xref: /openbmc/qemu/target/arm/cpu.h (revision 8f4e07c9d1e8cf58ab196148e0c179e95f70201e)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 #define VTCR_NSW (1u << 29)
170 #define VTCR_NSA (1u << 30)
171 #define VSTCR_SW VTCR_NSW
172 #define VSTCR_SA VTCR_NSA
173 
174 /* Define a maximum sized vector register.
175  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176  * For 64-bit, this is a 2048-bit SVE register.
177  *
178  * Note that the mapping between S, D, and Q views of the register bank
179  * differs between AArch64 and AArch32.
180  * In AArch32:
181  *  Qn = regs[n].d[1]:regs[n].d[0]
182  *  Dn = regs[n / 2].d[n & 1]
183  *  Sn = regs[n / 4].d[n % 4 / 2],
184  *       bits 31..0 for even n, and bits 63..32 for odd n
185  *       (and regs[16] to regs[31] are inaccessible)
186  * In AArch64:
187  *  Zn = regs[n].d[*]
188  *  Qn = regs[n].d[1]:regs[n].d[0]
189  *  Dn = regs[n].d[0]
190  *  Sn = regs[n].d[0] bits 31..0
191  *  Hn = regs[n].d[0] bits 15..0
192  *
193  * This corresponds to the architecturally defined mapping between
194  * the two execution states, and means we do not need to explicitly
195  * map these registers when changing states.
196  *
197  * Align the data for use with TCG host vector operations.
198  */
199 
200 #ifdef TARGET_AARCH64
201 # define ARM_MAX_VQ    16
202 #else
203 # define ARM_MAX_VQ    1
204 #endif
205 
206 typedef struct ARMVectorReg {
207     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208 } ARMVectorReg;
209 
210 #ifdef TARGET_AARCH64
211 /* In AArch32 mode, predicate registers do not exist at all.  */
212 typedef struct ARMPredicateReg {
213     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
214 } ARMPredicateReg;
215 
216 /* In AArch32 mode, PAC keys do not exist at all.  */
217 typedef struct ARMPACKey {
218     uint64_t lo, hi;
219 } ARMPACKey;
220 #endif
221 
222 /* See the commentary above the TBFLAG field definitions.  */
223 typedef struct CPUARMTBFlags {
224     uint32_t flags;
225     target_ulong flags2;
226 } CPUARMTBFlags;
227 
228 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229 
230 typedef struct NVICState NVICState;
231 
232 typedef struct CPUArchState {
233     /* Regs for current mode.  */
234     uint32_t regs[16];
235 
236     /* 32/64 switch only happens when taking and returning from
237      * exceptions so the overlap semantics are taken care of then
238      * instead of having a complicated union.
239      */
240     /* Regs for A64 mode.  */
241     uint64_t xregs[32];
242     uint64_t pc;
243     /* PSTATE isn't an architectural register for ARMv8. However, it is
244      * convenient for us to assemble the underlying state into a 32 bit format
245      * identical to the architectural format used for the SPSR. (This is also
246      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
247      * 'pstate' register are.) Of the PSTATE bits:
248      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
249      *    semantics as for AArch32, as described in the comments on each field)
250      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
251      *  DAIF (exception masks) are kept in env->daif
252      *  BTYPE is kept in env->btype
253      *  SM and ZA are kept in env->svcr
254      *  all other bits are stored in their correct places in env->pstate
255      */
256     uint32_t pstate;
257     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
258     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
259 
260     /* Cached TBFLAGS state.  See below for which bits are included.  */
261     CPUARMTBFlags hflags;
262 
263     /* Frequently accessed CPSR bits are stored separately for efficiency.
264        This contains all the other bits.  Use cpsr_{read,write} to access
265        the whole CPSR.  */
266     uint32_t uncached_cpsr;
267     uint32_t spsr;
268 
269     /* Banked registers.  */
270     uint64_t banked_spsr[8];
271     uint32_t banked_r13[8];
272     uint32_t banked_r14[8];
273 
274     /* These hold r8-r12.  */
275     uint32_t usr_regs[5];
276     uint32_t fiq_regs[5];
277 
278     /* cpsr flag cache for faster execution */
279     uint32_t CF; /* 0 or 1 */
280     uint32_t VF; /* V is the bit 31. All other bits are undefined */
281     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
282     uint32_t ZF; /* Z set if zero.  */
283     uint32_t QF; /* 0 or 1 */
284     uint32_t GE; /* cpsr[19:16] */
285     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
286     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
287     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
288     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
289 
290     uint64_t elr_el[4]; /* AArch64 exception link regs  */
291     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
292 
293     /* System control coprocessor (cp15) */
294     struct {
295         uint32_t c0_cpuid;
296         union { /* Cache size selection */
297             struct {
298                 uint64_t _unused_csselr0;
299                 uint64_t csselr_ns;
300                 uint64_t _unused_csselr1;
301                 uint64_t csselr_s;
302             };
303             uint64_t csselr_el[4];
304         };
305         union { /* System control register. */
306             struct {
307                 uint64_t _unused_sctlr;
308                 uint64_t sctlr_ns;
309                 uint64_t hsctlr;
310                 uint64_t sctlr_s;
311             };
312             uint64_t sctlr_el[4];
313         };
314         uint64_t vsctlr; /* Virtualization System control register. */
315         uint64_t cpacr_el1; /* Architectural feature access control register */
316         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
317         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
318         uint64_t sder; /* Secure debug enable register. */
319         uint32_t nsacr; /* Non-secure access control register. */
320         union { /* MMU translation table base 0. */
321             struct {
322                 uint64_t _unused_ttbr0_0;
323                 uint64_t ttbr0_ns;
324                 uint64_t _unused_ttbr0_1;
325                 uint64_t ttbr0_s;
326             };
327             uint64_t ttbr0_el[4];
328         };
329         union { /* MMU translation table base 1. */
330             struct {
331                 uint64_t _unused_ttbr1_0;
332                 uint64_t ttbr1_ns;
333                 uint64_t _unused_ttbr1_1;
334                 uint64_t ttbr1_s;
335             };
336             uint64_t ttbr1_el[4];
337         };
338         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
339         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
340         /* MMU translation table base control. */
341         uint64_t tcr_el[4];
342         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
343         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
344         uint32_t c2_data; /* MPU data cacheable bits.  */
345         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
346         union { /* MMU domain access control register
347                  * MPU write buffer control.
348                  */
349             struct {
350                 uint64_t dacr_ns;
351                 uint64_t dacr_s;
352             };
353             struct {
354                 uint64_t dacr32_el2;
355             };
356         };
357         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
358         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
359         uint64_t hcr_el2; /* Hypervisor configuration register */
360         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
361         uint64_t scr_el3; /* Secure configuration register.  */
362         union { /* Fault status registers.  */
363             struct {
364                 uint64_t ifsr_ns;
365                 uint64_t ifsr_s;
366             };
367             struct {
368                 uint64_t ifsr32_el2;
369             };
370         };
371         union {
372             struct {
373                 uint64_t _unused_dfsr;
374                 uint64_t dfsr_ns;
375                 uint64_t hsr;
376                 uint64_t dfsr_s;
377             };
378             uint64_t esr_el[4];
379         };
380         uint32_t c6_region[8]; /* MPU base/size registers.  */
381         union { /* Fault address registers. */
382             struct {
383                 uint64_t _unused_far0;
384 #if HOST_BIG_ENDIAN
385                 uint32_t ifar_ns;
386                 uint32_t dfar_ns;
387                 uint32_t ifar_s;
388                 uint32_t dfar_s;
389 #else
390                 uint32_t dfar_ns;
391                 uint32_t ifar_ns;
392                 uint32_t dfar_s;
393                 uint32_t ifar_s;
394 #endif
395                 uint64_t _unused_far3;
396             };
397             uint64_t far_el[4];
398         };
399         uint64_t hpfar_el2;
400         uint64_t hstr_el2;
401         union { /* Translation result. */
402             struct {
403                 uint64_t _unused_par_0;
404                 uint64_t par_ns;
405                 uint64_t _unused_par_1;
406                 uint64_t par_s;
407             };
408             uint64_t par_el[4];
409         };
410 
411         uint32_t c9_insn; /* Cache lockdown registers.  */
412         uint32_t c9_data;
413         uint64_t c9_pmcr; /* performance monitor control register */
414         uint64_t c9_pmcnten; /* perf monitor counter enables */
415         uint64_t c9_pmovsr; /* perf monitor overflow status */
416         uint64_t c9_pmuserenr; /* perf monitor user enable */
417         uint64_t c9_pmselr; /* perf monitor counter selection register */
418         uint64_t c9_pminten; /* perf monitor interrupt enables */
419         union { /* Memory attribute redirection */
420             struct {
421 #if HOST_BIG_ENDIAN
422                 uint64_t _unused_mair_0;
423                 uint32_t mair1_ns;
424                 uint32_t mair0_ns;
425                 uint64_t _unused_mair_1;
426                 uint32_t mair1_s;
427                 uint32_t mair0_s;
428 #else
429                 uint64_t _unused_mair_0;
430                 uint32_t mair0_ns;
431                 uint32_t mair1_ns;
432                 uint64_t _unused_mair_1;
433                 uint32_t mair0_s;
434                 uint32_t mair1_s;
435 #endif
436             };
437             uint64_t mair_el[4];
438         };
439         union { /* vector base address register */
440             struct {
441                 uint64_t _unused_vbar;
442                 uint64_t vbar_ns;
443                 uint64_t hvbar;
444                 uint64_t vbar_s;
445             };
446             uint64_t vbar_el[4];
447         };
448         uint32_t mvbar; /* (monitor) vector base address register */
449         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
450         struct { /* FCSE PID. */
451             uint32_t fcseidr_ns;
452             uint32_t fcseidr_s;
453         };
454         union { /* Context ID. */
455             struct {
456                 uint64_t _unused_contextidr_0;
457                 uint64_t contextidr_ns;
458                 uint64_t _unused_contextidr_1;
459                 uint64_t contextidr_s;
460             };
461             uint64_t contextidr_el[4];
462         };
463         union { /* User RW Thread register. */
464             struct {
465                 uint64_t tpidrurw_ns;
466                 uint64_t tpidrprw_ns;
467                 uint64_t htpidr;
468                 uint64_t _tpidr_el3;
469             };
470             uint64_t tpidr_el[4];
471         };
472         uint64_t tpidr2_el0;
473         /* The secure banks of these registers don't map anywhere */
474         uint64_t tpidrurw_s;
475         uint64_t tpidrprw_s;
476         uint64_t tpidruro_s;
477 
478         union { /* User RO Thread register. */
479             uint64_t tpidruro_ns;
480             uint64_t tpidrro_el[1];
481         };
482         uint64_t c14_cntfrq; /* Counter Frequency register */
483         uint64_t c14_cntkctl; /* Timer Control register */
484         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
485         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
486         ARMGenericTimer c14_timer[NUM_GTIMERS];
487         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
488         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
489         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
490         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
491         uint32_t c15_threadid; /* TI debugger thread-ID.  */
492         uint32_t c15_config_base_address; /* SCU base address.  */
493         uint32_t c15_diagnostic; /* diagnostic register */
494         uint32_t c15_power_diagnostic;
495         uint32_t c15_power_control; /* power control */
496         uint64_t dbgbvr[16]; /* breakpoint value registers */
497         uint64_t dbgbcr[16]; /* breakpoint control registers */
498         uint64_t dbgwvr[16]; /* watchpoint value registers */
499         uint64_t dbgwcr[16]; /* watchpoint control registers */
500         uint64_t dbgclaim;   /* DBGCLAIM bits */
501         uint64_t mdscr_el1;
502         uint64_t oslsr_el1; /* OS Lock Status */
503         uint64_t osdlr_el1; /* OS DoubleLock status */
504         uint64_t mdcr_el2;
505         uint64_t mdcr_el3;
506         /* Stores the architectural value of the counter *the last time it was
507          * updated* by pmccntr_op_start. Accesses should always be surrounded
508          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
509          * architecturally-correct value is being read/set.
510          */
511         uint64_t c15_ccnt;
512         /* Stores the delta between the architectural value and the underlying
513          * cycle count during normal operation. It is used to update c15_ccnt
514          * to be the correct architectural value before accesses. During
515          * accesses, c15_ccnt_delta contains the underlying count being used
516          * for the access, after which it reverts to the delta value in
517          * pmccntr_op_finish.
518          */
519         uint64_t c15_ccnt_delta;
520         uint64_t c14_pmevcntr[31];
521         uint64_t c14_pmevcntr_delta[31];
522         uint64_t c14_pmevtyper[31];
523         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
524         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
525         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
526         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
527         uint64_t gcr_el1;
528         uint64_t rgsr_el1;
529 
530         /* Minimal RAS registers */
531         uint64_t disr_el1;
532         uint64_t vdisr_el2;
533         uint64_t vsesr_el2;
534 
535         /*
536          * Fine-Grained Trap registers. We store these as arrays so the
537          * access checking code doesn't have to manually select
538          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
539          * FEAT_FGT2 will add more elements to these arrays.
540          */
541         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
542         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
543         uint64_t fgt_exec[1]; /* HFGITR */
544     } cp15;
545 
546     struct {
547         /* M profile has up to 4 stack pointers:
548          * a Main Stack Pointer and a Process Stack Pointer for each
549          * of the Secure and Non-Secure states. (If the CPU doesn't support
550          * the security extension then it has only two SPs.)
551          * In QEMU we always store the currently active SP in regs[13],
552          * and the non-active SP for the current security state in
553          * v7m.other_sp. The stack pointers for the inactive security state
554          * are stored in other_ss_msp and other_ss_psp.
555          * switch_v7m_security_state() is responsible for rearranging them
556          * when we change security state.
557          */
558         uint32_t other_sp;
559         uint32_t other_ss_msp;
560         uint32_t other_ss_psp;
561         uint32_t vecbase[M_REG_NUM_BANKS];
562         uint32_t basepri[M_REG_NUM_BANKS];
563         uint32_t control[M_REG_NUM_BANKS];
564         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
565         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
566         uint32_t hfsr; /* HardFault Status */
567         uint32_t dfsr; /* Debug Fault Status Register */
568         uint32_t sfsr; /* Secure Fault Status Register */
569         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
570         uint32_t bfar; /* BusFault Address */
571         uint32_t sfar; /* Secure Fault Address Register */
572         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
573         int exception;
574         uint32_t primask[M_REG_NUM_BANKS];
575         uint32_t faultmask[M_REG_NUM_BANKS];
576         uint32_t aircr; /* only holds r/w state if security extn implemented */
577         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
578         uint32_t csselr[M_REG_NUM_BANKS];
579         uint32_t scr[M_REG_NUM_BANKS];
580         uint32_t msplim[M_REG_NUM_BANKS];
581         uint32_t psplim[M_REG_NUM_BANKS];
582         uint32_t fpcar[M_REG_NUM_BANKS];
583         uint32_t fpccr[M_REG_NUM_BANKS];
584         uint32_t fpdscr[M_REG_NUM_BANKS];
585         uint32_t cpacr[M_REG_NUM_BANKS];
586         uint32_t nsacr;
587         uint32_t ltpsize;
588         uint32_t vpr;
589     } v7m;
590 
591     /* Information associated with an exception about to be taken:
592      * code which raises an exception must set cs->exception_index and
593      * the relevant parts of this structure; the cpu_do_interrupt function
594      * will then set the guest-visible registers as part of the exception
595      * entry process.
596      */
597     struct {
598         uint32_t syndrome; /* AArch64 format syndrome register */
599         uint32_t fsr; /* AArch32 format fault status register info */
600         uint64_t vaddress; /* virtual addr associated with exception, if any */
601         uint32_t target_el; /* EL the exception should be targeted for */
602         /* If we implement EL2 we will also need to store information
603          * about the intermediate physical address for stage 2 faults.
604          */
605     } exception;
606 
607     /* Information associated with an SError */
608     struct {
609         uint8_t pending;
610         uint8_t has_esr;
611         uint64_t esr;
612     } serror;
613 
614     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
615 
616     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
617     uint32_t irq_line_state;
618 
619     /* Thumb-2 EE state.  */
620     uint32_t teecr;
621     uint32_t teehbr;
622 
623     /* VFP coprocessor state.  */
624     struct {
625         ARMVectorReg zregs[32];
626 
627 #ifdef TARGET_AARCH64
628         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
629 #define FFR_PRED_NUM 16
630         ARMPredicateReg pregs[17];
631         /* Scratch space for aa64 sve predicate temporary.  */
632         ARMPredicateReg preg_tmp;
633 #endif
634 
635         /* We store these fpcsr fields separately for convenience.  */
636         uint32_t qc[4] QEMU_ALIGNED(16);
637         int vec_len;
638         int vec_stride;
639 
640         uint32_t xregs[16];
641 
642         /* Scratch space for aa32 neon expansion.  */
643         uint32_t scratch[8];
644 
645         /* There are a number of distinct float control structures:
646          *
647          *  fp_status: is the "normal" fp status.
648          *  fp_status_fp16: used for half-precision calculations
649          *  standard_fp_status : the ARM "Standard FPSCR Value"
650          *  standard_fp_status_fp16 : used for half-precision
651          *       calculations with the ARM "Standard FPSCR Value"
652          *
653          * Half-precision operations are governed by a separate
654          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
655          * status structure to control this.
656          *
657          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
658          * round-to-nearest and is used by any operations (generally
659          * Neon) which the architecture defines as controlled by the
660          * standard FPSCR value rather than the FPSCR.
661          *
662          * The "standard FPSCR but for fp16 ops" is needed because
663          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
664          * using a fixed value for it.
665          *
666          * To avoid having to transfer exception bits around, we simply
667          * say that the FPSCR cumulative exception flags are the logical
668          * OR of the flags in the four fp statuses. This relies on the
669          * only thing which needs to read the exception flags being
670          * an explicit FPSCR read.
671          */
672         float_status fp_status;
673         float_status fp_status_f16;
674         float_status standard_fp_status;
675         float_status standard_fp_status_f16;
676 
677         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
678         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
679     } vfp;
680     uint64_t exclusive_addr;
681     uint64_t exclusive_val;
682     uint64_t exclusive_high;
683 
684     /* iwMMXt coprocessor state.  */
685     struct {
686         uint64_t regs[16];
687         uint64_t val;
688 
689         uint32_t cregs[16];
690     } iwmmxt;
691 
692 #ifdef TARGET_AARCH64
693     struct {
694         ARMPACKey apia;
695         ARMPACKey apib;
696         ARMPACKey apda;
697         ARMPACKey apdb;
698         ARMPACKey apga;
699     } keys;
700 
701     uint64_t scxtnum_el[4];
702 
703     /*
704      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
705      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
706      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
707      * When SVL is less than the architectural maximum, the accessible
708      * storage is restricted, such that if the SVL is X bytes the guest can
709      * see only the bottom X elements of zarray[], and only the least
710      * significant X bytes of each element of the array. (In other words,
711      * the observable part is always square.)
712      *
713      * The ZA storage can also be considered as a set of square tiles of
714      * elements of different sizes. The mapping from tiles to the ZA array
715      * is architecturally defined, such that for tiles of elements of esz
716      * bytes, the Nth row (or "horizontal slice") of tile T is in
717      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
718      * in the ZA storage, because its rows are striped through the ZA array.
719      *
720      * Because this is so large, keep this toward the end of the reset area,
721      * to keep the offsets into the rest of the structure smaller.
722      */
723     ARMVectorReg zarray[ARM_MAX_VQ * 16];
724 #endif
725 
726     struct CPUBreakpoint *cpu_breakpoint[16];
727     struct CPUWatchpoint *cpu_watchpoint[16];
728 
729     /* Optional fault info across tlb lookup. */
730     ARMMMUFaultInfo *tlb_fi;
731 
732     /* Fields up to this point are cleared by a CPU reset */
733     struct {} end_reset_fields;
734 
735     /* Fields after this point are preserved across CPU reset. */
736 
737     /* Internal CPU feature flags.  */
738     uint64_t features;
739 
740     /* PMSAv7 MPU */
741     struct {
742         uint32_t *drbar;
743         uint32_t *drsr;
744         uint32_t *dracr;
745         uint32_t rnr[M_REG_NUM_BANKS];
746     } pmsav7;
747 
748     /* PMSAv8 MPU */
749     struct {
750         /* The PMSAv8 implementation also shares some PMSAv7 config
751          * and state:
752          *  pmsav7.rnr (region number register)
753          *  pmsav7_dregion (number of configured regions)
754          */
755         uint32_t *rbar[M_REG_NUM_BANKS];
756         uint32_t *rlar[M_REG_NUM_BANKS];
757         uint32_t *hprbar;
758         uint32_t *hprlar;
759         uint32_t mair0[M_REG_NUM_BANKS];
760         uint32_t mair1[M_REG_NUM_BANKS];
761         uint32_t hprselr;
762     } pmsav8;
763 
764     /* v8M SAU */
765     struct {
766         uint32_t *rbar;
767         uint32_t *rlar;
768         uint32_t rnr;
769         uint32_t ctrl;
770     } sau;
771 
772 #if !defined(CONFIG_USER_ONLY)
773     NVICState *nvic;
774     const struct arm_boot_info *boot_info;
775     /* Store GICv3CPUState to access from this struct */
776     void *gicv3state;
777 #else /* CONFIG_USER_ONLY */
778     /* For usermode syscall translation.  */
779     bool eabi;
780 #endif /* CONFIG_USER_ONLY */
781 
782 #ifdef TARGET_TAGGED_ADDRESSES
783     /* Linux syscall tagged address support */
784     bool tagged_addr_enable;
785 #endif
786 } CPUARMState;
787 
788 static inline void set_feature(CPUARMState *env, int feature)
789 {
790     env->features |= 1ULL << feature;
791 }
792 
793 static inline void unset_feature(CPUARMState *env, int feature)
794 {
795     env->features &= ~(1ULL << feature);
796 }
797 
798 /**
799  * ARMELChangeHookFn:
800  * type of a function which can be registered via arm_register_el_change_hook()
801  * to get callbacks when the CPU changes its exception level or mode.
802  */
803 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
804 typedef struct ARMELChangeHook ARMELChangeHook;
805 struct ARMELChangeHook {
806     ARMELChangeHookFn *hook;
807     void *opaque;
808     QLIST_ENTRY(ARMELChangeHook) node;
809 };
810 
811 /* These values map onto the return values for
812  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
813 typedef enum ARMPSCIState {
814     PSCI_ON = 0,
815     PSCI_OFF = 1,
816     PSCI_ON_PENDING = 2
817 } ARMPSCIState;
818 
819 typedef struct ARMISARegisters ARMISARegisters;
820 
821 /*
822  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
823  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
824  *
825  * While processing properties during initialization, corresponding init bits
826  * are set for bits in sve_vq_map that have been set by properties.
827  *
828  * Bits set in supported represent valid vector lengths for the CPU type.
829  */
830 typedef struct {
831     uint32_t map, init, supported;
832 } ARMVQMap;
833 
834 /**
835  * ARMCPU:
836  * @env: #CPUARMState
837  *
838  * An ARM CPU core.
839  */
840 struct ArchCPU {
841     /*< private >*/
842     CPUState parent_obj;
843     /*< public >*/
844 
845     CPUNegativeOffsetState neg;
846     CPUARMState env;
847 
848     /* Coprocessor information */
849     GHashTable *cp_regs;
850     /* For marshalling (mostly coprocessor) register state between the
851      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
852      * we use these arrays.
853      */
854     /* List of register indexes managed via these arrays; (full KVM style
855      * 64 bit indexes, not CPRegInfo 32 bit indexes)
856      */
857     uint64_t *cpreg_indexes;
858     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
859     uint64_t *cpreg_values;
860     /* Length of the indexes, values, reset_values arrays */
861     int32_t cpreg_array_len;
862     /* These are used only for migration: incoming data arrives in
863      * these fields and is sanity checked in post_load before copying
864      * to the working data structures above.
865      */
866     uint64_t *cpreg_vmstate_indexes;
867     uint64_t *cpreg_vmstate_values;
868     int32_t cpreg_vmstate_array_len;
869 
870     DynamicGDBXMLInfo dyn_sysreg_xml;
871     DynamicGDBXMLInfo dyn_svereg_xml;
872 
873     /* Timers used by the generic (architected) timer */
874     QEMUTimer *gt_timer[NUM_GTIMERS];
875     /*
876      * Timer used by the PMU. Its state is restored after migration by
877      * pmu_op_finish() - it does not need other handling during migration
878      */
879     QEMUTimer *pmu_timer;
880     /* GPIO outputs for generic timer */
881     qemu_irq gt_timer_outputs[NUM_GTIMERS];
882     /* GPIO output for GICv3 maintenance interrupt signal */
883     qemu_irq gicv3_maintenance_interrupt;
884     /* GPIO output for the PMU interrupt */
885     qemu_irq pmu_interrupt;
886 
887     /* MemoryRegion to use for secure physical accesses */
888     MemoryRegion *secure_memory;
889 
890     /* MemoryRegion to use for allocation tag accesses */
891     MemoryRegion *tag_memory;
892     MemoryRegion *secure_tag_memory;
893 
894     /* For v8M, pointer to the IDAU interface provided by board/SoC */
895     Object *idau;
896 
897     /* 'compatible' string for this CPU for Linux device trees */
898     const char *dtb_compatible;
899 
900     /* PSCI version for this CPU
901      * Bits[31:16] = Major Version
902      * Bits[15:0] = Minor Version
903      */
904     uint32_t psci_version;
905 
906     /* Current power state, access guarded by BQL */
907     ARMPSCIState power_state;
908 
909     /* CPU has virtualization extension */
910     bool has_el2;
911     /* CPU has security extension */
912     bool has_el3;
913     /* CPU has PMU (Performance Monitor Unit) */
914     bool has_pmu;
915     /* CPU has VFP */
916     bool has_vfp;
917     /* CPU has Neon */
918     bool has_neon;
919     /* CPU has M-profile DSP extension */
920     bool has_dsp;
921 
922     /* CPU has memory protection unit */
923     bool has_mpu;
924     /* PMSAv7 MPU number of supported regions */
925     uint32_t pmsav7_dregion;
926     /* PMSAv8 MPU number of supported hyp regions */
927     uint32_t pmsav8r_hdregion;
928     /* v8M SAU number of supported regions */
929     uint32_t sau_sregion;
930 
931     /* PSCI conduit used to invoke PSCI methods
932      * 0 - disabled, 1 - smc, 2 - hvc
933      */
934     uint32_t psci_conduit;
935 
936     /* For v8M, initial value of the Secure VTOR */
937     uint32_t init_svtor;
938     /* For v8M, initial value of the Non-secure VTOR */
939     uint32_t init_nsvtor;
940 
941     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
942      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
943      */
944     uint32_t kvm_target;
945 
946     /* KVM init features for this CPU */
947     uint32_t kvm_init_features[7];
948 
949     /* KVM CPU state */
950 
951     /* KVM virtual time adjustment */
952     bool kvm_adjvtime;
953     bool kvm_vtime_dirty;
954     uint64_t kvm_vtime;
955 
956     /* KVM steal time */
957     OnOffAuto kvm_steal_time;
958 
959     /* Uniprocessor system with MP extensions */
960     bool mp_is_up;
961 
962     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
963      * and the probe failed (so we need to report the error in realize)
964      */
965     bool host_cpu_probe_failed;
966 
967     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
968      * register.
969      */
970     int32_t core_count;
971 
972     /* The instance init functions for implementation-specific subclasses
973      * set these fields to specify the implementation-dependent values of
974      * various constant registers and reset values of non-constant
975      * registers.
976      * Some of these might become QOM properties eventually.
977      * Field names match the official register names as defined in the
978      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
979      * is used for reset values of non-constant registers; no reset_
980      * prefix means a constant register.
981      * Some of these registers are split out into a substructure that
982      * is shared with the translators to control the ISA.
983      *
984      * Note that if you add an ID register to the ARMISARegisters struct
985      * you need to also update the 32-bit and 64-bit versions of the
986      * kvm_arm_get_host_cpu_features() function to correctly populate the
987      * field by reading the value from the KVM vCPU.
988      */
989     struct ARMISARegisters {
990         uint32_t id_isar0;
991         uint32_t id_isar1;
992         uint32_t id_isar2;
993         uint32_t id_isar3;
994         uint32_t id_isar4;
995         uint32_t id_isar5;
996         uint32_t id_isar6;
997         uint32_t id_mmfr0;
998         uint32_t id_mmfr1;
999         uint32_t id_mmfr2;
1000         uint32_t id_mmfr3;
1001         uint32_t id_mmfr4;
1002         uint32_t id_mmfr5;
1003         uint32_t id_pfr0;
1004         uint32_t id_pfr1;
1005         uint32_t id_pfr2;
1006         uint32_t mvfr0;
1007         uint32_t mvfr1;
1008         uint32_t mvfr2;
1009         uint32_t id_dfr0;
1010         uint32_t id_dfr1;
1011         uint32_t dbgdidr;
1012         uint32_t dbgdevid;
1013         uint32_t dbgdevid1;
1014         uint64_t id_aa64isar0;
1015         uint64_t id_aa64isar1;
1016         uint64_t id_aa64pfr0;
1017         uint64_t id_aa64pfr1;
1018         uint64_t id_aa64mmfr0;
1019         uint64_t id_aa64mmfr1;
1020         uint64_t id_aa64mmfr2;
1021         uint64_t id_aa64dfr0;
1022         uint64_t id_aa64dfr1;
1023         uint64_t id_aa64zfr0;
1024         uint64_t id_aa64smfr0;
1025         uint64_t reset_pmcr_el0;
1026     } isar;
1027     uint64_t midr;
1028     uint32_t revidr;
1029     uint32_t reset_fpsid;
1030     uint64_t ctr;
1031     uint32_t reset_sctlr;
1032     uint64_t pmceid0;
1033     uint64_t pmceid1;
1034     uint32_t id_afr0;
1035     uint64_t id_aa64afr0;
1036     uint64_t id_aa64afr1;
1037     uint64_t clidr;
1038     uint64_t mp_affinity; /* MP ID without feature bits */
1039     /* The elements of this array are the CCSIDR values for each cache,
1040      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1041      */
1042     uint64_t ccsidr[16];
1043     uint64_t reset_cbar;
1044     uint32_t reset_auxcr;
1045     bool reset_hivecs;
1046 
1047     /*
1048      * Intermediate values used during property parsing.
1049      * Once finalized, the values should be read from ID_AA64*.
1050      */
1051     bool prop_pauth;
1052     bool prop_pauth_impdef;
1053     bool prop_lpa2;
1054 
1055     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1056     uint32_t dcz_blocksize;
1057     uint64_t rvbar_prop; /* Property/input signals.  */
1058 
1059     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1060     int gic_num_lrs; /* number of list registers */
1061     int gic_vpribits; /* number of virtual priority bits */
1062     int gic_vprebits; /* number of virtual preemption bits */
1063     int gic_pribits; /* number of physical priority bits */
1064 
1065     /* Whether the cfgend input is high (i.e. this CPU should reset into
1066      * big-endian mode).  This setting isn't used directly: instead it modifies
1067      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1068      * architecture version.
1069      */
1070     bool cfgend;
1071 
1072     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1073     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1074 
1075     int32_t node_id; /* NUMA node this CPU belongs to */
1076 
1077     /* Used to synchronize KVM and QEMU in-kernel device levels */
1078     uint8_t device_irq_level;
1079 
1080     /* Used to set the maximum vector length the cpu will support.  */
1081     uint32_t sve_max_vq;
1082 
1083 #ifdef CONFIG_USER_ONLY
1084     /* Used to set the default vector length at process start. */
1085     uint32_t sve_default_vq;
1086     uint32_t sme_default_vq;
1087 #endif
1088 
1089     ARMVQMap sve_vq;
1090     ARMVQMap sme_vq;
1091 
1092     /* Generic timer counter frequency, in Hz */
1093     uint64_t gt_cntfrq_hz;
1094 };
1095 
1096 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1097 
1098 void arm_cpu_post_init(Object *obj);
1099 
1100 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1101 
1102 #ifndef CONFIG_USER_ONLY
1103 extern const VMStateDescription vmstate_arm_cpu;
1104 
1105 void arm_cpu_do_interrupt(CPUState *cpu);
1106 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1107 #endif /* !CONFIG_USER_ONLY */
1108 
1109 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1110                                          MemTxAttrs *attrs);
1111 
1112 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1113 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1114 
1115 /*
1116  * Helpers to dynamically generates XML descriptions of the sysregs
1117  * and SVE registers. Returns the number of registers in each set.
1118  */
1119 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1120 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1121 
1122 /* Returns the dynamically generated XML for the gdb stub.
1123  * Returns a pointer to the XML contents for the specified XML file or NULL
1124  * if the XML name doesn't match the predefined one.
1125  */
1126 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1127 
1128 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1129                              int cpuid, DumpState *s);
1130 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1131                              int cpuid, DumpState *s);
1132 
1133 #ifdef TARGET_AARCH64
1134 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1135 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1136 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1137 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1138                            int new_el, bool el0_a64);
1139 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1140 
1141 /*
1142  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1143  * The byte at offset i from the start of the in-memory representation contains
1144  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1145  * lowest offsets are stored in the lowest memory addresses, then that nearly
1146  * matches QEMU's representation, which is to use an array of host-endian
1147  * uint64_t's, where the lower offsets are at the lower indices. To complete
1148  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1149  */
1150 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1151 {
1152 #if HOST_BIG_ENDIAN
1153     int i;
1154 
1155     for (i = 0; i < nr; ++i) {
1156         dst[i] = bswap64(src[i]);
1157     }
1158 
1159     return dst;
1160 #else
1161     return src;
1162 #endif
1163 }
1164 
1165 #else
1166 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1167 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1168                                          int n, bool a)
1169 { }
1170 #endif
1171 
1172 void aarch64_sync_32_to_64(CPUARMState *env);
1173 void aarch64_sync_64_to_32(CPUARMState *env);
1174 
1175 int fp_exception_el(CPUARMState *env, int cur_el);
1176 int sve_exception_el(CPUARMState *env, int cur_el);
1177 int sme_exception_el(CPUARMState *env, int cur_el);
1178 
1179 /**
1180  * sve_vqm1_for_el_sm:
1181  * @env: CPUARMState
1182  * @el: exception level
1183  * @sm: streaming mode
1184  *
1185  * Compute the current vector length for @el & @sm, in units of
1186  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1187  * If @sm, compute for SVL, otherwise NVL.
1188  */
1189 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1190 
1191 /* Likewise, but using @sm = PSTATE.SM. */
1192 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1193 
1194 static inline bool is_a64(CPUARMState *env)
1195 {
1196     return env->aarch64;
1197 }
1198 
1199 /**
1200  * pmu_op_start/finish
1201  * @env: CPUARMState
1202  *
1203  * Convert all PMU counters between their delta form (the typical mode when
1204  * they are enabled) and the guest-visible values. These two calls must
1205  * surround any action which might affect the counters.
1206  */
1207 void pmu_op_start(CPUARMState *env);
1208 void pmu_op_finish(CPUARMState *env);
1209 
1210 /*
1211  * Called when a PMU counter is due to overflow
1212  */
1213 void arm_pmu_timer_cb(void *opaque);
1214 
1215 /**
1216  * Functions to register as EL change hooks for PMU mode filtering
1217  */
1218 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1219 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1220 
1221 /*
1222  * pmu_init
1223  * @cpu: ARMCPU
1224  *
1225  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1226  * for the current configuration
1227  */
1228 void pmu_init(ARMCPU *cpu);
1229 
1230 /* SCTLR bit meanings. Several bits have been reused in newer
1231  * versions of the architecture; in that case we define constants
1232  * for both old and new bit meanings. Code which tests against those
1233  * bits should probably check or otherwise arrange that the CPU
1234  * is the architectural version it expects.
1235  */
1236 #define SCTLR_M       (1U << 0)
1237 #define SCTLR_A       (1U << 1)
1238 #define SCTLR_C       (1U << 2)
1239 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1240 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1241 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1242 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1243 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1244 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1245 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1246 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1247 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1248 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1249 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1250 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1251 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1252 #define SCTLR_SED     (1U << 8) /* v8 onward */
1253 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1254 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1255 #define SCTLR_F       (1U << 10) /* up to v6 */
1256 #define SCTLR_SW      (1U << 10) /* v7 */
1257 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1258 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1259 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1260 #define SCTLR_I       (1U << 12)
1261 #define SCTLR_V       (1U << 13) /* AArch32 only */
1262 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1263 #define SCTLR_RR      (1U << 14) /* up to v7 */
1264 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1265 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1266 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1267 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1268 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1269 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1270 #define SCTLR_BR      (1U << 17) /* PMSA only */
1271 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1272 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1273 #define SCTLR_WXN     (1U << 19)
1274 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1275 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1276 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1277 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1278 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1279 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1280 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1281 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1282 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1283 #define SCTLR_VE      (1U << 24) /* up to v7 */
1284 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1285 #define SCTLR_EE      (1U << 25)
1286 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1287 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1288 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1289 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1290 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1291 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1292 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1293 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1294 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1295 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1296 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1297 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1298 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1299 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1300 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1301 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1302 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1303 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1304 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1305 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1306 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1307 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1308 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1309 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1310 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1311 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1312 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1313 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1314 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1315 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1316 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1317 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1318 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1319 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1320 
1321 /* Bit definitions for CPACR (AArch32 only) */
1322 FIELD(CPACR, CP10, 20, 2)
1323 FIELD(CPACR, CP11, 22, 2)
1324 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1325 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1326 FIELD(CPACR, ASEDIS, 31, 1)
1327 
1328 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1329 FIELD(CPACR_EL1, ZEN, 16, 2)
1330 FIELD(CPACR_EL1, FPEN, 20, 2)
1331 FIELD(CPACR_EL1, SMEN, 24, 2)
1332 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1333 
1334 /* Bit definitions for HCPTR (AArch32 only) */
1335 FIELD(HCPTR, TCP10, 10, 1)
1336 FIELD(HCPTR, TCP11, 11, 1)
1337 FIELD(HCPTR, TASE, 15, 1)
1338 FIELD(HCPTR, TTA, 20, 1)
1339 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1340 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1341 
1342 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1343 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1344 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1345 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1346 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1347 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1348 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1349 FIELD(CPTR_EL2, TTA, 28, 1)
1350 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1351 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1352 
1353 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1354 FIELD(CPTR_EL3, EZ, 8, 1)
1355 FIELD(CPTR_EL3, TFP, 10, 1)
1356 FIELD(CPTR_EL3, ESM, 12, 1)
1357 FIELD(CPTR_EL3, TTA, 20, 1)
1358 FIELD(CPTR_EL3, TAM, 30, 1)
1359 FIELD(CPTR_EL3, TCPAC, 31, 1)
1360 
1361 #define MDCR_MTPME    (1U << 28)
1362 #define MDCR_TDCC     (1U << 27)
1363 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1364 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1365 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1366 #define MDCR_EPMAD    (1U << 21)
1367 #define MDCR_EDAD     (1U << 20)
1368 #define MDCR_TTRF     (1U << 19)
1369 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1370 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1371 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1372 #define MDCR_SDD      (1U << 16)
1373 #define MDCR_SPD      (3U << 14)
1374 #define MDCR_TDRA     (1U << 11)
1375 #define MDCR_TDOSA    (1U << 10)
1376 #define MDCR_TDA      (1U << 9)
1377 #define MDCR_TDE      (1U << 8)
1378 #define MDCR_HPME     (1U << 7)
1379 #define MDCR_TPM      (1U << 6)
1380 #define MDCR_TPMCR    (1U << 5)
1381 #define MDCR_HPMN     (0x1fU)
1382 
1383 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1384 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1385                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1386                          MDCR_STE | MDCR_SPME | MDCR_SPD)
1387 
1388 #define CPSR_M (0x1fU)
1389 #define CPSR_T (1U << 5)
1390 #define CPSR_F (1U << 6)
1391 #define CPSR_I (1U << 7)
1392 #define CPSR_A (1U << 8)
1393 #define CPSR_E (1U << 9)
1394 #define CPSR_IT_2_7 (0xfc00U)
1395 #define CPSR_GE (0xfU << 16)
1396 #define CPSR_IL (1U << 20)
1397 #define CPSR_DIT (1U << 21)
1398 #define CPSR_PAN (1U << 22)
1399 #define CPSR_SSBS (1U << 23)
1400 #define CPSR_J (1U << 24)
1401 #define CPSR_IT_0_1 (3U << 25)
1402 #define CPSR_Q (1U << 27)
1403 #define CPSR_V (1U << 28)
1404 #define CPSR_C (1U << 29)
1405 #define CPSR_Z (1U << 30)
1406 #define CPSR_N (1U << 31)
1407 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1408 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1409 
1410 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1411 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1412     | CPSR_NZCV)
1413 /* Bits writable in user mode.  */
1414 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1415 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1416 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1417 
1418 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1419 #define XPSR_EXCP 0x1ffU
1420 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1421 #define XPSR_IT_2_7 CPSR_IT_2_7
1422 #define XPSR_GE CPSR_GE
1423 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1424 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1425 #define XPSR_IT_0_1 CPSR_IT_0_1
1426 #define XPSR_Q CPSR_Q
1427 #define XPSR_V CPSR_V
1428 #define XPSR_C CPSR_C
1429 #define XPSR_Z CPSR_Z
1430 #define XPSR_N CPSR_N
1431 #define XPSR_NZCV CPSR_NZCV
1432 #define XPSR_IT CPSR_IT
1433 
1434 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1435 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1436 #define TTBCR_PD0    (1U << 4)
1437 #define TTBCR_PD1    (1U << 5)
1438 #define TTBCR_EPD0   (1U << 7)
1439 #define TTBCR_IRGN0  (3U << 8)
1440 #define TTBCR_ORGN0  (3U << 10)
1441 #define TTBCR_SH0    (3U << 12)
1442 #define TTBCR_T1SZ   (3U << 16)
1443 #define TTBCR_A1     (1U << 22)
1444 #define TTBCR_EPD1   (1U << 23)
1445 #define TTBCR_IRGN1  (3U << 24)
1446 #define TTBCR_ORGN1  (3U << 26)
1447 #define TTBCR_SH1    (1U << 28)
1448 #define TTBCR_EAE    (1U << 31)
1449 
1450 FIELD(VTCR, T0SZ, 0, 6)
1451 FIELD(VTCR, SL0, 6, 2)
1452 FIELD(VTCR, IRGN0, 8, 2)
1453 FIELD(VTCR, ORGN0, 10, 2)
1454 FIELD(VTCR, SH0, 12, 2)
1455 FIELD(VTCR, TG0, 14, 2)
1456 FIELD(VTCR, PS, 16, 3)
1457 FIELD(VTCR, VS, 19, 1)
1458 FIELD(VTCR, HA, 21, 1)
1459 FIELD(VTCR, HD, 22, 1)
1460 FIELD(VTCR, HWU59, 25, 1)
1461 FIELD(VTCR, HWU60, 26, 1)
1462 FIELD(VTCR, HWU61, 27, 1)
1463 FIELD(VTCR, HWU62, 28, 1)
1464 FIELD(VTCR, NSW, 29, 1)
1465 FIELD(VTCR, NSA, 30, 1)
1466 FIELD(VTCR, DS, 32, 1)
1467 FIELD(VTCR, SL2, 33, 1)
1468 
1469 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1470  * Only these are valid when in AArch64 mode; in
1471  * AArch32 mode SPSRs are basically CPSR-format.
1472  */
1473 #define PSTATE_SP (1U)
1474 #define PSTATE_M (0xFU)
1475 #define PSTATE_nRW (1U << 4)
1476 #define PSTATE_F (1U << 6)
1477 #define PSTATE_I (1U << 7)
1478 #define PSTATE_A (1U << 8)
1479 #define PSTATE_D (1U << 9)
1480 #define PSTATE_BTYPE (3U << 10)
1481 #define PSTATE_SSBS (1U << 12)
1482 #define PSTATE_IL (1U << 20)
1483 #define PSTATE_SS (1U << 21)
1484 #define PSTATE_PAN (1U << 22)
1485 #define PSTATE_UAO (1U << 23)
1486 #define PSTATE_DIT (1U << 24)
1487 #define PSTATE_TCO (1U << 25)
1488 #define PSTATE_V (1U << 28)
1489 #define PSTATE_C (1U << 29)
1490 #define PSTATE_Z (1U << 30)
1491 #define PSTATE_N (1U << 31)
1492 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1493 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1494 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1495 /* Mode values for AArch64 */
1496 #define PSTATE_MODE_EL3h 13
1497 #define PSTATE_MODE_EL3t 12
1498 #define PSTATE_MODE_EL2h 9
1499 #define PSTATE_MODE_EL2t 8
1500 #define PSTATE_MODE_EL1h 5
1501 #define PSTATE_MODE_EL1t 4
1502 #define PSTATE_MODE_EL0t 0
1503 
1504 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1505 FIELD(SVCR, SM, 0, 1)
1506 FIELD(SVCR, ZA, 1, 1)
1507 
1508 /* Fields for SMCR_ELx. */
1509 FIELD(SMCR, LEN, 0, 4)
1510 FIELD(SMCR, FA64, 31, 1)
1511 
1512 /* Write a new value to v7m.exception, thus transitioning into or out
1513  * of Handler mode; this may result in a change of active stack pointer.
1514  */
1515 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1516 
1517 /* Map EL and handler into a PSTATE_MODE.  */
1518 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1519 {
1520     return (el << 2) | handler;
1521 }
1522 
1523 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1524  * interprocessing, so we don't attempt to sync with the cpsr state used by
1525  * the 32 bit decoder.
1526  */
1527 static inline uint32_t pstate_read(CPUARMState *env)
1528 {
1529     int ZF;
1530 
1531     ZF = (env->ZF == 0);
1532     return (env->NF & 0x80000000) | (ZF << 30)
1533         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1534         | env->pstate | env->daif | (env->btype << 10);
1535 }
1536 
1537 static inline void pstate_write(CPUARMState *env, uint32_t val)
1538 {
1539     env->ZF = (~val) & PSTATE_Z;
1540     env->NF = val;
1541     env->CF = (val >> 29) & 1;
1542     env->VF = (val << 3) & 0x80000000;
1543     env->daif = val & PSTATE_DAIF;
1544     env->btype = (val >> 10) & 3;
1545     env->pstate = val & ~CACHED_PSTATE_BITS;
1546 }
1547 
1548 /* Return the current CPSR value.  */
1549 uint32_t cpsr_read(CPUARMState *env);
1550 
1551 typedef enum CPSRWriteType {
1552     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1553     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1554     CPSRWriteRaw = 2,
1555         /* trust values, no reg bank switch, no hflags rebuild */
1556     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1557 } CPSRWriteType;
1558 
1559 /*
1560  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1561  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1562  * correspond to TB flags bits cached in the hflags, unless @write_type
1563  * is CPSRWriteRaw.
1564  */
1565 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1566                 CPSRWriteType write_type);
1567 
1568 /* Return the current xPSR value.  */
1569 static inline uint32_t xpsr_read(CPUARMState *env)
1570 {
1571     int ZF;
1572     ZF = (env->ZF == 0);
1573     return (env->NF & 0x80000000) | (ZF << 30)
1574         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1575         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1576         | ((env->condexec_bits & 0xfc) << 8)
1577         | (env->GE << 16)
1578         | env->v7m.exception;
1579 }
1580 
1581 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1582 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1583 {
1584     if (mask & XPSR_NZCV) {
1585         env->ZF = (~val) & XPSR_Z;
1586         env->NF = val;
1587         env->CF = (val >> 29) & 1;
1588         env->VF = (val << 3) & 0x80000000;
1589     }
1590     if (mask & XPSR_Q) {
1591         env->QF = ((val & XPSR_Q) != 0);
1592     }
1593     if (mask & XPSR_GE) {
1594         env->GE = (val & XPSR_GE) >> 16;
1595     }
1596 #ifndef CONFIG_USER_ONLY
1597     if (mask & XPSR_T) {
1598         env->thumb = ((val & XPSR_T) != 0);
1599     }
1600     if (mask & XPSR_IT_0_1) {
1601         env->condexec_bits &= ~3;
1602         env->condexec_bits |= (val >> 25) & 3;
1603     }
1604     if (mask & XPSR_IT_2_7) {
1605         env->condexec_bits &= 3;
1606         env->condexec_bits |= (val >> 8) & 0xfc;
1607     }
1608     if (mask & XPSR_EXCP) {
1609         /* Note that this only happens on exception exit */
1610         write_v7m_exception(env, val & XPSR_EXCP);
1611     }
1612 #endif
1613 }
1614 
1615 #define HCR_VM        (1ULL << 0)
1616 #define HCR_SWIO      (1ULL << 1)
1617 #define HCR_PTW       (1ULL << 2)
1618 #define HCR_FMO       (1ULL << 3)
1619 #define HCR_IMO       (1ULL << 4)
1620 #define HCR_AMO       (1ULL << 5)
1621 #define HCR_VF        (1ULL << 6)
1622 #define HCR_VI        (1ULL << 7)
1623 #define HCR_VSE       (1ULL << 8)
1624 #define HCR_FB        (1ULL << 9)
1625 #define HCR_BSU_MASK  (3ULL << 10)
1626 #define HCR_DC        (1ULL << 12)
1627 #define HCR_TWI       (1ULL << 13)
1628 #define HCR_TWE       (1ULL << 14)
1629 #define HCR_TID0      (1ULL << 15)
1630 #define HCR_TID1      (1ULL << 16)
1631 #define HCR_TID2      (1ULL << 17)
1632 #define HCR_TID3      (1ULL << 18)
1633 #define HCR_TSC       (1ULL << 19)
1634 #define HCR_TIDCP     (1ULL << 20)
1635 #define HCR_TACR      (1ULL << 21)
1636 #define HCR_TSW       (1ULL << 22)
1637 #define HCR_TPCP      (1ULL << 23)
1638 #define HCR_TPU       (1ULL << 24)
1639 #define HCR_TTLB      (1ULL << 25)
1640 #define HCR_TVM       (1ULL << 26)
1641 #define HCR_TGE       (1ULL << 27)
1642 #define HCR_TDZ       (1ULL << 28)
1643 #define HCR_HCD       (1ULL << 29)
1644 #define HCR_TRVM      (1ULL << 30)
1645 #define HCR_RW        (1ULL << 31)
1646 #define HCR_CD        (1ULL << 32)
1647 #define HCR_ID        (1ULL << 33)
1648 #define HCR_E2H       (1ULL << 34)
1649 #define HCR_TLOR      (1ULL << 35)
1650 #define HCR_TERR      (1ULL << 36)
1651 #define HCR_TEA       (1ULL << 37)
1652 #define HCR_MIOCNCE   (1ULL << 38)
1653 /* RES0 bit 39 */
1654 #define HCR_APK       (1ULL << 40)
1655 #define HCR_API       (1ULL << 41)
1656 #define HCR_NV        (1ULL << 42)
1657 #define HCR_NV1       (1ULL << 43)
1658 #define HCR_AT        (1ULL << 44)
1659 #define HCR_NV2       (1ULL << 45)
1660 #define HCR_FWB       (1ULL << 46)
1661 #define HCR_FIEN      (1ULL << 47)
1662 /* RES0 bit 48 */
1663 #define HCR_TID4      (1ULL << 49)
1664 #define HCR_TICAB     (1ULL << 50)
1665 #define HCR_AMVOFFEN  (1ULL << 51)
1666 #define HCR_TOCU      (1ULL << 52)
1667 #define HCR_ENSCXT    (1ULL << 53)
1668 #define HCR_TTLBIS    (1ULL << 54)
1669 #define HCR_TTLBOS    (1ULL << 55)
1670 #define HCR_ATA       (1ULL << 56)
1671 #define HCR_DCT       (1ULL << 57)
1672 #define HCR_TID5      (1ULL << 58)
1673 #define HCR_TWEDEN    (1ULL << 59)
1674 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1675 
1676 #define HCRX_ENAS0    (1ULL << 0)
1677 #define HCRX_ENALS    (1ULL << 1)
1678 #define HCRX_ENASR    (1ULL << 2)
1679 #define HCRX_FNXS     (1ULL << 3)
1680 #define HCRX_FGTNXS   (1ULL << 4)
1681 #define HCRX_SMPME    (1ULL << 5)
1682 #define HCRX_TALLINT  (1ULL << 6)
1683 #define HCRX_VINMI    (1ULL << 7)
1684 #define HCRX_VFNMI    (1ULL << 8)
1685 #define HCRX_CMOW     (1ULL << 9)
1686 #define HCRX_MCE2     (1ULL << 10)
1687 #define HCRX_MSCEN    (1ULL << 11)
1688 
1689 #define HPFAR_NS      (1ULL << 63)
1690 
1691 #define SCR_NS                (1ULL << 0)
1692 #define SCR_IRQ               (1ULL << 1)
1693 #define SCR_FIQ               (1ULL << 2)
1694 #define SCR_EA                (1ULL << 3)
1695 #define SCR_FW                (1ULL << 4)
1696 #define SCR_AW                (1ULL << 5)
1697 #define SCR_NET               (1ULL << 6)
1698 #define SCR_SMD               (1ULL << 7)
1699 #define SCR_HCE               (1ULL << 8)
1700 #define SCR_SIF               (1ULL << 9)
1701 #define SCR_RW                (1ULL << 10)
1702 #define SCR_ST                (1ULL << 11)
1703 #define SCR_TWI               (1ULL << 12)
1704 #define SCR_TWE               (1ULL << 13)
1705 #define SCR_TLOR              (1ULL << 14)
1706 #define SCR_TERR              (1ULL << 15)
1707 #define SCR_APK               (1ULL << 16)
1708 #define SCR_API               (1ULL << 17)
1709 #define SCR_EEL2              (1ULL << 18)
1710 #define SCR_EASE              (1ULL << 19)
1711 #define SCR_NMEA              (1ULL << 20)
1712 #define SCR_FIEN              (1ULL << 21)
1713 #define SCR_ENSCXT            (1ULL << 25)
1714 #define SCR_ATA               (1ULL << 26)
1715 #define SCR_FGTEN             (1ULL << 27)
1716 #define SCR_ECVEN             (1ULL << 28)
1717 #define SCR_TWEDEN            (1ULL << 29)
1718 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1719 #define SCR_TME               (1ULL << 34)
1720 #define SCR_AMVOFFEN          (1ULL << 35)
1721 #define SCR_ENAS0             (1ULL << 36)
1722 #define SCR_ADEN              (1ULL << 37)
1723 #define SCR_HXEN              (1ULL << 38)
1724 #define SCR_TRNDR             (1ULL << 40)
1725 #define SCR_ENTP2             (1ULL << 41)
1726 #define SCR_GPF               (1ULL << 48)
1727 
1728 #define HSTR_TTEE (1 << 16)
1729 #define HSTR_TJDBX (1 << 17)
1730 
1731 /* Return the current FPSCR value.  */
1732 uint32_t vfp_get_fpscr(CPUARMState *env);
1733 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1734 
1735 /* FPCR, Floating Point Control Register
1736  * FPSR, Floating Poiht Status Register
1737  *
1738  * For A64 the FPSCR is split into two logically distinct registers,
1739  * FPCR and FPSR. However since they still use non-overlapping bits
1740  * we store the underlying state in fpscr and just mask on read/write.
1741  */
1742 #define FPSR_MASK 0xf800009f
1743 #define FPCR_MASK 0x07ff9f00
1744 
1745 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1746 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1747 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1748 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1749 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1750 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1751 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1752 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1753 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1754 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1755 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1756 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1757 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1758 #define FPCR_C      (1 << 29)   /* FP carry flag */
1759 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1760 #define FPCR_N      (1 << 31)   /* FP negative flag */
1761 
1762 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1763 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1764 #define FPCR_LTPSIZE_LENGTH 3
1765 
1766 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1767 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1768 
1769 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1770 {
1771     return vfp_get_fpscr(env) & FPSR_MASK;
1772 }
1773 
1774 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1775 {
1776     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1777     vfp_set_fpscr(env, new_fpscr);
1778 }
1779 
1780 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1781 {
1782     return vfp_get_fpscr(env) & FPCR_MASK;
1783 }
1784 
1785 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1786 {
1787     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1788     vfp_set_fpscr(env, new_fpscr);
1789 }
1790 
1791 enum arm_cpu_mode {
1792   ARM_CPU_MODE_USR = 0x10,
1793   ARM_CPU_MODE_FIQ = 0x11,
1794   ARM_CPU_MODE_IRQ = 0x12,
1795   ARM_CPU_MODE_SVC = 0x13,
1796   ARM_CPU_MODE_MON = 0x16,
1797   ARM_CPU_MODE_ABT = 0x17,
1798   ARM_CPU_MODE_HYP = 0x1a,
1799   ARM_CPU_MODE_UND = 0x1b,
1800   ARM_CPU_MODE_SYS = 0x1f
1801 };
1802 
1803 /* VFP system registers.  */
1804 #define ARM_VFP_FPSID   0
1805 #define ARM_VFP_FPSCR   1
1806 #define ARM_VFP_MVFR2   5
1807 #define ARM_VFP_MVFR1   6
1808 #define ARM_VFP_MVFR0   7
1809 #define ARM_VFP_FPEXC   8
1810 #define ARM_VFP_FPINST  9
1811 #define ARM_VFP_FPINST2 10
1812 /* These ones are M-profile only */
1813 #define ARM_VFP_FPSCR_NZCVQC 2
1814 #define ARM_VFP_VPR 12
1815 #define ARM_VFP_P0 13
1816 #define ARM_VFP_FPCXT_NS 14
1817 #define ARM_VFP_FPCXT_S 15
1818 
1819 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1820 #define QEMU_VFP_FPSCR_NZCV 0xffff
1821 
1822 /* iwMMXt coprocessor control registers.  */
1823 #define ARM_IWMMXT_wCID  0
1824 #define ARM_IWMMXT_wCon  1
1825 #define ARM_IWMMXT_wCSSF 2
1826 #define ARM_IWMMXT_wCASF 3
1827 #define ARM_IWMMXT_wCGR0 8
1828 #define ARM_IWMMXT_wCGR1 9
1829 #define ARM_IWMMXT_wCGR2 10
1830 #define ARM_IWMMXT_wCGR3 11
1831 
1832 /* V7M CCR bits */
1833 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1834 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1835 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1836 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1837 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1838 FIELD(V7M_CCR, STKALIGN, 9, 1)
1839 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1840 FIELD(V7M_CCR, DC, 16, 1)
1841 FIELD(V7M_CCR, IC, 17, 1)
1842 FIELD(V7M_CCR, BP, 18, 1)
1843 FIELD(V7M_CCR, LOB, 19, 1)
1844 FIELD(V7M_CCR, TRD, 20, 1)
1845 
1846 /* V7M SCR bits */
1847 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1848 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1849 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1850 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1851 
1852 /* V7M AIRCR bits */
1853 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1854 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1855 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1856 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1857 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1858 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1859 FIELD(V7M_AIRCR, PRIS, 14, 1)
1860 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1861 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1862 
1863 /* V7M CFSR bits for MMFSR */
1864 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1865 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1866 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1867 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1868 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1869 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1870 
1871 /* V7M CFSR bits for BFSR */
1872 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1873 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1874 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1875 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1876 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1877 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1878 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1879 
1880 /* V7M CFSR bits for UFSR */
1881 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1882 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1883 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1884 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1885 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1886 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1887 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1888 
1889 /* V7M CFSR bit masks covering all of the subregister bits */
1890 FIELD(V7M_CFSR, MMFSR, 0, 8)
1891 FIELD(V7M_CFSR, BFSR, 8, 8)
1892 FIELD(V7M_CFSR, UFSR, 16, 16)
1893 
1894 /* V7M HFSR bits */
1895 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1896 FIELD(V7M_HFSR, FORCED, 30, 1)
1897 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1898 
1899 /* V7M DFSR bits */
1900 FIELD(V7M_DFSR, HALTED, 0, 1)
1901 FIELD(V7M_DFSR, BKPT, 1, 1)
1902 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1903 FIELD(V7M_DFSR, VCATCH, 3, 1)
1904 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1905 
1906 /* V7M SFSR bits */
1907 FIELD(V7M_SFSR, INVEP, 0, 1)
1908 FIELD(V7M_SFSR, INVIS, 1, 1)
1909 FIELD(V7M_SFSR, INVER, 2, 1)
1910 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1911 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1912 FIELD(V7M_SFSR, LSPERR, 5, 1)
1913 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1914 FIELD(V7M_SFSR, LSERR, 7, 1)
1915 
1916 /* v7M MPU_CTRL bits */
1917 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1918 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1919 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1920 
1921 /* v7M CLIDR bits */
1922 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1923 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1924 FIELD(V7M_CLIDR, LOC, 24, 3)
1925 FIELD(V7M_CLIDR, LOUU, 27, 3)
1926 FIELD(V7M_CLIDR, ICB, 30, 2)
1927 
1928 FIELD(V7M_CSSELR, IND, 0, 1)
1929 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1930 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1931  * define a mask for this and check that it doesn't permit running off
1932  * the end of the array.
1933  */
1934 FIELD(V7M_CSSELR, INDEX, 0, 4)
1935 
1936 /* v7M FPCCR bits */
1937 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1938 FIELD(V7M_FPCCR, USER, 1, 1)
1939 FIELD(V7M_FPCCR, S, 2, 1)
1940 FIELD(V7M_FPCCR, THREAD, 3, 1)
1941 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1942 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1943 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1944 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1945 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1946 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1947 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1948 FIELD(V7M_FPCCR, RES0, 11, 15)
1949 FIELD(V7M_FPCCR, TS, 26, 1)
1950 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1951 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1952 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1953 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1954 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1955 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1956 #define R_V7M_FPCCR_BANKED_MASK                 \
1957     (R_V7M_FPCCR_LSPACT_MASK |                  \
1958      R_V7M_FPCCR_USER_MASK |                    \
1959      R_V7M_FPCCR_THREAD_MASK |                  \
1960      R_V7M_FPCCR_MMRDY_MASK |                   \
1961      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1962      R_V7M_FPCCR_UFRDY_MASK |                   \
1963      R_V7M_FPCCR_ASPEN_MASK)
1964 
1965 /* v7M VPR bits */
1966 FIELD(V7M_VPR, P0, 0, 16)
1967 FIELD(V7M_VPR, MASK01, 16, 4)
1968 FIELD(V7M_VPR, MASK23, 20, 4)
1969 
1970 /*
1971  * System register ID fields.
1972  */
1973 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1974 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1975 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1976 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1977 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1978 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1979 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1980 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1981 FIELD(CLIDR_EL1, LOC, 24, 3)
1982 FIELD(CLIDR_EL1, LOUU, 27, 3)
1983 FIELD(CLIDR_EL1, ICB, 30, 3)
1984 
1985 /* When FEAT_CCIDX is implemented */
1986 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1987 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1988 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1989 
1990 /* When FEAT_CCIDX is not implemented */
1991 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1992 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1993 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1994 
1995 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1996 FIELD(CTR_EL0,  L1IP, 14, 2)
1997 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1998 FIELD(CTR_EL0,  ERG, 20, 4)
1999 FIELD(CTR_EL0,  CWG, 24, 4)
2000 FIELD(CTR_EL0,  IDC, 28, 1)
2001 FIELD(CTR_EL0,  DIC, 29, 1)
2002 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2003 
2004 FIELD(MIDR_EL1, REVISION, 0, 4)
2005 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2006 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2007 FIELD(MIDR_EL1, VARIANT, 20, 4)
2008 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2009 
2010 FIELD(ID_ISAR0, SWAP, 0, 4)
2011 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2012 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2013 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2014 FIELD(ID_ISAR0, COPROC, 16, 4)
2015 FIELD(ID_ISAR0, DEBUG, 20, 4)
2016 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2017 
2018 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2019 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2020 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2021 FIELD(ID_ISAR1, EXTEND, 12, 4)
2022 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2023 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2024 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2025 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2026 
2027 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2028 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2029 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2030 FIELD(ID_ISAR2, MULT, 12, 4)
2031 FIELD(ID_ISAR2, MULTS, 16, 4)
2032 FIELD(ID_ISAR2, MULTU, 20, 4)
2033 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2034 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2035 
2036 FIELD(ID_ISAR3, SATURATE, 0, 4)
2037 FIELD(ID_ISAR3, SIMD, 4, 4)
2038 FIELD(ID_ISAR3, SVC, 8, 4)
2039 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2040 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2041 FIELD(ID_ISAR3, T32COPY, 20, 4)
2042 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2043 FIELD(ID_ISAR3, T32EE, 28, 4)
2044 
2045 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2046 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2047 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2048 FIELD(ID_ISAR4, SMC, 12, 4)
2049 FIELD(ID_ISAR4, BARRIER, 16, 4)
2050 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2051 FIELD(ID_ISAR4, PSR_M, 24, 4)
2052 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2053 
2054 FIELD(ID_ISAR5, SEVL, 0, 4)
2055 FIELD(ID_ISAR5, AES, 4, 4)
2056 FIELD(ID_ISAR5, SHA1, 8, 4)
2057 FIELD(ID_ISAR5, SHA2, 12, 4)
2058 FIELD(ID_ISAR5, CRC32, 16, 4)
2059 FIELD(ID_ISAR5, RDM, 24, 4)
2060 FIELD(ID_ISAR5, VCMA, 28, 4)
2061 
2062 FIELD(ID_ISAR6, JSCVT, 0, 4)
2063 FIELD(ID_ISAR6, DP, 4, 4)
2064 FIELD(ID_ISAR6, FHM, 8, 4)
2065 FIELD(ID_ISAR6, SB, 12, 4)
2066 FIELD(ID_ISAR6, SPECRES, 16, 4)
2067 FIELD(ID_ISAR6, BF16, 20, 4)
2068 FIELD(ID_ISAR6, I8MM, 24, 4)
2069 
2070 FIELD(ID_MMFR0, VMSA, 0, 4)
2071 FIELD(ID_MMFR0, PMSA, 4, 4)
2072 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2073 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2074 FIELD(ID_MMFR0, TCM, 16, 4)
2075 FIELD(ID_MMFR0, AUXREG, 20, 4)
2076 FIELD(ID_MMFR0, FCSE, 24, 4)
2077 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2078 
2079 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2080 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2081 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2082 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2083 FIELD(ID_MMFR1, L1HVD, 16, 4)
2084 FIELD(ID_MMFR1, L1UNI, 20, 4)
2085 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2086 FIELD(ID_MMFR1, BPRED, 28, 4)
2087 
2088 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2089 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2090 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2091 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2092 FIELD(ID_MMFR2, UNITLB, 16, 4)
2093 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2094 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2095 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2096 
2097 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2098 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2099 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2100 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2101 FIELD(ID_MMFR3, PAN, 16, 4)
2102 FIELD(ID_MMFR3, COHWALK, 20, 4)
2103 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2104 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2105 
2106 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2107 FIELD(ID_MMFR4, AC2, 4, 4)
2108 FIELD(ID_MMFR4, XNX, 8, 4)
2109 FIELD(ID_MMFR4, CNP, 12, 4)
2110 FIELD(ID_MMFR4, HPDS, 16, 4)
2111 FIELD(ID_MMFR4, LSM, 20, 4)
2112 FIELD(ID_MMFR4, CCIDX, 24, 4)
2113 FIELD(ID_MMFR4, EVT, 28, 4)
2114 
2115 FIELD(ID_MMFR5, ETS, 0, 4)
2116 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2117 
2118 FIELD(ID_PFR0, STATE0, 0, 4)
2119 FIELD(ID_PFR0, STATE1, 4, 4)
2120 FIELD(ID_PFR0, STATE2, 8, 4)
2121 FIELD(ID_PFR0, STATE3, 12, 4)
2122 FIELD(ID_PFR0, CSV2, 16, 4)
2123 FIELD(ID_PFR0, AMU, 20, 4)
2124 FIELD(ID_PFR0, DIT, 24, 4)
2125 FIELD(ID_PFR0, RAS, 28, 4)
2126 
2127 FIELD(ID_PFR1, PROGMOD, 0, 4)
2128 FIELD(ID_PFR1, SECURITY, 4, 4)
2129 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2130 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2131 FIELD(ID_PFR1, GENTIMER, 16, 4)
2132 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2133 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2134 FIELD(ID_PFR1, GIC, 28, 4)
2135 
2136 FIELD(ID_PFR2, CSV3, 0, 4)
2137 FIELD(ID_PFR2, SSBS, 4, 4)
2138 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2139 
2140 FIELD(ID_AA64ISAR0, AES, 4, 4)
2141 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2142 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2143 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2144 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2145 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2146 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2147 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2148 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2149 FIELD(ID_AA64ISAR0, DP, 44, 4)
2150 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2151 FIELD(ID_AA64ISAR0, TS, 52, 4)
2152 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2153 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2154 
2155 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2156 FIELD(ID_AA64ISAR1, APA, 4, 4)
2157 FIELD(ID_AA64ISAR1, API, 8, 4)
2158 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2159 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2160 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2161 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2162 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2163 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2164 FIELD(ID_AA64ISAR1, SB, 36, 4)
2165 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2166 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2167 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2168 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2169 FIELD(ID_AA64ISAR1, XS, 56, 4)
2170 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2171 
2172 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2173 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2174 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2175 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2176 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2177 FIELD(ID_AA64ISAR2, BC, 20, 4)
2178 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2179 
2180 FIELD(ID_AA64PFR0, EL0, 0, 4)
2181 FIELD(ID_AA64PFR0, EL1, 4, 4)
2182 FIELD(ID_AA64PFR0, EL2, 8, 4)
2183 FIELD(ID_AA64PFR0, EL3, 12, 4)
2184 FIELD(ID_AA64PFR0, FP, 16, 4)
2185 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2186 FIELD(ID_AA64PFR0, GIC, 24, 4)
2187 FIELD(ID_AA64PFR0, RAS, 28, 4)
2188 FIELD(ID_AA64PFR0, SVE, 32, 4)
2189 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2190 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2191 FIELD(ID_AA64PFR0, AMU, 44, 4)
2192 FIELD(ID_AA64PFR0, DIT, 48, 4)
2193 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2194 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2195 
2196 FIELD(ID_AA64PFR1, BT, 0, 4)
2197 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2198 FIELD(ID_AA64PFR1, MTE, 8, 4)
2199 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2200 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2201 FIELD(ID_AA64PFR1, SME, 24, 4)
2202 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2203 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2204 FIELD(ID_AA64PFR1, NMI, 36, 4)
2205 
2206 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2207 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2208 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2209 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2210 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2211 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2212 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2213 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2214 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2215 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2216 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2217 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2218 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2219 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2220 
2221 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2222 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2223 FIELD(ID_AA64MMFR1, VH, 8, 4)
2224 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2225 FIELD(ID_AA64MMFR1, LO, 16, 4)
2226 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2227 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2228 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2229 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2230 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2231 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2232 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2233 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2234 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2235 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2236 
2237 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2238 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2239 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2240 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2241 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2242 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2243 FIELD(ID_AA64MMFR2, NV, 24, 4)
2244 FIELD(ID_AA64MMFR2, ST, 28, 4)
2245 FIELD(ID_AA64MMFR2, AT, 32, 4)
2246 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2247 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2248 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2249 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2250 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2251 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2252 
2253 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2254 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2255 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2256 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2257 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2258 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2259 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2260 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2261 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2262 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2263 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2264 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2265 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2266 
2267 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2268 FIELD(ID_AA64ZFR0, AES, 4, 4)
2269 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2270 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2271 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2272 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2273 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2274 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2275 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2276 
2277 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2278 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2279 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2280 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2281 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2282 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2283 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2284 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2285 
2286 FIELD(ID_DFR0, COPDBG, 0, 4)
2287 FIELD(ID_DFR0, COPSDBG, 4, 4)
2288 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2289 FIELD(ID_DFR0, COPTRC, 12, 4)
2290 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2291 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2292 FIELD(ID_DFR0, PERFMON, 24, 4)
2293 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2294 
2295 FIELD(ID_DFR1, MTPMU, 0, 4)
2296 FIELD(ID_DFR1, HPMN0, 4, 4)
2297 
2298 FIELD(DBGDIDR, SE_IMP, 12, 1)
2299 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2300 FIELD(DBGDIDR, VERSION, 16, 4)
2301 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2302 FIELD(DBGDIDR, BRPS, 24, 4)
2303 FIELD(DBGDIDR, WRPS, 28, 4)
2304 
2305 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2306 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2307 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2308 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2309 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2310 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2311 FIELD(DBGDEVID, AUXREGS, 24, 4)
2312 FIELD(DBGDEVID, CIDMASK, 28, 4)
2313 
2314 FIELD(MVFR0, SIMDREG, 0, 4)
2315 FIELD(MVFR0, FPSP, 4, 4)
2316 FIELD(MVFR0, FPDP, 8, 4)
2317 FIELD(MVFR0, FPTRAP, 12, 4)
2318 FIELD(MVFR0, FPDIVIDE, 16, 4)
2319 FIELD(MVFR0, FPSQRT, 20, 4)
2320 FIELD(MVFR0, FPSHVEC, 24, 4)
2321 FIELD(MVFR0, FPROUND, 28, 4)
2322 
2323 FIELD(MVFR1, FPFTZ, 0, 4)
2324 FIELD(MVFR1, FPDNAN, 4, 4)
2325 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2326 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2327 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2328 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2329 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2330 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2331 FIELD(MVFR1, FPHP, 24, 4)
2332 FIELD(MVFR1, SIMDFMAC, 28, 4)
2333 
2334 FIELD(MVFR2, SIMDMISC, 0, 4)
2335 FIELD(MVFR2, FPMISC, 4, 4)
2336 
2337 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2338 
2339 /* If adding a feature bit which corresponds to a Linux ELF
2340  * HWCAP bit, remember to update the feature-bit-to-hwcap
2341  * mapping in linux-user/elfload.c:get_elf_hwcap().
2342  */
2343 enum arm_features {
2344     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2345     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2346     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2347     ARM_FEATURE_V6,
2348     ARM_FEATURE_V6K,
2349     ARM_FEATURE_V7,
2350     ARM_FEATURE_THUMB2,
2351     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2352     ARM_FEATURE_NEON,
2353     ARM_FEATURE_M, /* Microcontroller profile.  */
2354     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2355     ARM_FEATURE_THUMB2EE,
2356     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2357     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2358     ARM_FEATURE_V4T,
2359     ARM_FEATURE_V5,
2360     ARM_FEATURE_STRONGARM,
2361     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2362     ARM_FEATURE_GENERIC_TIMER,
2363     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2364     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2365     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2366     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2367     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2368     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2369     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2370     ARM_FEATURE_V8,
2371     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2372     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2373     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2374     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2375     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2376     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2377     ARM_FEATURE_PMU, /* has PMU support */
2378     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2379     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2380     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2381     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2382 };
2383 
2384 static inline int arm_feature(CPUARMState *env, int feature)
2385 {
2386     return (env->features & (1ULL << feature)) != 0;
2387 }
2388 
2389 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2390 
2391 #if !defined(CONFIG_USER_ONLY)
2392 /* Return true if exception levels below EL3 are in secure state,
2393  * or would be following an exception return to that level.
2394  * Unlike arm_is_secure() (which is always a question about the
2395  * _current_ state of the CPU) this doesn't care about the current
2396  * EL or mode.
2397  */
2398 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2399 {
2400     if (arm_feature(env, ARM_FEATURE_EL3)) {
2401         return !(env->cp15.scr_el3 & SCR_NS);
2402     } else {
2403         /* If EL3 is not supported then the secure state is implementation
2404          * defined, in which case QEMU defaults to non-secure.
2405          */
2406         return false;
2407     }
2408 }
2409 
2410 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2411 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2412 {
2413     if (arm_feature(env, ARM_FEATURE_EL3)) {
2414         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2415             /* CPU currently in AArch64 state and EL3 */
2416             return true;
2417         } else if (!is_a64(env) &&
2418                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2419             /* CPU currently in AArch32 state and monitor mode */
2420             return true;
2421         }
2422     }
2423     return false;
2424 }
2425 
2426 /* Return true if the processor is in secure state */
2427 static inline bool arm_is_secure(CPUARMState *env)
2428 {
2429     if (arm_is_el3_or_mon(env)) {
2430         return true;
2431     }
2432     return arm_is_secure_below_el3(env);
2433 }
2434 
2435 /*
2436  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2437  * This corresponds to the pseudocode EL2Enabled()
2438  */
2439 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2440 {
2441     return arm_feature(env, ARM_FEATURE_EL2)
2442            && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2443 }
2444 
2445 static inline bool arm_is_el2_enabled(CPUARMState *env)
2446 {
2447     return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
2448 }
2449 
2450 #else
2451 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2452 {
2453     return false;
2454 }
2455 
2456 static inline bool arm_is_secure(CPUARMState *env)
2457 {
2458     return false;
2459 }
2460 
2461 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2462 {
2463     return false;
2464 }
2465 
2466 static inline bool arm_is_el2_enabled(CPUARMState *env)
2467 {
2468     return false;
2469 }
2470 #endif
2471 
2472 /**
2473  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2474  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2475  * "for all purposes other than a direct read or write access of HCR_EL2."
2476  * Not included here is HCR_RW.
2477  */
2478 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
2479 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2480 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2481 
2482 /* Return true if the specified exception level is running in AArch64 state. */
2483 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2484 {
2485     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2486      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2487      */
2488     assert(el >= 1 && el <= 3);
2489     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2490 
2491     /* The highest exception level is always at the maximum supported
2492      * register width, and then lower levels have a register width controlled
2493      * by bits in the SCR or HCR registers.
2494      */
2495     if (el == 3) {
2496         return aa64;
2497     }
2498 
2499     if (arm_feature(env, ARM_FEATURE_EL3) &&
2500         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2501         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2502     }
2503 
2504     if (el == 2) {
2505         return aa64;
2506     }
2507 
2508     if (arm_is_el2_enabled(env)) {
2509         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2510     }
2511 
2512     return aa64;
2513 }
2514 
2515 /* Function for determing whether guest cp register reads and writes should
2516  * access the secure or non-secure bank of a cp register.  When EL3 is
2517  * operating in AArch32 state, the NS-bit determines whether the secure
2518  * instance of a cp register should be used. When EL3 is AArch64 (or if
2519  * it doesn't exist at all) then there is no register banking, and all
2520  * accesses are to the non-secure version.
2521  */
2522 static inline bool access_secure_reg(CPUARMState *env)
2523 {
2524     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2525                 !arm_el_is_aa64(env, 3) &&
2526                 !(env->cp15.scr_el3 & SCR_NS));
2527 
2528     return ret;
2529 }
2530 
2531 /* Macros for accessing a specified CP register bank */
2532 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2533     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2534 
2535 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2536     do {                                                \
2537         if (_secure) {                                   \
2538             (_env)->cp15._regname##_s = (_val);            \
2539         } else {                                        \
2540             (_env)->cp15._regname##_ns = (_val);           \
2541         }                                               \
2542     } while (0)
2543 
2544 /* Macros for automatically accessing a specific CP register bank depending on
2545  * the current secure state of the system.  These macros are not intended for
2546  * supporting instruction translation reads/writes as these are dependent
2547  * solely on the SCR.NS bit and not the mode.
2548  */
2549 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2550     A32_BANKED_REG_GET((_env), _regname,                \
2551                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2552 
2553 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2554     A32_BANKED_REG_SET((_env), _regname,                                    \
2555                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2556                        (_val))
2557 
2558 void arm_cpu_list(void);
2559 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2560                                  uint32_t cur_el, bool secure);
2561 
2562 /* Interface between CPU and Interrupt controller.  */
2563 #ifndef CONFIG_USER_ONLY
2564 bool armv7m_nvic_can_take_pending_exception(NVICState *s);
2565 #else
2566 static inline bool armv7m_nvic_can_take_pending_exception(NVICState *s)
2567 {
2568     return true;
2569 }
2570 #endif
2571 /**
2572  * armv7m_nvic_set_pending: mark the specified exception as pending
2573  * @s: the NVIC
2574  * @irq: the exception number to mark pending
2575  * @secure: false for non-banked exceptions or for the nonsecure
2576  * version of a banked exception, true for the secure version of a banked
2577  * exception.
2578  *
2579  * Marks the specified exception as pending. Note that we will assert()
2580  * if @secure is true and @irq does not specify one of the fixed set
2581  * of architecturally banked exceptions.
2582  */
2583 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure);
2584 /**
2585  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2586  * @s: the NVIC
2587  * @irq: the exception number to mark pending
2588  * @secure: false for non-banked exceptions or for the nonsecure
2589  * version of a banked exception, true for the secure version of a banked
2590  * exception.
2591  *
2592  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2593  * exceptions (exceptions generated in the course of trying to take
2594  * a different exception).
2595  */
2596 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure);
2597 /**
2598  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2599  * @s: the NVIC
2600  * @irq: the exception number to mark pending
2601  * @secure: false for non-banked exceptions or for the nonsecure
2602  * version of a banked exception, true for the secure version of a banked
2603  * exception.
2604  *
2605  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2606  * generated in the course of lazy stacking of FP registers.
2607  */
2608 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure);
2609 /**
2610  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2611  *    exception, and whether it targets Secure state
2612  * @s: the NVIC
2613  * @pirq: set to pending exception number
2614  * @ptargets_secure: set to whether pending exception targets Secure
2615  *
2616  * This function writes the number of the highest priority pending
2617  * exception (the one which would be made active by
2618  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2619  * to true if the current highest priority pending exception should
2620  * be taken to Secure state, false for NS.
2621  */
2622 void armv7m_nvic_get_pending_irq_info(NVICState *s, int *pirq,
2623                                       bool *ptargets_secure);
2624 /**
2625  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2626  * @s: the NVIC
2627  *
2628  * Move the current highest priority pending exception from the pending
2629  * state to the active state, and update v7m.exception to indicate that
2630  * it is the exception currently being handled.
2631  */
2632 void armv7m_nvic_acknowledge_irq(NVICState *s);
2633 /**
2634  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2635  * @s: the NVIC
2636  * @irq: the exception number to complete
2637  * @secure: true if this exception was secure
2638  *
2639  * Returns: -1 if the irq was not active
2640  *           1 if completing this irq brought us back to base (no active irqs)
2641  *           0 if there is still an irq active after this one was completed
2642  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2643  */
2644 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure);
2645 /**
2646  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2647  * @s: the NVIC
2648  * @irq: the exception number to mark pending
2649  * @secure: false for non-banked exceptions or for the nonsecure
2650  * version of a banked exception, true for the secure version of a banked
2651  * exception.
2652  *
2653  * Return whether an exception is "ready", i.e. whether the exception is
2654  * enabled and is configured at a priority which would allow it to
2655  * interrupt the current execution priority. This controls whether the
2656  * RDY bit for it in the FPCCR is set.
2657  */
2658 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure);
2659 /**
2660  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2661  * @s: the NVIC
2662  *
2663  * Returns: the raw execution priority as defined by the v8M architecture.
2664  * This is the execution priority minus the effects of AIRCR.PRIS,
2665  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2666  * (v8M ARM ARM I_PKLD.)
2667  */
2668 int armv7m_nvic_raw_execution_priority(NVICState *s);
2669 /**
2670  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2671  * priority is negative for the specified security state.
2672  * @s: the NVIC
2673  * @secure: the security state to test
2674  * This corresponds to the pseudocode IsReqExecPriNeg().
2675  */
2676 #ifndef CONFIG_USER_ONLY
2677 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure);
2678 #else
2679 static inline bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure)
2680 {
2681     return false;
2682 }
2683 #endif
2684 
2685 /* Interface for defining coprocessor registers.
2686  * Registers are defined in tables of arm_cp_reginfo structs
2687  * which are passed to define_arm_cp_regs().
2688  */
2689 
2690 /* When looking up a coprocessor register we look for it
2691  * via an integer which encodes all of:
2692  *  coprocessor number
2693  *  Crn, Crm, opc1, opc2 fields
2694  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2695  *    or via MRRC/MCRR?)
2696  *  non-secure/secure bank (AArch32 only)
2697  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2698  * (In this case crn and opc2 should be zero.)
2699  * For AArch64, there is no 32/64 bit size distinction;
2700  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2701  * and 4 bit CRn and CRm. The encoding patterns are chosen
2702  * to be easy to convert to and from the KVM encodings, and also
2703  * so that the hashtable can contain both AArch32 and AArch64
2704  * registers (to allow for interprocessing where we might run
2705  * 32 bit code on a 64 bit core).
2706  */
2707 /* This bit is private to our hashtable cpreg; in KVM register
2708  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2709  * in the upper bits of the 64 bit ID.
2710  */
2711 #define CP_REG_AA64_SHIFT 28
2712 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2713 
2714 /* To enable banking of coprocessor registers depending on ns-bit we
2715  * add a bit to distinguish between secure and non-secure cpregs in the
2716  * hashtable.
2717  */
2718 #define CP_REG_NS_SHIFT 29
2719 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2720 
2721 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2722     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2723      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2724 
2725 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2726     (CP_REG_AA64_MASK |                                 \
2727      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2728      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2729      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2730      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2731      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2732      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2733 
2734 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2735  * version used as a key for the coprocessor register hashtable
2736  */
2737 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2738 {
2739     uint32_t cpregid = kvmid;
2740     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2741         cpregid |= CP_REG_AA64_MASK;
2742     } else {
2743         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2744             cpregid |= (1 << 15);
2745         }
2746 
2747         /* KVM is always non-secure so add the NS flag on AArch32 register
2748          * entries.
2749          */
2750          cpregid |= 1 << CP_REG_NS_SHIFT;
2751     }
2752     return cpregid;
2753 }
2754 
2755 /* Convert a truncated 32 bit hashtable key into the full
2756  * 64 bit KVM register ID.
2757  */
2758 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2759 {
2760     uint64_t kvmid;
2761 
2762     if (cpregid & CP_REG_AA64_MASK) {
2763         kvmid = cpregid & ~CP_REG_AA64_MASK;
2764         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2765     } else {
2766         kvmid = cpregid & ~(1 << 15);
2767         if (cpregid & (1 << 15)) {
2768             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2769         } else {
2770             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2771         }
2772     }
2773     return kvmid;
2774 }
2775 
2776 /* Return the highest implemented Exception Level */
2777 static inline int arm_highest_el(CPUARMState *env)
2778 {
2779     if (arm_feature(env, ARM_FEATURE_EL3)) {
2780         return 3;
2781     }
2782     if (arm_feature(env, ARM_FEATURE_EL2)) {
2783         return 2;
2784     }
2785     return 1;
2786 }
2787 
2788 /* Return true if a v7M CPU is in Handler mode */
2789 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2790 {
2791     return env->v7m.exception != 0;
2792 }
2793 
2794 /* Return the current Exception Level (as per ARMv8; note that this differs
2795  * from the ARMv7 Privilege Level).
2796  */
2797 static inline int arm_current_el(CPUARMState *env)
2798 {
2799     if (arm_feature(env, ARM_FEATURE_M)) {
2800         return arm_v7m_is_handler_mode(env) ||
2801             !(env->v7m.control[env->v7m.secure] & 1);
2802     }
2803 
2804     if (is_a64(env)) {
2805         return extract32(env->pstate, 2, 2);
2806     }
2807 
2808     switch (env->uncached_cpsr & 0x1f) {
2809     case ARM_CPU_MODE_USR:
2810         return 0;
2811     case ARM_CPU_MODE_HYP:
2812         return 2;
2813     case ARM_CPU_MODE_MON:
2814         return 3;
2815     default:
2816         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2817             /* If EL3 is 32-bit then all secure privileged modes run in
2818              * EL3
2819              */
2820             return 3;
2821         }
2822 
2823         return 1;
2824     }
2825 }
2826 
2827 /**
2828  * write_list_to_cpustate
2829  * @cpu: ARMCPU
2830  *
2831  * For each register listed in the ARMCPU cpreg_indexes list, write
2832  * its value from the cpreg_values list into the ARMCPUState structure.
2833  * This updates TCG's working data structures from KVM data or
2834  * from incoming migration state.
2835  *
2836  * Returns: true if all register values were updated correctly,
2837  * false if some register was unknown or could not be written.
2838  * Note that we do not stop early on failure -- we will attempt
2839  * writing all registers in the list.
2840  */
2841 bool write_list_to_cpustate(ARMCPU *cpu);
2842 
2843 /**
2844  * write_cpustate_to_list:
2845  * @cpu: ARMCPU
2846  * @kvm_sync: true if this is for syncing back to KVM
2847  *
2848  * For each register listed in the ARMCPU cpreg_indexes list, write
2849  * its value from the ARMCPUState structure into the cpreg_values list.
2850  * This is used to copy info from TCG's working data structures into
2851  * KVM or for outbound migration.
2852  *
2853  * @kvm_sync is true if we are doing this in order to sync the
2854  * register state back to KVM. In this case we will only update
2855  * values in the list if the previous list->cpustate sync actually
2856  * successfully wrote the CPU state. Otherwise we will keep the value
2857  * that is in the list.
2858  *
2859  * Returns: true if all register values were read correctly,
2860  * false if some register was unknown or could not be read.
2861  * Note that we do not stop early on failure -- we will attempt
2862  * reading all registers in the list.
2863  */
2864 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2865 
2866 #define ARM_CPUID_TI915T      0x54029152
2867 #define ARM_CPUID_TI925T      0x54029252
2868 
2869 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2870 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2871 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2872 
2873 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2874 
2875 #define cpu_list arm_cpu_list
2876 
2877 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2878  *
2879  * If EL3 is 64-bit:
2880  *  + NonSecure EL1 & 0 stage 1
2881  *  + NonSecure EL1 & 0 stage 2
2882  *  + NonSecure EL2
2883  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2884  *  + Secure EL1 & 0
2885  *  + Secure EL3
2886  * If EL3 is 32-bit:
2887  *  + NonSecure PL1 & 0 stage 1
2888  *  + NonSecure PL1 & 0 stage 2
2889  *  + NonSecure PL2
2890  *  + Secure PL0
2891  *  + Secure PL1
2892  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2893  *
2894  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2895  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2896  *     because they may differ in access permissions even if the VA->PA map is
2897  *     the same
2898  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2899  *     translation, which means that we have one mmu_idx that deals with two
2900  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2901  *     architecturally permitted]
2902  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2903  *     handling via the TLB. The only way to do a stage 1 translation without
2904  *     the immediate stage 2 translation is via the ATS or AT system insns,
2905  *     which can be slow-pathed and always do a page table walk.
2906  *     The only use of stage 2 translations is either as part of an s1+2
2907  *     lookup or when loading the descriptors during a stage 1 page table walk,
2908  *     and in both those cases we don't use the TLB.
2909  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2910  *     translation regimes, because they map reasonably well to each other
2911  *     and they can't both be active at the same time.
2912  *  5. we want to be able to use the TLB for accesses done as part of a
2913  *     stage1 page table walk, rather than having to walk the stage2 page
2914  *     table over and over.
2915  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2916  *     Never (PAN) bit within PSTATE.
2917  *  7. we fold together the secure and non-secure regimes for A-profile,
2918  *     because there are no banked system registers for aarch64, so the
2919  *     process of switching between secure and non-secure is
2920  *     already heavyweight.
2921  *
2922  * This gives us the following list of cases:
2923  *
2924  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2925  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2926  * EL1 EL1&0 stage 1+2 +PAN
2927  * EL0 EL2&0
2928  * EL2 EL2&0
2929  * EL2 EL2&0 +PAN
2930  * EL2 (aka NS PL2)
2931  * EL3 (aka S PL1)
2932  * Physical (NS & S)
2933  * Stage2 (NS & S)
2934  *
2935  * for a total of 12 different mmu_idx.
2936  *
2937  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2938  * as A profile. They only need to distinguish EL0 and EL1 (and
2939  * EL2 if we ever model a Cortex-R52).
2940  *
2941  * M profile CPUs are rather different as they do not have a true MMU.
2942  * They have the following different MMU indexes:
2943  *  User
2944  *  Privileged
2945  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2946  *  Privileged, execution priority negative (ditto)
2947  * If the CPU supports the v8M Security Extension then there are also:
2948  *  Secure User
2949  *  Secure Privileged
2950  *  Secure User, execution priority negative
2951  *  Secure Privileged, execution priority negative
2952  *
2953  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2954  * are not quite the same -- different CPU types (most notably M profile
2955  * vs A/R profile) would like to use MMU indexes with different semantics,
2956  * but since we don't ever need to use all of those in a single CPU we
2957  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2958  * modes + total number of M profile MMU modes". The lower bits of
2959  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2960  * the same for any particular CPU.
2961  * Variables of type ARMMUIdx are always full values, and the core
2962  * index values are in variables of type 'int'.
2963  *
2964  * Our enumeration includes at the end some entries which are not "true"
2965  * mmu_idx values in that they don't have corresponding TLBs and are only
2966  * valid for doing slow path page table walks.
2967  *
2968  * The constant names here are patterned after the general style of the names
2969  * of the AT/ATS operations.
2970  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2971  * For M profile we arrange them to have a bit for priv, a bit for negpri
2972  * and a bit for secure.
2973  */
2974 #define ARM_MMU_IDX_A     0x10  /* A profile */
2975 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2976 #define ARM_MMU_IDX_M     0x40  /* M profile */
2977 
2978 /* Meanings of the bits for M profile mmu idx values */
2979 #define ARM_MMU_IDX_M_PRIV   0x1
2980 #define ARM_MMU_IDX_M_NEGPRI 0x2
2981 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2982 
2983 #define ARM_MMU_IDX_TYPE_MASK \
2984     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2985 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2986 
2987 typedef enum ARMMMUIdx {
2988     /*
2989      * A-profile.
2990      */
2991     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2992     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2993     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2994     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2995     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2996     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2997     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2998     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2999 
3000     /* TLBs with 1-1 mapping to the physical address spaces. */
3001     ARMMMUIdx_Phys_NS   = 8 | ARM_MMU_IDX_A,
3002     ARMMMUIdx_Phys_S    = 9 | ARM_MMU_IDX_A,
3003 
3004     /*
3005      * Used for second stage of an S12 page table walk, or for descriptor
3006      * loads during first stage of an S1 page table walk.  Note that both
3007      * are in use simultaneously for SecureEL2: the security state for
3008      * the S2 ptw is selected by the NS bit from the S1 ptw.
3009      */
3010     ARMMMUIdx_Stage2    = 10 | ARM_MMU_IDX_A,
3011     ARMMMUIdx_Stage2_S  = 11 | ARM_MMU_IDX_A,
3012 
3013     /*
3014      * These are not allocated TLBs and are used only for AT system
3015      * instructions or for the first stage of an S12 page table walk.
3016      */
3017     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3018     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3019     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3020 
3021     /*
3022      * M-profile.
3023      */
3024     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3025     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3026     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3027     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3028     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3029     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3030     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3031     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3032 } ARMMMUIdx;
3033 
3034 /*
3035  * Bit macros for the core-mmu-index values for each index,
3036  * for use when calling tlb_flush_by_mmuidx() and friends.
3037  */
3038 #define TO_CORE_BIT(NAME) \
3039     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3040 
3041 typedef enum ARMMMUIdxBit {
3042     TO_CORE_BIT(E10_0),
3043     TO_CORE_BIT(E20_0),
3044     TO_CORE_BIT(E10_1),
3045     TO_CORE_BIT(E10_1_PAN),
3046     TO_CORE_BIT(E2),
3047     TO_CORE_BIT(E20_2),
3048     TO_CORE_BIT(E20_2_PAN),
3049     TO_CORE_BIT(E3),
3050     TO_CORE_BIT(Stage2),
3051     TO_CORE_BIT(Stage2_S),
3052 
3053     TO_CORE_BIT(MUser),
3054     TO_CORE_BIT(MPriv),
3055     TO_CORE_BIT(MUserNegPri),
3056     TO_CORE_BIT(MPrivNegPri),
3057     TO_CORE_BIT(MSUser),
3058     TO_CORE_BIT(MSPriv),
3059     TO_CORE_BIT(MSUserNegPri),
3060     TO_CORE_BIT(MSPrivNegPri),
3061 } ARMMMUIdxBit;
3062 
3063 #undef TO_CORE_BIT
3064 
3065 #define MMU_USER_IDX 0
3066 
3067 /* Indexes used when registering address spaces with cpu_address_space_init */
3068 typedef enum ARMASIdx {
3069     ARMASIdx_NS = 0,
3070     ARMASIdx_S = 1,
3071     ARMASIdx_TagNS = 2,
3072     ARMASIdx_TagS = 3,
3073 } ARMASIdx;
3074 
3075 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3076 {
3077     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3078      * CSSELR is RAZ/WI.
3079      */
3080     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3081 }
3082 
3083 static inline bool arm_sctlr_b(CPUARMState *env)
3084 {
3085     return
3086         /* We need not implement SCTLR.ITD in user-mode emulation, so
3087          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3088          * This lets people run BE32 binaries with "-cpu any".
3089          */
3090 #ifndef CONFIG_USER_ONLY
3091         !arm_feature(env, ARM_FEATURE_V7) &&
3092 #endif
3093         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3094 }
3095 
3096 uint64_t arm_sctlr(CPUARMState *env, int el);
3097 
3098 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3099                                                   bool sctlr_b)
3100 {
3101 #ifdef CONFIG_USER_ONLY
3102     /*
3103      * In system mode, BE32 is modelled in line with the
3104      * architecture (as word-invariant big-endianness), where loads
3105      * and stores are done little endian but from addresses which
3106      * are adjusted by XORing with the appropriate constant. So the
3107      * endianness to use for the raw data access is not affected by
3108      * SCTLR.B.
3109      * In user mode, however, we model BE32 as byte-invariant
3110      * big-endianness (because user-only code cannot tell the
3111      * difference), and so we need to use a data access endianness
3112      * that depends on SCTLR.B.
3113      */
3114     if (sctlr_b) {
3115         return true;
3116     }
3117 #endif
3118     /* In 32bit endianness is determined by looking at CPSR's E bit */
3119     return env->uncached_cpsr & CPSR_E;
3120 }
3121 
3122 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3123 {
3124     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3125 }
3126 
3127 /* Return true if the processor is in big-endian mode. */
3128 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3129 {
3130     if (!is_a64(env)) {
3131         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3132     } else {
3133         int cur_el = arm_current_el(env);
3134         uint64_t sctlr = arm_sctlr(env, cur_el);
3135         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3136     }
3137 }
3138 
3139 #include "exec/cpu-all.h"
3140 
3141 /*
3142  * We have more than 32-bits worth of state per TB, so we split the data
3143  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3144  * We collect these two parts in CPUARMTBFlags where they are named
3145  * flags and flags2 respectively.
3146  *
3147  * The flags that are shared between all execution modes, TBFLAG_ANY,
3148  * are stored in flags.  The flags that are specific to a given mode
3149  * are stores in flags2.  Since cs_base is sized on the configured
3150  * address size, flags2 always has 64-bits for A64, and a minimum of
3151  * 32-bits for A32 and M32.
3152  *
3153  * The bits for 32-bit A-profile and M-profile partially overlap:
3154  *
3155  *  31         23         11 10             0
3156  * +-------------+----------+----------------+
3157  * |             |          |   TBFLAG_A32   |
3158  * | TBFLAG_AM32 |          +-----+----------+
3159  * |             |                |TBFLAG_M32|
3160  * +-------------+----------------+----------+
3161  *  31         23                6 5        0
3162  *
3163  * Unless otherwise noted, these bits are cached in env->hflags.
3164  */
3165 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3166 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3167 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3168 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3169 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3170 /* Target EL if we take a floating-point-disabled exception */
3171 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3172 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3173 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3174 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3175 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3176 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3177 
3178 /*
3179  * Bit usage when in AArch32 state, both A- and M-profile.
3180  */
3181 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3182 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3183 
3184 /*
3185  * Bit usage when in AArch32 state, for A-profile only.
3186  */
3187 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3188 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3189 /*
3190  * We store the bottom two bits of the CPAR as TB flags and handle
3191  * checks on the other bits at runtime. This shares the same bits as
3192  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3193  * Not cached, because VECLEN+VECSTRIDE are not cached.
3194  */
3195 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3196 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3197 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3198 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3199 /*
3200  * Indicates whether cp register reads and writes by guest code should access
3201  * the secure or nonsecure bank of banked registers; note that this is not
3202  * the same thing as the current security state of the processor!
3203  */
3204 FIELD(TBFLAG_A32, NS, 10, 1)
3205 /*
3206  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3207  * This requires an SME trap from AArch32 mode when using NEON.
3208  */
3209 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3210 
3211 /*
3212  * Bit usage when in AArch32 state, for M-profile only.
3213  */
3214 /* Handler (ie not Thread) mode */
3215 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3216 /* Whether we should generate stack-limit checks */
3217 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3218 /* Set if FPCCR.LSPACT is set */
3219 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3220 /* Set if we must create a new FP context */
3221 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3222 /* Set if FPCCR.S does not match current security state */
3223 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3224 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3225 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3226 /* Set if in secure mode */
3227 FIELD(TBFLAG_M32, SECURE, 6, 1)
3228 
3229 /*
3230  * Bit usage when in AArch64 state
3231  */
3232 FIELD(TBFLAG_A64, TBII, 0, 2)
3233 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3234 /* The current vector length, either NVL or SVL. */
3235 FIELD(TBFLAG_A64, VL, 4, 4)
3236 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3237 FIELD(TBFLAG_A64, BT, 9, 1)
3238 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3239 FIELD(TBFLAG_A64, TBID, 12, 2)
3240 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3241 FIELD(TBFLAG_A64, ATA, 15, 1)
3242 FIELD(TBFLAG_A64, TCMA, 16, 2)
3243 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3244 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3245 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3246 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3247 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3248 FIELD(TBFLAG_A64, SVL, 24, 4)
3249 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3250 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3251 FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3252 
3253 /*
3254  * Helpers for using the above.
3255  */
3256 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3257     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3258 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3259     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3260 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3261     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3262 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3263     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3264 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3265     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3266 
3267 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3268 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3269 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3270 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3271 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3272 
3273 /**
3274  * cpu_mmu_index:
3275  * @env: The cpu environment
3276  * @ifetch: True for code access, false for data access.
3277  *
3278  * Return the core mmu index for the current translation regime.
3279  * This function is used by generic TCG code paths.
3280  */
3281 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3282 {
3283     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3284 }
3285 
3286 /**
3287  * sve_vq
3288  * @env: the cpu context
3289  *
3290  * Return the VL cached within env->hflags, in units of quadwords.
3291  */
3292 static inline int sve_vq(CPUARMState *env)
3293 {
3294     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3295 }
3296 
3297 /**
3298  * sme_vq
3299  * @env: the cpu context
3300  *
3301  * Return the SVL cached within env->hflags, in units of quadwords.
3302  */
3303 static inline int sme_vq(CPUARMState *env)
3304 {
3305     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3306 }
3307 
3308 static inline bool bswap_code(bool sctlr_b)
3309 {
3310 #ifdef CONFIG_USER_ONLY
3311     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3312      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3313      * would also end up as a mixed-endian mode with BE code, LE data.
3314      */
3315     return
3316 #if TARGET_BIG_ENDIAN
3317         1 ^
3318 #endif
3319         sctlr_b;
3320 #else
3321     /* All code access in ARM is little endian, and there are no loaders
3322      * doing swaps that need to be reversed
3323      */
3324     return 0;
3325 #endif
3326 }
3327 
3328 #ifdef CONFIG_USER_ONLY
3329 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3330 {
3331     return
3332 #if TARGET_BIG_ENDIAN
3333        1 ^
3334 #endif
3335        arm_cpu_data_is_big_endian(env);
3336 }
3337 #endif
3338 
3339 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3340                           target_ulong *cs_base, uint32_t *flags);
3341 
3342 enum {
3343     QEMU_PSCI_CONDUIT_DISABLED = 0,
3344     QEMU_PSCI_CONDUIT_SMC = 1,
3345     QEMU_PSCI_CONDUIT_HVC = 2,
3346 };
3347 
3348 #ifndef CONFIG_USER_ONLY
3349 /* Return the address space index to use for a memory access */
3350 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3351 {
3352     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3353 }
3354 
3355 /* Return the AddressSpace to use for a memory access
3356  * (which depends on whether the access is S or NS, and whether
3357  * the board gave us a separate AddressSpace for S accesses).
3358  */
3359 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3360 {
3361     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3362 }
3363 #endif
3364 
3365 /**
3366  * arm_register_pre_el_change_hook:
3367  * Register a hook function which will be called immediately before this
3368  * CPU changes exception level or mode. The hook function will be
3369  * passed a pointer to the ARMCPU and the opaque data pointer passed
3370  * to this function when the hook was registered.
3371  *
3372  * Note that if a pre-change hook is called, any registered post-change hooks
3373  * are guaranteed to subsequently be called.
3374  */
3375 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3376                                  void *opaque);
3377 /**
3378  * arm_register_el_change_hook:
3379  * Register a hook function which will be called immediately after this
3380  * CPU changes exception level or mode. The hook function will be
3381  * passed a pointer to the ARMCPU and the opaque data pointer passed
3382  * to this function when the hook was registered.
3383  *
3384  * Note that any registered hooks registered here are guaranteed to be called
3385  * if pre-change hooks have been.
3386  */
3387 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3388         *opaque);
3389 
3390 /**
3391  * arm_rebuild_hflags:
3392  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3393  */
3394 void arm_rebuild_hflags(CPUARMState *env);
3395 
3396 /**
3397  * aa32_vfp_dreg:
3398  * Return a pointer to the Dn register within env in 32-bit mode.
3399  */
3400 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3401 {
3402     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3403 }
3404 
3405 /**
3406  * aa32_vfp_qreg:
3407  * Return a pointer to the Qn register within env in 32-bit mode.
3408  */
3409 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3410 {
3411     return &env->vfp.zregs[regno].d[0];
3412 }
3413 
3414 /**
3415  * aa64_vfp_qreg:
3416  * Return a pointer to the Qn register within env in 64-bit mode.
3417  */
3418 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3419 {
3420     return &env->vfp.zregs[regno].d[0];
3421 }
3422 
3423 /* Shared between translate-sve.c and sve_helper.c.  */
3424 extern const uint64_t pred_esz_masks[5];
3425 
3426 /*
3427  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3428  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3429  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3430  */
3431 #define PAGE_BTI            PAGE_TARGET_1
3432 #define PAGE_MTE            PAGE_TARGET_2
3433 #define PAGE_TARGET_STICKY  PAGE_MTE
3434 
3435 /* We associate one allocation tag per 16 bytes, the minimum.  */
3436 #define LOG2_TAG_GRANULE 4
3437 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3438 
3439 #ifdef CONFIG_USER_ONLY
3440 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3441 #endif
3442 
3443 #ifdef TARGET_TAGGED_ADDRESSES
3444 /**
3445  * cpu_untagged_addr:
3446  * @cs: CPU context
3447  * @x: tagged address
3448  *
3449  * Remove any address tag from @x.  This is explicitly related to the
3450  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3451  *
3452  * There should be a better place to put this, but we need this in
3453  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3454  */
3455 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3456 {
3457     ARMCPU *cpu = ARM_CPU(cs);
3458     if (cpu->env.tagged_addr_enable) {
3459         /*
3460          * TBI is enabled for userspace but not kernelspace addresses.
3461          * Only clear the tag if bit 55 is clear.
3462          */
3463         x &= sextract64(x, 0, 56);
3464     }
3465     return x;
3466 }
3467 #endif
3468 
3469 /*
3470  * Naming convention for isar_feature functions:
3471  * Functions which test 32-bit ID registers should have _aa32_ in
3472  * their name. Functions which test 64-bit ID registers should have
3473  * _aa64_ in their name. These must only be used in code where we
3474  * know for certain that the CPU has AArch32 or AArch64 respectively
3475  * or where the correct answer for a CPU which doesn't implement that
3476  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3477  * system registers that are specific to that CPU state, for "should
3478  * we let this system register bit be set" tests where the 32-bit
3479  * flavour of the register doesn't have the bit, and so on).
3480  * Functions which simply ask "does this feature exist at all" have
3481  * _any_ in their name, and always return the logical OR of the _aa64_
3482  * and the _aa32_ function.
3483  */
3484 
3485 /*
3486  * 32-bit feature tests via id registers.
3487  */
3488 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3489 {
3490     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3491 }
3492 
3493 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3496 }
3497 
3498 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3499 {
3500     /* (M-profile) low-overhead loops and branch future */
3501     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3502 }
3503 
3504 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3505 {
3506     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3507 }
3508 
3509 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3510 {
3511     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3512 }
3513 
3514 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3515 {
3516     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3517 }
3518 
3519 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3520 {
3521     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3522 }
3523 
3524 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3525 {
3526     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3527 }
3528 
3529 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3530 {
3531     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3532 }
3533 
3534 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3535 {
3536     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3537 }
3538 
3539 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3540 {
3541     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3542 }
3543 
3544 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3545 {
3546     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3547 }
3548 
3549 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3550 {
3551     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3552 }
3553 
3554 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3555 {
3556     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3557 }
3558 
3559 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3560 {
3561     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3562 }
3563 
3564 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3565 {
3566     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3567 }
3568 
3569 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3570 {
3571     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3572 }
3573 
3574 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3575 {
3576     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3577 }
3578 
3579 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3580 {
3581     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3582 }
3583 
3584 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3585 {
3586     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3587 }
3588 
3589 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3590 {
3591     /*
3592      * Return true if M-profile state handling insns
3593      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3594      */
3595     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3596 }
3597 
3598 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3599 {
3600     /* Sadly this is encoded differently for A-profile and M-profile */
3601     if (isar_feature_aa32_mprofile(id)) {
3602         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3603     } else {
3604         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3605     }
3606 }
3607 
3608 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3609 {
3610     /*
3611      * Return true if MVE is supported (either integer or floating point).
3612      * We must check for M-profile as the MVFR1 field means something
3613      * else for A-profile.
3614      */
3615     return isar_feature_aa32_mprofile(id) &&
3616         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3617 }
3618 
3619 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3620 {
3621     /*
3622      * Return true if MVE is supported (either integer or floating point).
3623      * We must check for M-profile as the MVFR1 field means something
3624      * else for A-profile.
3625      */
3626     return isar_feature_aa32_mprofile(id) &&
3627         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3628 }
3629 
3630 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3631 {
3632     /*
3633      * Return true if either VFP or SIMD is implemented.
3634      * In this case, a minimum of VFP w/ D0-D15.
3635      */
3636     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3637 }
3638 
3639 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3640 {
3641     /* Return true if D16-D31 are implemented */
3642     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3643 }
3644 
3645 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3646 {
3647     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3648 }
3649 
3650 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3651 {
3652     /* Return true if CPU supports single precision floating point, VFPv2 */
3653     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3654 }
3655 
3656 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3657 {
3658     /* Return true if CPU supports single precision floating point, VFPv3 */
3659     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3660 }
3661 
3662 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3663 {
3664     /* Return true if CPU supports double precision floating point, VFPv2 */
3665     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3666 }
3667 
3668 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3669 {
3670     /* Return true if CPU supports double precision floating point, VFPv3 */
3671     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3672 }
3673 
3674 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3675 {
3676     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3677 }
3678 
3679 /*
3680  * We always set the FP and SIMD FP16 fields to indicate identical
3681  * levels of support (assuming SIMD is implemented at all), so
3682  * we only need one set of accessors.
3683  */
3684 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3685 {
3686     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3687 }
3688 
3689 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3690 {
3691     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3692 }
3693 
3694 /*
3695  * Note that this ID register field covers both VFP and Neon FMAC,
3696  * so should usually be tested in combination with some other
3697  * check that confirms the presence of whichever of VFP or Neon is
3698  * relevant, to avoid accidentally enabling a Neon feature on
3699  * a VFP-no-Neon core or vice-versa.
3700  */
3701 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3702 {
3703     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3704 }
3705 
3706 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3707 {
3708     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3709 }
3710 
3711 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3712 {
3713     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3714 }
3715 
3716 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3717 {
3718     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3719 }
3720 
3721 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3722 {
3723     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3724 }
3725 
3726 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3727 {
3728     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3729 }
3730 
3731 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3732 {
3733     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3734 }
3735 
3736 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3737 {
3738     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3739 }
3740 
3741 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3742 {
3743     /* 0xf means "non-standard IMPDEF PMU" */
3744     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3745         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3746 }
3747 
3748 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3749 {
3750     /* 0xf means "non-standard IMPDEF PMU" */
3751     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3752         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3753 }
3754 
3755 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3756 {
3757     /* 0xf means "non-standard IMPDEF PMU" */
3758     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3759         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3760 }
3761 
3762 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3763 {
3764     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3765 }
3766 
3767 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3768 {
3769     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3770 }
3771 
3772 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3773 {
3774     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3775 }
3776 
3777 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3778 {
3779     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3780 }
3781 
3782 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3783 {
3784     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3785 }
3786 
3787 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3788 {
3789     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3790 }
3791 
3792 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3793 {
3794     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3795 }
3796 
3797 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3798 {
3799     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3800 }
3801 
3802 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3803 {
3804     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3805 }
3806 
3807 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3808 {
3809     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3810 }
3811 
3812 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3813 {
3814     return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3815 }
3816 
3817 /*
3818  * 64-bit feature tests via id registers.
3819  */
3820 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3821 {
3822     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3823 }
3824 
3825 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3826 {
3827     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3828 }
3829 
3830 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3831 {
3832     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3833 }
3834 
3835 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3836 {
3837     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3838 }
3839 
3840 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3841 {
3842     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3843 }
3844 
3845 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3846 {
3847     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3848 }
3849 
3850 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3851 {
3852     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3853 }
3854 
3855 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3856 {
3857     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3858 }
3859 
3860 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3861 {
3862     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3863 }
3864 
3865 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3866 {
3867     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3868 }
3869 
3870 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3871 {
3872     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3873 }
3874 
3875 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3876 {
3877     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3878 }
3879 
3880 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3881 {
3882     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3883 }
3884 
3885 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3886 {
3887     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3888 }
3889 
3890 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3891 {
3892     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3893 }
3894 
3895 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3896 {
3897     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3898 }
3899 
3900 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3901 {
3902     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3903 }
3904 
3905 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3906 {
3907     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3908 }
3909 
3910 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3911 {
3912     /*
3913      * Return true if any form of pauth is enabled, as this
3914      * predicate controls migration of the 128-bit keys.
3915      */
3916     return (id->id_aa64isar1 &
3917             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3918              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3919              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3920              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3921 }
3922 
3923 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3924 {
3925     /*
3926      * Return true if pauth is enabled with the architected QARMA algorithm.
3927      * QEMU will always set APA+GPA to the same value.
3928      */
3929     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3930 }
3931 
3932 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3933 {
3934     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3935 }
3936 
3937 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3938 {
3939     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3940 }
3941 
3942 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3943 {
3944     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3945 }
3946 
3947 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3948 {
3949     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3950 }
3951 
3952 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3953 {
3954     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3955 }
3956 
3957 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3958 {
3959     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3960 }
3961 
3962 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3963 {
3964     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3965 }
3966 
3967 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3968 {
3969     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3970 }
3971 
3972 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3973 {
3974     /* We always set the AdvSIMD and FP fields identically.  */
3975     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3976 }
3977 
3978 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3979 {
3980     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3981     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3982 }
3983 
3984 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3985 {
3986     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3987 }
3988 
3989 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3990 {
3991     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3992 }
3993 
3994 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3995 {
3996     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3997 }
3998 
3999 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
4000 {
4001     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
4002 }
4003 
4004 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
4005 {
4006     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
4007 }
4008 
4009 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4010 {
4011     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4012 }
4013 
4014 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4015 {
4016     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4017 }
4018 
4019 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4020 {
4021     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4022 }
4023 
4024 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4025 {
4026     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4027 }
4028 
4029 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4030 {
4031     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4032 }
4033 
4034 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4035 {
4036     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4037 }
4038 
4039 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
4040 {
4041     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
4042 }
4043 
4044 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4045 {
4046     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4047 }
4048 
4049 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4050 {
4051     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4052 }
4053 
4054 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4055 {
4056     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4057 }
4058 
4059 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4060 {
4061     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4062 }
4063 
4064 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
4065 {
4066     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
4067 }
4068 
4069 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
4070 {
4071     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
4072 }
4073 
4074 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4075 {
4076     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4077 }
4078 
4079 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4080 {
4081     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4082 }
4083 
4084 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4085 {
4086     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4087 }
4088 
4089 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4090 {
4091     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4092 }
4093 
4094 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
4095 {
4096     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4097         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4098 }
4099 
4100 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
4101 {
4102     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4103         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4104 }
4105 
4106 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4107 {
4108     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4109         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4110 }
4111 
4112 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4113 {
4114     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4115 }
4116 
4117 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4118 {
4119     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4120 }
4121 
4122 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4123 {
4124     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4125 }
4126 
4127 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4128 {
4129     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4130 }
4131 
4132 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4133 {
4134     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4135     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4136 }
4137 
4138 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4139 {
4140     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4141 }
4142 
4143 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4144 {
4145     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4146     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4147 }
4148 
4149 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4150 {
4151     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4152 }
4153 
4154 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4155 {
4156     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4157 }
4158 
4159 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4160 {
4161     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4162 }
4163 
4164 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4165 {
4166     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4167     return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4168 }
4169 
4170 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4171 {
4172     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4173     return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4174 }
4175 
4176 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4177 {
4178     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4179     return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4180 }
4181 
4182 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4183 {
4184     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4185 }
4186 
4187 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4188 {
4189     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4190 }
4191 
4192 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4193 {
4194     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4195 }
4196 
4197 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4198 {
4199     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4200 }
4201 
4202 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4203 {
4204     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4205 }
4206 
4207 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4208 {
4209     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4210 }
4211 
4212 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4213 {
4214     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4215 }
4216 
4217 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4218 {
4219     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4220 }
4221 
4222 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4223 {
4224     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4225     if (key >= 2) {
4226         return true;      /* FEAT_CSV2_2 */
4227     }
4228     if (key == 1) {
4229         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4230         return key >= 2;  /* FEAT_CSV2_1p2 */
4231     }
4232     return false;
4233 }
4234 
4235 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4236 {
4237     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4238 }
4239 
4240 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4241 {
4242     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4243 }
4244 
4245 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4246 {
4247     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4248 }
4249 
4250 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4251 {
4252     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4253 }
4254 
4255 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4256 {
4257     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4258 }
4259 
4260 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4261 {
4262     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4263 }
4264 
4265 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4266 {
4267     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4268 }
4269 
4270 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4271 {
4272     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4273 }
4274 
4275 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4276 {
4277     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4278 }
4279 
4280 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4281 {
4282     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4283 }
4284 
4285 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4286 {
4287     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4288 }
4289 
4290 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4291 {
4292     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4293 }
4294 
4295 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4296 {
4297     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4298 }
4299 
4300 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4301 {
4302     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4303 }
4304 
4305 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4306 {
4307     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4308 }
4309 
4310 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4311 {
4312     return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4313 }
4314 
4315 /*
4316  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4317  */
4318 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4319 {
4320     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4321 }
4322 
4323 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4324 {
4325     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4326 }
4327 
4328 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4329 {
4330     return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4331 }
4332 
4333 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4334 {
4335     return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4336 }
4337 
4338 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4339 {
4340     return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4341 }
4342 
4343 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4344 {
4345     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4346 }
4347 
4348 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4349 {
4350     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4351 }
4352 
4353 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4354 {
4355     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4356 }
4357 
4358 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4359 {
4360     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4361 }
4362 
4363 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4364 {
4365     return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4366 }
4367 
4368 static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4369 {
4370     return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4371 }
4372 
4373 /*
4374  * Forward to the above feature tests given an ARMCPU pointer.
4375  */
4376 #define cpu_isar_feature(name, cpu) \
4377     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4378 
4379 #endif
4380