xref: /openbmc/qemu/target/arm/cpu.h (revision 7682ecd4)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "exec/page-protection.h"
30 #include "qapi/qapi-types-common.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 
34 #ifdef TARGET_AARCH64
35 #define KVM_HAVE_MCE_INJECTION 1
36 #endif
37 
38 #define EXCP_UDEF            1   /* undefined instruction */
39 #define EXCP_SWI             2   /* software interrupt */
40 #define EXCP_PREFETCH_ABORT  3
41 #define EXCP_DATA_ABORT      4
42 #define EXCP_IRQ             5
43 #define EXCP_FIQ             6
44 #define EXCP_BKPT            7
45 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47 #define EXCP_HVC            11   /* HyperVisor Call */
48 #define EXCP_HYP_TRAP       12
49 #define EXCP_SMC            13   /* Secure Monitor Call */
50 #define EXCP_VIRQ           14
51 #define EXCP_VFIQ           15
52 #define EXCP_SEMIHOST       16   /* semihosting call */
53 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60 #define EXCP_VSERR          24
61 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62 #define EXCP_NMI            26
63 #define EXCP_VINMI          27
64 #define EXCP_VFNMI          28
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66 
67 #define ARMV7M_EXCP_RESET   1
68 #define ARMV7M_EXCP_NMI     2
69 #define ARMV7M_EXCP_HARD    3
70 #define ARMV7M_EXCP_MEM     4
71 #define ARMV7M_EXCP_BUS     5
72 #define ARMV7M_EXCP_USAGE   6
73 #define ARMV7M_EXCP_SECURE  7
74 #define ARMV7M_EXCP_SVC     11
75 #define ARMV7M_EXCP_DEBUG   12
76 #define ARMV7M_EXCP_PENDSV  14
77 #define ARMV7M_EXCP_SYSTICK 15
78 
79 /* ARM-specific interrupt pending bits.  */
80 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87 
88 /* The usual mapping for an AArch64 system register to its AArch32
89  * counterpart is for the 32 bit world to have access to the lower
90  * half only (with writes leaving the upper half untouched). It's
91  * therefore useful to be able to pass TCG the offset of the least
92  * significant half of a uint64_t struct member.
93  */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101 
102 /* ARM-specific extra insn start words:
103  * 1: Conditional execution bits
104  * 2: Partial exception syndrome for data aborts
105  */
106 #define TARGET_INSN_START_EXTRA_WORDS 2
107 
108 /* The 2nd extra word holding syndrome info for data aborts does not use
109  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
110  * help the sleb128 encoder do a better job.
111  * When restoring the CPU state, we shift it back up.
112  */
113 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
114 #define ARM_INSN_START_WORD2_SHIFT 13
115 
116 /* We currently assume float and double are IEEE single and double
117    precision respectively.
118    Doing runtime conversions is tricky because VFP registers may contain
119    integer values (eg. as the result of a FTOSI instruction).
120    s<2n> maps to the least significant half of d<n>
121    s<2n+1> maps to the most significant half of d<n>
122  */
123 
124 /**
125  * DynamicGDBFeatureInfo:
126  * @desc: Contains the feature descriptions.
127  * @data: A union with data specific to the set of registers
128  *    @cpregs_keys: Array that contains the corresponding Key of
129  *                  a given cpreg with the same order of the cpreg
130  *                  in the XML description.
131  */
132 typedef struct DynamicGDBFeatureInfo {
133     GDBFeature desc;
134     union {
135         struct {
136             uint32_t *keys;
137         } cpregs;
138     } data;
139 } DynamicGDBFeatureInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 /* Define a maximum sized vector register.
148  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149  * For 64-bit, this is a 2048-bit SVE register.
150  *
151  * Note that the mapping between S, D, and Q views of the register bank
152  * differs between AArch64 and AArch32.
153  * In AArch32:
154  *  Qn = regs[n].d[1]:regs[n].d[0]
155  *  Dn = regs[n / 2].d[n & 1]
156  *  Sn = regs[n / 4].d[n % 4 / 2],
157  *       bits 31..0 for even n, and bits 63..32 for odd n
158  *       (and regs[16] to regs[31] are inaccessible)
159  * In AArch64:
160  *  Zn = regs[n].d[*]
161  *  Qn = regs[n].d[1]:regs[n].d[0]
162  *  Dn = regs[n].d[0]
163  *  Sn = regs[n].d[0] bits 31..0
164  *  Hn = regs[n].d[0] bits 15..0
165  *
166  * This corresponds to the architecturally defined mapping between
167  * the two execution states, and means we do not need to explicitly
168  * map these registers when changing states.
169  *
170  * Align the data for use with TCG host vector operations.
171  */
172 
173 #ifdef TARGET_AARCH64
174 # define ARM_MAX_VQ    16
175 #else
176 # define ARM_MAX_VQ    1
177 #endif
178 
179 typedef struct ARMVectorReg {
180     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181 } ARMVectorReg;
182 
183 #ifdef TARGET_AARCH64
184 /* In AArch32 mode, predicate registers do not exist at all.  */
185 typedef struct ARMPredicateReg {
186     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
187 } ARMPredicateReg;
188 
189 /* In AArch32 mode, PAC keys do not exist at all.  */
190 typedef struct ARMPACKey {
191     uint64_t lo, hi;
192 } ARMPACKey;
193 #endif
194 
195 /* See the commentary above the TBFLAG field definitions.  */
196 typedef struct CPUARMTBFlags {
197     uint32_t flags;
198     target_ulong flags2;
199 } CPUARMTBFlags;
200 
201 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202 
203 typedef struct NVICState NVICState;
204 
205 typedef struct CPUArchState {
206     /* Regs for current mode.  */
207     uint32_t regs[16];
208 
209     /* 32/64 switch only happens when taking and returning from
210      * exceptions so the overlap semantics are taken care of then
211      * instead of having a complicated union.
212      */
213     /* Regs for A64 mode.  */
214     uint64_t xregs[32];
215     uint64_t pc;
216     /* PSTATE isn't an architectural register for ARMv8. However, it is
217      * convenient for us to assemble the underlying state into a 32 bit format
218      * identical to the architectural format used for the SPSR. (This is also
219      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
220      * 'pstate' register are.) Of the PSTATE bits:
221      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
222      *    semantics as for AArch32, as described in the comments on each field)
223      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
224      *  DAIF (exception masks) are kept in env->daif
225      *  BTYPE is kept in env->btype
226      *  SM and ZA are kept in env->svcr
227      *  all other bits are stored in their correct places in env->pstate
228      */
229     uint32_t pstate;
230     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
231     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
232 
233     /* Cached TBFLAGS state.  See below for which bits are included.  */
234     CPUARMTBFlags hflags;
235 
236     /* Frequently accessed CPSR bits are stored separately for efficiency.
237        This contains all the other bits.  Use cpsr_{read,write} to access
238        the whole CPSR.  */
239     uint32_t uncached_cpsr;
240     uint32_t spsr;
241 
242     /* Banked registers.  */
243     uint64_t banked_spsr[8];
244     uint32_t banked_r13[8];
245     uint32_t banked_r14[8];
246 
247     /* These hold r8-r12.  */
248     uint32_t usr_regs[5];
249     uint32_t fiq_regs[5];
250 
251     /* cpsr flag cache for faster execution */
252     uint32_t CF; /* 0 or 1 */
253     uint32_t VF; /* V is the bit 31. All other bits are undefined */
254     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
255     uint32_t ZF; /* Z set if zero.  */
256     uint32_t QF; /* 0 or 1 */
257     uint32_t GE; /* cpsr[19:16] */
258     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
262 
263     uint64_t elr_el[4]; /* AArch64 exception link regs  */
264     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265 
266     /* System control coprocessor (cp15) */
267     struct {
268         uint32_t c0_cpuid;
269         union { /* Cache size selection */
270             struct {
271                 uint64_t _unused_csselr0;
272                 uint64_t csselr_ns;
273                 uint64_t _unused_csselr1;
274                 uint64_t csselr_s;
275             };
276             uint64_t csselr_el[4];
277         };
278         union { /* System control register. */
279             struct {
280                 uint64_t _unused_sctlr;
281                 uint64_t sctlr_ns;
282                 uint64_t hsctlr;
283                 uint64_t sctlr_s;
284             };
285             uint64_t sctlr_el[4];
286         };
287         uint64_t vsctlr; /* Virtualization System control register. */
288         uint64_t cpacr_el1; /* Architectural feature access control register */
289         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
290         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
291         uint64_t sder; /* Secure debug enable register. */
292         uint32_t nsacr; /* Non-secure access control register. */
293         union { /* MMU translation table base 0. */
294             struct {
295                 uint64_t _unused_ttbr0_0;
296                 uint64_t ttbr0_ns;
297                 uint64_t _unused_ttbr0_1;
298                 uint64_t ttbr0_s;
299             };
300             uint64_t ttbr0_el[4];
301         };
302         union { /* MMU translation table base 1. */
303             struct {
304                 uint64_t _unused_ttbr1_0;
305                 uint64_t ttbr1_ns;
306                 uint64_t _unused_ttbr1_1;
307                 uint64_t ttbr1_s;
308             };
309             uint64_t ttbr1_el[4];
310         };
311         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
312         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
313         /* MMU translation table base control. */
314         uint64_t tcr_el[4];
315         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
316         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
317         uint32_t c2_data; /* MPU data cacheable bits.  */
318         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319         union { /* MMU domain access control register
320                  * MPU write buffer control.
321                  */
322             struct {
323                 uint64_t dacr_ns;
324                 uint64_t dacr_s;
325             };
326             struct {
327                 uint64_t dacr32_el2;
328             };
329         };
330         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332         uint64_t hcr_el2; /* Hypervisor configuration register */
333         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
334         uint64_t scr_el3; /* Secure configuration register.  */
335         union { /* Fault status registers.  */
336             struct {
337                 uint64_t ifsr_ns;
338                 uint64_t ifsr_s;
339             };
340             struct {
341                 uint64_t ifsr32_el2;
342             };
343         };
344         union {
345             struct {
346                 uint64_t _unused_dfsr;
347                 uint64_t dfsr_ns;
348                 uint64_t hsr;
349                 uint64_t dfsr_s;
350             };
351             uint64_t esr_el[4];
352         };
353         uint32_t c6_region[8]; /* MPU base/size registers.  */
354         union { /* Fault address registers. */
355             struct {
356                 uint64_t _unused_far0;
357 #if HOST_BIG_ENDIAN
358                 uint32_t ifar_ns;
359                 uint32_t dfar_ns;
360                 uint32_t ifar_s;
361                 uint32_t dfar_s;
362 #else
363                 uint32_t dfar_ns;
364                 uint32_t ifar_ns;
365                 uint32_t dfar_s;
366                 uint32_t ifar_s;
367 #endif
368                 uint64_t _unused_far3;
369             };
370             uint64_t far_el[4];
371         };
372         uint64_t hpfar_el2;
373         uint64_t hstr_el2;
374         union { /* Translation result. */
375             struct {
376                 uint64_t _unused_par_0;
377                 uint64_t par_ns;
378                 uint64_t _unused_par_1;
379                 uint64_t par_s;
380             };
381             uint64_t par_el[4];
382         };
383 
384         uint32_t c9_insn; /* Cache lockdown registers.  */
385         uint32_t c9_data;
386         uint64_t c9_pmcr; /* performance monitor control register */
387         uint64_t c9_pmcnten; /* perf monitor counter enables */
388         uint64_t c9_pmovsr; /* perf monitor overflow status */
389         uint64_t c9_pmuserenr; /* perf monitor user enable */
390         uint64_t c9_pmselr; /* perf monitor counter selection register */
391         uint64_t c9_pminten; /* perf monitor interrupt enables */
392         union { /* Memory attribute redirection */
393             struct {
394 #if HOST_BIG_ENDIAN
395                 uint64_t _unused_mair_0;
396                 uint32_t mair1_ns;
397                 uint32_t mair0_ns;
398                 uint64_t _unused_mair_1;
399                 uint32_t mair1_s;
400                 uint32_t mair0_s;
401 #else
402                 uint64_t _unused_mair_0;
403                 uint32_t mair0_ns;
404                 uint32_t mair1_ns;
405                 uint64_t _unused_mair_1;
406                 uint32_t mair0_s;
407                 uint32_t mair1_s;
408 #endif
409             };
410             uint64_t mair_el[4];
411         };
412         union { /* vector base address register */
413             struct {
414                 uint64_t _unused_vbar;
415                 uint64_t vbar_ns;
416                 uint64_t hvbar;
417                 uint64_t vbar_s;
418             };
419             uint64_t vbar_el[4];
420         };
421         uint32_t mvbar; /* (monitor) vector base address register */
422         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
423         struct { /* FCSE PID. */
424             uint32_t fcseidr_ns;
425             uint32_t fcseidr_s;
426         };
427         union { /* Context ID. */
428             struct {
429                 uint64_t _unused_contextidr_0;
430                 uint64_t contextidr_ns;
431                 uint64_t _unused_contextidr_1;
432                 uint64_t contextidr_s;
433             };
434             uint64_t contextidr_el[4];
435         };
436         union { /* User RW Thread register. */
437             struct {
438                 uint64_t tpidrurw_ns;
439                 uint64_t tpidrprw_ns;
440                 uint64_t htpidr;
441                 uint64_t _tpidr_el3;
442             };
443             uint64_t tpidr_el[4];
444         };
445         uint64_t tpidr2_el0;
446         /* The secure banks of these registers don't map anywhere */
447         uint64_t tpidrurw_s;
448         uint64_t tpidrprw_s;
449         uint64_t tpidruro_s;
450 
451         union { /* User RO Thread register. */
452             uint64_t tpidruro_ns;
453             uint64_t tpidrro_el[1];
454         };
455         uint64_t c14_cntfrq; /* Counter Frequency register */
456         uint64_t c14_cntkctl; /* Timer Control register */
457         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459         uint64_t cntpoff_el2; /* Counter Physical Offset register */
460         ARMGenericTimer c14_timer[NUM_GTIMERS];
461         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465         uint32_t c15_threadid; /* TI debugger thread-ID.  */
466         uint32_t c15_config_base_address; /* SCU base address.  */
467         uint32_t c15_diagnostic; /* diagnostic register */
468         uint32_t c15_power_diagnostic;
469         uint32_t c15_power_control; /* power control */
470         uint64_t dbgbvr[16]; /* breakpoint value registers */
471         uint64_t dbgbcr[16]; /* breakpoint control registers */
472         uint64_t dbgwvr[16]; /* watchpoint value registers */
473         uint64_t dbgwcr[16]; /* watchpoint control registers */
474         uint64_t dbgclaim;   /* DBGCLAIM bits */
475         uint64_t mdscr_el1;
476         uint64_t oslsr_el1; /* OS Lock Status */
477         uint64_t osdlr_el1; /* OS DoubleLock status */
478         uint64_t mdcr_el2;
479         uint64_t mdcr_el3;
480         /* Stores the architectural value of the counter *the last time it was
481          * updated* by pmccntr_op_start. Accesses should always be surrounded
482          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483          * architecturally-correct value is being read/set.
484          */
485         uint64_t c15_ccnt;
486         /* Stores the delta between the architectural value and the underlying
487          * cycle count during normal operation. It is used to update c15_ccnt
488          * to be the correct architectural value before accesses. During
489          * accesses, c15_ccnt_delta contains the underlying count being used
490          * for the access, after which it reverts to the delta value in
491          * pmccntr_op_finish.
492          */
493         uint64_t c15_ccnt_delta;
494         uint64_t c14_pmevcntr[31];
495         uint64_t c14_pmevcntr_delta[31];
496         uint64_t c14_pmevtyper[31];
497         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
498         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
499         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
500         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
501         uint64_t gcr_el1;
502         uint64_t rgsr_el1;
503 
504         /* Minimal RAS registers */
505         uint64_t disr_el1;
506         uint64_t vdisr_el2;
507         uint64_t vsesr_el2;
508 
509         /*
510          * Fine-Grained Trap registers. We store these as arrays so the
511          * access checking code doesn't have to manually select
512          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513          * FEAT_FGT2 will add more elements to these arrays.
514          */
515         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517         uint64_t fgt_exec[1]; /* HFGITR */
518 
519         /* RME registers */
520         uint64_t gpccr_el3;
521         uint64_t gptbr_el3;
522         uint64_t mfar_el3;
523 
524         /* NV2 register */
525         uint64_t vncr_el2;
526     } cp15;
527 
528     struct {
529         /* M profile has up to 4 stack pointers:
530          * a Main Stack Pointer and a Process Stack Pointer for each
531          * of the Secure and Non-Secure states. (If the CPU doesn't support
532          * the security extension then it has only two SPs.)
533          * In QEMU we always store the currently active SP in regs[13],
534          * and the non-active SP for the current security state in
535          * v7m.other_sp. The stack pointers for the inactive security state
536          * are stored in other_ss_msp and other_ss_psp.
537          * switch_v7m_security_state() is responsible for rearranging them
538          * when we change security state.
539          */
540         uint32_t other_sp;
541         uint32_t other_ss_msp;
542         uint32_t other_ss_psp;
543         uint32_t vecbase[M_REG_NUM_BANKS];
544         uint32_t basepri[M_REG_NUM_BANKS];
545         uint32_t control[M_REG_NUM_BANKS];
546         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
548         uint32_t hfsr; /* HardFault Status */
549         uint32_t dfsr; /* Debug Fault Status Register */
550         uint32_t sfsr; /* Secure Fault Status Register */
551         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
552         uint32_t bfar; /* BusFault Address */
553         uint32_t sfar; /* Secure Fault Address Register */
554         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
555         int exception;
556         uint32_t primask[M_REG_NUM_BANKS];
557         uint32_t faultmask[M_REG_NUM_BANKS];
558         uint32_t aircr; /* only holds r/w state if security extn implemented */
559         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
560         uint32_t csselr[M_REG_NUM_BANKS];
561         uint32_t scr[M_REG_NUM_BANKS];
562         uint32_t msplim[M_REG_NUM_BANKS];
563         uint32_t psplim[M_REG_NUM_BANKS];
564         uint32_t fpcar[M_REG_NUM_BANKS];
565         uint32_t fpccr[M_REG_NUM_BANKS];
566         uint32_t fpdscr[M_REG_NUM_BANKS];
567         uint32_t cpacr[M_REG_NUM_BANKS];
568         uint32_t nsacr;
569         uint32_t ltpsize;
570         uint32_t vpr;
571     } v7m;
572 
573     /* Information associated with an exception about to be taken:
574      * code which raises an exception must set cs->exception_index and
575      * the relevant parts of this structure; the cpu_do_interrupt function
576      * will then set the guest-visible registers as part of the exception
577      * entry process.
578      */
579     struct {
580         uint32_t syndrome; /* AArch64 format syndrome register */
581         uint32_t fsr; /* AArch32 format fault status register info */
582         uint64_t vaddress; /* virtual addr associated with exception, if any */
583         uint32_t target_el; /* EL the exception should be targeted for */
584         /* If we implement EL2 we will also need to store information
585          * about the intermediate physical address for stage 2 faults.
586          */
587     } exception;
588 
589     /* Information associated with an SError */
590     struct {
591         uint8_t pending;
592         uint8_t has_esr;
593         uint64_t esr;
594     } serror;
595 
596     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597 
598     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599     uint32_t irq_line_state;
600 
601     /* Thumb-2 EE state.  */
602     uint32_t teecr;
603     uint32_t teehbr;
604 
605     /* VFP coprocessor state.  */
606     struct {
607         ARMVectorReg zregs[32];
608 
609 #ifdef TARGET_AARCH64
610         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
611 #define FFR_PRED_NUM 16
612         ARMPredicateReg pregs[17];
613         /* Scratch space for aa64 sve predicate temporary.  */
614         ARMPredicateReg preg_tmp;
615 #endif
616 
617         /* We store these fpcsr fields separately for convenience.  */
618         uint32_t qc[4] QEMU_ALIGNED(16);
619         int vec_len;
620         int vec_stride;
621 
622         uint32_t xregs[16];
623 
624         /* Scratch space for aa32 neon expansion.  */
625         uint32_t scratch[8];
626 
627         /* There are a number of distinct float control structures:
628          *
629          *  fp_status: is the "normal" fp status.
630          *  fp_status_fp16: used for half-precision calculations
631          *  standard_fp_status : the ARM "Standard FPSCR Value"
632          *  standard_fp_status_fp16 : used for half-precision
633          *       calculations with the ARM "Standard FPSCR Value"
634          *
635          * Half-precision operations are governed by a separate
636          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
637          * status structure to control this.
638          *
639          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
640          * round-to-nearest and is used by any operations (generally
641          * Neon) which the architecture defines as controlled by the
642          * standard FPSCR value rather than the FPSCR.
643          *
644          * The "standard FPSCR but for fp16 ops" is needed because
645          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
646          * using a fixed value for it.
647          *
648          * To avoid having to transfer exception bits around, we simply
649          * say that the FPSCR cumulative exception flags are the logical
650          * OR of the flags in the four fp statuses. This relies on the
651          * only thing which needs to read the exception flags being
652          * an explicit FPSCR read.
653          */
654         float_status fp_status;
655         float_status fp_status_f16;
656         float_status standard_fp_status;
657         float_status standard_fp_status_f16;
658 
659         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
660         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
661     } vfp;
662 
663     uint64_t exclusive_addr;
664     uint64_t exclusive_val;
665     /*
666      * Contains the 'val' for the second 64-bit register of LDXP, which comes
667      * from the higher address, not the high part of a complete 128-bit value.
668      * In some ways it might be more convenient to record the exclusive value
669      * as the low and high halves of a 128 bit data value, but the current
670      * semantics of these fields are baked into the migration format.
671      */
672     uint64_t exclusive_high;
673 
674     /* iwMMXt coprocessor state.  */
675     struct {
676         uint64_t regs[16];
677         uint64_t val;
678 
679         uint32_t cregs[16];
680     } iwmmxt;
681 
682 #ifdef TARGET_AARCH64
683     struct {
684         ARMPACKey apia;
685         ARMPACKey apib;
686         ARMPACKey apda;
687         ARMPACKey apdb;
688         ARMPACKey apga;
689     } keys;
690 
691     uint64_t scxtnum_el[4];
692 
693     /*
694      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
695      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
696      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
697      * When SVL is less than the architectural maximum, the accessible
698      * storage is restricted, such that if the SVL is X bytes the guest can
699      * see only the bottom X elements of zarray[], and only the least
700      * significant X bytes of each element of the array. (In other words,
701      * the observable part is always square.)
702      *
703      * The ZA storage can also be considered as a set of square tiles of
704      * elements of different sizes. The mapping from tiles to the ZA array
705      * is architecturally defined, such that for tiles of elements of esz
706      * bytes, the Nth row (or "horizontal slice") of tile T is in
707      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
708      * in the ZA storage, because its rows are striped through the ZA array.
709      *
710      * Because this is so large, keep this toward the end of the reset area,
711      * to keep the offsets into the rest of the structure smaller.
712      */
713     ARMVectorReg zarray[ARM_MAX_VQ * 16];
714 #endif
715 
716     struct CPUBreakpoint *cpu_breakpoint[16];
717     struct CPUWatchpoint *cpu_watchpoint[16];
718 
719     /* Optional fault info across tlb lookup. */
720     ARMMMUFaultInfo *tlb_fi;
721 
722     /* Fields up to this point are cleared by a CPU reset */
723     struct {} end_reset_fields;
724 
725     /* Fields after this point are preserved across CPU reset. */
726 
727     /* Internal CPU feature flags.  */
728     uint64_t features;
729 
730     /* PMSAv7 MPU */
731     struct {
732         uint32_t *drbar;
733         uint32_t *drsr;
734         uint32_t *dracr;
735         uint32_t rnr[M_REG_NUM_BANKS];
736     } pmsav7;
737 
738     /* PMSAv8 MPU */
739     struct {
740         /* The PMSAv8 implementation also shares some PMSAv7 config
741          * and state:
742          *  pmsav7.rnr (region number register)
743          *  pmsav7_dregion (number of configured regions)
744          */
745         uint32_t *rbar[M_REG_NUM_BANKS];
746         uint32_t *rlar[M_REG_NUM_BANKS];
747         uint32_t *hprbar;
748         uint32_t *hprlar;
749         uint32_t mair0[M_REG_NUM_BANKS];
750         uint32_t mair1[M_REG_NUM_BANKS];
751         uint32_t hprselr;
752     } pmsav8;
753 
754     /* v8M SAU */
755     struct {
756         uint32_t *rbar;
757         uint32_t *rlar;
758         uint32_t rnr;
759         uint32_t ctrl;
760     } sau;
761 
762 #if !defined(CONFIG_USER_ONLY)
763     NVICState *nvic;
764     const struct arm_boot_info *boot_info;
765     /* Store GICv3CPUState to access from this struct */
766     void *gicv3state;
767 #else /* CONFIG_USER_ONLY */
768     /* For usermode syscall translation.  */
769     bool eabi;
770 #endif /* CONFIG_USER_ONLY */
771 
772 #ifdef TARGET_TAGGED_ADDRESSES
773     /* Linux syscall tagged address support */
774     bool tagged_addr_enable;
775 #endif
776 } CPUARMState;
777 
778 static inline void set_feature(CPUARMState *env, int feature)
779 {
780     env->features |= 1ULL << feature;
781 }
782 
783 static inline void unset_feature(CPUARMState *env, int feature)
784 {
785     env->features &= ~(1ULL << feature);
786 }
787 
788 /**
789  * ARMELChangeHookFn:
790  * type of a function which can be registered via arm_register_el_change_hook()
791  * to get callbacks when the CPU changes its exception level or mode.
792  */
793 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
794 typedef struct ARMELChangeHook ARMELChangeHook;
795 struct ARMELChangeHook {
796     ARMELChangeHookFn *hook;
797     void *opaque;
798     QLIST_ENTRY(ARMELChangeHook) node;
799 };
800 
801 /* These values map onto the return values for
802  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
803 typedef enum ARMPSCIState {
804     PSCI_ON = 0,
805     PSCI_OFF = 1,
806     PSCI_ON_PENDING = 2
807 } ARMPSCIState;
808 
809 typedef struct ARMISARegisters ARMISARegisters;
810 
811 /*
812  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
813  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
814  *
815  * While processing properties during initialization, corresponding init bits
816  * are set for bits in sve_vq_map that have been set by properties.
817  *
818  * Bits set in supported represent valid vector lengths for the CPU type.
819  */
820 typedef struct {
821     uint32_t map, init, supported;
822 } ARMVQMap;
823 
824 /**
825  * ARMCPU:
826  * @env: #CPUARMState
827  *
828  * An ARM CPU core.
829  */
830 struct ArchCPU {
831     CPUState parent_obj;
832 
833     CPUARMState env;
834 
835     /* Coprocessor information */
836     GHashTable *cp_regs;
837     /* For marshalling (mostly coprocessor) register state between the
838      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
839      * we use these arrays.
840      */
841     /* List of register indexes managed via these arrays; (full KVM style
842      * 64 bit indexes, not CPRegInfo 32 bit indexes)
843      */
844     uint64_t *cpreg_indexes;
845     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
846     uint64_t *cpreg_values;
847     /* Length of the indexes, values, reset_values arrays */
848     int32_t cpreg_array_len;
849     /* These are used only for migration: incoming data arrives in
850      * these fields and is sanity checked in post_load before copying
851      * to the working data structures above.
852      */
853     uint64_t *cpreg_vmstate_indexes;
854     uint64_t *cpreg_vmstate_values;
855     int32_t cpreg_vmstate_array_len;
856 
857     DynamicGDBFeatureInfo dyn_sysreg_feature;
858     DynamicGDBFeatureInfo dyn_svereg_feature;
859     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
860     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
861 
862     /* Timers used by the generic (architected) timer */
863     QEMUTimer *gt_timer[NUM_GTIMERS];
864     /*
865      * Timer used by the PMU. Its state is restored after migration by
866      * pmu_op_finish() - it does not need other handling during migration
867      */
868     QEMUTimer *pmu_timer;
869     /* Timer used for WFxT timeouts */
870     QEMUTimer *wfxt_timer;
871 
872     /* GPIO outputs for generic timer */
873     qemu_irq gt_timer_outputs[NUM_GTIMERS];
874     /* GPIO output for GICv3 maintenance interrupt signal */
875     qemu_irq gicv3_maintenance_interrupt;
876     /* GPIO output for the PMU interrupt */
877     qemu_irq pmu_interrupt;
878 
879     /* MemoryRegion to use for secure physical accesses */
880     MemoryRegion *secure_memory;
881 
882     /* MemoryRegion to use for allocation tag accesses */
883     MemoryRegion *tag_memory;
884     MemoryRegion *secure_tag_memory;
885 
886     /* For v8M, pointer to the IDAU interface provided by board/SoC */
887     Object *idau;
888 
889     /* 'compatible' string for this CPU for Linux device trees */
890     const char *dtb_compatible;
891 
892     /* PSCI version for this CPU
893      * Bits[31:16] = Major Version
894      * Bits[15:0] = Minor Version
895      */
896     uint32_t psci_version;
897 
898     /* Current power state, access guarded by BQL */
899     ARMPSCIState power_state;
900 
901     /* CPU has virtualization extension */
902     bool has_el2;
903     /* CPU has security extension */
904     bool has_el3;
905     /* CPU has PMU (Performance Monitor Unit) */
906     bool has_pmu;
907     /* CPU has VFP */
908     bool has_vfp;
909     /* CPU has 32 VFP registers */
910     bool has_vfp_d32;
911     /* CPU has Neon */
912     bool has_neon;
913     /* CPU has M-profile DSP extension */
914     bool has_dsp;
915 
916     /* CPU has memory protection unit */
917     bool has_mpu;
918     /* PMSAv7 MPU number of supported regions */
919     uint32_t pmsav7_dregion;
920     /* PMSAv8 MPU number of supported hyp regions */
921     uint32_t pmsav8r_hdregion;
922     /* v8M SAU number of supported regions */
923     uint32_t sau_sregion;
924 
925     /* PSCI conduit used to invoke PSCI methods
926      * 0 - disabled, 1 - smc, 2 - hvc
927      */
928     uint32_t psci_conduit;
929 
930     /* For v8M, initial value of the Secure VTOR */
931     uint32_t init_svtor;
932     /* For v8M, initial value of the Non-secure VTOR */
933     uint32_t init_nsvtor;
934 
935     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
936      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
937      */
938     uint32_t kvm_target;
939 
940 #ifdef CONFIG_KVM
941     /* KVM init features for this CPU */
942     uint32_t kvm_init_features[7];
943 
944     /* KVM CPU state */
945 
946     /* KVM virtual time adjustment */
947     bool kvm_adjvtime;
948     bool kvm_vtime_dirty;
949     uint64_t kvm_vtime;
950 
951     /* KVM steal time */
952     OnOffAuto kvm_steal_time;
953 #endif /* CONFIG_KVM */
954 
955     /* Uniprocessor system with MP extensions */
956     bool mp_is_up;
957 
958     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
959      * and the probe failed (so we need to report the error in realize)
960      */
961     bool host_cpu_probe_failed;
962 
963     /* QOM property to indicate we should use the back-compat CNTFRQ default */
964     bool backcompat_cntfrq;
965 
966     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
967      * register.
968      */
969     int32_t core_count;
970 
971     /* The instance init functions for implementation-specific subclasses
972      * set these fields to specify the implementation-dependent values of
973      * various constant registers and reset values of non-constant
974      * registers.
975      * Some of these might become QOM properties eventually.
976      * Field names match the official register names as defined in the
977      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
978      * is used for reset values of non-constant registers; no reset_
979      * prefix means a constant register.
980      * Some of these registers are split out into a substructure that
981      * is shared with the translators to control the ISA.
982      *
983      * Note that if you add an ID register to the ARMISARegisters struct
984      * you need to also update the 32-bit and 64-bit versions of the
985      * kvm_arm_get_host_cpu_features() function to correctly populate the
986      * field by reading the value from the KVM vCPU.
987      */
988     struct ARMISARegisters {
989         uint32_t id_isar0;
990         uint32_t id_isar1;
991         uint32_t id_isar2;
992         uint32_t id_isar3;
993         uint32_t id_isar4;
994         uint32_t id_isar5;
995         uint32_t id_isar6;
996         uint32_t id_mmfr0;
997         uint32_t id_mmfr1;
998         uint32_t id_mmfr2;
999         uint32_t id_mmfr3;
1000         uint32_t id_mmfr4;
1001         uint32_t id_mmfr5;
1002         uint32_t id_pfr0;
1003         uint32_t id_pfr1;
1004         uint32_t id_pfr2;
1005         uint32_t mvfr0;
1006         uint32_t mvfr1;
1007         uint32_t mvfr2;
1008         uint32_t id_dfr0;
1009         uint32_t id_dfr1;
1010         uint32_t dbgdidr;
1011         uint32_t dbgdevid;
1012         uint32_t dbgdevid1;
1013         uint64_t id_aa64isar0;
1014         uint64_t id_aa64isar1;
1015         uint64_t id_aa64isar2;
1016         uint64_t id_aa64pfr0;
1017         uint64_t id_aa64pfr1;
1018         uint64_t id_aa64mmfr0;
1019         uint64_t id_aa64mmfr1;
1020         uint64_t id_aa64mmfr2;
1021         uint64_t id_aa64mmfr3;
1022         uint64_t id_aa64dfr0;
1023         uint64_t id_aa64dfr1;
1024         uint64_t id_aa64zfr0;
1025         uint64_t id_aa64smfr0;
1026         uint64_t reset_pmcr_el0;
1027     } isar;
1028     uint64_t midr;
1029     uint32_t revidr;
1030     uint32_t reset_fpsid;
1031     uint64_t ctr;
1032     uint32_t reset_sctlr;
1033     uint64_t pmceid0;
1034     uint64_t pmceid1;
1035     uint32_t id_afr0;
1036     uint64_t id_aa64afr0;
1037     uint64_t id_aa64afr1;
1038     uint64_t clidr;
1039     uint64_t mp_affinity; /* MP ID without feature bits */
1040     /* The elements of this array are the CCSIDR values for each cache,
1041      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1042      */
1043     uint64_t ccsidr[16];
1044     uint64_t reset_cbar;
1045     uint32_t reset_auxcr;
1046     bool reset_hivecs;
1047     uint8_t reset_l0gptsz;
1048 
1049     /*
1050      * Intermediate values used during property parsing.
1051      * Once finalized, the values should be read from ID_AA64*.
1052      */
1053     bool prop_pauth;
1054     bool prop_pauth_impdef;
1055     bool prop_pauth_qarma3;
1056     bool prop_lpa2;
1057 
1058     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1059     uint8_t dcz_blocksize;
1060     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1061     uint8_t gm_blocksize;
1062 
1063     uint64_t rvbar_prop; /* Property/input signals.  */
1064 
1065     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1066     int gic_num_lrs; /* number of list registers */
1067     int gic_vpribits; /* number of virtual priority bits */
1068     int gic_vprebits; /* number of virtual preemption bits */
1069     int gic_pribits; /* number of physical priority bits */
1070 
1071     /* Whether the cfgend input is high (i.e. this CPU should reset into
1072      * big-endian mode).  This setting isn't used directly: instead it modifies
1073      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1074      * architecture version.
1075      */
1076     bool cfgend;
1077 
1078     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1079     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1080 
1081     int32_t node_id; /* NUMA node this CPU belongs to */
1082 
1083     /* Used to synchronize KVM and QEMU in-kernel device levels */
1084     uint8_t device_irq_level;
1085 
1086     /* Used to set the maximum vector length the cpu will support.  */
1087     uint32_t sve_max_vq;
1088 
1089 #ifdef CONFIG_USER_ONLY
1090     /* Used to set the default vector length at process start. */
1091     uint32_t sve_default_vq;
1092     uint32_t sme_default_vq;
1093 #endif
1094 
1095     ARMVQMap sve_vq;
1096     ARMVQMap sme_vq;
1097 
1098     /* Generic timer counter frequency, in Hz */
1099     uint64_t gt_cntfrq_hz;
1100 };
1101 
1102 typedef struct ARMCPUInfo {
1103     const char *name;
1104     void (*initfn)(Object *obj);
1105     void (*class_init)(ObjectClass *oc, void *data);
1106 } ARMCPUInfo;
1107 
1108 /**
1109  * ARMCPUClass:
1110  * @parent_realize: The parent class' realize handler.
1111  * @parent_phases: The parent class' reset phase handlers.
1112  *
1113  * An ARM CPU model.
1114  */
1115 struct ARMCPUClass {
1116     CPUClass parent_class;
1117 
1118     const ARMCPUInfo *info;
1119     DeviceRealize parent_realize;
1120     ResettablePhases parent_phases;
1121 };
1122 
1123 struct AArch64CPUClass {
1124     ARMCPUClass parent_class;
1125 };
1126 
1127 /* Callback functions for the generic timer's timers. */
1128 void arm_gt_ptimer_cb(void *opaque);
1129 void arm_gt_vtimer_cb(void *opaque);
1130 void arm_gt_htimer_cb(void *opaque);
1131 void arm_gt_stimer_cb(void *opaque);
1132 void arm_gt_hvtimer_cb(void *opaque);
1133 
1134 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1135 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1136 
1137 void arm_cpu_post_init(Object *obj);
1138 
1139 #define ARM_AFF0_SHIFT 0
1140 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1141 #define ARM_AFF1_SHIFT 8
1142 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1143 #define ARM_AFF2_SHIFT 16
1144 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1145 #define ARM_AFF3_SHIFT 32
1146 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1147 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1148 
1149 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1150 #define ARM64_AFFINITY_MASK \
1151     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1152 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1153 
1154 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1155 
1156 #ifndef CONFIG_USER_ONLY
1157 extern const VMStateDescription vmstate_arm_cpu;
1158 
1159 void arm_cpu_do_interrupt(CPUState *cpu);
1160 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1161 
1162 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1163                                          MemTxAttrs *attrs);
1164 #endif /* !CONFIG_USER_ONLY */
1165 
1166 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1167 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1168 
1169 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1170                              int cpuid, DumpState *s);
1171 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1172                              int cpuid, DumpState *s);
1173 
1174 /**
1175  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1176  * @cpu: CPU (which must have been freshly reset)
1177  * @target_el: exception level to put the CPU into
1178  * @secure: whether to put the CPU in secure state
1179  *
1180  * When QEMU is directly running a guest kernel at a lower level than
1181  * EL3 it implicitly emulates some aspects of the guest firmware.
1182  * This includes that on reset we need to configure the parts of the
1183  * CPU corresponding to EL3 so that the real guest code can run at its
1184  * lower exception level. This function does that post-reset CPU setup,
1185  * for when we do direct boot of a guest kernel, and for when we
1186  * emulate PSCI and similar firmware interfaces starting a CPU at a
1187  * lower exception level.
1188  *
1189  * @target_el must be an EL implemented by the CPU between 1 and 3.
1190  * We do not support dropping into a Secure EL other than 3.
1191  *
1192  * It is the responsibility of the caller to call arm_rebuild_hflags().
1193  */
1194 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1195 
1196 #ifdef TARGET_AARCH64
1197 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1198 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1199 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1200 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1201                            int new_el, bool el0_a64);
1202 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1203 
1204 /*
1205  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1206  * The byte at offset i from the start of the in-memory representation contains
1207  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1208  * lowest offsets are stored in the lowest memory addresses, then that nearly
1209  * matches QEMU's representation, which is to use an array of host-endian
1210  * uint64_t's, where the lower offsets are at the lower indices. To complete
1211  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1212  */
1213 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1214 {
1215 #if HOST_BIG_ENDIAN
1216     int i;
1217 
1218     for (i = 0; i < nr; ++i) {
1219         dst[i] = bswap64(src[i]);
1220     }
1221 
1222     return dst;
1223 #else
1224     return src;
1225 #endif
1226 }
1227 
1228 #else
1229 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1230 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1231                                          int n, bool a)
1232 { }
1233 #endif
1234 
1235 void aarch64_sync_32_to_64(CPUARMState *env);
1236 void aarch64_sync_64_to_32(CPUARMState *env);
1237 
1238 int fp_exception_el(CPUARMState *env, int cur_el);
1239 int sve_exception_el(CPUARMState *env, int cur_el);
1240 int sme_exception_el(CPUARMState *env, int cur_el);
1241 
1242 /**
1243  * sve_vqm1_for_el_sm:
1244  * @env: CPUARMState
1245  * @el: exception level
1246  * @sm: streaming mode
1247  *
1248  * Compute the current vector length for @el & @sm, in units of
1249  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1250  * If @sm, compute for SVL, otherwise NVL.
1251  */
1252 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1253 
1254 /* Likewise, but using @sm = PSTATE.SM. */
1255 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1256 
1257 static inline bool is_a64(CPUARMState *env)
1258 {
1259     return env->aarch64;
1260 }
1261 
1262 /**
1263  * pmu_op_start/finish
1264  * @env: CPUARMState
1265  *
1266  * Convert all PMU counters between their delta form (the typical mode when
1267  * they are enabled) and the guest-visible values. These two calls must
1268  * surround any action which might affect the counters.
1269  */
1270 void pmu_op_start(CPUARMState *env);
1271 void pmu_op_finish(CPUARMState *env);
1272 
1273 /*
1274  * Called when a PMU counter is due to overflow
1275  */
1276 void arm_pmu_timer_cb(void *opaque);
1277 
1278 /**
1279  * Functions to register as EL change hooks for PMU mode filtering
1280  */
1281 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1282 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1283 
1284 /*
1285  * pmu_init
1286  * @cpu: ARMCPU
1287  *
1288  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1289  * for the current configuration
1290  */
1291 void pmu_init(ARMCPU *cpu);
1292 
1293 /* SCTLR bit meanings. Several bits have been reused in newer
1294  * versions of the architecture; in that case we define constants
1295  * for both old and new bit meanings. Code which tests against those
1296  * bits should probably check or otherwise arrange that the CPU
1297  * is the architectural version it expects.
1298  */
1299 #define SCTLR_M       (1U << 0)
1300 #define SCTLR_A       (1U << 1)
1301 #define SCTLR_C       (1U << 2)
1302 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1303 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1304 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1305 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1306 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1307 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1308 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1309 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1310 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1311 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1312 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1313 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1314 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1315 #define SCTLR_SED     (1U << 8) /* v8 onward */
1316 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1317 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1318 #define SCTLR_F       (1U << 10) /* up to v6 */
1319 #define SCTLR_SW      (1U << 10) /* v7 */
1320 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1321 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1322 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1323 #define SCTLR_I       (1U << 12)
1324 #define SCTLR_V       (1U << 13) /* AArch32 only */
1325 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1326 #define SCTLR_RR      (1U << 14) /* up to v7 */
1327 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1328 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1329 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1330 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1331 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1332 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1333 #define SCTLR_BR      (1U << 17) /* PMSA only */
1334 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1335 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1336 #define SCTLR_WXN     (1U << 19)
1337 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1338 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1339 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1340 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1341 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1342 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1343 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1344 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1345 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1346 #define SCTLR_VE      (1U << 24) /* up to v7 */
1347 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1348 #define SCTLR_EE      (1U << 25)
1349 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1350 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1351 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1352 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1353 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1354 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1355 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1356 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1357 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1358 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1359 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1360 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1361 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1362 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1363 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1364 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1365 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1366 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1367 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1368 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1369 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1370 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1371 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1372 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1373 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1374 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1375 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1376 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1377 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1378 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1379 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1380 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1381 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1382 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1383 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1384 
1385 #define CPSR_M (0x1fU)
1386 #define CPSR_T (1U << 5)
1387 #define CPSR_F (1U << 6)
1388 #define CPSR_I (1U << 7)
1389 #define CPSR_A (1U << 8)
1390 #define CPSR_E (1U << 9)
1391 #define CPSR_IT_2_7 (0xfc00U)
1392 #define CPSR_GE (0xfU << 16)
1393 #define CPSR_IL (1U << 20)
1394 #define CPSR_DIT (1U << 21)
1395 #define CPSR_PAN (1U << 22)
1396 #define CPSR_SSBS (1U << 23)
1397 #define CPSR_J (1U << 24)
1398 #define CPSR_IT_0_1 (3U << 25)
1399 #define CPSR_Q (1U << 27)
1400 #define CPSR_V (1U << 28)
1401 #define CPSR_C (1U << 29)
1402 #define CPSR_Z (1U << 30)
1403 #define CPSR_N (1U << 31)
1404 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1405 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1406 #define ISR_FS (1U << 9)
1407 #define ISR_IS (1U << 10)
1408 
1409 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1410 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1411     | CPSR_NZCV)
1412 /* Bits writable in user mode.  */
1413 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1414 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1415 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1416 
1417 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1418 #define XPSR_EXCP 0x1ffU
1419 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1420 #define XPSR_IT_2_7 CPSR_IT_2_7
1421 #define XPSR_GE CPSR_GE
1422 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1423 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1424 #define XPSR_IT_0_1 CPSR_IT_0_1
1425 #define XPSR_Q CPSR_Q
1426 #define XPSR_V CPSR_V
1427 #define XPSR_C CPSR_C
1428 #define XPSR_Z CPSR_Z
1429 #define XPSR_N CPSR_N
1430 #define XPSR_NZCV CPSR_NZCV
1431 #define XPSR_IT CPSR_IT
1432 
1433 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1434  * Only these are valid when in AArch64 mode; in
1435  * AArch32 mode SPSRs are basically CPSR-format.
1436  */
1437 #define PSTATE_SP (1U)
1438 #define PSTATE_M (0xFU)
1439 #define PSTATE_nRW (1U << 4)
1440 #define PSTATE_F (1U << 6)
1441 #define PSTATE_I (1U << 7)
1442 #define PSTATE_A (1U << 8)
1443 #define PSTATE_D (1U << 9)
1444 #define PSTATE_BTYPE (3U << 10)
1445 #define PSTATE_SSBS (1U << 12)
1446 #define PSTATE_ALLINT (1U << 13)
1447 #define PSTATE_IL (1U << 20)
1448 #define PSTATE_SS (1U << 21)
1449 #define PSTATE_PAN (1U << 22)
1450 #define PSTATE_UAO (1U << 23)
1451 #define PSTATE_DIT (1U << 24)
1452 #define PSTATE_TCO (1U << 25)
1453 #define PSTATE_V (1U << 28)
1454 #define PSTATE_C (1U << 29)
1455 #define PSTATE_Z (1U << 30)
1456 #define PSTATE_N (1U << 31)
1457 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1458 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1459 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1460 /* Mode values for AArch64 */
1461 #define PSTATE_MODE_EL3h 13
1462 #define PSTATE_MODE_EL3t 12
1463 #define PSTATE_MODE_EL2h 9
1464 #define PSTATE_MODE_EL2t 8
1465 #define PSTATE_MODE_EL1h 5
1466 #define PSTATE_MODE_EL1t 4
1467 #define PSTATE_MODE_EL0t 0
1468 
1469 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1470 FIELD(SVCR, SM, 0, 1)
1471 FIELD(SVCR, ZA, 1, 1)
1472 
1473 /* Fields for SMCR_ELx. */
1474 FIELD(SMCR, LEN, 0, 4)
1475 FIELD(SMCR, FA64, 31, 1)
1476 
1477 /* Write a new value to v7m.exception, thus transitioning into or out
1478  * of Handler mode; this may result in a change of active stack pointer.
1479  */
1480 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1481 
1482 /* Map EL and handler into a PSTATE_MODE.  */
1483 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1484 {
1485     return (el << 2) | handler;
1486 }
1487 
1488 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1489  * interprocessing, so we don't attempt to sync with the cpsr state used by
1490  * the 32 bit decoder.
1491  */
1492 static inline uint32_t pstate_read(CPUARMState *env)
1493 {
1494     int ZF;
1495 
1496     ZF = (env->ZF == 0);
1497     return (env->NF & 0x80000000) | (ZF << 30)
1498         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1499         | env->pstate | env->daif | (env->btype << 10);
1500 }
1501 
1502 static inline void pstate_write(CPUARMState *env, uint32_t val)
1503 {
1504     env->ZF = (~val) & PSTATE_Z;
1505     env->NF = val;
1506     env->CF = (val >> 29) & 1;
1507     env->VF = (val << 3) & 0x80000000;
1508     env->daif = val & PSTATE_DAIF;
1509     env->btype = (val >> 10) & 3;
1510     env->pstate = val & ~CACHED_PSTATE_BITS;
1511 }
1512 
1513 /* Return the current CPSR value.  */
1514 uint32_t cpsr_read(CPUARMState *env);
1515 
1516 typedef enum CPSRWriteType {
1517     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1518     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1519     CPSRWriteRaw = 2,
1520         /* trust values, no reg bank switch, no hflags rebuild */
1521     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1522 } CPSRWriteType;
1523 
1524 /*
1525  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1526  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1527  * correspond to TB flags bits cached in the hflags, unless @write_type
1528  * is CPSRWriteRaw.
1529  */
1530 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1531                 CPSRWriteType write_type);
1532 
1533 /* Return the current xPSR value.  */
1534 static inline uint32_t xpsr_read(CPUARMState *env)
1535 {
1536     int ZF;
1537     ZF = (env->ZF == 0);
1538     return (env->NF & 0x80000000) | (ZF << 30)
1539         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1540         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1541         | ((env->condexec_bits & 0xfc) << 8)
1542         | (env->GE << 16)
1543         | env->v7m.exception;
1544 }
1545 
1546 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1547 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1548 {
1549     if (mask & XPSR_NZCV) {
1550         env->ZF = (~val) & XPSR_Z;
1551         env->NF = val;
1552         env->CF = (val >> 29) & 1;
1553         env->VF = (val << 3) & 0x80000000;
1554     }
1555     if (mask & XPSR_Q) {
1556         env->QF = ((val & XPSR_Q) != 0);
1557     }
1558     if (mask & XPSR_GE) {
1559         env->GE = (val & XPSR_GE) >> 16;
1560     }
1561 #ifndef CONFIG_USER_ONLY
1562     if (mask & XPSR_T) {
1563         env->thumb = ((val & XPSR_T) != 0);
1564     }
1565     if (mask & XPSR_IT_0_1) {
1566         env->condexec_bits &= ~3;
1567         env->condexec_bits |= (val >> 25) & 3;
1568     }
1569     if (mask & XPSR_IT_2_7) {
1570         env->condexec_bits &= 3;
1571         env->condexec_bits |= (val >> 8) & 0xfc;
1572     }
1573     if (mask & XPSR_EXCP) {
1574         /* Note that this only happens on exception exit */
1575         write_v7m_exception(env, val & XPSR_EXCP);
1576     }
1577 #endif
1578 }
1579 
1580 #define HCR_VM        (1ULL << 0)
1581 #define HCR_SWIO      (1ULL << 1)
1582 #define HCR_PTW       (1ULL << 2)
1583 #define HCR_FMO       (1ULL << 3)
1584 #define HCR_IMO       (1ULL << 4)
1585 #define HCR_AMO       (1ULL << 5)
1586 #define HCR_VF        (1ULL << 6)
1587 #define HCR_VI        (1ULL << 7)
1588 #define HCR_VSE       (1ULL << 8)
1589 #define HCR_FB        (1ULL << 9)
1590 #define HCR_BSU_MASK  (3ULL << 10)
1591 #define HCR_DC        (1ULL << 12)
1592 #define HCR_TWI       (1ULL << 13)
1593 #define HCR_TWE       (1ULL << 14)
1594 #define HCR_TID0      (1ULL << 15)
1595 #define HCR_TID1      (1ULL << 16)
1596 #define HCR_TID2      (1ULL << 17)
1597 #define HCR_TID3      (1ULL << 18)
1598 #define HCR_TSC       (1ULL << 19)
1599 #define HCR_TIDCP     (1ULL << 20)
1600 #define HCR_TACR      (1ULL << 21)
1601 #define HCR_TSW       (1ULL << 22)
1602 #define HCR_TPCP      (1ULL << 23)
1603 #define HCR_TPU       (1ULL << 24)
1604 #define HCR_TTLB      (1ULL << 25)
1605 #define HCR_TVM       (1ULL << 26)
1606 #define HCR_TGE       (1ULL << 27)
1607 #define HCR_TDZ       (1ULL << 28)
1608 #define HCR_HCD       (1ULL << 29)
1609 #define HCR_TRVM      (1ULL << 30)
1610 #define HCR_RW        (1ULL << 31)
1611 #define HCR_CD        (1ULL << 32)
1612 #define HCR_ID        (1ULL << 33)
1613 #define HCR_E2H       (1ULL << 34)
1614 #define HCR_TLOR      (1ULL << 35)
1615 #define HCR_TERR      (1ULL << 36)
1616 #define HCR_TEA       (1ULL << 37)
1617 #define HCR_MIOCNCE   (1ULL << 38)
1618 #define HCR_TME       (1ULL << 39)
1619 #define HCR_APK       (1ULL << 40)
1620 #define HCR_API       (1ULL << 41)
1621 #define HCR_NV        (1ULL << 42)
1622 #define HCR_NV1       (1ULL << 43)
1623 #define HCR_AT        (1ULL << 44)
1624 #define HCR_NV2       (1ULL << 45)
1625 #define HCR_FWB       (1ULL << 46)
1626 #define HCR_FIEN      (1ULL << 47)
1627 #define HCR_GPF       (1ULL << 48)
1628 #define HCR_TID4      (1ULL << 49)
1629 #define HCR_TICAB     (1ULL << 50)
1630 #define HCR_AMVOFFEN  (1ULL << 51)
1631 #define HCR_TOCU      (1ULL << 52)
1632 #define HCR_ENSCXT    (1ULL << 53)
1633 #define HCR_TTLBIS    (1ULL << 54)
1634 #define HCR_TTLBOS    (1ULL << 55)
1635 #define HCR_ATA       (1ULL << 56)
1636 #define HCR_DCT       (1ULL << 57)
1637 #define HCR_TID5      (1ULL << 58)
1638 #define HCR_TWEDEN    (1ULL << 59)
1639 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1640 
1641 #define SCR_NS                (1ULL << 0)
1642 #define SCR_IRQ               (1ULL << 1)
1643 #define SCR_FIQ               (1ULL << 2)
1644 #define SCR_EA                (1ULL << 3)
1645 #define SCR_FW                (1ULL << 4)
1646 #define SCR_AW                (1ULL << 5)
1647 #define SCR_NET               (1ULL << 6)
1648 #define SCR_SMD               (1ULL << 7)
1649 #define SCR_HCE               (1ULL << 8)
1650 #define SCR_SIF               (1ULL << 9)
1651 #define SCR_RW                (1ULL << 10)
1652 #define SCR_ST                (1ULL << 11)
1653 #define SCR_TWI               (1ULL << 12)
1654 #define SCR_TWE               (1ULL << 13)
1655 #define SCR_TLOR              (1ULL << 14)
1656 #define SCR_TERR              (1ULL << 15)
1657 #define SCR_APK               (1ULL << 16)
1658 #define SCR_API               (1ULL << 17)
1659 #define SCR_EEL2              (1ULL << 18)
1660 #define SCR_EASE              (1ULL << 19)
1661 #define SCR_NMEA              (1ULL << 20)
1662 #define SCR_FIEN              (1ULL << 21)
1663 #define SCR_ENSCXT            (1ULL << 25)
1664 #define SCR_ATA               (1ULL << 26)
1665 #define SCR_FGTEN             (1ULL << 27)
1666 #define SCR_ECVEN             (1ULL << 28)
1667 #define SCR_TWEDEN            (1ULL << 29)
1668 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1669 #define SCR_TME               (1ULL << 34)
1670 #define SCR_AMVOFFEN          (1ULL << 35)
1671 #define SCR_ENAS0             (1ULL << 36)
1672 #define SCR_ADEN              (1ULL << 37)
1673 #define SCR_HXEN              (1ULL << 38)
1674 #define SCR_TRNDR             (1ULL << 40)
1675 #define SCR_ENTP2             (1ULL << 41)
1676 #define SCR_GPF               (1ULL << 48)
1677 #define SCR_NSE               (1ULL << 62)
1678 
1679 /* Return the current FPSCR value.  */
1680 uint32_t vfp_get_fpscr(CPUARMState *env);
1681 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1682 
1683 /* FPCR, Floating Point Control Register
1684  * FPSR, Floating Poiht Status Register
1685  *
1686  * For A64 the FPSCR is split into two logically distinct registers,
1687  * FPCR and FPSR. However since they still use non-overlapping bits
1688  * we store the underlying state in fpscr and just mask on read/write.
1689  */
1690 #define FPSR_MASK 0xf800009f
1691 #define FPCR_MASK 0x07ff9f00
1692 
1693 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1694 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1695 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1696 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1697 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1698 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1699 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1700 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1701 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1702 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1703 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1704 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1705 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1706 #define FPCR_C      (1 << 29)   /* FP carry flag */
1707 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1708 #define FPCR_N      (1 << 31)   /* FP negative flag */
1709 
1710 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1711 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1712 #define FPCR_LTPSIZE_LENGTH 3
1713 
1714 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1715 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1716 
1717 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1718 {
1719     return vfp_get_fpscr(env) & FPSR_MASK;
1720 }
1721 
1722 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1723 {
1724     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1725     vfp_set_fpscr(env, new_fpscr);
1726 }
1727 
1728 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1729 {
1730     return vfp_get_fpscr(env) & FPCR_MASK;
1731 }
1732 
1733 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1734 {
1735     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1736     vfp_set_fpscr(env, new_fpscr);
1737 }
1738 
1739 enum arm_cpu_mode {
1740   ARM_CPU_MODE_USR = 0x10,
1741   ARM_CPU_MODE_FIQ = 0x11,
1742   ARM_CPU_MODE_IRQ = 0x12,
1743   ARM_CPU_MODE_SVC = 0x13,
1744   ARM_CPU_MODE_MON = 0x16,
1745   ARM_CPU_MODE_ABT = 0x17,
1746   ARM_CPU_MODE_HYP = 0x1a,
1747   ARM_CPU_MODE_UND = 0x1b,
1748   ARM_CPU_MODE_SYS = 0x1f
1749 };
1750 
1751 /* VFP system registers.  */
1752 #define ARM_VFP_FPSID   0
1753 #define ARM_VFP_FPSCR   1
1754 #define ARM_VFP_MVFR2   5
1755 #define ARM_VFP_MVFR1   6
1756 #define ARM_VFP_MVFR0   7
1757 #define ARM_VFP_FPEXC   8
1758 #define ARM_VFP_FPINST  9
1759 #define ARM_VFP_FPINST2 10
1760 /* These ones are M-profile only */
1761 #define ARM_VFP_FPSCR_NZCVQC 2
1762 #define ARM_VFP_VPR 12
1763 #define ARM_VFP_P0 13
1764 #define ARM_VFP_FPCXT_NS 14
1765 #define ARM_VFP_FPCXT_S 15
1766 
1767 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1768 #define QEMU_VFP_FPSCR_NZCV 0xffff
1769 
1770 /* iwMMXt coprocessor control registers.  */
1771 #define ARM_IWMMXT_wCID  0
1772 #define ARM_IWMMXT_wCon  1
1773 #define ARM_IWMMXT_wCSSF 2
1774 #define ARM_IWMMXT_wCASF 3
1775 #define ARM_IWMMXT_wCGR0 8
1776 #define ARM_IWMMXT_wCGR1 9
1777 #define ARM_IWMMXT_wCGR2 10
1778 #define ARM_IWMMXT_wCGR3 11
1779 
1780 /* V7M CCR bits */
1781 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1782 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1783 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1784 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1785 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1786 FIELD(V7M_CCR, STKALIGN, 9, 1)
1787 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1788 FIELD(V7M_CCR, DC, 16, 1)
1789 FIELD(V7M_CCR, IC, 17, 1)
1790 FIELD(V7M_CCR, BP, 18, 1)
1791 FIELD(V7M_CCR, LOB, 19, 1)
1792 FIELD(V7M_CCR, TRD, 20, 1)
1793 
1794 /* V7M SCR bits */
1795 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1796 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1797 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1798 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1799 
1800 /* V7M AIRCR bits */
1801 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1802 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1803 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1804 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1805 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1806 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1807 FIELD(V7M_AIRCR, PRIS, 14, 1)
1808 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1809 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1810 
1811 /* V7M CFSR bits for MMFSR */
1812 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1813 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1814 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1815 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1816 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1817 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1818 
1819 /* V7M CFSR bits for BFSR */
1820 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1821 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1822 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1823 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1824 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1825 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1826 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1827 
1828 /* V7M CFSR bits for UFSR */
1829 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1830 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1831 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1832 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1833 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1834 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1835 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1836 
1837 /* V7M CFSR bit masks covering all of the subregister bits */
1838 FIELD(V7M_CFSR, MMFSR, 0, 8)
1839 FIELD(V7M_CFSR, BFSR, 8, 8)
1840 FIELD(V7M_CFSR, UFSR, 16, 16)
1841 
1842 /* V7M HFSR bits */
1843 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1844 FIELD(V7M_HFSR, FORCED, 30, 1)
1845 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1846 
1847 /* V7M DFSR bits */
1848 FIELD(V7M_DFSR, HALTED, 0, 1)
1849 FIELD(V7M_DFSR, BKPT, 1, 1)
1850 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1851 FIELD(V7M_DFSR, VCATCH, 3, 1)
1852 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1853 
1854 /* V7M SFSR bits */
1855 FIELD(V7M_SFSR, INVEP, 0, 1)
1856 FIELD(V7M_SFSR, INVIS, 1, 1)
1857 FIELD(V7M_SFSR, INVER, 2, 1)
1858 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1859 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1860 FIELD(V7M_SFSR, LSPERR, 5, 1)
1861 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1862 FIELD(V7M_SFSR, LSERR, 7, 1)
1863 
1864 /* v7M MPU_CTRL bits */
1865 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1866 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1867 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1868 
1869 /* v7M CLIDR bits */
1870 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1871 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1872 FIELD(V7M_CLIDR, LOC, 24, 3)
1873 FIELD(V7M_CLIDR, LOUU, 27, 3)
1874 FIELD(V7M_CLIDR, ICB, 30, 2)
1875 
1876 FIELD(V7M_CSSELR, IND, 0, 1)
1877 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1878 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1879  * define a mask for this and check that it doesn't permit running off
1880  * the end of the array.
1881  */
1882 FIELD(V7M_CSSELR, INDEX, 0, 4)
1883 
1884 /* v7M FPCCR bits */
1885 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1886 FIELD(V7M_FPCCR, USER, 1, 1)
1887 FIELD(V7M_FPCCR, S, 2, 1)
1888 FIELD(V7M_FPCCR, THREAD, 3, 1)
1889 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1890 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1891 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1892 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1893 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1894 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1895 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1896 FIELD(V7M_FPCCR, RES0, 11, 15)
1897 FIELD(V7M_FPCCR, TS, 26, 1)
1898 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1899 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1900 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1901 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1902 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1903 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1904 #define R_V7M_FPCCR_BANKED_MASK                 \
1905     (R_V7M_FPCCR_LSPACT_MASK |                  \
1906      R_V7M_FPCCR_USER_MASK |                    \
1907      R_V7M_FPCCR_THREAD_MASK |                  \
1908      R_V7M_FPCCR_MMRDY_MASK |                   \
1909      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1910      R_V7M_FPCCR_UFRDY_MASK |                   \
1911      R_V7M_FPCCR_ASPEN_MASK)
1912 
1913 /* v7M VPR bits */
1914 FIELD(V7M_VPR, P0, 0, 16)
1915 FIELD(V7M_VPR, MASK01, 16, 4)
1916 FIELD(V7M_VPR, MASK23, 20, 4)
1917 
1918 /*
1919  * System register ID fields.
1920  */
1921 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1922 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1923 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1924 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1925 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1926 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1927 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1928 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1929 FIELD(CLIDR_EL1, LOC, 24, 3)
1930 FIELD(CLIDR_EL1, LOUU, 27, 3)
1931 FIELD(CLIDR_EL1, ICB, 30, 3)
1932 
1933 /* When FEAT_CCIDX is implemented */
1934 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1935 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1936 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1937 
1938 /* When FEAT_CCIDX is not implemented */
1939 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1940 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1941 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1942 
1943 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1944 FIELD(CTR_EL0,  L1IP, 14, 2)
1945 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1946 FIELD(CTR_EL0,  ERG, 20, 4)
1947 FIELD(CTR_EL0,  CWG, 24, 4)
1948 FIELD(CTR_EL0,  IDC, 28, 1)
1949 FIELD(CTR_EL0,  DIC, 29, 1)
1950 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1951 
1952 FIELD(MIDR_EL1, REVISION, 0, 4)
1953 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1954 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1955 FIELD(MIDR_EL1, VARIANT, 20, 4)
1956 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1957 
1958 FIELD(ID_ISAR0, SWAP, 0, 4)
1959 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1960 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1961 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1962 FIELD(ID_ISAR0, COPROC, 16, 4)
1963 FIELD(ID_ISAR0, DEBUG, 20, 4)
1964 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1965 
1966 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1967 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1968 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1969 FIELD(ID_ISAR1, EXTEND, 12, 4)
1970 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1971 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1972 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1973 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1974 
1975 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1976 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1977 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1978 FIELD(ID_ISAR2, MULT, 12, 4)
1979 FIELD(ID_ISAR2, MULTS, 16, 4)
1980 FIELD(ID_ISAR2, MULTU, 20, 4)
1981 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1982 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1983 
1984 FIELD(ID_ISAR3, SATURATE, 0, 4)
1985 FIELD(ID_ISAR3, SIMD, 4, 4)
1986 FIELD(ID_ISAR3, SVC, 8, 4)
1987 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1988 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1989 FIELD(ID_ISAR3, T32COPY, 20, 4)
1990 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1991 FIELD(ID_ISAR3, T32EE, 28, 4)
1992 
1993 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1994 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1995 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1996 FIELD(ID_ISAR4, SMC, 12, 4)
1997 FIELD(ID_ISAR4, BARRIER, 16, 4)
1998 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1999 FIELD(ID_ISAR4, PSR_M, 24, 4)
2000 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2001 
2002 FIELD(ID_ISAR5, SEVL, 0, 4)
2003 FIELD(ID_ISAR5, AES, 4, 4)
2004 FIELD(ID_ISAR5, SHA1, 8, 4)
2005 FIELD(ID_ISAR5, SHA2, 12, 4)
2006 FIELD(ID_ISAR5, CRC32, 16, 4)
2007 FIELD(ID_ISAR5, RDM, 24, 4)
2008 FIELD(ID_ISAR5, VCMA, 28, 4)
2009 
2010 FIELD(ID_ISAR6, JSCVT, 0, 4)
2011 FIELD(ID_ISAR6, DP, 4, 4)
2012 FIELD(ID_ISAR6, FHM, 8, 4)
2013 FIELD(ID_ISAR6, SB, 12, 4)
2014 FIELD(ID_ISAR6, SPECRES, 16, 4)
2015 FIELD(ID_ISAR6, BF16, 20, 4)
2016 FIELD(ID_ISAR6, I8MM, 24, 4)
2017 
2018 FIELD(ID_MMFR0, VMSA, 0, 4)
2019 FIELD(ID_MMFR0, PMSA, 4, 4)
2020 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2021 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2022 FIELD(ID_MMFR0, TCM, 16, 4)
2023 FIELD(ID_MMFR0, AUXREG, 20, 4)
2024 FIELD(ID_MMFR0, FCSE, 24, 4)
2025 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2026 
2027 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2028 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2029 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2030 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2031 FIELD(ID_MMFR1, L1HVD, 16, 4)
2032 FIELD(ID_MMFR1, L1UNI, 20, 4)
2033 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2034 FIELD(ID_MMFR1, BPRED, 28, 4)
2035 
2036 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2037 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2038 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2039 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2040 FIELD(ID_MMFR2, UNITLB, 16, 4)
2041 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2042 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2043 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2044 
2045 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2046 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2047 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2048 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2049 FIELD(ID_MMFR3, PAN, 16, 4)
2050 FIELD(ID_MMFR3, COHWALK, 20, 4)
2051 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2052 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2053 
2054 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2055 FIELD(ID_MMFR4, AC2, 4, 4)
2056 FIELD(ID_MMFR4, XNX, 8, 4)
2057 FIELD(ID_MMFR4, CNP, 12, 4)
2058 FIELD(ID_MMFR4, HPDS, 16, 4)
2059 FIELD(ID_MMFR4, LSM, 20, 4)
2060 FIELD(ID_MMFR4, CCIDX, 24, 4)
2061 FIELD(ID_MMFR4, EVT, 28, 4)
2062 
2063 FIELD(ID_MMFR5, ETS, 0, 4)
2064 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2065 
2066 FIELD(ID_PFR0, STATE0, 0, 4)
2067 FIELD(ID_PFR0, STATE1, 4, 4)
2068 FIELD(ID_PFR0, STATE2, 8, 4)
2069 FIELD(ID_PFR0, STATE3, 12, 4)
2070 FIELD(ID_PFR0, CSV2, 16, 4)
2071 FIELD(ID_PFR0, AMU, 20, 4)
2072 FIELD(ID_PFR0, DIT, 24, 4)
2073 FIELD(ID_PFR0, RAS, 28, 4)
2074 
2075 FIELD(ID_PFR1, PROGMOD, 0, 4)
2076 FIELD(ID_PFR1, SECURITY, 4, 4)
2077 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2078 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2079 FIELD(ID_PFR1, GENTIMER, 16, 4)
2080 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2081 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2082 FIELD(ID_PFR1, GIC, 28, 4)
2083 
2084 FIELD(ID_PFR2, CSV3, 0, 4)
2085 FIELD(ID_PFR2, SSBS, 4, 4)
2086 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2087 
2088 FIELD(ID_AA64ISAR0, AES, 4, 4)
2089 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2090 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2091 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2092 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2093 FIELD(ID_AA64ISAR0, TME, 24, 4)
2094 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2095 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2096 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2097 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2098 FIELD(ID_AA64ISAR0, DP, 44, 4)
2099 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2100 FIELD(ID_AA64ISAR0, TS, 52, 4)
2101 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2102 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2103 
2104 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2105 FIELD(ID_AA64ISAR1, APA, 4, 4)
2106 FIELD(ID_AA64ISAR1, API, 8, 4)
2107 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2108 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2109 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2110 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2111 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2112 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2113 FIELD(ID_AA64ISAR1, SB, 36, 4)
2114 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2115 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2116 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2117 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2118 FIELD(ID_AA64ISAR1, XS, 56, 4)
2119 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2120 
2121 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2122 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2123 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2124 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2125 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2126 FIELD(ID_AA64ISAR2, BC, 20, 4)
2127 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2128 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2129 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2130 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2131 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2132 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2133 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2134 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2135 
2136 FIELD(ID_AA64PFR0, EL0, 0, 4)
2137 FIELD(ID_AA64PFR0, EL1, 4, 4)
2138 FIELD(ID_AA64PFR0, EL2, 8, 4)
2139 FIELD(ID_AA64PFR0, EL3, 12, 4)
2140 FIELD(ID_AA64PFR0, FP, 16, 4)
2141 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2142 FIELD(ID_AA64PFR0, GIC, 24, 4)
2143 FIELD(ID_AA64PFR0, RAS, 28, 4)
2144 FIELD(ID_AA64PFR0, SVE, 32, 4)
2145 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2146 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2147 FIELD(ID_AA64PFR0, AMU, 44, 4)
2148 FIELD(ID_AA64PFR0, DIT, 48, 4)
2149 FIELD(ID_AA64PFR0, RME, 52, 4)
2150 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2151 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2152 
2153 FIELD(ID_AA64PFR1, BT, 0, 4)
2154 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2155 FIELD(ID_AA64PFR1, MTE, 8, 4)
2156 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2157 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2158 FIELD(ID_AA64PFR1, SME, 24, 4)
2159 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2160 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2161 FIELD(ID_AA64PFR1, NMI, 36, 4)
2162 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2163 FIELD(ID_AA64PFR1, GCS, 44, 4)
2164 FIELD(ID_AA64PFR1, THE, 48, 4)
2165 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2166 FIELD(ID_AA64PFR1, DF2, 56, 4)
2167 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2168 
2169 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2170 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2171 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2172 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2173 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2174 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2175 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2176 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2177 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2178 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2179 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2180 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2181 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2182 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2183 
2184 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2185 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2186 FIELD(ID_AA64MMFR1, VH, 8, 4)
2187 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2188 FIELD(ID_AA64MMFR1, LO, 16, 4)
2189 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2190 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2191 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2192 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2193 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2194 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2195 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2196 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2197 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2198 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2199 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2200 
2201 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2202 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2203 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2204 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2205 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2206 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2207 FIELD(ID_AA64MMFR2, NV, 24, 4)
2208 FIELD(ID_AA64MMFR2, ST, 28, 4)
2209 FIELD(ID_AA64MMFR2, AT, 32, 4)
2210 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2211 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2212 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2213 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2214 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2215 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2216 
2217 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2218 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2219 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2220 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2221 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2222 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2223 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2224 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2225 FIELD(ID_AA64MMFR3, D128, 32, 4)
2226 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2227 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2228 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2229 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2230 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2231 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2232 
2233 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2234 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2235 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2236 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2237 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2238 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2239 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2240 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2241 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2242 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2243 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2244 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2245 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2246 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2247 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2248 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2249 
2250 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2251 FIELD(ID_AA64ZFR0, AES, 4, 4)
2252 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2253 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2254 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2255 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2256 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2257 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2258 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2259 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2260 
2261 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2262 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2263 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2264 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2265 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2266 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2267 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2268 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2269 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2270 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2271 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2272 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2273 
2274 FIELD(ID_DFR0, COPDBG, 0, 4)
2275 FIELD(ID_DFR0, COPSDBG, 4, 4)
2276 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2277 FIELD(ID_DFR0, COPTRC, 12, 4)
2278 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2279 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2280 FIELD(ID_DFR0, PERFMON, 24, 4)
2281 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2282 
2283 FIELD(ID_DFR1, MTPMU, 0, 4)
2284 FIELD(ID_DFR1, HPMN0, 4, 4)
2285 
2286 FIELD(DBGDIDR, SE_IMP, 12, 1)
2287 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2288 FIELD(DBGDIDR, VERSION, 16, 4)
2289 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2290 FIELD(DBGDIDR, BRPS, 24, 4)
2291 FIELD(DBGDIDR, WRPS, 28, 4)
2292 
2293 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2294 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2295 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2296 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2297 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2298 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2299 FIELD(DBGDEVID, AUXREGS, 24, 4)
2300 FIELD(DBGDEVID, CIDMASK, 28, 4)
2301 
2302 FIELD(MVFR0, SIMDREG, 0, 4)
2303 FIELD(MVFR0, FPSP, 4, 4)
2304 FIELD(MVFR0, FPDP, 8, 4)
2305 FIELD(MVFR0, FPTRAP, 12, 4)
2306 FIELD(MVFR0, FPDIVIDE, 16, 4)
2307 FIELD(MVFR0, FPSQRT, 20, 4)
2308 FIELD(MVFR0, FPSHVEC, 24, 4)
2309 FIELD(MVFR0, FPROUND, 28, 4)
2310 
2311 FIELD(MVFR1, FPFTZ, 0, 4)
2312 FIELD(MVFR1, FPDNAN, 4, 4)
2313 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2314 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2315 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2316 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2317 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2318 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2319 FIELD(MVFR1, FPHP, 24, 4)
2320 FIELD(MVFR1, SIMDFMAC, 28, 4)
2321 
2322 FIELD(MVFR2, SIMDMISC, 0, 4)
2323 FIELD(MVFR2, FPMISC, 4, 4)
2324 
2325 FIELD(GPCCR, PPS, 0, 3)
2326 FIELD(GPCCR, IRGN, 8, 2)
2327 FIELD(GPCCR, ORGN, 10, 2)
2328 FIELD(GPCCR, SH, 12, 2)
2329 FIELD(GPCCR, PGS, 14, 2)
2330 FIELD(GPCCR, GPC, 16, 1)
2331 FIELD(GPCCR, GPCP, 17, 1)
2332 FIELD(GPCCR, L0GPTSZ, 20, 4)
2333 
2334 FIELD(MFAR, FPA, 12, 40)
2335 FIELD(MFAR, NSE, 62, 1)
2336 FIELD(MFAR, NS, 63, 1)
2337 
2338 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2339 
2340 /* If adding a feature bit which corresponds to a Linux ELF
2341  * HWCAP bit, remember to update the feature-bit-to-hwcap
2342  * mapping in linux-user/elfload.c:get_elf_hwcap().
2343  */
2344 enum arm_features {
2345     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2346     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2347     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2348     ARM_FEATURE_V6,
2349     ARM_FEATURE_V6K,
2350     ARM_FEATURE_V7,
2351     ARM_FEATURE_THUMB2,
2352     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2353     ARM_FEATURE_NEON,
2354     ARM_FEATURE_M, /* Microcontroller profile.  */
2355     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2356     ARM_FEATURE_THUMB2EE,
2357     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2358     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2359     ARM_FEATURE_V4T,
2360     ARM_FEATURE_V5,
2361     ARM_FEATURE_STRONGARM,
2362     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2363     ARM_FEATURE_GENERIC_TIMER,
2364     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2365     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2366     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2367     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2368     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2369     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2370     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2371     ARM_FEATURE_V8,
2372     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2373     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2374     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2375     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2376     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2377     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2378     ARM_FEATURE_PMU, /* has PMU support */
2379     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2380     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2381     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2382     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2383     /*
2384      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2385      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2386      * compatibility and used only with CPU definitions that were already
2387      * in QEMU before we changed the default. It should not be set on any
2388      * CPU types added in future.
2389      */
2390     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2391 };
2392 
2393 static inline int arm_feature(CPUARMState *env, int feature)
2394 {
2395     return (env->features & (1ULL << feature)) != 0;
2396 }
2397 
2398 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2399 
2400 /*
2401  * ARM v9 security states.
2402  * The ordering of the enumeration corresponds to the low 2 bits
2403  * of the GPI value, and (except for Root) the concat of NSE:NS.
2404  */
2405 
2406 typedef enum ARMSecuritySpace {
2407     ARMSS_Secure     = 0,
2408     ARMSS_NonSecure  = 1,
2409     ARMSS_Root       = 2,
2410     ARMSS_Realm      = 3,
2411 } ARMSecuritySpace;
2412 
2413 /* Return true if @space is secure, in the pre-v9 sense. */
2414 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2415 {
2416     return space == ARMSS_Secure || space == ARMSS_Root;
2417 }
2418 
2419 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2420 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2421 {
2422     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2423 }
2424 
2425 #if !defined(CONFIG_USER_ONLY)
2426 /**
2427  * arm_security_space_below_el3:
2428  * @env: cpu context
2429  *
2430  * Return the security space of exception levels below EL3, following
2431  * an exception return to those levels.  Unlike arm_security_space,
2432  * this doesn't care about the current EL.
2433  */
2434 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2435 
2436 /**
2437  * arm_is_secure_below_el3:
2438  * @env: cpu context
2439  *
2440  * Return true if exception levels below EL3 are in secure state,
2441  * or would be following an exception return to those levels.
2442  */
2443 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2444 {
2445     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2446     return ss == ARMSS_Secure;
2447 }
2448 
2449 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2450 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2451 {
2452     assert(!arm_feature(env, ARM_FEATURE_M));
2453     if (arm_feature(env, ARM_FEATURE_EL3)) {
2454         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2455             /* CPU currently in AArch64 state and EL3 */
2456             return true;
2457         } else if (!is_a64(env) &&
2458                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2459             /* CPU currently in AArch32 state and monitor mode */
2460             return true;
2461         }
2462     }
2463     return false;
2464 }
2465 
2466 /**
2467  * arm_security_space:
2468  * @env: cpu context
2469  *
2470  * Return the current security space of the cpu.
2471  */
2472 ARMSecuritySpace arm_security_space(CPUARMState *env);
2473 
2474 /**
2475  * arm_is_secure:
2476  * @env: cpu context
2477  *
2478  * Return true if the processor is in secure state.
2479  */
2480 static inline bool arm_is_secure(CPUARMState *env)
2481 {
2482     return arm_space_is_secure(arm_security_space(env));
2483 }
2484 
2485 /*
2486  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2487  * This corresponds to the pseudocode EL2Enabled().
2488  */
2489 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2490                                                ARMSecuritySpace space)
2491 {
2492     assert(space != ARMSS_Root);
2493     return arm_feature(env, ARM_FEATURE_EL2)
2494            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2495 }
2496 
2497 static inline bool arm_is_el2_enabled(CPUARMState *env)
2498 {
2499     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2500 }
2501 
2502 #else
2503 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2504 {
2505     return ARMSS_NonSecure;
2506 }
2507 
2508 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2509 {
2510     return false;
2511 }
2512 
2513 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2514 {
2515     return ARMSS_NonSecure;
2516 }
2517 
2518 static inline bool arm_is_secure(CPUARMState *env)
2519 {
2520     return false;
2521 }
2522 
2523 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2524                                                ARMSecuritySpace space)
2525 {
2526     return false;
2527 }
2528 
2529 static inline bool arm_is_el2_enabled(CPUARMState *env)
2530 {
2531     return false;
2532 }
2533 #endif
2534 
2535 /**
2536  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2537  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2538  * "for all purposes other than a direct read or write access of HCR_EL2."
2539  * Not included here is HCR_RW.
2540  */
2541 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2542 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2543 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2544 
2545 /* Return true if the specified exception level is running in AArch64 state. */
2546 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2547 {
2548     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2549      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2550      */
2551     assert(el >= 1 && el <= 3);
2552     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2553 
2554     /* The highest exception level is always at the maximum supported
2555      * register width, and then lower levels have a register width controlled
2556      * by bits in the SCR or HCR registers.
2557      */
2558     if (el == 3) {
2559         return aa64;
2560     }
2561 
2562     if (arm_feature(env, ARM_FEATURE_EL3) &&
2563         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2564         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2565     }
2566 
2567     if (el == 2) {
2568         return aa64;
2569     }
2570 
2571     if (arm_is_el2_enabled(env)) {
2572         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2573     }
2574 
2575     return aa64;
2576 }
2577 
2578 /* Function for determining whether guest cp register reads and writes should
2579  * access the secure or non-secure bank of a cp register.  When EL3 is
2580  * operating in AArch32 state, the NS-bit determines whether the secure
2581  * instance of a cp register should be used. When EL3 is AArch64 (or if
2582  * it doesn't exist at all) then there is no register banking, and all
2583  * accesses are to the non-secure version.
2584  */
2585 static inline bool access_secure_reg(CPUARMState *env)
2586 {
2587     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2588                 !arm_el_is_aa64(env, 3) &&
2589                 !(env->cp15.scr_el3 & SCR_NS));
2590 
2591     return ret;
2592 }
2593 
2594 /* Macros for accessing a specified CP register bank */
2595 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2596     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2597 
2598 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2599     do {                                                \
2600         if (_secure) {                                   \
2601             (_env)->cp15._regname##_s = (_val);            \
2602         } else {                                        \
2603             (_env)->cp15._regname##_ns = (_val);           \
2604         }                                               \
2605     } while (0)
2606 
2607 /* Macros for automatically accessing a specific CP register bank depending on
2608  * the current secure state of the system.  These macros are not intended for
2609  * supporting instruction translation reads/writes as these are dependent
2610  * solely on the SCR.NS bit and not the mode.
2611  */
2612 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2613     A32_BANKED_REG_GET((_env), _regname,                \
2614                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2615 
2616 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2617     A32_BANKED_REG_SET((_env), _regname,                                    \
2618                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2619                        (_val))
2620 
2621 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2622                                  uint32_t cur_el, bool secure);
2623 
2624 /* Return the highest implemented Exception Level */
2625 static inline int arm_highest_el(CPUARMState *env)
2626 {
2627     if (arm_feature(env, ARM_FEATURE_EL3)) {
2628         return 3;
2629     }
2630     if (arm_feature(env, ARM_FEATURE_EL2)) {
2631         return 2;
2632     }
2633     return 1;
2634 }
2635 
2636 /* Return true if a v7M CPU is in Handler mode */
2637 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2638 {
2639     return env->v7m.exception != 0;
2640 }
2641 
2642 /* Return the current Exception Level (as per ARMv8; note that this differs
2643  * from the ARMv7 Privilege Level).
2644  */
2645 static inline int arm_current_el(CPUARMState *env)
2646 {
2647     if (arm_feature(env, ARM_FEATURE_M)) {
2648         return arm_v7m_is_handler_mode(env) ||
2649             !(env->v7m.control[env->v7m.secure] & 1);
2650     }
2651 
2652     if (is_a64(env)) {
2653         return extract32(env->pstate, 2, 2);
2654     }
2655 
2656     switch (env->uncached_cpsr & 0x1f) {
2657     case ARM_CPU_MODE_USR:
2658         return 0;
2659     case ARM_CPU_MODE_HYP:
2660         return 2;
2661     case ARM_CPU_MODE_MON:
2662         return 3;
2663     default:
2664         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2665             /* If EL3 is 32-bit then all secure privileged modes run in
2666              * EL3
2667              */
2668             return 3;
2669         }
2670 
2671         return 1;
2672     }
2673 }
2674 
2675 /**
2676  * write_list_to_cpustate
2677  * @cpu: ARMCPU
2678  *
2679  * For each register listed in the ARMCPU cpreg_indexes list, write
2680  * its value from the cpreg_values list into the ARMCPUState structure.
2681  * This updates TCG's working data structures from KVM data or
2682  * from incoming migration state.
2683  *
2684  * Returns: true if all register values were updated correctly,
2685  * false if some register was unknown or could not be written.
2686  * Note that we do not stop early on failure -- we will attempt
2687  * writing all registers in the list.
2688  */
2689 bool write_list_to_cpustate(ARMCPU *cpu);
2690 
2691 /**
2692  * write_cpustate_to_list:
2693  * @cpu: ARMCPU
2694  * @kvm_sync: true if this is for syncing back to KVM
2695  *
2696  * For each register listed in the ARMCPU cpreg_indexes list, write
2697  * its value from the ARMCPUState structure into the cpreg_values list.
2698  * This is used to copy info from TCG's working data structures into
2699  * KVM or for outbound migration.
2700  *
2701  * @kvm_sync is true if we are doing this in order to sync the
2702  * register state back to KVM. In this case we will only update
2703  * values in the list if the previous list->cpustate sync actually
2704  * successfully wrote the CPU state. Otherwise we will keep the value
2705  * that is in the list.
2706  *
2707  * Returns: true if all register values were read correctly,
2708  * false if some register was unknown or could not be read.
2709  * Note that we do not stop early on failure -- we will attempt
2710  * reading all registers in the list.
2711  */
2712 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2713 
2714 #define ARM_CPUID_TI915T      0x54029152
2715 #define ARM_CPUID_TI925T      0x54029252
2716 
2717 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2718 
2719 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2720 
2721 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2722  *
2723  * If EL3 is 64-bit:
2724  *  + NonSecure EL1 & 0 stage 1
2725  *  + NonSecure EL1 & 0 stage 2
2726  *  + NonSecure EL2
2727  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2728  *  + Secure EL1 & 0
2729  *  + Secure EL3
2730  * If EL3 is 32-bit:
2731  *  + NonSecure PL1 & 0 stage 1
2732  *  + NonSecure PL1 & 0 stage 2
2733  *  + NonSecure PL2
2734  *  + Secure PL0
2735  *  + Secure PL1
2736  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2737  *
2738  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2739  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2740  *     because they may differ in access permissions even if the VA->PA map is
2741  *     the same
2742  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2743  *     translation, which means that we have one mmu_idx that deals with two
2744  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2745  *     architecturally permitted]
2746  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2747  *     handling via the TLB. The only way to do a stage 1 translation without
2748  *     the immediate stage 2 translation is via the ATS or AT system insns,
2749  *     which can be slow-pathed and always do a page table walk.
2750  *     The only use of stage 2 translations is either as part of an s1+2
2751  *     lookup or when loading the descriptors during a stage 1 page table walk,
2752  *     and in both those cases we don't use the TLB.
2753  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2754  *     translation regimes, because they map reasonably well to each other
2755  *     and they can't both be active at the same time.
2756  *  5. we want to be able to use the TLB for accesses done as part of a
2757  *     stage1 page table walk, rather than having to walk the stage2 page
2758  *     table over and over.
2759  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2760  *     Never (PAN) bit within PSTATE.
2761  *  7. we fold together the secure and non-secure regimes for A-profile,
2762  *     because there are no banked system registers for aarch64, so the
2763  *     process of switching between secure and non-secure is
2764  *     already heavyweight.
2765  *
2766  * This gives us the following list of cases:
2767  *
2768  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2769  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2770  * EL1 EL1&0 stage 1+2 +PAN
2771  * EL0 EL2&0
2772  * EL2 EL2&0
2773  * EL2 EL2&0 +PAN
2774  * EL2 (aka NS PL2)
2775  * EL3 (aka S PL1)
2776  * Physical (NS & S)
2777  * Stage2 (NS & S)
2778  *
2779  * for a total of 12 different mmu_idx.
2780  *
2781  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2782  * as A profile. They only need to distinguish EL0 and EL1 (and
2783  * EL2 if we ever model a Cortex-R52).
2784  *
2785  * M profile CPUs are rather different as they do not have a true MMU.
2786  * They have the following different MMU indexes:
2787  *  User
2788  *  Privileged
2789  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2790  *  Privileged, execution priority negative (ditto)
2791  * If the CPU supports the v8M Security Extension then there are also:
2792  *  Secure User
2793  *  Secure Privileged
2794  *  Secure User, execution priority negative
2795  *  Secure Privileged, execution priority negative
2796  *
2797  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2798  * are not quite the same -- different CPU types (most notably M profile
2799  * vs A/R profile) would like to use MMU indexes with different semantics,
2800  * but since we don't ever need to use all of those in a single CPU we
2801  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2802  * modes + total number of M profile MMU modes". The lower bits of
2803  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2804  * the same for any particular CPU.
2805  * Variables of type ARMMUIdx are always full values, and the core
2806  * index values are in variables of type 'int'.
2807  *
2808  * Our enumeration includes at the end some entries which are not "true"
2809  * mmu_idx values in that they don't have corresponding TLBs and are only
2810  * valid for doing slow path page table walks.
2811  *
2812  * The constant names here are patterned after the general style of the names
2813  * of the AT/ATS operations.
2814  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2815  * For M profile we arrange them to have a bit for priv, a bit for negpri
2816  * and a bit for secure.
2817  */
2818 #define ARM_MMU_IDX_A     0x10  /* A profile */
2819 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2820 #define ARM_MMU_IDX_M     0x40  /* M profile */
2821 
2822 /* Meanings of the bits for M profile mmu idx values */
2823 #define ARM_MMU_IDX_M_PRIV   0x1
2824 #define ARM_MMU_IDX_M_NEGPRI 0x2
2825 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2826 
2827 #define ARM_MMU_IDX_TYPE_MASK \
2828     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2829 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2830 
2831 typedef enum ARMMMUIdx {
2832     /*
2833      * A-profile.
2834      */
2835     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2836     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2837     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2838     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2839     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2840     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2841     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2842     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2843 
2844     /*
2845      * Used for second stage of an S12 page table walk, or for descriptor
2846      * loads during first stage of an S1 page table walk.  Note that both
2847      * are in use simultaneously for SecureEL2: the security state for
2848      * the S2 ptw is selected by the NS bit from the S1 ptw.
2849      */
2850     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2851     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2852 
2853     /* TLBs with 1-1 mapping to the physical address spaces. */
2854     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2855     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2856     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2857     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2858 
2859     /*
2860      * These are not allocated TLBs and are used only for AT system
2861      * instructions or for the first stage of an S12 page table walk.
2862      */
2863     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2864     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2865     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2866 
2867     /*
2868      * M-profile.
2869      */
2870     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2871     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2872     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2873     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2874     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2875     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2876     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2877     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2878 } ARMMMUIdx;
2879 
2880 /*
2881  * Bit macros for the core-mmu-index values for each index,
2882  * for use when calling tlb_flush_by_mmuidx() and friends.
2883  */
2884 #define TO_CORE_BIT(NAME) \
2885     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2886 
2887 typedef enum ARMMMUIdxBit {
2888     TO_CORE_BIT(E10_0),
2889     TO_CORE_BIT(E20_0),
2890     TO_CORE_BIT(E10_1),
2891     TO_CORE_BIT(E10_1_PAN),
2892     TO_CORE_BIT(E2),
2893     TO_CORE_BIT(E20_2),
2894     TO_CORE_BIT(E20_2_PAN),
2895     TO_CORE_BIT(E3),
2896     TO_CORE_BIT(Stage2),
2897     TO_CORE_BIT(Stage2_S),
2898 
2899     TO_CORE_BIT(MUser),
2900     TO_CORE_BIT(MPriv),
2901     TO_CORE_BIT(MUserNegPri),
2902     TO_CORE_BIT(MPrivNegPri),
2903     TO_CORE_BIT(MSUser),
2904     TO_CORE_BIT(MSPriv),
2905     TO_CORE_BIT(MSUserNegPri),
2906     TO_CORE_BIT(MSPrivNegPri),
2907 } ARMMMUIdxBit;
2908 
2909 #undef TO_CORE_BIT
2910 
2911 #define MMU_USER_IDX 0
2912 
2913 /* Indexes used when registering address spaces with cpu_address_space_init */
2914 typedef enum ARMASIdx {
2915     ARMASIdx_NS = 0,
2916     ARMASIdx_S = 1,
2917     ARMASIdx_TagNS = 2,
2918     ARMASIdx_TagS = 3,
2919 } ARMASIdx;
2920 
2921 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2922 {
2923     /* Assert the relative order of the physical mmu indexes. */
2924     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2925     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2926     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2927     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2928 
2929     return ARMMMUIdx_Phys_S + space;
2930 }
2931 
2932 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2933 {
2934     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2935     return idx - ARMMMUIdx_Phys_S;
2936 }
2937 
2938 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2939 {
2940     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2941      * CSSELR is RAZ/WI.
2942      */
2943     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2944 }
2945 
2946 static inline bool arm_sctlr_b(CPUARMState *env)
2947 {
2948     return
2949         /* We need not implement SCTLR.ITD in user-mode emulation, so
2950          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2951          * This lets people run BE32 binaries with "-cpu any".
2952          */
2953 #ifndef CONFIG_USER_ONLY
2954         !arm_feature(env, ARM_FEATURE_V7) &&
2955 #endif
2956         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2957 }
2958 
2959 uint64_t arm_sctlr(CPUARMState *env, int el);
2960 
2961 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2962                                                   bool sctlr_b)
2963 {
2964 #ifdef CONFIG_USER_ONLY
2965     /*
2966      * In system mode, BE32 is modelled in line with the
2967      * architecture (as word-invariant big-endianness), where loads
2968      * and stores are done little endian but from addresses which
2969      * are adjusted by XORing with the appropriate constant. So the
2970      * endianness to use for the raw data access is not affected by
2971      * SCTLR.B.
2972      * In user mode, however, we model BE32 as byte-invariant
2973      * big-endianness (because user-only code cannot tell the
2974      * difference), and so we need to use a data access endianness
2975      * that depends on SCTLR.B.
2976      */
2977     if (sctlr_b) {
2978         return true;
2979     }
2980 #endif
2981     /* In 32bit endianness is determined by looking at CPSR's E bit */
2982     return env->uncached_cpsr & CPSR_E;
2983 }
2984 
2985 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2986 {
2987     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2988 }
2989 
2990 /* Return true if the processor is in big-endian mode. */
2991 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2992 {
2993     if (!is_a64(env)) {
2994         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2995     } else {
2996         int cur_el = arm_current_el(env);
2997         uint64_t sctlr = arm_sctlr(env, cur_el);
2998         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2999     }
3000 }
3001 
3002 #include "exec/cpu-all.h"
3003 
3004 /*
3005  * We have more than 32-bits worth of state per TB, so we split the data
3006  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3007  * We collect these two parts in CPUARMTBFlags where they are named
3008  * flags and flags2 respectively.
3009  *
3010  * The flags that are shared between all execution modes, TBFLAG_ANY,
3011  * are stored in flags.  The flags that are specific to a given mode
3012  * are stores in flags2.  Since cs_base is sized on the configured
3013  * address size, flags2 always has 64-bits for A64, and a minimum of
3014  * 32-bits for A32 and M32.
3015  *
3016  * The bits for 32-bit A-profile and M-profile partially overlap:
3017  *
3018  *  31         23         11 10             0
3019  * +-------------+----------+----------------+
3020  * |             |          |   TBFLAG_A32   |
3021  * | TBFLAG_AM32 |          +-----+----------+
3022  * |             |                |TBFLAG_M32|
3023  * +-------------+----------------+----------+
3024  *  31         23                6 5        0
3025  *
3026  * Unless otherwise noted, these bits are cached in env->hflags.
3027  */
3028 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3029 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3030 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3031 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3032 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3033 /* Target EL if we take a floating-point-disabled exception */
3034 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3035 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3036 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3037 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3038 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3039 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3040 
3041 /*
3042  * Bit usage when in AArch32 state, both A- and M-profile.
3043  */
3044 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3045 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3046 
3047 /*
3048  * Bit usage when in AArch32 state, for A-profile only.
3049  */
3050 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3051 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3052 /*
3053  * We store the bottom two bits of the CPAR as TB flags and handle
3054  * checks on the other bits at runtime. This shares the same bits as
3055  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3056  * Not cached, because VECLEN+VECSTRIDE are not cached.
3057  */
3058 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3059 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3060 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3061 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3062 /*
3063  * Indicates whether cp register reads and writes by guest code should access
3064  * the secure or nonsecure bank of banked registers; note that this is not
3065  * the same thing as the current security state of the processor!
3066  */
3067 FIELD(TBFLAG_A32, NS, 10, 1)
3068 /*
3069  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3070  * This requires an SME trap from AArch32 mode when using NEON.
3071  */
3072 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3073 
3074 /*
3075  * Bit usage when in AArch32 state, for M-profile only.
3076  */
3077 /* Handler (ie not Thread) mode */
3078 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3079 /* Whether we should generate stack-limit checks */
3080 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3081 /* Set if FPCCR.LSPACT is set */
3082 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3083 /* Set if we must create a new FP context */
3084 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3085 /* Set if FPCCR.S does not match current security state */
3086 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3087 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3088 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3089 /* Set if in secure mode */
3090 FIELD(TBFLAG_M32, SECURE, 6, 1)
3091 
3092 /*
3093  * Bit usage when in AArch64 state
3094  */
3095 FIELD(TBFLAG_A64, TBII, 0, 2)
3096 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3097 /* The current vector length, either NVL or SVL. */
3098 FIELD(TBFLAG_A64, VL, 4, 4)
3099 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3100 FIELD(TBFLAG_A64, BT, 9, 1)
3101 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3102 FIELD(TBFLAG_A64, TBID, 12, 2)
3103 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3104 FIELD(TBFLAG_A64, ATA, 15, 1)
3105 FIELD(TBFLAG_A64, TCMA, 16, 2)
3106 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3107 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3108 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3109 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3110 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3111 FIELD(TBFLAG_A64, SVL, 24, 4)
3112 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3113 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3114 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3115 FIELD(TBFLAG_A64, NAA, 30, 1)
3116 FIELD(TBFLAG_A64, ATA0, 31, 1)
3117 FIELD(TBFLAG_A64, NV, 32, 1)
3118 FIELD(TBFLAG_A64, NV1, 33, 1)
3119 FIELD(TBFLAG_A64, NV2, 34, 1)
3120 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3121 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3122 /* Set if FEAT_NV2 RAM accesses are big-endian */
3123 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3124 
3125 /*
3126  * Helpers for using the above. Note that only the A64 accessors use
3127  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3128  * word either is or might be 32 bits only.
3129  */
3130 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3131     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3132 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3133     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3134 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3135     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3136 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3137     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3138 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3139     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3140 
3141 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3142 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3143 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3144 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3145 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3146 
3147 /**
3148  * sve_vq
3149  * @env: the cpu context
3150  *
3151  * Return the VL cached within env->hflags, in units of quadwords.
3152  */
3153 static inline int sve_vq(CPUARMState *env)
3154 {
3155     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3156 }
3157 
3158 /**
3159  * sme_vq
3160  * @env: the cpu context
3161  *
3162  * Return the SVL cached within env->hflags, in units of quadwords.
3163  */
3164 static inline int sme_vq(CPUARMState *env)
3165 {
3166     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3167 }
3168 
3169 static inline bool bswap_code(bool sctlr_b)
3170 {
3171 #ifdef CONFIG_USER_ONLY
3172     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3173      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3174      * would also end up as a mixed-endian mode with BE code, LE data.
3175      */
3176     return TARGET_BIG_ENDIAN ^ sctlr_b;
3177 #else
3178     /* All code access in ARM is little endian, and there are no loaders
3179      * doing swaps that need to be reversed
3180      */
3181     return 0;
3182 #endif
3183 }
3184 
3185 #ifdef CONFIG_USER_ONLY
3186 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3187 {
3188     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3189 }
3190 #endif
3191 
3192 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3193                           uint64_t *cs_base, uint32_t *flags);
3194 
3195 enum {
3196     QEMU_PSCI_CONDUIT_DISABLED = 0,
3197     QEMU_PSCI_CONDUIT_SMC = 1,
3198     QEMU_PSCI_CONDUIT_HVC = 2,
3199 };
3200 
3201 #ifndef CONFIG_USER_ONLY
3202 /* Return the address space index to use for a memory access */
3203 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3204 {
3205     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3206 }
3207 
3208 /* Return the AddressSpace to use for a memory access
3209  * (which depends on whether the access is S or NS, and whether
3210  * the board gave us a separate AddressSpace for S accesses).
3211  */
3212 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3213 {
3214     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3215 }
3216 #endif
3217 
3218 /**
3219  * arm_register_pre_el_change_hook:
3220  * Register a hook function which will be called immediately before this
3221  * CPU changes exception level or mode. The hook function will be
3222  * passed a pointer to the ARMCPU and the opaque data pointer passed
3223  * to this function when the hook was registered.
3224  *
3225  * Note that if a pre-change hook is called, any registered post-change hooks
3226  * are guaranteed to subsequently be called.
3227  */
3228 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3229                                  void *opaque);
3230 /**
3231  * arm_register_el_change_hook:
3232  * Register a hook function which will be called immediately after this
3233  * CPU changes exception level or mode. The hook function will be
3234  * passed a pointer to the ARMCPU and the opaque data pointer passed
3235  * to this function when the hook was registered.
3236  *
3237  * Note that any registered hooks registered here are guaranteed to be called
3238  * if pre-change hooks have been.
3239  */
3240 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3241         *opaque);
3242 
3243 /**
3244  * arm_rebuild_hflags:
3245  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3246  */
3247 void arm_rebuild_hflags(CPUARMState *env);
3248 
3249 /**
3250  * aa32_vfp_dreg:
3251  * Return a pointer to the Dn register within env in 32-bit mode.
3252  */
3253 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3254 {
3255     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3256 }
3257 
3258 /**
3259  * aa32_vfp_qreg:
3260  * Return a pointer to the Qn register within env in 32-bit mode.
3261  */
3262 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3263 {
3264     return &env->vfp.zregs[regno].d[0];
3265 }
3266 
3267 /**
3268  * aa64_vfp_qreg:
3269  * Return a pointer to the Qn register within env in 64-bit mode.
3270  */
3271 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3272 {
3273     return &env->vfp.zregs[regno].d[0];
3274 }
3275 
3276 /* Shared between translate-sve.c and sve_helper.c.  */
3277 extern const uint64_t pred_esz_masks[5];
3278 
3279 /*
3280  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3281  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3282  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3283  */
3284 #define PAGE_BTI            PAGE_TARGET_1
3285 #define PAGE_MTE            PAGE_TARGET_2
3286 #define PAGE_TARGET_STICKY  PAGE_MTE
3287 
3288 /* We associate one allocation tag per 16 bytes, the minimum.  */
3289 #define LOG2_TAG_GRANULE 4
3290 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3291 
3292 #ifdef CONFIG_USER_ONLY
3293 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3294 #endif
3295 
3296 #ifdef TARGET_TAGGED_ADDRESSES
3297 /**
3298  * cpu_untagged_addr:
3299  * @cs: CPU context
3300  * @x: tagged address
3301  *
3302  * Remove any address tag from @x.  This is explicitly related to the
3303  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3304  *
3305  * There should be a better place to put this, but we need this in
3306  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3307  */
3308 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3309 {
3310     ARMCPU *cpu = ARM_CPU(cs);
3311     if (cpu->env.tagged_addr_enable) {
3312         /*
3313          * TBI is enabled for userspace but not kernelspace addresses.
3314          * Only clear the tag if bit 55 is clear.
3315          */
3316         x &= sextract64(x, 0, 56);
3317     }
3318     return x;
3319 }
3320 #endif
3321 
3322 #endif
3323