleared by a CPU reset */
650     struct {} end_reset_fields;
651 
652     /* Fields after this point are preserved across CPU reset. */
653 
654     /* Internal CPU feature flags.  */
655     uint64_t features;
656 
657     /* PMSAv7 MPU */
658     struct {
659         uint32_t *drbar;
660         uint32_t *drsr;
661         uint32_t *dracr;
662         uint32_t rnr[M_REG_NUM_BANKS];
663     } pmsav7;
664 
665     /* PMSAv8 MPU */
666     struct {
667         /* The PMSAv8 implementation also shares some PMSAv7 config
668          * and state:
669          *  pmsav7.rnr (region number register)
670          *  pmsav7_dregion (number of configured regions)
671          */
672         uint32_t *rbar[M_REG_NUM_BANKS];
673         uint32_t *rlar[M_REG_NUM_BANKS];
674         uint32_t mair0[M_REG_NUM_BANKS];
675         uint32_t mair1[M_REG_NUM_BANKS];
676     } pmsav8;
677 
678     /* v8M SAU */
679     struct {
680         uint32_t *rbar;
681         uint32_t *rlar;
682         uint32_t rnr;
683         uint32_t ctrl;
684     } sau;
685 
686     void *nvic;
687     const struct arm_boot_info *boot_info;
688     /* Store GICv3CPUState to access from this struct */
689     void *gicv3state;
690 } CPUARMState;
691 
692 /**
693  * ARMELChangeHookFn:
694  * type of a function which can be registered via arm_register_el_change_hook()
695  * to get callbacks when the CPU changes its exception level or mode.
696  */
697 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
698 typedef struct ARMELChangeHook ARMELChangeHook;
699 struct ARMELChangeHook {
700     ARMELChangeHookFn *hook;
701     void *opaque;
702     QLIST_ENTRY(ARMELChangeHook) node;
703 };
704 
705 /* These values map onto the return values for
706  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
707 typedef enum ARMPSCIState {
708     PSCI_ON = 0,
709     PSCI_OFF = 1,
710     PSCI_ON_PENDING = 2
711 } ARMPSCIState;
712 
713 typedef struct ARMISARegisters ARMISARegisters;
714 
715 /**
716  * ARMCPU:
717  * @env: #CPUARMState
718  *
719  * An ARM CPU core.
720  */
721 struct ARMCPU {
722     /*< private >*/
723     CPUState parent_obj;
724     /*< public >*/
725 
726     CPUNegativeOffsetState neg;
727     CPUARMState env;
728 
729     /* Coprocessor information */
730     GHashTable *cp_regs;
731     /* For marshalling (mostly coprocessor) register state between the
732      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
733      * we use these arrays.
734      */
735     /* List of register indexes managed via these arrays; (full KVM style
736      * 64 bit indexes, not CPRegInfo 32 bit indexes)
737      */
738     uint64_t *cpreg_indexes;
739     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
740     uint64_t *cpreg_values;
741     /* Length of the indexes, values, reset_values arrays */
742     int32_t cpreg_array_len;
743     /* These are used only for migration: incoming data arrives in
744      * these fields and is sanity checked in post_load before copying
745      * to the working data structures above.
746      */
747     uint64_t *cpreg_vmstate_indexes;
748     uint64_t *cpreg_vmstate_values;
749     int32_t cpreg_vmstate_array_len;
750 
751     DynamicGDBXMLInfo dyn_xml;
752 
753     /* Timers used by the generic (architected) timer */
754     QEMUTimer *gt_timer[NUM_GTIMERS];
755     /*
756      * Timer used by the PMU. Its state is restored after migration by
757      * pmu_op_finish() - it does not need other handling during migration
758      */
759     QEMUTimer *pmu_timer;
760     /* GPIO outputs for generic timer */
761     qemu_irq gt_timer_outputs[NUM_GTIMERS];
762     /* GPIO output for GICv3 maintenance interrupt signal */
763     qemu_irq gicv3_maintenance_interrupt;
764     /* GPIO output for the PMU interrupt */
765     qemu_irq pmu_interrupt;
766 
767     /* MemoryRegion to use for secure physical accesses */
768     MemoryRegion *secure_memory;
769 
770     /* For v8M, pointer to the IDAU interface provided by board/SoC */
771     Object *idau;
772 
773     /* 'compatible' string for this CPU for Linux device trees */
774     const char *dtb_compatible;
775 
776     /* PSCI version for this CPU
777      * Bits[31:16] = Major Version
778      * Bits[15:0] = Minor Version
779      */
780     uint32_t psci_version;
781 
782     /* Should CPU start in PSCI powered-off state? */
783     bool start_powered_off;
784 
785     /* Current power state, access guarded by BQL */
786     ARMPSCIState power_state;
787 
788     /* CPU has virtualization extension */
789     bool has_el2;
790     /* CPU has security extension */
791     bool has_el3;
792     /* CPU has PMU (Performance Monitor Unit) */
793     bool has_pmu;
794     /* CPU has VFP */
795     bool has_vfp;
796     /* CPU has Neon */
797     bool has_neon;
798     /* CPU has M-profile DSP extension */
799     bool has_dsp;
800 
801     /* CPU has memory protection unit */
802     bool has_mpu;
803     /* PMSAv7 MPU number of supported regions */
804     uint32_t pmsav7_dregion;
805     /* v8M SAU number of supported regions */
806     uint32_t sau_sregion;
807 
808     /* PSCI conduit used to invoke PSCI methods
809      * 0 - disabled, 1 - smc, 2 - hvc
810      */
811     uint32_t psci_conduit;
812 
813     /* For v8M, initial value of the Secure VTOR */
814     uint32_t init_svtor;
815 
816     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
817      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
818      */
819     uint32_t kvm_target;
820 
821     /* KVM init features for this CPU */
822     uint32_t kvm_init_features[7];
823 
824     /* KVM CPU state */
825 
826     /* KVM virtual time adjustment */
827     bool kvm_adjvtime;
828     bool kvm_vtime_dirty;
829     uint64_t kvm_vtime;
830 
831     /* Uniprocessor system with MP extensions */
832     bool mp_is_up;
833 
834     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
835      * and the probe failed (so we need to report the error in realize)
836      */
837     bool host_cpu_probe_failed;
838 
839     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
840      * register.
841      */
842     int32_t core_count;
843 
844     /* The instance init functions for implementation-specific subclasses
845      * set these fields to specify the implementation-dependent values of
846      * various constant registers and reset values of non-constant
847      * registers.
848      * Some of these might become QOM properties eventually.
849      * Field names match the official register names as defined in the
850      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
851      * is used for reset values of non-constant registers; no reset_
852      * prefix means a constant register.
853      * Some of these registers are split out into a substructure that
854      * is shared with the translators to control the ISA.
855      */
856     struct ARMISARegisters {
857         uint32_t id_isar0;
858         uint32_t id_isar1;
859         uint32_t id_isar2;
860         uint32_t id_isar3;
861         uint32_t id_isar4;
862         uint32_t id_isar5;
863         uint32_t id_isar6;
864         uint32_t mvfr0;
865         uint32_t mvfr1;
866         uint32_t mvfr2;
867         uint64_t id_aa64isar0;
868         uint64_t id_aa64isar1;
869         uint64_t id_aa64pfr0;
870         uint64_t id_aa64pfr1;
871         uint64_t id_aa64mmfr0;
872         uint64_t id_aa64mmfr1;
873     } isar;
874     uint32_t midr;
875     uint32_t revidr;
876     uint32_t reset_fpsid;
877     uint32_t ctr;
878     uint32_t reset_sctlr;
879     uint32_t id_pfr0;
880     uint32_t id_pfr1;
881     uint32_t id_dfr0;
882     uint64_t pmceid0;
883     uint64_t pmceid1;
884     uint32_t id_afr0;
885     uint32_t id_mmfr0;
886     uint32_t id_mmfr1;
887     uint32_t id_mmfr2;
888     uint32_t id_mmfr3;
889     uint32_t id_mmfr4;
890     uint64_t id_aa64dfr0;
891     uint64_t id_aa64dfr1;
892     uint64_t id_aa64afr0;
893     uint64_t id_aa64afr1;
894     uint32_t dbgdidr;
895     uint32_t clidr;
896     uint64_t mp_affinity; /* MP ID without feature bits */
897     /* The elements of this array are the CCSIDR values for each cache,
898      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
899      */
900     uint32_t ccsidr[16];
901     uint64_t reset_cbar;
902     uint32_t reset_auxcr;
903     bool reset_hivecs;
904     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
905     uint32_t dcz_blocksize;
906     uint64_t rvbar;
907 
908     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
909     int gic_num_lrs; /* number of list registers */
910     int gic_vpribits; /* number of virtual priority bits */
911     int gic_vprebits; /* number of virtual preemption bits */
912 
913     /* Whether the cfgend input is high (i.e. this CPU should reset into
914      * big-endian mode).  This setting isn't used directly: instead it modifies
915      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
916      * architecture version.
917      */
918     bool cfgend;
919 
920     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
921     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
922 
923     int32_t node_id; /* NUMA node this CPU belongs to */
924 
925     /* Used to synchronize KVM and QEMU in-kernel device levels */
926     uint8_t device_irq_level;
927 
928     /* Used to set the maximum vector length the cpu will support.  */
929     uint32_t sve_max_vq;
930 
931     /*
932      * In sve_vq_map each set bit is a supported vector length of
933      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
934      * length in quadwords.
935      *
936      * While processing properties during initialization, corresponding
937      * sve_vq_init bits are set for bits in sve_vq_map that have been
938      * set by properties.
939      */
940     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
941     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
942 
943     /* Generic timer counter frequency, in Hz */
944     uint64_t gt_cntfrq_hz;
945 };
946 
947 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
948 
949 void arm_cpu_post_init(Object *obj);
950 
951 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
952 
953 #ifndef CONFIG_USER_ONLY
954 extern const VMStateDescription vmstate_arm_cpu;
955 #endif
956 
957 void arm_cpu_do_interrupt(CPUState *cpu);
958 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
959 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
960 
961 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
962                                          MemTxAttrs *attrs);
963 
964 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
965 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
966 
967 /* Dynamically generates for gdb stub an XML description of the sysregs from
968  * the cp_regs hashtable. Returns the registered sysregs number.
969  */
970 int arm_gen_dynamic_xml(CPUState *cpu);
971 
972 /* Returns the dynamically generated XML for the gdb stub.
973  * Returns a pointer to the XML contents for the specified XML file or NULL
974  * if the XML name doesn't match the predefined one.
975  */
976 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
977 
978 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
979                              int cpuid, void *opaque);
980 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
981                              int cpuid, void *opaque);
982 
983 #ifdef TARGET_AARCH64
984 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
985 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
986 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
987 void aarch64_sve_change_el(CPUARMState *env, int old_el,
988                            int new_el, bool el0_a64);
989 void aarch64_add_sve_properties(Object *obj);
990 
991 /*
992  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
993  * The byte at offset i from the start of the in-memory representation contains
994  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
995  * lowest offsets are stored in the lowest memory addresses, then that nearly
996  * matches QEMU's representation, which is to use an array of host-endian
997  * uint64_t's, where the lower offsets are at the lower indices. To complete
998  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
999  */
1000 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1001 {
1002 #ifdef HOST_WORDS_BIGENDIAN
1003     int i;
1004 
1005     for (i = 0; i < nr; ++i) {
1006         dst[i] = bswap64(src[i]);
1007     }
1008 
1009     return dst;
1010 #else
1011     return src;
1012 #endif
1013 }
1014 
1015 #else
1016 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1017 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1018                                          int n, bool a)
1019 { }
1020 static inline void aarch64_add_sve_properties(Object *obj) { }
1021 #endif
1022 
1023 #if !defined(CONFIG_TCG)
1024 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1025 {
1026     g_assert_not_reached();
1027 }
1028 #else
1029 target_ulong do_arm_semihosting(CPUARMState *env);
1030 #endif
1031 void aarch64_sync_32_to_64(CPUARMState *env);
1032 void aarch64_sync_64_to_32(CPUARMState *env);
1033 
1034 int fp_exception_el(CPUARMState *env, int cur_el);
1035 int sve_exception_el(CPUARMState *env, int cur_el);
1036 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1037 
1038 static inline bool is_a64(CPUARMState *env)
1039 {
1040     return env->aarch64;
1041 }
1042 
1043 /* you can call this signal handler from your SIGBUS and SIGSEGV
1044    signal handlers to inform the virtual CPU of exceptions. non zero
1045    is returned if the signal was handled by the virtual CPU.  */
1046 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1047                            void *puc);
1048 
1049 /**
1050  * pmu_op_start/finish
1051  * @env: CPUARMState
1052  *
1053  * Convert all PMU counters between their delta form (the typical mode when
1054  * they are enabled) and the guest-visible values. These two calls must
1055  * surround any action which might affect the counters.
1056  */
1057 void pmu_op_start(CPUARMState *env);
1058 void pmu_op_finish(CPUARMState *env);
1059 
1060 /*
1061  * Called when a PMU counter is due to overflow
1062  */
1063 void arm_pmu_timer_cb(void *opaque);
1064 
1065 /**
1066  * Functions to register as EL change hooks for PMU mode filtering
1067  */
1068 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1069 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1070 
1071 /*
1072  * pmu_init
1073  * @cpu: ARMCPU
1074  *
1075  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1076  * for the current configuration
1077  */
1078 void pmu_init(ARMCPU *cpu);
1079 
1080 /* SCTLR bit meanings. Several bits have been reused in newer
1081  * versions of the architecture; in that case we define constants
1082  * for both old and new bit meanings. Code which tests against those
1083  * bits should probably check or otherwise arrange that the CPU
1084  * is the architectural version it expects.
1085  */
1086 #define SCTLR_M       (1U << 0)
1087 #define SCTLR_A       (1U << 1)
1088 #define SCTLR_C       (1U << 2)
1089 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1090 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1091 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1092 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1093 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1094 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1095 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1096 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1097 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1098 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1099 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1100 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1101 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1102 #define SCTLR_SED     (1U << 8) /* v8 onward */
1103 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1104 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1105 #define SCTLR_F       (1U << 10) /* up to v6 */
1106 #define SCTLR_SW      (1U << 10) /* v7 */
1107 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1108 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1109 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1110 #define SCTLR_I       (1U << 12)
1111 #define SCTLR_V       (1U << 13) /* AArch32 only */
1112 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1113 #define SCTLR_RR      (1U << 14) /* up to v7 */
1114 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1115 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1116 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1117 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1118 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1119 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1120 #define SCTLR_BR      (1U << 17) /* PMSA only */
1121 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1122 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1123 #define SCTLR_WXN     (1U << 19)
1124 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1125 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1126 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1127 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1128 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1129 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1130 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1131 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1132 #define SCTLR_VE      (1U << 24) /* up to v7 */
1133 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1134 #define SCTLR_EE      (1U << 25)
1135 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1136 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1137 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1138 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1139 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1140 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1141 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1142 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1143 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1144 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1145 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1146 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1147 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1148 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1149 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1150 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1151 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1152 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1153 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1154 
1155 #define CPTR_TCPAC    (1U << 31)
1156 #define CPTR_TTA      (1U << 20)
1157 #define CPTR_TFP      (1U << 10)
1158 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1159 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1160 
1161 #define MDCR_EPMAD    (1U << 21)
1162 #define MDCR_EDAD     (1U << 20)
1163 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1164 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1165 #define MDCR_SDD      (1U << 16)
1166 #define MDCR_SPD      (3U << 14)
1167 #define MDCR_TDRA     (1U << 11)
1168 #define MDCR_TDOSA    (1U << 10)
1169 #define MDCR_TDA      (1U << 9)
1170 #define MDCR_TDE      (1U << 8)
1171 #define MDCR_HPME     (1U << 7)
1172 #define MDCR_TPM      (1U << 6)
1173 #define MDCR_TPMCR    (1U << 5)
1174 #define MDCR_HPMN     (0x1fU)
1175 
1176 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1177 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1178 
1179 #define CPSR_M (0x1fU)
1180 #define CPSR_T (1U << 5)
1181 #define CPSR_F (1U << 6)
1182 #define CPSR_I (1U << 7)
1183 #define CPSR_A (1U << 8)
1184 #define CPSR_E (1U << 9)
1185 #define CPSR_IT_2_7 (0xfc00U)
1186 #define CPSR_GE (0xfU << 16)
1187 #define CPSR_IL (1U << 20)
1188 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1189  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1190  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1191  * where it is live state but not accessible to the AArch32 code.
1192  */
1193 #define CPSR_RESERVED (0x7U << 21)
1194 #define CPSR_J (1U << 24)
1195 #define CPSR_IT_0_1 (3U << 25)
1196 #define CPSR_Q (1U << 27)
1197 #define CPSR_V (1U << 28)
1198 #define CPSR_C (1U << 29)
1199 #define CPSR_Z (1U << 30)
1200 #define CPSR_N (1U << 31)
1201 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1202 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1203 
1204 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1205 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1206     | CPSR_NZCV)
1207 /* Bits writable in user mode.  */
1208 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1209 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1210 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1211 /* Mask of bits which may be set by exception return copying them from SPSR */
1212 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1213 
1214 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1215 #define XPSR_EXCP 0x1ffU
1216 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1217 #define XPSR_IT_2_7 CPSR_IT_2_7
1218 #define XPSR_GE CPSR_GE
1219 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1220 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1221 #define XPSR_IT_0_1 CPSR_IT_0_1
1222 #define XPSR_Q CPSR_Q
1223 #define XPSR_V CPSR_V
1224 #define XPSR_C CPSR_C
1225 #define XPSR_Z CPSR_Z
1226 #define XPSR_N CPSR_N
1227 #define XPSR_NZCV CPSR_NZCV
1228 #define XPSR_IT CPSR_IT
1229 
1230 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1231 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1232 #define TTBCR_PD0    (1U << 4)
1233 #define TTBCR_PD1    (1U << 5)
1234 #define TTBCR_EPD0   (1U << 7)
1235 #define TTBCR_IRGN0  (3U << 8)
1236 #define TTBCR_ORGN0  (3U << 10)
1237 #define TTBCR_SH0    (3U << 12)
1238 #define TTBCR_T1SZ   (3U << 16)
1239 #define TTBCR_A1     (1U << 22)
1240 #define TTBCR_EPD1   (1U << 23)
1241 #define TTBCR_IRGN1  (3U << 24)
1242 #define TTBCR_ORGN1  (3U << 26)
1243 #define TTBCR_SH1    (1U << 28)
1244 #define TTBCR_EAE    (1U << 31)
1245 
1246 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1247  * Only these are valid when in AArch64 mode; in
1248  * AArch32 mode SPSRs are basically CPSR-format.
1249  */
1250 #define PSTATE_SP (1U)
1251 #define PSTATE_M (0xFU)
1252 #define PSTATE_nRW (1U << 4)
1253 #define PSTATE_F (1U << 6)
1254 #define PSTATE_I (1U << 7)
1255 #define PSTATE_A (1U << 8)
1256 #define PSTATE_D (1U << 9)
1257 #define PSTATE_BTYPE (3U << 10)
1258 #define PSTATE_IL (1U << 20)
1259 #define PSTATE_SS (1U << 21)
1260 #define PSTATE_V (1U << 28)
1261 #define PSTATE_C (1U << 29)
1262 #define PSTATE_Z (1U << 30)
1263 #define PSTATE_N (1U << 31)
1264 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1265 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1266 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1267 /* Mode values for AArch64 */
1268 #define PSTATE_MODE_EL3h 13
1269 #define PSTATE_MODE_EL3t 12
1270 #define PSTATE_MODE_EL2h 9
1271 #define PSTATE_MODE_EL2t 8
1272 #define PSTATE_MODE_EL1h 5
1273 #define PSTATE_MODE_EL1t 4
1274 #define PSTATE_MODE_EL0t 0
1275 
1276 /* Write a new value to v7m.exception, thus transitioning into or out
1277  * of Handler mode; this may result in a change of active stack pointer.
1278  */
1279 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1280 
1281 /* Map EL and handler into a PSTATE_MODE.  */
1282 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1283 {
1284     return (el << 2) | handler;
1285 }
1286 
1287 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1288  * interprocessing, so we don't attempt to sync with the cpsr state used by
1289  * the 32 bit decoder.
1290  */
1291 static inline uint32_t pstate_read(CPUARMState *env)
1292 {
1293     int ZF;
1294 
1295     ZF = (env->ZF == 0);
1296     return (env->NF & 0x80000000) | (ZF << 30)
1297         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1298         | env->pstate | env->daif | (env->btype << 10);
1299 }
1300 
1301 static inline void pstate_write(CPUARMState *env, uint32_t val)
1302 {
1303     env->ZF = (~val) & PSTATE_Z;
1304     env->NF = val;
1305     env->CF = (val >> 29) & 1;
1306     env->VF = (val << 3) & 0x80000000;
1307     env->daif = val & PSTATE_DAIF;
1308     env->btype = (val >> 10) & 3;
1309     env->pstate = val & ~CACHED_PSTATE_BITS;
1310 }
1311 
1312 /* Return the current CPSR value.  */
1313 uint32_t cpsr_read(CPUARMState *env);
1314 
1315 typedef enum CPSRWriteType {
1316     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1317     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1318     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1319     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1320 } CPSRWriteType;
1321 
1322 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1323 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1324                 CPSRWriteType write_type);
1325 
1326 /* Return the current xPSR value.  */
1327 static inline uint32_t xpsr_read(CPUARMState *env)
1328 {
1329     int ZF;
1330     ZF = (env->ZF == 0);
1331     return (env->NF & 0x80000000) | (ZF << 30)
1332         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1333         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1334         | ((env->condexec_bits & 0xfc) << 8)
1335         | (env->GE << 16)
1336         | env->v7m.exception;
1337 }
1338 
1339 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1340 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1341 {
1342     if (mask & XPSR_NZCV) {
1343         env->ZF = (~val) & XPSR_Z;
1344         env->NF = val;
1345         env->CF = (val >> 29) & 1;
1346         env->VF = (val << 3) & 0x80000000;
1347     }
1348     if (mask & XPSR_Q) {
1349         env->QF = ((val & XPSR_Q) != 0);
1350     }
1351     if (mask & XPSR_GE) {
1352         env->GE = (val & XPSR_GE) >> 16;
1353     }
1354 #ifndef CONFIG_USER_ONLY
1355     if (mask & XPSR_T) {
1356         env->thumb = ((val & XPSR_T) != 0);
1357     }
1358     if (mask & XPSR_IT_0_1) {
1359         env->condexec_bits &= ~3;
1360         env->condexec_bits |= (val >> 25) & 3;
1361     }
1362     if (mask & XPSR_IT_2_7) {
1363         env->condexec_bits &= 3;
1364         env->condexec_bits |= (val >> 8) & 0xfc;
1365     }
1366     if (mask & XPSR_EXCP) {
1367         /* Note that this only happens on exception exit */
1368         write_v7m_exception(env, val & XPSR_EXCP);
1369     }
1370 #endif
1371 }
1372 
1373 #define HCR_VM        (1ULL << 0)
1374 #define HCR_SWIO      (1ULL << 1)
1375 #define HCR_PTW       (1ULL << 2)
1376 #define HCR_FMO       (1ULL << 3)
1377 #define HCR_IMO       (1ULL << 4)
1378 #define HCR_AMO       (1ULL << 5)
1379 #define HCR_VF        (1ULL << 6)
1380 #define HCR_VI        (1ULL << 7)
1381 #define HCR_VSE       (1ULL << 8)
1382 #define HCR_FB        (1ULL << 9)
1383 #define HCR_BSU_MASK  (3ULL << 10)
1384 #define HCR_DC        (1ULL << 12)
1385 #define HCR_TWI       (1ULL << 13)
1386 #define HCR_TWE       (1ULL << 14)
1387 #define HCR_TID0      (1ULL << 15)
1388 #define HCR_TID1      (1ULL << 16)
1389 #define HCR_TID2      (1ULL << 17)
1390 #define HCR_TID3      (1ULL << 18)
1391 #define HCR_TSC       (1ULL << 19)
1392 #define HCR_TIDCP     (1ULL << 20)
1393 #define HCR_TACR      (1ULL << 21)
1394 #define HCR_TSW       (1ULL << 22)
1395 #define HCR_TPCP      (1ULL << 23)
1396 #define HCR_TPU       (1ULL << 24)
1397 #define HCR_TTLB      (1ULL << 25)
1398 #define HCR_TVM       (1ULL << 26)
1399 #define HCR_TGE       (1ULL << 27)
1400 #define HCR_TDZ       (1ULL << 28)
1401 #define HCR_HCD       (1ULL << 29)
1402 #define HCR_TRVM      (1ULL << 30)
1403 #define HCR_RW        (1ULL << 31)
1404 #define HCR_CD        (1ULL << 32)
1405 #define HCR_ID        (1ULL << 33)
1406 #define HCR_E2H       (1ULL << 34)
1407 #define HCR_TLOR      (1ULL << 35)
1408 #define HCR_TERR      (1ULL << 36)
1409 #define HCR_TEA       (1ULL << 37)
1410 #define HCR_MIOCNCE   (1ULL << 38)
1411 #define HCR_APK       (1ULL << 40)
1412 #define HCR_API       (1ULL << 41)
1413 #define HCR_NV        (1ULL << 42)
1414 #define HCR_NV1       (1ULL << 43)
1415 #define HCR_AT        (1ULL << 44)
1416 #define HCR_NV2       (1ULL << 45)
1417 #define HCR_FWB       (1ULL << 46)
1418 #define HCR_FIEN      (1ULL << 47)
1419 #define HCR_TID4      (1ULL << 49)
1420 #define HCR_TICAB     (1ULL << 50)
1421 #define HCR_TOCU      (1ULL << 52)
1422 #define HCR_TTLBIS    (1ULL << 54)
1423 #define HCR_TTLBOS    (1ULL << 55)
1424 #define HCR_ATA       (1ULL << 56)
1425 #define HCR_DCT       (1ULL << 57)
1426 
1427 /*
1428  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1429  * HCR_MASK and then clear it again if the feature bit is not set in
1430  * hcr_write().
1431  */
1432 #define HCR_MASK      ((1ULL << 34) - 1)
1433 
1434 #define SCR_NS                (1U << 0)
1435 #define SCR_IRQ               (1U << 1)
1436 #define SCR_FIQ               (1U << 2)
1437 #define SCR_EA                (1U << 3)
1438 #define SCR_FW                (1U << 4)
1439 #define SCR_AW                (1U << 5)
1440 #define SCR_NET               (1U << 6)
1441 #define SCR_SMD               (1U << 7)
1442 #define SCR_HCE               (1U << 8)
1443 #define SCR_SIF               (1U << 9)
1444 #define SCR_RW                (1U << 10)
1445 #define SCR_ST                (1U << 11)
1446 #define SCR_TWI               (1U << 12)
1447 #define SCR_TWE               (1U << 13)
1448 #define SCR_TLOR              (1U << 14)
1449 #define SCR_TERR              (1U << 15)
1450 #define SCR_APK               (1U << 16)
1451 #define SCR_API               (1U << 17)
1452 #define SCR_EEL2              (1U << 18)
1453 #define SCR_EASE              (1U << 19)
1454 #define SCR_NMEA              (1U << 20)
1455 #define SCR_FIEN              (1U << 21)
1456 #define SCR_ENSCXT            (1U << 25)
1457 #define SCR_ATA               (1U << 26)
1458 
1459 /* Return the current FPSCR value.  */
1460 uint32_t vfp_get_fpscr(CPUARMState *env);
1461 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1462 
1463 /* FPCR, Floating Point Control Register
1464  * FPSR, Floating Poiht Status Register
1465  *
1466  * For A64 the FPSCR is split into two logically distinct registers,
1467  * FPCR and FPSR. However since they still use non-overlapping bits
1468  * we store the underlying state in fpscr and just mask on read/write.
1469  */
1470 #define FPSR_MASK 0xf800009f
1471 #define FPCR_MASK 0x07ff9f00
1472 
1473 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1474 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1475 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1476 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1477 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1478 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1479 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1480 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1481 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1482 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1483 
1484 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1485 {
1486     return vfp_get_fpscr(env) & FPSR_MASK;
1487 }
1488 
1489 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1490 {
1491     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1492     vfp_set_fpscr(env, new_fpscr);
1493 }
1494 
1495 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1496 {
1497     return vfp_get_fpscr(env) & FPCR_MASK;
1498 }
1499 
1500 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1501 {
1502     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1503     vfp_set_fpscr(env, new_fpscr);
1504 }
1505 
1506 enum arm_cpu_mode {
1507   ARM_CPU_MODE_USR = 0x10,
1508   ARM_CPU_MODE_FIQ = 0x11,
1509   ARM_CPU_MODE_IRQ = 0x12,
1510   ARM_CPU_MODE_SVC = 0x13,
1511   ARM_CPU_MODE_MON = 0x16,
1512   ARM_CPU_MODE_ABT = 0x17,
1513   ARM_CPU_MODE_HYP = 0x1a,
1514   ARM_CPU_MODE_UND = 0x1b,
1515   ARM_CPU_MODE_SYS = 0x1f
1516 };
1517 
1518 /* VFP system registers.  */
1519 #define ARM_VFP_FPSID   0
1520 #define ARM_VFP_FPSCR   1
1521 #define ARM_VFP_MVFR2   5
1522 #define ARM_VFP_MVFR1   6
1523 #define ARM_VFP_MVFR0   7
1524 #define ARM_VFP_FPEXC   8
1525 #define ARM_VFP_FPINST  9
1526 #define ARM_VFP_FPINST2 10
1527 
1528 /* iwMMXt coprocessor control registers.  */
1529 #define ARM_IWMMXT_wCID  0
1530 #define ARM_IWMMXT_wCon  1
1531 #define ARM_IWMMXT_wCSSF 2
1532 #define ARM_IWMMXT_wCASF 3
1533 #define ARM_IWMMXT_wCGR0 8
1534 #define ARM_IWMMXT_wCGR1 9
1535 #define ARM_IWMMXT_wCGR2 10
1536 #define ARM_IWMMXT_wCGR3 11
1537 
1538 /* V7M CCR bits */
1539 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1540 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1541 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1542 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1543 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1544 FIELD(V7M_CCR, STKALIGN, 9, 1)
1545 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1546 FIELD(V7M_CCR, DC, 16, 1)
1547 FIELD(V7M_CCR, IC, 17, 1)
1548 FIELD(V7M_CCR, BP, 18, 1)
1549 
1550 /* V7M SCR bits */
1551 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1552 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1553 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1554 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1555 
1556 /* V7M AIRCR bits */
1557 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1558 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1559 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1560 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1561 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1562 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1563 FIELD(V7M_AIRCR, PRIS, 14, 1)
1564 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1565 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1566 
1567 /* V7M CFSR bits for MMFSR */
1568 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1569 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1570 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1571 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1572 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1573 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1574 
1575 /* V7M CFSR bits for BFSR */
1576 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1577 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1578 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1579 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1580 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1581 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1582 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1583 
1584 /* V7M CFSR bits for UFSR */
1585 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1586 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1587 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1588 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1589 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1590 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1591 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1592 
1593 /* V7M CFSR bit masks covering all of the subregister bits */
1594 FIELD(V7M_CFSR, MMFSR, 0, 8)
1595 FIELD(V7M_CFSR, BFSR, 8, 8)
1596 FIELD(V7M_CFSR, UFSR, 16, 16)
1597 
1598 /* V7M HFSR bits */
1599 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1600 FIELD(V7M_HFSR, FORCED, 30, 1)
1601 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1602 
1603 /* V7M DFSR bits */
1604 FIELD(V7M_DFSR, HALTED, 0, 1)
1605 FIELD(V7M_DFSR, BKPT, 1, 1)
1606 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1607 FIELD(V7M_DFSR, VCATCH, 3, 1)
1608 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1609 
1610 /* V7M SFSR bits */
1611 FIELD(V7M_SFSR, INVEP, 0, 1)
1612 FIELD(V7M_SFSR, INVIS, 1, 1)
1613 FIELD(V7M_SFSR, INVER, 2, 1)
1614 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1615 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1616 FIELD(V7M_SFSR, LSPERR, 5, 1)
1617 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1618 FIELD(V7M_SFSR, LSERR, 7, 1)
1619 
1620 /* v7M MPU_CTRL bits */
1621 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1622 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1623 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1624 
1625 /* v7M CLIDR bits */
1626 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1627 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1628 FIELD(V7M_CLIDR, LOC, 24, 3)
1629 FIELD(V7M_CLIDR, LOUU, 27, 3)
1630 FIELD(V7M_CLIDR, ICB, 30, 2)
1631 
1632 FIELD(V7M_CSSELR, IND, 0, 1)
1633 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1634 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1635  * define a mask for this and check that it doesn't permit running off
1636  * the end of the array.
1637  */
1638 FIELD(V7M_CSSELR, INDEX, 0, 4)
1639 
1640 /* v7M FPCCR bits */
1641 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1642 FIELD(V7M_FPCCR, USER, 1, 1)
1643 FIELD(V7M_FPCCR, S, 2, 1)
1644 FIELD(V7M_FPCCR, THREAD, 3, 1)
1645 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1646 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1647 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1648 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1649 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1650 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1651 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1652 FIELD(V7M_FPCCR, RES0, 11, 15)
1653 FIELD(V7M_FPCCR, TS, 26, 1)
1654 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1655 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1656 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1657 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1658 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1659 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1660 #define R_V7M_FPCCR_BANKED_MASK                 \
1661     (R_V7M_FPCCR_LSPACT_MASK |                  \
1662      R_V7M_FPCCR_USER_MASK |                    \
1663      R_V7M_FPCCR_THREAD_MASK |                  \
1664      R_V7M_FPCCR_MMRDY_MASK |                   \
1665      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1666      R_V7M_FPCCR_UFRDY_MASK |                   \
1667      R_V7M_FPCCR_ASPEN_MASK)
1668 
1669 /*
1670  * System register ID fields.
1671  */
1672 FIELD(MIDR_EL1, REVISION, 0, 4)
1673 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1674 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1675 FIELD(MIDR_EL1, VARIANT, 20, 4)
1676 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1677 
1678 FIELD(ID_ISAR0, SWAP, 0, 4)
1679 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1680 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1681 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1682 FIELD(ID_ISAR0, COPROC, 16, 4)
1683 FIELD(ID_ISAR0, DEBUG, 20, 4)
1684 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1685 
1686 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1687 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1688 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1689 FIELD(ID_ISAR1, EXTEND, 12, 4)
1690 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1691 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1692 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1693 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1694 
1695 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1696 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1697 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1698 FIELD(ID_ISAR2, MULT, 12, 4)
1699 FIELD(ID_ISAR2, MULTS, 16, 4)
1700 FIELD(ID_ISAR2, MULTU, 20, 4)
1701 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1702 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1703 
1704 FIELD(ID_ISAR3, SATURATE, 0, 4)
1705 FIELD(ID_ISAR3, SIMD, 4, 4)
1706 FIELD(ID_ISAR3, SVC, 8, 4)
1707 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1708 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1709 FIELD(ID_ISAR3, T32COPY, 20, 4)
1710 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1711 FIELD(ID_ISAR3, T32EE, 28, 4)
1712 
1713 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1714 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1715 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1716 FIELD(ID_ISAR4, SMC, 12, 4)
1717 FIELD(ID_ISAR4, BARRIER, 16, 4)
1718 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1719 FIELD(ID_ISAR4, PSR_M, 24, 4)
1720 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1721 
1722 FIELD(ID_ISAR5, SEVL, 0, 4)
1723 FIELD(ID_ISAR5, AES, 4, 4)
1724 FIELD(ID_ISAR5, SHA1, 8, 4)
1725 FIELD(ID_ISAR5, SHA2, 12, 4)
1726 FIELD(ID_ISAR5, CRC32, 16, 4)
1727 FIELD(ID_ISAR5, RDM, 24, 4)
1728 FIELD(ID_ISAR5, VCMA, 28, 4)
1729 
1730 FIELD(ID_ISAR6, JSCVT, 0, 4)
1731 FIELD(ID_ISAR6, DP, 4, 4)
1732 FIELD(ID_ISAR6, FHM, 8, 4)
1733 FIELD(ID_ISAR6, SB, 12, 4)
1734 FIELD(ID_ISAR6, SPECRES, 16, 4)
1735 
1736 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1737 FIELD(ID_MMFR4, AC2, 4, 4)
1738 FIELD(ID_MMFR4, XNX, 8, 4)
1739 FIELD(ID_MMFR4, CNP, 12, 4)
1740 FIELD(ID_MMFR4, HPDS, 16, 4)
1741 FIELD(ID_MMFR4, LSM, 20, 4)
1742 FIELD(ID_MMFR4, CCIDX, 24, 4)
1743 FIELD(ID_MMFR4, EVT, 28, 4)
1744 
1745 FIELD(ID_AA64ISAR0, AES, 4, 4)
1746 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1747 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1748 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1749 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1750 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1751 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1752 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1753 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1754 FIELD(ID_AA64ISAR0, DP, 44, 4)
1755 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1756 FIELD(ID_AA64ISAR0, TS, 52, 4)
1757 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1758 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1759 
1760 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1761 FIELD(ID_AA64ISAR1, APA, 4, 4)
1762 FIELD(ID_AA64ISAR1, API, 8, 4)
1763 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1764 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1765 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1766 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1767 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1768 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1769 FIELD(ID_AA64ISAR1, SB, 36, 4)
1770 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1771 
1772 FIELD(ID_AA64PFR0, EL0, 0, 4)
1773 FIELD(ID_AA64PFR0, EL1, 4, 4)
1774 FIELD(ID_AA64PFR0, EL2, 8, 4)
1775 FIELD(ID_AA64PFR0, EL3, 12, 4)
1776 FIELD(ID_AA64PFR0, FP, 16, 4)
1777 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1778 FIELD(ID_AA64PFR0, GIC, 24, 4)
1779 FIELD(ID_AA64PFR0, RAS, 28, 4)
1780 FIELD(ID_AA64PFR0, SVE, 32, 4)
1781 
1782 FIELD(ID_AA64PFR1, BT, 0, 4)
1783 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1784 FIELD(ID_AA64PFR1, MTE, 8, 4)
1785 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1786 
1787 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1788 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1789 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1790 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1791 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1792 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1793 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1794 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1795 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1796 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1797 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1798 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1799 
1800 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1801 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1802 FIELD(ID_AA64MMFR1, VH, 8, 4)
1803 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1804 FIELD(ID_AA64MMFR1, LO, 16, 4)
1805 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1806 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1807 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1808 
1809 FIELD(ID_DFR0, COPDBG, 0, 4)
1810 FIELD(ID_DFR0, COPSDBG, 4, 4)
1811 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1812 FIELD(ID_DFR0, COPTRC, 12, 4)
1813 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1814 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1815 FIELD(ID_DFR0, PERFMON, 24, 4)
1816 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1817 
1818 FIELD(MVFR0, SIMDREG, 0, 4)
1819 FIELD(MVFR0, FPSP, 4, 4)
1820 FIELD(MVFR0, FPDP, 8, 4)
1821 FIELD(MVFR0, FPTRAP, 12, 4)
1822 FIELD(MVFR0, FPDIVIDE, 16, 4)
1823 FIELD(MVFR0, FPSQRT, 20, 4)
1824 FIELD(MVFR0, FPSHVEC, 24, 4)
1825 FIELD(MVFR0, FPROUND, 28, 4)
1826 
1827 FIELD(MVFR1, FPFTZ, 0, 4)
1828 FIELD(MVFR1, FPDNAN, 4, 4)
1829 FIELD(MVFR1, SIMDLS, 8, 4)
1830 FIELD(MVFR1, SIMDINT, 12, 4)
1831 FIELD(MVFR1, SIMDSP, 16, 4)
1832 FIELD(MVFR1, SIMDHP, 20, 4)
1833 FIELD(MVFR1, FPHP, 24, 4)
1834 FIELD(MVFR1, SIMDFMAC, 28, 4)
1835 
1836 FIELD(MVFR2, SIMDMISC, 0, 4)
1837 FIELD(MVFR2, FPMISC, 4, 4)
1838 
1839 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1840 
1841 /* If adding a feature bit which corresponds to a Linux ELF
1842  * HWCAP bit, remember to update the feature-bit-to-hwcap
1843  * mapping in linux-user/elfload.c:get_elf_hwcap().
1844  */
1845 enum arm_features {
1846     ARM_FEATURE_VFP,
1847     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1848     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1849     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1850     ARM_FEATURE_V6,
1851     ARM_FEATURE_V6K,
1852     ARM_FEATURE_V7,
1853     ARM_FEATURE_THUMB2,
1854     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1855     ARM_FEATURE_VFP3,
1856     ARM_FEATURE_NEON,
1857     ARM_FEATURE_M, /* Microcontroller profile.  */
1858     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1859     ARM_FEATURE_THUMB2EE,
1860     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1861     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1862     ARM_FEATURE_V4T,
1863     ARM_FEATURE_V5,
1864     ARM_FEATURE_STRONGARM,
1865     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1866     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1867     ARM_FEATURE_GENERIC_TIMER,
1868     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1869     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1870     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1871     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1872     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1873     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1874     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1875     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1876     ARM_FEATURE_V8,
1877     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1878     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1879     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1880     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1881     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1882     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1883     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1884     ARM_FEATURE_PMU, /* has PMU support */
1885     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1886     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1887     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1888 };
1889 
1890 static inline int arm_feature(CPUARMState *env, int feature)
1891 {
1892     return (env->features & (1ULL << feature)) != 0;
1893 }
1894 
1895 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1896 
1897 #if !defined(CONFIG_USER_ONLY)
1898 /* Return true if exception levels below EL3 are in secure state,
1899  * or would be following an exception return to that level.
1900  * Unlike arm_is_secure() (which is always a question about the
1901  * _current_ state of the CPU) this doesn't care about the current
1902  * EL or mode.
1903  */
1904 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1905 {
1906     if (arm_feature(env, ARM_FEATURE_EL3)) {
1907         return !(env->cp15.scr_el3 & SCR_NS);
1908     } else {
1909         /* If EL3 is not supported then the secure state is implementation
1910          * defined, in which case QEMU defaults to non-secure.
1911          */
1912         return false;
1913     }
1914 }
1915 
1916 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1917 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1918 {
1919     if (arm_feature(env, ARM_FEATURE_EL3)) {
1920         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1921             /* CPU currently in AArch64 state and EL3 */
1922             return true;
1923         } else if (!is_a64(env) &&
1924                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1925             /* CPU currently in AArch32 state and monitor mode */
1926             return true;
1927         }
1928     }
1929     return false;
1930 }
1931 
1932 /* Return true if the processor is in secure state */
1933 static inline bool arm_is_secure(CPUARMState *env)
1934 {
1935     if (arm_is_el3_or_mon(env)) {
1936         return true;
1937     }
1938     return arm_is_secure_below_el3(env);
1939 }
1940 
1941 #else
1942 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1943 {
1944     return false;
1945 }
1946 
1947 static inline bool arm_is_secure(CPUARMState *env)
1948 {
1949     return false;
1950 }
1951 #endif
1952 
1953 /**
1954  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1955  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1956  * "for all purposes other than a direct read or write access of HCR_EL2."
1957  * Not included here is HCR_RW.
1958  */
1959 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1960 
1961 /* Return true if the specified exception level is running in AArch64 state. */
1962 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1963 {
1964     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1965      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1966      */
1967     assert(el >= 1 && el <= 3);
1968     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1969 
1970     /* The highest exception level is always at the maximum supported
1971      * register width, and then lower levels have a register width controlled
1972      * by bits in the SCR or HCR registers.
1973      */
1974     if (el == 3) {
1975         return aa64;
1976     }
1977 
1978     if (arm_feature(env, ARM_FEATURE_EL3)) {
1979         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1980     }
1981 
1982     if (el == 2) {
1983         return aa64;
1984     }
1985 
1986     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1987         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1988     }
1989 
1990     return aa64;
1991 }
1992 
1993 /* Function for determing whether guest cp register reads and writes should
1994  * access the secure or non-secure bank of a cp register.  When EL3 is
1995  * operating in AArch32 state, the NS-bit determines whether the secure
1996  * instance of a cp register should be used. When EL3 is AArch64 (or if
1997  * it doesn't exist at all) then there is no register banking, and all
1998  * accesses are to the non-secure version.
1999  */
2000 static inline bool access_secure_reg(CPUARMState *env)
2001 {
2002     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2003                 !arm_el_is_aa64(env, 3) &&
2004                 !(env->cp15.scr_el3 & SCR_NS));
2005 
2006     return ret;
2007 }
2008 
2009 /* Macros for accessing a specified CP register bank */
2010 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2011     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2012 
2013 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2014     do {                                                \
2015         if (_secure) {                                   \
2016             (_env)->cp15._regname##_s = (_val);            \
2017         } else {                                        \
2018             (_env)->cp15._regname##_ns = (_val);           \
2019         }                                               \
2020     } while (0)
2021 
2022 /* Macros for automatically accessing a specific CP register bank depending on
2023  * the current secure state of the system.  These macros are not intended for
2024  * supporting instruction translation reads/writes as these are dependent
2025  * solely on the SCR.NS bit and not the mode.
2026  */
2027 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2028     A32_BANKED_REG_GET((_env), _regname,                \
2029                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2030 
2031 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2032     A32_BANKED_REG_SET((_env), _regname,                                    \
2033                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2034                        (_val))
2035 
2036 void arm_cpu_list(void);
2037 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2038                                  uint32_t cur_el, bool secure);
2039 
2040 /* Interface between CPU and Interrupt controller.  */
2041 #ifndef CONFIG_USER_ONLY
2042 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2043 #else
2044 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2045 {
2046     return true;
2047 }
2048 #endif
2049 /**
2050  * armv7m_nvic_set_pending: mark the specified exception as pending
2051  * @opaque: the NVIC
2052  * @irq: the exception number to mark pending
2053  * @secure: false for non-banked exceptions or for the nonsecure
2054  * version of a banked exception, true for the secure version of a banked
2055  * exception.
2056  *
2057  * Marks the specified exception as pending. Note that we will assert()
2058  * if @secure is true and @irq does not specify one of the fixed set
2059  * of architecturally banked exceptions.
2060  */
2061 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2062 /**
2063  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2064  * @opaque: the NVIC
2065  * @irq: the exception number to mark pending
2066  * @secure: false for non-banked exceptions or for the nonsecure
2067  * version of a banked exception, true for the secure version of a banked
2068  * exception.
2069  *
2070  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2071  * exceptions (exceptions generated in the course of trying to take
2072  * a different exception).
2073  */
2074 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2075 /**
2076  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2077  * @opaque: the NVIC
2078  * @irq: the exception number to mark pending
2079  * @secure: false for non-banked exceptions or for the nonsecure
2080  * version of a banked exception, true for the secure version of a banked
2081  * exception.
2082  *
2083  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2084  * generated in the course of lazy stacking of FP registers.
2085  */
2086 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2087 /**
2088  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2089  *    exception, and whether it targets Secure state
2090  * @opaque: the NVIC
2091  * @pirq: set to pending exception number
2092  * @ptargets_secure: set to whether pending exception targets Secure
2093  *
2094  * This function writes the number of the highest priority pending
2095  * exception (the one which would be made active by
2096  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2097  * to true if the current highest priority pending exception should
2098  * be taken to Secure state, false for NS.
2099  */
2100 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2101                                       bool *ptargets_secure);
2102 /**
2103  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2104  * @opaque: the NVIC
2105  *
2106  * Move the current highest priority pending exception from the pending
2107  * state to the active state, and update v7m.exception to indicate that
2108  * it is the exception currently being handled.
2109  */
2110 void armv7m_nvic_acknowledge_irq(void *opaque);
2111 /**
2112  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2113  * @opaque: the NVIC
2114  * @irq: the exception number to complete
2115  * @secure: true if this exception was secure
2116  *
2117  * Returns: -1 if the irq was not active
2118  *           1 if completing this irq brought us back to base (no active irqs)
2119  *           0 if there is still an irq active after this one was completed
2120  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2121  */
2122 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2123 /**
2124  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2125  * @opaque: the NVIC
2126  * @irq: the exception number to mark pending
2127  * @secure: false for non-banked exceptions or for the nonsecure
2128  * version of a banked exception, true for the secure version of a banked
2129  * exception.
2130  *
2131  * Return whether an exception is "ready", i.e. whether the exception is
2132  * enabled and is configured at a priority which would allow it to
2133  * interrupt the current execution priority. This controls whether the
2134  * RDY bit for it in the FPCCR is set.
2135  */
2136 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2137 /**
2138  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2139  * @opaque: the NVIC
2140  *
2141  * Returns: the raw execution priority as defined by the v8M architecture.
2142  * This is the execution priority minus the effects of AIRCR.PRIS,
2143  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2144  * (v8M ARM ARM I_PKLD.)
2145  */
2146 int armv7m_nvic_raw_execution_priority(void *opaque);
2147 /**
2148  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2149  * priority is negative for the specified security state.
2150  * @opaque: the NVIC
2151  * @secure: the security state to test
2152  * This corresponds to the pseudocode IsReqExecPriNeg().
2153  */
2154 #ifndef CONFIG_USER_ONLY
2155 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2156 #else
2157 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2158 {
2159     return false;
2160 }
2161 #endif
2162 
2163 /* Interface for defining coprocessor registers.
2164  * Registers are defined in tables of arm_cp_reginfo structs
2165  * which are passed to define_arm_cp_regs().
2166  */
2167 
2168 /* When looking up a coprocessor register we look for it
2169  * via an integer which encodes all of:
2170  *  coprocessor number
2171  *  Crn, Crm, opc1, opc2 fields
2172  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2173  *    or via MRRC/MCRR?)
2174  *  non-secure/secure bank (AArch32 only)
2175  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2176  * (In this case crn and opc2 should be zero.)
2177  * For AArch64, there is no 32/64 bit size distinction;
2178  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2179  * and 4 bit CRn and CRm. The encoding patterns are chosen
2180  * to be easy to convert to and from the KVM encodings, and also
2181  * so that the hashtable can contain both AArch32 and AArch64
2182  * registers (to allow for interprocessing where we might run
2183  * 32 bit code on a 64 bit core).
2184  */
2185 /* This bit is private to our hashtable cpreg; in KVM register
2186  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2187  * in the upper bits of the 64 bit ID.
2188  */
2189 #define CP_REG_AA64_SHIFT 28
2190 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2191 
2192 /* To enable banking of coprocessor registers depending on ns-bit we
2193  * add a bit to distinguish between secure and non-secure cpregs in the
2194  * hashtable.
2195  */
2196 #define CP_REG_NS_SHIFT 29
2197 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2198 
2199 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2200     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2201      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2202 
2203 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2204     (CP_REG_AA64_MASK |                                 \
2205      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2206      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2207      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2208      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2209      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2210      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2211 
2212 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2213  * version used as a key for the coprocessor register hashtable
2214  */
2215 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2216 {
2217     uint32_t cpregid = kvmid;
2218     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2219         cpregid |= CP_REG_AA64_MASK;
2220     } else {
2221         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2222             cpregid |= (1 << 15);
2223         }
2224 
2225         /* KVM is always non-secure so add the NS flag on AArch32 register
2226          * entries.
2227          */
2228          cpregid |= 1 << CP_REG_NS_SHIFT;
2229     }
2230     return cpregid;
2231 }
2232 
2233 /* Convert a truncated 32 bit hashtable key into the full
2234  * 64 bit KVM register ID.
2235  */
2236 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2237 {
2238     uint64_t kvmid;
2239 
2240     if (cpregid & CP_REG_AA64_MASK) {
2241         kvmid = cpregid & ~CP_REG_AA64_MASK;
2242         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2243     } else {
2244         kvmid = cpregid & ~(1 << 15);
2245         if (cpregid & (1 << 15)) {
2246             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2247         } else {
2248             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2249         }
2250     }
2251     return kvmid;
2252 }
2253 
2254 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2255  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2256  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2257  * TCG can assume the value to be constant (ie load at translate time)
2258  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2259  * indicates that the TB should not be ended after a write to this register
2260  * (the default is that the TB ends after cp writes). OVERRIDE permits
2261  * a register definition to override a previous definition for the
2262  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2263  * old must have the OVERRIDE bit set.
2264  * ALIAS indicates that this register is an alias view of some underlying
2265  * state which is also visible via another register, and that the other
2266  * register is handling migration and reset; registers marked ALIAS will not be
2267  * migrated but may have their state set by syncing of register state from KVM.
2268  * NO_RAW indicates that this register has no underlying state and does not
2269  * support raw access for state saving/loading; it will not be used for either
2270  * migration or KVM state synchronization. (Typically this is for "registers"
2271  * which are actually used as instructions for cache maintenance and so on.)
2272  * IO indicates that this register does I/O and therefore its accesses
2273  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2274  * registers which implement clocks or timers require this.
2275  * RAISES_EXC is for when the read or write hook might raise an exception;
2276  * the generated code will synchronize the CPU state before calling the hook
2277  * so that it is safe for the hook to call raise_exception().
2278  * NEWEL is for writes to registers that might change the exception
2279  * level - typically on older ARM chips. For those cases we need to
2280  * re-read the new el when recomputing the translation flags.
2281  */
2282 #define ARM_CP_SPECIAL           0x0001
2283 #define ARM_CP_CONST             0x0002
2284 #define ARM_CP_64BIT             0x0004
2285 #define ARM_CP_SUPPRESS_TB_END   0x0008
2286 #define ARM_CP_OVERRIDE          0x0010
2287 #define ARM_CP_ALIAS             0x0020
2288 #define ARM_CP_IO                0x0040
2289 #define ARM_CP_NO_RAW            0x0080
2290 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2291 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2292 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2293 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2294 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2295 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2296 #define ARM_CP_FPU               0x1000
2297 #define ARM_CP_SVE               0x2000
2298 #define ARM_CP_NO_GDB            0x4000
2299 #define ARM_CP_RAISES_EXC        0x8000
2300 #define ARM_CP_NEWEL             0x10000
2301 /* Used only as a terminator for ARMCPRegInfo lists */
2302 #define ARM_CP_SENTINEL          0xfffff
2303 /* Mask of only the flag bits in a type field */
2304 #define ARM_CP_FLAG_MASK         0x1f0ff
2305 
2306 /* Valid values for ARMCPRegInfo state field, indicating which of
2307  * the AArch32 and AArch64 execution states this register is visible in.
2308  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2309  * If the reginfo is declared to be visible in both states then a second
2310  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2311  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2312  * Note that we rely on the values of these enums as we iterate through
2313  * the various states in some places.
2314  */
2315 enum {
2316     ARM_CP_STATE_AA32 = 0,
2317     ARM_CP_STATE_AA64 = 1,
2318     ARM_CP_STATE_BOTH = 2,
2319 };
2320 
2321 /* ARM CP register secure state flags.  These flags identify security state
2322  * attributes for a given CP register entry.
2323  * The existence of both or neither secure and non-secure flags indicates that
2324  * the register has both a secure and non-secure hash entry.  A single one of
2325  * these flags causes the register to only be hashed for the specified
2326  * security state.
2327  * Although definitions may have any combination of the S/NS bits, each
2328  * registered entry will only have one to identify whether the entry is secure
2329  * or non-secure.
2330  */
2331 enum {
2332     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2333     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2334 };
2335 
2336 /* Return true if cptype is a valid type field. This is used to try to
2337  * catch errors where the sentinel has been accidentally left off the end
2338  * of a list of registers.
2339  */
2340 static inline bool cptype_valid(int cptype)
2341 {
2342     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2343         || ((cptype & ARM_CP_SPECIAL) &&
2344             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2345 }
2346 
2347 /* Access rights:
2348  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2349  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2350  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2351  * (ie any of the privileged modes in Secure state, or Monitor mode).
2352  * If a register is accessible in one privilege level it's always accessible
2353  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2354  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2355  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2356  * terminology a little and call this PL3.
2357  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2358  * with the ELx exception levels.
2359  *
2360  * If access permissions for a register are more complex than can be
2361  * described with these bits, then use a laxer set of restrictions, and
2362  * do the more restrictive/complex check inside a helper function.
2363  */
2364 #define PL3_R 0x80
2365 #define PL3_W 0x40
2366 #define PL2_R (0x20 | PL3_R)
2367 #define PL2_W (0x10 | PL3_W)
2368 #define PL1_R (0x08 | PL2_R)
2369 #define PL1_W (0x04 | PL2_W)
2370 #define PL0_R (0x02 | PL1_R)
2371 #define PL0_W (0x01 | PL1_W)
2372 
2373 /*
2374  * For user-mode some registers are accessible to EL0 via a kernel
2375  * trap-and-emulate ABI. In this case we define the read permissions
2376  * as actually being PL0_R. However some bits of any given register
2377  * may still be masked.
2378  */
2379 #ifdef CONFIG_USER_ONLY
2380 #define PL0U_R PL0_R
2381 #else
2382 #define PL0U_R PL1_R
2383 #endif
2384 
2385 #define PL3_RW (PL3_R | PL3_W)
2386 #define PL2_RW (PL2_R | PL2_W)
2387 #define PL1_RW (PL1_R | PL1_W)
2388 #define PL0_RW (PL0_R | PL0_W)
2389 
2390 /* Return the highest implemented Exception Level */
2391 static inline int arm_highest_el(CPUARMState *env)
2392 {
2393     if (arm_feature(env, ARM_FEATURE_EL3)) {
2394         return 3;
2395     }
2396     if (arm_feature(env, ARM_FEATURE_EL2)) {
2397         return 2;
2398     }
2399     return 1;
2400 }
2401 
2402 /* Return true if a v7M CPU is in Handler mode */
2403 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2404 {
2405     return env->v7m.exception != 0;
2406 }
2407 
2408 /* Return the current Exception Level (as per ARMv8; note that this differs
2409  * from the ARMv7 Privilege Level).
2410  */
2411 static inline int arm_current_el(CPUARMState *env)
2412 {
2413     if (arm_feature(env, ARM_FEATURE_M)) {
2414         return arm_v7m_is_handler_mode(env) ||
2415             !(env->v7m.control[env->v7m.secure] & 1);
2416     }
2417 
2418     if (is_a64(env)) {
2419         return extract32(env->pstate, 2, 2);
2420     }
2421 
2422     switch (env->uncached_cpsr & 0x1f) {
2423     case ARM_CPU_MODE_USR:
2424         return 0;
2425     case ARM_CPU_MODE_HYP:
2426         return 2;
2427     case ARM_CPU_MODE_MON:
2428         return 3;
2429     default:
2430         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2431             /* If EL3 is 32-bit then all secure privileged modes run in
2432              * EL3
2433              */
2434             return 3;
2435         }
2436 
2437         return 1;
2438     }
2439 }
2440 
2441 typedef struct ARMCPRegInfo ARMCPRegInfo;
2442 
2443 typedef enum CPAccessResult {
2444     /* Access is permitted */
2445     CP_ACCESS_OK = 0,
2446     /* Access fails due to a configurable trap or enable which would
2447      * result in a categorized exception syndrome giving information about
2448      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2449      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2450      * PL1 if in EL0, otherwise to the current EL).
2451      */
2452     CP_ACCESS_TRAP = 1,
2453     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2454      * Note that this is not a catch-all case -- the set of cases which may
2455      * result in this failure is specifically defined by the architecture.
2456      */
2457     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2458     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2459     CP_ACCESS_TRAP_EL2 = 3,
2460     CP_ACCESS_TRAP_EL3 = 4,
2461     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2462     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2463     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2464     /* Access fails and results in an exception syndrome for an FP access,
2465      * trapped directly to EL2 or EL3
2466      */
2467     CP_ACCESS_TRAP_FP_EL2 = 7,
2468     CP_ACCESS_TRAP_FP_EL3 = 8,
2469 } CPAccessResult;
2470 
2471 /* Access functions for coprocessor registers. These cannot fail and
2472  * may not raise exceptions.
2473  */
2474 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2475 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2476                        uint64_t value);
2477 /* Access permission check functions for coprocessor registers. */
2478 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2479                                   const ARMCPRegInfo *opaque,
2480                                   bool isread);
2481 /* Hook function for register reset */
2482 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2483 
2484 #define CP_ANY 0xff
2485 
2486 /* Definition of an ARM coprocessor register */
2487 struct ARMCPRegInfo {
2488     /* Name of register (useful mainly for debugging, need not be unique) */
2489     const char *name;
2490     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2491      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2492      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2493      * will be decoded to this register. The register read and write
2494      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2495      * used by the program, so it is possible to register a wildcard and
2496      * then behave differently on read/write if necessary.
2497      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2498      * must both be zero.
2499      * For AArch64-visible registers, opc0 is also used.
2500      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2501      * way to distinguish (for KVM's benefit) guest-visible system registers
2502      * from demuxed ones provided to preserve the "no side effects on
2503      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2504      * visible (to match KVM's encoding); cp==0 will be converted to
2505      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2506      */
2507     uint8_t cp;
2508     uint8_t crn;
2509     uint8_t crm;
2510     uint8_t opc0;
2511     uint8_t opc1;
2512     uint8_t opc2;
2513     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2514     int state;
2515     /* Register type: ARM_CP_* bits/values */
2516     int type;
2517     /* Access rights: PL*_[RW] */
2518     int access;
2519     /* Security state: ARM_CP_SECSTATE_* bits/values */
2520     int secure;
2521     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2522      * this register was defined: can be used to hand data through to the
2523      * register read/write functions, since they are passed the ARMCPRegInfo*.
2524      */
2525     void *opaque;
2526     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2527      * fieldoffset is non-zero, the reset value of the register.
2528      */
2529     uint64_t resetvalue;
2530     /* Offset of the field in CPUARMState for this register.
2531      *
2532      * This is not needed if either:
2533      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2534      *  2. both readfn and writefn are specified
2535      */
2536     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2537 
2538     /* Offsets of the secure and non-secure fields in CPUARMState for the
2539      * register if it is banked.  These fields are only used during the static
2540      * registration of a register.  During hashing the bank associated
2541      * with a given security state is copied to fieldoffset which is used from
2542      * there on out.
2543      *
2544      * It is expected that register definitions use either fieldoffset or
2545      * bank_fieldoffsets in the definition but not both.  It is also expected
2546      * that both bank offsets are set when defining a banked register.  This
2547      * use indicates that a register is banked.
2548      */
2549     ptrdiff_t bank_fieldoffsets[2];
2550 
2551     /* Function for making any access checks for this register in addition to
2552      * those specified by the 'access' permissions bits. If NULL, no extra
2553      * checks required. The access check is performed at runtime, not at
2554      * translate time.
2555      */
2556     CPAccessFn *accessfn;
2557     /* Function for handling reads of this register. If NULL, then reads
2558      * will be done by loading from the offset into CPUARMState specified
2559      * by fieldoffset.
2560      */
2561     CPReadFn *readfn;
2562     /* Function for handling writes of this register. If NULL, then writes
2563      * will be done by writing to the offset into CPUARMState specified
2564      * by fieldoffset.
2565      */
2566     CPWriteFn *writefn;
2567     /* Function for doing a "raw" read; used when we need to copy
2568      * coprocessor state to the kernel for KVM or out for
2569      * migration. This only needs to be provided if there is also a
2570      * readfn and it has side effects (for instance clear-on-read bits).
2571      */
2572     CPReadFn *raw_readfn;
2573     /* Function for doing a "raw" write; used when we need to copy KVM
2574      * kernel coprocessor state into userspace, or for inbound
2575      * migration. This only needs to be provided if there is also a
2576      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2577      * or similar behaviour.
2578      */
2579     CPWriteFn *raw_writefn;
2580     /* Function for resetting the register. If NULL, then reset will be done
2581      * by writing resetvalue to the field specified in fieldoffset. If
2582      * fieldoffset is 0 then no reset will be done.
2583      */
2584     CPResetFn *resetfn;
2585 };
2586 
2587 /* Macros which are lvalues for the field in CPUARMState for the
2588  * ARMCPRegInfo *ri.
2589  */
2590 #define CPREG_FIELD32(env, ri) \
2591     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2592 #define CPREG_FIELD64(env, ri) \
2593     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2594 
2595 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2596 
2597 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2598                                     const ARMCPRegInfo *regs, void *opaque);
2599 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2600                                        const ARMCPRegInfo *regs, void *opaque);
2601 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2602 {
2603     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2604 }
2605 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2606 {
2607     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2608 }
2609 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2610 
2611 /*
2612  * Definition of an ARM co-processor register as viewed from
2613  * userspace. This is used for presenting sanitised versions of
2614  * registers to userspace when emulating the Linux AArch64 CPU
2615  * ID/feature ABI (advertised as HWCAP_CPUID).
2616  */
2617 typedef struct ARMCPRegUserSpaceInfo {
2618     /* Name of register */
2619     const char *name;
2620 
2621     /* Is the name actually a glob pattern */
2622     bool is_glob;
2623 
2624     /* Only some bits are exported to user space */
2625     uint64_t exported_bits;
2626 
2627     /* Fixed bits are applied after the mask */
2628     uint64_t fixed_bits;
2629 } ARMCPRegUserSpaceInfo;
2630 
2631 #define REGUSERINFO_SENTINEL { .name = NULL }
2632 
2633 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2634 
2635 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2636 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2637                          uint64_t value);
2638 /* CPReadFn that can be used for read-as-zero behaviour */
2639 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2640 
2641 /* CPResetFn that does nothing, for use if no reset is required even
2642  * if fieldoffset is non zero.
2643  */
2644 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2645 
2646 /* Return true if this reginfo struct's field in the cpu state struct
2647  * is 64 bits wide.
2648  */
2649 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2650 {
2651     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2652 }
2653 
2654 static inline bool cp_access_ok(int current_el,
2655                                 const ARMCPRegInfo *ri, int isread)
2656 {
2657     return (ri->access >> ((current_el * 2) + isread)) & 1;
2658 }
2659 
2660 /* Raw read of a coprocessor register (as needed for migration, etc) */
2661 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2662 
2663 /**
2664  * write_list_to_cpustate
2665  * @cpu: ARMCPU
2666  *
2667  * For each register listed in the ARMCPU cpreg_indexes list, write
2668  * its value from the cpreg_values list into the ARMCPUState structure.
2669  * This updates TCG's working data structures from KVM data or
2670  * from incoming migration state.
2671  *
2672  * Returns: true if all register values were updated correctly,
2673  * false if some register was unknown or could not be written.
2674  * Note that we do not stop early on failure -- we will attempt
2675  * writing all registers in the list.
2676  */
2677 bool write_list_to_cpustate(ARMCPU *cpu);
2678 
2679 /**
2680  * write_cpustate_to_list:
2681  * @cpu: ARMCPU
2682  * @kvm_sync: true if this is for syncing back to KVM
2683  *
2684  * For each register listed in the ARMCPU cpreg_indexes list, write
2685  * its value from the ARMCPUState structure into the cpreg_values list.
2686  * This is used to copy info from TCG's working data structures into
2687  * KVM or for outbound migration.
2688  *
2689  * @kvm_sync is true if we are doing this in order to sync the
2690  * register state back to KVM. In this case we will only update
2691  * values in the list if the previous list->cpustate sync actually
2692  * successfully wrote the CPU state. Otherwise we will keep the value
2693  * that is in the list.
2694  *
2695  * Returns: true if all register values were read correctly,
2696  * false if some register was unknown or could not be read.
2697  * Note that we do not stop early on failure -- we will attempt
2698  * reading all registers in the list.
2699  */
2700 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2701 
2702 #define ARM_CPUID_TI915T      0x54029152
2703 #define ARM_CPUID_TI925T      0x54029252
2704 
2705 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2706                                      unsigned int target_el)
2707 {
2708     CPUARMState *env = cs->env_ptr;
2709     unsigned int cur_el = arm_current_el(env);
2710     bool secure = arm_is_secure(env);
2711     bool pstate_unmasked;
2712     int8_t unmasked = 0;
2713     uint64_t hcr_el2;
2714 
2715     /* Don't take exceptions if they target a lower EL.
2716      * This check should catch any exceptions that would not be taken but left
2717      * pending.
2718      */
2719     if (cur_el > target_el) {
2720         return false;
2721     }
2722 
2723     hcr_el2 = arm_hcr_el2_eff(env);
2724 
2725     switch (excp_idx) {
2726     case EXCP_FIQ:
2727         pstate_unmasked = !(env->daif & PSTATE_F);
2728         break;
2729 
2730     case EXCP_IRQ:
2731         pstate_unmasked = !(env->daif & PSTATE_I);
2732         break;
2733 
2734     case EXCP_VFIQ:
2735         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2736             /* VFIQs are only taken when hypervized and non-secure.  */
2737             return false;
2738         }
2739         return !(env->daif & PSTATE_F);
2740     case EXCP_VIRQ:
2741         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2742             /* VIRQs are only taken when hypervized and non-secure.  */
2743             return false;
2744         }
2745         return !(env->daif & PSTATE_I);
2746     default:
2747         g_assert_not_reached();
2748     }
2749 
2750     /* Use the target EL, current execution state and SCR/HCR settings to
2751      * determine whether the corresponding CPSR bit is used to mask the
2752      * interrupt.
2753      */
2754     if ((target_el > cur_el) && (target_el != 1)) {
2755         /* Exceptions targeting a higher EL may not be maskable */
2756         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2757             /* 64-bit masking rules are simple: exceptions to EL3
2758              * can't be masked, and exceptions to EL2 can only be
2759              * masked from Secure state. The HCR and SCR settings
2760              * don't affect the masking logic, only the interrupt routing.
2761              */
2762             if (target_el == 3 || !secure) {
2763                 unmasked = 1;
2764             }
2765         } else {
2766             /* The old 32-bit-only environment has a more complicated
2767              * masking setup. HCR and SCR bits not only affect interrupt
2768              * routing but also change the behaviour of masking.
2769              */
2770             bool hcr, scr;
2771 
2772             switch (excp_idx) {
2773             case EXCP_FIQ:
2774                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2775                  * we override the CPSR.F in determining if the exception is
2776                  * masked or not. If neither of these are set then we fall back
2777                  * to the CPSR.F setting otherwise we further assess the state
2778                  * below.
2779                  */
2780                 hcr = hcr_el2 & HCR_FMO;
2781                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2782 
2783                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2784                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2785                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2786                  * when non-secure but only when FIQs are only routed to EL3.
2787                  */
2788                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2789                 break;
2790             case EXCP_IRQ:
2791                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2792                  * we may override the CPSR.I masking when in non-secure state.
2793                  * The SCR.IRQ setting has already been taken into consideration
2794                  * when setting the target EL, so it does not have a further
2795                  * affect here.
2796                  */
2797                 hcr = hcr_el2 & HCR_IMO;
2798                 scr = false;
2799                 break;
2800             default:
2801                 g_assert_not_reached();
2802             }
2803 
2804             if ((scr || hcr) && !secure) {
2805                 unmasked = 1;
2806             }
2807         }
2808     }
2809 
2810     /* The PSTATE bits only mask the interrupt if we have not overriden the
2811      * ability above.
2812      */
2813     return unmasked || pstate_unmasked;
2814 }
2815 
2816 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2817 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2818 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2819 
2820 #define cpu_signal_handler cpu_arm_signal_handler
2821 #define cpu_list arm_cpu_list
2822 
2823 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2824  *
2825  * If EL3 is 64-bit:
2826  *  + NonSecure EL1 & 0 stage 1
2827  *  + NonSecure EL1 & 0 stage 2
2828  *  + NonSecure EL2
2829  *  + Secure EL1 & EL0
2830  *  + Secure EL3
2831  * If EL3 is 32-bit:
2832  *  + NonSecure PL1 & 0 stage 1
2833  *  + NonSecure PL1 & 0 stage 2
2834  *  + NonSecure PL2
2835  *  + Secure PL0 & PL1
2836  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2837  *
2838  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2839  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2840  *     may differ in access permissions even if the VA->PA map is the same
2841  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2842  *     translation, which means that we have one mmu_idx that deals with two
2843  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2844  *     architecturally permitted]
2845  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2846  *     handling via the TLB. The only way to do a stage 1 translation without
2847  *     the immediate stage 2 translation is via the ATS or AT system insns,
2848  *     which can be slow-pathed and always do a page table walk.
2849  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2850  *     translation regimes, because they map reasonably well to each other
2851  *     and they can't both be active at the same time.
2852  * This gives us the following list of mmu_idx values:
2853  *
2854  * NS EL0 (aka NS PL0) stage 1+2
2855  * NS EL1 (aka NS PL1) stage 1+2
2856  * NS EL2 (aka NS PL2)
2857  * S EL3 (aka S PL1)
2858  * S EL0 (aka S PL0)
2859  * S EL1 (not used if EL3 is 32 bit)
2860  * NS EL0+1 stage 2
2861  *
2862  * (The last of these is an mmu_idx because we want to be able to use the TLB
2863  * for the accesses done as part of a stage 1 page table walk, rather than
2864  * having to walk the stage 2 page table over and over.)
2865  *
2866  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2867  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2868  * NS EL2 if we ever model a Cortex-R52).
2869  *
2870  * M profile CPUs are rather different as they do not have a true MMU.
2871  * They have the following different MMU indexes:
2872  *  User
2873  *  Privileged
2874  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2875  *  Privileged, execution priority negative (ditto)
2876  * If the CPU supports the v8M Security Extension then there are also:
2877  *  Secure User
2878  *  Secure Privileged
2879  *  Secure User, execution priority negative
2880  *  Secure Privileged, execution priority negative
2881  *
2882  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2883  * are not quite the same -- different CPU types (most notably M profile
2884  * vs A/R profile) would like to use MMU indexes with different semantics,
2885  * but since we don't ever need to use all of those in a single CPU we
2886  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2887  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2888  * the same for any particular CPU.
2889  * Variables of type ARMMUIdx are always full values, and the core
2890  * index values are in variables of type 'int'.
2891  *
2892  * Our enumeration includes at the end some entries which are not "true"
2893  * mmu_idx values in that they don't have corresponding TLBs and are only
2894  * valid for doing slow path page table walks.
2895  *
2896  * The constant names here are patterned after the general style of the names
2897  * of the AT/ATS operations.
2898  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2899  * For M profile we arrange them to have a bit for priv, a bit for negpri
2900  * and a bit for secure.
2901  */
2902 #define ARM_MMU_IDX_A 0x10 /* A profile */
2903 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2904 #define ARM_MMU_IDX_M 0x40 /* M profile */
2905 
2906 /* meanings of the bits for M profile mmu idx values */
2907 #define ARM_MMU_IDX_M_PRIV 0x1
2908 #define ARM_MMU_IDX_M_NEGPRI 0x2
2909 #define ARM_MMU_IDX_M_S 0x4
2910 
2911 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2912 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2913 
2914 typedef enum ARMMMUIdx {
2915     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2916     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2917     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2918     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2919     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2920     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2921     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2922     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2923     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2924     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2925     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2926     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2927     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2928     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2929     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2930     /* Indexes below here don't have TLBs and are used only for AT system
2931      * instructions or for the first stage of an S12 page table walk.
2932      */
2933     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2934     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2935 } ARMMMUIdx;
2936 
2937 /* Bit macros for the core-mmu-index values for each index,
2938  * for use when calling tlb_flush_by_mmuidx() and friends.
2939  */
2940 typedef enum ARMMMUIdxBit {
2941     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2942     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2943     ARMMMUIdxBit_S1E2 = 1 << 2,
2944     ARMMMUIdxBit_S1E3 = 1 << 3,
2945     ARMMMUIdxBit_S1SE0 = 1 << 4,
2946     ARMMMUIdxBit_S1SE1 = 1 << 5,
2947     ARMMMUIdxBit_S2NS = 1 << 6,
2948     ARMMMUIdxBit_MUser = 1 << 0,
2949     ARMMMUIdxBit_MPriv = 1 << 1,
2950     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2951     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2952     ARMMMUIdxBit_MSUser = 1 << 4,
2953     ARMMMUIdxBit_MSPriv = 1 << 5,
2954     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2955     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2956 } ARMMMUIdxBit;
2957 
2958 #define MMU_USER_IDX 0
2959 
2960 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2961 {
2962     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2963 }
2964 
2965 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2966 {
2967     if (arm_feature(env, ARM_FEATURE_M)) {
2968         return mmu_idx | ARM_MMU_IDX_M;
2969     } else {
2970         return mmu_idx | ARM_MMU_IDX_A;
2971     }
2972 }
2973 
2974 /* Return the exception level we're running at if this is our mmu_idx */
2975 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2976 {
2977     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2978     case ARM_MMU_IDX_A:
2979         return mmu_idx & 3;
2980     case ARM_MMU_IDX_M:
2981         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2982     default:
2983         g_assert_not_reached();
2984     }
2985 }
2986 
2987 /*
2988  * Return the MMU index for a v7M CPU with all relevant information
2989  * manually specified.
2990  */
2991 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2992                               bool secstate, bool priv, bool negpri);
2993 
2994 /* Return the MMU index for a v7M CPU in the specified security and
2995  * privilege state.
2996  */
2997 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2998                                                 bool secstate, bool priv);
2999 
3000 /* Return the MMU index for a v7M CPU in the specified security state */
3001 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
3002 
3003 /**
3004  * cpu_mmu_index:
3005  * @env: The cpu environment
3006  * @ifetch: True for code access, false for data access.
3007  *
3008  * Return the core mmu index for the current translation regime.
3009  * This function is used by generic TCG code paths.
3010  */
3011 int cpu_mmu_index(CPUARMState *env, bool ifetch);
3012 
3013 /* Indexes used when registering address spaces with cpu_address_space_init */
3014 typedef enum ARMASIdx {
3015     ARMASIdx_NS = 0,
3016     ARMASIdx_S = 1,
3017 } ARMASIdx;
3018 
3019 /* Return the Exception Level targeted by debug exceptions. */
3020 static inline int arm_debug_target_el(CPUARMState *env)
3021 {
3022     bool secure = arm_is_secure(env);
3023     bool route_to_el2 = false;
3024 
3025     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
3026         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3027                        env->cp15.mdcr_el2 & MDCR_TDE;
3028     }
3029 
3030     if (route_to_el2) {
3031         return 2;
3032     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3033                !arm_el_is_aa64(env, 3) && secure) {
3034         return 3;
3035     } else {
3036         return 1;
3037     }
3038 }
3039 
3040 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3041 {
3042     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3043      * CSSELR is RAZ/WI.
3044      */
3045     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3046 }
3047 
3048 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3049 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3050 {
3051     int cur_el = arm_current_el(env);
3052     int debug_el;
3053 
3054     if (cur_el == 3) {
3055         return false;
3056     }
3057 
3058     /* MDCR_EL3.SDD disables debug events from Secure state */
3059     if (arm_is_secure_below_el3(env)
3060         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3061         return false;
3062     }
3063 
3064     /*
3065      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3066      * while not masking the (D)ebug bit in DAIF.
3067      */
3068     debug_el = arm_debug_target_el(env);
3069 
3070     if (cur_el == debug_el) {
3071         return extract32(env->cp15.mdscr_el1, 13, 1)
3072             && !(env->daif & PSTATE_D);
3073     }
3074 
3075     /* Otherwise the debug target needs to be a higher EL */
3076     return debug_el > cur_el;
3077 }
3078 
3079 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3080 {
3081     int el = arm_current_el(env);
3082 
3083     if (el == 0 && arm_el_is_aa64(env, 1)) {
3084         return aa64_generate_debug_exceptions(env);
3085     }
3086 
3087     if (arm_is_secure(env)) {
3088         int spd;
3089 
3090         if (el == 0 && (env->cp15.sder & 1)) {
3091             /* SDER.SUIDEN means debug exceptions from Secure EL0
3092              * are always enabled. Otherwise they are controlled by
3093              * SDCR.SPD like those from other Secure ELs.
3094              */
3095             return true;
3096         }
3097 
3098         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3099         switch (spd) {
3100         case 1:
3101             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3102         case 0:
3103             /* For 0b00 we return true if external secure invasive debug
3104              * is enabled. On real hardware this is controlled by external
3105              * signals to the core. QEMU always permits debug, and behaves
3106              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3107              */
3108             return true;
3109         case 2:
3110             return false;
3111         case 3:
3112             return true;
3113         }
3114     }
3115 
3116     return el != 2;
3117 }
3118 
3119 /* Return true if debugging exceptions are currently enabled.
3120  * This corresponds to what in ARM ARM pseudocode would be
3121  *    if UsingAArch32() then
3122  *        return AArch32.GenerateDebugExceptions()
3123  *    else
3124  *        return AArch64.GenerateDebugExceptions()
3125  * We choose to push the if() down into this function for clarity,
3126  * since the pseudocode has it at all callsites except for the one in
3127  * CheckSoftwareStep(), where it is elided because both branches would
3128  * always return the same value.
3129  */
3130 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3131 {
3132     if (env->aarch64) {
3133         return aa64_generate_debug_exceptions(env);
3134     } else {
3135         return aa32_generate_debug_exceptions(env);
3136     }
3137 }
3138 
3139 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3140  * implicitly means this always returns false in pre-v8 CPUs.)
3141  */
3142 static inline bool arm_singlestep_active(CPUARMState *env)
3143 {
3144     return extract32(env->cp15.mdscr_el1, 0, 1)
3145         && arm_el_is_aa64(env, arm_debug_target_el(env))
3146         && arm_generate_debug_exceptions(env);
3147 }
3148 
3149 static inline bool arm_sctlr_b(CPUARMState *env)
3150 {
3151     return
3152         /* We need not implement SCTLR.ITD in user-mode emulation, so
3153          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3154          * This lets people run BE32 binaries with "-cpu any".
3155          */
3156 #ifndef CONFIG_USER_ONLY
3157         !arm_feature(env, ARM_FEATURE_V7) &&
3158 #endif
3159         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3160 }
3161 
3162 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3163 {
3164     if (el == 0) {
3165         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3166         return env->cp15.sctlr_el[1];
3167     } else {
3168         return env->cp15.sctlr_el[el];
3169     }
3170 }
3171 
3172 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3173                                                   bool sctlr_b)
3174 {
3175 #ifdef CONFIG_USER_ONLY
3176     /*
3177      * In system mode, BE32 is modelled in line with the
3178      * architecture (as word-invariant big-endianness), where loads
3179      * and stores are done little endian but from addresses which
3180      * are adjusted by XORing with the appropriate constant. So the
3181      * endianness to use for the raw data access is not affected by
3182      * SCTLR.B.
3183      * In user mode, however, we model BE32 as byte-invariant
3184      * big-endianness (because user-only code cannot tell the
3185      * difference), and so we need to use a data access endianness
3186      * that depends on SCTLR.B.
3187      */
3188     if (sctlr_b) {
3189         return true;
3190     }
3191 #endif
3192     /* In 32bit endianness is determined by looking at CPSR's E bit */
3193     return env->uncached_cpsr & CPSR_E;
3194 }
3195 
3196 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3197 {
3198     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3199 }
3200 
3201 /* Return true if the processor is in big-endian mode. */
3202 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3203 {
3204     if (!is_a64(env)) {
3205         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3206     } else {
3207         int cur_el = arm_current_el(env);
3208         uint64_t sctlr = arm_sctlr(env, cur_el);
3209         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3210     }
3211 }
3212 
3213 typedef CPUARMState CPUArchState;
3214 typedef ARMCPU ArchCPU;
3215 
3216 #include "exec/cpu-all.h"
3217 
3218 /*
3219  * Bit usage in the TB flags field: bit 31 indicates whether we are
3220  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3221  * We put flags which are shared between 32 and 64 bit mode at the top
3222  * of the word, and flags which apply to only one mode at the bottom.
3223  *
3224  * Unless otherwise noted, these bits are cached in env->hflags.
3225  */
3226 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3227 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3228 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3229 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)     /* Not cached. */
3230 /* Target EL if we take a floating-point-disabled exception */
3231 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3232 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3233 /*
3234  * For A-profile only, target EL for debug exceptions.
3235  * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3236  */
3237 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3238 
3239 /* Bit usage when in AArch32 state: */
3240 FIELD(TBFLAG_A32, THUMB, 0, 1)          /* Not cached. */
3241 FIELD(TBFLAG_A32, VECLEN, 1, 3)         /* Not cached. */
3242 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)      /* Not cached. */
3243 /*
3244  * We store the bottom two bits of the CPAR as TB flags and handle
3245  * checks on the other bits at runtime. This shares the same bits as
3246  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3247  * Not cached, because VECLEN+VECSTRIDE are not cached.
3248  */
3249 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3250 /*
3251  * Indicates whether cp register reads and writes by guest code should access
3252  * the secure or nonsecure bank of banked registers; note that this is not
3253  * the same thing as the current security state of the processor!
3254  */
3255 FIELD(TBFLAG_A32, NS, 6, 1)
3256 FIELD(TBFLAG_A32, VFPEN, 7, 1)          /* Partially cached, minus FPEXC. */
3257 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)       /* Not cached. */
3258 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3259 FIELD(TBFLAG_A32, HSTR_ACTIVE, 17, 1)
3260 
3261 /* For M profile only, set if FPCCR.LSPACT is set */
3262 FIELD(TBFLAG_A32, LSPACT, 18, 1)        /* Not cached. */
3263 /* For M profile only, set if we must create a new FP context */
3264 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
3265 /* For M profile only, set if FPCCR.S does not match current security state */
3266 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
3267 /* For M profile only, Handler (ie not Thread) mode */
3268 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3269 /* For M profile only, whether we should generate stack-limit checks */
3270 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3271 
3272 /* Bit usage when in AArch64 state */
3273 FIELD(TBFLAG_A64, TBII, 0, 2)
3274 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3275 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3276 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3277 FIELD(TBFLAG_A64, BT, 9, 1)
3278 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3279 FIELD(TBFLAG_A64, TBID, 12, 2)
3280 
3281 static inline bool bswap_code(bool sctlr_b)
3282 {
3283 #ifdef CONFIG_USER_ONLY
3284     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3285      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3286      * would also end up as a mixed-endian mode with BE code, LE data.
3287      */
3288     return
3289 #ifdef TARGET_WORDS_BIGENDIAN
3290         1 ^
3291 #endif
3292         sctlr_b;
3293 #else
3294     /* All code access in ARM is little endian, and there are no loaders
3295      * doing swaps that need to be reversed
3296      */
3297     return 0;
3298 #endif
3299 }
3300 
3301 #ifdef CONFIG_USER_ONLY
3302 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3303 {
3304     return
3305 #ifdef TARGET_WORDS_BIGENDIAN
3306        1 ^
3307 #endif
3308        arm_cpu_data_is_big_endian(env);
3309 }
3310 #endif
3311 
3312 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3313                           target_ulong *cs_base, uint32_t *flags);
3314 
3315 enum {
3316     QEMU_PSCI_CONDUIT_DISABLED = 0,
3317     QEMU_PSCI_CONDUIT_SMC = 1,
3318     QEMU_PSCI_CONDUIT_HVC = 2,
3319 };
3320 
3321 #ifndef CONFIG_USER_ONLY
3322 /* Return the address space index to use for a memory access */
3323 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3324 {
3325     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3326 }
3327 
3328 /* Return the AddressSpace to use for a memory access
3329  * (which depends on whether the access is S or NS, and whether
3330  * the board gave us a separate AddressSpace for S accesses).
3331  */
3332 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3333 {
3334     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3335 }
3336 #endif
3337 
3338 /**
3339  * arm_register_pre_el_change_hook:
3340  * Register a hook function which will be called immediately before this
3341  * CPU changes exception level or mode. The hook function will be
3342  * passed a pointer to the ARMCPU and the opaque data pointer passed
3343  * to this function when the hook was registered.
3344  *
3345  * Note that if a pre-change hook is called, any registered post-change hooks
3346  * are guaranteed to subsequently be called.
3347  */
3348 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3349                                  void *opaque);
3350 /**
3351  * arm_register_el_change_hook:
3352  * Register a hook function which will be called immediately after this
3353  * CPU changes exception level or mode. The hook function will be
3354  * passed a pointer to the ARMCPU and the opaque data pointer passed
3355  * to this function when the hook was registered.
3356  *
3357  * Note that any registered hooks registered here are guaranteed to be called
3358  * if pre-change hooks have been.
3359  */
3360 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3361         *opaque);
3362 
3363 /**
3364  * arm_rebuild_hflags:
3365  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3366  */
3367 void arm_rebuild_hflags(CPUARMState *env);
3368 
3369 /**
3370  * aa32_vfp_dreg:
3371  * Return a pointer to the Dn register within env in 32-bit mode.
3372  */
3373 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3374 {
3375     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3376 }
3377 
3378 /**
3379  * aa32_vfp_qreg:
3380  * Return a pointer to the Qn register within env in 32-bit mode.
3381  */
3382 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3383 {
3384     return &env->vfp.zregs[regno].d[0];
3385 }
3386 
3387 /**
3388  * aa64_vfp_qreg:
3389  * Return a pointer to the Qn register within env in 64-bit mode.
3390  */
3391 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3392 {
3393     return &env->vfp.zregs[regno].d[0];
3394 }
3395 
3396 /* Shared between translate-sve.c and sve_helper.c.  */
3397 extern const uint64_t pred_esz_masks[4];
3398 
3399 /*
3400  * 32-bit feature tests via id registers.
3401  */
3402 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3403 {
3404     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3405 }
3406 
3407 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3408 {
3409     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3410 }
3411 
3412 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3413 {
3414     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3415 }
3416 
3417 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3418 {
3419     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3420 }
3421 
3422 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3423 {
3424     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3425 }
3426 
3427 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3428 {
3429     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3430 }
3431 
3432 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3433 {
3434     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3435 }
3436 
3437 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3438 {
3439     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3440 }
3441 
3442 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3443 {
3444     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3445 }
3446 
3447 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3448 {
3449     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3450 }
3451 
3452 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3453 {
3454     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3455 }
3456 
3457 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3458 {
3459     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3460 }
3461 
3462 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3463 {
3464     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3465 }
3466 
3467 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3468 {
3469     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3470 }
3471 
3472 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3473 {
3474     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3475 }
3476 
3477 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3478 {
3479     /*
3480      * This is a placeholder for use by VCMA until the rest of
3481      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3482      * At which point we can properly set and check MVFR1.FPHP.
3483      */
3484     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3485 }
3486 
3487 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3488 {
3489     /* Return true if D16-D31 are implemented */
3490     return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3491 }
3492 
3493 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3496 }
3497 
3498 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3499 {
3500     /* Return true if CPU supports double precision floating point */
3501     return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3502 }
3503 
3504 /*
3505  * We always set the FP and SIMD FP16 fields to indicate identical
3506  * levels of support (assuming SIMD is implemented at all), so
3507  * we only need one set of accessors.
3508  */
3509 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3510 {
3511     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3512 }
3513 
3514 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3515 {
3516     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3517 }
3518 
3519 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3520 {
3521     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3522 }
3523 
3524 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3525 {
3526     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3527 }
3528 
3529 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3530 {
3531     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3532 }
3533 
3534 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3535 {
3536     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3537 }
3538 
3539 /*
3540  * 64-bit feature tests via id registers.
3541  */
3542 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3543 {
3544     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3545 }
3546 
3547 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3548 {
3549     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3550 }
3551 
3552 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3553 {
3554     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3555 }
3556 
3557 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3558 {
3559     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3560 }
3561 
3562 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3563 {
3564     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3565 }
3566 
3567 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3568 {
3569     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3570 }
3571 
3572 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3573 {
3574     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3575 }
3576 
3577 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3578 {
3579     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3580 }
3581 
3582 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3583 {
3584     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3585 }
3586 
3587 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3588 {
3589     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3590 }
3591 
3592 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3593 {
3594     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3595 }
3596 
3597 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3598 {
3599     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3600 }
3601 
3602 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3603 {
3604     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3605 }
3606 
3607 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3608 {
3609     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3610 }
3611 
3612 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3613 {
3614     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3615 }
3616 
3617 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3618 {
3619     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3620 }
3621 
3622 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3623 {
3624     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3625 }
3626 
3627 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3628 {
3629     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3630 }
3631 
3632 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3633 {
3634     /*
3635      * Note that while QEMU will only implement the architected algorithm
3636      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3637      * defined algorithms, and thus API+GPI, and this predicate controls
3638      * migration of the 128-bit keys.
3639      */
3640     return (id->id_aa64isar1 &
3641             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3642              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3643              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3644              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3645 }
3646 
3647 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3648 {
3649     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3650 }
3651 
3652 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3653 {
3654     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3655 }
3656 
3657 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3658 {
3659     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3660 }
3661 
3662 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3663 {
3664     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3665 }
3666 
3667 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3668 {
3669     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3670 }
3671 
3672 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3673 {
3674     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3675     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3676 }
3677 
3678 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3679 {
3680     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3681 }
3682 
3683 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3684 {
3685     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3686 }
3687 
3688 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3689 {
3690     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3691 }
3692 
3693 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3694 {
3695     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3696 }
3697 
3698 /*
3699  * Forward to the above feature tests given an ARMCPU pointer.
3700  */
3701 #define cpu_isar_feature(name, cpu) \
3702     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3703 
3704 #endif
3705