1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 28 /* ARM processors have a weak memory model */ 29 #define TCG_GUEST_DEFAULT_MO (0) 30 31 #define EXCP_UDEF 1 /* undefined instruction */ 32 #define EXCP_SWI 2 /* software interrupt */ 33 #define EXCP_PREFETCH_ABORT 3 34 #define EXCP_DATA_ABORT 4 35 #define EXCP_IRQ 5 36 #define EXCP_FIQ 6 37 #define EXCP_BKPT 7 38 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 39 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 40 #define EXCP_HVC 11 /* HyperVisor Call */ 41 #define EXCP_HYP_TRAP 12 42 #define EXCP_SMC 13 /* Secure Monitor Call */ 43 #define EXCP_VIRQ 14 44 #define EXCP_VFIQ 15 45 #define EXCP_SEMIHOST 16 /* semihosting call */ 46 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 47 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 48 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 49 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 50 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 51 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 53 54 #define ARMV7M_EXCP_RESET 1 55 #define ARMV7M_EXCP_NMI 2 56 #define ARMV7M_EXCP_HARD 3 57 #define ARMV7M_EXCP_MEM 4 58 #define ARMV7M_EXCP_BUS 5 59 #define ARMV7M_EXCP_USAGE 6 60 #define ARMV7M_EXCP_SECURE 7 61 #define ARMV7M_EXCP_SVC 11 62 #define ARMV7M_EXCP_DEBUG 12 63 #define ARMV7M_EXCP_PENDSV 14 64 #define ARMV7M_EXCP_SYSTICK 15 65 66 /* For M profile, some registers are banked secure vs non-secure; 67 * these are represented as a 2-element array where the first element 68 * is the non-secure copy and the second is the secure copy. 69 * When the CPU does not have implement the security extension then 70 * only the first element is used. 71 * This means that the copy for the current security state can be 72 * accessed via env->registerfield[env->v7m.secure] (whether the security 73 * extension is implemented or not). 74 */ 75 enum { 76 M_REG_NS = 0, 77 M_REG_S = 1, 78 M_REG_NUM_BANKS = 2, 79 }; 80 81 /* ARM-specific interrupt pending bits. */ 82 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 83 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 84 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 85 86 /* The usual mapping for an AArch64 system register to its AArch32 87 * counterpart is for the 32 bit world to have access to the lower 88 * half only (with writes leaving the upper half untouched). It's 89 * therefore useful to be able to pass TCG the offset of the least 90 * significant half of a uint64_t struct member. 91 */ 92 #ifdef HOST_WORDS_BIGENDIAN 93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 94 #define offsetofhigh32(S, M) offsetof(S, M) 95 #else 96 #define offsetoflow32(S, M) offsetof(S, M) 97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 98 #endif 99 100 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 101 #define ARM_CPU_IRQ 0 102 #define ARM_CPU_FIQ 1 103 #define ARM_CPU_VIRQ 2 104 #define ARM_CPU_VFIQ 3 105 106 /* ARM-specific extra insn start words: 107 * 1: Conditional execution bits 108 * 2: Partial exception syndrome for data aborts 109 */ 110 #define TARGET_INSN_START_EXTRA_WORDS 2 111 112 /* The 2nd extra word holding syndrome info for data aborts does not use 113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 114 * help the sleb128 encoder do a better job. 115 * When restoring the CPU state, we shift it back up. 116 */ 117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 118 #define ARM_INSN_START_WORD2_SHIFT 14 119 120 /* We currently assume float and double are IEEE single and double 121 precision respectively. 122 Doing runtime conversions is tricky because VFP registers may contain 123 integer values (eg. as the result of a FTOSI instruction). 124 s<2n> maps to the least significant half of d<n> 125 s<2n+1> maps to the most significant half of d<n> 126 */ 127 128 /** 129 * DynamicGDBXMLInfo: 130 * @desc: Contains the XML descriptions. 131 * @num_cpregs: Number of the Coprocessor registers seen by GDB. 132 * @cpregs_keys: Array that contains the corresponding Key of 133 * a given cpreg with the same order of the cpreg in the XML description. 134 */ 135 typedef struct DynamicGDBXMLInfo { 136 char *desc; 137 int num_cpregs; 138 uint32_t *cpregs_keys; 139 } DynamicGDBXMLInfo; 140 141 /* CPU state for each instance of a generic timer (in cp15 c14) */ 142 typedef struct ARMGenericTimer { 143 uint64_t cval; /* Timer CompareValue register */ 144 uint64_t ctl; /* Timer Control register */ 145 } ARMGenericTimer; 146 147 #define GTIMER_PHYS 0 148 #define GTIMER_VIRT 1 149 #define GTIMER_HYP 2 150 #define GTIMER_SEC 3 151 #define GTIMER_HYPVIRT 4 152 #define NUM_GTIMERS 5 153 154 typedef struct { 155 uint64_t raw_tcr; 156 uint32_t mask; 157 uint32_t base_mask; 158 } TCR; 159 160 /* Define a maximum sized vector register. 161 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 162 * For 64-bit, this is a 2048-bit SVE register. 163 * 164 * Note that the mapping between S, D, and Q views of the register bank 165 * differs between AArch64 and AArch32. 166 * In AArch32: 167 * Qn = regs[n].d[1]:regs[n].d[0] 168 * Dn = regs[n / 2].d[n & 1] 169 * Sn = regs[n / 4].d[n % 4 / 2], 170 * bits 31..0 for even n, and bits 63..32 for odd n 171 * (and regs[16] to regs[31] are inaccessible) 172 * In AArch64: 173 * Zn = regs[n].d[*] 174 * Qn = regs[n].d[1]:regs[n].d[0] 175 * Dn = regs[n].d[0] 176 * Sn = regs[n].d[0] bits 31..0 177 * Hn = regs[n].d[0] bits 15..0 178 * 179 * This corresponds to the architecturally defined mapping between 180 * the two execution states, and means we do not need to explicitly 181 * map these registers when changing states. 182 * 183 * Align the data for use with TCG host vector operations. 184 */ 185 186 #ifdef TARGET_AARCH64 187 # define ARM_MAX_VQ 16 188 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 189 #else 190 # define ARM_MAX_VQ 1 191 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 192 #endif 193 194 typedef struct ARMVectorReg { 195 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 196 } ARMVectorReg; 197 198 #ifdef TARGET_AARCH64 199 /* In AArch32 mode, predicate registers do not exist at all. */ 200 typedef struct ARMPredicateReg { 201 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 202 } ARMPredicateReg; 203 204 /* In AArch32 mode, PAC keys do not exist at all. */ 205 typedef struct ARMPACKey { 206 uint64_t lo, hi; 207 } ARMPACKey; 208 #endif 209 210 211 typedef struct CPUARMState { 212 /* Regs for current mode. */ 213 uint32_t regs[16]; 214 215 /* 32/64 switch only happens when taking and returning from 216 * exceptions so the overlap semantics are taken care of then 217 * instead of having a complicated union. 218 */ 219 /* Regs for A64 mode. */ 220 uint64_t xregs[32]; 221 uint64_t pc; 222 /* PSTATE isn't an architectural register for ARMv8. However, it is 223 * convenient for us to assemble the underlying state into a 32 bit format 224 * identical to the architectural format used for the SPSR. (This is also 225 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 226 * 'pstate' register are.) Of the PSTATE bits: 227 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 228 * semantics as for AArch32, as described in the comments on each field) 229 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 230 * DAIF (exception masks) are kept in env->daif 231 * BTYPE is kept in env->btype 232 * all other bits are stored in their correct places in env->pstate 233 */ 234 uint32_t pstate; 235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 236 237 /* Cached TBFLAGS state. See below for which bits are included. */ 238 uint32_t hflags; 239 240 /* Frequently accessed CPSR bits are stored separately for efficiency. 241 This contains all the other bits. Use cpsr_{read,write} to access 242 the whole CPSR. */ 243 uint32_t uncached_cpsr; 244 uint32_t spsr; 245 246 /* Banked registers. */ 247 uint64_t banked_spsr[8]; 248 uint32_t banked_r13[8]; 249 uint32_t banked_r14[8]; 250 251 /* These hold r8-r12. */ 252 uint32_t usr_regs[5]; 253 uint32_t fiq_regs[5]; 254 255 /* cpsr flag cache for faster execution */ 256 uint32_t CF; /* 0 or 1 */ 257 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 258 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 259 uint32_t ZF; /* Z set if zero. */ 260 uint32_t QF; /* 0 or 1 */ 261 uint32_t GE; /* cpsr[19:16] */ 262 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 263 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 264 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 265 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 266 267 uint64_t elr_el[4]; /* AArch64 exception link regs */ 268 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 269 270 /* System control coprocessor (cp15) */ 271 struct { 272 uint32_t c0_cpuid; 273 union { /* Cache size selection */ 274 struct { 275 uint64_t _unused_csselr0; 276 uint64_t csselr_ns; 277 uint64_t _unused_csselr1; 278 uint64_t csselr_s; 279 }; 280 uint64_t csselr_el[4]; 281 }; 282 union { /* System control register. */ 283 struct { 284 uint64_t _unused_sctlr; 285 uint64_t sctlr_ns; 286 uint64_t hsctlr; 287 uint64_t sctlr_s; 288 }; 289 uint64_t sctlr_el[4]; 290 }; 291 uint64_t cpacr_el1; /* Architectural feature access control register */ 292 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 293 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 294 uint64_t sder; /* Secure debug enable register. */ 295 uint32_t nsacr; /* Non-secure access control register. */ 296 union { /* MMU translation table base 0. */ 297 struct { 298 uint64_t _unused_ttbr0_0; 299 uint64_t ttbr0_ns; 300 uint64_t _unused_ttbr0_1; 301 uint64_t ttbr0_s; 302 }; 303 uint64_t ttbr0_el[4]; 304 }; 305 union { /* MMU translation table base 1. */ 306 struct { 307 uint64_t _unused_ttbr1_0; 308 uint64_t ttbr1_ns; 309 uint64_t _unused_ttbr1_1; 310 uint64_t ttbr1_s; 311 }; 312 uint64_t ttbr1_el[4]; 313 }; 314 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 315 /* MMU translation table base control. */ 316 TCR tcr_el[4]; 317 TCR vtcr_el2; /* Virtualization Translation Control. */ 318 uint32_t c2_data; /* MPU data cacheable bits. */ 319 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 320 union { /* MMU domain access control register 321 * MPU write buffer control. 322 */ 323 struct { 324 uint64_t dacr_ns; 325 uint64_t dacr_s; 326 }; 327 struct { 328 uint64_t dacr32_el2; 329 }; 330 }; 331 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 332 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 333 uint64_t hcr_el2; /* Hypervisor configuration register */ 334 uint64_t scr_el3; /* Secure configuration register. */ 335 union { /* Fault status registers. */ 336 struct { 337 uint64_t ifsr_ns; 338 uint64_t ifsr_s; 339 }; 340 struct { 341 uint64_t ifsr32_el2; 342 }; 343 }; 344 union { 345 struct { 346 uint64_t _unused_dfsr; 347 uint64_t dfsr_ns; 348 uint64_t hsr; 349 uint64_t dfsr_s; 350 }; 351 uint64_t esr_el[4]; 352 }; 353 uint32_t c6_region[8]; /* MPU base/size registers. */ 354 union { /* Fault address registers. */ 355 struct { 356 uint64_t _unused_far0; 357 #ifdef HOST_WORDS_BIGENDIAN 358 uint32_t ifar_ns; 359 uint32_t dfar_ns; 360 uint32_t ifar_s; 361 uint32_t dfar_s; 362 #else 363 uint32_t dfar_ns; 364 uint32_t ifar_ns; 365 uint32_t dfar_s; 366 uint32_t ifar_s; 367 #endif 368 uint64_t _unused_far3; 369 }; 370 uint64_t far_el[4]; 371 }; 372 uint64_t hpfar_el2; 373 uint64_t hstr_el2; 374 union { /* Translation result. */ 375 struct { 376 uint64_t _unused_par_0; 377 uint64_t par_ns; 378 uint64_t _unused_par_1; 379 uint64_t par_s; 380 }; 381 uint64_t par_el[4]; 382 }; 383 384 uint32_t c9_insn; /* Cache lockdown registers. */ 385 uint32_t c9_data; 386 uint64_t c9_pmcr; /* performance monitor control register */ 387 uint64_t c9_pmcnten; /* perf monitor counter enables */ 388 uint64_t c9_pmovsr; /* perf monitor overflow status */ 389 uint64_t c9_pmuserenr; /* perf monitor user enable */ 390 uint64_t c9_pmselr; /* perf monitor counter selection register */ 391 uint64_t c9_pminten; /* perf monitor interrupt enables */ 392 union { /* Memory attribute redirection */ 393 struct { 394 #ifdef HOST_WORDS_BIGENDIAN 395 uint64_t _unused_mair_0; 396 uint32_t mair1_ns; 397 uint32_t mair0_ns; 398 uint64_t _unused_mair_1; 399 uint32_t mair1_s; 400 uint32_t mair0_s; 401 #else 402 uint64_t _unused_mair_0; 403 uint32_t mair0_ns; 404 uint32_t mair1_ns; 405 uint64_t _unused_mair_1; 406 uint32_t mair0_s; 407 uint32_t mair1_s; 408 #endif 409 }; 410 uint64_t mair_el[4]; 411 }; 412 union { /* vector base address register */ 413 struct { 414 uint64_t _unused_vbar; 415 uint64_t vbar_ns; 416 uint64_t hvbar; 417 uint64_t vbar_s; 418 }; 419 uint64_t vbar_el[4]; 420 }; 421 uint32_t mvbar; /* (monitor) vector base address register */ 422 struct { /* FCSE PID. */ 423 uint32_t fcseidr_ns; 424 uint32_t fcseidr_s; 425 }; 426 union { /* Context ID. */ 427 struct { 428 uint64_t _unused_contextidr_0; 429 uint64_t contextidr_ns; 430 uint64_t _unused_contextidr_1; 431 uint64_t contextidr_s; 432 }; 433 uint64_t contextidr_el[4]; 434 }; 435 union { /* User RW Thread register. */ 436 struct { 437 uint64_t tpidrurw_ns; 438 uint64_t tpidrprw_ns; 439 uint64_t htpidr; 440 uint64_t _tpidr_el3; 441 }; 442 uint64_t tpidr_el[4]; 443 }; 444 /* The secure banks of these registers don't map anywhere */ 445 uint64_t tpidrurw_s; 446 uint64_t tpidrprw_s; 447 uint64_t tpidruro_s; 448 449 union { /* User RO Thread register. */ 450 uint64_t tpidruro_ns; 451 uint64_t tpidrro_el[1]; 452 }; 453 uint64_t c14_cntfrq; /* Counter Frequency register */ 454 uint64_t c14_cntkctl; /* Timer Control register */ 455 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 456 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 457 ARMGenericTimer c14_timer[NUM_GTIMERS]; 458 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 459 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 460 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 461 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 462 uint32_t c15_threadid; /* TI debugger thread-ID. */ 463 uint32_t c15_config_base_address; /* SCU base address. */ 464 uint32_t c15_diagnostic; /* diagnostic register */ 465 uint32_t c15_power_diagnostic; 466 uint32_t c15_power_control; /* power control */ 467 uint64_t dbgbvr[16]; /* breakpoint value registers */ 468 uint64_t dbgbcr[16]; /* breakpoint control registers */ 469 uint64_t dbgwvr[16]; /* watchpoint value registers */ 470 uint64_t dbgwcr[16]; /* watchpoint control registers */ 471 uint64_t mdscr_el1; 472 uint64_t oslsr_el1; /* OS Lock Status */ 473 uint64_t mdcr_el2; 474 uint64_t mdcr_el3; 475 /* Stores the architectural value of the counter *the last time it was 476 * updated* by pmccntr_op_start. Accesses should always be surrounded 477 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 478 * architecturally-correct value is being read/set. 479 */ 480 uint64_t c15_ccnt; 481 /* Stores the delta between the architectural value and the underlying 482 * cycle count during normal operation. It is used to update c15_ccnt 483 * to be the correct architectural value before accesses. During 484 * accesses, c15_ccnt_delta contains the underlying count being used 485 * for the access, after which it reverts to the delta value in 486 * pmccntr_op_finish. 487 */ 488 uint64_t c15_ccnt_delta; 489 uint64_t c14_pmevcntr[31]; 490 uint64_t c14_pmevcntr_delta[31]; 491 uint64_t c14_pmevtyper[31]; 492 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 493 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 494 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 495 } cp15; 496 497 struct { 498 /* M profile has up to 4 stack pointers: 499 * a Main Stack Pointer and a Process Stack Pointer for each 500 * of the Secure and Non-Secure states. (If the CPU doesn't support 501 * the security extension then it has only two SPs.) 502 * In QEMU we always store the currently active SP in regs[13], 503 * and the non-active SP for the current security state in 504 * v7m.other_sp. The stack pointers for the inactive security state 505 * are stored in other_ss_msp and other_ss_psp. 506 * switch_v7m_security_state() is responsible for rearranging them 507 * when we change security state. 508 */ 509 uint32_t other_sp; 510 uint32_t other_ss_msp; 511 uint32_t other_ss_psp; 512 uint32_t vecbase[M_REG_NUM_BANKS]; 513 uint32_t basepri[M_REG_NUM_BANKS]; 514 uint32_t control[M_REG_NUM_BANKS]; 515 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 516 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 517 uint32_t hfsr; /* HardFault Status */ 518 uint32_t dfsr; /* Debug Fault Status Register */ 519 uint32_t sfsr; /* Secure Fault Status Register */ 520 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 521 uint32_t bfar; /* BusFault Address */ 522 uint32_t sfar; /* Secure Fault Address Register */ 523 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 524 int exception; 525 uint32_t primask[M_REG_NUM_BANKS]; 526 uint32_t faultmask[M_REG_NUM_BANKS]; 527 uint32_t aircr; /* only holds r/w state if security extn implemented */ 528 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 529 uint32_t csselr[M_REG_NUM_BANKS]; 530 uint32_t scr[M_REG_NUM_BANKS]; 531 uint32_t msplim[M_REG_NUM_BANKS]; 532 uint32_t psplim[M_REG_NUM_BANKS]; 533 uint32_t fpcar[M_REG_NUM_BANKS]; 534 uint32_t fpccr[M_REG_NUM_BANKS]; 535 uint32_t fpdscr[M_REG_NUM_BANKS]; 536 uint32_t cpacr[M_REG_NUM_BANKS]; 537 uint32_t nsacr; 538 } v7m; 539 540 /* Information associated with an exception about to be taken: 541 * code which raises an exception must set cs->exception_index and 542 * the relevant parts of this structure; the cpu_do_interrupt function 543 * will then set the guest-visible registers as part of the exception 544 * entry process. 545 */ 546 struct { 547 uint32_t syndrome; /* AArch64 format syndrome register */ 548 uint32_t fsr; /* AArch32 format fault status register info */ 549 uint64_t vaddress; /* virtual addr associated with exception, if any */ 550 uint32_t target_el; /* EL the exception should be targeted for */ 551 /* If we implement EL2 we will also need to store information 552 * about the intermediate physical address for stage 2 faults. 553 */ 554 } exception; 555 556 /* Information associated with an SError */ 557 struct { 558 uint8_t pending; 559 uint8_t has_esr; 560 uint64_t esr; 561 } serror; 562 563 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 564 uint32_t irq_line_state; 565 566 /* Thumb-2 EE state. */ 567 uint32_t teecr; 568 uint32_t teehbr; 569 570 /* VFP coprocessor state. */ 571 struct { 572 ARMVectorReg zregs[32]; 573 574 #ifdef TARGET_AARCH64 575 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 576 #define FFR_PRED_NUM 16 577 ARMPredicateReg pregs[17]; 578 /* Scratch space for aa64 sve predicate temporary. */ 579 ARMPredicateReg preg_tmp; 580 #endif 581 582 /* We store these fpcsr fields separately for convenience. */ 583 uint32_t qc[4] QEMU_ALIGNED(16); 584 int vec_len; 585 int vec_stride; 586 587 uint32_t xregs[16]; 588 589 /* Scratch space for aa32 neon expansion. */ 590 uint32_t scratch[8]; 591 592 /* There are a number of distinct float control structures: 593 * 594 * fp_status: is the "normal" fp status. 595 * fp_status_fp16: used for half-precision calculations 596 * standard_fp_status : the ARM "Standard FPSCR Value" 597 * 598 * Half-precision operations are governed by a separate 599 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 600 * status structure to control this. 601 * 602 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 603 * round-to-nearest and is used by any operations (generally 604 * Neon) which the architecture defines as controlled by the 605 * standard FPSCR value rather than the FPSCR. 606 * 607 * To avoid having to transfer exception bits around, we simply 608 * say that the FPSCR cumulative exception flags are the logical 609 * OR of the flags in the three fp statuses. This relies on the 610 * only thing which needs to read the exception flags being 611 * an explicit FPSCR read. 612 */ 613 float_status fp_status; 614 float_status fp_status_f16; 615 float_status standard_fp_status; 616 617 /* ZCR_EL[1-3] */ 618 uint64_t zcr_el[4]; 619 } vfp; 620 uint64_t exclusive_addr; 621 uint64_t exclusive_val; 622 uint64_t exclusive_high; 623 624 /* iwMMXt coprocessor state. */ 625 struct { 626 uint64_t regs[16]; 627 uint64_t val; 628 629 uint32_t cregs[16]; 630 } iwmmxt; 631 632 #ifdef TARGET_AARCH64 633 struct { 634 ARMPACKey apia; 635 ARMPACKey apib; 636 ARMPACKey apda; 637 ARMPACKey apdb; 638 ARMPACKey apga; 639 } keys; 640 #endif 641 642 #if defined(CONFIG_USER_ONLY) 643 /* For usermode syscall translation. */ 644 int eabi; 645 #endif 646 647 struct CPUBreakpoint *cpu_breakpoint[16]; 648 struct CPUWatchpoint *cpu_watchpoint[16]; 649 650 /* Fields up to this point are cleared by a CPU reset */ 651 struct {} end_reset_fields; 652 653 /* Fields after this point are preserved across CPU reset. */ 654 655 /* Internal CPU feature flags. */ 656 uint64_t features; 657 658 /* PMSAv7 MPU */ 659 struct { 660 uint32_t *drbar; 661 uint32_t *drsr; 662 uint32_t *dracr; 663 uint32_t rnr[M_REG_NUM_BANKS]; 664 } pmsav7; 665 666 /* PMSAv8 MPU */ 667 struct { 668 /* The PMSAv8 implementation also shares some PMSAv7 config 669 * and state: 670 * pmsav7.rnr (region number register) 671 * pmsav7_dregion (number of configured regions) 672 */ 673 uint32_t *rbar[M_REG_NUM_BANKS]; 674 uint32_t *rlar[M_REG_NUM_BANKS]; 675 uint32_t mair0[M_REG_NUM_BANKS]; 676 uint32_t mair1[M_REG_NUM_BANKS]; 677 } pmsav8; 678 679 /* v8M SAU */ 680 struct { 681 uint32_t *rbar; 682 uint32_t *rlar; 683 uint32_t rnr; 684 uint32_t ctrl; 685 } sau; 686 687 void *nvic; 688 const struct arm_boot_info *boot_info; 689 /* Store GICv3CPUState to access from this struct */ 690 void *gicv3state; 691 } CPUARMState; 692 693 /** 694 * ARMELChangeHookFn: 695 * type of a function which can be registered via arm_register_el_change_hook() 696 * to get callbacks when the CPU changes its exception level or mode. 697 */ 698 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 699 typedef struct ARMELChangeHook ARMELChangeHook; 700 struct ARMELChangeHook { 701 ARMELChangeHookFn *hook; 702 void *opaque; 703 QLIST_ENTRY(ARMELChangeHook) node; 704 }; 705 706 /* These values map onto the return values for 707 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 708 typedef enum ARMPSCIState { 709 PSCI_ON = 0, 710 PSCI_OFF = 1, 711 PSCI_ON_PENDING = 2 712 } ARMPSCIState; 713 714 typedef struct ARMISARegisters ARMISARegisters; 715 716 /** 717 * ARMCPU: 718 * @env: #CPUARMState 719 * 720 * An ARM CPU core. 721 */ 722 struct ARMCPU { 723 /*< private >*/ 724 CPUState parent_obj; 725 /*< public >*/ 726 727 CPUNegativeOffsetState neg; 728 CPUARMState env; 729 730 /* Coprocessor information */ 731 GHashTable *cp_regs; 732 /* For marshalling (mostly coprocessor) register state between the 733 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 734 * we use these arrays. 735 */ 736 /* List of register indexes managed via these arrays; (full KVM style 737 * 64 bit indexes, not CPRegInfo 32 bit indexes) 738 */ 739 uint64_t *cpreg_indexes; 740 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 741 uint64_t *cpreg_values; 742 /* Length of the indexes, values, reset_values arrays */ 743 int32_t cpreg_array_len; 744 /* These are used only for migration: incoming data arrives in 745 * these fields and is sanity checked in post_load before copying 746 * to the working data structures above. 747 */ 748 uint64_t *cpreg_vmstate_indexes; 749 uint64_t *cpreg_vmstate_values; 750 int32_t cpreg_vmstate_array_len; 751 752 DynamicGDBXMLInfo dyn_xml; 753 754 /* Timers used by the generic (architected) timer */ 755 QEMUTimer *gt_timer[NUM_GTIMERS]; 756 /* 757 * Timer used by the PMU. Its state is restored after migration by 758 * pmu_op_finish() - it does not need other handling during migration 759 */ 760 QEMUTimer *pmu_timer; 761 /* GPIO outputs for generic timer */ 762 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 763 /* GPIO output for GICv3 maintenance interrupt signal */ 764 qemu_irq gicv3_maintenance_interrupt; 765 /* GPIO output for the PMU interrupt */ 766 qemu_irq pmu_interrupt; 767 768 /* MemoryRegion to use for secure physical accesses */ 769 MemoryRegion *secure_memory; 770 771 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 772 Object *idau; 773 774 /* 'compatible' string for this CPU for Linux device trees */ 775 const char *dtb_compatible; 776 777 /* PSCI version for this CPU 778 * Bits[31:16] = Major Version 779 * Bits[15:0] = Minor Version 780 */ 781 uint32_t psci_version; 782 783 /* Should CPU start in PSCI powered-off state? */ 784 bool start_powered_off; 785 786 /* Current power state, access guarded by BQL */ 787 ARMPSCIState power_state; 788 789 /* CPU has virtualization extension */ 790 bool has_el2; 791 /* CPU has security extension */ 792 bool has_el3; 793 /* CPU has PMU (Performance Monitor Unit) */ 794 bool has_pmu; 795 /* CPU has VFP */ 796 bool has_vfp; 797 /* CPU has Neon */ 798 bool has_neon; 799 /* CPU has M-profile DSP extension */ 800 bool has_dsp; 801 802 /* CPU has memory protection unit */ 803 bool has_mpu; 804 /* PMSAv7 MPU number of supported regions */ 805 uint32_t pmsav7_dregion; 806 /* v8M SAU number of supported regions */ 807 uint32_t sau_sregion; 808 809 /* PSCI conduit used to invoke PSCI methods 810 * 0 - disabled, 1 - smc, 2 - hvc 811 */ 812 uint32_t psci_conduit; 813 814 /* For v8M, initial value of the Secure VTOR */ 815 uint32_t init_svtor; 816 817 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 818 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 819 */ 820 uint32_t kvm_target; 821 822 /* KVM init features for this CPU */ 823 uint32_t kvm_init_features[7]; 824 825 /* KVM CPU state */ 826 827 /* KVM virtual time adjustment */ 828 bool kvm_adjvtime; 829 bool kvm_vtime_dirty; 830 uint64_t kvm_vtime; 831 832 /* Uniprocessor system with MP extensions */ 833 bool mp_is_up; 834 835 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 836 * and the probe failed (so we need to report the error in realize) 837 */ 838 bool host_cpu_probe_failed; 839 840 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 841 * register. 842 */ 843 int32_t core_count; 844 845 /* The instance init functions for implementation-specific subclasses 846 * set these fields to specify the implementation-dependent values of 847 * various constant registers and reset values of non-constant 848 * registers. 849 * Some of these might become QOM properties eventually. 850 * Field names match the official register names as defined in the 851 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 852 * is used for reset values of non-constant registers; no reset_ 853 * prefix means a constant register. 854 * Some of these registers are split out into a substructure that 855 * is shared with the translators to control the ISA. 856 * 857 * Note that if you add an ID register to the ARMISARegisters struct 858 * you need to also update the 32-bit and 64-bit versions of the 859 * kvm_arm_get_host_cpu_features() function to correctly populate the 860 * field by reading the value from the KVM vCPU. 861 */ 862 struct ARMISARegisters { 863 uint32_t id_isar0; 864 uint32_t id_isar1; 865 uint32_t id_isar2; 866 uint32_t id_isar3; 867 uint32_t id_isar4; 868 uint32_t id_isar5; 869 uint32_t id_isar6; 870 uint32_t id_mmfr0; 871 uint32_t id_mmfr1; 872 uint32_t id_mmfr2; 873 uint32_t id_mmfr3; 874 uint32_t id_mmfr4; 875 uint32_t mvfr0; 876 uint32_t mvfr1; 877 uint32_t mvfr2; 878 uint32_t id_dfr0; 879 uint32_t dbgdidr; 880 uint64_t id_aa64isar0; 881 uint64_t id_aa64isar1; 882 uint64_t id_aa64pfr0; 883 uint64_t id_aa64pfr1; 884 uint64_t id_aa64mmfr0; 885 uint64_t id_aa64mmfr1; 886 uint64_t id_aa64mmfr2; 887 uint64_t id_aa64dfr0; 888 uint64_t id_aa64dfr1; 889 } isar; 890 uint32_t midr; 891 uint32_t revidr; 892 uint32_t reset_fpsid; 893 uint32_t ctr; 894 uint32_t reset_sctlr; 895 uint32_t id_pfr0; 896 uint32_t id_pfr1; 897 uint64_t pmceid0; 898 uint64_t pmceid1; 899 uint32_t id_afr0; 900 uint64_t id_aa64afr0; 901 uint64_t id_aa64afr1; 902 uint32_t clidr; 903 uint64_t mp_affinity; /* MP ID without feature bits */ 904 /* The elements of this array are the CCSIDR values for each cache, 905 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 906 */ 907 uint32_t ccsidr[16]; 908 uint64_t reset_cbar; 909 uint32_t reset_auxcr; 910 bool reset_hivecs; 911 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 912 uint32_t dcz_blocksize; 913 uint64_t rvbar; 914 915 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 916 int gic_num_lrs; /* number of list registers */ 917 int gic_vpribits; /* number of virtual priority bits */ 918 int gic_vprebits; /* number of virtual preemption bits */ 919 920 /* Whether the cfgend input is high (i.e. this CPU should reset into 921 * big-endian mode). This setting isn't used directly: instead it modifies 922 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 923 * architecture version. 924 */ 925 bool cfgend; 926 927 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 928 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 929 930 int32_t node_id; /* NUMA node this CPU belongs to */ 931 932 /* Used to synchronize KVM and QEMU in-kernel device levels */ 933 uint8_t device_irq_level; 934 935 /* Used to set the maximum vector length the cpu will support. */ 936 uint32_t sve_max_vq; 937 938 /* 939 * In sve_vq_map each set bit is a supported vector length of 940 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 941 * length in quadwords. 942 * 943 * While processing properties during initialization, corresponding 944 * sve_vq_init bits are set for bits in sve_vq_map that have been 945 * set by properties. 946 */ 947 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 948 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 949 950 /* Generic timer counter frequency, in Hz */ 951 uint64_t gt_cntfrq_hz; 952 }; 953 954 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 955 956 void arm_cpu_post_init(Object *obj); 957 958 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 959 960 #ifndef CONFIG_USER_ONLY 961 extern const VMStateDescription vmstate_arm_cpu; 962 #endif 963 964 void arm_cpu_do_interrupt(CPUState *cpu); 965 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 966 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 967 968 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 969 MemTxAttrs *attrs); 970 971 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 972 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 973 974 /* Dynamically generates for gdb stub an XML description of the sysregs from 975 * the cp_regs hashtable. Returns the registered sysregs number. 976 */ 977 int arm_gen_dynamic_xml(CPUState *cpu); 978 979 /* Returns the dynamically generated XML for the gdb stub. 980 * Returns a pointer to the XML contents for the specified XML file or NULL 981 * if the XML name doesn't match the predefined one. 982 */ 983 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 984 985 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 986 int cpuid, void *opaque); 987 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 988 int cpuid, void *opaque); 989 990 #ifdef TARGET_AARCH64 991 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 992 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 993 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 994 void aarch64_sve_change_el(CPUARMState *env, int old_el, 995 int new_el, bool el0_a64); 996 void aarch64_add_sve_properties(Object *obj); 997 998 /* 999 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1000 * The byte at offset i from the start of the in-memory representation contains 1001 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1002 * lowest offsets are stored in the lowest memory addresses, then that nearly 1003 * matches QEMU's representation, which is to use an array of host-endian 1004 * uint64_t's, where the lower offsets are at the lower indices. To complete 1005 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1006 */ 1007 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1008 { 1009 #ifdef HOST_WORDS_BIGENDIAN 1010 int i; 1011 1012 for (i = 0; i < nr; ++i) { 1013 dst[i] = bswap64(src[i]); 1014 } 1015 1016 return dst; 1017 #else 1018 return src; 1019 #endif 1020 } 1021 1022 #else 1023 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1024 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1025 int n, bool a) 1026 { } 1027 static inline void aarch64_add_sve_properties(Object *obj) { } 1028 #endif 1029 1030 #if !defined(CONFIG_TCG) 1031 static inline target_ulong do_arm_semihosting(CPUARMState *env) 1032 { 1033 g_assert_not_reached(); 1034 } 1035 #else 1036 target_ulong do_arm_semihosting(CPUARMState *env); 1037 #endif 1038 void aarch64_sync_32_to_64(CPUARMState *env); 1039 void aarch64_sync_64_to_32(CPUARMState *env); 1040 1041 int fp_exception_el(CPUARMState *env, int cur_el); 1042 int sve_exception_el(CPUARMState *env, int cur_el); 1043 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1044 1045 static inline bool is_a64(CPUARMState *env) 1046 { 1047 return env->aarch64; 1048 } 1049 1050 /* you can call this signal handler from your SIGBUS and SIGSEGV 1051 signal handlers to inform the virtual CPU of exceptions. non zero 1052 is returned if the signal was handled by the virtual CPU. */ 1053 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1054 void *puc); 1055 1056 /** 1057 * pmu_op_start/finish 1058 * @env: CPUARMState 1059 * 1060 * Convert all PMU counters between their delta form (the typical mode when 1061 * they are enabled) and the guest-visible values. These two calls must 1062 * surround any action which might affect the counters. 1063 */ 1064 void pmu_op_start(CPUARMState *env); 1065 void pmu_op_finish(CPUARMState *env); 1066 1067 /* 1068 * Called when a PMU counter is due to overflow 1069 */ 1070 void arm_pmu_timer_cb(void *opaque); 1071 1072 /** 1073 * Functions to register as EL change hooks for PMU mode filtering 1074 */ 1075 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1076 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1077 1078 /* 1079 * pmu_init 1080 * @cpu: ARMCPU 1081 * 1082 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1083 * for the current configuration 1084 */ 1085 void pmu_init(ARMCPU *cpu); 1086 1087 /* SCTLR bit meanings. Several bits have been reused in newer 1088 * versions of the architecture; in that case we define constants 1089 * for both old and new bit meanings. Code which tests against those 1090 * bits should probably check or otherwise arrange that the CPU 1091 * is the architectural version it expects. 1092 */ 1093 #define SCTLR_M (1U << 0) 1094 #define SCTLR_A (1U << 1) 1095 #define SCTLR_C (1U << 2) 1096 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1097 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1098 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1099 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1100 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1101 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1102 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1103 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1104 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1105 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1106 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1107 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1108 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1109 #define SCTLR_SED (1U << 8) /* v8 onward */ 1110 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1111 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1112 #define SCTLR_F (1U << 10) /* up to v6 */ 1113 #define SCTLR_SW (1U << 10) /* v7 */ 1114 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1115 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1116 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1117 #define SCTLR_I (1U << 12) 1118 #define SCTLR_V (1U << 13) /* AArch32 only */ 1119 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1120 #define SCTLR_RR (1U << 14) /* up to v7 */ 1121 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1122 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1123 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1124 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1125 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1126 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1127 #define SCTLR_BR (1U << 17) /* PMSA only */ 1128 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1129 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1130 #define SCTLR_WXN (1U << 19) 1131 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1132 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1133 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1134 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1135 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1136 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1137 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1138 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1139 #define SCTLR_VE (1U << 24) /* up to v7 */ 1140 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1141 #define SCTLR_EE (1U << 25) 1142 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1143 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1144 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1145 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1146 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1147 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1148 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1149 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1150 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1151 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1152 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1153 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1154 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1155 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1156 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1157 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1158 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1159 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1160 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1161 1162 #define CPTR_TCPAC (1U << 31) 1163 #define CPTR_TTA (1U << 20) 1164 #define CPTR_TFP (1U << 10) 1165 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1166 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1167 1168 #define MDCR_EPMAD (1U << 21) 1169 #define MDCR_EDAD (1U << 20) 1170 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1171 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1172 #define MDCR_SDD (1U << 16) 1173 #define MDCR_SPD (3U << 14) 1174 #define MDCR_TDRA (1U << 11) 1175 #define MDCR_TDOSA (1U << 10) 1176 #define MDCR_TDA (1U << 9) 1177 #define MDCR_TDE (1U << 8) 1178 #define MDCR_HPME (1U << 7) 1179 #define MDCR_TPM (1U << 6) 1180 #define MDCR_TPMCR (1U << 5) 1181 #define MDCR_HPMN (0x1fU) 1182 1183 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1184 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1185 1186 #define CPSR_M (0x1fU) 1187 #define CPSR_T (1U << 5) 1188 #define CPSR_F (1U << 6) 1189 #define CPSR_I (1U << 7) 1190 #define CPSR_A (1U << 8) 1191 #define CPSR_E (1U << 9) 1192 #define CPSR_IT_2_7 (0xfc00U) 1193 #define CPSR_GE (0xfU << 16) 1194 #define CPSR_IL (1U << 20) 1195 #define CPSR_PAN (1U << 22) 1196 #define CPSR_J (1U << 24) 1197 #define CPSR_IT_0_1 (3U << 25) 1198 #define CPSR_Q (1U << 27) 1199 #define CPSR_V (1U << 28) 1200 #define CPSR_C (1U << 29) 1201 #define CPSR_Z (1U << 30) 1202 #define CPSR_N (1U << 31) 1203 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1204 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1205 1206 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1207 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1208 | CPSR_NZCV) 1209 /* Bits writable in user mode. */ 1210 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 1211 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1212 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1213 1214 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1215 #define XPSR_EXCP 0x1ffU 1216 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1217 #define XPSR_IT_2_7 CPSR_IT_2_7 1218 #define XPSR_GE CPSR_GE 1219 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1220 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1221 #define XPSR_IT_0_1 CPSR_IT_0_1 1222 #define XPSR_Q CPSR_Q 1223 #define XPSR_V CPSR_V 1224 #define XPSR_C CPSR_C 1225 #define XPSR_Z CPSR_Z 1226 #define XPSR_N CPSR_N 1227 #define XPSR_NZCV CPSR_NZCV 1228 #define XPSR_IT CPSR_IT 1229 1230 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1231 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1232 #define TTBCR_PD0 (1U << 4) 1233 #define TTBCR_PD1 (1U << 5) 1234 #define TTBCR_EPD0 (1U << 7) 1235 #define TTBCR_IRGN0 (3U << 8) 1236 #define TTBCR_ORGN0 (3U << 10) 1237 #define TTBCR_SH0 (3U << 12) 1238 #define TTBCR_T1SZ (3U << 16) 1239 #define TTBCR_A1 (1U << 22) 1240 #define TTBCR_EPD1 (1U << 23) 1241 #define TTBCR_IRGN1 (3U << 24) 1242 #define TTBCR_ORGN1 (3U << 26) 1243 #define TTBCR_SH1 (1U << 28) 1244 #define TTBCR_EAE (1U << 31) 1245 1246 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1247 * Only these are valid when in AArch64 mode; in 1248 * AArch32 mode SPSRs are basically CPSR-format. 1249 */ 1250 #define PSTATE_SP (1U) 1251 #define PSTATE_M (0xFU) 1252 #define PSTATE_nRW (1U << 4) 1253 #define PSTATE_F (1U << 6) 1254 #define PSTATE_I (1U << 7) 1255 #define PSTATE_A (1U << 8) 1256 #define PSTATE_D (1U << 9) 1257 #define PSTATE_BTYPE (3U << 10) 1258 #define PSTATE_IL (1U << 20) 1259 #define PSTATE_SS (1U << 21) 1260 #define PSTATE_PAN (1U << 22) 1261 #define PSTATE_UAO (1U << 23) 1262 #define PSTATE_V (1U << 28) 1263 #define PSTATE_C (1U << 29) 1264 #define PSTATE_Z (1U << 30) 1265 #define PSTATE_N (1U << 31) 1266 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1267 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1268 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1269 /* Mode values for AArch64 */ 1270 #define PSTATE_MODE_EL3h 13 1271 #define PSTATE_MODE_EL3t 12 1272 #define PSTATE_MODE_EL2h 9 1273 #define PSTATE_MODE_EL2t 8 1274 #define PSTATE_MODE_EL1h 5 1275 #define PSTATE_MODE_EL1t 4 1276 #define PSTATE_MODE_EL0t 0 1277 1278 /* Write a new value to v7m.exception, thus transitioning into or out 1279 * of Handler mode; this may result in a change of active stack pointer. 1280 */ 1281 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1282 1283 /* Map EL and handler into a PSTATE_MODE. */ 1284 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1285 { 1286 return (el << 2) | handler; 1287 } 1288 1289 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1290 * interprocessing, so we don't attempt to sync with the cpsr state used by 1291 * the 32 bit decoder. 1292 */ 1293 static inline uint32_t pstate_read(CPUARMState *env) 1294 { 1295 int ZF; 1296 1297 ZF = (env->ZF == 0); 1298 return (env->NF & 0x80000000) | (ZF << 30) 1299 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1300 | env->pstate | env->daif | (env->btype << 10); 1301 } 1302 1303 static inline void pstate_write(CPUARMState *env, uint32_t val) 1304 { 1305 env->ZF = (~val) & PSTATE_Z; 1306 env->NF = val; 1307 env->CF = (val >> 29) & 1; 1308 env->VF = (val << 3) & 0x80000000; 1309 env->daif = val & PSTATE_DAIF; 1310 env->btype = (val >> 10) & 3; 1311 env->pstate = val & ~CACHED_PSTATE_BITS; 1312 } 1313 1314 /* Return the current CPSR value. */ 1315 uint32_t cpsr_read(CPUARMState *env); 1316 1317 typedef enum CPSRWriteType { 1318 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1319 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1320 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1321 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1322 } CPSRWriteType; 1323 1324 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1325 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1326 CPSRWriteType write_type); 1327 1328 /* Return the current xPSR value. */ 1329 static inline uint32_t xpsr_read(CPUARMState *env) 1330 { 1331 int ZF; 1332 ZF = (env->ZF == 0); 1333 return (env->NF & 0x80000000) | (ZF << 30) 1334 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1335 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1336 | ((env->condexec_bits & 0xfc) << 8) 1337 | (env->GE << 16) 1338 | env->v7m.exception; 1339 } 1340 1341 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1342 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1343 { 1344 if (mask & XPSR_NZCV) { 1345 env->ZF = (~val) & XPSR_Z; 1346 env->NF = val; 1347 env->CF = (val >> 29) & 1; 1348 env->VF = (val << 3) & 0x80000000; 1349 } 1350 if (mask & XPSR_Q) { 1351 env->QF = ((val & XPSR_Q) != 0); 1352 } 1353 if (mask & XPSR_GE) { 1354 env->GE = (val & XPSR_GE) >> 16; 1355 } 1356 #ifndef CONFIG_USER_ONLY 1357 if (mask & XPSR_T) { 1358 env->thumb = ((val & XPSR_T) != 0); 1359 } 1360 if (mask & XPSR_IT_0_1) { 1361 env->condexec_bits &= ~3; 1362 env->condexec_bits |= (val >> 25) & 3; 1363 } 1364 if (mask & XPSR_IT_2_7) { 1365 env->condexec_bits &= 3; 1366 env->condexec_bits |= (val >> 8) & 0xfc; 1367 } 1368 if (mask & XPSR_EXCP) { 1369 /* Note that this only happens on exception exit */ 1370 write_v7m_exception(env, val & XPSR_EXCP); 1371 } 1372 #endif 1373 } 1374 1375 #define HCR_VM (1ULL << 0) 1376 #define HCR_SWIO (1ULL << 1) 1377 #define HCR_PTW (1ULL << 2) 1378 #define HCR_FMO (1ULL << 3) 1379 #define HCR_IMO (1ULL << 4) 1380 #define HCR_AMO (1ULL << 5) 1381 #define HCR_VF (1ULL << 6) 1382 #define HCR_VI (1ULL << 7) 1383 #define HCR_VSE (1ULL << 8) 1384 #define HCR_FB (1ULL << 9) 1385 #define HCR_BSU_MASK (3ULL << 10) 1386 #define HCR_DC (1ULL << 12) 1387 #define HCR_TWI (1ULL << 13) 1388 #define HCR_TWE (1ULL << 14) 1389 #define HCR_TID0 (1ULL << 15) 1390 #define HCR_TID1 (1ULL << 16) 1391 #define HCR_TID2 (1ULL << 17) 1392 #define HCR_TID3 (1ULL << 18) 1393 #define HCR_TSC (1ULL << 19) 1394 #define HCR_TIDCP (1ULL << 20) 1395 #define HCR_TACR (1ULL << 21) 1396 #define HCR_TSW (1ULL << 22) 1397 #define HCR_TPCP (1ULL << 23) 1398 #define HCR_TPU (1ULL << 24) 1399 #define HCR_TTLB (1ULL << 25) 1400 #define HCR_TVM (1ULL << 26) 1401 #define HCR_TGE (1ULL << 27) 1402 #define HCR_TDZ (1ULL << 28) 1403 #define HCR_HCD (1ULL << 29) 1404 #define HCR_TRVM (1ULL << 30) 1405 #define HCR_RW (1ULL << 31) 1406 #define HCR_CD (1ULL << 32) 1407 #define HCR_ID (1ULL << 33) 1408 #define HCR_E2H (1ULL << 34) 1409 #define HCR_TLOR (1ULL << 35) 1410 #define HCR_TERR (1ULL << 36) 1411 #define HCR_TEA (1ULL << 37) 1412 #define HCR_MIOCNCE (1ULL << 38) 1413 #define HCR_APK (1ULL << 40) 1414 #define HCR_API (1ULL << 41) 1415 #define HCR_NV (1ULL << 42) 1416 #define HCR_NV1 (1ULL << 43) 1417 #define HCR_AT (1ULL << 44) 1418 #define HCR_NV2 (1ULL << 45) 1419 #define HCR_FWB (1ULL << 46) 1420 #define HCR_FIEN (1ULL << 47) 1421 #define HCR_TID4 (1ULL << 49) 1422 #define HCR_TICAB (1ULL << 50) 1423 #define HCR_TOCU (1ULL << 52) 1424 #define HCR_TTLBIS (1ULL << 54) 1425 #define HCR_TTLBOS (1ULL << 55) 1426 #define HCR_ATA (1ULL << 56) 1427 #define HCR_DCT (1ULL << 57) 1428 1429 #define SCR_NS (1U << 0) 1430 #define SCR_IRQ (1U << 1) 1431 #define SCR_FIQ (1U << 2) 1432 #define SCR_EA (1U << 3) 1433 #define SCR_FW (1U << 4) 1434 #define SCR_AW (1U << 5) 1435 #define SCR_NET (1U << 6) 1436 #define SCR_SMD (1U << 7) 1437 #define SCR_HCE (1U << 8) 1438 #define SCR_SIF (1U << 9) 1439 #define SCR_RW (1U << 10) 1440 #define SCR_ST (1U << 11) 1441 #define SCR_TWI (1U << 12) 1442 #define SCR_TWE (1U << 13) 1443 #define SCR_TLOR (1U << 14) 1444 #define SCR_TERR (1U << 15) 1445 #define SCR_APK (1U << 16) 1446 #define SCR_API (1U << 17) 1447 #define SCR_EEL2 (1U << 18) 1448 #define SCR_EASE (1U << 19) 1449 #define SCR_NMEA (1U << 20) 1450 #define SCR_FIEN (1U << 21) 1451 #define SCR_ENSCXT (1U << 25) 1452 #define SCR_ATA (1U << 26) 1453 1454 /* Return the current FPSCR value. */ 1455 uint32_t vfp_get_fpscr(CPUARMState *env); 1456 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1457 1458 /* FPCR, Floating Point Control Register 1459 * FPSR, Floating Poiht Status Register 1460 * 1461 * For A64 the FPSCR is split into two logically distinct registers, 1462 * FPCR and FPSR. However since they still use non-overlapping bits 1463 * we store the underlying state in fpscr and just mask on read/write. 1464 */ 1465 #define FPSR_MASK 0xf800009f 1466 #define FPCR_MASK 0x07ff9f00 1467 1468 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1469 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1470 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1471 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1472 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1473 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1474 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1475 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1476 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1477 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1478 1479 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1480 { 1481 return vfp_get_fpscr(env) & FPSR_MASK; 1482 } 1483 1484 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1485 { 1486 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1487 vfp_set_fpscr(env, new_fpscr); 1488 } 1489 1490 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1491 { 1492 return vfp_get_fpscr(env) & FPCR_MASK; 1493 } 1494 1495 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1496 { 1497 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1498 vfp_set_fpscr(env, new_fpscr); 1499 } 1500 1501 enum arm_cpu_mode { 1502 ARM_CPU_MODE_USR = 0x10, 1503 ARM_CPU_MODE_FIQ = 0x11, 1504 ARM_CPU_MODE_IRQ = 0x12, 1505 ARM_CPU_MODE_SVC = 0x13, 1506 ARM_CPU_MODE_MON = 0x16, 1507 ARM_CPU_MODE_ABT = 0x17, 1508 ARM_CPU_MODE_HYP = 0x1a, 1509 ARM_CPU_MODE_UND = 0x1b, 1510 ARM_CPU_MODE_SYS = 0x1f 1511 }; 1512 1513 /* VFP system registers. */ 1514 #define ARM_VFP_FPSID 0 1515 #define ARM_VFP_FPSCR 1 1516 #define ARM_VFP_MVFR2 5 1517 #define ARM_VFP_MVFR1 6 1518 #define ARM_VFP_MVFR0 7 1519 #define ARM_VFP_FPEXC 8 1520 #define ARM_VFP_FPINST 9 1521 #define ARM_VFP_FPINST2 10 1522 1523 /* iwMMXt coprocessor control registers. */ 1524 #define ARM_IWMMXT_wCID 0 1525 #define ARM_IWMMXT_wCon 1 1526 #define ARM_IWMMXT_wCSSF 2 1527 #define ARM_IWMMXT_wCASF 3 1528 #define ARM_IWMMXT_wCGR0 8 1529 #define ARM_IWMMXT_wCGR1 9 1530 #define ARM_IWMMXT_wCGR2 10 1531 #define ARM_IWMMXT_wCGR3 11 1532 1533 /* V7M CCR bits */ 1534 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1535 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1536 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1537 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1538 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1539 FIELD(V7M_CCR, STKALIGN, 9, 1) 1540 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1541 FIELD(V7M_CCR, DC, 16, 1) 1542 FIELD(V7M_CCR, IC, 17, 1) 1543 FIELD(V7M_CCR, BP, 18, 1) 1544 1545 /* V7M SCR bits */ 1546 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1547 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1548 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1549 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1550 1551 /* V7M AIRCR bits */ 1552 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1553 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1554 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1555 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1556 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1557 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1558 FIELD(V7M_AIRCR, PRIS, 14, 1) 1559 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1560 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1561 1562 /* V7M CFSR bits for MMFSR */ 1563 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1564 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1565 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1566 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1567 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1568 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1569 1570 /* V7M CFSR bits for BFSR */ 1571 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1572 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1573 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1574 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1575 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1576 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1577 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1578 1579 /* V7M CFSR bits for UFSR */ 1580 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1581 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1582 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1583 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1584 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1585 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1586 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1587 1588 /* V7M CFSR bit masks covering all of the subregister bits */ 1589 FIELD(V7M_CFSR, MMFSR, 0, 8) 1590 FIELD(V7M_CFSR, BFSR, 8, 8) 1591 FIELD(V7M_CFSR, UFSR, 16, 16) 1592 1593 /* V7M HFSR bits */ 1594 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1595 FIELD(V7M_HFSR, FORCED, 30, 1) 1596 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1597 1598 /* V7M DFSR bits */ 1599 FIELD(V7M_DFSR, HALTED, 0, 1) 1600 FIELD(V7M_DFSR, BKPT, 1, 1) 1601 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1602 FIELD(V7M_DFSR, VCATCH, 3, 1) 1603 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1604 1605 /* V7M SFSR bits */ 1606 FIELD(V7M_SFSR, INVEP, 0, 1) 1607 FIELD(V7M_SFSR, INVIS, 1, 1) 1608 FIELD(V7M_SFSR, INVER, 2, 1) 1609 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1610 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1611 FIELD(V7M_SFSR, LSPERR, 5, 1) 1612 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1613 FIELD(V7M_SFSR, LSERR, 7, 1) 1614 1615 /* v7M MPU_CTRL bits */ 1616 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1617 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1618 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1619 1620 /* v7M CLIDR bits */ 1621 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1622 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1623 FIELD(V7M_CLIDR, LOC, 24, 3) 1624 FIELD(V7M_CLIDR, LOUU, 27, 3) 1625 FIELD(V7M_CLIDR, ICB, 30, 2) 1626 1627 FIELD(V7M_CSSELR, IND, 0, 1) 1628 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1629 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1630 * define a mask for this and check that it doesn't permit running off 1631 * the end of the array. 1632 */ 1633 FIELD(V7M_CSSELR, INDEX, 0, 4) 1634 1635 /* v7M FPCCR bits */ 1636 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1637 FIELD(V7M_FPCCR, USER, 1, 1) 1638 FIELD(V7M_FPCCR, S, 2, 1) 1639 FIELD(V7M_FPCCR, THREAD, 3, 1) 1640 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1641 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1642 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1643 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1644 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1645 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1646 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1647 FIELD(V7M_FPCCR, RES0, 11, 15) 1648 FIELD(V7M_FPCCR, TS, 26, 1) 1649 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1650 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1651 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1652 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1653 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1654 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1655 #define R_V7M_FPCCR_BANKED_MASK \ 1656 (R_V7M_FPCCR_LSPACT_MASK | \ 1657 R_V7M_FPCCR_USER_MASK | \ 1658 R_V7M_FPCCR_THREAD_MASK | \ 1659 R_V7M_FPCCR_MMRDY_MASK | \ 1660 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1661 R_V7M_FPCCR_UFRDY_MASK | \ 1662 R_V7M_FPCCR_ASPEN_MASK) 1663 1664 /* 1665 * System register ID fields. 1666 */ 1667 FIELD(MIDR_EL1, REVISION, 0, 4) 1668 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1669 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1670 FIELD(MIDR_EL1, VARIANT, 20, 4) 1671 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1672 1673 FIELD(ID_ISAR0, SWAP, 0, 4) 1674 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1675 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1676 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1677 FIELD(ID_ISAR0, COPROC, 16, 4) 1678 FIELD(ID_ISAR0, DEBUG, 20, 4) 1679 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1680 1681 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1682 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1683 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1684 FIELD(ID_ISAR1, EXTEND, 12, 4) 1685 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1686 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1687 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1688 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1689 1690 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1691 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1692 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1693 FIELD(ID_ISAR2, MULT, 12, 4) 1694 FIELD(ID_ISAR2, MULTS, 16, 4) 1695 FIELD(ID_ISAR2, MULTU, 20, 4) 1696 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1697 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1698 1699 FIELD(ID_ISAR3, SATURATE, 0, 4) 1700 FIELD(ID_ISAR3, SIMD, 4, 4) 1701 FIELD(ID_ISAR3, SVC, 8, 4) 1702 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1703 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1704 FIELD(ID_ISAR3, T32COPY, 20, 4) 1705 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1706 FIELD(ID_ISAR3, T32EE, 28, 4) 1707 1708 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1709 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1710 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1711 FIELD(ID_ISAR4, SMC, 12, 4) 1712 FIELD(ID_ISAR4, BARRIER, 16, 4) 1713 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1714 FIELD(ID_ISAR4, PSR_M, 24, 4) 1715 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1716 1717 FIELD(ID_ISAR5, SEVL, 0, 4) 1718 FIELD(ID_ISAR5, AES, 4, 4) 1719 FIELD(ID_ISAR5, SHA1, 8, 4) 1720 FIELD(ID_ISAR5, SHA2, 12, 4) 1721 FIELD(ID_ISAR5, CRC32, 16, 4) 1722 FIELD(ID_ISAR5, RDM, 24, 4) 1723 FIELD(ID_ISAR5, VCMA, 28, 4) 1724 1725 FIELD(ID_ISAR6, JSCVT, 0, 4) 1726 FIELD(ID_ISAR6, DP, 4, 4) 1727 FIELD(ID_ISAR6, FHM, 8, 4) 1728 FIELD(ID_ISAR6, SB, 12, 4) 1729 FIELD(ID_ISAR6, SPECRES, 16, 4) 1730 1731 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 1732 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 1733 FIELD(ID_MMFR3, BPMAINT, 8, 4) 1734 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 1735 FIELD(ID_MMFR3, PAN, 16, 4) 1736 FIELD(ID_MMFR3, COHWALK, 20, 4) 1737 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 1738 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 1739 1740 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1741 FIELD(ID_MMFR4, AC2, 4, 4) 1742 FIELD(ID_MMFR4, XNX, 8, 4) 1743 FIELD(ID_MMFR4, CNP, 12, 4) 1744 FIELD(ID_MMFR4, HPDS, 16, 4) 1745 FIELD(ID_MMFR4, LSM, 20, 4) 1746 FIELD(ID_MMFR4, CCIDX, 24, 4) 1747 FIELD(ID_MMFR4, EVT, 28, 4) 1748 1749 FIELD(ID_AA64ISAR0, AES, 4, 4) 1750 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1751 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1752 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1753 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1754 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1755 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1756 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1757 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1758 FIELD(ID_AA64ISAR0, DP, 44, 4) 1759 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1760 FIELD(ID_AA64ISAR0, TS, 52, 4) 1761 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1762 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1763 1764 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1765 FIELD(ID_AA64ISAR1, APA, 4, 4) 1766 FIELD(ID_AA64ISAR1, API, 8, 4) 1767 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1768 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1769 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1770 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1771 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1772 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1773 FIELD(ID_AA64ISAR1, SB, 36, 4) 1774 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1775 1776 FIELD(ID_AA64PFR0, EL0, 0, 4) 1777 FIELD(ID_AA64PFR0, EL1, 4, 4) 1778 FIELD(ID_AA64PFR0, EL2, 8, 4) 1779 FIELD(ID_AA64PFR0, EL3, 12, 4) 1780 FIELD(ID_AA64PFR0, FP, 16, 4) 1781 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1782 FIELD(ID_AA64PFR0, GIC, 24, 4) 1783 FIELD(ID_AA64PFR0, RAS, 28, 4) 1784 FIELD(ID_AA64PFR0, SVE, 32, 4) 1785 1786 FIELD(ID_AA64PFR1, BT, 0, 4) 1787 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1788 FIELD(ID_AA64PFR1, MTE, 8, 4) 1789 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1790 1791 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1792 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1793 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1794 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1795 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1796 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1797 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1798 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1799 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1800 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1801 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1802 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1803 1804 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1805 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1806 FIELD(ID_AA64MMFR1, VH, 8, 4) 1807 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1808 FIELD(ID_AA64MMFR1, LO, 16, 4) 1809 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1810 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1811 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1812 1813 FIELD(ID_AA64MMFR2, CNP, 0, 4) 1814 FIELD(ID_AA64MMFR2, UAO, 4, 4) 1815 FIELD(ID_AA64MMFR2, LSM, 8, 4) 1816 FIELD(ID_AA64MMFR2, IESB, 12, 4) 1817 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 1818 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 1819 FIELD(ID_AA64MMFR2, NV, 24, 4) 1820 FIELD(ID_AA64MMFR2, ST, 28, 4) 1821 FIELD(ID_AA64MMFR2, AT, 32, 4) 1822 FIELD(ID_AA64MMFR2, IDS, 36, 4) 1823 FIELD(ID_AA64MMFR2, FWB, 40, 4) 1824 FIELD(ID_AA64MMFR2, TTL, 48, 4) 1825 FIELD(ID_AA64MMFR2, BBM, 52, 4) 1826 FIELD(ID_AA64MMFR2, EVT, 56, 4) 1827 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 1828 1829 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 1830 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 1831 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 1832 FIELD(ID_AA64DFR0, BRPS, 12, 4) 1833 FIELD(ID_AA64DFR0, WRPS, 20, 4) 1834 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 1835 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 1836 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 1837 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 1838 1839 FIELD(ID_DFR0, COPDBG, 0, 4) 1840 FIELD(ID_DFR0, COPSDBG, 4, 4) 1841 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1842 FIELD(ID_DFR0, COPTRC, 12, 4) 1843 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1844 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1845 FIELD(ID_DFR0, PERFMON, 24, 4) 1846 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1847 1848 FIELD(DBGDIDR, SE_IMP, 12, 1) 1849 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 1850 FIELD(DBGDIDR, VERSION, 16, 4) 1851 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 1852 FIELD(DBGDIDR, BRPS, 24, 4) 1853 FIELD(DBGDIDR, WRPS, 28, 4) 1854 1855 FIELD(MVFR0, SIMDREG, 0, 4) 1856 FIELD(MVFR0, FPSP, 4, 4) 1857 FIELD(MVFR0, FPDP, 8, 4) 1858 FIELD(MVFR0, FPTRAP, 12, 4) 1859 FIELD(MVFR0, FPDIVIDE, 16, 4) 1860 FIELD(MVFR0, FPSQRT, 20, 4) 1861 FIELD(MVFR0, FPSHVEC, 24, 4) 1862 FIELD(MVFR0, FPROUND, 28, 4) 1863 1864 FIELD(MVFR1, FPFTZ, 0, 4) 1865 FIELD(MVFR1, FPDNAN, 4, 4) 1866 FIELD(MVFR1, SIMDLS, 8, 4) 1867 FIELD(MVFR1, SIMDINT, 12, 4) 1868 FIELD(MVFR1, SIMDSP, 16, 4) 1869 FIELD(MVFR1, SIMDHP, 20, 4) 1870 FIELD(MVFR1, FPHP, 24, 4) 1871 FIELD(MVFR1, SIMDFMAC, 28, 4) 1872 1873 FIELD(MVFR2, SIMDMISC, 0, 4) 1874 FIELD(MVFR2, FPMISC, 4, 4) 1875 1876 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1877 1878 /* If adding a feature bit which corresponds to a Linux ELF 1879 * HWCAP bit, remember to update the feature-bit-to-hwcap 1880 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1881 */ 1882 enum arm_features { 1883 ARM_FEATURE_VFP, 1884 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1885 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1886 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1887 ARM_FEATURE_V6, 1888 ARM_FEATURE_V6K, 1889 ARM_FEATURE_V7, 1890 ARM_FEATURE_THUMB2, 1891 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1892 ARM_FEATURE_VFP3, 1893 ARM_FEATURE_NEON, 1894 ARM_FEATURE_M, /* Microcontroller profile. */ 1895 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1896 ARM_FEATURE_THUMB2EE, 1897 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1898 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1899 ARM_FEATURE_V4T, 1900 ARM_FEATURE_V5, 1901 ARM_FEATURE_STRONGARM, 1902 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1903 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1904 ARM_FEATURE_GENERIC_TIMER, 1905 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1906 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1907 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1908 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1909 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1910 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1911 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1912 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1913 ARM_FEATURE_V8, 1914 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1915 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1916 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1917 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1918 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1919 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1920 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1921 ARM_FEATURE_PMU, /* has PMU support */ 1922 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1923 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1924 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1925 }; 1926 1927 static inline int arm_feature(CPUARMState *env, int feature) 1928 { 1929 return (env->features & (1ULL << feature)) != 0; 1930 } 1931 1932 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 1933 1934 #if !defined(CONFIG_USER_ONLY) 1935 /* Return true if exception levels below EL3 are in secure state, 1936 * or would be following an exception return to that level. 1937 * Unlike arm_is_secure() (which is always a question about the 1938 * _current_ state of the CPU) this doesn't care about the current 1939 * EL or mode. 1940 */ 1941 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1942 { 1943 if (arm_feature(env, ARM_FEATURE_EL3)) { 1944 return !(env->cp15.scr_el3 & SCR_NS); 1945 } else { 1946 /* If EL3 is not supported then the secure state is implementation 1947 * defined, in which case QEMU defaults to non-secure. 1948 */ 1949 return false; 1950 } 1951 } 1952 1953 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1954 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1955 { 1956 if (arm_feature(env, ARM_FEATURE_EL3)) { 1957 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1958 /* CPU currently in AArch64 state and EL3 */ 1959 return true; 1960 } else if (!is_a64(env) && 1961 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1962 /* CPU currently in AArch32 state and monitor mode */ 1963 return true; 1964 } 1965 } 1966 return false; 1967 } 1968 1969 /* Return true if the processor is in secure state */ 1970 static inline bool arm_is_secure(CPUARMState *env) 1971 { 1972 if (arm_is_el3_or_mon(env)) { 1973 return true; 1974 } 1975 return arm_is_secure_below_el3(env); 1976 } 1977 1978 #else 1979 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1980 { 1981 return false; 1982 } 1983 1984 static inline bool arm_is_secure(CPUARMState *env) 1985 { 1986 return false; 1987 } 1988 #endif 1989 1990 /** 1991 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 1992 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 1993 * "for all purposes other than a direct read or write access of HCR_EL2." 1994 * Not included here is HCR_RW. 1995 */ 1996 uint64_t arm_hcr_el2_eff(CPUARMState *env); 1997 1998 /* Return true if the specified exception level is running in AArch64 state. */ 1999 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2000 { 2001 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2002 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2003 */ 2004 assert(el >= 1 && el <= 3); 2005 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2006 2007 /* The highest exception level is always at the maximum supported 2008 * register width, and then lower levels have a register width controlled 2009 * by bits in the SCR or HCR registers. 2010 */ 2011 if (el == 3) { 2012 return aa64; 2013 } 2014 2015 if (arm_feature(env, ARM_FEATURE_EL3)) { 2016 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2017 } 2018 2019 if (el == 2) { 2020 return aa64; 2021 } 2022 2023 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 2024 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2025 } 2026 2027 return aa64; 2028 } 2029 2030 /* Function for determing whether guest cp register reads and writes should 2031 * access the secure or non-secure bank of a cp register. When EL3 is 2032 * operating in AArch32 state, the NS-bit determines whether the secure 2033 * instance of a cp register should be used. When EL3 is AArch64 (or if 2034 * it doesn't exist at all) then there is no register banking, and all 2035 * accesses are to the non-secure version. 2036 */ 2037 static inline bool access_secure_reg(CPUARMState *env) 2038 { 2039 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2040 !arm_el_is_aa64(env, 3) && 2041 !(env->cp15.scr_el3 & SCR_NS)); 2042 2043 return ret; 2044 } 2045 2046 /* Macros for accessing a specified CP register bank */ 2047 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2048 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2049 2050 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2051 do { \ 2052 if (_secure) { \ 2053 (_env)->cp15._regname##_s = (_val); \ 2054 } else { \ 2055 (_env)->cp15._regname##_ns = (_val); \ 2056 } \ 2057 } while (0) 2058 2059 /* Macros for automatically accessing a specific CP register bank depending on 2060 * the current secure state of the system. These macros are not intended for 2061 * supporting instruction translation reads/writes as these are dependent 2062 * solely on the SCR.NS bit and not the mode. 2063 */ 2064 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2065 A32_BANKED_REG_GET((_env), _regname, \ 2066 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2067 2068 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2069 A32_BANKED_REG_SET((_env), _regname, \ 2070 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2071 (_val)) 2072 2073 void arm_cpu_list(void); 2074 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2075 uint32_t cur_el, bool secure); 2076 2077 /* Interface between CPU and Interrupt controller. */ 2078 #ifndef CONFIG_USER_ONLY 2079 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2080 #else 2081 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2082 { 2083 return true; 2084 } 2085 #endif 2086 /** 2087 * armv7m_nvic_set_pending: mark the specified exception as pending 2088 * @opaque: the NVIC 2089 * @irq: the exception number to mark pending 2090 * @secure: false for non-banked exceptions or for the nonsecure 2091 * version of a banked exception, true for the secure version of a banked 2092 * exception. 2093 * 2094 * Marks the specified exception as pending. Note that we will assert() 2095 * if @secure is true and @irq does not specify one of the fixed set 2096 * of architecturally banked exceptions. 2097 */ 2098 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2099 /** 2100 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2101 * @opaque: the NVIC 2102 * @irq: the exception number to mark pending 2103 * @secure: false for non-banked exceptions or for the nonsecure 2104 * version of a banked exception, true for the secure version of a banked 2105 * exception. 2106 * 2107 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2108 * exceptions (exceptions generated in the course of trying to take 2109 * a different exception). 2110 */ 2111 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2112 /** 2113 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2114 * @opaque: the NVIC 2115 * @irq: the exception number to mark pending 2116 * @secure: false for non-banked exceptions or for the nonsecure 2117 * version of a banked exception, true for the secure version of a banked 2118 * exception. 2119 * 2120 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2121 * generated in the course of lazy stacking of FP registers. 2122 */ 2123 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2124 /** 2125 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2126 * exception, and whether it targets Secure state 2127 * @opaque: the NVIC 2128 * @pirq: set to pending exception number 2129 * @ptargets_secure: set to whether pending exception targets Secure 2130 * 2131 * This function writes the number of the highest priority pending 2132 * exception (the one which would be made active by 2133 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2134 * to true if the current highest priority pending exception should 2135 * be taken to Secure state, false for NS. 2136 */ 2137 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2138 bool *ptargets_secure); 2139 /** 2140 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2141 * @opaque: the NVIC 2142 * 2143 * Move the current highest priority pending exception from the pending 2144 * state to the active state, and update v7m.exception to indicate that 2145 * it is the exception currently being handled. 2146 */ 2147 void armv7m_nvic_acknowledge_irq(void *opaque); 2148 /** 2149 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2150 * @opaque: the NVIC 2151 * @irq: the exception number to complete 2152 * @secure: true if this exception was secure 2153 * 2154 * Returns: -1 if the irq was not active 2155 * 1 if completing this irq brought us back to base (no active irqs) 2156 * 0 if there is still an irq active after this one was completed 2157 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2158 */ 2159 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2160 /** 2161 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2162 * @opaque: the NVIC 2163 * @irq: the exception number to mark pending 2164 * @secure: false for non-banked exceptions or for the nonsecure 2165 * version of a banked exception, true for the secure version of a banked 2166 * exception. 2167 * 2168 * Return whether an exception is "ready", i.e. whether the exception is 2169 * enabled and is configured at a priority which would allow it to 2170 * interrupt the current execution priority. This controls whether the 2171 * RDY bit for it in the FPCCR is set. 2172 */ 2173 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2174 /** 2175 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2176 * @opaque: the NVIC 2177 * 2178 * Returns: the raw execution priority as defined by the v8M architecture. 2179 * This is the execution priority minus the effects of AIRCR.PRIS, 2180 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2181 * (v8M ARM ARM I_PKLD.) 2182 */ 2183 int armv7m_nvic_raw_execution_priority(void *opaque); 2184 /** 2185 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2186 * priority is negative for the specified security state. 2187 * @opaque: the NVIC 2188 * @secure: the security state to test 2189 * This corresponds to the pseudocode IsReqExecPriNeg(). 2190 */ 2191 #ifndef CONFIG_USER_ONLY 2192 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2193 #else 2194 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2195 { 2196 return false; 2197 } 2198 #endif 2199 2200 /* Interface for defining coprocessor registers. 2201 * Registers are defined in tables of arm_cp_reginfo structs 2202 * which are passed to define_arm_cp_regs(). 2203 */ 2204 2205 /* When looking up a coprocessor register we look for it 2206 * via an integer which encodes all of: 2207 * coprocessor number 2208 * Crn, Crm, opc1, opc2 fields 2209 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2210 * or via MRRC/MCRR?) 2211 * non-secure/secure bank (AArch32 only) 2212 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2213 * (In this case crn and opc2 should be zero.) 2214 * For AArch64, there is no 32/64 bit size distinction; 2215 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2216 * and 4 bit CRn and CRm. The encoding patterns are chosen 2217 * to be easy to convert to and from the KVM encodings, and also 2218 * so that the hashtable can contain both AArch32 and AArch64 2219 * registers (to allow for interprocessing where we might run 2220 * 32 bit code on a 64 bit core). 2221 */ 2222 /* This bit is private to our hashtable cpreg; in KVM register 2223 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2224 * in the upper bits of the 64 bit ID. 2225 */ 2226 #define CP_REG_AA64_SHIFT 28 2227 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2228 2229 /* To enable banking of coprocessor registers depending on ns-bit we 2230 * add a bit to distinguish between secure and non-secure cpregs in the 2231 * hashtable. 2232 */ 2233 #define CP_REG_NS_SHIFT 29 2234 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2235 2236 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2237 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2238 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2239 2240 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2241 (CP_REG_AA64_MASK | \ 2242 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2243 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2244 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2245 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2246 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2247 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2248 2249 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2250 * version used as a key for the coprocessor register hashtable 2251 */ 2252 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2253 { 2254 uint32_t cpregid = kvmid; 2255 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2256 cpregid |= CP_REG_AA64_MASK; 2257 } else { 2258 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2259 cpregid |= (1 << 15); 2260 } 2261 2262 /* KVM is always non-secure so add the NS flag on AArch32 register 2263 * entries. 2264 */ 2265 cpregid |= 1 << CP_REG_NS_SHIFT; 2266 } 2267 return cpregid; 2268 } 2269 2270 /* Convert a truncated 32 bit hashtable key into the full 2271 * 64 bit KVM register ID. 2272 */ 2273 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2274 { 2275 uint64_t kvmid; 2276 2277 if (cpregid & CP_REG_AA64_MASK) { 2278 kvmid = cpregid & ~CP_REG_AA64_MASK; 2279 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2280 } else { 2281 kvmid = cpregid & ~(1 << 15); 2282 if (cpregid & (1 << 15)) { 2283 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2284 } else { 2285 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2286 } 2287 } 2288 return kvmid; 2289 } 2290 2291 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2292 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2293 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2294 * TCG can assume the value to be constant (ie load at translate time) 2295 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2296 * indicates that the TB should not be ended after a write to this register 2297 * (the default is that the TB ends after cp writes). OVERRIDE permits 2298 * a register definition to override a previous definition for the 2299 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2300 * old must have the OVERRIDE bit set. 2301 * ALIAS indicates that this register is an alias view of some underlying 2302 * state which is also visible via another register, and that the other 2303 * register is handling migration and reset; registers marked ALIAS will not be 2304 * migrated but may have their state set by syncing of register state from KVM. 2305 * NO_RAW indicates that this register has no underlying state and does not 2306 * support raw access for state saving/loading; it will not be used for either 2307 * migration or KVM state synchronization. (Typically this is for "registers" 2308 * which are actually used as instructions for cache maintenance and so on.) 2309 * IO indicates that this register does I/O and therefore its accesses 2310 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 2311 * registers which implement clocks or timers require this. 2312 * RAISES_EXC is for when the read or write hook might raise an exception; 2313 * the generated code will synchronize the CPU state before calling the hook 2314 * so that it is safe for the hook to call raise_exception(). 2315 * NEWEL is for writes to registers that might change the exception 2316 * level - typically on older ARM chips. For those cases we need to 2317 * re-read the new el when recomputing the translation flags. 2318 */ 2319 #define ARM_CP_SPECIAL 0x0001 2320 #define ARM_CP_CONST 0x0002 2321 #define ARM_CP_64BIT 0x0004 2322 #define ARM_CP_SUPPRESS_TB_END 0x0008 2323 #define ARM_CP_OVERRIDE 0x0010 2324 #define ARM_CP_ALIAS 0x0020 2325 #define ARM_CP_IO 0x0040 2326 #define ARM_CP_NO_RAW 0x0080 2327 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2328 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2329 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2330 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2331 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2332 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 2333 #define ARM_CP_FPU 0x1000 2334 #define ARM_CP_SVE 0x2000 2335 #define ARM_CP_NO_GDB 0x4000 2336 #define ARM_CP_RAISES_EXC 0x8000 2337 #define ARM_CP_NEWEL 0x10000 2338 /* Used only as a terminator for ARMCPRegInfo lists */ 2339 #define ARM_CP_SENTINEL 0xfffff 2340 /* Mask of only the flag bits in a type field */ 2341 #define ARM_CP_FLAG_MASK 0x1f0ff 2342 2343 /* Valid values for ARMCPRegInfo state field, indicating which of 2344 * the AArch32 and AArch64 execution states this register is visible in. 2345 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2346 * If the reginfo is declared to be visible in both states then a second 2347 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2348 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2349 * Note that we rely on the values of these enums as we iterate through 2350 * the various states in some places. 2351 */ 2352 enum { 2353 ARM_CP_STATE_AA32 = 0, 2354 ARM_CP_STATE_AA64 = 1, 2355 ARM_CP_STATE_BOTH = 2, 2356 }; 2357 2358 /* ARM CP register secure state flags. These flags identify security state 2359 * attributes for a given CP register entry. 2360 * The existence of both or neither secure and non-secure flags indicates that 2361 * the register has both a secure and non-secure hash entry. A single one of 2362 * these flags causes the register to only be hashed for the specified 2363 * security state. 2364 * Although definitions may have any combination of the S/NS bits, each 2365 * registered entry will only have one to identify whether the entry is secure 2366 * or non-secure. 2367 */ 2368 enum { 2369 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2370 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2371 }; 2372 2373 /* Return true if cptype is a valid type field. This is used to try to 2374 * catch errors where the sentinel has been accidentally left off the end 2375 * of a list of registers. 2376 */ 2377 static inline bool cptype_valid(int cptype) 2378 { 2379 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2380 || ((cptype & ARM_CP_SPECIAL) && 2381 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2382 } 2383 2384 /* Access rights: 2385 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2386 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2387 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2388 * (ie any of the privileged modes in Secure state, or Monitor mode). 2389 * If a register is accessible in one privilege level it's always accessible 2390 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2391 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2392 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2393 * terminology a little and call this PL3. 2394 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2395 * with the ELx exception levels. 2396 * 2397 * If access permissions for a register are more complex than can be 2398 * described with these bits, then use a laxer set of restrictions, and 2399 * do the more restrictive/complex check inside a helper function. 2400 */ 2401 #define PL3_R 0x80 2402 #define PL3_W 0x40 2403 #define PL2_R (0x20 | PL3_R) 2404 #define PL2_W (0x10 | PL3_W) 2405 #define PL1_R (0x08 | PL2_R) 2406 #define PL1_W (0x04 | PL2_W) 2407 #define PL0_R (0x02 | PL1_R) 2408 #define PL0_W (0x01 | PL1_W) 2409 2410 /* 2411 * For user-mode some registers are accessible to EL0 via a kernel 2412 * trap-and-emulate ABI. In this case we define the read permissions 2413 * as actually being PL0_R. However some bits of any given register 2414 * may still be masked. 2415 */ 2416 #ifdef CONFIG_USER_ONLY 2417 #define PL0U_R PL0_R 2418 #else 2419 #define PL0U_R PL1_R 2420 #endif 2421 2422 #define PL3_RW (PL3_R | PL3_W) 2423 #define PL2_RW (PL2_R | PL2_W) 2424 #define PL1_RW (PL1_R | PL1_W) 2425 #define PL0_RW (PL0_R | PL0_W) 2426 2427 /* Return the highest implemented Exception Level */ 2428 static inline int arm_highest_el(CPUARMState *env) 2429 { 2430 if (arm_feature(env, ARM_FEATURE_EL3)) { 2431 return 3; 2432 } 2433 if (arm_feature(env, ARM_FEATURE_EL2)) { 2434 return 2; 2435 } 2436 return 1; 2437 } 2438 2439 /* Return true if a v7M CPU is in Handler mode */ 2440 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2441 { 2442 return env->v7m.exception != 0; 2443 } 2444 2445 /* Return the current Exception Level (as per ARMv8; note that this differs 2446 * from the ARMv7 Privilege Level). 2447 */ 2448 static inline int arm_current_el(CPUARMState *env) 2449 { 2450 if (arm_feature(env, ARM_FEATURE_M)) { 2451 return arm_v7m_is_handler_mode(env) || 2452 !(env->v7m.control[env->v7m.secure] & 1); 2453 } 2454 2455 if (is_a64(env)) { 2456 return extract32(env->pstate, 2, 2); 2457 } 2458 2459 switch (env->uncached_cpsr & 0x1f) { 2460 case ARM_CPU_MODE_USR: 2461 return 0; 2462 case ARM_CPU_MODE_HYP: 2463 return 2; 2464 case ARM_CPU_MODE_MON: 2465 return 3; 2466 default: 2467 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2468 /* If EL3 is 32-bit then all secure privileged modes run in 2469 * EL3 2470 */ 2471 return 3; 2472 } 2473 2474 return 1; 2475 } 2476 } 2477 2478 typedef struct ARMCPRegInfo ARMCPRegInfo; 2479 2480 typedef enum CPAccessResult { 2481 /* Access is permitted */ 2482 CP_ACCESS_OK = 0, 2483 /* Access fails due to a configurable trap or enable which would 2484 * result in a categorized exception syndrome giving information about 2485 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2486 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2487 * PL1 if in EL0, otherwise to the current EL). 2488 */ 2489 CP_ACCESS_TRAP = 1, 2490 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2491 * Note that this is not a catch-all case -- the set of cases which may 2492 * result in this failure is specifically defined by the architecture. 2493 */ 2494 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2495 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2496 CP_ACCESS_TRAP_EL2 = 3, 2497 CP_ACCESS_TRAP_EL3 = 4, 2498 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2499 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2500 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2501 /* Access fails and results in an exception syndrome for an FP access, 2502 * trapped directly to EL2 or EL3 2503 */ 2504 CP_ACCESS_TRAP_FP_EL2 = 7, 2505 CP_ACCESS_TRAP_FP_EL3 = 8, 2506 } CPAccessResult; 2507 2508 /* Access functions for coprocessor registers. These cannot fail and 2509 * may not raise exceptions. 2510 */ 2511 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2512 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2513 uint64_t value); 2514 /* Access permission check functions for coprocessor registers. */ 2515 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2516 const ARMCPRegInfo *opaque, 2517 bool isread); 2518 /* Hook function for register reset */ 2519 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2520 2521 #define CP_ANY 0xff 2522 2523 /* Definition of an ARM coprocessor register */ 2524 struct ARMCPRegInfo { 2525 /* Name of register (useful mainly for debugging, need not be unique) */ 2526 const char *name; 2527 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2528 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2529 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2530 * will be decoded to this register. The register read and write 2531 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2532 * used by the program, so it is possible to register a wildcard and 2533 * then behave differently on read/write if necessary. 2534 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2535 * must both be zero. 2536 * For AArch64-visible registers, opc0 is also used. 2537 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2538 * way to distinguish (for KVM's benefit) guest-visible system registers 2539 * from demuxed ones provided to preserve the "no side effects on 2540 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2541 * visible (to match KVM's encoding); cp==0 will be converted to 2542 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2543 */ 2544 uint8_t cp; 2545 uint8_t crn; 2546 uint8_t crm; 2547 uint8_t opc0; 2548 uint8_t opc1; 2549 uint8_t opc2; 2550 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2551 int state; 2552 /* Register type: ARM_CP_* bits/values */ 2553 int type; 2554 /* Access rights: PL*_[RW] */ 2555 int access; 2556 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2557 int secure; 2558 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2559 * this register was defined: can be used to hand data through to the 2560 * register read/write functions, since they are passed the ARMCPRegInfo*. 2561 */ 2562 void *opaque; 2563 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2564 * fieldoffset is non-zero, the reset value of the register. 2565 */ 2566 uint64_t resetvalue; 2567 /* Offset of the field in CPUARMState for this register. 2568 * 2569 * This is not needed if either: 2570 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2571 * 2. both readfn and writefn are specified 2572 */ 2573 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2574 2575 /* Offsets of the secure and non-secure fields in CPUARMState for the 2576 * register if it is banked. These fields are only used during the static 2577 * registration of a register. During hashing the bank associated 2578 * with a given security state is copied to fieldoffset which is used from 2579 * there on out. 2580 * 2581 * It is expected that register definitions use either fieldoffset or 2582 * bank_fieldoffsets in the definition but not both. It is also expected 2583 * that both bank offsets are set when defining a banked register. This 2584 * use indicates that a register is banked. 2585 */ 2586 ptrdiff_t bank_fieldoffsets[2]; 2587 2588 /* Function for making any access checks for this register in addition to 2589 * those specified by the 'access' permissions bits. If NULL, no extra 2590 * checks required. The access check is performed at runtime, not at 2591 * translate time. 2592 */ 2593 CPAccessFn *accessfn; 2594 /* Function for handling reads of this register. If NULL, then reads 2595 * will be done by loading from the offset into CPUARMState specified 2596 * by fieldoffset. 2597 */ 2598 CPReadFn *readfn; 2599 /* Function for handling writes of this register. If NULL, then writes 2600 * will be done by writing to the offset into CPUARMState specified 2601 * by fieldoffset. 2602 */ 2603 CPWriteFn *writefn; 2604 /* Function for doing a "raw" read; used when we need to copy 2605 * coprocessor state to the kernel for KVM or out for 2606 * migration. This only needs to be provided if there is also a 2607 * readfn and it has side effects (for instance clear-on-read bits). 2608 */ 2609 CPReadFn *raw_readfn; 2610 /* Function for doing a "raw" write; used when we need to copy KVM 2611 * kernel coprocessor state into userspace, or for inbound 2612 * migration. This only needs to be provided if there is also a 2613 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2614 * or similar behaviour. 2615 */ 2616 CPWriteFn *raw_writefn; 2617 /* Function for resetting the register. If NULL, then reset will be done 2618 * by writing resetvalue to the field specified in fieldoffset. If 2619 * fieldoffset is 0 then no reset will be done. 2620 */ 2621 CPResetFn *resetfn; 2622 2623 /* 2624 * "Original" writefn and readfn. 2625 * For ARMv8.1-VHE register aliases, we overwrite the read/write 2626 * accessor functions of various EL1/EL0 to perform the runtime 2627 * check for which sysreg should actually be modified, and then 2628 * forwards the operation. Before overwriting the accessors, 2629 * the original function is copied here, so that accesses that 2630 * really do go to the EL1/EL0 version proceed normally. 2631 * (The corresponding EL2 register is linked via opaque.) 2632 */ 2633 CPReadFn *orig_readfn; 2634 CPWriteFn *orig_writefn; 2635 }; 2636 2637 /* Macros which are lvalues for the field in CPUARMState for the 2638 * ARMCPRegInfo *ri. 2639 */ 2640 #define CPREG_FIELD32(env, ri) \ 2641 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2642 #define CPREG_FIELD64(env, ri) \ 2643 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2644 2645 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2646 2647 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2648 const ARMCPRegInfo *regs, void *opaque); 2649 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2650 const ARMCPRegInfo *regs, void *opaque); 2651 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2652 { 2653 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2654 } 2655 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2656 { 2657 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2658 } 2659 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2660 2661 /* 2662 * Definition of an ARM co-processor register as viewed from 2663 * userspace. This is used for presenting sanitised versions of 2664 * registers to userspace when emulating the Linux AArch64 CPU 2665 * ID/feature ABI (advertised as HWCAP_CPUID). 2666 */ 2667 typedef struct ARMCPRegUserSpaceInfo { 2668 /* Name of register */ 2669 const char *name; 2670 2671 /* Is the name actually a glob pattern */ 2672 bool is_glob; 2673 2674 /* Only some bits are exported to user space */ 2675 uint64_t exported_bits; 2676 2677 /* Fixed bits are applied after the mask */ 2678 uint64_t fixed_bits; 2679 } ARMCPRegUserSpaceInfo; 2680 2681 #define REGUSERINFO_SENTINEL { .name = NULL } 2682 2683 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2684 2685 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2686 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2687 uint64_t value); 2688 /* CPReadFn that can be used for read-as-zero behaviour */ 2689 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2690 2691 /* CPResetFn that does nothing, for use if no reset is required even 2692 * if fieldoffset is non zero. 2693 */ 2694 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2695 2696 /* Return true if this reginfo struct's field in the cpu state struct 2697 * is 64 bits wide. 2698 */ 2699 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2700 { 2701 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2702 } 2703 2704 static inline bool cp_access_ok(int current_el, 2705 const ARMCPRegInfo *ri, int isread) 2706 { 2707 return (ri->access >> ((current_el * 2) + isread)) & 1; 2708 } 2709 2710 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2711 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2712 2713 /** 2714 * write_list_to_cpustate 2715 * @cpu: ARMCPU 2716 * 2717 * For each register listed in the ARMCPU cpreg_indexes list, write 2718 * its value from the cpreg_values list into the ARMCPUState structure. 2719 * This updates TCG's working data structures from KVM data or 2720 * from incoming migration state. 2721 * 2722 * Returns: true if all register values were updated correctly, 2723 * false if some register was unknown or could not be written. 2724 * Note that we do not stop early on failure -- we will attempt 2725 * writing all registers in the list. 2726 */ 2727 bool write_list_to_cpustate(ARMCPU *cpu); 2728 2729 /** 2730 * write_cpustate_to_list: 2731 * @cpu: ARMCPU 2732 * @kvm_sync: true if this is for syncing back to KVM 2733 * 2734 * For each register listed in the ARMCPU cpreg_indexes list, write 2735 * its value from the ARMCPUState structure into the cpreg_values list. 2736 * This is used to copy info from TCG's working data structures into 2737 * KVM or for outbound migration. 2738 * 2739 * @kvm_sync is true if we are doing this in order to sync the 2740 * register state back to KVM. In this case we will only update 2741 * values in the list if the previous list->cpustate sync actually 2742 * successfully wrote the CPU state. Otherwise we will keep the value 2743 * that is in the list. 2744 * 2745 * Returns: true if all register values were read correctly, 2746 * false if some register was unknown or could not be read. 2747 * Note that we do not stop early on failure -- we will attempt 2748 * reading all registers in the list. 2749 */ 2750 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2751 2752 #define ARM_CPUID_TI915T 0x54029152 2753 #define ARM_CPUID_TI925T 0x54029252 2754 2755 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2756 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2757 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2758 2759 #define cpu_signal_handler cpu_arm_signal_handler 2760 #define cpu_list arm_cpu_list 2761 2762 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2763 * 2764 * If EL3 is 64-bit: 2765 * + NonSecure EL1 & 0 stage 1 2766 * + NonSecure EL1 & 0 stage 2 2767 * + NonSecure EL2 2768 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2769 * + Secure EL1 & 0 2770 * + Secure EL3 2771 * If EL3 is 32-bit: 2772 * + NonSecure PL1 & 0 stage 1 2773 * + NonSecure PL1 & 0 stage 2 2774 * + NonSecure PL2 2775 * + Secure PL0 2776 * + Secure PL1 2777 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2778 * 2779 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2780 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2781 * because they may differ in access permissions even if the VA->PA map is 2782 * the same 2783 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2784 * translation, which means that we have one mmu_idx that deals with two 2785 * concatenated translation regimes [this sort of combined s1+2 TLB is 2786 * architecturally permitted] 2787 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2788 * handling via the TLB. The only way to do a stage 1 translation without 2789 * the immediate stage 2 translation is via the ATS or AT system insns, 2790 * which can be slow-pathed and always do a page table walk. 2791 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2792 * translation regimes, because they map reasonably well to each other 2793 * and they can't both be active at the same time. 2794 * 5. we want to be able to use the TLB for accesses done as part of a 2795 * stage1 page table walk, rather than having to walk the stage2 page 2796 * table over and over. 2797 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2798 * Never (PAN) bit within PSTATE. 2799 * 2800 * This gives us the following list of cases: 2801 * 2802 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 2803 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 2804 * NS EL1 EL1&0 stage 1+2 +PAN 2805 * NS EL0 EL2&0 2806 * NS EL2 EL2&0 +PAN 2807 * NS EL2 (aka NS PL2) 2808 * S EL0 EL1&0 (aka S PL0) 2809 * S EL1 EL1&0 (not used if EL3 is 32 bit) 2810 * S EL1 EL1&0 +PAN 2811 * S EL3 (aka S PL1) 2812 * NS EL1&0 stage 2 2813 * 2814 * for a total of 12 different mmu_idx. 2815 * 2816 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2817 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2818 * NS EL2 if we ever model a Cortex-R52). 2819 * 2820 * M profile CPUs are rather different as they do not have a true MMU. 2821 * They have the following different MMU indexes: 2822 * User 2823 * Privileged 2824 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2825 * Privileged, execution priority negative (ditto) 2826 * If the CPU supports the v8M Security Extension then there are also: 2827 * Secure User 2828 * Secure Privileged 2829 * Secure User, execution priority negative 2830 * Secure Privileged, execution priority negative 2831 * 2832 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2833 * are not quite the same -- different CPU types (most notably M profile 2834 * vs A/R profile) would like to use MMU indexes with different semantics, 2835 * but since we don't ever need to use all of those in a single CPU we 2836 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2837 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2838 * the same for any particular CPU. 2839 * Variables of type ARMMUIdx are always full values, and the core 2840 * index values are in variables of type 'int'. 2841 * 2842 * Our enumeration includes at the end some entries which are not "true" 2843 * mmu_idx values in that they don't have corresponding TLBs and are only 2844 * valid for doing slow path page table walks. 2845 * 2846 * The constant names here are patterned after the general style of the names 2847 * of the AT/ATS operations. 2848 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2849 * For M profile we arrange them to have a bit for priv, a bit for negpri 2850 * and a bit for secure. 2851 */ 2852 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2853 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2854 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2855 2856 /* Meanings of the bits for M profile mmu idx values */ 2857 #define ARM_MMU_IDX_M_PRIV 0x1 2858 #define ARM_MMU_IDX_M_NEGPRI 0x2 2859 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2860 2861 #define ARM_MMU_IDX_TYPE_MASK \ 2862 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2863 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2864 2865 typedef enum ARMMMUIdx { 2866 /* 2867 * A-profile. 2868 */ 2869 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2870 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2871 2872 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2873 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A, 2874 2875 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A, 2876 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A, 2877 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A, 2878 2879 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A, 2880 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A, 2881 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A, 2882 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A, 2883 2884 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A, 2885 2886 /* 2887 * These are not allocated TLBs and are used only for AT system 2888 * instructions or for the first stage of an S12 page table walk. 2889 */ 2890 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2891 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2892 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2893 2894 /* 2895 * M-profile. 2896 */ 2897 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2898 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2899 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2900 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2901 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2902 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2903 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2904 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2905 } ARMMMUIdx; 2906 2907 /* 2908 * Bit macros for the core-mmu-index values for each index, 2909 * for use when calling tlb_flush_by_mmuidx() and friends. 2910 */ 2911 #define TO_CORE_BIT(NAME) \ 2912 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2913 2914 typedef enum ARMMMUIdxBit { 2915 TO_CORE_BIT(E10_0), 2916 TO_CORE_BIT(E20_0), 2917 TO_CORE_BIT(E10_1), 2918 TO_CORE_BIT(E10_1_PAN), 2919 TO_CORE_BIT(E2), 2920 TO_CORE_BIT(E20_2), 2921 TO_CORE_BIT(E20_2_PAN), 2922 TO_CORE_BIT(SE10_0), 2923 TO_CORE_BIT(SE10_1), 2924 TO_CORE_BIT(SE10_1_PAN), 2925 TO_CORE_BIT(SE3), 2926 TO_CORE_BIT(Stage2), 2927 2928 TO_CORE_BIT(MUser), 2929 TO_CORE_BIT(MPriv), 2930 TO_CORE_BIT(MUserNegPri), 2931 TO_CORE_BIT(MPrivNegPri), 2932 TO_CORE_BIT(MSUser), 2933 TO_CORE_BIT(MSPriv), 2934 TO_CORE_BIT(MSUserNegPri), 2935 TO_CORE_BIT(MSPrivNegPri), 2936 } ARMMMUIdxBit; 2937 2938 #undef TO_CORE_BIT 2939 2940 #define MMU_USER_IDX 0 2941 2942 /** 2943 * cpu_mmu_index: 2944 * @env: The cpu environment 2945 * @ifetch: True for code access, false for data access. 2946 * 2947 * Return the core mmu index for the current translation regime. 2948 * This function is used by generic TCG code paths. 2949 */ 2950 int cpu_mmu_index(CPUARMState *env, bool ifetch); 2951 2952 /* Indexes used when registering address spaces with cpu_address_space_init */ 2953 typedef enum ARMASIdx { 2954 ARMASIdx_NS = 0, 2955 ARMASIdx_S = 1, 2956 } ARMASIdx; 2957 2958 /* Return the Exception Level targeted by debug exceptions. */ 2959 static inline int arm_debug_target_el(CPUARMState *env) 2960 { 2961 bool secure = arm_is_secure(env); 2962 bool route_to_el2 = false; 2963 2964 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2965 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2966 env->cp15.mdcr_el2 & MDCR_TDE; 2967 } 2968 2969 if (route_to_el2) { 2970 return 2; 2971 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2972 !arm_el_is_aa64(env, 3) && secure) { 2973 return 3; 2974 } else { 2975 return 1; 2976 } 2977 } 2978 2979 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 2980 { 2981 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 2982 * CSSELR is RAZ/WI. 2983 */ 2984 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 2985 } 2986 2987 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 2988 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2989 { 2990 int cur_el = arm_current_el(env); 2991 int debug_el; 2992 2993 if (cur_el == 3) { 2994 return false; 2995 } 2996 2997 /* MDCR_EL3.SDD disables debug events from Secure state */ 2998 if (arm_is_secure_below_el3(env) 2999 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3000 return false; 3001 } 3002 3003 /* 3004 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3005 * while not masking the (D)ebug bit in DAIF. 3006 */ 3007 debug_el = arm_debug_target_el(env); 3008 3009 if (cur_el == debug_el) { 3010 return extract32(env->cp15.mdscr_el1, 13, 1) 3011 && !(env->daif & PSTATE_D); 3012 } 3013 3014 /* Otherwise the debug target needs to be a higher EL */ 3015 return debug_el > cur_el; 3016 } 3017 3018 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3019 { 3020 int el = arm_current_el(env); 3021 3022 if (el == 0 && arm_el_is_aa64(env, 1)) { 3023 return aa64_generate_debug_exceptions(env); 3024 } 3025 3026 if (arm_is_secure(env)) { 3027 int spd; 3028 3029 if (el == 0 && (env->cp15.sder & 1)) { 3030 /* SDER.SUIDEN means debug exceptions from Secure EL0 3031 * are always enabled. Otherwise they are controlled by 3032 * SDCR.SPD like those from other Secure ELs. 3033 */ 3034 return true; 3035 } 3036 3037 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3038 switch (spd) { 3039 case 1: 3040 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3041 case 0: 3042 /* For 0b00 we return true if external secure invasive debug 3043 * is enabled. On real hardware this is controlled by external 3044 * signals to the core. QEMU always permits debug, and behaves 3045 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3046 */ 3047 return true; 3048 case 2: 3049 return false; 3050 case 3: 3051 return true; 3052 } 3053 } 3054 3055 return el != 2; 3056 } 3057 3058 /* Return true if debugging exceptions are currently enabled. 3059 * This corresponds to what in ARM ARM pseudocode would be 3060 * if UsingAArch32() then 3061 * return AArch32.GenerateDebugExceptions() 3062 * else 3063 * return AArch64.GenerateDebugExceptions() 3064 * We choose to push the if() down into this function for clarity, 3065 * since the pseudocode has it at all callsites except for the one in 3066 * CheckSoftwareStep(), where it is elided because both branches would 3067 * always return the same value. 3068 */ 3069 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3070 { 3071 if (env->aarch64) { 3072 return aa64_generate_debug_exceptions(env); 3073 } else { 3074 return aa32_generate_debug_exceptions(env); 3075 } 3076 } 3077 3078 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3079 * implicitly means this always returns false in pre-v8 CPUs.) 3080 */ 3081 static inline bool arm_singlestep_active(CPUARMState *env) 3082 { 3083 return extract32(env->cp15.mdscr_el1, 0, 1) 3084 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3085 && arm_generate_debug_exceptions(env); 3086 } 3087 3088 static inline bool arm_sctlr_b(CPUARMState *env) 3089 { 3090 return 3091 /* We need not implement SCTLR.ITD in user-mode emulation, so 3092 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3093 * This lets people run BE32 binaries with "-cpu any". 3094 */ 3095 #ifndef CONFIG_USER_ONLY 3096 !arm_feature(env, ARM_FEATURE_V7) && 3097 #endif 3098 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3099 } 3100 3101 uint64_t arm_sctlr(CPUARMState *env, int el); 3102 3103 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3104 bool sctlr_b) 3105 { 3106 #ifdef CONFIG_USER_ONLY 3107 /* 3108 * In system mode, BE32 is modelled in line with the 3109 * architecture (as word-invariant big-endianness), where loads 3110 * and stores are done little endian but from addresses which 3111 * are adjusted by XORing with the appropriate constant. So the 3112 * endianness to use for the raw data access is not affected by 3113 * SCTLR.B. 3114 * In user mode, however, we model BE32 as byte-invariant 3115 * big-endianness (because user-only code cannot tell the 3116 * difference), and so we need to use a data access endianness 3117 * that depends on SCTLR.B. 3118 */ 3119 if (sctlr_b) { 3120 return true; 3121 } 3122 #endif 3123 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3124 return env->uncached_cpsr & CPSR_E; 3125 } 3126 3127 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3128 { 3129 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3130 } 3131 3132 /* Return true if the processor is in big-endian mode. */ 3133 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3134 { 3135 if (!is_a64(env)) { 3136 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3137 } else { 3138 int cur_el = arm_current_el(env); 3139 uint64_t sctlr = arm_sctlr(env, cur_el); 3140 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3141 } 3142 } 3143 3144 typedef CPUARMState CPUArchState; 3145 typedef ARMCPU ArchCPU; 3146 3147 #include "exec/cpu-all.h" 3148 3149 /* 3150 * Bit usage in the TB flags field: bit 31 indicates whether we are 3151 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3152 * We put flags which are shared between 32 and 64 bit mode at the top 3153 * of the word, and flags which apply to only one mode at the bottom. 3154 * 3155 * 31 20 18 14 9 0 3156 * +--------------+-----+-----+----------+--------------+ 3157 * | | | TBFLAG_A32 | | 3158 * | | +-----+----------+ TBFLAG_AM32 | 3159 * | TBFLAG_ANY | |TBFLAG_M32| | 3160 * | | +-+----------+--------------| 3161 * | | | TBFLAG_A64 | 3162 * +--------------+---------+---------------------------+ 3163 * 31 20 15 0 3164 * 3165 * Unless otherwise noted, these bits are cached in env->hflags. 3166 */ 3167 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3168 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1) 3169 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */ 3170 FIELD(TBFLAG_ANY, BE_DATA, 28, 1) 3171 FIELD(TBFLAG_ANY, MMUIDX, 24, 4) 3172 /* Target EL if we take a floating-point-disabled exception */ 3173 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2) 3174 /* For A-profile only, target EL for debug exceptions. */ 3175 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2) 3176 3177 /* 3178 * Bit usage when in AArch32 state, both A- and M-profile. 3179 */ 3180 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */ 3181 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */ 3182 3183 /* 3184 * Bit usage when in AArch32 state, for A-profile only. 3185 */ 3186 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */ 3187 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */ 3188 /* 3189 * We store the bottom two bits of the CPAR as TB flags and handle 3190 * checks on the other bits at runtime. This shares the same bits as 3191 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3192 * Not cached, because VECLEN+VECSTRIDE are not cached. 3193 */ 3194 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2) 3195 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */ 3196 FIELD(TBFLAG_A32, SCTLR_B, 15, 1) 3197 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1) 3198 /* 3199 * Indicates whether cp register reads and writes by guest code should access 3200 * the secure or nonsecure bank of banked registers; note that this is not 3201 * the same thing as the current security state of the processor! 3202 */ 3203 FIELD(TBFLAG_A32, NS, 17, 1) 3204 3205 /* 3206 * Bit usage when in AArch32 state, for M-profile only. 3207 */ 3208 /* Handler (ie not Thread) mode */ 3209 FIELD(TBFLAG_M32, HANDLER, 9, 1) 3210 /* Whether we should generate stack-limit checks */ 3211 FIELD(TBFLAG_M32, STACKCHECK, 10, 1) 3212 /* Set if FPCCR.LSPACT is set */ 3213 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */ 3214 /* Set if we must create a new FP context */ 3215 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */ 3216 /* Set if FPCCR.S does not match current security state */ 3217 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */ 3218 3219 /* 3220 * Bit usage when in AArch64 state 3221 */ 3222 FIELD(TBFLAG_A64, TBII, 0, 2) 3223 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3224 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3225 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3226 FIELD(TBFLAG_A64, BT, 9, 1) 3227 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3228 FIELD(TBFLAG_A64, TBID, 12, 2) 3229 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3230 3231 static inline bool bswap_code(bool sctlr_b) 3232 { 3233 #ifdef CONFIG_USER_ONLY 3234 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3235 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3236 * would also end up as a mixed-endian mode with BE code, LE data. 3237 */ 3238 return 3239 #ifdef TARGET_WORDS_BIGENDIAN 3240 1 ^ 3241 #endif 3242 sctlr_b; 3243 #else 3244 /* All code access in ARM is little endian, and there are no loaders 3245 * doing swaps that need to be reversed 3246 */ 3247 return 0; 3248 #endif 3249 } 3250 3251 #ifdef CONFIG_USER_ONLY 3252 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3253 { 3254 return 3255 #ifdef TARGET_WORDS_BIGENDIAN 3256 1 ^ 3257 #endif 3258 arm_cpu_data_is_big_endian(env); 3259 } 3260 #endif 3261 3262 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3263 target_ulong *cs_base, uint32_t *flags); 3264 3265 enum { 3266 QEMU_PSCI_CONDUIT_DISABLED = 0, 3267 QEMU_PSCI_CONDUIT_SMC = 1, 3268 QEMU_PSCI_CONDUIT_HVC = 2, 3269 }; 3270 3271 #ifndef CONFIG_USER_ONLY 3272 /* Return the address space index to use for a memory access */ 3273 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3274 { 3275 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3276 } 3277 3278 /* Return the AddressSpace to use for a memory access 3279 * (which depends on whether the access is S or NS, and whether 3280 * the board gave us a separate AddressSpace for S accesses). 3281 */ 3282 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3283 { 3284 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3285 } 3286 #endif 3287 3288 /** 3289 * arm_register_pre_el_change_hook: 3290 * Register a hook function which will be called immediately before this 3291 * CPU changes exception level or mode. The hook function will be 3292 * passed a pointer to the ARMCPU and the opaque data pointer passed 3293 * to this function when the hook was registered. 3294 * 3295 * Note that if a pre-change hook is called, any registered post-change hooks 3296 * are guaranteed to subsequently be called. 3297 */ 3298 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3299 void *opaque); 3300 /** 3301 * arm_register_el_change_hook: 3302 * Register a hook function which will be called immediately after this 3303 * CPU changes exception level or mode. The hook function will be 3304 * passed a pointer to the ARMCPU and the opaque data pointer passed 3305 * to this function when the hook was registered. 3306 * 3307 * Note that any registered hooks registered here are guaranteed to be called 3308 * if pre-change hooks have been. 3309 */ 3310 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3311 *opaque); 3312 3313 /** 3314 * arm_rebuild_hflags: 3315 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3316 */ 3317 void arm_rebuild_hflags(CPUARMState *env); 3318 3319 /** 3320 * aa32_vfp_dreg: 3321 * Return a pointer to the Dn register within env in 32-bit mode. 3322 */ 3323 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3324 { 3325 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3326 } 3327 3328 /** 3329 * aa32_vfp_qreg: 3330 * Return a pointer to the Qn register within env in 32-bit mode. 3331 */ 3332 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3333 { 3334 return &env->vfp.zregs[regno].d[0]; 3335 } 3336 3337 /** 3338 * aa64_vfp_qreg: 3339 * Return a pointer to the Qn register within env in 64-bit mode. 3340 */ 3341 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3342 { 3343 return &env->vfp.zregs[regno].d[0]; 3344 } 3345 3346 /* Shared between translate-sve.c and sve_helper.c. */ 3347 extern const uint64_t pred_esz_masks[4]; 3348 3349 /* 3350 * Naming convention for isar_feature functions: 3351 * Functions which test 32-bit ID registers should have _aa32_ in 3352 * their name. Functions which test 64-bit ID registers should have 3353 * _aa64_ in their name. These must only be used in code where we 3354 * know for certain that the CPU has AArch32 or AArch64 respectively 3355 * or where the correct answer for a CPU which doesn't implement that 3356 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3357 * system registers that are specific to that CPU state, for "should 3358 * we let this system register bit be set" tests where the 32-bit 3359 * flavour of the register doesn't have the bit, and so on). 3360 * Functions which simply ask "does this feature exist at all" have 3361 * _any_ in their name, and always return the logical OR of the _aa64_ 3362 * and the _aa32_ function. 3363 */ 3364 3365 /* 3366 * 32-bit feature tests via id registers. 3367 */ 3368 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3369 { 3370 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3371 } 3372 3373 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3374 { 3375 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3376 } 3377 3378 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3379 { 3380 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3381 } 3382 3383 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3384 { 3385 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3386 } 3387 3388 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3389 { 3390 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3391 } 3392 3393 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3394 { 3395 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3396 } 3397 3398 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3399 { 3400 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3401 } 3402 3403 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3404 { 3405 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3406 } 3407 3408 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3409 { 3410 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3411 } 3412 3413 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3414 { 3415 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3416 } 3417 3418 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3419 { 3420 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3421 } 3422 3423 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3424 { 3425 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3426 } 3427 3428 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3429 { 3430 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3431 } 3432 3433 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3434 { 3435 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3436 } 3437 3438 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3439 { 3440 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3441 } 3442 3443 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3444 { 3445 /* 3446 * This is a placeholder for use by VCMA until the rest of 3447 * the ARMv8.2-FP16 extension is implemented for aa32 mode. 3448 * At which point we can properly set and check MVFR1.FPHP. 3449 */ 3450 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3451 } 3452 3453 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3454 { 3455 /* Return true if D16-D31 are implemented */ 3456 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3457 } 3458 3459 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3460 { 3461 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3462 } 3463 3464 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id) 3465 { 3466 /* Return true if CPU supports double precision floating point */ 3467 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3468 } 3469 3470 /* 3471 * We always set the FP and SIMD FP16 fields to indicate identical 3472 * levels of support (assuming SIMD is implemented at all), so 3473 * we only need one set of accessors. 3474 */ 3475 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3476 { 3477 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3478 } 3479 3480 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3481 { 3482 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3483 } 3484 3485 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3486 { 3487 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3488 } 3489 3490 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3491 { 3492 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3493 } 3494 3495 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3496 { 3497 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3498 } 3499 3500 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3501 { 3502 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3503 } 3504 3505 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3506 { 3507 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3508 } 3509 3510 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3511 { 3512 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3513 } 3514 3515 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3516 { 3517 /* 0xf means "non-standard IMPDEF PMU" */ 3518 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3519 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3520 } 3521 3522 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3523 { 3524 /* 0xf means "non-standard IMPDEF PMU" */ 3525 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3526 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3527 } 3528 3529 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3530 { 3531 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3532 } 3533 3534 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3535 { 3536 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3537 } 3538 3539 /* 3540 * 64-bit feature tests via id registers. 3541 */ 3542 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3543 { 3544 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3545 } 3546 3547 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3548 { 3549 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3550 } 3551 3552 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3553 { 3554 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3555 } 3556 3557 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3558 { 3559 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3560 } 3561 3562 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3563 { 3564 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3565 } 3566 3567 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3568 { 3569 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3570 } 3571 3572 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3573 { 3574 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3575 } 3576 3577 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3578 { 3579 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3580 } 3581 3582 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3583 { 3584 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3585 } 3586 3587 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3588 { 3589 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3590 } 3591 3592 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3593 { 3594 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3595 } 3596 3597 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3598 { 3599 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3600 } 3601 3602 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3603 { 3604 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3605 } 3606 3607 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3608 { 3609 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3610 } 3611 3612 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3613 { 3614 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3615 } 3616 3617 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3618 { 3619 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3620 } 3621 3622 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3623 { 3624 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3625 } 3626 3627 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3628 { 3629 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3630 } 3631 3632 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3633 { 3634 /* 3635 * Note that while QEMU will only implement the architected algorithm 3636 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3637 * defined algorithms, and thus API+GPI, and this predicate controls 3638 * migration of the 128-bit keys. 3639 */ 3640 return (id->id_aa64isar1 & 3641 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3642 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3643 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3644 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3645 } 3646 3647 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3648 { 3649 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3650 } 3651 3652 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3653 { 3654 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3655 } 3656 3657 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3658 { 3659 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3660 } 3661 3662 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3663 { 3664 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3665 } 3666 3667 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3668 { 3669 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3670 } 3671 3672 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3673 { 3674 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3675 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3676 } 3677 3678 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3679 { 3680 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3681 } 3682 3683 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3684 { 3685 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3686 } 3687 3688 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3689 { 3690 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3691 } 3692 3693 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3694 { 3695 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3696 } 3697 3698 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3699 { 3700 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3701 } 3702 3703 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3704 { 3705 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3706 } 3707 3708 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 3709 { 3710 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 3711 } 3712 3713 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3714 { 3715 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3716 } 3717 3718 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 3719 { 3720 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 3721 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3722 } 3723 3724 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 3725 { 3726 return FIELD_EX32(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 3727 FIELD_EX32(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3728 } 3729 3730 /* 3731 * Feature tests for "does this exist in either 32-bit or 64-bit?" 3732 */ 3733 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 3734 { 3735 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 3736 } 3737 3738 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 3739 { 3740 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 3741 } 3742 3743 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 3744 { 3745 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 3746 } 3747 3748 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 3749 { 3750 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 3751 } 3752 3753 /* 3754 * Forward to the above feature tests given an ARMCPU pointer. 3755 */ 3756 #define cpu_isar_feature(name, cpu) \ 3757 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3758 3759 #endif 3760