xref: /openbmc/qemu/target/arm/cpu.h (revision 831734cc)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_HVC            11   /* HyperVisor Call */
46 #define EXCP_HYP_TRAP       12
47 #define EXCP_SMC            13   /* Secure Monitor Call */
48 #define EXCP_VIRQ           14
49 #define EXCP_VFIQ           15
50 #define EXCP_SEMIHOST       16   /* semihosting call */
51 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
58 
59 #define ARMV7M_EXCP_RESET   1
60 #define ARMV7M_EXCP_NMI     2
61 #define ARMV7M_EXCP_HARD    3
62 #define ARMV7M_EXCP_MEM     4
63 #define ARMV7M_EXCP_BUS     5
64 #define ARMV7M_EXCP_USAGE   6
65 #define ARMV7M_EXCP_SECURE  7
66 #define ARMV7M_EXCP_SVC     11
67 #define ARMV7M_EXCP_DEBUG   12
68 #define ARMV7M_EXCP_PENDSV  14
69 #define ARMV7M_EXCP_SYSTICK 15
70 
71 /* For M profile, some registers are banked secure vs non-secure;
72  * these are represented as a 2-element array where the first element
73  * is the non-secure copy and the second is the secure copy.
74  * When the CPU does not have implement the security extension then
75  * only the first element is used.
76  * This means that the copy for the current security state can be
77  * accessed via env->registerfield[env->v7m.secure] (whether the security
78  * extension is implemented or not).
79  */
80 enum {
81     M_REG_NS = 0,
82     M_REG_S = 1,
83     M_REG_NUM_BANKS = 2,
84 };
85 
86 /* ARM-specific interrupt pending bits.  */
87 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
88 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
89 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
90 
91 /* The usual mapping for an AArch64 system register to its AArch32
92  * counterpart is for the 32 bit world to have access to the lower
93  * half only (with writes leaving the upper half untouched). It's
94  * therefore useful to be able to pass TCG the offset of the least
95  * significant half of a uint64_t struct member.
96  */
97 #ifdef HOST_WORDS_BIGENDIAN
98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #define offsetofhigh32(S, M) offsetof(S, M)
100 #else
101 #define offsetoflow32(S, M) offsetof(S, M)
102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #endif
104 
105 /* Meanings of the ARMCPU object's four inbound GPIO lines */
106 #define ARM_CPU_IRQ 0
107 #define ARM_CPU_FIQ 1
108 #define ARM_CPU_VIRQ 2
109 #define ARM_CPU_VFIQ 3
110 
111 /* ARM-specific extra insn start words:
112  * 1: Conditional execution bits
113  * 2: Partial exception syndrome for data aborts
114  */
115 #define TARGET_INSN_START_EXTRA_WORDS 2
116 
117 /* The 2nd extra word holding syndrome info for data aborts does not use
118  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119  * help the sleb128 encoder do a better job.
120  * When restoring the CPU state, we shift it back up.
121  */
122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123 #define ARM_INSN_START_WORD2_SHIFT 14
124 
125 /* We currently assume float and double are IEEE single and double
126    precision respectively.
127    Doing runtime conversions is tricky because VFP registers may contain
128    integer values (eg. as the result of a FTOSI instruction).
129    s<2n> maps to the least significant half of d<n>
130    s<2n+1> maps to the most significant half of d<n>
131  */
132 
133 /**
134  * DynamicGDBXMLInfo:
135  * @desc: Contains the XML descriptions.
136  * @num: Number of the registers in this XML seen by GDB.
137  * @data: A union with data specific to the set of registers
138  *    @cpregs_keys: Array that contains the corresponding Key of
139  *                  a given cpreg with the same order of the cpreg
140  *                  in the XML description.
141  */
142 typedef struct DynamicGDBXMLInfo {
143     char *desc;
144     int num;
145     union {
146         struct {
147             uint32_t *keys;
148         } cpregs;
149     } data;
150 } DynamicGDBXMLInfo;
151 
152 /* CPU state for each instance of a generic timer (in cp15 c14) */
153 typedef struct ARMGenericTimer {
154     uint64_t cval; /* Timer CompareValue register */
155     uint64_t ctl; /* Timer Control register */
156 } ARMGenericTimer;
157 
158 #define GTIMER_PHYS     0
159 #define GTIMER_VIRT     1
160 #define GTIMER_HYP      2
161 #define GTIMER_SEC      3
162 #define GTIMER_HYPVIRT  4
163 #define NUM_GTIMERS     5
164 
165 typedef struct {
166     uint64_t raw_tcr;
167     uint32_t mask;
168     uint32_t base_mask;
169 } TCR;
170 
171 #define VTCR_NSW (1u << 29)
172 #define VTCR_NSA (1u << 30)
173 #define VSTCR_SW VTCR_NSW
174 #define VSTCR_SA VTCR_NSA
175 
176 /* Define a maximum sized vector register.
177  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
178  * For 64-bit, this is a 2048-bit SVE register.
179  *
180  * Note that the mapping between S, D, and Q views of the register bank
181  * differs between AArch64 and AArch32.
182  * In AArch32:
183  *  Qn = regs[n].d[1]:regs[n].d[0]
184  *  Dn = regs[n / 2].d[n & 1]
185  *  Sn = regs[n / 4].d[n % 4 / 2],
186  *       bits 31..0 for even n, and bits 63..32 for odd n
187  *       (and regs[16] to regs[31] are inaccessible)
188  * In AArch64:
189  *  Zn = regs[n].d[*]
190  *  Qn = regs[n].d[1]:regs[n].d[0]
191  *  Dn = regs[n].d[0]
192  *  Sn = regs[n].d[0] bits 31..0
193  *  Hn = regs[n].d[0] bits 15..0
194  *
195  * This corresponds to the architecturally defined mapping between
196  * the two execution states, and means we do not need to explicitly
197  * map these registers when changing states.
198  *
199  * Align the data for use with TCG host vector operations.
200  */
201 
202 #ifdef TARGET_AARCH64
203 # define ARM_MAX_VQ    16
204 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
205 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
206 #else
207 # define ARM_MAX_VQ    1
208 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
209 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
210 #endif
211 
212 typedef struct ARMVectorReg {
213     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214 } ARMVectorReg;
215 
216 #ifdef TARGET_AARCH64
217 /* In AArch32 mode, predicate registers do not exist at all.  */
218 typedef struct ARMPredicateReg {
219     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
220 } ARMPredicateReg;
221 
222 /* In AArch32 mode, PAC keys do not exist at all.  */
223 typedef struct ARMPACKey {
224     uint64_t lo, hi;
225 } ARMPACKey;
226 #endif
227 
228 
229 typedef struct CPUARMState {
230     /* Regs for current mode.  */
231     uint32_t regs[16];
232 
233     /* 32/64 switch only happens when taking and returning from
234      * exceptions so the overlap semantics are taken care of then
235      * instead of having a complicated union.
236      */
237     /* Regs for A64 mode.  */
238     uint64_t xregs[32];
239     uint64_t pc;
240     /* PSTATE isn't an architectural register for ARMv8. However, it is
241      * convenient for us to assemble the underlying state into a 32 bit format
242      * identical to the architectural format used for the SPSR. (This is also
243      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
244      * 'pstate' register are.) Of the PSTATE bits:
245      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
246      *    semantics as for AArch32, as described in the comments on each field)
247      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
248      *  DAIF (exception masks) are kept in env->daif
249      *  BTYPE is kept in env->btype
250      *  all other bits are stored in their correct places in env->pstate
251      */
252     uint32_t pstate;
253     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
254 
255     /* Cached TBFLAGS state.  See below for which bits are included.  */
256     uint32_t hflags;
257 
258     /* Frequently accessed CPSR bits are stored separately for efficiency.
259        This contains all the other bits.  Use cpsr_{read,write} to access
260        the whole CPSR.  */
261     uint32_t uncached_cpsr;
262     uint32_t spsr;
263 
264     /* Banked registers.  */
265     uint64_t banked_spsr[8];
266     uint32_t banked_r13[8];
267     uint32_t banked_r14[8];
268 
269     /* These hold r8-r12.  */
270     uint32_t usr_regs[5];
271     uint32_t fiq_regs[5];
272 
273     /* cpsr flag cache for faster execution */
274     uint32_t CF; /* 0 or 1 */
275     uint32_t VF; /* V is the bit 31. All other bits are undefined */
276     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
277     uint32_t ZF; /* Z set if zero.  */
278     uint32_t QF; /* 0 or 1 */
279     uint32_t GE; /* cpsr[19:16] */
280     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
281     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
282     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
283     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
284 
285     uint64_t elr_el[4]; /* AArch64 exception link regs  */
286     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
287 
288     /* System control coprocessor (cp15) */
289     struct {
290         uint32_t c0_cpuid;
291         union { /* Cache size selection */
292             struct {
293                 uint64_t _unused_csselr0;
294                 uint64_t csselr_ns;
295                 uint64_t _unused_csselr1;
296                 uint64_t csselr_s;
297             };
298             uint64_t csselr_el[4];
299         };
300         union { /* System control register. */
301             struct {
302                 uint64_t _unused_sctlr;
303                 uint64_t sctlr_ns;
304                 uint64_t hsctlr;
305                 uint64_t sctlr_s;
306             };
307             uint64_t sctlr_el[4];
308         };
309         uint64_t cpacr_el1; /* Architectural feature access control register */
310         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
311         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
312         uint64_t sder; /* Secure debug enable register. */
313         uint32_t nsacr; /* Non-secure access control register. */
314         union { /* MMU translation table base 0. */
315             struct {
316                 uint64_t _unused_ttbr0_0;
317                 uint64_t ttbr0_ns;
318                 uint64_t _unused_ttbr0_1;
319                 uint64_t ttbr0_s;
320             };
321             uint64_t ttbr0_el[4];
322         };
323         union { /* MMU translation table base 1. */
324             struct {
325                 uint64_t _unused_ttbr1_0;
326                 uint64_t ttbr1_ns;
327                 uint64_t _unused_ttbr1_1;
328                 uint64_t ttbr1_s;
329             };
330             uint64_t ttbr1_el[4];
331         };
332         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
333         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
334         /* MMU translation table base control. */
335         TCR tcr_el[4];
336         TCR vtcr_el2; /* Virtualization Translation Control.  */
337         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
338         uint32_t c2_data; /* MPU data cacheable bits.  */
339         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
340         union { /* MMU domain access control register
341                  * MPU write buffer control.
342                  */
343             struct {
344                 uint64_t dacr_ns;
345                 uint64_t dacr_s;
346             };
347             struct {
348                 uint64_t dacr32_el2;
349             };
350         };
351         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
352         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
353         uint64_t hcr_el2; /* Hypervisor configuration register */
354         uint64_t scr_el3; /* Secure configuration register.  */
355         union { /* Fault status registers.  */
356             struct {
357                 uint64_t ifsr_ns;
358                 uint64_t ifsr_s;
359             };
360             struct {
361                 uint64_t ifsr32_el2;
362             };
363         };
364         union {
365             struct {
366                 uint64_t _unused_dfsr;
367                 uint64_t dfsr_ns;
368                 uint64_t hsr;
369                 uint64_t dfsr_s;
370             };
371             uint64_t esr_el[4];
372         };
373         uint32_t c6_region[8]; /* MPU base/size registers.  */
374         union { /* Fault address registers. */
375             struct {
376                 uint64_t _unused_far0;
377 #ifdef HOST_WORDS_BIGENDIAN
378                 uint32_t ifar_ns;
379                 uint32_t dfar_ns;
380                 uint32_t ifar_s;
381                 uint32_t dfar_s;
382 #else
383                 uint32_t dfar_ns;
384                 uint32_t ifar_ns;
385                 uint32_t dfar_s;
386                 uint32_t ifar_s;
387 #endif
388                 uint64_t _unused_far3;
389             };
390             uint64_t far_el[4];
391         };
392         uint64_t hpfar_el2;
393         uint64_t hstr_el2;
394         union { /* Translation result. */
395             struct {
396                 uint64_t _unused_par_0;
397                 uint64_t par_ns;
398                 uint64_t _unused_par_1;
399                 uint64_t par_s;
400             };
401             uint64_t par_el[4];
402         };
403 
404         uint32_t c9_insn; /* Cache lockdown registers.  */
405         uint32_t c9_data;
406         uint64_t c9_pmcr; /* performance monitor control register */
407         uint64_t c9_pmcnten; /* perf monitor counter enables */
408         uint64_t c9_pmovsr; /* perf monitor overflow status */
409         uint64_t c9_pmuserenr; /* perf monitor user enable */
410         uint64_t c9_pmselr; /* perf monitor counter selection register */
411         uint64_t c9_pminten; /* perf monitor interrupt enables */
412         union { /* Memory attribute redirection */
413             struct {
414 #ifdef HOST_WORDS_BIGENDIAN
415                 uint64_t _unused_mair_0;
416                 uint32_t mair1_ns;
417                 uint32_t mair0_ns;
418                 uint64_t _unused_mair_1;
419                 uint32_t mair1_s;
420                 uint32_t mair0_s;
421 #else
422                 uint64_t _unused_mair_0;
423                 uint32_t mair0_ns;
424                 uint32_t mair1_ns;
425                 uint64_t _unused_mair_1;
426                 uint32_t mair0_s;
427                 uint32_t mair1_s;
428 #endif
429             };
430             uint64_t mair_el[4];
431         };
432         union { /* vector base address register */
433             struct {
434                 uint64_t _unused_vbar;
435                 uint64_t vbar_ns;
436                 uint64_t hvbar;
437                 uint64_t vbar_s;
438             };
439             uint64_t vbar_el[4];
440         };
441         uint32_t mvbar; /* (monitor) vector base address register */
442         struct { /* FCSE PID. */
443             uint32_t fcseidr_ns;
444             uint32_t fcseidr_s;
445         };
446         union { /* Context ID. */
447             struct {
448                 uint64_t _unused_contextidr_0;
449                 uint64_t contextidr_ns;
450                 uint64_t _unused_contextidr_1;
451                 uint64_t contextidr_s;
452             };
453             uint64_t contextidr_el[4];
454         };
455         union { /* User RW Thread register. */
456             struct {
457                 uint64_t tpidrurw_ns;
458                 uint64_t tpidrprw_ns;
459                 uint64_t htpidr;
460                 uint64_t _tpidr_el3;
461             };
462             uint64_t tpidr_el[4];
463         };
464         /* The secure banks of these registers don't map anywhere */
465         uint64_t tpidrurw_s;
466         uint64_t tpidrprw_s;
467         uint64_t tpidruro_s;
468 
469         union { /* User RO Thread register. */
470             uint64_t tpidruro_ns;
471             uint64_t tpidrro_el[1];
472         };
473         uint64_t c14_cntfrq; /* Counter Frequency register */
474         uint64_t c14_cntkctl; /* Timer Control register */
475         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
476         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
477         ARMGenericTimer c14_timer[NUM_GTIMERS];
478         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
479         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
480         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
481         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
482         uint32_t c15_threadid; /* TI debugger thread-ID.  */
483         uint32_t c15_config_base_address; /* SCU base address.  */
484         uint32_t c15_diagnostic; /* diagnostic register */
485         uint32_t c15_power_diagnostic;
486         uint32_t c15_power_control; /* power control */
487         uint64_t dbgbvr[16]; /* breakpoint value registers */
488         uint64_t dbgbcr[16]; /* breakpoint control registers */
489         uint64_t dbgwvr[16]; /* watchpoint value registers */
490         uint64_t dbgwcr[16]; /* watchpoint control registers */
491         uint64_t mdscr_el1;
492         uint64_t oslsr_el1; /* OS Lock Status */
493         uint64_t mdcr_el2;
494         uint64_t mdcr_el3;
495         /* Stores the architectural value of the counter *the last time it was
496          * updated* by pmccntr_op_start. Accesses should always be surrounded
497          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
498          * architecturally-correct value is being read/set.
499          */
500         uint64_t c15_ccnt;
501         /* Stores the delta between the architectural value and the underlying
502          * cycle count during normal operation. It is used to update c15_ccnt
503          * to be the correct architectural value before accesses. During
504          * accesses, c15_ccnt_delta contains the underlying count being used
505          * for the access, after which it reverts to the delta value in
506          * pmccntr_op_finish.
507          */
508         uint64_t c15_ccnt_delta;
509         uint64_t c14_pmevcntr[31];
510         uint64_t c14_pmevcntr_delta[31];
511         uint64_t c14_pmevtyper[31];
512         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
513         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
514         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
515         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
516         uint64_t gcr_el1;
517         uint64_t rgsr_el1;
518     } cp15;
519 
520     struct {
521         /* M profile has up to 4 stack pointers:
522          * a Main Stack Pointer and a Process Stack Pointer for each
523          * of the Secure and Non-Secure states. (If the CPU doesn't support
524          * the security extension then it has only two SPs.)
525          * In QEMU we always store the currently active SP in regs[13],
526          * and the non-active SP for the current security state in
527          * v7m.other_sp. The stack pointers for the inactive security state
528          * are stored in other_ss_msp and other_ss_psp.
529          * switch_v7m_security_state() is responsible for rearranging them
530          * when we change security state.
531          */
532         uint32_t other_sp;
533         uint32_t other_ss_msp;
534         uint32_t other_ss_psp;
535         uint32_t vecbase[M_REG_NUM_BANKS];
536         uint32_t basepri[M_REG_NUM_BANKS];
537         uint32_t control[M_REG_NUM_BANKS];
538         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
539         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
540         uint32_t hfsr; /* HardFault Status */
541         uint32_t dfsr; /* Debug Fault Status Register */
542         uint32_t sfsr; /* Secure Fault Status Register */
543         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
544         uint32_t bfar; /* BusFault Address */
545         uint32_t sfar; /* Secure Fault Address Register */
546         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
547         int exception;
548         uint32_t primask[M_REG_NUM_BANKS];
549         uint32_t faultmask[M_REG_NUM_BANKS];
550         uint32_t aircr; /* only holds r/w state if security extn implemented */
551         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
552         uint32_t csselr[M_REG_NUM_BANKS];
553         uint32_t scr[M_REG_NUM_BANKS];
554         uint32_t msplim[M_REG_NUM_BANKS];
555         uint32_t psplim[M_REG_NUM_BANKS];
556         uint32_t fpcar[M_REG_NUM_BANKS];
557         uint32_t fpccr[M_REG_NUM_BANKS];
558         uint32_t fpdscr[M_REG_NUM_BANKS];
559         uint32_t cpacr[M_REG_NUM_BANKS];
560         uint32_t nsacr;
561         int ltpsize;
562     } v7m;
563 
564     /* Information associated with an exception about to be taken:
565      * code which raises an exception must set cs->exception_index and
566      * the relevant parts of this structure; the cpu_do_interrupt function
567      * will then set the guest-visible registers as part of the exception
568      * entry process.
569      */
570     struct {
571         uint32_t syndrome; /* AArch64 format syndrome register */
572         uint32_t fsr; /* AArch32 format fault status register info */
573         uint64_t vaddress; /* virtual addr associated with exception, if any */
574         uint32_t target_el; /* EL the exception should be targeted for */
575         /* If we implement EL2 we will also need to store information
576          * about the intermediate physical address for stage 2 faults.
577          */
578     } exception;
579 
580     /* Information associated with an SError */
581     struct {
582         uint8_t pending;
583         uint8_t has_esr;
584         uint64_t esr;
585     } serror;
586 
587     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
588 
589     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
590     uint32_t irq_line_state;
591 
592     /* Thumb-2 EE state.  */
593     uint32_t teecr;
594     uint32_t teehbr;
595 
596     /* VFP coprocessor state.  */
597     struct {
598         ARMVectorReg zregs[32];
599 
600 #ifdef TARGET_AARCH64
601         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
602 #define FFR_PRED_NUM 16
603         ARMPredicateReg pregs[17];
604         /* Scratch space for aa64 sve predicate temporary.  */
605         ARMPredicateReg preg_tmp;
606 #endif
607 
608         /* We store these fpcsr fields separately for convenience.  */
609         uint32_t qc[4] QEMU_ALIGNED(16);
610         int vec_len;
611         int vec_stride;
612 
613         uint32_t xregs[16];
614 
615         /* Scratch space for aa32 neon expansion.  */
616         uint32_t scratch[8];
617 
618         /* There are a number of distinct float control structures:
619          *
620          *  fp_status: is the "normal" fp status.
621          *  fp_status_fp16: used for half-precision calculations
622          *  standard_fp_status : the ARM "Standard FPSCR Value"
623          *  standard_fp_status_fp16 : used for half-precision
624          *       calculations with the ARM "Standard FPSCR Value"
625          *
626          * Half-precision operations are governed by a separate
627          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
628          * status structure to control this.
629          *
630          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
631          * round-to-nearest and is used by any operations (generally
632          * Neon) which the architecture defines as controlled by the
633          * standard FPSCR value rather than the FPSCR.
634          *
635          * The "standard FPSCR but for fp16 ops" is needed because
636          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
637          * using a fixed value for it.
638          *
639          * To avoid having to transfer exception bits around, we simply
640          * say that the FPSCR cumulative exception flags are the logical
641          * OR of the flags in the four fp statuses. This relies on the
642          * only thing which needs to read the exception flags being
643          * an explicit FPSCR read.
644          */
645         float_status fp_status;
646         float_status fp_status_f16;
647         float_status standard_fp_status;
648         float_status standard_fp_status_f16;
649 
650         /* ZCR_EL[1-3] */
651         uint64_t zcr_el[4];
652     } vfp;
653     uint64_t exclusive_addr;
654     uint64_t exclusive_val;
655     uint64_t exclusive_high;
656 
657     /* iwMMXt coprocessor state.  */
658     struct {
659         uint64_t regs[16];
660         uint64_t val;
661 
662         uint32_t cregs[16];
663     } iwmmxt;
664 
665 #ifdef TARGET_AARCH64
666     struct {
667         ARMPACKey apia;
668         ARMPACKey apib;
669         ARMPACKey apda;
670         ARMPACKey apdb;
671         ARMPACKey apga;
672     } keys;
673 #endif
674 
675 #if defined(CONFIG_USER_ONLY)
676     /* For usermode syscall translation.  */
677     int eabi;
678 #endif
679 
680     struct CPUBreakpoint *cpu_breakpoint[16];
681     struct CPUWatchpoint *cpu_watchpoint[16];
682 
683     /* Fields up to this point are cleared by a CPU reset */
684     struct {} end_reset_fields;
685 
686     /* Fields after this point are preserved across CPU reset. */
687 
688     /* Internal CPU feature flags.  */
689     uint64_t features;
690 
691     /* PMSAv7 MPU */
692     struct {
693         uint32_t *drbar;
694         uint32_t *drsr;
695         uint32_t *dracr;
696         uint32_t rnr[M_REG_NUM_BANKS];
697     } pmsav7;
698 
699     /* PMSAv8 MPU */
700     struct {
701         /* The PMSAv8 implementation also shares some PMSAv7 config
702          * and state:
703          *  pmsav7.rnr (region number register)
704          *  pmsav7_dregion (number of configured regions)
705          */
706         uint32_t *rbar[M_REG_NUM_BANKS];
707         uint32_t *rlar[M_REG_NUM_BANKS];
708         uint32_t mair0[M_REG_NUM_BANKS];
709         uint32_t mair1[M_REG_NUM_BANKS];
710     } pmsav8;
711 
712     /* v8M SAU */
713     struct {
714         uint32_t *rbar;
715         uint32_t *rlar;
716         uint32_t rnr;
717         uint32_t ctrl;
718     } sau;
719 
720     void *nvic;
721     const struct arm_boot_info *boot_info;
722     /* Store GICv3CPUState to access from this struct */
723     void *gicv3state;
724 } CPUARMState;
725 
726 static inline void set_feature(CPUARMState *env, int feature)
727 {
728     env->features |= 1ULL << feature;
729 }
730 
731 static inline void unset_feature(CPUARMState *env, int feature)
732 {
733     env->features &= ~(1ULL << feature);
734 }
735 
736 /**
737  * ARMELChangeHookFn:
738  * type of a function which can be registered via arm_register_el_change_hook()
739  * to get callbacks when the CPU changes its exception level or mode.
740  */
741 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
742 typedef struct ARMELChangeHook ARMELChangeHook;
743 struct ARMELChangeHook {
744     ARMELChangeHookFn *hook;
745     void *opaque;
746     QLIST_ENTRY(ARMELChangeHook) node;
747 };
748 
749 /* These values map onto the return values for
750  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
751 typedef enum ARMPSCIState {
752     PSCI_ON = 0,
753     PSCI_OFF = 1,
754     PSCI_ON_PENDING = 2
755 } ARMPSCIState;
756 
757 typedef struct ARMISARegisters ARMISARegisters;
758 
759 /**
760  * ARMCPU:
761  * @env: #CPUARMState
762  *
763  * An ARM CPU core.
764  */
765 struct ARMCPU {
766     /*< private >*/
767     CPUState parent_obj;
768     /*< public >*/
769 
770     CPUNegativeOffsetState neg;
771     CPUARMState env;
772 
773     /* Coprocessor information */
774     GHashTable *cp_regs;
775     /* For marshalling (mostly coprocessor) register state between the
776      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
777      * we use these arrays.
778      */
779     /* List of register indexes managed via these arrays; (full KVM style
780      * 64 bit indexes, not CPRegInfo 32 bit indexes)
781      */
782     uint64_t *cpreg_indexes;
783     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
784     uint64_t *cpreg_values;
785     /* Length of the indexes, values, reset_values arrays */
786     int32_t cpreg_array_len;
787     /* These are used only for migration: incoming data arrives in
788      * these fields and is sanity checked in post_load before copying
789      * to the working data structures above.
790      */
791     uint64_t *cpreg_vmstate_indexes;
792     uint64_t *cpreg_vmstate_values;
793     int32_t cpreg_vmstate_array_len;
794 
795     DynamicGDBXMLInfo dyn_sysreg_xml;
796     DynamicGDBXMLInfo dyn_svereg_xml;
797 
798     /* Timers used by the generic (architected) timer */
799     QEMUTimer *gt_timer[NUM_GTIMERS];
800     /*
801      * Timer used by the PMU. Its state is restored after migration by
802      * pmu_op_finish() - it does not need other handling during migration
803      */
804     QEMUTimer *pmu_timer;
805     /* GPIO outputs for generic timer */
806     qemu_irq gt_timer_outputs[NUM_GTIMERS];
807     /* GPIO output for GICv3 maintenance interrupt signal */
808     qemu_irq gicv3_maintenance_interrupt;
809     /* GPIO output for the PMU interrupt */
810     qemu_irq pmu_interrupt;
811 
812     /* MemoryRegion to use for secure physical accesses */
813     MemoryRegion *secure_memory;
814 
815     /* MemoryRegion to use for allocation tag accesses */
816     MemoryRegion *tag_memory;
817     MemoryRegion *secure_tag_memory;
818 
819     /* For v8M, pointer to the IDAU interface provided by board/SoC */
820     Object *idau;
821 
822     /* 'compatible' string for this CPU for Linux device trees */
823     const char *dtb_compatible;
824 
825     /* PSCI version for this CPU
826      * Bits[31:16] = Major Version
827      * Bits[15:0] = Minor Version
828      */
829     uint32_t psci_version;
830 
831     /* Current power state, access guarded by BQL */
832     ARMPSCIState power_state;
833 
834     /* CPU has virtualization extension */
835     bool has_el2;
836     /* CPU has security extension */
837     bool has_el3;
838     /* CPU has PMU (Performance Monitor Unit) */
839     bool has_pmu;
840     /* CPU has VFP */
841     bool has_vfp;
842     /* CPU has Neon */
843     bool has_neon;
844     /* CPU has M-profile DSP extension */
845     bool has_dsp;
846 
847     /* CPU has memory protection unit */
848     bool has_mpu;
849     /* PMSAv7 MPU number of supported regions */
850     uint32_t pmsav7_dregion;
851     /* v8M SAU number of supported regions */
852     uint32_t sau_sregion;
853 
854     /* PSCI conduit used to invoke PSCI methods
855      * 0 - disabled, 1 - smc, 2 - hvc
856      */
857     uint32_t psci_conduit;
858 
859     /* For v8M, initial value of the Secure VTOR */
860     uint32_t init_svtor;
861 
862     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
863      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
864      */
865     uint32_t kvm_target;
866 
867     /* KVM init features for this CPU */
868     uint32_t kvm_init_features[7];
869 
870     /* KVM CPU state */
871 
872     /* KVM virtual time adjustment */
873     bool kvm_adjvtime;
874     bool kvm_vtime_dirty;
875     uint64_t kvm_vtime;
876 
877     /* KVM steal time */
878     OnOffAuto kvm_steal_time;
879 
880     /* Uniprocessor system with MP extensions */
881     bool mp_is_up;
882 
883     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
884      * and the probe failed (so we need to report the error in realize)
885      */
886     bool host_cpu_probe_failed;
887 
888     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
889      * register.
890      */
891     int32_t core_count;
892 
893     /* The instance init functions for implementation-specific subclasses
894      * set these fields to specify the implementation-dependent values of
895      * various constant registers and reset values of non-constant
896      * registers.
897      * Some of these might become QOM properties eventually.
898      * Field names match the official register names as defined in the
899      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
900      * is used for reset values of non-constant registers; no reset_
901      * prefix means a constant register.
902      * Some of these registers are split out into a substructure that
903      * is shared with the translators to control the ISA.
904      *
905      * Note that if you add an ID register to the ARMISARegisters struct
906      * you need to also update the 32-bit and 64-bit versions of the
907      * kvm_arm_get_host_cpu_features() function to correctly populate the
908      * field by reading the value from the KVM vCPU.
909      */
910     struct ARMISARegisters {
911         uint32_t id_isar0;
912         uint32_t id_isar1;
913         uint32_t id_isar2;
914         uint32_t id_isar3;
915         uint32_t id_isar4;
916         uint32_t id_isar5;
917         uint32_t id_isar6;
918         uint32_t id_mmfr0;
919         uint32_t id_mmfr1;
920         uint32_t id_mmfr2;
921         uint32_t id_mmfr3;
922         uint32_t id_mmfr4;
923         uint32_t id_pfr0;
924         uint32_t id_pfr1;
925         uint32_t mvfr0;
926         uint32_t mvfr1;
927         uint32_t mvfr2;
928         uint32_t id_dfr0;
929         uint32_t dbgdidr;
930         uint64_t id_aa64isar0;
931         uint64_t id_aa64isar1;
932         uint64_t id_aa64pfr0;
933         uint64_t id_aa64pfr1;
934         uint64_t id_aa64mmfr0;
935         uint64_t id_aa64mmfr1;
936         uint64_t id_aa64mmfr2;
937         uint64_t id_aa64dfr0;
938         uint64_t id_aa64dfr1;
939     } isar;
940     uint64_t midr;
941     uint32_t revidr;
942     uint32_t reset_fpsid;
943     uint64_t ctr;
944     uint32_t reset_sctlr;
945     uint64_t pmceid0;
946     uint64_t pmceid1;
947     uint32_t id_afr0;
948     uint64_t id_aa64afr0;
949     uint64_t id_aa64afr1;
950     uint64_t clidr;
951     uint64_t mp_affinity; /* MP ID without feature bits */
952     /* The elements of this array are the CCSIDR values for each cache,
953      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
954      */
955     uint64_t ccsidr[16];
956     uint64_t reset_cbar;
957     uint32_t reset_auxcr;
958     bool reset_hivecs;
959 
960     /*
961      * Intermediate values used during property parsing.
962      * Once finalized, the values should be read from ID_AA64ISAR1.
963      */
964     bool prop_pauth;
965     bool prop_pauth_impdef;
966 
967     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
968     uint32_t dcz_blocksize;
969     uint64_t rvbar;
970 
971     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
972     int gic_num_lrs; /* number of list registers */
973     int gic_vpribits; /* number of virtual priority bits */
974     int gic_vprebits; /* number of virtual preemption bits */
975 
976     /* Whether the cfgend input is high (i.e. this CPU should reset into
977      * big-endian mode).  This setting isn't used directly: instead it modifies
978      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
979      * architecture version.
980      */
981     bool cfgend;
982 
983     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
984     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
985 
986     int32_t node_id; /* NUMA node this CPU belongs to */
987 
988     /* Used to synchronize KVM and QEMU in-kernel device levels */
989     uint8_t device_irq_level;
990 
991     /* Used to set the maximum vector length the cpu will support.  */
992     uint32_t sve_max_vq;
993 
994     /*
995      * In sve_vq_map each set bit is a supported vector length of
996      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
997      * length in quadwords.
998      *
999      * While processing properties during initialization, corresponding
1000      * sve_vq_init bits are set for bits in sve_vq_map that have been
1001      * set by properties.
1002      */
1003     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1004     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1005 
1006     /* Generic timer counter frequency, in Hz */
1007     uint64_t gt_cntfrq_hz;
1008 };
1009 
1010 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1011 
1012 void arm_cpu_post_init(Object *obj);
1013 
1014 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1015 
1016 #ifndef CONFIG_USER_ONLY
1017 extern const VMStateDescription vmstate_arm_cpu;
1018 #endif
1019 
1020 void arm_cpu_do_interrupt(CPUState *cpu);
1021 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1022 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1023 
1024 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1025                                          MemTxAttrs *attrs);
1026 
1027 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1028 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1029 
1030 /*
1031  * Helpers to dynamically generates XML descriptions of the sysregs
1032  * and SVE registers. Returns the number of registers in each set.
1033  */
1034 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1035 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1036 
1037 /* Returns the dynamically generated XML for the gdb stub.
1038  * Returns a pointer to the XML contents for the specified XML file or NULL
1039  * if the XML name doesn't match the predefined one.
1040  */
1041 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1042 
1043 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1044                              int cpuid, void *opaque);
1045 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1046                              int cpuid, void *opaque);
1047 
1048 #ifdef TARGET_AARCH64
1049 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1050 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1051 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1052 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1053                            int new_el, bool el0_a64);
1054 void aarch64_add_sve_properties(Object *obj);
1055 
1056 /*
1057  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1058  * The byte at offset i from the start of the in-memory representation contains
1059  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1060  * lowest offsets are stored in the lowest memory addresses, then that nearly
1061  * matches QEMU's representation, which is to use an array of host-endian
1062  * uint64_t's, where the lower offsets are at the lower indices. To complete
1063  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1064  */
1065 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1066 {
1067 #ifdef HOST_WORDS_BIGENDIAN
1068     int i;
1069 
1070     for (i = 0; i < nr; ++i) {
1071         dst[i] = bswap64(src[i]);
1072     }
1073 
1074     return dst;
1075 #else
1076     return src;
1077 #endif
1078 }
1079 
1080 #else
1081 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1082 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1083                                          int n, bool a)
1084 { }
1085 static inline void aarch64_add_sve_properties(Object *obj) { }
1086 #endif
1087 
1088 void aarch64_sync_32_to_64(CPUARMState *env);
1089 void aarch64_sync_64_to_32(CPUARMState *env);
1090 
1091 int fp_exception_el(CPUARMState *env, int cur_el);
1092 int sve_exception_el(CPUARMState *env, int cur_el);
1093 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1094 
1095 static inline bool is_a64(CPUARMState *env)
1096 {
1097     return env->aarch64;
1098 }
1099 
1100 /* you can call this signal handler from your SIGBUS and SIGSEGV
1101    signal handlers to inform the virtual CPU of exceptions. non zero
1102    is returned if the signal was handled by the virtual CPU.  */
1103 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1104                            void *puc);
1105 
1106 /**
1107  * pmu_op_start/finish
1108  * @env: CPUARMState
1109  *
1110  * Convert all PMU counters between their delta form (the typical mode when
1111  * they are enabled) and the guest-visible values. These two calls must
1112  * surround any action which might affect the counters.
1113  */
1114 void pmu_op_start(CPUARMState *env);
1115 void pmu_op_finish(CPUARMState *env);
1116 
1117 /*
1118  * Called when a PMU counter is due to overflow
1119  */
1120 void arm_pmu_timer_cb(void *opaque);
1121 
1122 /**
1123  * Functions to register as EL change hooks for PMU mode filtering
1124  */
1125 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1126 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1127 
1128 /*
1129  * pmu_init
1130  * @cpu: ARMCPU
1131  *
1132  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1133  * for the current configuration
1134  */
1135 void pmu_init(ARMCPU *cpu);
1136 
1137 /* SCTLR bit meanings. Several bits have been reused in newer
1138  * versions of the architecture; in that case we define constants
1139  * for both old and new bit meanings. Code which tests against those
1140  * bits should probably check or otherwise arrange that the CPU
1141  * is the architectural version it expects.
1142  */
1143 #define SCTLR_M       (1U << 0)
1144 #define SCTLR_A       (1U << 1)
1145 #define SCTLR_C       (1U << 2)
1146 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1147 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1148 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1149 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1150 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1151 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1152 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1153 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1154 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1155 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1156 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1157 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1158 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1159 #define SCTLR_SED     (1U << 8) /* v8 onward */
1160 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1161 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1162 #define SCTLR_F       (1U << 10) /* up to v6 */
1163 #define SCTLR_SW      (1U << 10) /* v7 */
1164 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1165 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1166 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1167 #define SCTLR_I       (1U << 12)
1168 #define SCTLR_V       (1U << 13) /* AArch32 only */
1169 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1170 #define SCTLR_RR      (1U << 14) /* up to v7 */
1171 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1172 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1173 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1174 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1175 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1176 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1177 #define SCTLR_BR      (1U << 17) /* PMSA only */
1178 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1179 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1180 #define SCTLR_WXN     (1U << 19)
1181 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1182 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1183 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1184 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1185 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1186 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1187 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1188 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1189 #define SCTLR_VE      (1U << 24) /* up to v7 */
1190 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1191 #define SCTLR_EE      (1U << 25)
1192 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1193 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1194 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1195 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1196 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1197 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1198 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1199 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1200 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1201 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1202 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1203 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1204 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1205 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1206 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1207 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1208 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1209 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1210 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1211 
1212 #define CPTR_TCPAC    (1U << 31)
1213 #define CPTR_TTA      (1U << 20)
1214 #define CPTR_TFP      (1U << 10)
1215 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1216 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1217 
1218 #define MDCR_EPMAD    (1U << 21)
1219 #define MDCR_EDAD     (1U << 20)
1220 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1221 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1222 #define MDCR_SDD      (1U << 16)
1223 #define MDCR_SPD      (3U << 14)
1224 #define MDCR_TDRA     (1U << 11)
1225 #define MDCR_TDOSA    (1U << 10)
1226 #define MDCR_TDA      (1U << 9)
1227 #define MDCR_TDE      (1U << 8)
1228 #define MDCR_HPME     (1U << 7)
1229 #define MDCR_TPM      (1U << 6)
1230 #define MDCR_TPMCR    (1U << 5)
1231 #define MDCR_HPMN     (0x1fU)
1232 
1233 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1234 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1235 
1236 #define CPSR_M (0x1fU)
1237 #define CPSR_T (1U << 5)
1238 #define CPSR_F (1U << 6)
1239 #define CPSR_I (1U << 7)
1240 #define CPSR_A (1U << 8)
1241 #define CPSR_E (1U << 9)
1242 #define CPSR_IT_2_7 (0xfc00U)
1243 #define CPSR_GE (0xfU << 16)
1244 #define CPSR_IL (1U << 20)
1245 #define CPSR_PAN (1U << 22)
1246 #define CPSR_J (1U << 24)
1247 #define CPSR_IT_0_1 (3U << 25)
1248 #define CPSR_Q (1U << 27)
1249 #define CPSR_V (1U << 28)
1250 #define CPSR_C (1U << 29)
1251 #define CPSR_Z (1U << 30)
1252 #define CPSR_N (1U << 31)
1253 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1254 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1255 
1256 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1257 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1258     | CPSR_NZCV)
1259 /* Bits writable in user mode.  */
1260 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1261 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1262 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1263 
1264 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1265 #define XPSR_EXCP 0x1ffU
1266 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1267 #define XPSR_IT_2_7 CPSR_IT_2_7
1268 #define XPSR_GE CPSR_GE
1269 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1270 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1271 #define XPSR_IT_0_1 CPSR_IT_0_1
1272 #define XPSR_Q CPSR_Q
1273 #define XPSR_V CPSR_V
1274 #define XPSR_C CPSR_C
1275 #define XPSR_Z CPSR_Z
1276 #define XPSR_N CPSR_N
1277 #define XPSR_NZCV CPSR_NZCV
1278 #define XPSR_IT CPSR_IT
1279 
1280 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1281 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1282 #define TTBCR_PD0    (1U << 4)
1283 #define TTBCR_PD1    (1U << 5)
1284 #define TTBCR_EPD0   (1U << 7)
1285 #define TTBCR_IRGN0  (3U << 8)
1286 #define TTBCR_ORGN0  (3U << 10)
1287 #define TTBCR_SH0    (3U << 12)
1288 #define TTBCR_T1SZ   (3U << 16)
1289 #define TTBCR_A1     (1U << 22)
1290 #define TTBCR_EPD1   (1U << 23)
1291 #define TTBCR_IRGN1  (3U << 24)
1292 #define TTBCR_ORGN1  (3U << 26)
1293 #define TTBCR_SH1    (1U << 28)
1294 #define TTBCR_EAE    (1U << 31)
1295 
1296 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1297  * Only these are valid when in AArch64 mode; in
1298  * AArch32 mode SPSRs are basically CPSR-format.
1299  */
1300 #define PSTATE_SP (1U)
1301 #define PSTATE_M (0xFU)
1302 #define PSTATE_nRW (1U << 4)
1303 #define PSTATE_F (1U << 6)
1304 #define PSTATE_I (1U << 7)
1305 #define PSTATE_A (1U << 8)
1306 #define PSTATE_D (1U << 9)
1307 #define PSTATE_BTYPE (3U << 10)
1308 #define PSTATE_IL (1U << 20)
1309 #define PSTATE_SS (1U << 21)
1310 #define PSTATE_PAN (1U << 22)
1311 #define PSTATE_UAO (1U << 23)
1312 #define PSTATE_TCO (1U << 25)
1313 #define PSTATE_V (1U << 28)
1314 #define PSTATE_C (1U << 29)
1315 #define PSTATE_Z (1U << 30)
1316 #define PSTATE_N (1U << 31)
1317 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1318 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1319 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1320 /* Mode values for AArch64 */
1321 #define PSTATE_MODE_EL3h 13
1322 #define PSTATE_MODE_EL3t 12
1323 #define PSTATE_MODE_EL2h 9
1324 #define PSTATE_MODE_EL2t 8
1325 #define PSTATE_MODE_EL1h 5
1326 #define PSTATE_MODE_EL1t 4
1327 #define PSTATE_MODE_EL0t 0
1328 
1329 /* Write a new value to v7m.exception, thus transitioning into or out
1330  * of Handler mode; this may result in a change of active stack pointer.
1331  */
1332 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1333 
1334 /* Map EL and handler into a PSTATE_MODE.  */
1335 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1336 {
1337     return (el << 2) | handler;
1338 }
1339 
1340 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1341  * interprocessing, so we don't attempt to sync with the cpsr state used by
1342  * the 32 bit decoder.
1343  */
1344 static inline uint32_t pstate_read(CPUARMState *env)
1345 {
1346     int ZF;
1347 
1348     ZF = (env->ZF == 0);
1349     return (env->NF & 0x80000000) | (ZF << 30)
1350         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1351         | env->pstate | env->daif | (env->btype << 10);
1352 }
1353 
1354 static inline void pstate_write(CPUARMState *env, uint32_t val)
1355 {
1356     env->ZF = (~val) & PSTATE_Z;
1357     env->NF = val;
1358     env->CF = (val >> 29) & 1;
1359     env->VF = (val << 3) & 0x80000000;
1360     env->daif = val & PSTATE_DAIF;
1361     env->btype = (val >> 10) & 3;
1362     env->pstate = val & ~CACHED_PSTATE_BITS;
1363 }
1364 
1365 /* Return the current CPSR value.  */
1366 uint32_t cpsr_read(CPUARMState *env);
1367 
1368 typedef enum CPSRWriteType {
1369     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1370     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1371     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1372     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1373 } CPSRWriteType;
1374 
1375 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1376 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1377                 CPSRWriteType write_type);
1378 
1379 /* Return the current xPSR value.  */
1380 static inline uint32_t xpsr_read(CPUARMState *env)
1381 {
1382     int ZF;
1383     ZF = (env->ZF == 0);
1384     return (env->NF & 0x80000000) | (ZF << 30)
1385         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1386         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1387         | ((env->condexec_bits & 0xfc) << 8)
1388         | (env->GE << 16)
1389         | env->v7m.exception;
1390 }
1391 
1392 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1393 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1394 {
1395     if (mask & XPSR_NZCV) {
1396         env->ZF = (~val) & XPSR_Z;
1397         env->NF = val;
1398         env->CF = (val >> 29) & 1;
1399         env->VF = (val << 3) & 0x80000000;
1400     }
1401     if (mask & XPSR_Q) {
1402         env->QF = ((val & XPSR_Q) != 0);
1403     }
1404     if (mask & XPSR_GE) {
1405         env->GE = (val & XPSR_GE) >> 16;
1406     }
1407 #ifndef CONFIG_USER_ONLY
1408     if (mask & XPSR_T) {
1409         env->thumb = ((val & XPSR_T) != 0);
1410     }
1411     if (mask & XPSR_IT_0_1) {
1412         env->condexec_bits &= ~3;
1413         env->condexec_bits |= (val >> 25) & 3;
1414     }
1415     if (mask & XPSR_IT_2_7) {
1416         env->condexec_bits &= 3;
1417         env->condexec_bits |= (val >> 8) & 0xfc;
1418     }
1419     if (mask & XPSR_EXCP) {
1420         /* Note that this only happens on exception exit */
1421         write_v7m_exception(env, val & XPSR_EXCP);
1422     }
1423 #endif
1424 }
1425 
1426 #define HCR_VM        (1ULL << 0)
1427 #define HCR_SWIO      (1ULL << 1)
1428 #define HCR_PTW       (1ULL << 2)
1429 #define HCR_FMO       (1ULL << 3)
1430 #define HCR_IMO       (1ULL << 4)
1431 #define HCR_AMO       (1ULL << 5)
1432 #define HCR_VF        (1ULL << 6)
1433 #define HCR_VI        (1ULL << 7)
1434 #define HCR_VSE       (1ULL << 8)
1435 #define HCR_FB        (1ULL << 9)
1436 #define HCR_BSU_MASK  (3ULL << 10)
1437 #define HCR_DC        (1ULL << 12)
1438 #define HCR_TWI       (1ULL << 13)
1439 #define HCR_TWE       (1ULL << 14)
1440 #define HCR_TID0      (1ULL << 15)
1441 #define HCR_TID1      (1ULL << 16)
1442 #define HCR_TID2      (1ULL << 17)
1443 #define HCR_TID3      (1ULL << 18)
1444 #define HCR_TSC       (1ULL << 19)
1445 #define HCR_TIDCP     (1ULL << 20)
1446 #define HCR_TACR      (1ULL << 21)
1447 #define HCR_TSW       (1ULL << 22)
1448 #define HCR_TPCP      (1ULL << 23)
1449 #define HCR_TPU       (1ULL << 24)
1450 #define HCR_TTLB      (1ULL << 25)
1451 #define HCR_TVM       (1ULL << 26)
1452 #define HCR_TGE       (1ULL << 27)
1453 #define HCR_TDZ       (1ULL << 28)
1454 #define HCR_HCD       (1ULL << 29)
1455 #define HCR_TRVM      (1ULL << 30)
1456 #define HCR_RW        (1ULL << 31)
1457 #define HCR_CD        (1ULL << 32)
1458 #define HCR_ID        (1ULL << 33)
1459 #define HCR_E2H       (1ULL << 34)
1460 #define HCR_TLOR      (1ULL << 35)
1461 #define HCR_TERR      (1ULL << 36)
1462 #define HCR_TEA       (1ULL << 37)
1463 #define HCR_MIOCNCE   (1ULL << 38)
1464 /* RES0 bit 39 */
1465 #define HCR_APK       (1ULL << 40)
1466 #define HCR_API       (1ULL << 41)
1467 #define HCR_NV        (1ULL << 42)
1468 #define HCR_NV1       (1ULL << 43)
1469 #define HCR_AT        (1ULL << 44)
1470 #define HCR_NV2       (1ULL << 45)
1471 #define HCR_FWB       (1ULL << 46)
1472 #define HCR_FIEN      (1ULL << 47)
1473 /* RES0 bit 48 */
1474 #define HCR_TID4      (1ULL << 49)
1475 #define HCR_TICAB     (1ULL << 50)
1476 #define HCR_AMVOFFEN  (1ULL << 51)
1477 #define HCR_TOCU      (1ULL << 52)
1478 #define HCR_ENSCXT    (1ULL << 53)
1479 #define HCR_TTLBIS    (1ULL << 54)
1480 #define HCR_TTLBOS    (1ULL << 55)
1481 #define HCR_ATA       (1ULL << 56)
1482 #define HCR_DCT       (1ULL << 57)
1483 #define HCR_TID5      (1ULL << 58)
1484 #define HCR_TWEDEN    (1ULL << 59)
1485 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1486 
1487 #define HPFAR_NS      (1ULL << 63)
1488 
1489 #define SCR_NS                (1U << 0)
1490 #define SCR_IRQ               (1U << 1)
1491 #define SCR_FIQ               (1U << 2)
1492 #define SCR_EA                (1U << 3)
1493 #define SCR_FW                (1U << 4)
1494 #define SCR_AW                (1U << 5)
1495 #define SCR_NET               (1U << 6)
1496 #define SCR_SMD               (1U << 7)
1497 #define SCR_HCE               (1U << 8)
1498 #define SCR_SIF               (1U << 9)
1499 #define SCR_RW                (1U << 10)
1500 #define SCR_ST                (1U << 11)
1501 #define SCR_TWI               (1U << 12)
1502 #define SCR_TWE               (1U << 13)
1503 #define SCR_TLOR              (1U << 14)
1504 #define SCR_TERR              (1U << 15)
1505 #define SCR_APK               (1U << 16)
1506 #define SCR_API               (1U << 17)
1507 #define SCR_EEL2              (1U << 18)
1508 #define SCR_EASE              (1U << 19)
1509 #define SCR_NMEA              (1U << 20)
1510 #define SCR_FIEN              (1U << 21)
1511 #define SCR_ENSCXT            (1U << 25)
1512 #define SCR_ATA               (1U << 26)
1513 
1514 /* Return the current FPSCR value.  */
1515 uint32_t vfp_get_fpscr(CPUARMState *env);
1516 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1517 
1518 /* FPCR, Floating Point Control Register
1519  * FPSR, Floating Poiht Status Register
1520  *
1521  * For A64 the FPSCR is split into two logically distinct registers,
1522  * FPCR and FPSR. However since they still use non-overlapping bits
1523  * we store the underlying state in fpscr and just mask on read/write.
1524  */
1525 #define FPSR_MASK 0xf800009f
1526 #define FPCR_MASK 0x07ff9f00
1527 
1528 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1529 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1530 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1531 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1532 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1533 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1534 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1535 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1536 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1537 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1538 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1539 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1540 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1541 #define FPCR_C      (1 << 29)   /* FP carry flag */
1542 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1543 #define FPCR_N      (1 << 31)   /* FP negative flag */
1544 
1545 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1546 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1547 
1548 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1549 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1550 
1551 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1552 {
1553     return vfp_get_fpscr(env) & FPSR_MASK;
1554 }
1555 
1556 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1557 {
1558     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1559     vfp_set_fpscr(env, new_fpscr);
1560 }
1561 
1562 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1563 {
1564     return vfp_get_fpscr(env) & FPCR_MASK;
1565 }
1566 
1567 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1568 {
1569     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1570     vfp_set_fpscr(env, new_fpscr);
1571 }
1572 
1573 enum arm_cpu_mode {
1574   ARM_CPU_MODE_USR = 0x10,
1575   ARM_CPU_MODE_FIQ = 0x11,
1576   ARM_CPU_MODE_IRQ = 0x12,
1577   ARM_CPU_MODE_SVC = 0x13,
1578   ARM_CPU_MODE_MON = 0x16,
1579   ARM_CPU_MODE_ABT = 0x17,
1580   ARM_CPU_MODE_HYP = 0x1a,
1581   ARM_CPU_MODE_UND = 0x1b,
1582   ARM_CPU_MODE_SYS = 0x1f
1583 };
1584 
1585 /* VFP system registers.  */
1586 #define ARM_VFP_FPSID   0
1587 #define ARM_VFP_FPSCR   1
1588 #define ARM_VFP_MVFR2   5
1589 #define ARM_VFP_MVFR1   6
1590 #define ARM_VFP_MVFR0   7
1591 #define ARM_VFP_FPEXC   8
1592 #define ARM_VFP_FPINST  9
1593 #define ARM_VFP_FPINST2 10
1594 /* These ones are M-profile only */
1595 #define ARM_VFP_FPSCR_NZCVQC 2
1596 #define ARM_VFP_VPR 12
1597 #define ARM_VFP_P0 13
1598 #define ARM_VFP_FPCXT_NS 14
1599 #define ARM_VFP_FPCXT_S 15
1600 
1601 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1602 #define QEMU_VFP_FPSCR_NZCV 0xffff
1603 
1604 /* iwMMXt coprocessor control registers.  */
1605 #define ARM_IWMMXT_wCID  0
1606 #define ARM_IWMMXT_wCon  1
1607 #define ARM_IWMMXT_wCSSF 2
1608 #define ARM_IWMMXT_wCASF 3
1609 #define ARM_IWMMXT_wCGR0 8
1610 #define ARM_IWMMXT_wCGR1 9
1611 #define ARM_IWMMXT_wCGR2 10
1612 #define ARM_IWMMXT_wCGR3 11
1613 
1614 /* V7M CCR bits */
1615 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1616 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1617 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1618 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1619 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1620 FIELD(V7M_CCR, STKALIGN, 9, 1)
1621 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1622 FIELD(V7M_CCR, DC, 16, 1)
1623 FIELD(V7M_CCR, IC, 17, 1)
1624 FIELD(V7M_CCR, BP, 18, 1)
1625 FIELD(V7M_CCR, LOB, 19, 1)
1626 FIELD(V7M_CCR, TRD, 20, 1)
1627 
1628 /* V7M SCR bits */
1629 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1630 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1631 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1632 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1633 
1634 /* V7M AIRCR bits */
1635 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1636 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1637 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1638 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1639 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1640 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1641 FIELD(V7M_AIRCR, PRIS, 14, 1)
1642 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1643 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1644 
1645 /* V7M CFSR bits for MMFSR */
1646 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1647 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1648 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1649 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1650 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1651 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1652 
1653 /* V7M CFSR bits for BFSR */
1654 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1655 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1656 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1657 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1658 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1659 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1660 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1661 
1662 /* V7M CFSR bits for UFSR */
1663 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1664 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1665 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1666 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1667 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1668 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1669 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1670 
1671 /* V7M CFSR bit masks covering all of the subregister bits */
1672 FIELD(V7M_CFSR, MMFSR, 0, 8)
1673 FIELD(V7M_CFSR, BFSR, 8, 8)
1674 FIELD(V7M_CFSR, UFSR, 16, 16)
1675 
1676 /* V7M HFSR bits */
1677 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1678 FIELD(V7M_HFSR, FORCED, 30, 1)
1679 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1680 
1681 /* V7M DFSR bits */
1682 FIELD(V7M_DFSR, HALTED, 0, 1)
1683 FIELD(V7M_DFSR, BKPT, 1, 1)
1684 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1685 FIELD(V7M_DFSR, VCATCH, 3, 1)
1686 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1687 
1688 /* V7M SFSR bits */
1689 FIELD(V7M_SFSR, INVEP, 0, 1)
1690 FIELD(V7M_SFSR, INVIS, 1, 1)
1691 FIELD(V7M_SFSR, INVER, 2, 1)
1692 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1693 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1694 FIELD(V7M_SFSR, LSPERR, 5, 1)
1695 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1696 FIELD(V7M_SFSR, LSERR, 7, 1)
1697 
1698 /* v7M MPU_CTRL bits */
1699 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1700 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1701 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1702 
1703 /* v7M CLIDR bits */
1704 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1705 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1706 FIELD(V7M_CLIDR, LOC, 24, 3)
1707 FIELD(V7M_CLIDR, LOUU, 27, 3)
1708 FIELD(V7M_CLIDR, ICB, 30, 2)
1709 
1710 FIELD(V7M_CSSELR, IND, 0, 1)
1711 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1712 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1713  * define a mask for this and check that it doesn't permit running off
1714  * the end of the array.
1715  */
1716 FIELD(V7M_CSSELR, INDEX, 0, 4)
1717 
1718 /* v7M FPCCR bits */
1719 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1720 FIELD(V7M_FPCCR, USER, 1, 1)
1721 FIELD(V7M_FPCCR, S, 2, 1)
1722 FIELD(V7M_FPCCR, THREAD, 3, 1)
1723 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1724 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1725 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1726 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1727 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1728 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1729 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1730 FIELD(V7M_FPCCR, RES0, 11, 15)
1731 FIELD(V7M_FPCCR, TS, 26, 1)
1732 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1733 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1734 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1735 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1736 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1737 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1738 #define R_V7M_FPCCR_BANKED_MASK                 \
1739     (R_V7M_FPCCR_LSPACT_MASK |                  \
1740      R_V7M_FPCCR_USER_MASK |                    \
1741      R_V7M_FPCCR_THREAD_MASK |                  \
1742      R_V7M_FPCCR_MMRDY_MASK |                   \
1743      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1744      R_V7M_FPCCR_UFRDY_MASK |                   \
1745      R_V7M_FPCCR_ASPEN_MASK)
1746 
1747 /*
1748  * System register ID fields.
1749  */
1750 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1751 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1752 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1753 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1754 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1755 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1756 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1757 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1758 FIELD(CLIDR_EL1, LOC, 24, 3)
1759 FIELD(CLIDR_EL1, LOUU, 27, 3)
1760 FIELD(CLIDR_EL1, ICB, 30, 3)
1761 
1762 /* When FEAT_CCIDX is implemented */
1763 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1764 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1765 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1766 
1767 /* When FEAT_CCIDX is not implemented */
1768 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1769 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1770 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1771 
1772 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1773 FIELD(CTR_EL0,  L1IP, 14, 2)
1774 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1775 FIELD(CTR_EL0,  ERG, 20, 4)
1776 FIELD(CTR_EL0,  CWG, 24, 4)
1777 FIELD(CTR_EL0,  IDC, 28, 1)
1778 FIELD(CTR_EL0,  DIC, 29, 1)
1779 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1780 
1781 FIELD(MIDR_EL1, REVISION, 0, 4)
1782 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1783 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1784 FIELD(MIDR_EL1, VARIANT, 20, 4)
1785 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1786 
1787 FIELD(ID_ISAR0, SWAP, 0, 4)
1788 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1789 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1790 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1791 FIELD(ID_ISAR0, COPROC, 16, 4)
1792 FIELD(ID_ISAR0, DEBUG, 20, 4)
1793 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1794 
1795 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1796 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1797 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1798 FIELD(ID_ISAR1, EXTEND, 12, 4)
1799 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1800 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1801 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1802 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1803 
1804 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1805 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1806 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1807 FIELD(ID_ISAR2, MULT, 12, 4)
1808 FIELD(ID_ISAR2, MULTS, 16, 4)
1809 FIELD(ID_ISAR2, MULTU, 20, 4)
1810 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1811 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1812 
1813 FIELD(ID_ISAR3, SATURATE, 0, 4)
1814 FIELD(ID_ISAR3, SIMD, 4, 4)
1815 FIELD(ID_ISAR3, SVC, 8, 4)
1816 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1817 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1818 FIELD(ID_ISAR3, T32COPY, 20, 4)
1819 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1820 FIELD(ID_ISAR3, T32EE, 28, 4)
1821 
1822 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1823 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1824 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1825 FIELD(ID_ISAR4, SMC, 12, 4)
1826 FIELD(ID_ISAR4, BARRIER, 16, 4)
1827 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1828 FIELD(ID_ISAR4, PSR_M, 24, 4)
1829 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1830 
1831 FIELD(ID_ISAR5, SEVL, 0, 4)
1832 FIELD(ID_ISAR5, AES, 4, 4)
1833 FIELD(ID_ISAR5, SHA1, 8, 4)
1834 FIELD(ID_ISAR5, SHA2, 12, 4)
1835 FIELD(ID_ISAR5, CRC32, 16, 4)
1836 FIELD(ID_ISAR5, RDM, 24, 4)
1837 FIELD(ID_ISAR5, VCMA, 28, 4)
1838 
1839 FIELD(ID_ISAR6, JSCVT, 0, 4)
1840 FIELD(ID_ISAR6, DP, 4, 4)
1841 FIELD(ID_ISAR6, FHM, 8, 4)
1842 FIELD(ID_ISAR6, SB, 12, 4)
1843 FIELD(ID_ISAR6, SPECRES, 16, 4)
1844 FIELD(ID_ISAR6, BF16, 20, 4)
1845 FIELD(ID_ISAR6, I8MM, 24, 4)
1846 
1847 FIELD(ID_MMFR0, VMSA, 0, 4)
1848 FIELD(ID_MMFR0, PMSA, 4, 4)
1849 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1850 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1851 FIELD(ID_MMFR0, TCM, 16, 4)
1852 FIELD(ID_MMFR0, AUXREG, 20, 4)
1853 FIELD(ID_MMFR0, FCSE, 24, 4)
1854 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1855 
1856 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1857 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1858 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1859 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1860 FIELD(ID_MMFR1, L1HVD, 16, 4)
1861 FIELD(ID_MMFR1, L1UNI, 20, 4)
1862 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1863 FIELD(ID_MMFR1, BPRED, 28, 4)
1864 
1865 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1866 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1867 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1868 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1869 FIELD(ID_MMFR2, UNITLB, 16, 4)
1870 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1871 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1872 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1873 
1874 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1875 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1876 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1877 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1878 FIELD(ID_MMFR3, PAN, 16, 4)
1879 FIELD(ID_MMFR3, COHWALK, 20, 4)
1880 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1881 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1882 
1883 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1884 FIELD(ID_MMFR4, AC2, 4, 4)
1885 FIELD(ID_MMFR4, XNX, 8, 4)
1886 FIELD(ID_MMFR4, CNP, 12, 4)
1887 FIELD(ID_MMFR4, HPDS, 16, 4)
1888 FIELD(ID_MMFR4, LSM, 20, 4)
1889 FIELD(ID_MMFR4, CCIDX, 24, 4)
1890 FIELD(ID_MMFR4, EVT, 28, 4)
1891 
1892 FIELD(ID_MMFR5, ETS, 0, 4)
1893 
1894 FIELD(ID_PFR0, STATE0, 0, 4)
1895 FIELD(ID_PFR0, STATE1, 4, 4)
1896 FIELD(ID_PFR0, STATE2, 8, 4)
1897 FIELD(ID_PFR0, STATE3, 12, 4)
1898 FIELD(ID_PFR0, CSV2, 16, 4)
1899 FIELD(ID_PFR0, AMU, 20, 4)
1900 FIELD(ID_PFR0, DIT, 24, 4)
1901 FIELD(ID_PFR0, RAS, 28, 4)
1902 
1903 FIELD(ID_PFR1, PROGMOD, 0, 4)
1904 FIELD(ID_PFR1, SECURITY, 4, 4)
1905 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1906 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1907 FIELD(ID_PFR1, GENTIMER, 16, 4)
1908 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1909 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1910 FIELD(ID_PFR1, GIC, 28, 4)
1911 
1912 FIELD(ID_PFR2, CSV3, 0, 4)
1913 FIELD(ID_PFR2, SSBS, 4, 4)
1914 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1915 
1916 FIELD(ID_AA64ISAR0, AES, 4, 4)
1917 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1918 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1919 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1920 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1921 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1922 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1923 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1924 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1925 FIELD(ID_AA64ISAR0, DP, 44, 4)
1926 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1927 FIELD(ID_AA64ISAR0, TS, 52, 4)
1928 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1929 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1930 
1931 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1932 FIELD(ID_AA64ISAR1, APA, 4, 4)
1933 FIELD(ID_AA64ISAR1, API, 8, 4)
1934 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1935 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1936 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1937 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1938 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1939 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1940 FIELD(ID_AA64ISAR1, SB, 36, 4)
1941 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1942 FIELD(ID_AA64ISAR1, BF16, 44, 4)
1943 FIELD(ID_AA64ISAR1, DGH, 48, 4)
1944 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1945 
1946 FIELD(ID_AA64PFR0, EL0, 0, 4)
1947 FIELD(ID_AA64PFR0, EL1, 4, 4)
1948 FIELD(ID_AA64PFR0, EL2, 8, 4)
1949 FIELD(ID_AA64PFR0, EL3, 12, 4)
1950 FIELD(ID_AA64PFR0, FP, 16, 4)
1951 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1952 FIELD(ID_AA64PFR0, GIC, 24, 4)
1953 FIELD(ID_AA64PFR0, RAS, 28, 4)
1954 FIELD(ID_AA64PFR0, SVE, 32, 4)
1955 FIELD(ID_AA64PFR0, SEL2, 36, 4)
1956 FIELD(ID_AA64PFR0, MPAM, 40, 4)
1957 FIELD(ID_AA64PFR0, AMU, 44, 4)
1958 FIELD(ID_AA64PFR0, DIT, 48, 4)
1959 FIELD(ID_AA64PFR0, CSV2, 56, 4)
1960 FIELD(ID_AA64PFR0, CSV3, 60, 4)
1961 
1962 FIELD(ID_AA64PFR1, BT, 0, 4)
1963 FIELD(ID_AA64PFR1, SSBS, 4, 4)
1964 FIELD(ID_AA64PFR1, MTE, 8, 4)
1965 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1966 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1967 
1968 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1969 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1970 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1971 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1972 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1973 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1974 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1975 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1976 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1977 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1978 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1979 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1980 FIELD(ID_AA64MMFR0, FGT, 56, 4)
1981 FIELD(ID_AA64MMFR0, ECV, 60, 4)
1982 
1983 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1984 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1985 FIELD(ID_AA64MMFR1, VH, 8, 4)
1986 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1987 FIELD(ID_AA64MMFR1, LO, 16, 4)
1988 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1989 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1990 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1991 FIELD(ID_AA64MMFR1, TWED, 32, 4)
1992 FIELD(ID_AA64MMFR1, ETS, 36, 4)
1993 
1994 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1995 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1996 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1997 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1998 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1999 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2000 FIELD(ID_AA64MMFR2, NV, 24, 4)
2001 FIELD(ID_AA64MMFR2, ST, 28, 4)
2002 FIELD(ID_AA64MMFR2, AT, 32, 4)
2003 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2004 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2005 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2006 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2007 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2008 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2009 
2010 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2011 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2012 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2013 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2014 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2015 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2016 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2017 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2018 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2019 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2020 
2021 FIELD(ID_DFR0, COPDBG, 0, 4)
2022 FIELD(ID_DFR0, COPSDBG, 4, 4)
2023 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2024 FIELD(ID_DFR0, COPTRC, 12, 4)
2025 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2026 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2027 FIELD(ID_DFR0, PERFMON, 24, 4)
2028 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2029 
2030 FIELD(ID_DFR1, MTPMU, 0, 4)
2031 
2032 FIELD(DBGDIDR, SE_IMP, 12, 1)
2033 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2034 FIELD(DBGDIDR, VERSION, 16, 4)
2035 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2036 FIELD(DBGDIDR, BRPS, 24, 4)
2037 FIELD(DBGDIDR, WRPS, 28, 4)
2038 
2039 FIELD(MVFR0, SIMDREG, 0, 4)
2040 FIELD(MVFR0, FPSP, 4, 4)
2041 FIELD(MVFR0, FPDP, 8, 4)
2042 FIELD(MVFR0, FPTRAP, 12, 4)
2043 FIELD(MVFR0, FPDIVIDE, 16, 4)
2044 FIELD(MVFR0, FPSQRT, 20, 4)
2045 FIELD(MVFR0, FPSHVEC, 24, 4)
2046 FIELD(MVFR0, FPROUND, 28, 4)
2047 
2048 FIELD(MVFR1, FPFTZ, 0, 4)
2049 FIELD(MVFR1, FPDNAN, 4, 4)
2050 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2051 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2052 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2053 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2054 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2055 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2056 FIELD(MVFR1, FPHP, 24, 4)
2057 FIELD(MVFR1, SIMDFMAC, 28, 4)
2058 
2059 FIELD(MVFR2, SIMDMISC, 0, 4)
2060 FIELD(MVFR2, FPMISC, 4, 4)
2061 
2062 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2063 
2064 /* If adding a feature bit which corresponds to a Linux ELF
2065  * HWCAP bit, remember to update the feature-bit-to-hwcap
2066  * mapping in linux-user/elfload.c:get_elf_hwcap().
2067  */
2068 enum arm_features {
2069     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2070     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2071     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2072     ARM_FEATURE_V6,
2073     ARM_FEATURE_V6K,
2074     ARM_FEATURE_V7,
2075     ARM_FEATURE_THUMB2,
2076     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2077     ARM_FEATURE_NEON,
2078     ARM_FEATURE_M, /* Microcontroller profile.  */
2079     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2080     ARM_FEATURE_THUMB2EE,
2081     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2082     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2083     ARM_FEATURE_V4T,
2084     ARM_FEATURE_V5,
2085     ARM_FEATURE_STRONGARM,
2086     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2087     ARM_FEATURE_GENERIC_TIMER,
2088     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2089     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2090     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2091     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2092     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2093     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2094     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2095     ARM_FEATURE_V8,
2096     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2097     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2098     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2099     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2100     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2101     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2102     ARM_FEATURE_PMU, /* has PMU support */
2103     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2104     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2105     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2106     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2107 };
2108 
2109 static inline int arm_feature(CPUARMState *env, int feature)
2110 {
2111     return (env->features & (1ULL << feature)) != 0;
2112 }
2113 
2114 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2115 
2116 #if !defined(CONFIG_USER_ONLY)
2117 /* Return true if exception levels below EL3 are in secure state,
2118  * or would be following an exception return to that level.
2119  * Unlike arm_is_secure() (which is always a question about the
2120  * _current_ state of the CPU) this doesn't care about the current
2121  * EL or mode.
2122  */
2123 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2124 {
2125     if (arm_feature(env, ARM_FEATURE_EL3)) {
2126         return !(env->cp15.scr_el3 & SCR_NS);
2127     } else {
2128         /* If EL3 is not supported then the secure state is implementation
2129          * defined, in which case QEMU defaults to non-secure.
2130          */
2131         return false;
2132     }
2133 }
2134 
2135 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2136 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2137 {
2138     if (arm_feature(env, ARM_FEATURE_EL3)) {
2139         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2140             /* CPU currently in AArch64 state and EL3 */
2141             return true;
2142         } else if (!is_a64(env) &&
2143                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2144             /* CPU currently in AArch32 state and monitor mode */
2145             return true;
2146         }
2147     }
2148     return false;
2149 }
2150 
2151 /* Return true if the processor is in secure state */
2152 static inline bool arm_is_secure(CPUARMState *env)
2153 {
2154     if (arm_is_el3_or_mon(env)) {
2155         return true;
2156     }
2157     return arm_is_secure_below_el3(env);
2158 }
2159 
2160 /*
2161  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2162  * This corresponds to the pseudocode EL2Enabled()
2163  */
2164 static inline bool arm_is_el2_enabled(CPUARMState *env)
2165 {
2166     if (arm_feature(env, ARM_FEATURE_EL2)) {
2167         if (arm_is_secure_below_el3(env)) {
2168             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2169         }
2170         return true;
2171     }
2172     return false;
2173 }
2174 
2175 #else
2176 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2177 {
2178     return false;
2179 }
2180 
2181 static inline bool arm_is_secure(CPUARMState *env)
2182 {
2183     return false;
2184 }
2185 
2186 static inline bool arm_is_el2_enabled(CPUARMState *env)
2187 {
2188     return false;
2189 }
2190 #endif
2191 
2192 /**
2193  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2194  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2195  * "for all purposes other than a direct read or write access of HCR_EL2."
2196  * Not included here is HCR_RW.
2197  */
2198 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2199 
2200 /* Return true if the specified exception level is running in AArch64 state. */
2201 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2202 {
2203     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2204      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2205      */
2206     assert(el >= 1 && el <= 3);
2207     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2208 
2209     /* The highest exception level is always at the maximum supported
2210      * register width, and then lower levels have a register width controlled
2211      * by bits in the SCR or HCR registers.
2212      */
2213     if (el == 3) {
2214         return aa64;
2215     }
2216 
2217     if (arm_feature(env, ARM_FEATURE_EL3) &&
2218         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2219         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2220     }
2221 
2222     if (el == 2) {
2223         return aa64;
2224     }
2225 
2226     if (arm_is_el2_enabled(env)) {
2227         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2228     }
2229 
2230     return aa64;
2231 }
2232 
2233 /* Function for determing whether guest cp register reads and writes should
2234  * access the secure or non-secure bank of a cp register.  When EL3 is
2235  * operating in AArch32 state, the NS-bit determines whether the secure
2236  * instance of a cp register should be used. When EL3 is AArch64 (or if
2237  * it doesn't exist at all) then there is no register banking, and all
2238  * accesses are to the non-secure version.
2239  */
2240 static inline bool access_secure_reg(CPUARMState *env)
2241 {
2242     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2243                 !arm_el_is_aa64(env, 3) &&
2244                 !(env->cp15.scr_el3 & SCR_NS));
2245 
2246     return ret;
2247 }
2248 
2249 /* Macros for accessing a specified CP register bank */
2250 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2251     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2252 
2253 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2254     do {                                                \
2255         if (_secure) {                                   \
2256             (_env)->cp15._regname##_s = (_val);            \
2257         } else {                                        \
2258             (_env)->cp15._regname##_ns = (_val);           \
2259         }                                               \
2260     } while (0)
2261 
2262 /* Macros for automatically accessing a specific CP register bank depending on
2263  * the current secure state of the system.  These macros are not intended for
2264  * supporting instruction translation reads/writes as these are dependent
2265  * solely on the SCR.NS bit and not the mode.
2266  */
2267 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2268     A32_BANKED_REG_GET((_env), _regname,                \
2269                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2270 
2271 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2272     A32_BANKED_REG_SET((_env), _regname,                                    \
2273                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2274                        (_val))
2275 
2276 void arm_cpu_list(void);
2277 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2278                                  uint32_t cur_el, bool secure);
2279 
2280 /* Interface between CPU and Interrupt controller.  */
2281 #ifndef CONFIG_USER_ONLY
2282 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2283 #else
2284 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2285 {
2286     return true;
2287 }
2288 #endif
2289 /**
2290  * armv7m_nvic_set_pending: mark the specified exception as pending
2291  * @opaque: the NVIC
2292  * @irq: the exception number to mark pending
2293  * @secure: false for non-banked exceptions or for the nonsecure
2294  * version of a banked exception, true for the secure version of a banked
2295  * exception.
2296  *
2297  * Marks the specified exception as pending. Note that we will assert()
2298  * if @secure is true and @irq does not specify one of the fixed set
2299  * of architecturally banked exceptions.
2300  */
2301 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2302 /**
2303  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2304  * @opaque: the NVIC
2305  * @irq: the exception number to mark pending
2306  * @secure: false for non-banked exceptions or for the nonsecure
2307  * version of a banked exception, true for the secure version of a banked
2308  * exception.
2309  *
2310  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2311  * exceptions (exceptions generated in the course of trying to take
2312  * a different exception).
2313  */
2314 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2315 /**
2316  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2317  * @opaque: the NVIC
2318  * @irq: the exception number to mark pending
2319  * @secure: false for non-banked exceptions or for the nonsecure
2320  * version of a banked exception, true for the secure version of a banked
2321  * exception.
2322  *
2323  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2324  * generated in the course of lazy stacking of FP registers.
2325  */
2326 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2327 /**
2328  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2329  *    exception, and whether it targets Secure state
2330  * @opaque: the NVIC
2331  * @pirq: set to pending exception number
2332  * @ptargets_secure: set to whether pending exception targets Secure
2333  *
2334  * This function writes the number of the highest priority pending
2335  * exception (the one which would be made active by
2336  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2337  * to true if the current highest priority pending exception should
2338  * be taken to Secure state, false for NS.
2339  */
2340 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2341                                       bool *ptargets_secure);
2342 /**
2343  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2344  * @opaque: the NVIC
2345  *
2346  * Move the current highest priority pending exception from the pending
2347  * state to the active state, and update v7m.exception to indicate that
2348  * it is the exception currently being handled.
2349  */
2350 void armv7m_nvic_acknowledge_irq(void *opaque);
2351 /**
2352  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2353  * @opaque: the NVIC
2354  * @irq: the exception number to complete
2355  * @secure: true if this exception was secure
2356  *
2357  * Returns: -1 if the irq was not active
2358  *           1 if completing this irq brought us back to base (no active irqs)
2359  *           0 if there is still an irq active after this one was completed
2360  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2361  */
2362 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2363 /**
2364  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2365  * @opaque: the NVIC
2366  * @irq: the exception number to mark pending
2367  * @secure: false for non-banked exceptions or for the nonsecure
2368  * version of a banked exception, true for the secure version of a banked
2369  * exception.
2370  *
2371  * Return whether an exception is "ready", i.e. whether the exception is
2372  * enabled and is configured at a priority which would allow it to
2373  * interrupt the current execution priority. This controls whether the
2374  * RDY bit for it in the FPCCR is set.
2375  */
2376 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2377 /**
2378  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2379  * @opaque: the NVIC
2380  *
2381  * Returns: the raw execution priority as defined by the v8M architecture.
2382  * This is the execution priority minus the effects of AIRCR.PRIS,
2383  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2384  * (v8M ARM ARM I_PKLD.)
2385  */
2386 int armv7m_nvic_raw_execution_priority(void *opaque);
2387 /**
2388  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2389  * priority is negative for the specified security state.
2390  * @opaque: the NVIC
2391  * @secure: the security state to test
2392  * This corresponds to the pseudocode IsReqExecPriNeg().
2393  */
2394 #ifndef CONFIG_USER_ONLY
2395 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2396 #else
2397 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2398 {
2399     return false;
2400 }
2401 #endif
2402 
2403 /* Interface for defining coprocessor registers.
2404  * Registers are defined in tables of arm_cp_reginfo structs
2405  * which are passed to define_arm_cp_regs().
2406  */
2407 
2408 /* When looking up a coprocessor register we look for it
2409  * via an integer which encodes all of:
2410  *  coprocessor number
2411  *  Crn, Crm, opc1, opc2 fields
2412  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2413  *    or via MRRC/MCRR?)
2414  *  non-secure/secure bank (AArch32 only)
2415  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2416  * (In this case crn and opc2 should be zero.)
2417  * For AArch64, there is no 32/64 bit size distinction;
2418  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2419  * and 4 bit CRn and CRm. The encoding patterns are chosen
2420  * to be easy to convert to and from the KVM encodings, and also
2421  * so that the hashtable can contain both AArch32 and AArch64
2422  * registers (to allow for interprocessing where we might run
2423  * 32 bit code on a 64 bit core).
2424  */
2425 /* This bit is private to our hashtable cpreg; in KVM register
2426  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2427  * in the upper bits of the 64 bit ID.
2428  */
2429 #define CP_REG_AA64_SHIFT 28
2430 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2431 
2432 /* To enable banking of coprocessor registers depending on ns-bit we
2433  * add a bit to distinguish between secure and non-secure cpregs in the
2434  * hashtable.
2435  */
2436 #define CP_REG_NS_SHIFT 29
2437 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2438 
2439 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2440     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2441      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2442 
2443 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2444     (CP_REG_AA64_MASK |                                 \
2445      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2446      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2447      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2448      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2449      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2450      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2451 
2452 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2453  * version used as a key for the coprocessor register hashtable
2454  */
2455 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2456 {
2457     uint32_t cpregid = kvmid;
2458     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2459         cpregid |= CP_REG_AA64_MASK;
2460     } else {
2461         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2462             cpregid |= (1 << 15);
2463         }
2464 
2465         /* KVM is always non-secure so add the NS flag on AArch32 register
2466          * entries.
2467          */
2468          cpregid |= 1 << CP_REG_NS_SHIFT;
2469     }
2470     return cpregid;
2471 }
2472 
2473 /* Convert a truncated 32 bit hashtable key into the full
2474  * 64 bit KVM register ID.
2475  */
2476 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2477 {
2478     uint64_t kvmid;
2479 
2480     if (cpregid & CP_REG_AA64_MASK) {
2481         kvmid = cpregid & ~CP_REG_AA64_MASK;
2482         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2483     } else {
2484         kvmid = cpregid & ~(1 << 15);
2485         if (cpregid & (1 << 15)) {
2486             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2487         } else {
2488             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2489         }
2490     }
2491     return kvmid;
2492 }
2493 
2494 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2495  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2496  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2497  * TCG can assume the value to be constant (ie load at translate time)
2498  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2499  * indicates that the TB should not be ended after a write to this register
2500  * (the default is that the TB ends after cp writes). OVERRIDE permits
2501  * a register definition to override a previous definition for the
2502  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2503  * old must have the OVERRIDE bit set.
2504  * ALIAS indicates that this register is an alias view of some underlying
2505  * state which is also visible via another register, and that the other
2506  * register is handling migration and reset; registers marked ALIAS will not be
2507  * migrated but may have their state set by syncing of register state from KVM.
2508  * NO_RAW indicates that this register has no underlying state and does not
2509  * support raw access for state saving/loading; it will not be used for either
2510  * migration or KVM state synchronization. (Typically this is for "registers"
2511  * which are actually used as instructions for cache maintenance and so on.)
2512  * IO indicates that this register does I/O and therefore its accesses
2513  * need to be marked with gen_io_start() and also end the TB. In particular,
2514  * registers which implement clocks or timers require this.
2515  * RAISES_EXC is for when the read or write hook might raise an exception;
2516  * the generated code will synchronize the CPU state before calling the hook
2517  * so that it is safe for the hook to call raise_exception().
2518  * NEWEL is for writes to registers that might change the exception
2519  * level - typically on older ARM chips. For those cases we need to
2520  * re-read the new el when recomputing the translation flags.
2521  */
2522 #define ARM_CP_SPECIAL           0x0001
2523 #define ARM_CP_CONST             0x0002
2524 #define ARM_CP_64BIT             0x0004
2525 #define ARM_CP_SUPPRESS_TB_END   0x0008
2526 #define ARM_CP_OVERRIDE          0x0010
2527 #define ARM_CP_ALIAS             0x0020
2528 #define ARM_CP_IO                0x0040
2529 #define ARM_CP_NO_RAW            0x0080
2530 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2531 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2532 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2533 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2534 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2535 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2536 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2537 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2538 #define ARM_CP_FPU               0x1000
2539 #define ARM_CP_SVE               0x2000
2540 #define ARM_CP_NO_GDB            0x4000
2541 #define ARM_CP_RAISES_EXC        0x8000
2542 #define ARM_CP_NEWEL             0x10000
2543 /* Used only as a terminator for ARMCPRegInfo lists */
2544 #define ARM_CP_SENTINEL          0xfffff
2545 /* Mask of only the flag bits in a type field */
2546 #define ARM_CP_FLAG_MASK         0x1f0ff
2547 
2548 /* Valid values for ARMCPRegInfo state field, indicating which of
2549  * the AArch32 and AArch64 execution states this register is visible in.
2550  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2551  * If the reginfo is declared to be visible in both states then a second
2552  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2553  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2554  * Note that we rely on the values of these enums as we iterate through
2555  * the various states in some places.
2556  */
2557 enum {
2558     ARM_CP_STATE_AA32 = 0,
2559     ARM_CP_STATE_AA64 = 1,
2560     ARM_CP_STATE_BOTH = 2,
2561 };
2562 
2563 /* ARM CP register secure state flags.  These flags identify security state
2564  * attributes for a given CP register entry.
2565  * The existence of both or neither secure and non-secure flags indicates that
2566  * the register has both a secure and non-secure hash entry.  A single one of
2567  * these flags causes the register to only be hashed for the specified
2568  * security state.
2569  * Although definitions may have any combination of the S/NS bits, each
2570  * registered entry will only have one to identify whether the entry is secure
2571  * or non-secure.
2572  */
2573 enum {
2574     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2575     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2576 };
2577 
2578 /* Return true if cptype is a valid type field. This is used to try to
2579  * catch errors where the sentinel has been accidentally left off the end
2580  * of a list of registers.
2581  */
2582 static inline bool cptype_valid(int cptype)
2583 {
2584     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2585         || ((cptype & ARM_CP_SPECIAL) &&
2586             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2587 }
2588 
2589 /* Access rights:
2590  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2591  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2592  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2593  * (ie any of the privileged modes in Secure state, or Monitor mode).
2594  * If a register is accessible in one privilege level it's always accessible
2595  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2596  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2597  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2598  * terminology a little and call this PL3.
2599  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2600  * with the ELx exception levels.
2601  *
2602  * If access permissions for a register are more complex than can be
2603  * described with these bits, then use a laxer set of restrictions, and
2604  * do the more restrictive/complex check inside a helper function.
2605  */
2606 #define PL3_R 0x80
2607 #define PL3_W 0x40
2608 #define PL2_R (0x20 | PL3_R)
2609 #define PL2_W (0x10 | PL3_W)
2610 #define PL1_R (0x08 | PL2_R)
2611 #define PL1_W (0x04 | PL2_W)
2612 #define PL0_R (0x02 | PL1_R)
2613 #define PL0_W (0x01 | PL1_W)
2614 
2615 /*
2616  * For user-mode some registers are accessible to EL0 via a kernel
2617  * trap-and-emulate ABI. In this case we define the read permissions
2618  * as actually being PL0_R. However some bits of any given register
2619  * may still be masked.
2620  */
2621 #ifdef CONFIG_USER_ONLY
2622 #define PL0U_R PL0_R
2623 #else
2624 #define PL0U_R PL1_R
2625 #endif
2626 
2627 #define PL3_RW (PL3_R | PL3_W)
2628 #define PL2_RW (PL2_R | PL2_W)
2629 #define PL1_RW (PL1_R | PL1_W)
2630 #define PL0_RW (PL0_R | PL0_W)
2631 
2632 /* Return the highest implemented Exception Level */
2633 static inline int arm_highest_el(CPUARMState *env)
2634 {
2635     if (arm_feature(env, ARM_FEATURE_EL3)) {
2636         return 3;
2637     }
2638     if (arm_feature(env, ARM_FEATURE_EL2)) {
2639         return 2;
2640     }
2641     return 1;
2642 }
2643 
2644 /* Return true if a v7M CPU is in Handler mode */
2645 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2646 {
2647     return env->v7m.exception != 0;
2648 }
2649 
2650 /* Return the current Exception Level (as per ARMv8; note that this differs
2651  * from the ARMv7 Privilege Level).
2652  */
2653 static inline int arm_current_el(CPUARMState *env)
2654 {
2655     if (arm_feature(env, ARM_FEATURE_M)) {
2656         return arm_v7m_is_handler_mode(env) ||
2657             !(env->v7m.control[env->v7m.secure] & 1);
2658     }
2659 
2660     if (is_a64(env)) {
2661         return extract32(env->pstate, 2, 2);
2662     }
2663 
2664     switch (env->uncached_cpsr & 0x1f) {
2665     case ARM_CPU_MODE_USR:
2666         return 0;
2667     case ARM_CPU_MODE_HYP:
2668         return 2;
2669     case ARM_CPU_MODE_MON:
2670         return 3;
2671     default:
2672         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2673             /* If EL3 is 32-bit then all secure privileged modes run in
2674              * EL3
2675              */
2676             return 3;
2677         }
2678 
2679         return 1;
2680     }
2681 }
2682 
2683 typedef struct ARMCPRegInfo ARMCPRegInfo;
2684 
2685 typedef enum CPAccessResult {
2686     /* Access is permitted */
2687     CP_ACCESS_OK = 0,
2688     /* Access fails due to a configurable trap or enable which would
2689      * result in a categorized exception syndrome giving information about
2690      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2691      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2692      * PL1 if in EL0, otherwise to the current EL).
2693      */
2694     CP_ACCESS_TRAP = 1,
2695     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2696      * Note that this is not a catch-all case -- the set of cases which may
2697      * result in this failure is specifically defined by the architecture.
2698      */
2699     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2700     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2701     CP_ACCESS_TRAP_EL2 = 3,
2702     CP_ACCESS_TRAP_EL3 = 4,
2703     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2704     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2705     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2706     /* Access fails and results in an exception syndrome for an FP access,
2707      * trapped directly to EL2 or EL3
2708      */
2709     CP_ACCESS_TRAP_FP_EL2 = 7,
2710     CP_ACCESS_TRAP_FP_EL3 = 8,
2711 } CPAccessResult;
2712 
2713 /* Access functions for coprocessor registers. These cannot fail and
2714  * may not raise exceptions.
2715  */
2716 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2717 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2718                        uint64_t value);
2719 /* Access permission check functions for coprocessor registers. */
2720 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2721                                   const ARMCPRegInfo *opaque,
2722                                   bool isread);
2723 /* Hook function for register reset */
2724 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2725 
2726 #define CP_ANY 0xff
2727 
2728 /* Definition of an ARM coprocessor register */
2729 struct ARMCPRegInfo {
2730     /* Name of register (useful mainly for debugging, need not be unique) */
2731     const char *name;
2732     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2733      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2734      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2735      * will be decoded to this register. The register read and write
2736      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2737      * used by the program, so it is possible to register a wildcard and
2738      * then behave differently on read/write if necessary.
2739      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2740      * must both be zero.
2741      * For AArch64-visible registers, opc0 is also used.
2742      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2743      * way to distinguish (for KVM's benefit) guest-visible system registers
2744      * from demuxed ones provided to preserve the "no side effects on
2745      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2746      * visible (to match KVM's encoding); cp==0 will be converted to
2747      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2748      */
2749     uint8_t cp;
2750     uint8_t crn;
2751     uint8_t crm;
2752     uint8_t opc0;
2753     uint8_t opc1;
2754     uint8_t opc2;
2755     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2756     int state;
2757     /* Register type: ARM_CP_* bits/values */
2758     int type;
2759     /* Access rights: PL*_[RW] */
2760     int access;
2761     /* Security state: ARM_CP_SECSTATE_* bits/values */
2762     int secure;
2763     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2764      * this register was defined: can be used to hand data through to the
2765      * register read/write functions, since they are passed the ARMCPRegInfo*.
2766      */
2767     void *opaque;
2768     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2769      * fieldoffset is non-zero, the reset value of the register.
2770      */
2771     uint64_t resetvalue;
2772     /* Offset of the field in CPUARMState for this register.
2773      *
2774      * This is not needed if either:
2775      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2776      *  2. both readfn and writefn are specified
2777      */
2778     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2779 
2780     /* Offsets of the secure and non-secure fields in CPUARMState for the
2781      * register if it is banked.  These fields are only used during the static
2782      * registration of a register.  During hashing the bank associated
2783      * with a given security state is copied to fieldoffset which is used from
2784      * there on out.
2785      *
2786      * It is expected that register definitions use either fieldoffset or
2787      * bank_fieldoffsets in the definition but not both.  It is also expected
2788      * that both bank offsets are set when defining a banked register.  This
2789      * use indicates that a register is banked.
2790      */
2791     ptrdiff_t bank_fieldoffsets[2];
2792 
2793     /* Function for making any access checks for this register in addition to
2794      * those specified by the 'access' permissions bits. If NULL, no extra
2795      * checks required. The access check is performed at runtime, not at
2796      * translate time.
2797      */
2798     CPAccessFn *accessfn;
2799     /* Function for handling reads of this register. If NULL, then reads
2800      * will be done by loading from the offset into CPUARMState specified
2801      * by fieldoffset.
2802      */
2803     CPReadFn *readfn;
2804     /* Function for handling writes of this register. If NULL, then writes
2805      * will be done by writing to the offset into CPUARMState specified
2806      * by fieldoffset.
2807      */
2808     CPWriteFn *writefn;
2809     /* Function for doing a "raw" read; used when we need to copy
2810      * coprocessor state to the kernel for KVM or out for
2811      * migration. This only needs to be provided if there is also a
2812      * readfn and it has side effects (for instance clear-on-read bits).
2813      */
2814     CPReadFn *raw_readfn;
2815     /* Function for doing a "raw" write; used when we need to copy KVM
2816      * kernel coprocessor state into userspace, or for inbound
2817      * migration. This only needs to be provided if there is also a
2818      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2819      * or similar behaviour.
2820      */
2821     CPWriteFn *raw_writefn;
2822     /* Function for resetting the register. If NULL, then reset will be done
2823      * by writing resetvalue to the field specified in fieldoffset. If
2824      * fieldoffset is 0 then no reset will be done.
2825      */
2826     CPResetFn *resetfn;
2827 
2828     /*
2829      * "Original" writefn and readfn.
2830      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2831      * accessor functions of various EL1/EL0 to perform the runtime
2832      * check for which sysreg should actually be modified, and then
2833      * forwards the operation.  Before overwriting the accessors,
2834      * the original function is copied here, so that accesses that
2835      * really do go to the EL1/EL0 version proceed normally.
2836      * (The corresponding EL2 register is linked via opaque.)
2837      */
2838     CPReadFn *orig_readfn;
2839     CPWriteFn *orig_writefn;
2840 };
2841 
2842 /* Macros which are lvalues for the field in CPUARMState for the
2843  * ARMCPRegInfo *ri.
2844  */
2845 #define CPREG_FIELD32(env, ri) \
2846     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2847 #define CPREG_FIELD64(env, ri) \
2848     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2849 
2850 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2851 
2852 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2853                                     const ARMCPRegInfo *regs, void *opaque);
2854 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2855                                        const ARMCPRegInfo *regs, void *opaque);
2856 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2857 {
2858     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2859 }
2860 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2861 {
2862     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2863 }
2864 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2865 
2866 /*
2867  * Definition of an ARM co-processor register as viewed from
2868  * userspace. This is used for presenting sanitised versions of
2869  * registers to userspace when emulating the Linux AArch64 CPU
2870  * ID/feature ABI (advertised as HWCAP_CPUID).
2871  */
2872 typedef struct ARMCPRegUserSpaceInfo {
2873     /* Name of register */
2874     const char *name;
2875 
2876     /* Is the name actually a glob pattern */
2877     bool is_glob;
2878 
2879     /* Only some bits are exported to user space */
2880     uint64_t exported_bits;
2881 
2882     /* Fixed bits are applied after the mask */
2883     uint64_t fixed_bits;
2884 } ARMCPRegUserSpaceInfo;
2885 
2886 #define REGUSERINFO_SENTINEL { .name = NULL }
2887 
2888 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2889 
2890 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2891 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2892                          uint64_t value);
2893 /* CPReadFn that can be used for read-as-zero behaviour */
2894 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2895 
2896 /* CPResetFn that does nothing, for use if no reset is required even
2897  * if fieldoffset is non zero.
2898  */
2899 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2900 
2901 /* Return true if this reginfo struct's field in the cpu state struct
2902  * is 64 bits wide.
2903  */
2904 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2905 {
2906     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2907 }
2908 
2909 static inline bool cp_access_ok(int current_el,
2910                                 const ARMCPRegInfo *ri, int isread)
2911 {
2912     return (ri->access >> ((current_el * 2) + isread)) & 1;
2913 }
2914 
2915 /* Raw read of a coprocessor register (as needed for migration, etc) */
2916 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2917 
2918 /**
2919  * write_list_to_cpustate
2920  * @cpu: ARMCPU
2921  *
2922  * For each register listed in the ARMCPU cpreg_indexes list, write
2923  * its value from the cpreg_values list into the ARMCPUState structure.
2924  * This updates TCG's working data structures from KVM data or
2925  * from incoming migration state.
2926  *
2927  * Returns: true if all register values were updated correctly,
2928  * false if some register was unknown or could not be written.
2929  * Note that we do not stop early on failure -- we will attempt
2930  * writing all registers in the list.
2931  */
2932 bool write_list_to_cpustate(ARMCPU *cpu);
2933 
2934 /**
2935  * write_cpustate_to_list:
2936  * @cpu: ARMCPU
2937  * @kvm_sync: true if this is for syncing back to KVM
2938  *
2939  * For each register listed in the ARMCPU cpreg_indexes list, write
2940  * its value from the ARMCPUState structure into the cpreg_values list.
2941  * This is used to copy info from TCG's working data structures into
2942  * KVM or for outbound migration.
2943  *
2944  * @kvm_sync is true if we are doing this in order to sync the
2945  * register state back to KVM. In this case we will only update
2946  * values in the list if the previous list->cpustate sync actually
2947  * successfully wrote the CPU state. Otherwise we will keep the value
2948  * that is in the list.
2949  *
2950  * Returns: true if all register values were read correctly,
2951  * false if some register was unknown or could not be read.
2952  * Note that we do not stop early on failure -- we will attempt
2953  * reading all registers in the list.
2954  */
2955 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2956 
2957 #define ARM_CPUID_TI915T      0x54029152
2958 #define ARM_CPUID_TI925T      0x54029252
2959 
2960 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2961 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2962 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2963 
2964 #define cpu_signal_handler cpu_arm_signal_handler
2965 #define cpu_list arm_cpu_list
2966 
2967 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2968  *
2969  * If EL3 is 64-bit:
2970  *  + NonSecure EL1 & 0 stage 1
2971  *  + NonSecure EL1 & 0 stage 2
2972  *  + NonSecure EL2
2973  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2974  *  + Secure EL1 & 0
2975  *  + Secure EL3
2976  * If EL3 is 32-bit:
2977  *  + NonSecure PL1 & 0 stage 1
2978  *  + NonSecure PL1 & 0 stage 2
2979  *  + NonSecure PL2
2980  *  + Secure PL0
2981  *  + Secure PL1
2982  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2983  *
2984  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2985  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2986  *     because they may differ in access permissions even if the VA->PA map is
2987  *     the same
2988  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2989  *     translation, which means that we have one mmu_idx that deals with two
2990  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2991  *     architecturally permitted]
2992  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2993  *     handling via the TLB. The only way to do a stage 1 translation without
2994  *     the immediate stage 2 translation is via the ATS or AT system insns,
2995  *     which can be slow-pathed and always do a page table walk.
2996  *     The only use of stage 2 translations is either as part of an s1+2
2997  *     lookup or when loading the descriptors during a stage 1 page table walk,
2998  *     and in both those cases we don't use the TLB.
2999  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3000  *     translation regimes, because they map reasonably well to each other
3001  *     and they can't both be active at the same time.
3002  *  5. we want to be able to use the TLB for accesses done as part of a
3003  *     stage1 page table walk, rather than having to walk the stage2 page
3004  *     table over and over.
3005  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3006  *     Never (PAN) bit within PSTATE.
3007  *
3008  * This gives us the following list of cases:
3009  *
3010  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3011  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3012  * NS EL1 EL1&0 stage 1+2 +PAN
3013  * NS EL0 EL2&0
3014  * NS EL2 EL2&0
3015  * NS EL2 EL2&0 +PAN
3016  * NS EL2 (aka NS PL2)
3017  * S EL0 EL1&0 (aka S PL0)
3018  * S EL1 EL1&0 (not used if EL3 is 32 bit)
3019  * S EL1 EL1&0 +PAN
3020  * S EL3 (aka S PL1)
3021  *
3022  * for a total of 11 different mmu_idx.
3023  *
3024  * R profile CPUs have an MPU, but can use the same set of MMU indexes
3025  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3026  * NS EL2 if we ever model a Cortex-R52).
3027  *
3028  * M profile CPUs are rather different as they do not have a true MMU.
3029  * They have the following different MMU indexes:
3030  *  User
3031  *  Privileged
3032  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3033  *  Privileged, execution priority negative (ditto)
3034  * If the CPU supports the v8M Security Extension then there are also:
3035  *  Secure User
3036  *  Secure Privileged
3037  *  Secure User, execution priority negative
3038  *  Secure Privileged, execution priority negative
3039  *
3040  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3041  * are not quite the same -- different CPU types (most notably M profile
3042  * vs A/R profile) would like to use MMU indexes with different semantics,
3043  * but since we don't ever need to use all of those in a single CPU we
3044  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3045  * modes + total number of M profile MMU modes". The lower bits of
3046  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3047  * the same for any particular CPU.
3048  * Variables of type ARMMUIdx are always full values, and the core
3049  * index values are in variables of type 'int'.
3050  *
3051  * Our enumeration includes at the end some entries which are not "true"
3052  * mmu_idx values in that they don't have corresponding TLBs and are only
3053  * valid for doing slow path page table walks.
3054  *
3055  * The constant names here are patterned after the general style of the names
3056  * of the AT/ATS operations.
3057  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3058  * For M profile we arrange them to have a bit for priv, a bit for negpri
3059  * and a bit for secure.
3060  */
3061 #define ARM_MMU_IDX_A     0x10  /* A profile */
3062 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3063 #define ARM_MMU_IDX_M     0x40  /* M profile */
3064 
3065 /* Meanings of the bits for A profile mmu idx values */
3066 #define ARM_MMU_IDX_A_NS     0x8
3067 
3068 /* Meanings of the bits for M profile mmu idx values */
3069 #define ARM_MMU_IDX_M_PRIV   0x1
3070 #define ARM_MMU_IDX_M_NEGPRI 0x2
3071 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3072 
3073 #define ARM_MMU_IDX_TYPE_MASK \
3074     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3075 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3076 
3077 typedef enum ARMMMUIdx {
3078     /*
3079      * A-profile.
3080      */
3081     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3082     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3083     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3084     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3085     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3086     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3087     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3088     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3089 
3090     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3091     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3092     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3093     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3094     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3095     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3096     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3097 
3098     /*
3099      * These are not allocated TLBs and are used only for AT system
3100      * instructions or for the first stage of an S12 page table walk.
3101      */
3102     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3103     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3104     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3105     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3106     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3107     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3108     /*
3109      * Not allocated a TLB: used only for second stage of an S12 page
3110      * table walk, or for descriptor loads during first stage of an S1
3111      * page table walk. Note that if we ever want to have a TLB for this
3112      * then various TLB flush insns which currently are no-ops or flush
3113      * only stage 1 MMU indexes will need to change to flush stage 2.
3114      */
3115     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3116     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3117 
3118     /*
3119      * M-profile.
3120      */
3121     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3122     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3123     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3124     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3125     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3126     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3127     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3128     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3129 } ARMMMUIdx;
3130 
3131 /*
3132  * Bit macros for the core-mmu-index values for each index,
3133  * for use when calling tlb_flush_by_mmuidx() and friends.
3134  */
3135 #define TO_CORE_BIT(NAME) \
3136     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3137 
3138 typedef enum ARMMMUIdxBit {
3139     TO_CORE_BIT(E10_0),
3140     TO_CORE_BIT(E20_0),
3141     TO_CORE_BIT(E10_1),
3142     TO_CORE_BIT(E10_1_PAN),
3143     TO_CORE_BIT(E2),
3144     TO_CORE_BIT(E20_2),
3145     TO_CORE_BIT(E20_2_PAN),
3146     TO_CORE_BIT(SE10_0),
3147     TO_CORE_BIT(SE20_0),
3148     TO_CORE_BIT(SE10_1),
3149     TO_CORE_BIT(SE20_2),
3150     TO_CORE_BIT(SE10_1_PAN),
3151     TO_CORE_BIT(SE20_2_PAN),
3152     TO_CORE_BIT(SE2),
3153     TO_CORE_BIT(SE3),
3154 
3155     TO_CORE_BIT(MUser),
3156     TO_CORE_BIT(MPriv),
3157     TO_CORE_BIT(MUserNegPri),
3158     TO_CORE_BIT(MPrivNegPri),
3159     TO_CORE_BIT(MSUser),
3160     TO_CORE_BIT(MSPriv),
3161     TO_CORE_BIT(MSUserNegPri),
3162     TO_CORE_BIT(MSPrivNegPri),
3163 } ARMMMUIdxBit;
3164 
3165 #undef TO_CORE_BIT
3166 
3167 #define MMU_USER_IDX 0
3168 
3169 /* Indexes used when registering address spaces with cpu_address_space_init */
3170 typedef enum ARMASIdx {
3171     ARMASIdx_NS = 0,
3172     ARMASIdx_S = 1,
3173     ARMASIdx_TagNS = 2,
3174     ARMASIdx_TagS = 3,
3175 } ARMASIdx;
3176 
3177 /* Return the Exception Level targeted by debug exceptions. */
3178 static inline int arm_debug_target_el(CPUARMState *env)
3179 {
3180     bool secure = arm_is_secure(env);
3181     bool route_to_el2 = false;
3182 
3183     if (arm_is_el2_enabled(env)) {
3184         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3185                        env->cp15.mdcr_el2 & MDCR_TDE;
3186     }
3187 
3188     if (route_to_el2) {
3189         return 2;
3190     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3191                !arm_el_is_aa64(env, 3) && secure) {
3192         return 3;
3193     } else {
3194         return 1;
3195     }
3196 }
3197 
3198 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3199 {
3200     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3201      * CSSELR is RAZ/WI.
3202      */
3203     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3204 }
3205 
3206 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3207 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3208 {
3209     int cur_el = arm_current_el(env);
3210     int debug_el;
3211 
3212     if (cur_el == 3) {
3213         return false;
3214     }
3215 
3216     /* MDCR_EL3.SDD disables debug events from Secure state */
3217     if (arm_is_secure_below_el3(env)
3218         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3219         return false;
3220     }
3221 
3222     /*
3223      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3224      * while not masking the (D)ebug bit in DAIF.
3225      */
3226     debug_el = arm_debug_target_el(env);
3227 
3228     if (cur_el == debug_el) {
3229         return extract32(env->cp15.mdscr_el1, 13, 1)
3230             && !(env->daif & PSTATE_D);
3231     }
3232 
3233     /* Otherwise the debug target needs to be a higher EL */
3234     return debug_el > cur_el;
3235 }
3236 
3237 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3238 {
3239     int el = arm_current_el(env);
3240 
3241     if (el == 0 && arm_el_is_aa64(env, 1)) {
3242         return aa64_generate_debug_exceptions(env);
3243     }
3244 
3245     if (arm_is_secure(env)) {
3246         int spd;
3247 
3248         if (el == 0 && (env->cp15.sder & 1)) {
3249             /* SDER.SUIDEN means debug exceptions from Secure EL0
3250              * are always enabled. Otherwise they are controlled by
3251              * SDCR.SPD like those from other Secure ELs.
3252              */
3253             return true;
3254         }
3255 
3256         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3257         switch (spd) {
3258         case 1:
3259             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3260         case 0:
3261             /* For 0b00 we return true if external secure invasive debug
3262              * is enabled. On real hardware this is controlled by external
3263              * signals to the core. QEMU always permits debug, and behaves
3264              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3265              */
3266             return true;
3267         case 2:
3268             return false;
3269         case 3:
3270             return true;
3271         }
3272     }
3273 
3274     return el != 2;
3275 }
3276 
3277 /* Return true if debugging exceptions are currently enabled.
3278  * This corresponds to what in ARM ARM pseudocode would be
3279  *    if UsingAArch32() then
3280  *        return AArch32.GenerateDebugExceptions()
3281  *    else
3282  *        return AArch64.GenerateDebugExceptions()
3283  * We choose to push the if() down into this function for clarity,
3284  * since the pseudocode has it at all callsites except for the one in
3285  * CheckSoftwareStep(), where it is elided because both branches would
3286  * always return the same value.
3287  */
3288 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3289 {
3290     if (env->aarch64) {
3291         return aa64_generate_debug_exceptions(env);
3292     } else {
3293         return aa32_generate_debug_exceptions(env);
3294     }
3295 }
3296 
3297 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3298  * implicitly means this always returns false in pre-v8 CPUs.)
3299  */
3300 static inline bool arm_singlestep_active(CPUARMState *env)
3301 {
3302     return extract32(env->cp15.mdscr_el1, 0, 1)
3303         && arm_el_is_aa64(env, arm_debug_target_el(env))
3304         && arm_generate_debug_exceptions(env);
3305 }
3306 
3307 static inline bool arm_sctlr_b(CPUARMState *env)
3308 {
3309     return
3310         /* We need not implement SCTLR.ITD in user-mode emulation, so
3311          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3312          * This lets people run BE32 binaries with "-cpu any".
3313          */
3314 #ifndef CONFIG_USER_ONLY
3315         !arm_feature(env, ARM_FEATURE_V7) &&
3316 #endif
3317         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3318 }
3319 
3320 uint64_t arm_sctlr(CPUARMState *env, int el);
3321 
3322 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3323                                                   bool sctlr_b)
3324 {
3325 #ifdef CONFIG_USER_ONLY
3326     /*
3327      * In system mode, BE32 is modelled in line with the
3328      * architecture (as word-invariant big-endianness), where loads
3329      * and stores are done little endian but from addresses which
3330      * are adjusted by XORing with the appropriate constant. So the
3331      * endianness to use for the raw data access is not affected by
3332      * SCTLR.B.
3333      * In user mode, however, we model BE32 as byte-invariant
3334      * big-endianness (because user-only code cannot tell the
3335      * difference), and so we need to use a data access endianness
3336      * that depends on SCTLR.B.
3337      */
3338     if (sctlr_b) {
3339         return true;
3340     }
3341 #endif
3342     /* In 32bit endianness is determined by looking at CPSR's E bit */
3343     return env->uncached_cpsr & CPSR_E;
3344 }
3345 
3346 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3347 {
3348     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3349 }
3350 
3351 /* Return true if the processor is in big-endian mode. */
3352 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3353 {
3354     if (!is_a64(env)) {
3355         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3356     } else {
3357         int cur_el = arm_current_el(env);
3358         uint64_t sctlr = arm_sctlr(env, cur_el);
3359         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3360     }
3361 }
3362 
3363 typedef CPUARMState CPUArchState;
3364 typedef ARMCPU ArchCPU;
3365 
3366 #include "exec/cpu-all.h"
3367 
3368 /*
3369  * Bit usage in the TB flags field: bit 31 indicates whether we are
3370  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3371  * We put flags which are shared between 32 and 64 bit mode at the top
3372  * of the word, and flags which apply to only one mode at the bottom.
3373  *
3374  *  31          20    18    14          9              0
3375  * +--------------+-----+-----+----------+--------------+
3376  * |              |     |   TBFLAG_A32   |              |
3377  * |              |     +-----+----------+  TBFLAG_AM32 |
3378  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3379  * |              +-----------+----------+--------------|
3380  * |              |            TBFLAG_A64               |
3381  * +--------------+-------------------------------------+
3382  *  31          20                                     0
3383  *
3384  * Unless otherwise noted, these bits are cached in env->hflags.
3385  */
3386 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3387 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3388 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3389 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3390 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3391 /* Target EL if we take a floating-point-disabled exception */
3392 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3393 /* For A-profile only, target EL for debug exceptions.  */
3394 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3395 
3396 /*
3397  * Bit usage when in AArch32 state, both A- and M-profile.
3398  */
3399 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3400 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3401 
3402 /*
3403  * Bit usage when in AArch32 state, for A-profile only.
3404  */
3405 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3406 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3407 /*
3408  * We store the bottom two bits of the CPAR as TB flags and handle
3409  * checks on the other bits at runtime. This shares the same bits as
3410  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3411  * Not cached, because VECLEN+VECSTRIDE are not cached.
3412  */
3413 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3414 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3415 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3416 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3417 /*
3418  * Indicates whether cp register reads and writes by guest code should access
3419  * the secure or nonsecure bank of banked registers; note that this is not
3420  * the same thing as the current security state of the processor!
3421  */
3422 FIELD(TBFLAG_A32, NS, 17, 1)
3423 
3424 /*
3425  * Bit usage when in AArch32 state, for M-profile only.
3426  */
3427 /* Handler (ie not Thread) mode */
3428 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3429 /* Whether we should generate stack-limit checks */
3430 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3431 /* Set if FPCCR.LSPACT is set */
3432 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3433 /* Set if we must create a new FP context */
3434 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3435 /* Set if FPCCR.S does not match current security state */
3436 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3437 
3438 /*
3439  * Bit usage when in AArch64 state
3440  */
3441 FIELD(TBFLAG_A64, TBII, 0, 2)
3442 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3443 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3444 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3445 FIELD(TBFLAG_A64, BT, 9, 1)
3446 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3447 FIELD(TBFLAG_A64, TBID, 12, 2)
3448 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3449 FIELD(TBFLAG_A64, ATA, 15, 1)
3450 FIELD(TBFLAG_A64, TCMA, 16, 2)
3451 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3452 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3453 
3454 /**
3455  * cpu_mmu_index:
3456  * @env: The cpu environment
3457  * @ifetch: True for code access, false for data access.
3458  *
3459  * Return the core mmu index for the current translation regime.
3460  * This function is used by generic TCG code paths.
3461  */
3462 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3463 {
3464     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3465 }
3466 
3467 static inline bool bswap_code(bool sctlr_b)
3468 {
3469 #ifdef CONFIG_USER_ONLY
3470     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3471      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3472      * would also end up as a mixed-endian mode with BE code, LE data.
3473      */
3474     return
3475 #ifdef TARGET_WORDS_BIGENDIAN
3476         1 ^
3477 #endif
3478         sctlr_b;
3479 #else
3480     /* All code access in ARM is little endian, and there are no loaders
3481      * doing swaps that need to be reversed
3482      */
3483     return 0;
3484 #endif
3485 }
3486 
3487 #ifdef CONFIG_USER_ONLY
3488 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3489 {
3490     return
3491 #ifdef TARGET_WORDS_BIGENDIAN
3492        1 ^
3493 #endif
3494        arm_cpu_data_is_big_endian(env);
3495 }
3496 #endif
3497 
3498 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3499                           target_ulong *cs_base, uint32_t *flags);
3500 
3501 enum {
3502     QEMU_PSCI_CONDUIT_DISABLED = 0,
3503     QEMU_PSCI_CONDUIT_SMC = 1,
3504     QEMU_PSCI_CONDUIT_HVC = 2,
3505 };
3506 
3507 #ifndef CONFIG_USER_ONLY
3508 /* Return the address space index to use for a memory access */
3509 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3510 {
3511     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3512 }
3513 
3514 /* Return the AddressSpace to use for a memory access
3515  * (which depends on whether the access is S or NS, and whether
3516  * the board gave us a separate AddressSpace for S accesses).
3517  */
3518 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3519 {
3520     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3521 }
3522 #endif
3523 
3524 /**
3525  * arm_register_pre_el_change_hook:
3526  * Register a hook function which will be called immediately before this
3527  * CPU changes exception level or mode. The hook function will be
3528  * passed a pointer to the ARMCPU and the opaque data pointer passed
3529  * to this function when the hook was registered.
3530  *
3531  * Note that if a pre-change hook is called, any registered post-change hooks
3532  * are guaranteed to subsequently be called.
3533  */
3534 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3535                                  void *opaque);
3536 /**
3537  * arm_register_el_change_hook:
3538  * Register a hook function which will be called immediately after this
3539  * CPU changes exception level or mode. The hook function will be
3540  * passed a pointer to the ARMCPU and the opaque data pointer passed
3541  * to this function when the hook was registered.
3542  *
3543  * Note that any registered hooks registered here are guaranteed to be called
3544  * if pre-change hooks have been.
3545  */
3546 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3547         *opaque);
3548 
3549 /**
3550  * arm_rebuild_hflags:
3551  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3552  */
3553 void arm_rebuild_hflags(CPUARMState *env);
3554 
3555 /**
3556  * aa32_vfp_dreg:
3557  * Return a pointer to the Dn register within env in 32-bit mode.
3558  */
3559 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3560 {
3561     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3562 }
3563 
3564 /**
3565  * aa32_vfp_qreg:
3566  * Return a pointer to the Qn register within env in 32-bit mode.
3567  */
3568 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3569 {
3570     return &env->vfp.zregs[regno].d[0];
3571 }
3572 
3573 /**
3574  * aa64_vfp_qreg:
3575  * Return a pointer to the Qn register within env in 64-bit mode.
3576  */
3577 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3578 {
3579     return &env->vfp.zregs[regno].d[0];
3580 }
3581 
3582 /* Shared between translate-sve.c and sve_helper.c.  */
3583 extern const uint64_t pred_esz_masks[4];
3584 
3585 /* Helper for the macros below, validating the argument type. */
3586 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3587 {
3588     return x;
3589 }
3590 
3591 /*
3592  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3593  * Using these should be a bit more self-documenting than using the
3594  * generic target bits directly.
3595  */
3596 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3597 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3598 
3599 /*
3600  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3601  */
3602 #define PAGE_BTI  PAGE_TARGET_1
3603 
3604 /*
3605  * Naming convention for isar_feature functions:
3606  * Functions which test 32-bit ID registers should have _aa32_ in
3607  * their name. Functions which test 64-bit ID registers should have
3608  * _aa64_ in their name. These must only be used in code where we
3609  * know for certain that the CPU has AArch32 or AArch64 respectively
3610  * or where the correct answer for a CPU which doesn't implement that
3611  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3612  * system registers that are specific to that CPU state, for "should
3613  * we let this system register bit be set" tests where the 32-bit
3614  * flavour of the register doesn't have the bit, and so on).
3615  * Functions which simply ask "does this feature exist at all" have
3616  * _any_ in their name, and always return the logical OR of the _aa64_
3617  * and the _aa32_ function.
3618  */
3619 
3620 /*
3621  * 32-bit feature tests via id registers.
3622  */
3623 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3624 {
3625     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3626 }
3627 
3628 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3629 {
3630     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3631 }
3632 
3633 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3634 {
3635     /* (M-profile) low-overhead loops and branch future */
3636     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3637 }
3638 
3639 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3640 {
3641     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3642 }
3643 
3644 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3645 {
3646     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3647 }
3648 
3649 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3650 {
3651     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3652 }
3653 
3654 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3655 {
3656     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3657 }
3658 
3659 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3660 {
3661     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3662 }
3663 
3664 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3665 {
3666     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3667 }
3668 
3669 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3670 {
3671     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3672 }
3673 
3674 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3675 {
3676     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3677 }
3678 
3679 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3680 {
3681     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3682 }
3683 
3684 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3685 {
3686     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3687 }
3688 
3689 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3690 {
3691     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3692 }
3693 
3694 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3695 {
3696     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3697 }
3698 
3699 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3700 {
3701     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3702 }
3703 
3704 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3705 {
3706     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3707 }
3708 
3709 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3710 {
3711     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3712 }
3713 
3714 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3715 {
3716     /*
3717      * Return true if M-profile state handling insns
3718      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3719      */
3720     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3721 }
3722 
3723 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3724 {
3725     /* Sadly this is encoded differently for A-profile and M-profile */
3726     if (isar_feature_aa32_mprofile(id)) {
3727         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3728     } else {
3729         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3730     }
3731 }
3732 
3733 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3734 {
3735     /*
3736      * Return true if either VFP or SIMD is implemented.
3737      * In this case, a minimum of VFP w/ D0-D15.
3738      */
3739     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3740 }
3741 
3742 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3743 {
3744     /* Return true if D16-D31 are implemented */
3745     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3746 }
3747 
3748 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3749 {
3750     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3751 }
3752 
3753 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3754 {
3755     /* Return true if CPU supports single precision floating point, VFPv2 */
3756     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3757 }
3758 
3759 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3760 {
3761     /* Return true if CPU supports single precision floating point, VFPv3 */
3762     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3763 }
3764 
3765 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3766 {
3767     /* Return true if CPU supports double precision floating point, VFPv2 */
3768     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3769 }
3770 
3771 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3772 {
3773     /* Return true if CPU supports double precision floating point, VFPv3 */
3774     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3775 }
3776 
3777 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3778 {
3779     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3780 }
3781 
3782 /*
3783  * We always set the FP and SIMD FP16 fields to indicate identical
3784  * levels of support (assuming SIMD is implemented at all), so
3785  * we only need one set of accessors.
3786  */
3787 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3788 {
3789     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3790 }
3791 
3792 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3793 {
3794     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3795 }
3796 
3797 /*
3798  * Note that this ID register field covers both VFP and Neon FMAC,
3799  * so should usually be tested in combination with some other
3800  * check that confirms the presence of whichever of VFP or Neon is
3801  * relevant, to avoid accidentally enabling a Neon feature on
3802  * a VFP-no-Neon core or vice-versa.
3803  */
3804 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3805 {
3806     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3807 }
3808 
3809 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3810 {
3811     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3812 }
3813 
3814 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3815 {
3816     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3817 }
3818 
3819 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3820 {
3821     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3822 }
3823 
3824 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3825 {
3826     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3827 }
3828 
3829 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3830 {
3831     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3832 }
3833 
3834 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3835 {
3836     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3837 }
3838 
3839 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3840 {
3841     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3842 }
3843 
3844 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3845 {
3846     /* 0xf means "non-standard IMPDEF PMU" */
3847     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3848         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3849 }
3850 
3851 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3852 {
3853     /* 0xf means "non-standard IMPDEF PMU" */
3854     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3855         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3856 }
3857 
3858 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3859 {
3860     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3861 }
3862 
3863 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3864 {
3865     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3866 }
3867 
3868 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3869 {
3870     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3871 }
3872 
3873 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3874 {
3875     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3876 }
3877 
3878 /*
3879  * 64-bit feature tests via id registers.
3880  */
3881 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3882 {
3883     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3884 }
3885 
3886 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3887 {
3888     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3889 }
3890 
3891 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3892 {
3893     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3894 }
3895 
3896 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3897 {
3898     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3899 }
3900 
3901 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3902 {
3903     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3904 }
3905 
3906 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3907 {
3908     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3909 }
3910 
3911 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3912 {
3913     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3914 }
3915 
3916 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3917 {
3918     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3919 }
3920 
3921 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3922 {
3923     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3924 }
3925 
3926 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3927 {
3928     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3929 }
3930 
3931 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3932 {
3933     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3934 }
3935 
3936 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3937 {
3938     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3939 }
3940 
3941 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3942 {
3943     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3944 }
3945 
3946 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3947 {
3948     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3949 }
3950 
3951 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3952 {
3953     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3954 }
3955 
3956 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3957 {
3958     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3959 }
3960 
3961 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3962 {
3963     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3964 }
3965 
3966 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3967 {
3968     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3969 }
3970 
3971 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3972 {
3973     /*
3974      * Return true if any form of pauth is enabled, as this
3975      * predicate controls migration of the 128-bit keys.
3976      */
3977     return (id->id_aa64isar1 &
3978             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3979              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3980              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3981              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3982 }
3983 
3984 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3985 {
3986     /*
3987      * Return true if pauth is enabled with the architected QARMA algorithm.
3988      * QEMU will always set APA+GPA to the same value.
3989      */
3990     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3991 }
3992 
3993 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3994 {
3995     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3996 }
3997 
3998 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3999 {
4000     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4001 }
4002 
4003 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4004 {
4005     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4006 }
4007 
4008 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4009 {
4010     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4011 }
4012 
4013 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4014 {
4015     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4016 }
4017 
4018 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4019 {
4020     /* We always set the AdvSIMD and FP fields identically.  */
4021     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4022 }
4023 
4024 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4025 {
4026     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4027     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4028 }
4029 
4030 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4031 {
4032     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4033 }
4034 
4035 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4036 {
4037     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4038 }
4039 
4040 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4041 {
4042     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4043 }
4044 
4045 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4046 {
4047     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4048 }
4049 
4050 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4051 {
4052     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4053 }
4054 
4055 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4056 {
4057     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4058 }
4059 
4060 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4061 {
4062     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4063 }
4064 
4065 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4066 {
4067     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4068 }
4069 
4070 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4071 {
4072     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4073 }
4074 
4075 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4076 {
4077     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4078 }
4079 
4080 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4081 {
4082     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4083 }
4084 
4085 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4086 {
4087     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4088 }
4089 
4090 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4091 {
4092     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4093         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4094 }
4095 
4096 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4097 {
4098     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4099         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4100 }
4101 
4102 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4103 {
4104     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4105 }
4106 
4107 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4108 {
4109     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4110 }
4111 
4112 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4113 {
4114     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4115 }
4116 
4117 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4118 {
4119     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4120 }
4121 
4122 /*
4123  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4124  */
4125 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4126 {
4127     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4128 }
4129 
4130 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4131 {
4132     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4133 }
4134 
4135 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4136 {
4137     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4138 }
4139 
4140 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4141 {
4142     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4143 }
4144 
4145 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4146 {
4147     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4148 }
4149 
4150 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4151 {
4152     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4153 }
4154 
4155 /*
4156  * Forward to the above feature tests given an ARMCPU pointer.
4157  */
4158 #define cpu_isar_feature(name, cpu) \
4159     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4160 
4161 #endif
4162