1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 26 #if defined(TARGET_AARCH64) 27 /* AArch64 definitions */ 28 # define TARGET_LONG_BITS 64 29 #else 30 # define TARGET_LONG_BITS 32 31 #endif 32 33 /* ARM processors have a weak memory model */ 34 #define TCG_GUEST_DEFAULT_MO (0) 35 36 #define CPUArchState struct CPUARMState 37 38 #include "qemu-common.h" 39 #include "cpu-qom.h" 40 #include "exec/cpu-defs.h" 41 42 #include "fpu/softfloat.h" 43 44 #define EXCP_UDEF 1 /* undefined instruction */ 45 #define EXCP_SWI 2 /* software interrupt */ 46 #define EXCP_PREFETCH_ABORT 3 47 #define EXCP_DATA_ABORT 4 48 #define EXCP_IRQ 5 49 #define EXCP_FIQ 6 50 #define EXCP_BKPT 7 51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 53 #define EXCP_HVC 11 /* HyperVisor Call */ 54 #define EXCP_HYP_TRAP 12 55 #define EXCP_SMC 13 /* Secure Monitor Call */ 56 #define EXCP_VIRQ 14 57 #define EXCP_VFIQ 15 58 #define EXCP_SEMIHOST 16 /* semihosting call */ 59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 62 63 #define ARMV7M_EXCP_RESET 1 64 #define ARMV7M_EXCP_NMI 2 65 #define ARMV7M_EXCP_HARD 3 66 #define ARMV7M_EXCP_MEM 4 67 #define ARMV7M_EXCP_BUS 5 68 #define ARMV7M_EXCP_USAGE 6 69 #define ARMV7M_EXCP_SVC 11 70 #define ARMV7M_EXCP_DEBUG 12 71 #define ARMV7M_EXCP_PENDSV 14 72 #define ARMV7M_EXCP_SYSTICK 15 73 74 /* ARM-specific interrupt pending bits. */ 75 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 76 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 77 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 78 79 /* The usual mapping for an AArch64 system register to its AArch32 80 * counterpart is for the 32 bit world to have access to the lower 81 * half only (with writes leaving the upper half untouched). It's 82 * therefore useful to be able to pass TCG the offset of the least 83 * significant half of a uint64_t struct member. 84 */ 85 #ifdef HOST_WORDS_BIGENDIAN 86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 87 #define offsetofhigh32(S, M) offsetof(S, M) 88 #else 89 #define offsetoflow32(S, M) offsetof(S, M) 90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 91 #endif 92 93 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 94 #define ARM_CPU_IRQ 0 95 #define ARM_CPU_FIQ 1 96 #define ARM_CPU_VIRQ 2 97 #define ARM_CPU_VFIQ 3 98 99 #define NB_MMU_MODES 7 100 /* ARM-specific extra insn start words: 101 * 1: Conditional execution bits 102 * 2: Partial exception syndrome for data aborts 103 */ 104 #define TARGET_INSN_START_EXTRA_WORDS 2 105 106 /* The 2nd extra word holding syndrome info for data aborts does not use 107 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 108 * help the sleb128 encoder do a better job. 109 * When restoring the CPU state, we shift it back up. 110 */ 111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 112 #define ARM_INSN_START_WORD2_SHIFT 14 113 114 /* We currently assume float and double are IEEE single and double 115 precision respectively. 116 Doing runtime conversions is tricky because VFP registers may contain 117 integer values (eg. as the result of a FTOSI instruction). 118 s<2n> maps to the least significant half of d<n> 119 s<2n+1> maps to the most significant half of d<n> 120 */ 121 122 /* CPU state for each instance of a generic timer (in cp15 c14) */ 123 typedef struct ARMGenericTimer { 124 uint64_t cval; /* Timer CompareValue register */ 125 uint64_t ctl; /* Timer Control register */ 126 } ARMGenericTimer; 127 128 #define GTIMER_PHYS 0 129 #define GTIMER_VIRT 1 130 #define GTIMER_HYP 2 131 #define GTIMER_SEC 3 132 #define NUM_GTIMERS 4 133 134 typedef struct { 135 uint64_t raw_tcr; 136 uint32_t mask; 137 uint32_t base_mask; 138 } TCR; 139 140 typedef struct CPUARMState { 141 /* Regs for current mode. */ 142 uint32_t regs[16]; 143 144 /* 32/64 switch only happens when taking and returning from 145 * exceptions so the overlap semantics are taken care of then 146 * instead of having a complicated union. 147 */ 148 /* Regs for A64 mode. */ 149 uint64_t xregs[32]; 150 uint64_t pc; 151 /* PSTATE isn't an architectural register for ARMv8. However, it is 152 * convenient for us to assemble the underlying state into a 32 bit format 153 * identical to the architectural format used for the SPSR. (This is also 154 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 155 * 'pstate' register are.) Of the PSTATE bits: 156 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 157 * semantics as for AArch32, as described in the comments on each field) 158 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 159 * DAIF (exception masks) are kept in env->daif 160 * all other bits are stored in their correct places in env->pstate 161 */ 162 uint32_t pstate; 163 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 164 165 /* Frequently accessed CPSR bits are stored separately for efficiency. 166 This contains all the other bits. Use cpsr_{read,write} to access 167 the whole CPSR. */ 168 uint32_t uncached_cpsr; 169 uint32_t spsr; 170 171 /* Banked registers. */ 172 uint64_t banked_spsr[8]; 173 uint32_t banked_r13[8]; 174 uint32_t banked_r14[8]; 175 176 /* These hold r8-r12. */ 177 uint32_t usr_regs[5]; 178 uint32_t fiq_regs[5]; 179 180 /* cpsr flag cache for faster execution */ 181 uint32_t CF; /* 0 or 1 */ 182 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 183 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 184 uint32_t ZF; /* Z set if zero. */ 185 uint32_t QF; /* 0 or 1 */ 186 uint32_t GE; /* cpsr[19:16] */ 187 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 188 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 189 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 190 191 uint64_t elr_el[4]; /* AArch64 exception link regs */ 192 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 193 194 /* System control coprocessor (cp15) */ 195 struct { 196 uint32_t c0_cpuid; 197 union { /* Cache size selection */ 198 struct { 199 uint64_t _unused_csselr0; 200 uint64_t csselr_ns; 201 uint64_t _unused_csselr1; 202 uint64_t csselr_s; 203 }; 204 uint64_t csselr_el[4]; 205 }; 206 union { /* System control register. */ 207 struct { 208 uint64_t _unused_sctlr; 209 uint64_t sctlr_ns; 210 uint64_t hsctlr; 211 uint64_t sctlr_s; 212 }; 213 uint64_t sctlr_el[4]; 214 }; 215 uint64_t cpacr_el1; /* Architectural feature access control register */ 216 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 217 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 218 uint64_t sder; /* Secure debug enable register. */ 219 uint32_t nsacr; /* Non-secure access control register. */ 220 union { /* MMU translation table base 0. */ 221 struct { 222 uint64_t _unused_ttbr0_0; 223 uint64_t ttbr0_ns; 224 uint64_t _unused_ttbr0_1; 225 uint64_t ttbr0_s; 226 }; 227 uint64_t ttbr0_el[4]; 228 }; 229 union { /* MMU translation table base 1. */ 230 struct { 231 uint64_t _unused_ttbr1_0; 232 uint64_t ttbr1_ns; 233 uint64_t _unused_ttbr1_1; 234 uint64_t ttbr1_s; 235 }; 236 uint64_t ttbr1_el[4]; 237 }; 238 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 239 /* MMU translation table base control. */ 240 TCR tcr_el[4]; 241 TCR vtcr_el2; /* Virtualization Translation Control. */ 242 uint32_t c2_data; /* MPU data cacheable bits. */ 243 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 244 union { /* MMU domain access control register 245 * MPU write buffer control. 246 */ 247 struct { 248 uint64_t dacr_ns; 249 uint64_t dacr_s; 250 }; 251 struct { 252 uint64_t dacr32_el2; 253 }; 254 }; 255 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 256 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 257 uint64_t hcr_el2; /* Hypervisor configuration register */ 258 uint64_t scr_el3; /* Secure configuration register. */ 259 union { /* Fault status registers. */ 260 struct { 261 uint64_t ifsr_ns; 262 uint64_t ifsr_s; 263 }; 264 struct { 265 uint64_t ifsr32_el2; 266 }; 267 }; 268 union { 269 struct { 270 uint64_t _unused_dfsr; 271 uint64_t dfsr_ns; 272 uint64_t hsr; 273 uint64_t dfsr_s; 274 }; 275 uint64_t esr_el[4]; 276 }; 277 uint32_t c6_region[8]; /* MPU base/size registers. */ 278 union { /* Fault address registers. */ 279 struct { 280 uint64_t _unused_far0; 281 #ifdef HOST_WORDS_BIGENDIAN 282 uint32_t ifar_ns; 283 uint32_t dfar_ns; 284 uint32_t ifar_s; 285 uint32_t dfar_s; 286 #else 287 uint32_t dfar_ns; 288 uint32_t ifar_ns; 289 uint32_t dfar_s; 290 uint32_t ifar_s; 291 #endif 292 uint64_t _unused_far3; 293 }; 294 uint64_t far_el[4]; 295 }; 296 uint64_t hpfar_el2; 297 uint64_t hstr_el2; 298 union { /* Translation result. */ 299 struct { 300 uint64_t _unused_par_0; 301 uint64_t par_ns; 302 uint64_t _unused_par_1; 303 uint64_t par_s; 304 }; 305 uint64_t par_el[4]; 306 }; 307 308 uint32_t c9_insn; /* Cache lockdown registers. */ 309 uint32_t c9_data; 310 uint64_t c9_pmcr; /* performance monitor control register */ 311 uint64_t c9_pmcnten; /* perf monitor counter enables */ 312 uint32_t c9_pmovsr; /* perf monitor overflow status */ 313 uint32_t c9_pmuserenr; /* perf monitor user enable */ 314 uint64_t c9_pmselr; /* perf monitor counter selection register */ 315 uint64_t c9_pminten; /* perf monitor interrupt enables */ 316 union { /* Memory attribute redirection */ 317 struct { 318 #ifdef HOST_WORDS_BIGENDIAN 319 uint64_t _unused_mair_0; 320 uint32_t mair1_ns; 321 uint32_t mair0_ns; 322 uint64_t _unused_mair_1; 323 uint32_t mair1_s; 324 uint32_t mair0_s; 325 #else 326 uint64_t _unused_mair_0; 327 uint32_t mair0_ns; 328 uint32_t mair1_ns; 329 uint64_t _unused_mair_1; 330 uint32_t mair0_s; 331 uint32_t mair1_s; 332 #endif 333 }; 334 uint64_t mair_el[4]; 335 }; 336 union { /* vector base address register */ 337 struct { 338 uint64_t _unused_vbar; 339 uint64_t vbar_ns; 340 uint64_t hvbar; 341 uint64_t vbar_s; 342 }; 343 uint64_t vbar_el[4]; 344 }; 345 uint32_t mvbar; /* (monitor) vector base address register */ 346 struct { /* FCSE PID. */ 347 uint32_t fcseidr_ns; 348 uint32_t fcseidr_s; 349 }; 350 union { /* Context ID. */ 351 struct { 352 uint64_t _unused_contextidr_0; 353 uint64_t contextidr_ns; 354 uint64_t _unused_contextidr_1; 355 uint64_t contextidr_s; 356 }; 357 uint64_t contextidr_el[4]; 358 }; 359 union { /* User RW Thread register. */ 360 struct { 361 uint64_t tpidrurw_ns; 362 uint64_t tpidrprw_ns; 363 uint64_t htpidr; 364 uint64_t _tpidr_el3; 365 }; 366 uint64_t tpidr_el[4]; 367 }; 368 /* The secure banks of these registers don't map anywhere */ 369 uint64_t tpidrurw_s; 370 uint64_t tpidrprw_s; 371 uint64_t tpidruro_s; 372 373 union { /* User RO Thread register. */ 374 uint64_t tpidruro_ns; 375 uint64_t tpidrro_el[1]; 376 }; 377 uint64_t c14_cntfrq; /* Counter Frequency register */ 378 uint64_t c14_cntkctl; /* Timer Control register */ 379 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 380 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 381 ARMGenericTimer c14_timer[NUM_GTIMERS]; 382 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 383 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 384 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 385 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 386 uint32_t c15_threadid; /* TI debugger thread-ID. */ 387 uint32_t c15_config_base_address; /* SCU base address. */ 388 uint32_t c15_diagnostic; /* diagnostic register */ 389 uint32_t c15_power_diagnostic; 390 uint32_t c15_power_control; /* power control */ 391 uint64_t dbgbvr[16]; /* breakpoint value registers */ 392 uint64_t dbgbcr[16]; /* breakpoint control registers */ 393 uint64_t dbgwvr[16]; /* watchpoint value registers */ 394 uint64_t dbgwcr[16]; /* watchpoint control registers */ 395 uint64_t mdscr_el1; 396 uint64_t oslsr_el1; /* OS Lock Status */ 397 uint64_t mdcr_el2; 398 uint64_t mdcr_el3; 399 /* If the counter is enabled, this stores the last time the counter 400 * was reset. Otherwise it stores the counter value 401 */ 402 uint64_t c15_ccnt; 403 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 404 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 405 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 406 } cp15; 407 408 struct { 409 uint32_t other_sp; 410 uint32_t vecbase; 411 uint32_t basepri; 412 uint32_t control; 413 uint32_t ccr; /* Configuration and Control */ 414 uint32_t cfsr; /* Configurable Fault Status */ 415 uint32_t hfsr; /* HardFault Status */ 416 uint32_t dfsr; /* Debug Fault Status Register */ 417 uint32_t mmfar; /* MemManage Fault Address */ 418 uint32_t bfar; /* BusFault Address */ 419 unsigned mpu_ctrl; /* MPU_CTRL (some bits kept in sctlr_el[1]) */ 420 int exception; 421 } v7m; 422 423 /* Information associated with an exception about to be taken: 424 * code which raises an exception must set cs->exception_index and 425 * the relevant parts of this structure; the cpu_do_interrupt function 426 * will then set the guest-visible registers as part of the exception 427 * entry process. 428 */ 429 struct { 430 uint32_t syndrome; /* AArch64 format syndrome register */ 431 uint32_t fsr; /* AArch32 format fault status register info */ 432 uint64_t vaddress; /* virtual addr associated with exception, if any */ 433 uint32_t target_el; /* EL the exception should be targeted for */ 434 /* If we implement EL2 we will also need to store information 435 * about the intermediate physical address for stage 2 faults. 436 */ 437 } exception; 438 439 /* Thumb-2 EE state. */ 440 uint32_t teecr; 441 uint32_t teehbr; 442 443 /* VFP coprocessor state. */ 444 struct { 445 /* VFP/Neon register state. Note that the mapping between S, D and Q 446 * views of the register bank differs between AArch64 and AArch32: 447 * In AArch32: 448 * Qn = regs[2n+1]:regs[2n] 449 * Dn = regs[n] 450 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n 451 * (and regs[32] to regs[63] are inaccessible) 452 * In AArch64: 453 * Qn = regs[2n+1]:regs[2n] 454 * Dn = regs[2n] 455 * Sn = regs[2n] bits 31..0 456 * This corresponds to the architecturally defined mapping between 457 * the two execution states, and means we do not need to explicitly 458 * map these registers when changing states. 459 */ 460 float64 regs[64]; 461 462 uint32_t xregs[16]; 463 /* We store these fpcsr fields separately for convenience. */ 464 int vec_len; 465 int vec_stride; 466 467 /* scratch space when Tn are not sufficient. */ 468 uint32_t scratch[8]; 469 470 /* fp_status is the "normal" fp status. standard_fp_status retains 471 * values corresponding to the ARM "Standard FPSCR Value", ie 472 * default-NaN, flush-to-zero, round-to-nearest and is used by 473 * any operations (generally Neon) which the architecture defines 474 * as controlled by the standard FPSCR value rather than the FPSCR. 475 * 476 * To avoid having to transfer exception bits around, we simply 477 * say that the FPSCR cumulative exception flags are the logical 478 * OR of the flags in the two fp statuses. This relies on the 479 * only thing which needs to read the exception flags being 480 * an explicit FPSCR read. 481 */ 482 float_status fp_status; 483 float_status standard_fp_status; 484 } vfp; 485 uint64_t exclusive_addr; 486 uint64_t exclusive_val; 487 uint64_t exclusive_high; 488 489 /* iwMMXt coprocessor state. */ 490 struct { 491 uint64_t regs[16]; 492 uint64_t val; 493 494 uint32_t cregs[16]; 495 } iwmmxt; 496 497 #if defined(CONFIG_USER_ONLY) 498 /* For usermode syscall translation. */ 499 int eabi; 500 #endif 501 502 struct CPUBreakpoint *cpu_breakpoint[16]; 503 struct CPUWatchpoint *cpu_watchpoint[16]; 504 505 /* Fields up to this point are cleared by a CPU reset */ 506 struct {} end_reset_fields; 507 508 CPU_COMMON 509 510 /* Fields after CPU_COMMON are preserved across CPU reset. */ 511 512 /* Internal CPU feature flags. */ 513 uint64_t features; 514 515 /* PMSAv7 MPU */ 516 struct { 517 uint32_t *drbar; 518 uint32_t *drsr; 519 uint32_t *dracr; 520 uint32_t rnr; 521 } pmsav7; 522 523 void *nvic; 524 const struct arm_boot_info *boot_info; 525 /* Store GICv3CPUState to access from this struct */ 526 void *gicv3state; 527 } CPUARMState; 528 529 /** 530 * ARMELChangeHook: 531 * type of a function which can be registered via arm_register_el_change_hook() 532 * to get callbacks when the CPU changes its exception level or mode. 533 */ 534 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque); 535 536 537 /* These values map onto the return values for 538 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 539 typedef enum ARMPSCIState { 540 PSCI_ON = 0, 541 PSCI_OFF = 1, 542 PSCI_ON_PENDING = 2 543 } ARMPSCIState; 544 545 /** 546 * ARMCPU: 547 * @env: #CPUARMState 548 * 549 * An ARM CPU core. 550 */ 551 struct ARMCPU { 552 /*< private >*/ 553 CPUState parent_obj; 554 /*< public >*/ 555 556 CPUARMState env; 557 558 /* Coprocessor information */ 559 GHashTable *cp_regs; 560 /* For marshalling (mostly coprocessor) register state between the 561 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 562 * we use these arrays. 563 */ 564 /* List of register indexes managed via these arrays; (full KVM style 565 * 64 bit indexes, not CPRegInfo 32 bit indexes) 566 */ 567 uint64_t *cpreg_indexes; 568 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 569 uint64_t *cpreg_values; 570 /* Length of the indexes, values, reset_values arrays */ 571 int32_t cpreg_array_len; 572 /* These are used only for migration: incoming data arrives in 573 * these fields and is sanity checked in post_load before copying 574 * to the working data structures above. 575 */ 576 uint64_t *cpreg_vmstate_indexes; 577 uint64_t *cpreg_vmstate_values; 578 int32_t cpreg_vmstate_array_len; 579 580 /* Timers used by the generic (architected) timer */ 581 QEMUTimer *gt_timer[NUM_GTIMERS]; 582 /* GPIO outputs for generic timer */ 583 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 584 /* GPIO output for GICv3 maintenance interrupt signal */ 585 qemu_irq gicv3_maintenance_interrupt; 586 587 /* MemoryRegion to use for secure physical accesses */ 588 MemoryRegion *secure_memory; 589 590 /* 'compatible' string for this CPU for Linux device trees */ 591 const char *dtb_compatible; 592 593 /* PSCI version for this CPU 594 * Bits[31:16] = Major Version 595 * Bits[15:0] = Minor Version 596 */ 597 uint32_t psci_version; 598 599 /* Should CPU start in PSCI powered-off state? */ 600 bool start_powered_off; 601 602 /* Current power state, access guarded by BQL */ 603 ARMPSCIState power_state; 604 605 /* CPU has virtualization extension */ 606 bool has_el2; 607 /* CPU has security extension */ 608 bool has_el3; 609 /* CPU has PMU (Performance Monitor Unit) */ 610 bool has_pmu; 611 612 /* CPU has memory protection unit */ 613 bool has_mpu; 614 /* PMSAv7 MPU number of supported regions */ 615 uint32_t pmsav7_dregion; 616 617 /* PSCI conduit used to invoke PSCI methods 618 * 0 - disabled, 1 - smc, 2 - hvc 619 */ 620 uint32_t psci_conduit; 621 622 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 623 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 624 */ 625 uint32_t kvm_target; 626 627 /* KVM init features for this CPU */ 628 uint32_t kvm_init_features[7]; 629 630 /* Uniprocessor system with MP extensions */ 631 bool mp_is_up; 632 633 /* The instance init functions for implementation-specific subclasses 634 * set these fields to specify the implementation-dependent values of 635 * various constant registers and reset values of non-constant 636 * registers. 637 * Some of these might become QOM properties eventually. 638 * Field names match the official register names as defined in the 639 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 640 * is used for reset values of non-constant registers; no reset_ 641 * prefix means a constant register. 642 */ 643 uint32_t midr; 644 uint32_t revidr; 645 uint32_t reset_fpsid; 646 uint32_t mvfr0; 647 uint32_t mvfr1; 648 uint32_t mvfr2; 649 uint32_t ctr; 650 uint32_t reset_sctlr; 651 uint32_t id_pfr0; 652 uint32_t id_pfr1; 653 uint32_t id_dfr0; 654 uint32_t pmceid0; 655 uint32_t pmceid1; 656 uint32_t id_afr0; 657 uint32_t id_mmfr0; 658 uint32_t id_mmfr1; 659 uint32_t id_mmfr2; 660 uint32_t id_mmfr3; 661 uint32_t id_mmfr4; 662 uint32_t id_isar0; 663 uint32_t id_isar1; 664 uint32_t id_isar2; 665 uint32_t id_isar3; 666 uint32_t id_isar4; 667 uint32_t id_isar5; 668 uint64_t id_aa64pfr0; 669 uint64_t id_aa64pfr1; 670 uint64_t id_aa64dfr0; 671 uint64_t id_aa64dfr1; 672 uint64_t id_aa64afr0; 673 uint64_t id_aa64afr1; 674 uint64_t id_aa64isar0; 675 uint64_t id_aa64isar1; 676 uint64_t id_aa64mmfr0; 677 uint64_t id_aa64mmfr1; 678 uint32_t dbgdidr; 679 uint32_t clidr; 680 uint64_t mp_affinity; /* MP ID without feature bits */ 681 /* The elements of this array are the CCSIDR values for each cache, 682 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 683 */ 684 uint32_t ccsidr[16]; 685 uint64_t reset_cbar; 686 uint32_t reset_auxcr; 687 bool reset_hivecs; 688 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 689 uint32_t dcz_blocksize; 690 uint64_t rvbar; 691 692 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 693 int gic_num_lrs; /* number of list registers */ 694 int gic_vpribits; /* number of virtual priority bits */ 695 int gic_vprebits; /* number of virtual preemption bits */ 696 697 /* Whether the cfgend input is high (i.e. this CPU should reset into 698 * big-endian mode). This setting isn't used directly: instead it modifies 699 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 700 * architecture version. 701 */ 702 bool cfgend; 703 704 ARMELChangeHook *el_change_hook; 705 void *el_change_hook_opaque; 706 707 int32_t node_id; /* NUMA node this CPU belongs to */ 708 709 /* Used to synchronize KVM and QEMU in-kernel device levels */ 710 uint8_t device_irq_level; 711 }; 712 713 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) 714 { 715 return container_of(env, ARMCPU, env); 716 } 717 718 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 719 720 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) 721 722 #define ENV_OFFSET offsetof(ARMCPU, env) 723 724 #ifndef CONFIG_USER_ONLY 725 extern const struct VMStateDescription vmstate_arm_cpu; 726 #endif 727 728 void arm_cpu_do_interrupt(CPUState *cpu); 729 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 730 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 731 732 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, 733 int flags); 734 735 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 736 MemTxAttrs *attrs); 737 738 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 739 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 740 741 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 742 int cpuid, void *opaque); 743 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 744 int cpuid, void *opaque); 745 746 #ifdef TARGET_AARCH64 747 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 748 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 749 #endif 750 751 ARMCPU *cpu_arm_init(const char *cpu_model); 752 target_ulong do_arm_semihosting(CPUARMState *env); 753 void aarch64_sync_32_to_64(CPUARMState *env); 754 void aarch64_sync_64_to_32(CPUARMState *env); 755 756 static inline bool is_a64(CPUARMState *env) 757 { 758 return env->aarch64; 759 } 760 761 /* you can call this signal handler from your SIGBUS and SIGSEGV 762 signal handlers to inform the virtual CPU of exceptions. non zero 763 is returned if the signal was handled by the virtual CPU. */ 764 int cpu_arm_signal_handler(int host_signum, void *pinfo, 765 void *puc); 766 767 /** 768 * pmccntr_sync 769 * @env: CPUARMState 770 * 771 * Synchronises the counter in the PMCCNTR. This must always be called twice, 772 * once before any action that might affect the timer and again afterwards. 773 * The function is used to swap the state of the register if required. 774 * This only happens when not in user mode (!CONFIG_USER_ONLY) 775 */ 776 void pmccntr_sync(CPUARMState *env); 777 778 /* SCTLR bit meanings. Several bits have been reused in newer 779 * versions of the architecture; in that case we define constants 780 * for both old and new bit meanings. Code which tests against those 781 * bits should probably check or otherwise arrange that the CPU 782 * is the architectural version it expects. 783 */ 784 #define SCTLR_M (1U << 0) 785 #define SCTLR_A (1U << 1) 786 #define SCTLR_C (1U << 2) 787 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 788 #define SCTLR_SA (1U << 3) 789 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 790 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 791 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 792 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 793 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 794 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 795 #define SCTLR_ITD (1U << 7) /* v8 onward */ 796 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 797 #define SCTLR_SED (1U << 8) /* v8 onward */ 798 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 799 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 800 #define SCTLR_F (1U << 10) /* up to v6 */ 801 #define SCTLR_SW (1U << 10) /* v7 onward */ 802 #define SCTLR_Z (1U << 11) 803 #define SCTLR_I (1U << 12) 804 #define SCTLR_V (1U << 13) 805 #define SCTLR_RR (1U << 14) /* up to v7 */ 806 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 807 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 808 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 809 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 810 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 811 #define SCTLR_HA (1U << 17) 812 #define SCTLR_BR (1U << 17) /* PMSA only */ 813 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 814 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 815 #define SCTLR_WXN (1U << 19) 816 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 817 #define SCTLR_UWXN (1U << 20) /* v7 onward */ 818 #define SCTLR_FI (1U << 21) 819 #define SCTLR_U (1U << 22) 820 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 821 #define SCTLR_VE (1U << 24) /* up to v7 */ 822 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 823 #define SCTLR_EE (1U << 25) 824 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 825 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 826 #define SCTLR_NMFI (1U << 27) 827 #define SCTLR_TRE (1U << 28) 828 #define SCTLR_AFE (1U << 29) 829 #define SCTLR_TE (1U << 30) 830 831 #define CPTR_TCPAC (1U << 31) 832 #define CPTR_TTA (1U << 20) 833 #define CPTR_TFP (1U << 10) 834 835 #define MDCR_EPMAD (1U << 21) 836 #define MDCR_EDAD (1U << 20) 837 #define MDCR_SPME (1U << 17) 838 #define MDCR_SDD (1U << 16) 839 #define MDCR_SPD (3U << 14) 840 #define MDCR_TDRA (1U << 11) 841 #define MDCR_TDOSA (1U << 10) 842 #define MDCR_TDA (1U << 9) 843 #define MDCR_TDE (1U << 8) 844 #define MDCR_HPME (1U << 7) 845 #define MDCR_TPM (1U << 6) 846 #define MDCR_TPMCR (1U << 5) 847 848 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 849 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 850 851 #define CPSR_M (0x1fU) 852 #define CPSR_T (1U << 5) 853 #define CPSR_F (1U << 6) 854 #define CPSR_I (1U << 7) 855 #define CPSR_A (1U << 8) 856 #define CPSR_E (1U << 9) 857 #define CPSR_IT_2_7 (0xfc00U) 858 #define CPSR_GE (0xfU << 16) 859 #define CPSR_IL (1U << 20) 860 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 861 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 862 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 863 * where it is live state but not accessible to the AArch32 code. 864 */ 865 #define CPSR_RESERVED (0x7U << 21) 866 #define CPSR_J (1U << 24) 867 #define CPSR_IT_0_1 (3U << 25) 868 #define CPSR_Q (1U << 27) 869 #define CPSR_V (1U << 28) 870 #define CPSR_C (1U << 29) 871 #define CPSR_Z (1U << 30) 872 #define CPSR_N (1U << 31) 873 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 874 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 875 876 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 877 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 878 | CPSR_NZCV) 879 /* Bits writable in user mode. */ 880 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 881 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 882 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 883 /* Mask of bits which may be set by exception return copying them from SPSR */ 884 #define CPSR_ERET_MASK (~CPSR_RESERVED) 885 886 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 887 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 888 #define TTBCR_PD0 (1U << 4) 889 #define TTBCR_PD1 (1U << 5) 890 #define TTBCR_EPD0 (1U << 7) 891 #define TTBCR_IRGN0 (3U << 8) 892 #define TTBCR_ORGN0 (3U << 10) 893 #define TTBCR_SH0 (3U << 12) 894 #define TTBCR_T1SZ (3U << 16) 895 #define TTBCR_A1 (1U << 22) 896 #define TTBCR_EPD1 (1U << 23) 897 #define TTBCR_IRGN1 (3U << 24) 898 #define TTBCR_ORGN1 (3U << 26) 899 #define TTBCR_SH1 (1U << 28) 900 #define TTBCR_EAE (1U << 31) 901 902 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 903 * Only these are valid when in AArch64 mode; in 904 * AArch32 mode SPSRs are basically CPSR-format. 905 */ 906 #define PSTATE_SP (1U) 907 #define PSTATE_M (0xFU) 908 #define PSTATE_nRW (1U << 4) 909 #define PSTATE_F (1U << 6) 910 #define PSTATE_I (1U << 7) 911 #define PSTATE_A (1U << 8) 912 #define PSTATE_D (1U << 9) 913 #define PSTATE_IL (1U << 20) 914 #define PSTATE_SS (1U << 21) 915 #define PSTATE_V (1U << 28) 916 #define PSTATE_C (1U << 29) 917 #define PSTATE_Z (1U << 30) 918 #define PSTATE_N (1U << 31) 919 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 920 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 921 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) 922 /* Mode values for AArch64 */ 923 #define PSTATE_MODE_EL3h 13 924 #define PSTATE_MODE_EL3t 12 925 #define PSTATE_MODE_EL2h 9 926 #define PSTATE_MODE_EL2t 8 927 #define PSTATE_MODE_EL1h 5 928 #define PSTATE_MODE_EL1t 4 929 #define PSTATE_MODE_EL0t 0 930 931 /* Map EL and handler into a PSTATE_MODE. */ 932 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 933 { 934 return (el << 2) | handler; 935 } 936 937 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 938 * interprocessing, so we don't attempt to sync with the cpsr state used by 939 * the 32 bit decoder. 940 */ 941 static inline uint32_t pstate_read(CPUARMState *env) 942 { 943 int ZF; 944 945 ZF = (env->ZF == 0); 946 return (env->NF & 0x80000000) | (ZF << 30) 947 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 948 | env->pstate | env->daif; 949 } 950 951 static inline void pstate_write(CPUARMState *env, uint32_t val) 952 { 953 env->ZF = (~val) & PSTATE_Z; 954 env->NF = val; 955 env->CF = (val >> 29) & 1; 956 env->VF = (val << 3) & 0x80000000; 957 env->daif = val & PSTATE_DAIF; 958 env->pstate = val & ~CACHED_PSTATE_BITS; 959 } 960 961 /* Return the current CPSR value. */ 962 uint32_t cpsr_read(CPUARMState *env); 963 964 typedef enum CPSRWriteType { 965 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 966 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 967 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 968 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 969 } CPSRWriteType; 970 971 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 972 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 973 CPSRWriteType write_type); 974 975 /* Return the current xPSR value. */ 976 static inline uint32_t xpsr_read(CPUARMState *env) 977 { 978 int ZF; 979 ZF = (env->ZF == 0); 980 return (env->NF & 0x80000000) | (ZF << 30) 981 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 982 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 983 | ((env->condexec_bits & 0xfc) << 8) 984 | env->v7m.exception; 985 } 986 987 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 988 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 989 { 990 if (mask & CPSR_NZCV) { 991 env->ZF = (~val) & CPSR_Z; 992 env->NF = val; 993 env->CF = (val >> 29) & 1; 994 env->VF = (val << 3) & 0x80000000; 995 } 996 if (mask & CPSR_Q) 997 env->QF = ((val & CPSR_Q) != 0); 998 if (mask & (1 << 24)) 999 env->thumb = ((val & (1 << 24)) != 0); 1000 if (mask & CPSR_IT_0_1) { 1001 env->condexec_bits &= ~3; 1002 env->condexec_bits |= (val >> 25) & 3; 1003 } 1004 if (mask & CPSR_IT_2_7) { 1005 env->condexec_bits &= 3; 1006 env->condexec_bits |= (val >> 8) & 0xfc; 1007 } 1008 if (mask & 0x1ff) { 1009 env->v7m.exception = val & 0x1ff; 1010 } 1011 } 1012 1013 #define HCR_VM (1ULL << 0) 1014 #define HCR_SWIO (1ULL << 1) 1015 #define HCR_PTW (1ULL << 2) 1016 #define HCR_FMO (1ULL << 3) 1017 #define HCR_IMO (1ULL << 4) 1018 #define HCR_AMO (1ULL << 5) 1019 #define HCR_VF (1ULL << 6) 1020 #define HCR_VI (1ULL << 7) 1021 #define HCR_VSE (1ULL << 8) 1022 #define HCR_FB (1ULL << 9) 1023 #define HCR_BSU_MASK (3ULL << 10) 1024 #define HCR_DC (1ULL << 12) 1025 #define HCR_TWI (1ULL << 13) 1026 #define HCR_TWE (1ULL << 14) 1027 #define HCR_TID0 (1ULL << 15) 1028 #define HCR_TID1 (1ULL << 16) 1029 #define HCR_TID2 (1ULL << 17) 1030 #define HCR_TID3 (1ULL << 18) 1031 #define HCR_TSC (1ULL << 19) 1032 #define HCR_TIDCP (1ULL << 20) 1033 #define HCR_TACR (1ULL << 21) 1034 #define HCR_TSW (1ULL << 22) 1035 #define HCR_TPC (1ULL << 23) 1036 #define HCR_TPU (1ULL << 24) 1037 #define HCR_TTLB (1ULL << 25) 1038 #define HCR_TVM (1ULL << 26) 1039 #define HCR_TGE (1ULL << 27) 1040 #define HCR_TDZ (1ULL << 28) 1041 #define HCR_HCD (1ULL << 29) 1042 #define HCR_TRVM (1ULL << 30) 1043 #define HCR_RW (1ULL << 31) 1044 #define HCR_CD (1ULL << 32) 1045 #define HCR_ID (1ULL << 33) 1046 #define HCR_MASK ((1ULL << 34) - 1) 1047 1048 #define SCR_NS (1U << 0) 1049 #define SCR_IRQ (1U << 1) 1050 #define SCR_FIQ (1U << 2) 1051 #define SCR_EA (1U << 3) 1052 #define SCR_FW (1U << 4) 1053 #define SCR_AW (1U << 5) 1054 #define SCR_NET (1U << 6) 1055 #define SCR_SMD (1U << 7) 1056 #define SCR_HCE (1U << 8) 1057 #define SCR_SIF (1U << 9) 1058 #define SCR_RW (1U << 10) 1059 #define SCR_ST (1U << 11) 1060 #define SCR_TWI (1U << 12) 1061 #define SCR_TWE (1U << 13) 1062 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) 1063 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) 1064 1065 /* Return the current FPSCR value. */ 1066 uint32_t vfp_get_fpscr(CPUARMState *env); 1067 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1068 1069 /* For A64 the FPSCR is split into two logically distinct registers, 1070 * FPCR and FPSR. However since they still use non-overlapping bits 1071 * we store the underlying state in fpscr and just mask on read/write. 1072 */ 1073 #define FPSR_MASK 0xf800009f 1074 #define FPCR_MASK 0x07f79f00 1075 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1076 { 1077 return vfp_get_fpscr(env) & FPSR_MASK; 1078 } 1079 1080 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1081 { 1082 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1083 vfp_set_fpscr(env, new_fpscr); 1084 } 1085 1086 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1087 { 1088 return vfp_get_fpscr(env) & FPCR_MASK; 1089 } 1090 1091 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1092 { 1093 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1094 vfp_set_fpscr(env, new_fpscr); 1095 } 1096 1097 enum arm_cpu_mode { 1098 ARM_CPU_MODE_USR = 0x10, 1099 ARM_CPU_MODE_FIQ = 0x11, 1100 ARM_CPU_MODE_IRQ = 0x12, 1101 ARM_CPU_MODE_SVC = 0x13, 1102 ARM_CPU_MODE_MON = 0x16, 1103 ARM_CPU_MODE_ABT = 0x17, 1104 ARM_CPU_MODE_HYP = 0x1a, 1105 ARM_CPU_MODE_UND = 0x1b, 1106 ARM_CPU_MODE_SYS = 0x1f 1107 }; 1108 1109 /* VFP system registers. */ 1110 #define ARM_VFP_FPSID 0 1111 #define ARM_VFP_FPSCR 1 1112 #define ARM_VFP_MVFR2 5 1113 #define ARM_VFP_MVFR1 6 1114 #define ARM_VFP_MVFR0 7 1115 #define ARM_VFP_FPEXC 8 1116 #define ARM_VFP_FPINST 9 1117 #define ARM_VFP_FPINST2 10 1118 1119 /* iwMMXt coprocessor control registers. */ 1120 #define ARM_IWMMXT_wCID 0 1121 #define ARM_IWMMXT_wCon 1 1122 #define ARM_IWMMXT_wCSSF 2 1123 #define ARM_IWMMXT_wCASF 3 1124 #define ARM_IWMMXT_wCGR0 8 1125 #define ARM_IWMMXT_wCGR1 9 1126 #define ARM_IWMMXT_wCGR2 10 1127 #define ARM_IWMMXT_wCGR3 11 1128 1129 /* V7M CCR bits */ 1130 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1131 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1132 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1133 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1134 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1135 FIELD(V7M_CCR, STKALIGN, 9, 1) 1136 FIELD(V7M_CCR, DC, 16, 1) 1137 FIELD(V7M_CCR, IC, 17, 1) 1138 1139 /* V7M CFSR bits for MMFSR */ 1140 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1141 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1142 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1143 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1144 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1145 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1146 1147 /* V7M CFSR bits for BFSR */ 1148 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1149 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1150 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1151 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1152 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1153 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1154 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1155 1156 /* V7M CFSR bits for UFSR */ 1157 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1158 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1159 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1160 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1161 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1162 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1163 1164 /* V7M HFSR bits */ 1165 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1166 FIELD(V7M_HFSR, FORCED, 30, 1) 1167 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1168 1169 /* V7M DFSR bits */ 1170 FIELD(V7M_DFSR, HALTED, 0, 1) 1171 FIELD(V7M_DFSR, BKPT, 1, 1) 1172 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1173 FIELD(V7M_DFSR, VCATCH, 3, 1) 1174 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1175 1176 /* v7M MPU_CTRL bits */ 1177 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1178 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1179 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1180 1181 /* If adding a feature bit which corresponds to a Linux ELF 1182 * HWCAP bit, remember to update the feature-bit-to-hwcap 1183 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1184 */ 1185 enum arm_features { 1186 ARM_FEATURE_VFP, 1187 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1188 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1189 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1190 ARM_FEATURE_V6, 1191 ARM_FEATURE_V6K, 1192 ARM_FEATURE_V7, 1193 ARM_FEATURE_THUMB2, 1194 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1195 ARM_FEATURE_VFP3, 1196 ARM_FEATURE_VFP_FP16, 1197 ARM_FEATURE_NEON, 1198 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ 1199 ARM_FEATURE_M, /* Microcontroller profile. */ 1200 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1201 ARM_FEATURE_THUMB2EE, 1202 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1203 ARM_FEATURE_V4T, 1204 ARM_FEATURE_V5, 1205 ARM_FEATURE_STRONGARM, 1206 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1207 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ 1208 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1209 ARM_FEATURE_GENERIC_TIMER, 1210 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1211 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1212 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1213 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1214 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1215 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1216 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1217 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1218 ARM_FEATURE_V8, 1219 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1220 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ 1221 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1222 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1223 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1224 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1225 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1226 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ 1227 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ 1228 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ 1229 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1230 ARM_FEATURE_PMU, /* has PMU support */ 1231 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1232 }; 1233 1234 static inline int arm_feature(CPUARMState *env, int feature) 1235 { 1236 return (env->features & (1ULL << feature)) != 0; 1237 } 1238 1239 #if !defined(CONFIG_USER_ONLY) 1240 /* Return true if exception levels below EL3 are in secure state, 1241 * or would be following an exception return to that level. 1242 * Unlike arm_is_secure() (which is always a question about the 1243 * _current_ state of the CPU) this doesn't care about the current 1244 * EL or mode. 1245 */ 1246 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1247 { 1248 if (arm_feature(env, ARM_FEATURE_EL3)) { 1249 return !(env->cp15.scr_el3 & SCR_NS); 1250 } else { 1251 /* If EL3 is not supported then the secure state is implementation 1252 * defined, in which case QEMU defaults to non-secure. 1253 */ 1254 return false; 1255 } 1256 } 1257 1258 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1259 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1260 { 1261 if (arm_feature(env, ARM_FEATURE_EL3)) { 1262 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1263 /* CPU currently in AArch64 state and EL3 */ 1264 return true; 1265 } else if (!is_a64(env) && 1266 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1267 /* CPU currently in AArch32 state and monitor mode */ 1268 return true; 1269 } 1270 } 1271 return false; 1272 } 1273 1274 /* Return true if the processor is in secure state */ 1275 static inline bool arm_is_secure(CPUARMState *env) 1276 { 1277 if (arm_is_el3_or_mon(env)) { 1278 return true; 1279 } 1280 return arm_is_secure_below_el3(env); 1281 } 1282 1283 #else 1284 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1285 { 1286 return false; 1287 } 1288 1289 static inline bool arm_is_secure(CPUARMState *env) 1290 { 1291 return false; 1292 } 1293 #endif 1294 1295 /* Return true if the specified exception level is running in AArch64 state. */ 1296 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1297 { 1298 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1299 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1300 */ 1301 assert(el >= 1 && el <= 3); 1302 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1303 1304 /* The highest exception level is always at the maximum supported 1305 * register width, and then lower levels have a register width controlled 1306 * by bits in the SCR or HCR registers. 1307 */ 1308 if (el == 3) { 1309 return aa64; 1310 } 1311 1312 if (arm_feature(env, ARM_FEATURE_EL3)) { 1313 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1314 } 1315 1316 if (el == 2) { 1317 return aa64; 1318 } 1319 1320 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1321 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1322 } 1323 1324 return aa64; 1325 } 1326 1327 /* Function for determing whether guest cp register reads and writes should 1328 * access the secure or non-secure bank of a cp register. When EL3 is 1329 * operating in AArch32 state, the NS-bit determines whether the secure 1330 * instance of a cp register should be used. When EL3 is AArch64 (or if 1331 * it doesn't exist at all) then there is no register banking, and all 1332 * accesses are to the non-secure version. 1333 */ 1334 static inline bool access_secure_reg(CPUARMState *env) 1335 { 1336 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1337 !arm_el_is_aa64(env, 3) && 1338 !(env->cp15.scr_el3 & SCR_NS)); 1339 1340 return ret; 1341 } 1342 1343 /* Macros for accessing a specified CP register bank */ 1344 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 1345 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 1346 1347 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 1348 do { \ 1349 if (_secure) { \ 1350 (_env)->cp15._regname##_s = (_val); \ 1351 } else { \ 1352 (_env)->cp15._regname##_ns = (_val); \ 1353 } \ 1354 } while (0) 1355 1356 /* Macros for automatically accessing a specific CP register bank depending on 1357 * the current secure state of the system. These macros are not intended for 1358 * supporting instruction translation reads/writes as these are dependent 1359 * solely on the SCR.NS bit and not the mode. 1360 */ 1361 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 1362 A32_BANKED_REG_GET((_env), _regname, \ 1363 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 1364 1365 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 1366 A32_BANKED_REG_SET((_env), _regname, \ 1367 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 1368 (_val)) 1369 1370 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); 1371 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 1372 uint32_t cur_el, bool secure); 1373 1374 /* Interface between CPU and Interrupt controller. */ 1375 #ifndef CONFIG_USER_ONLY 1376 bool armv7m_nvic_can_take_pending_exception(void *opaque); 1377 #else 1378 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 1379 { 1380 return true; 1381 } 1382 #endif 1383 void armv7m_nvic_set_pending(void *opaque, int irq); 1384 void armv7m_nvic_acknowledge_irq(void *opaque); 1385 /** 1386 * armv7m_nvic_complete_irq: complete specified interrupt or exception 1387 * @opaque: the NVIC 1388 * @irq: the exception number to complete 1389 * 1390 * Returns: -1 if the irq was not active 1391 * 1 if completing this irq brought us back to base (no active irqs) 1392 * 0 if there is still an irq active after this one was completed 1393 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 1394 */ 1395 int armv7m_nvic_complete_irq(void *opaque, int irq); 1396 1397 /* Interface for defining coprocessor registers. 1398 * Registers are defined in tables of arm_cp_reginfo structs 1399 * which are passed to define_arm_cp_regs(). 1400 */ 1401 1402 /* When looking up a coprocessor register we look for it 1403 * via an integer which encodes all of: 1404 * coprocessor number 1405 * Crn, Crm, opc1, opc2 fields 1406 * 32 or 64 bit register (ie is it accessed via MRC/MCR 1407 * or via MRRC/MCRR?) 1408 * non-secure/secure bank (AArch32 only) 1409 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 1410 * (In this case crn and opc2 should be zero.) 1411 * For AArch64, there is no 32/64 bit size distinction; 1412 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 1413 * and 4 bit CRn and CRm. The encoding patterns are chosen 1414 * to be easy to convert to and from the KVM encodings, and also 1415 * so that the hashtable can contain both AArch32 and AArch64 1416 * registers (to allow for interprocessing where we might run 1417 * 32 bit code on a 64 bit core). 1418 */ 1419 /* This bit is private to our hashtable cpreg; in KVM register 1420 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 1421 * in the upper bits of the 64 bit ID. 1422 */ 1423 #define CP_REG_AA64_SHIFT 28 1424 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 1425 1426 /* To enable banking of coprocessor registers depending on ns-bit we 1427 * add a bit to distinguish between secure and non-secure cpregs in the 1428 * hashtable. 1429 */ 1430 #define CP_REG_NS_SHIFT 29 1431 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 1432 1433 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 1434 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 1435 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 1436 1437 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 1438 (CP_REG_AA64_MASK | \ 1439 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 1440 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 1441 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 1442 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 1443 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 1444 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 1445 1446 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 1447 * version used as a key for the coprocessor register hashtable 1448 */ 1449 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 1450 { 1451 uint32_t cpregid = kvmid; 1452 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 1453 cpregid |= CP_REG_AA64_MASK; 1454 } else { 1455 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 1456 cpregid |= (1 << 15); 1457 } 1458 1459 /* KVM is always non-secure so add the NS flag on AArch32 register 1460 * entries. 1461 */ 1462 cpregid |= 1 << CP_REG_NS_SHIFT; 1463 } 1464 return cpregid; 1465 } 1466 1467 /* Convert a truncated 32 bit hashtable key into the full 1468 * 64 bit KVM register ID. 1469 */ 1470 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 1471 { 1472 uint64_t kvmid; 1473 1474 if (cpregid & CP_REG_AA64_MASK) { 1475 kvmid = cpregid & ~CP_REG_AA64_MASK; 1476 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 1477 } else { 1478 kvmid = cpregid & ~(1 << 15); 1479 if (cpregid & (1 << 15)) { 1480 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 1481 } else { 1482 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 1483 } 1484 } 1485 return kvmid; 1486 } 1487 1488 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 1489 * special-behaviour cp reg and bits [15..8] indicate what behaviour 1490 * it has. Otherwise it is a simple cp reg, where CONST indicates that 1491 * TCG can assume the value to be constant (ie load at translate time) 1492 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 1493 * indicates that the TB should not be ended after a write to this register 1494 * (the default is that the TB ends after cp writes). OVERRIDE permits 1495 * a register definition to override a previous definition for the 1496 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 1497 * old must have the OVERRIDE bit set. 1498 * ALIAS indicates that this register is an alias view of some underlying 1499 * state which is also visible via another register, and that the other 1500 * register is handling migration and reset; registers marked ALIAS will not be 1501 * migrated but may have their state set by syncing of register state from KVM. 1502 * NO_RAW indicates that this register has no underlying state and does not 1503 * support raw access for state saving/loading; it will not be used for either 1504 * migration or KVM state synchronization. (Typically this is for "registers" 1505 * which are actually used as instructions for cache maintenance and so on.) 1506 * IO indicates that this register does I/O and therefore its accesses 1507 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 1508 * registers which implement clocks or timers require this. 1509 */ 1510 #define ARM_CP_SPECIAL 1 1511 #define ARM_CP_CONST 2 1512 #define ARM_CP_64BIT 4 1513 #define ARM_CP_SUPPRESS_TB_END 8 1514 #define ARM_CP_OVERRIDE 16 1515 #define ARM_CP_ALIAS 32 1516 #define ARM_CP_IO 64 1517 #define ARM_CP_NO_RAW 128 1518 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) 1519 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) 1520 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) 1521 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) 1522 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) 1523 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 1524 /* Used only as a terminator for ARMCPRegInfo lists */ 1525 #define ARM_CP_SENTINEL 0xffff 1526 /* Mask of only the flag bits in a type field */ 1527 #define ARM_CP_FLAG_MASK 0xff 1528 1529 /* Valid values for ARMCPRegInfo state field, indicating which of 1530 * the AArch32 and AArch64 execution states this register is visible in. 1531 * If the reginfo doesn't explicitly specify then it is AArch32 only. 1532 * If the reginfo is declared to be visible in both states then a second 1533 * reginfo is synthesised for the AArch32 view of the AArch64 register, 1534 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 1535 * Note that we rely on the values of these enums as we iterate through 1536 * the various states in some places. 1537 */ 1538 enum { 1539 ARM_CP_STATE_AA32 = 0, 1540 ARM_CP_STATE_AA64 = 1, 1541 ARM_CP_STATE_BOTH = 2, 1542 }; 1543 1544 /* ARM CP register secure state flags. These flags identify security state 1545 * attributes for a given CP register entry. 1546 * The existence of both or neither secure and non-secure flags indicates that 1547 * the register has both a secure and non-secure hash entry. A single one of 1548 * these flags causes the register to only be hashed for the specified 1549 * security state. 1550 * Although definitions may have any combination of the S/NS bits, each 1551 * registered entry will only have one to identify whether the entry is secure 1552 * or non-secure. 1553 */ 1554 enum { 1555 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 1556 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 1557 }; 1558 1559 /* Return true if cptype is a valid type field. This is used to try to 1560 * catch errors where the sentinel has been accidentally left off the end 1561 * of a list of registers. 1562 */ 1563 static inline bool cptype_valid(int cptype) 1564 { 1565 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 1566 || ((cptype & ARM_CP_SPECIAL) && 1567 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 1568 } 1569 1570 /* Access rights: 1571 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 1572 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 1573 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 1574 * (ie any of the privileged modes in Secure state, or Monitor mode). 1575 * If a register is accessible in one privilege level it's always accessible 1576 * in higher privilege levels too. Since "Secure PL1" also follows this rule 1577 * (ie anything visible in PL2 is visible in S-PL1, some things are only 1578 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 1579 * terminology a little and call this PL3. 1580 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 1581 * with the ELx exception levels. 1582 * 1583 * If access permissions for a register are more complex than can be 1584 * described with these bits, then use a laxer set of restrictions, and 1585 * do the more restrictive/complex check inside a helper function. 1586 */ 1587 #define PL3_R 0x80 1588 #define PL3_W 0x40 1589 #define PL2_R (0x20 | PL3_R) 1590 #define PL2_W (0x10 | PL3_W) 1591 #define PL1_R (0x08 | PL2_R) 1592 #define PL1_W (0x04 | PL2_W) 1593 #define PL0_R (0x02 | PL1_R) 1594 #define PL0_W (0x01 | PL1_W) 1595 1596 #define PL3_RW (PL3_R | PL3_W) 1597 #define PL2_RW (PL2_R | PL2_W) 1598 #define PL1_RW (PL1_R | PL1_W) 1599 #define PL0_RW (PL0_R | PL0_W) 1600 1601 /* Return the highest implemented Exception Level */ 1602 static inline int arm_highest_el(CPUARMState *env) 1603 { 1604 if (arm_feature(env, ARM_FEATURE_EL3)) { 1605 return 3; 1606 } 1607 if (arm_feature(env, ARM_FEATURE_EL2)) { 1608 return 2; 1609 } 1610 return 1; 1611 } 1612 1613 /* Return the current Exception Level (as per ARMv8; note that this differs 1614 * from the ARMv7 Privilege Level). 1615 */ 1616 static inline int arm_current_el(CPUARMState *env) 1617 { 1618 if (arm_feature(env, ARM_FEATURE_M)) { 1619 return !((env->v7m.exception == 0) && (env->v7m.control & 1)); 1620 } 1621 1622 if (is_a64(env)) { 1623 return extract32(env->pstate, 2, 2); 1624 } 1625 1626 switch (env->uncached_cpsr & 0x1f) { 1627 case ARM_CPU_MODE_USR: 1628 return 0; 1629 case ARM_CPU_MODE_HYP: 1630 return 2; 1631 case ARM_CPU_MODE_MON: 1632 return 3; 1633 default: 1634 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 1635 /* If EL3 is 32-bit then all secure privileged modes run in 1636 * EL3 1637 */ 1638 return 3; 1639 } 1640 1641 return 1; 1642 } 1643 } 1644 1645 typedef struct ARMCPRegInfo ARMCPRegInfo; 1646 1647 typedef enum CPAccessResult { 1648 /* Access is permitted */ 1649 CP_ACCESS_OK = 0, 1650 /* Access fails due to a configurable trap or enable which would 1651 * result in a categorized exception syndrome giving information about 1652 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 1653 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 1654 * PL1 if in EL0, otherwise to the current EL). 1655 */ 1656 CP_ACCESS_TRAP = 1, 1657 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 1658 * Note that this is not a catch-all case -- the set of cases which may 1659 * result in this failure is specifically defined by the architecture. 1660 */ 1661 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 1662 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 1663 CP_ACCESS_TRAP_EL2 = 3, 1664 CP_ACCESS_TRAP_EL3 = 4, 1665 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 1666 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 1667 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 1668 /* Access fails and results in an exception syndrome for an FP access, 1669 * trapped directly to EL2 or EL3 1670 */ 1671 CP_ACCESS_TRAP_FP_EL2 = 7, 1672 CP_ACCESS_TRAP_FP_EL3 = 8, 1673 } CPAccessResult; 1674 1675 /* Access functions for coprocessor registers. These cannot fail and 1676 * may not raise exceptions. 1677 */ 1678 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1679 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 1680 uint64_t value); 1681 /* Access permission check functions for coprocessor registers. */ 1682 typedef CPAccessResult CPAccessFn(CPUARMState *env, 1683 const ARMCPRegInfo *opaque, 1684 bool isread); 1685 /* Hook function for register reset */ 1686 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 1687 1688 #define CP_ANY 0xff 1689 1690 /* Definition of an ARM coprocessor register */ 1691 struct ARMCPRegInfo { 1692 /* Name of register (useful mainly for debugging, need not be unique) */ 1693 const char *name; 1694 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 1695 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 1696 * 'wildcard' field -- any value of that field in the MRC/MCR insn 1697 * will be decoded to this register. The register read and write 1698 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 1699 * used by the program, so it is possible to register a wildcard and 1700 * then behave differently on read/write if necessary. 1701 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 1702 * must both be zero. 1703 * For AArch64-visible registers, opc0 is also used. 1704 * Since there are no "coprocessors" in AArch64, cp is purely used as a 1705 * way to distinguish (for KVM's benefit) guest-visible system registers 1706 * from demuxed ones provided to preserve the "no side effects on 1707 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 1708 * visible (to match KVM's encoding); cp==0 will be converted to 1709 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 1710 */ 1711 uint8_t cp; 1712 uint8_t crn; 1713 uint8_t crm; 1714 uint8_t opc0; 1715 uint8_t opc1; 1716 uint8_t opc2; 1717 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 1718 int state; 1719 /* Register type: ARM_CP_* bits/values */ 1720 int type; 1721 /* Access rights: PL*_[RW] */ 1722 int access; 1723 /* Security state: ARM_CP_SECSTATE_* bits/values */ 1724 int secure; 1725 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 1726 * this register was defined: can be used to hand data through to the 1727 * register read/write functions, since they are passed the ARMCPRegInfo*. 1728 */ 1729 void *opaque; 1730 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 1731 * fieldoffset is non-zero, the reset value of the register. 1732 */ 1733 uint64_t resetvalue; 1734 /* Offset of the field in CPUARMState for this register. 1735 * 1736 * This is not needed if either: 1737 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 1738 * 2. both readfn and writefn are specified 1739 */ 1740 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 1741 1742 /* Offsets of the secure and non-secure fields in CPUARMState for the 1743 * register if it is banked. These fields are only used during the static 1744 * registration of a register. During hashing the bank associated 1745 * with a given security state is copied to fieldoffset which is used from 1746 * there on out. 1747 * 1748 * It is expected that register definitions use either fieldoffset or 1749 * bank_fieldoffsets in the definition but not both. It is also expected 1750 * that both bank offsets are set when defining a banked register. This 1751 * use indicates that a register is banked. 1752 */ 1753 ptrdiff_t bank_fieldoffsets[2]; 1754 1755 /* Function for making any access checks for this register in addition to 1756 * those specified by the 'access' permissions bits. If NULL, no extra 1757 * checks required. The access check is performed at runtime, not at 1758 * translate time. 1759 */ 1760 CPAccessFn *accessfn; 1761 /* Function for handling reads of this register. If NULL, then reads 1762 * will be done by loading from the offset into CPUARMState specified 1763 * by fieldoffset. 1764 */ 1765 CPReadFn *readfn; 1766 /* Function for handling writes of this register. If NULL, then writes 1767 * will be done by writing to the offset into CPUARMState specified 1768 * by fieldoffset. 1769 */ 1770 CPWriteFn *writefn; 1771 /* Function for doing a "raw" read; used when we need to copy 1772 * coprocessor state to the kernel for KVM or out for 1773 * migration. This only needs to be provided if there is also a 1774 * readfn and it has side effects (for instance clear-on-read bits). 1775 */ 1776 CPReadFn *raw_readfn; 1777 /* Function for doing a "raw" write; used when we need to copy KVM 1778 * kernel coprocessor state into userspace, or for inbound 1779 * migration. This only needs to be provided if there is also a 1780 * writefn and it masks out "unwritable" bits or has write-one-to-clear 1781 * or similar behaviour. 1782 */ 1783 CPWriteFn *raw_writefn; 1784 /* Function for resetting the register. If NULL, then reset will be done 1785 * by writing resetvalue to the field specified in fieldoffset. If 1786 * fieldoffset is 0 then no reset will be done. 1787 */ 1788 CPResetFn *resetfn; 1789 }; 1790 1791 /* Macros which are lvalues for the field in CPUARMState for the 1792 * ARMCPRegInfo *ri. 1793 */ 1794 #define CPREG_FIELD32(env, ri) \ 1795 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 1796 #define CPREG_FIELD64(env, ri) \ 1797 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 1798 1799 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 1800 1801 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 1802 const ARMCPRegInfo *regs, void *opaque); 1803 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 1804 const ARMCPRegInfo *regs, void *opaque); 1805 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 1806 { 1807 define_arm_cp_regs_with_opaque(cpu, regs, 0); 1808 } 1809 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 1810 { 1811 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 1812 } 1813 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 1814 1815 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 1816 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 1817 uint64_t value); 1818 /* CPReadFn that can be used for read-as-zero behaviour */ 1819 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 1820 1821 /* CPResetFn that does nothing, for use if no reset is required even 1822 * if fieldoffset is non zero. 1823 */ 1824 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 1825 1826 /* Return true if this reginfo struct's field in the cpu state struct 1827 * is 64 bits wide. 1828 */ 1829 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 1830 { 1831 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 1832 } 1833 1834 static inline bool cp_access_ok(int current_el, 1835 const ARMCPRegInfo *ri, int isread) 1836 { 1837 return (ri->access >> ((current_el * 2) + isread)) & 1; 1838 } 1839 1840 /* Raw read of a coprocessor register (as needed for migration, etc) */ 1841 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 1842 1843 /** 1844 * write_list_to_cpustate 1845 * @cpu: ARMCPU 1846 * 1847 * For each register listed in the ARMCPU cpreg_indexes list, write 1848 * its value from the cpreg_values list into the ARMCPUState structure. 1849 * This updates TCG's working data structures from KVM data or 1850 * from incoming migration state. 1851 * 1852 * Returns: true if all register values were updated correctly, 1853 * false if some register was unknown or could not be written. 1854 * Note that we do not stop early on failure -- we will attempt 1855 * writing all registers in the list. 1856 */ 1857 bool write_list_to_cpustate(ARMCPU *cpu); 1858 1859 /** 1860 * write_cpustate_to_list: 1861 * @cpu: ARMCPU 1862 * 1863 * For each register listed in the ARMCPU cpreg_indexes list, write 1864 * its value from the ARMCPUState structure into the cpreg_values list. 1865 * This is used to copy info from TCG's working data structures into 1866 * KVM or for outbound migration. 1867 * 1868 * Returns: true if all register values were read correctly, 1869 * false if some register was unknown or could not be read. 1870 * Note that we do not stop early on failure -- we will attempt 1871 * reading all registers in the list. 1872 */ 1873 bool write_cpustate_to_list(ARMCPU *cpu); 1874 1875 #define ARM_CPUID_TI915T 0x54029152 1876 #define ARM_CPUID_TI925T 0x54029252 1877 1878 #if defined(CONFIG_USER_ONLY) 1879 #define TARGET_PAGE_BITS 12 1880 #else 1881 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6 1882 * have to support 1K tiny pages. 1883 */ 1884 #define TARGET_PAGE_BITS_VARY 1885 #define TARGET_PAGE_BITS_MIN 10 1886 #endif 1887 1888 #if defined(TARGET_AARCH64) 1889 # define TARGET_PHYS_ADDR_SPACE_BITS 48 1890 # define TARGET_VIRT_ADDR_SPACE_BITS 64 1891 #else 1892 # define TARGET_PHYS_ADDR_SPACE_BITS 40 1893 # define TARGET_VIRT_ADDR_SPACE_BITS 32 1894 #endif 1895 1896 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 1897 unsigned int target_el) 1898 { 1899 CPUARMState *env = cs->env_ptr; 1900 unsigned int cur_el = arm_current_el(env); 1901 bool secure = arm_is_secure(env); 1902 bool pstate_unmasked; 1903 int8_t unmasked = 0; 1904 1905 /* Don't take exceptions if they target a lower EL. 1906 * This check should catch any exceptions that would not be taken but left 1907 * pending. 1908 */ 1909 if (cur_el > target_el) { 1910 return false; 1911 } 1912 1913 switch (excp_idx) { 1914 case EXCP_FIQ: 1915 pstate_unmasked = !(env->daif & PSTATE_F); 1916 break; 1917 1918 case EXCP_IRQ: 1919 pstate_unmasked = !(env->daif & PSTATE_I); 1920 break; 1921 1922 case EXCP_VFIQ: 1923 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { 1924 /* VFIQs are only taken when hypervized and non-secure. */ 1925 return false; 1926 } 1927 return !(env->daif & PSTATE_F); 1928 case EXCP_VIRQ: 1929 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { 1930 /* VIRQs are only taken when hypervized and non-secure. */ 1931 return false; 1932 } 1933 return !(env->daif & PSTATE_I); 1934 default: 1935 g_assert_not_reached(); 1936 } 1937 1938 /* Use the target EL, current execution state and SCR/HCR settings to 1939 * determine whether the corresponding CPSR bit is used to mask the 1940 * interrupt. 1941 */ 1942 if ((target_el > cur_el) && (target_el != 1)) { 1943 /* Exceptions targeting a higher EL may not be maskable */ 1944 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 1945 /* 64-bit masking rules are simple: exceptions to EL3 1946 * can't be masked, and exceptions to EL2 can only be 1947 * masked from Secure state. The HCR and SCR settings 1948 * don't affect the masking logic, only the interrupt routing. 1949 */ 1950 if (target_el == 3 || !secure) { 1951 unmasked = 1; 1952 } 1953 } else { 1954 /* The old 32-bit-only environment has a more complicated 1955 * masking setup. HCR and SCR bits not only affect interrupt 1956 * routing but also change the behaviour of masking. 1957 */ 1958 bool hcr, scr; 1959 1960 switch (excp_idx) { 1961 case EXCP_FIQ: 1962 /* If FIQs are routed to EL3 or EL2 then there are cases where 1963 * we override the CPSR.F in determining if the exception is 1964 * masked or not. If neither of these are set then we fall back 1965 * to the CPSR.F setting otherwise we further assess the state 1966 * below. 1967 */ 1968 hcr = (env->cp15.hcr_el2 & HCR_FMO); 1969 scr = (env->cp15.scr_el3 & SCR_FIQ); 1970 1971 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 1972 * CPSR.F bit masks FIQ interrupts when taken in non-secure 1973 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 1974 * when non-secure but only when FIQs are only routed to EL3. 1975 */ 1976 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 1977 break; 1978 case EXCP_IRQ: 1979 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 1980 * we may override the CPSR.I masking when in non-secure state. 1981 * The SCR.IRQ setting has already been taken into consideration 1982 * when setting the target EL, so it does not have a further 1983 * affect here. 1984 */ 1985 hcr = (env->cp15.hcr_el2 & HCR_IMO); 1986 scr = false; 1987 break; 1988 default: 1989 g_assert_not_reached(); 1990 } 1991 1992 if ((scr || hcr) && !secure) { 1993 unmasked = 1; 1994 } 1995 } 1996 } 1997 1998 /* The PSTATE bits only mask the interrupt if we have not overriden the 1999 * ability above. 2000 */ 2001 return unmasked || pstate_unmasked; 2002 } 2003 2004 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model)) 2005 2006 #define cpu_signal_handler cpu_arm_signal_handler 2007 #define cpu_list arm_cpu_list 2008 2009 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2010 * 2011 * If EL3 is 64-bit: 2012 * + NonSecure EL1 & 0 stage 1 2013 * + NonSecure EL1 & 0 stage 2 2014 * + NonSecure EL2 2015 * + Secure EL1 & EL0 2016 * + Secure EL3 2017 * If EL3 is 32-bit: 2018 * + NonSecure PL1 & 0 stage 1 2019 * + NonSecure PL1 & 0 stage 2 2020 * + NonSecure PL2 2021 * + Secure PL0 & PL1 2022 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2023 * 2024 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2025 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2026 * may differ in access permissions even if the VA->PA map is the same 2027 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2028 * translation, which means that we have one mmu_idx that deals with two 2029 * concatenated translation regimes [this sort of combined s1+2 TLB is 2030 * architecturally permitted] 2031 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2032 * handling via the TLB. The only way to do a stage 1 translation without 2033 * the immediate stage 2 translation is via the ATS or AT system insns, 2034 * which can be slow-pathed and always do a page table walk. 2035 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2036 * translation regimes, because they map reasonably well to each other 2037 * and they can't both be active at the same time. 2038 * This gives us the following list of mmu_idx values: 2039 * 2040 * NS EL0 (aka NS PL0) stage 1+2 2041 * NS EL1 (aka NS PL1) stage 1+2 2042 * NS EL2 (aka NS PL2) 2043 * S EL3 (aka S PL1) 2044 * S EL0 (aka S PL0) 2045 * S EL1 (not used if EL3 is 32 bit) 2046 * NS EL0+1 stage 2 2047 * 2048 * (The last of these is an mmu_idx because we want to be able to use the TLB 2049 * for the accesses done as part of a stage 1 page table walk, rather than 2050 * having to walk the stage 2 page table over and over.) 2051 * 2052 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2053 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2054 * NS EL2 if we ever model a Cortex-R52). 2055 * 2056 * M profile CPUs are rather different as they do not have a true MMU. 2057 * They have the following different MMU indexes: 2058 * User 2059 * Privileged 2060 * Execution priority negative (this is like privileged, but the 2061 * MPU HFNMIENA bit means that it may have different access permission 2062 * check results to normal privileged code, so can't share a TLB). 2063 * 2064 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2065 * are not quite the same -- different CPU types (most notably M profile 2066 * vs A/R profile) would like to use MMU indexes with different semantics, 2067 * but since we don't ever need to use all of those in a single CPU we 2068 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2069 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2070 * the same for any particular CPU. 2071 * Variables of type ARMMUIdx are always full values, and the core 2072 * index values are in variables of type 'int'. 2073 * 2074 * Our enumeration includes at the end some entries which are not "true" 2075 * mmu_idx values in that they don't have corresponding TLBs and are only 2076 * valid for doing slow path page table walks. 2077 * 2078 * The constant names here are patterned after the general style of the names 2079 * of the AT/ATS operations. 2080 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2081 */ 2082 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2083 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2084 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2085 2086 #define ARM_MMU_IDX_TYPE_MASK (~0x7) 2087 #define ARM_MMU_IDX_COREIDX_MASK 0x7 2088 2089 typedef enum ARMMMUIdx { 2090 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, 2091 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, 2092 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, 2093 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, 2094 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, 2095 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, 2096 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, 2097 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, 2098 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, 2099 ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M, 2100 /* Indexes below here don't have TLBs and are used only for AT system 2101 * instructions or for the first stage of an S12 page table walk. 2102 */ 2103 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, 2104 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, 2105 } ARMMMUIdx; 2106 2107 /* Bit macros for the core-mmu-index values for each index, 2108 * for use when calling tlb_flush_by_mmuidx() and friends. 2109 */ 2110 typedef enum ARMMMUIdxBit { 2111 ARMMMUIdxBit_S12NSE0 = 1 << 0, 2112 ARMMMUIdxBit_S12NSE1 = 1 << 1, 2113 ARMMMUIdxBit_S1E2 = 1 << 2, 2114 ARMMMUIdxBit_S1E3 = 1 << 3, 2115 ARMMMUIdxBit_S1SE0 = 1 << 4, 2116 ARMMMUIdxBit_S1SE1 = 1 << 5, 2117 ARMMMUIdxBit_S2NS = 1 << 6, 2118 ARMMMUIdxBit_MUser = 1 << 0, 2119 ARMMMUIdxBit_MPriv = 1 << 1, 2120 ARMMMUIdxBit_MNegPri = 1 << 2, 2121 } ARMMMUIdxBit; 2122 2123 #define MMU_USER_IDX 0 2124 2125 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 2126 { 2127 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 2128 } 2129 2130 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 2131 { 2132 if (arm_feature(env, ARM_FEATURE_M)) { 2133 return mmu_idx | ARM_MMU_IDX_M; 2134 } else { 2135 return mmu_idx | ARM_MMU_IDX_A; 2136 } 2137 } 2138 2139 /* Return the exception level we're running at if this is our mmu_idx */ 2140 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2141 { 2142 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { 2143 case ARM_MMU_IDX_A: 2144 return mmu_idx & 3; 2145 case ARM_MMU_IDX_M: 2146 return mmu_idx == ARMMMUIdx_MUser ? 0 : 1; 2147 default: 2148 g_assert_not_reached(); 2149 } 2150 } 2151 2152 /* Determine the current mmu_idx to use for normal loads/stores */ 2153 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 2154 { 2155 int el = arm_current_el(env); 2156 2157 if (arm_feature(env, ARM_FEATURE_M)) { 2158 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv; 2159 2160 /* Execution priority is negative if FAULTMASK is set or 2161 * we're in a HardFault or NMI handler. 2162 */ 2163 if ((env->v7m.exception > 0 && env->v7m.exception <= 3) 2164 || env->daif & PSTATE_F) { 2165 return arm_to_core_mmu_idx(ARMMMUIdx_MNegPri); 2166 } 2167 2168 return arm_to_core_mmu_idx(mmu_idx); 2169 } 2170 2171 if (el < 2 && arm_is_secure_below_el3(env)) { 2172 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el); 2173 } 2174 return el; 2175 } 2176 2177 /* Indexes used when registering address spaces with cpu_address_space_init */ 2178 typedef enum ARMASIdx { 2179 ARMASIdx_NS = 0, 2180 ARMASIdx_S = 1, 2181 } ARMASIdx; 2182 2183 /* Return the Exception Level targeted by debug exceptions. */ 2184 static inline int arm_debug_target_el(CPUARMState *env) 2185 { 2186 bool secure = arm_is_secure(env); 2187 bool route_to_el2 = false; 2188 2189 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2190 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2191 env->cp15.mdcr_el2 & (1 << 8); 2192 } 2193 2194 if (route_to_el2) { 2195 return 2; 2196 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2197 !arm_el_is_aa64(env, 3) && secure) { 2198 return 3; 2199 } else { 2200 return 1; 2201 } 2202 } 2203 2204 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2205 { 2206 if (arm_is_secure(env)) { 2207 /* MDCR_EL3.SDD disables debug events from Secure state */ 2208 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 2209 || arm_current_el(env) == 3) { 2210 return false; 2211 } 2212 } 2213 2214 if (arm_current_el(env) == arm_debug_target_el(env)) { 2215 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) 2216 || (env->daif & PSTATE_D)) { 2217 return false; 2218 } 2219 } 2220 return true; 2221 } 2222 2223 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 2224 { 2225 int el = arm_current_el(env); 2226 2227 if (el == 0 && arm_el_is_aa64(env, 1)) { 2228 return aa64_generate_debug_exceptions(env); 2229 } 2230 2231 if (arm_is_secure(env)) { 2232 int spd; 2233 2234 if (el == 0 && (env->cp15.sder & 1)) { 2235 /* SDER.SUIDEN means debug exceptions from Secure EL0 2236 * are always enabled. Otherwise they are controlled by 2237 * SDCR.SPD like those from other Secure ELs. 2238 */ 2239 return true; 2240 } 2241 2242 spd = extract32(env->cp15.mdcr_el3, 14, 2); 2243 switch (spd) { 2244 case 1: 2245 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 2246 case 0: 2247 /* For 0b00 we return true if external secure invasive debug 2248 * is enabled. On real hardware this is controlled by external 2249 * signals to the core. QEMU always permits debug, and behaves 2250 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 2251 */ 2252 return true; 2253 case 2: 2254 return false; 2255 case 3: 2256 return true; 2257 } 2258 } 2259 2260 return el != 2; 2261 } 2262 2263 /* Return true if debugging exceptions are currently enabled. 2264 * This corresponds to what in ARM ARM pseudocode would be 2265 * if UsingAArch32() then 2266 * return AArch32.GenerateDebugExceptions() 2267 * else 2268 * return AArch64.GenerateDebugExceptions() 2269 * We choose to push the if() down into this function for clarity, 2270 * since the pseudocode has it at all callsites except for the one in 2271 * CheckSoftwareStep(), where it is elided because both branches would 2272 * always return the same value. 2273 * 2274 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we 2275 * don't yet implement those exception levels or their associated trap bits. 2276 */ 2277 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 2278 { 2279 if (env->aarch64) { 2280 return aa64_generate_debug_exceptions(env); 2281 } else { 2282 return aa32_generate_debug_exceptions(env); 2283 } 2284 } 2285 2286 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 2287 * implicitly means this always returns false in pre-v8 CPUs.) 2288 */ 2289 static inline bool arm_singlestep_active(CPUARMState *env) 2290 { 2291 return extract32(env->cp15.mdscr_el1, 0, 1) 2292 && arm_el_is_aa64(env, arm_debug_target_el(env)) 2293 && arm_generate_debug_exceptions(env); 2294 } 2295 2296 static inline bool arm_sctlr_b(CPUARMState *env) 2297 { 2298 return 2299 /* We need not implement SCTLR.ITD in user-mode emulation, so 2300 * let linux-user ignore the fact that it conflicts with SCTLR_B. 2301 * This lets people run BE32 binaries with "-cpu any". 2302 */ 2303 #ifndef CONFIG_USER_ONLY 2304 !arm_feature(env, ARM_FEATURE_V7) && 2305 #endif 2306 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 2307 } 2308 2309 /* Return true if the processor is in big-endian mode. */ 2310 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 2311 { 2312 int cur_el; 2313 2314 /* In 32bit endianness is determined by looking at CPSR's E bit */ 2315 if (!is_a64(env)) { 2316 return 2317 #ifdef CONFIG_USER_ONLY 2318 /* In system mode, BE32 is modelled in line with the 2319 * architecture (as word-invariant big-endianness), where loads 2320 * and stores are done little endian but from addresses which 2321 * are adjusted by XORing with the appropriate constant. So the 2322 * endianness to use for the raw data access is not affected by 2323 * SCTLR.B. 2324 * In user mode, however, we model BE32 as byte-invariant 2325 * big-endianness (because user-only code cannot tell the 2326 * difference), and so we need to use a data access endianness 2327 * that depends on SCTLR.B. 2328 */ 2329 arm_sctlr_b(env) || 2330 #endif 2331 ((env->uncached_cpsr & CPSR_E) ? 1 : 0); 2332 } 2333 2334 cur_el = arm_current_el(env); 2335 2336 if (cur_el == 0) { 2337 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; 2338 } 2339 2340 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; 2341 } 2342 2343 #include "exec/cpu-all.h" 2344 2345 /* Bit usage in the TB flags field: bit 31 indicates whether we are 2346 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 2347 * We put flags which are shared between 32 and 64 bit mode at the top 2348 * of the word, and flags which apply to only one mode at the bottom. 2349 */ 2350 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 2351 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) 2352 #define ARM_TBFLAG_MMUIDX_SHIFT 28 2353 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) 2354 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 2355 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) 2356 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26 2357 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) 2358 /* Target EL if we take a floating-point-disabled exception */ 2359 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24 2360 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) 2361 2362 /* Bit usage when in AArch32 state: */ 2363 #define ARM_TBFLAG_THUMB_SHIFT 0 2364 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) 2365 #define ARM_TBFLAG_VECLEN_SHIFT 1 2366 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) 2367 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4 2368 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) 2369 #define ARM_TBFLAG_VFPEN_SHIFT 7 2370 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) 2371 #define ARM_TBFLAG_CONDEXEC_SHIFT 8 2372 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) 2373 #define ARM_TBFLAG_SCTLR_B_SHIFT 16 2374 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) 2375 /* We store the bottom two bits of the CPAR as TB flags and handle 2376 * checks on the other bits at runtime 2377 */ 2378 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 2379 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2380 /* Indicates whether cp register reads and writes by guest code should access 2381 * the secure or nonsecure bank of banked registers; note that this is not 2382 * the same thing as the current security state of the processor! 2383 */ 2384 #define ARM_TBFLAG_NS_SHIFT 19 2385 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) 2386 #define ARM_TBFLAG_BE_DATA_SHIFT 20 2387 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) 2388 /* For M profile only, Handler (ie not Thread) mode */ 2389 #define ARM_TBFLAG_HANDLER_SHIFT 21 2390 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT) 2391 2392 /* Bit usage when in AArch64 state */ 2393 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */ 2394 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT) 2395 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */ 2396 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT) 2397 2398 /* some convenience accessor macros */ 2399 #define ARM_TBFLAG_AARCH64_STATE(F) \ 2400 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) 2401 #define ARM_TBFLAG_MMUIDX(F) \ 2402 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) 2403 #define ARM_TBFLAG_SS_ACTIVE(F) \ 2404 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) 2405 #define ARM_TBFLAG_PSTATE_SS(F) \ 2406 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) 2407 #define ARM_TBFLAG_FPEXC_EL(F) \ 2408 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) 2409 #define ARM_TBFLAG_THUMB(F) \ 2410 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) 2411 #define ARM_TBFLAG_VECLEN(F) \ 2412 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) 2413 #define ARM_TBFLAG_VECSTRIDE(F) \ 2414 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) 2415 #define ARM_TBFLAG_VFPEN(F) \ 2416 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) 2417 #define ARM_TBFLAG_CONDEXEC(F) \ 2418 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) 2419 #define ARM_TBFLAG_SCTLR_B(F) \ 2420 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) 2421 #define ARM_TBFLAG_XSCALE_CPAR(F) \ 2422 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) 2423 #define ARM_TBFLAG_NS(F) \ 2424 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) 2425 #define ARM_TBFLAG_BE_DATA(F) \ 2426 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) 2427 #define ARM_TBFLAG_HANDLER(F) \ 2428 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT) 2429 #define ARM_TBFLAG_TBI0(F) \ 2430 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT) 2431 #define ARM_TBFLAG_TBI1(F) \ 2432 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT) 2433 2434 static inline bool bswap_code(bool sctlr_b) 2435 { 2436 #ifdef CONFIG_USER_ONLY 2437 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 2438 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 2439 * would also end up as a mixed-endian mode with BE code, LE data. 2440 */ 2441 return 2442 #ifdef TARGET_WORDS_BIGENDIAN 2443 1 ^ 2444 #endif 2445 sctlr_b; 2446 #else 2447 /* All code access in ARM is little endian, and there are no loaders 2448 * doing swaps that need to be reversed 2449 */ 2450 return 0; 2451 #endif 2452 } 2453 2454 /* Return the exception level to which FP-disabled exceptions should 2455 * be taken, or 0 if FP is enabled. 2456 */ 2457 static inline int fp_exception_el(CPUARMState *env) 2458 { 2459 int fpen; 2460 int cur_el = arm_current_el(env); 2461 2462 /* CPACR and the CPTR registers don't exist before v6, so FP is 2463 * always accessible 2464 */ 2465 if (!arm_feature(env, ARM_FEATURE_V6)) { 2466 return 0; 2467 } 2468 2469 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 2470 * 0, 2 : trap EL0 and EL1/PL1 accesses 2471 * 1 : trap only EL0 accesses 2472 * 3 : trap no accesses 2473 */ 2474 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 2475 switch (fpen) { 2476 case 0: 2477 case 2: 2478 if (cur_el == 0 || cur_el == 1) { 2479 /* Trap to PL1, which might be EL1 or EL3 */ 2480 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2481 return 3; 2482 } 2483 return 1; 2484 } 2485 if (cur_el == 3 && !is_a64(env)) { 2486 /* Secure PL1 running at EL3 */ 2487 return 3; 2488 } 2489 break; 2490 case 1: 2491 if (cur_el == 0) { 2492 return 1; 2493 } 2494 break; 2495 case 3: 2496 break; 2497 } 2498 2499 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 2500 * check because zero bits in the registers mean "don't trap". 2501 */ 2502 2503 /* CPTR_EL2 : present in v7VE or v8 */ 2504 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 2505 && !arm_is_secure_below_el3(env)) { 2506 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 2507 return 2; 2508 } 2509 2510 /* CPTR_EL3 : present in v8 */ 2511 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 2512 /* Trap all FP ops to EL3 */ 2513 return 3; 2514 } 2515 2516 return 0; 2517 } 2518 2519 #ifdef CONFIG_USER_ONLY 2520 static inline bool arm_cpu_bswap_data(CPUARMState *env) 2521 { 2522 return 2523 #ifdef TARGET_WORDS_BIGENDIAN 2524 1 ^ 2525 #endif 2526 arm_cpu_data_is_big_endian(env); 2527 } 2528 #endif 2529 2530 #ifndef CONFIG_USER_ONLY 2531 /** 2532 * arm_regime_tbi0: 2533 * @env: CPUARMState 2534 * @mmu_idx: MMU index indicating required translation regime 2535 * 2536 * Extracts the TBI0 value from the appropriate TCR for the current EL 2537 * 2538 * Returns: the TBI0 value. 2539 */ 2540 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx); 2541 2542 /** 2543 * arm_regime_tbi1: 2544 * @env: CPUARMState 2545 * @mmu_idx: MMU index indicating required translation regime 2546 * 2547 * Extracts the TBI1 value from the appropriate TCR for the current EL 2548 * 2549 * Returns: the TBI1 value. 2550 */ 2551 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx); 2552 #else 2553 /* We can't handle tagged addresses properly in user-only mode */ 2554 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 2555 { 2556 return 0; 2557 } 2558 2559 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 2560 { 2561 return 0; 2562 } 2563 #endif 2564 2565 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 2566 target_ulong *cs_base, uint32_t *flags) 2567 { 2568 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 2569 if (is_a64(env)) { 2570 *pc = env->pc; 2571 *flags = ARM_TBFLAG_AARCH64_STATE_MASK; 2572 /* Get control bits for tagged addresses */ 2573 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 2574 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 2575 } else { 2576 *pc = env->regs[15]; 2577 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 2578 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 2579 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 2580 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 2581 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 2582 if (!(access_secure_reg(env))) { 2583 *flags |= ARM_TBFLAG_NS_MASK; 2584 } 2585 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 2586 || arm_el_is_aa64(env, 1)) { 2587 *flags |= ARM_TBFLAG_VFPEN_MASK; 2588 } 2589 *flags |= (extract32(env->cp15.c15_cpar, 0, 2) 2590 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 2591 } 2592 2593 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 2594 2595 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 2596 * states defined in the ARM ARM for software singlestep: 2597 * SS_ACTIVE PSTATE.SS State 2598 * 0 x Inactive (the TB flag for SS is always 0) 2599 * 1 0 Active-pending 2600 * 1 1 Active-not-pending 2601 */ 2602 if (arm_singlestep_active(env)) { 2603 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 2604 if (is_a64(env)) { 2605 if (env->pstate & PSTATE_SS) { 2606 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2607 } 2608 } else { 2609 if (env->uncached_cpsr & PSTATE_SS) { 2610 *flags |= ARM_TBFLAG_PSTATE_SS_MASK; 2611 } 2612 } 2613 } 2614 if (arm_cpu_data_is_big_endian(env)) { 2615 *flags |= ARM_TBFLAG_BE_DATA_MASK; 2616 } 2617 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; 2618 2619 if (env->v7m.exception != 0) { 2620 *flags |= ARM_TBFLAG_HANDLER_MASK; 2621 } 2622 2623 *cs_base = 0; 2624 } 2625 2626 enum { 2627 QEMU_PSCI_CONDUIT_DISABLED = 0, 2628 QEMU_PSCI_CONDUIT_SMC = 1, 2629 QEMU_PSCI_CONDUIT_HVC = 2, 2630 }; 2631 2632 #ifndef CONFIG_USER_ONLY 2633 /* Return the address space index to use for a memory access */ 2634 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 2635 { 2636 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 2637 } 2638 2639 /* Return the AddressSpace to use for a memory access 2640 * (which depends on whether the access is S or NS, and whether 2641 * the board gave us a separate AddressSpace for S accesses). 2642 */ 2643 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 2644 { 2645 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 2646 } 2647 #endif 2648 2649 /** 2650 * arm_register_el_change_hook: 2651 * Register a hook function which will be called back whenever this 2652 * CPU changes exception level or mode. The hook function will be 2653 * passed a pointer to the ARMCPU and the opaque data pointer passed 2654 * to this function when the hook was registered. 2655 * 2656 * Note that we currently only support registering a single hook function, 2657 * and will assert if this function is called twice. 2658 * This facility is intended for the use of the GICv3 emulation. 2659 */ 2660 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, 2661 void *opaque); 2662 2663 /** 2664 * arm_get_el_change_hook_opaque: 2665 * Return the opaque data that will be used by the el_change_hook 2666 * for this CPU. 2667 */ 2668 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu) 2669 { 2670 return cpu->el_change_hook_opaque; 2671 } 2672 2673 #endif 2674