xref: /openbmc/qemu/target/arm/cpu.h (revision 7562f907)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 
61 #define ARMV7M_EXCP_RESET   1
62 #define ARMV7M_EXCP_NMI     2
63 #define ARMV7M_EXCP_HARD    3
64 #define ARMV7M_EXCP_MEM     4
65 #define ARMV7M_EXCP_BUS     5
66 #define ARMV7M_EXCP_USAGE   6
67 #define ARMV7M_EXCP_SVC     11
68 #define ARMV7M_EXCP_DEBUG   12
69 #define ARMV7M_EXCP_PENDSV  14
70 #define ARMV7M_EXCP_SYSTICK 15
71 
72 /* ARM-specific interrupt pending bits.  */
73 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
74 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
75 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
76 
77 /* The usual mapping for an AArch64 system register to its AArch32
78  * counterpart is for the 32 bit world to have access to the lower
79  * half only (with writes leaving the upper half untouched). It's
80  * therefore useful to be able to pass TCG the offset of the least
81  * significant half of a uint64_t struct member.
82  */
83 #ifdef HOST_WORDS_BIGENDIAN
84 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
85 #define offsetofhigh32(S, M) offsetof(S, M)
86 #else
87 #define offsetoflow32(S, M) offsetof(S, M)
88 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
89 #endif
90 
91 /* Meanings of the ARMCPU object's four inbound GPIO lines */
92 #define ARM_CPU_IRQ 0
93 #define ARM_CPU_FIQ 1
94 #define ARM_CPU_VIRQ 2
95 #define ARM_CPU_VFIQ 3
96 
97 #define NB_MMU_MODES 7
98 /* ARM-specific extra insn start words:
99  * 1: Conditional execution bits
100  * 2: Partial exception syndrome for data aborts
101  */
102 #define TARGET_INSN_START_EXTRA_WORDS 2
103 
104 /* The 2nd extra word holding syndrome info for data aborts does not use
105  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
106  * help the sleb128 encoder do a better job.
107  * When restoring the CPU state, we shift it back up.
108  */
109 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
110 #define ARM_INSN_START_WORD2_SHIFT 14
111 
112 /* We currently assume float and double are IEEE single and double
113    precision respectively.
114    Doing runtime conversions is tricky because VFP registers may contain
115    integer values (eg. as the result of a FTOSI instruction).
116    s<2n> maps to the least significant half of d<n>
117    s<2n+1> maps to the most significant half of d<n>
118  */
119 
120 /* CPU state for each instance of a generic timer (in cp15 c14) */
121 typedef struct ARMGenericTimer {
122     uint64_t cval; /* Timer CompareValue register */
123     uint64_t ctl; /* Timer Control register */
124 } ARMGenericTimer;
125 
126 #define GTIMER_PHYS 0
127 #define GTIMER_VIRT 1
128 #define GTIMER_HYP  2
129 #define GTIMER_SEC  3
130 #define NUM_GTIMERS 4
131 
132 typedef struct {
133     uint64_t raw_tcr;
134     uint32_t mask;
135     uint32_t base_mask;
136 } TCR;
137 
138 typedef struct CPUARMState {
139     /* Regs for current mode.  */
140     uint32_t regs[16];
141 
142     /* 32/64 switch only happens when taking and returning from
143      * exceptions so the overlap semantics are taken care of then
144      * instead of having a complicated union.
145      */
146     /* Regs for A64 mode.  */
147     uint64_t xregs[32];
148     uint64_t pc;
149     /* PSTATE isn't an architectural register for ARMv8. However, it is
150      * convenient for us to assemble the underlying state into a 32 bit format
151      * identical to the architectural format used for the SPSR. (This is also
152      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
153      * 'pstate' register are.) Of the PSTATE bits:
154      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
155      *    semantics as for AArch32, as described in the comments on each field)
156      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
157      *  DAIF (exception masks) are kept in env->daif
158      *  all other bits are stored in their correct places in env->pstate
159      */
160     uint32_t pstate;
161     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
162 
163     /* Frequently accessed CPSR bits are stored separately for efficiency.
164        This contains all the other bits.  Use cpsr_{read,write} to access
165        the whole CPSR.  */
166     uint32_t uncached_cpsr;
167     uint32_t spsr;
168 
169     /* Banked registers.  */
170     uint64_t banked_spsr[8];
171     uint32_t banked_r13[8];
172     uint32_t banked_r14[8];
173 
174     /* These hold r8-r12.  */
175     uint32_t usr_regs[5];
176     uint32_t fiq_regs[5];
177 
178     /* cpsr flag cache for faster execution */
179     uint32_t CF; /* 0 or 1 */
180     uint32_t VF; /* V is the bit 31. All other bits are undefined */
181     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
182     uint32_t ZF; /* Z set if zero.  */
183     uint32_t QF; /* 0 or 1 */
184     uint32_t GE; /* cpsr[19:16] */
185     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
186     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
187     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
188 
189     uint64_t elr_el[4]; /* AArch64 exception link regs  */
190     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
191 
192     /* System control coprocessor (cp15) */
193     struct {
194         uint32_t c0_cpuid;
195         union { /* Cache size selection */
196             struct {
197                 uint64_t _unused_csselr0;
198                 uint64_t csselr_ns;
199                 uint64_t _unused_csselr1;
200                 uint64_t csselr_s;
201             };
202             uint64_t csselr_el[4];
203         };
204         union { /* System control register. */
205             struct {
206                 uint64_t _unused_sctlr;
207                 uint64_t sctlr_ns;
208                 uint64_t hsctlr;
209                 uint64_t sctlr_s;
210             };
211             uint64_t sctlr_el[4];
212         };
213         uint64_t cpacr_el1; /* Architectural feature access control register */
214         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
215         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
216         uint64_t sder; /* Secure debug enable register. */
217         uint32_t nsacr; /* Non-secure access control register. */
218         union { /* MMU translation table base 0. */
219             struct {
220                 uint64_t _unused_ttbr0_0;
221                 uint64_t ttbr0_ns;
222                 uint64_t _unused_ttbr0_1;
223                 uint64_t ttbr0_s;
224             };
225             uint64_t ttbr0_el[4];
226         };
227         union { /* MMU translation table base 1. */
228             struct {
229                 uint64_t _unused_ttbr1_0;
230                 uint64_t ttbr1_ns;
231                 uint64_t _unused_ttbr1_1;
232                 uint64_t ttbr1_s;
233             };
234             uint64_t ttbr1_el[4];
235         };
236         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
237         /* MMU translation table base control. */
238         TCR tcr_el[4];
239         TCR vtcr_el2; /* Virtualization Translation Control.  */
240         uint32_t c2_data; /* MPU data cacheable bits.  */
241         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
242         union { /* MMU domain access control register
243                  * MPU write buffer control.
244                  */
245             struct {
246                 uint64_t dacr_ns;
247                 uint64_t dacr_s;
248             };
249             struct {
250                 uint64_t dacr32_el2;
251             };
252         };
253         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
254         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
255         uint64_t hcr_el2; /* Hypervisor configuration register */
256         uint64_t scr_el3; /* Secure configuration register.  */
257         union { /* Fault status registers.  */
258             struct {
259                 uint64_t ifsr_ns;
260                 uint64_t ifsr_s;
261             };
262             struct {
263                 uint64_t ifsr32_el2;
264             };
265         };
266         union {
267             struct {
268                 uint64_t _unused_dfsr;
269                 uint64_t dfsr_ns;
270                 uint64_t hsr;
271                 uint64_t dfsr_s;
272             };
273             uint64_t esr_el[4];
274         };
275         uint32_t c6_region[8]; /* MPU base/size registers.  */
276         union { /* Fault address registers. */
277             struct {
278                 uint64_t _unused_far0;
279 #ifdef HOST_WORDS_BIGENDIAN
280                 uint32_t ifar_ns;
281                 uint32_t dfar_ns;
282                 uint32_t ifar_s;
283                 uint32_t dfar_s;
284 #else
285                 uint32_t dfar_ns;
286                 uint32_t ifar_ns;
287                 uint32_t dfar_s;
288                 uint32_t ifar_s;
289 #endif
290                 uint64_t _unused_far3;
291             };
292             uint64_t far_el[4];
293         };
294         uint64_t hpfar_el2;
295         uint64_t hstr_el2;
296         union { /* Translation result. */
297             struct {
298                 uint64_t _unused_par_0;
299                 uint64_t par_ns;
300                 uint64_t _unused_par_1;
301                 uint64_t par_s;
302             };
303             uint64_t par_el[4];
304         };
305 
306         uint32_t c6_rgnr;
307 
308         uint32_t c9_insn; /* Cache lockdown registers.  */
309         uint32_t c9_data;
310         uint64_t c9_pmcr; /* performance monitor control register */
311         uint64_t c9_pmcnten; /* perf monitor counter enables */
312         uint32_t c9_pmovsr; /* perf monitor overflow status */
313         uint32_t c9_pmuserenr; /* perf monitor user enable */
314         uint64_t c9_pmselr; /* perf monitor counter selection register */
315         uint64_t c9_pminten; /* perf monitor interrupt enables */
316         union { /* Memory attribute redirection */
317             struct {
318 #ifdef HOST_WORDS_BIGENDIAN
319                 uint64_t _unused_mair_0;
320                 uint32_t mair1_ns;
321                 uint32_t mair0_ns;
322                 uint64_t _unused_mair_1;
323                 uint32_t mair1_s;
324                 uint32_t mair0_s;
325 #else
326                 uint64_t _unused_mair_0;
327                 uint32_t mair0_ns;
328                 uint32_t mair1_ns;
329                 uint64_t _unused_mair_1;
330                 uint32_t mair0_s;
331                 uint32_t mair1_s;
332 #endif
333             };
334             uint64_t mair_el[4];
335         };
336         union { /* vector base address register */
337             struct {
338                 uint64_t _unused_vbar;
339                 uint64_t vbar_ns;
340                 uint64_t hvbar;
341                 uint64_t vbar_s;
342             };
343             uint64_t vbar_el[4];
344         };
345         uint32_t mvbar; /* (monitor) vector base address register */
346         struct { /* FCSE PID. */
347             uint32_t fcseidr_ns;
348             uint32_t fcseidr_s;
349         };
350         union { /* Context ID. */
351             struct {
352                 uint64_t _unused_contextidr_0;
353                 uint64_t contextidr_ns;
354                 uint64_t _unused_contextidr_1;
355                 uint64_t contextidr_s;
356             };
357             uint64_t contextidr_el[4];
358         };
359         union { /* User RW Thread register. */
360             struct {
361                 uint64_t tpidrurw_ns;
362                 uint64_t tpidrprw_ns;
363                 uint64_t htpidr;
364                 uint64_t _tpidr_el3;
365             };
366             uint64_t tpidr_el[4];
367         };
368         /* The secure banks of these registers don't map anywhere */
369         uint64_t tpidrurw_s;
370         uint64_t tpidrprw_s;
371         uint64_t tpidruro_s;
372 
373         union { /* User RO Thread register. */
374             uint64_t tpidruro_ns;
375             uint64_t tpidrro_el[1];
376         };
377         uint64_t c14_cntfrq; /* Counter Frequency register */
378         uint64_t c14_cntkctl; /* Timer Control register */
379         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
380         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
381         ARMGenericTimer c14_timer[NUM_GTIMERS];
382         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
383         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
384         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
385         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
386         uint32_t c15_threadid; /* TI debugger thread-ID.  */
387         uint32_t c15_config_base_address; /* SCU base address.  */
388         uint32_t c15_diagnostic; /* diagnostic register */
389         uint32_t c15_power_diagnostic;
390         uint32_t c15_power_control; /* power control */
391         uint64_t dbgbvr[16]; /* breakpoint value registers */
392         uint64_t dbgbcr[16]; /* breakpoint control registers */
393         uint64_t dbgwvr[16]; /* watchpoint value registers */
394         uint64_t dbgwcr[16]; /* watchpoint control registers */
395         uint64_t mdscr_el1;
396         uint64_t oslsr_el1; /* OS Lock Status */
397         uint64_t mdcr_el2;
398         uint64_t mdcr_el3;
399         /* If the counter is enabled, this stores the last time the counter
400          * was reset. Otherwise it stores the counter value
401          */
402         uint64_t c15_ccnt;
403         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
404         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
405         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
406     } cp15;
407 
408     struct {
409         uint32_t other_sp;
410         uint32_t vecbase;
411         uint32_t basepri;
412         uint32_t control;
413         uint32_t ccr; /* Configuration and Control */
414         uint32_t cfsr; /* Configurable Fault Status */
415         uint32_t hfsr; /* HardFault Status */
416         uint32_t dfsr; /* Debug Fault Status Register */
417         uint32_t mmfar; /* MemManage Fault Address */
418         uint32_t bfar; /* BusFault Address */
419         int exception;
420     } v7m;
421 
422     /* Information associated with an exception about to be taken:
423      * code which raises an exception must set cs->exception_index and
424      * the relevant parts of this structure; the cpu_do_interrupt function
425      * will then set the guest-visible registers as part of the exception
426      * entry process.
427      */
428     struct {
429         uint32_t syndrome; /* AArch64 format syndrome register */
430         uint32_t fsr; /* AArch32 format fault status register info */
431         uint64_t vaddress; /* virtual addr associated with exception, if any */
432         uint32_t target_el; /* EL the exception should be targeted for */
433         /* If we implement EL2 we will also need to store information
434          * about the intermediate physical address for stage 2 faults.
435          */
436     } exception;
437 
438     /* Thumb-2 EE state.  */
439     uint32_t teecr;
440     uint32_t teehbr;
441 
442     /* VFP coprocessor state.  */
443     struct {
444         /* VFP/Neon register state. Note that the mapping between S, D and Q
445          * views of the register bank differs between AArch64 and AArch32:
446          * In AArch32:
447          *  Qn = regs[2n+1]:regs[2n]
448          *  Dn = regs[n]
449          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
450          * (and regs[32] to regs[63] are inaccessible)
451          * In AArch64:
452          *  Qn = regs[2n+1]:regs[2n]
453          *  Dn = regs[2n]
454          *  Sn = regs[2n] bits 31..0
455          * This corresponds to the architecturally defined mapping between
456          * the two execution states, and means we do not need to explicitly
457          * map these registers when changing states.
458          */
459         float64 regs[64];
460 
461         uint32_t xregs[16];
462         /* We store these fpcsr fields separately for convenience.  */
463         int vec_len;
464         int vec_stride;
465 
466         /* scratch space when Tn are not sufficient.  */
467         uint32_t scratch[8];
468 
469         /* fp_status is the "normal" fp status. standard_fp_status retains
470          * values corresponding to the ARM "Standard FPSCR Value", ie
471          * default-NaN, flush-to-zero, round-to-nearest and is used by
472          * any operations (generally Neon) which the architecture defines
473          * as controlled by the standard FPSCR value rather than the FPSCR.
474          *
475          * To avoid having to transfer exception bits around, we simply
476          * say that the FPSCR cumulative exception flags are the logical
477          * OR of the flags in the two fp statuses. This relies on the
478          * only thing which needs to read the exception flags being
479          * an explicit FPSCR read.
480          */
481         float_status fp_status;
482         float_status standard_fp_status;
483     } vfp;
484     uint64_t exclusive_addr;
485     uint64_t exclusive_val;
486     uint64_t exclusive_high;
487 
488     /* iwMMXt coprocessor state.  */
489     struct {
490         uint64_t regs[16];
491         uint64_t val;
492 
493         uint32_t cregs[16];
494     } iwmmxt;
495 
496 #if defined(CONFIG_USER_ONLY)
497     /* For usermode syscall translation.  */
498     int eabi;
499 #endif
500 
501     struct CPUBreakpoint *cpu_breakpoint[16];
502     struct CPUWatchpoint *cpu_watchpoint[16];
503 
504     /* Fields up to this point are cleared by a CPU reset */
505     struct {} end_reset_fields;
506 
507     CPU_COMMON
508 
509     /* Fields after CPU_COMMON are preserved across CPU reset. */
510 
511     /* Internal CPU feature flags.  */
512     uint64_t features;
513 
514     /* PMSAv7 MPU */
515     struct {
516         uint32_t *drbar;
517         uint32_t *drsr;
518         uint32_t *dracr;
519     } pmsav7;
520 
521     void *nvic;
522     const struct arm_boot_info *boot_info;
523 } CPUARMState;
524 
525 /**
526  * ARMELChangeHook:
527  * type of a function which can be registered via arm_register_el_change_hook()
528  * to get callbacks when the CPU changes its exception level or mode.
529  */
530 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
531 
532 
533 /* These values map onto the return values for
534  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
535 typedef enum ARMPSCIState {
536     PSCI_OFF = 0,
537     PSCI_ON = 1,
538     PSCI_ON_PENDING = 2
539 } ARMPSCIState;
540 
541 /**
542  * ARMCPU:
543  * @env: #CPUARMState
544  *
545  * An ARM CPU core.
546  */
547 struct ARMCPU {
548     /*< private >*/
549     CPUState parent_obj;
550     /*< public >*/
551 
552     CPUARMState env;
553 
554     /* Coprocessor information */
555     GHashTable *cp_regs;
556     /* For marshalling (mostly coprocessor) register state between the
557      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
558      * we use these arrays.
559      */
560     /* List of register indexes managed via these arrays; (full KVM style
561      * 64 bit indexes, not CPRegInfo 32 bit indexes)
562      */
563     uint64_t *cpreg_indexes;
564     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
565     uint64_t *cpreg_values;
566     /* Length of the indexes, values, reset_values arrays */
567     int32_t cpreg_array_len;
568     /* These are used only for migration: incoming data arrives in
569      * these fields and is sanity checked in post_load before copying
570      * to the working data structures above.
571      */
572     uint64_t *cpreg_vmstate_indexes;
573     uint64_t *cpreg_vmstate_values;
574     int32_t cpreg_vmstate_array_len;
575 
576     /* Timers used by the generic (architected) timer */
577     QEMUTimer *gt_timer[NUM_GTIMERS];
578     /* GPIO outputs for generic timer */
579     qemu_irq gt_timer_outputs[NUM_GTIMERS];
580     /* GPIO output for GICv3 maintenance interrupt signal */
581     qemu_irq gicv3_maintenance_interrupt;
582 
583     /* MemoryRegion to use for secure physical accesses */
584     MemoryRegion *secure_memory;
585 
586     /* 'compatible' string for this CPU for Linux device trees */
587     const char *dtb_compatible;
588 
589     /* PSCI version for this CPU
590      * Bits[31:16] = Major Version
591      * Bits[15:0] = Minor Version
592      */
593     uint32_t psci_version;
594 
595     /* Should CPU start in PSCI powered-off state? */
596     bool start_powered_off;
597 
598     /* Current power state, access guarded by BQL */
599     ARMPSCIState power_state;
600 
601     /* CPU has virtualization extension */
602     bool has_el2;
603     /* CPU has security extension */
604     bool has_el3;
605     /* CPU has PMU (Performance Monitor Unit) */
606     bool has_pmu;
607 
608     /* CPU has memory protection unit */
609     bool has_mpu;
610     /* PMSAv7 MPU number of supported regions */
611     uint32_t pmsav7_dregion;
612 
613     /* PSCI conduit used to invoke PSCI methods
614      * 0 - disabled, 1 - smc, 2 - hvc
615      */
616     uint32_t psci_conduit;
617 
618     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
619      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
620      */
621     uint32_t kvm_target;
622 
623     /* KVM init features for this CPU */
624     uint32_t kvm_init_features[7];
625 
626     /* Uniprocessor system with MP extensions */
627     bool mp_is_up;
628 
629     /* The instance init functions for implementation-specific subclasses
630      * set these fields to specify the implementation-dependent values of
631      * various constant registers and reset values of non-constant
632      * registers.
633      * Some of these might become QOM properties eventually.
634      * Field names match the official register names as defined in the
635      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
636      * is used for reset values of non-constant registers; no reset_
637      * prefix means a constant register.
638      */
639     uint32_t midr;
640     uint32_t revidr;
641     uint32_t reset_fpsid;
642     uint32_t mvfr0;
643     uint32_t mvfr1;
644     uint32_t mvfr2;
645     uint32_t ctr;
646     uint32_t reset_sctlr;
647     uint32_t id_pfr0;
648     uint32_t id_pfr1;
649     uint32_t id_dfr0;
650     uint32_t pmceid0;
651     uint32_t pmceid1;
652     uint32_t id_afr0;
653     uint32_t id_mmfr0;
654     uint32_t id_mmfr1;
655     uint32_t id_mmfr2;
656     uint32_t id_mmfr3;
657     uint32_t id_mmfr4;
658     uint32_t id_isar0;
659     uint32_t id_isar1;
660     uint32_t id_isar2;
661     uint32_t id_isar3;
662     uint32_t id_isar4;
663     uint32_t id_isar5;
664     uint64_t id_aa64pfr0;
665     uint64_t id_aa64pfr1;
666     uint64_t id_aa64dfr0;
667     uint64_t id_aa64dfr1;
668     uint64_t id_aa64afr0;
669     uint64_t id_aa64afr1;
670     uint64_t id_aa64isar0;
671     uint64_t id_aa64isar1;
672     uint64_t id_aa64mmfr0;
673     uint64_t id_aa64mmfr1;
674     uint32_t dbgdidr;
675     uint32_t clidr;
676     uint64_t mp_affinity; /* MP ID without feature bits */
677     /* The elements of this array are the CCSIDR values for each cache,
678      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
679      */
680     uint32_t ccsidr[16];
681     uint64_t reset_cbar;
682     uint32_t reset_auxcr;
683     bool reset_hivecs;
684     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
685     uint32_t dcz_blocksize;
686     uint64_t rvbar;
687 
688     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
689     int gic_num_lrs; /* number of list registers */
690     int gic_vpribits; /* number of virtual priority bits */
691     int gic_vprebits; /* number of virtual preemption bits */
692 
693     /* Whether the cfgend input is high (i.e. this CPU should reset into
694      * big-endian mode).  This setting isn't used directly: instead it modifies
695      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
696      * architecture version.
697      */
698     bool cfgend;
699 
700     ARMELChangeHook *el_change_hook;
701     void *el_change_hook_opaque;
702 };
703 
704 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
705 {
706     return container_of(env, ARMCPU, env);
707 }
708 
709 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
710 
711 #define ENV_OFFSET offsetof(ARMCPU, env)
712 
713 #ifndef CONFIG_USER_ONLY
714 extern const struct VMStateDescription vmstate_arm_cpu;
715 #endif
716 
717 void arm_cpu_do_interrupt(CPUState *cpu);
718 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
719 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
720 
721 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
722                         int flags);
723 
724 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
725                                          MemTxAttrs *attrs);
726 
727 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
728 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
729 
730 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
731                              int cpuid, void *opaque);
732 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
733                              int cpuid, void *opaque);
734 
735 #ifdef TARGET_AARCH64
736 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
737 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
738 #endif
739 
740 ARMCPU *cpu_arm_init(const char *cpu_model);
741 target_ulong do_arm_semihosting(CPUARMState *env);
742 void aarch64_sync_32_to_64(CPUARMState *env);
743 void aarch64_sync_64_to_32(CPUARMState *env);
744 
745 static inline bool is_a64(CPUARMState *env)
746 {
747     return env->aarch64;
748 }
749 
750 /* you can call this signal handler from your SIGBUS and SIGSEGV
751    signal handlers to inform the virtual CPU of exceptions. non zero
752    is returned if the signal was handled by the virtual CPU.  */
753 int cpu_arm_signal_handler(int host_signum, void *pinfo,
754                            void *puc);
755 
756 /**
757  * pmccntr_sync
758  * @env: CPUARMState
759  *
760  * Synchronises the counter in the PMCCNTR. This must always be called twice,
761  * once before any action that might affect the timer and again afterwards.
762  * The function is used to swap the state of the register if required.
763  * This only happens when not in user mode (!CONFIG_USER_ONLY)
764  */
765 void pmccntr_sync(CPUARMState *env);
766 
767 /* SCTLR bit meanings. Several bits have been reused in newer
768  * versions of the architecture; in that case we define constants
769  * for both old and new bit meanings. Code which tests against those
770  * bits should probably check or otherwise arrange that the CPU
771  * is the architectural version it expects.
772  */
773 #define SCTLR_M       (1U << 0)
774 #define SCTLR_A       (1U << 1)
775 #define SCTLR_C       (1U << 2)
776 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
777 #define SCTLR_SA      (1U << 3)
778 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
779 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
780 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
781 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
782 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
783 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
784 #define SCTLR_ITD     (1U << 7) /* v8 onward */
785 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
786 #define SCTLR_SED     (1U << 8) /* v8 onward */
787 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
788 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
789 #define SCTLR_F       (1U << 10) /* up to v6 */
790 #define SCTLR_SW      (1U << 10) /* v7 onward */
791 #define SCTLR_Z       (1U << 11)
792 #define SCTLR_I       (1U << 12)
793 #define SCTLR_V       (1U << 13)
794 #define SCTLR_RR      (1U << 14) /* up to v7 */
795 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
796 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
797 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
798 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
799 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
800 #define SCTLR_HA      (1U << 17)
801 #define SCTLR_BR      (1U << 17) /* PMSA only */
802 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
803 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
804 #define SCTLR_WXN     (1U << 19)
805 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
806 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
807 #define SCTLR_FI      (1U << 21)
808 #define SCTLR_U       (1U << 22)
809 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
810 #define SCTLR_VE      (1U << 24) /* up to v7 */
811 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
812 #define SCTLR_EE      (1U << 25)
813 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
814 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
815 #define SCTLR_NMFI    (1U << 27)
816 #define SCTLR_TRE     (1U << 28)
817 #define SCTLR_AFE     (1U << 29)
818 #define SCTLR_TE      (1U << 30)
819 
820 #define CPTR_TCPAC    (1U << 31)
821 #define CPTR_TTA      (1U << 20)
822 #define CPTR_TFP      (1U << 10)
823 
824 #define MDCR_EPMAD    (1U << 21)
825 #define MDCR_EDAD     (1U << 20)
826 #define MDCR_SPME     (1U << 17)
827 #define MDCR_SDD      (1U << 16)
828 #define MDCR_SPD      (3U << 14)
829 #define MDCR_TDRA     (1U << 11)
830 #define MDCR_TDOSA    (1U << 10)
831 #define MDCR_TDA      (1U << 9)
832 #define MDCR_TDE      (1U << 8)
833 #define MDCR_HPME     (1U << 7)
834 #define MDCR_TPM      (1U << 6)
835 #define MDCR_TPMCR    (1U << 5)
836 
837 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
838 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
839 
840 #define CPSR_M (0x1fU)
841 #define CPSR_T (1U << 5)
842 #define CPSR_F (1U << 6)
843 #define CPSR_I (1U << 7)
844 #define CPSR_A (1U << 8)
845 #define CPSR_E (1U << 9)
846 #define CPSR_IT_2_7 (0xfc00U)
847 #define CPSR_GE (0xfU << 16)
848 #define CPSR_IL (1U << 20)
849 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
850  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
851  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
852  * where it is live state but not accessible to the AArch32 code.
853  */
854 #define CPSR_RESERVED (0x7U << 21)
855 #define CPSR_J (1U << 24)
856 #define CPSR_IT_0_1 (3U << 25)
857 #define CPSR_Q (1U << 27)
858 #define CPSR_V (1U << 28)
859 #define CPSR_C (1U << 29)
860 #define CPSR_Z (1U << 30)
861 #define CPSR_N (1U << 31)
862 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
863 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
864 
865 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
866 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
867     | CPSR_NZCV)
868 /* Bits writable in user mode.  */
869 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
870 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
871 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
872 /* Mask of bits which may be set by exception return copying them from SPSR */
873 #define CPSR_ERET_MASK (~CPSR_RESERVED)
874 
875 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
876 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
877 #define TTBCR_PD0    (1U << 4)
878 #define TTBCR_PD1    (1U << 5)
879 #define TTBCR_EPD0   (1U << 7)
880 #define TTBCR_IRGN0  (3U << 8)
881 #define TTBCR_ORGN0  (3U << 10)
882 #define TTBCR_SH0    (3U << 12)
883 #define TTBCR_T1SZ   (3U << 16)
884 #define TTBCR_A1     (1U << 22)
885 #define TTBCR_EPD1   (1U << 23)
886 #define TTBCR_IRGN1  (3U << 24)
887 #define TTBCR_ORGN1  (3U << 26)
888 #define TTBCR_SH1    (1U << 28)
889 #define TTBCR_EAE    (1U << 31)
890 
891 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
892  * Only these are valid when in AArch64 mode; in
893  * AArch32 mode SPSRs are basically CPSR-format.
894  */
895 #define PSTATE_SP (1U)
896 #define PSTATE_M (0xFU)
897 #define PSTATE_nRW (1U << 4)
898 #define PSTATE_F (1U << 6)
899 #define PSTATE_I (1U << 7)
900 #define PSTATE_A (1U << 8)
901 #define PSTATE_D (1U << 9)
902 #define PSTATE_IL (1U << 20)
903 #define PSTATE_SS (1U << 21)
904 #define PSTATE_V (1U << 28)
905 #define PSTATE_C (1U << 29)
906 #define PSTATE_Z (1U << 30)
907 #define PSTATE_N (1U << 31)
908 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
909 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
910 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
911 /* Mode values for AArch64 */
912 #define PSTATE_MODE_EL3h 13
913 #define PSTATE_MODE_EL3t 12
914 #define PSTATE_MODE_EL2h 9
915 #define PSTATE_MODE_EL2t 8
916 #define PSTATE_MODE_EL1h 5
917 #define PSTATE_MODE_EL1t 4
918 #define PSTATE_MODE_EL0t 0
919 
920 /* Map EL and handler into a PSTATE_MODE.  */
921 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
922 {
923     return (el << 2) | handler;
924 }
925 
926 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
927  * interprocessing, so we don't attempt to sync with the cpsr state used by
928  * the 32 bit decoder.
929  */
930 static inline uint32_t pstate_read(CPUARMState *env)
931 {
932     int ZF;
933 
934     ZF = (env->ZF == 0);
935     return (env->NF & 0x80000000) | (ZF << 30)
936         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
937         | env->pstate | env->daif;
938 }
939 
940 static inline void pstate_write(CPUARMState *env, uint32_t val)
941 {
942     env->ZF = (~val) & PSTATE_Z;
943     env->NF = val;
944     env->CF = (val >> 29) & 1;
945     env->VF = (val << 3) & 0x80000000;
946     env->daif = val & PSTATE_DAIF;
947     env->pstate = val & ~CACHED_PSTATE_BITS;
948 }
949 
950 /* Return the current CPSR value.  */
951 uint32_t cpsr_read(CPUARMState *env);
952 
953 typedef enum CPSRWriteType {
954     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
955     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
956     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
957     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
958 } CPSRWriteType;
959 
960 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
961 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
962                 CPSRWriteType write_type);
963 
964 /* Return the current xPSR value.  */
965 static inline uint32_t xpsr_read(CPUARMState *env)
966 {
967     int ZF;
968     ZF = (env->ZF == 0);
969     return (env->NF & 0x80000000) | (ZF << 30)
970         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
971         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
972         | ((env->condexec_bits & 0xfc) << 8)
973         | env->v7m.exception;
974 }
975 
976 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
977 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
978 {
979     if (mask & CPSR_NZCV) {
980         env->ZF = (~val) & CPSR_Z;
981         env->NF = val;
982         env->CF = (val >> 29) & 1;
983         env->VF = (val << 3) & 0x80000000;
984     }
985     if (mask & CPSR_Q)
986         env->QF = ((val & CPSR_Q) != 0);
987     if (mask & (1 << 24))
988         env->thumb = ((val & (1 << 24)) != 0);
989     if (mask & CPSR_IT_0_1) {
990         env->condexec_bits &= ~3;
991         env->condexec_bits |= (val >> 25) & 3;
992     }
993     if (mask & CPSR_IT_2_7) {
994         env->condexec_bits &= 3;
995         env->condexec_bits |= (val >> 8) & 0xfc;
996     }
997     if (mask & 0x1ff) {
998         env->v7m.exception = val & 0x1ff;
999     }
1000 }
1001 
1002 #define HCR_VM        (1ULL << 0)
1003 #define HCR_SWIO      (1ULL << 1)
1004 #define HCR_PTW       (1ULL << 2)
1005 #define HCR_FMO       (1ULL << 3)
1006 #define HCR_IMO       (1ULL << 4)
1007 #define HCR_AMO       (1ULL << 5)
1008 #define HCR_VF        (1ULL << 6)
1009 #define HCR_VI        (1ULL << 7)
1010 #define HCR_VSE       (1ULL << 8)
1011 #define HCR_FB        (1ULL << 9)
1012 #define HCR_BSU_MASK  (3ULL << 10)
1013 #define HCR_DC        (1ULL << 12)
1014 #define HCR_TWI       (1ULL << 13)
1015 #define HCR_TWE       (1ULL << 14)
1016 #define HCR_TID0      (1ULL << 15)
1017 #define HCR_TID1      (1ULL << 16)
1018 #define HCR_TID2      (1ULL << 17)
1019 #define HCR_TID3      (1ULL << 18)
1020 #define HCR_TSC       (1ULL << 19)
1021 #define HCR_TIDCP     (1ULL << 20)
1022 #define HCR_TACR      (1ULL << 21)
1023 #define HCR_TSW       (1ULL << 22)
1024 #define HCR_TPC       (1ULL << 23)
1025 #define HCR_TPU       (1ULL << 24)
1026 #define HCR_TTLB      (1ULL << 25)
1027 #define HCR_TVM       (1ULL << 26)
1028 #define HCR_TGE       (1ULL << 27)
1029 #define HCR_TDZ       (1ULL << 28)
1030 #define HCR_HCD       (1ULL << 29)
1031 #define HCR_TRVM      (1ULL << 30)
1032 #define HCR_RW        (1ULL << 31)
1033 #define HCR_CD        (1ULL << 32)
1034 #define HCR_ID        (1ULL << 33)
1035 #define HCR_MASK      ((1ULL << 34) - 1)
1036 
1037 #define SCR_NS                (1U << 0)
1038 #define SCR_IRQ               (1U << 1)
1039 #define SCR_FIQ               (1U << 2)
1040 #define SCR_EA                (1U << 3)
1041 #define SCR_FW                (1U << 4)
1042 #define SCR_AW                (1U << 5)
1043 #define SCR_NET               (1U << 6)
1044 #define SCR_SMD               (1U << 7)
1045 #define SCR_HCE               (1U << 8)
1046 #define SCR_SIF               (1U << 9)
1047 #define SCR_RW                (1U << 10)
1048 #define SCR_ST                (1U << 11)
1049 #define SCR_TWI               (1U << 12)
1050 #define SCR_TWE               (1U << 13)
1051 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1052 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1053 
1054 /* Return the current FPSCR value.  */
1055 uint32_t vfp_get_fpscr(CPUARMState *env);
1056 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1057 
1058 /* For A64 the FPSCR is split into two logically distinct registers,
1059  * FPCR and FPSR. However since they still use non-overlapping bits
1060  * we store the underlying state in fpscr and just mask on read/write.
1061  */
1062 #define FPSR_MASK 0xf800009f
1063 #define FPCR_MASK 0x07f79f00
1064 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1065 {
1066     return vfp_get_fpscr(env) & FPSR_MASK;
1067 }
1068 
1069 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1070 {
1071     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1072     vfp_set_fpscr(env, new_fpscr);
1073 }
1074 
1075 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1076 {
1077     return vfp_get_fpscr(env) & FPCR_MASK;
1078 }
1079 
1080 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1081 {
1082     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1083     vfp_set_fpscr(env, new_fpscr);
1084 }
1085 
1086 enum arm_cpu_mode {
1087   ARM_CPU_MODE_USR = 0x10,
1088   ARM_CPU_MODE_FIQ = 0x11,
1089   ARM_CPU_MODE_IRQ = 0x12,
1090   ARM_CPU_MODE_SVC = 0x13,
1091   ARM_CPU_MODE_MON = 0x16,
1092   ARM_CPU_MODE_ABT = 0x17,
1093   ARM_CPU_MODE_HYP = 0x1a,
1094   ARM_CPU_MODE_UND = 0x1b,
1095   ARM_CPU_MODE_SYS = 0x1f
1096 };
1097 
1098 /* VFP system registers.  */
1099 #define ARM_VFP_FPSID   0
1100 #define ARM_VFP_FPSCR   1
1101 #define ARM_VFP_MVFR2   5
1102 #define ARM_VFP_MVFR1   6
1103 #define ARM_VFP_MVFR0   7
1104 #define ARM_VFP_FPEXC   8
1105 #define ARM_VFP_FPINST  9
1106 #define ARM_VFP_FPINST2 10
1107 
1108 /* iwMMXt coprocessor control registers.  */
1109 #define ARM_IWMMXT_wCID		0
1110 #define ARM_IWMMXT_wCon		1
1111 #define ARM_IWMMXT_wCSSF	2
1112 #define ARM_IWMMXT_wCASF	3
1113 #define ARM_IWMMXT_wCGR0	8
1114 #define ARM_IWMMXT_wCGR1	9
1115 #define ARM_IWMMXT_wCGR2	10
1116 #define ARM_IWMMXT_wCGR3	11
1117 
1118 /* V7M CCR bits */
1119 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1120 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1121 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1122 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1123 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1124 FIELD(V7M_CCR, STKALIGN, 9, 1)
1125 FIELD(V7M_CCR, DC, 16, 1)
1126 FIELD(V7M_CCR, IC, 17, 1)
1127 
1128 /* V7M CFSR bits for MMFSR */
1129 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1130 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1131 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1132 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1133 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1134 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1135 
1136 /* V7M CFSR bits for BFSR */
1137 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1138 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1139 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1140 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1141 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1142 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1143 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1144 
1145 /* V7M CFSR bits for UFSR */
1146 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1147 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1148 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1149 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1150 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1151 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1152 
1153 /* V7M HFSR bits */
1154 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1155 FIELD(V7M_HFSR, FORCED, 30, 1)
1156 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1157 
1158 /* V7M DFSR bits */
1159 FIELD(V7M_DFSR, HALTED, 0, 1)
1160 FIELD(V7M_DFSR, BKPT, 1, 1)
1161 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1162 FIELD(V7M_DFSR, VCATCH, 3, 1)
1163 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1164 
1165 /* If adding a feature bit which corresponds to a Linux ELF
1166  * HWCAP bit, remember to update the feature-bit-to-hwcap
1167  * mapping in linux-user/elfload.c:get_elf_hwcap().
1168  */
1169 enum arm_features {
1170     ARM_FEATURE_VFP,
1171     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1172     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1173     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1174     ARM_FEATURE_V6,
1175     ARM_FEATURE_V6K,
1176     ARM_FEATURE_V7,
1177     ARM_FEATURE_THUMB2,
1178     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1179     ARM_FEATURE_VFP3,
1180     ARM_FEATURE_VFP_FP16,
1181     ARM_FEATURE_NEON,
1182     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1183     ARM_FEATURE_M, /* Microcontroller profile.  */
1184     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1185     ARM_FEATURE_THUMB2EE,
1186     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1187     ARM_FEATURE_V4T,
1188     ARM_FEATURE_V5,
1189     ARM_FEATURE_STRONGARM,
1190     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1191     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1192     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1193     ARM_FEATURE_GENERIC_TIMER,
1194     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1195     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1196     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1197     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1198     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1199     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1200     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1201     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1202     ARM_FEATURE_V8,
1203     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1204     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1205     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1206     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1207     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1208     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1209     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1210     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1211     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1212     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1213     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1214     ARM_FEATURE_PMU, /* has PMU support */
1215     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1216 };
1217 
1218 static inline int arm_feature(CPUARMState *env, int feature)
1219 {
1220     return (env->features & (1ULL << feature)) != 0;
1221 }
1222 
1223 #if !defined(CONFIG_USER_ONLY)
1224 /* Return true if exception levels below EL3 are in secure state,
1225  * or would be following an exception return to that level.
1226  * Unlike arm_is_secure() (which is always a question about the
1227  * _current_ state of the CPU) this doesn't care about the current
1228  * EL or mode.
1229  */
1230 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1231 {
1232     if (arm_feature(env, ARM_FEATURE_EL3)) {
1233         return !(env->cp15.scr_el3 & SCR_NS);
1234     } else {
1235         /* If EL3 is not supported then the secure state is implementation
1236          * defined, in which case QEMU defaults to non-secure.
1237          */
1238         return false;
1239     }
1240 }
1241 
1242 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1243 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1244 {
1245     if (arm_feature(env, ARM_FEATURE_EL3)) {
1246         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1247             /* CPU currently in AArch64 state and EL3 */
1248             return true;
1249         } else if (!is_a64(env) &&
1250                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1251             /* CPU currently in AArch32 state and monitor mode */
1252             return true;
1253         }
1254     }
1255     return false;
1256 }
1257 
1258 /* Return true if the processor is in secure state */
1259 static inline bool arm_is_secure(CPUARMState *env)
1260 {
1261     if (arm_is_el3_or_mon(env)) {
1262         return true;
1263     }
1264     return arm_is_secure_below_el3(env);
1265 }
1266 
1267 #else
1268 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1269 {
1270     return false;
1271 }
1272 
1273 static inline bool arm_is_secure(CPUARMState *env)
1274 {
1275     return false;
1276 }
1277 #endif
1278 
1279 /* Return true if the specified exception level is running in AArch64 state. */
1280 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1281 {
1282     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1283      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1284      */
1285     assert(el >= 1 && el <= 3);
1286     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1287 
1288     /* The highest exception level is always at the maximum supported
1289      * register width, and then lower levels have a register width controlled
1290      * by bits in the SCR or HCR registers.
1291      */
1292     if (el == 3) {
1293         return aa64;
1294     }
1295 
1296     if (arm_feature(env, ARM_FEATURE_EL3)) {
1297         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1298     }
1299 
1300     if (el == 2) {
1301         return aa64;
1302     }
1303 
1304     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1305         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1306     }
1307 
1308     return aa64;
1309 }
1310 
1311 /* Function for determing whether guest cp register reads and writes should
1312  * access the secure or non-secure bank of a cp register.  When EL3 is
1313  * operating in AArch32 state, the NS-bit determines whether the secure
1314  * instance of a cp register should be used. When EL3 is AArch64 (or if
1315  * it doesn't exist at all) then there is no register banking, and all
1316  * accesses are to the non-secure version.
1317  */
1318 static inline bool access_secure_reg(CPUARMState *env)
1319 {
1320     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1321                 !arm_el_is_aa64(env, 3) &&
1322                 !(env->cp15.scr_el3 & SCR_NS));
1323 
1324     return ret;
1325 }
1326 
1327 /* Macros for accessing a specified CP register bank */
1328 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1329     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1330 
1331 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1332     do {                                                \
1333         if (_secure) {                                   \
1334             (_env)->cp15._regname##_s = (_val);            \
1335         } else {                                        \
1336             (_env)->cp15._regname##_ns = (_val);           \
1337         }                                               \
1338     } while (0)
1339 
1340 /* Macros for automatically accessing a specific CP register bank depending on
1341  * the current secure state of the system.  These macros are not intended for
1342  * supporting instruction translation reads/writes as these are dependent
1343  * solely on the SCR.NS bit and not the mode.
1344  */
1345 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1346     A32_BANKED_REG_GET((_env), _regname,                \
1347                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1348 
1349 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1350     A32_BANKED_REG_SET((_env), _regname,                                    \
1351                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1352                        (_val))
1353 
1354 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1355 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1356                                  uint32_t cur_el, bool secure);
1357 
1358 /* Interface between CPU and Interrupt controller.  */
1359 void armv7m_nvic_set_pending(void *opaque, int irq);
1360 int armv7m_nvic_acknowledge_irq(void *opaque);
1361 void armv7m_nvic_complete_irq(void *opaque, int irq);
1362 
1363 /* Interface for defining coprocessor registers.
1364  * Registers are defined in tables of arm_cp_reginfo structs
1365  * which are passed to define_arm_cp_regs().
1366  */
1367 
1368 /* When looking up a coprocessor register we look for it
1369  * via an integer which encodes all of:
1370  *  coprocessor number
1371  *  Crn, Crm, opc1, opc2 fields
1372  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1373  *    or via MRRC/MCRR?)
1374  *  non-secure/secure bank (AArch32 only)
1375  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1376  * (In this case crn and opc2 should be zero.)
1377  * For AArch64, there is no 32/64 bit size distinction;
1378  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1379  * and 4 bit CRn and CRm. The encoding patterns are chosen
1380  * to be easy to convert to and from the KVM encodings, and also
1381  * so that the hashtable can contain both AArch32 and AArch64
1382  * registers (to allow for interprocessing where we might run
1383  * 32 bit code on a 64 bit core).
1384  */
1385 /* This bit is private to our hashtable cpreg; in KVM register
1386  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1387  * in the upper bits of the 64 bit ID.
1388  */
1389 #define CP_REG_AA64_SHIFT 28
1390 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1391 
1392 /* To enable banking of coprocessor registers depending on ns-bit we
1393  * add a bit to distinguish between secure and non-secure cpregs in the
1394  * hashtable.
1395  */
1396 #define CP_REG_NS_SHIFT 29
1397 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1398 
1399 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1400     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1401      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1402 
1403 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1404     (CP_REG_AA64_MASK |                                 \
1405      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1406      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1407      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1408      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1409      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1410      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1411 
1412 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1413  * version used as a key for the coprocessor register hashtable
1414  */
1415 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1416 {
1417     uint32_t cpregid = kvmid;
1418     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1419         cpregid |= CP_REG_AA64_MASK;
1420     } else {
1421         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1422             cpregid |= (1 << 15);
1423         }
1424 
1425         /* KVM is always non-secure so add the NS flag on AArch32 register
1426          * entries.
1427          */
1428          cpregid |= 1 << CP_REG_NS_SHIFT;
1429     }
1430     return cpregid;
1431 }
1432 
1433 /* Convert a truncated 32 bit hashtable key into the full
1434  * 64 bit KVM register ID.
1435  */
1436 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1437 {
1438     uint64_t kvmid;
1439 
1440     if (cpregid & CP_REG_AA64_MASK) {
1441         kvmid = cpregid & ~CP_REG_AA64_MASK;
1442         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1443     } else {
1444         kvmid = cpregid & ~(1 << 15);
1445         if (cpregid & (1 << 15)) {
1446             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1447         } else {
1448             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1449         }
1450     }
1451     return kvmid;
1452 }
1453 
1454 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1455  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1456  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1457  * TCG can assume the value to be constant (ie load at translate time)
1458  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1459  * indicates that the TB should not be ended after a write to this register
1460  * (the default is that the TB ends after cp writes). OVERRIDE permits
1461  * a register definition to override a previous definition for the
1462  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1463  * old must have the OVERRIDE bit set.
1464  * ALIAS indicates that this register is an alias view of some underlying
1465  * state which is also visible via another register, and that the other
1466  * register is handling migration and reset; registers marked ALIAS will not be
1467  * migrated but may have their state set by syncing of register state from KVM.
1468  * NO_RAW indicates that this register has no underlying state and does not
1469  * support raw access for state saving/loading; it will not be used for either
1470  * migration or KVM state synchronization. (Typically this is for "registers"
1471  * which are actually used as instructions for cache maintenance and so on.)
1472  * IO indicates that this register does I/O and therefore its accesses
1473  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1474  * registers which implement clocks or timers require this.
1475  */
1476 #define ARM_CP_SPECIAL 1
1477 #define ARM_CP_CONST 2
1478 #define ARM_CP_64BIT 4
1479 #define ARM_CP_SUPPRESS_TB_END 8
1480 #define ARM_CP_OVERRIDE 16
1481 #define ARM_CP_ALIAS 32
1482 #define ARM_CP_IO 64
1483 #define ARM_CP_NO_RAW 128
1484 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1485 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1486 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1487 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1488 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1489 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1490 /* Used only as a terminator for ARMCPRegInfo lists */
1491 #define ARM_CP_SENTINEL 0xffff
1492 /* Mask of only the flag bits in a type field */
1493 #define ARM_CP_FLAG_MASK 0xff
1494 
1495 /* Valid values for ARMCPRegInfo state field, indicating which of
1496  * the AArch32 and AArch64 execution states this register is visible in.
1497  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1498  * If the reginfo is declared to be visible in both states then a second
1499  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1500  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1501  * Note that we rely on the values of these enums as we iterate through
1502  * the various states in some places.
1503  */
1504 enum {
1505     ARM_CP_STATE_AA32 = 0,
1506     ARM_CP_STATE_AA64 = 1,
1507     ARM_CP_STATE_BOTH = 2,
1508 };
1509 
1510 /* ARM CP register secure state flags.  These flags identify security state
1511  * attributes for a given CP register entry.
1512  * The existence of both or neither secure and non-secure flags indicates that
1513  * the register has both a secure and non-secure hash entry.  A single one of
1514  * these flags causes the register to only be hashed for the specified
1515  * security state.
1516  * Although definitions may have any combination of the S/NS bits, each
1517  * registered entry will only have one to identify whether the entry is secure
1518  * or non-secure.
1519  */
1520 enum {
1521     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1522     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1523 };
1524 
1525 /* Return true if cptype is a valid type field. This is used to try to
1526  * catch errors where the sentinel has been accidentally left off the end
1527  * of a list of registers.
1528  */
1529 static inline bool cptype_valid(int cptype)
1530 {
1531     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1532         || ((cptype & ARM_CP_SPECIAL) &&
1533             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1534 }
1535 
1536 /* Access rights:
1537  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1538  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1539  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1540  * (ie any of the privileged modes in Secure state, or Monitor mode).
1541  * If a register is accessible in one privilege level it's always accessible
1542  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1543  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1544  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1545  * terminology a little and call this PL3.
1546  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1547  * with the ELx exception levels.
1548  *
1549  * If access permissions for a register are more complex than can be
1550  * described with these bits, then use a laxer set of restrictions, and
1551  * do the more restrictive/complex check inside a helper function.
1552  */
1553 #define PL3_R 0x80
1554 #define PL3_W 0x40
1555 #define PL2_R (0x20 | PL3_R)
1556 #define PL2_W (0x10 | PL3_W)
1557 #define PL1_R (0x08 | PL2_R)
1558 #define PL1_W (0x04 | PL2_W)
1559 #define PL0_R (0x02 | PL1_R)
1560 #define PL0_W (0x01 | PL1_W)
1561 
1562 #define PL3_RW (PL3_R | PL3_W)
1563 #define PL2_RW (PL2_R | PL2_W)
1564 #define PL1_RW (PL1_R | PL1_W)
1565 #define PL0_RW (PL0_R | PL0_W)
1566 
1567 /* Return the highest implemented Exception Level */
1568 static inline int arm_highest_el(CPUARMState *env)
1569 {
1570     if (arm_feature(env, ARM_FEATURE_EL3)) {
1571         return 3;
1572     }
1573     if (arm_feature(env, ARM_FEATURE_EL2)) {
1574         return 2;
1575     }
1576     return 1;
1577 }
1578 
1579 /* Return the current Exception Level (as per ARMv8; note that this differs
1580  * from the ARMv7 Privilege Level).
1581  */
1582 static inline int arm_current_el(CPUARMState *env)
1583 {
1584     if (arm_feature(env, ARM_FEATURE_M)) {
1585         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1586     }
1587 
1588     if (is_a64(env)) {
1589         return extract32(env->pstate, 2, 2);
1590     }
1591 
1592     switch (env->uncached_cpsr & 0x1f) {
1593     case ARM_CPU_MODE_USR:
1594         return 0;
1595     case ARM_CPU_MODE_HYP:
1596         return 2;
1597     case ARM_CPU_MODE_MON:
1598         return 3;
1599     default:
1600         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1601             /* If EL3 is 32-bit then all secure privileged modes run in
1602              * EL3
1603              */
1604             return 3;
1605         }
1606 
1607         return 1;
1608     }
1609 }
1610 
1611 typedef struct ARMCPRegInfo ARMCPRegInfo;
1612 
1613 typedef enum CPAccessResult {
1614     /* Access is permitted */
1615     CP_ACCESS_OK = 0,
1616     /* Access fails due to a configurable trap or enable which would
1617      * result in a categorized exception syndrome giving information about
1618      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1619      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1620      * PL1 if in EL0, otherwise to the current EL).
1621      */
1622     CP_ACCESS_TRAP = 1,
1623     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1624      * Note that this is not a catch-all case -- the set of cases which may
1625      * result in this failure is specifically defined by the architecture.
1626      */
1627     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1628     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1629     CP_ACCESS_TRAP_EL2 = 3,
1630     CP_ACCESS_TRAP_EL3 = 4,
1631     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1632     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1633     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1634     /* Access fails and results in an exception syndrome for an FP access,
1635      * trapped directly to EL2 or EL3
1636      */
1637     CP_ACCESS_TRAP_FP_EL2 = 7,
1638     CP_ACCESS_TRAP_FP_EL3 = 8,
1639 } CPAccessResult;
1640 
1641 /* Access functions for coprocessor registers. These cannot fail and
1642  * may not raise exceptions.
1643  */
1644 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1645 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1646                        uint64_t value);
1647 /* Access permission check functions for coprocessor registers. */
1648 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1649                                   const ARMCPRegInfo *opaque,
1650                                   bool isread);
1651 /* Hook function for register reset */
1652 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1653 
1654 #define CP_ANY 0xff
1655 
1656 /* Definition of an ARM coprocessor register */
1657 struct ARMCPRegInfo {
1658     /* Name of register (useful mainly for debugging, need not be unique) */
1659     const char *name;
1660     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1661      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1662      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1663      * will be decoded to this register. The register read and write
1664      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1665      * used by the program, so it is possible to register a wildcard and
1666      * then behave differently on read/write if necessary.
1667      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1668      * must both be zero.
1669      * For AArch64-visible registers, opc0 is also used.
1670      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1671      * way to distinguish (for KVM's benefit) guest-visible system registers
1672      * from demuxed ones provided to preserve the "no side effects on
1673      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1674      * visible (to match KVM's encoding); cp==0 will be converted to
1675      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1676      */
1677     uint8_t cp;
1678     uint8_t crn;
1679     uint8_t crm;
1680     uint8_t opc0;
1681     uint8_t opc1;
1682     uint8_t opc2;
1683     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1684     int state;
1685     /* Register type: ARM_CP_* bits/values */
1686     int type;
1687     /* Access rights: PL*_[RW] */
1688     int access;
1689     /* Security state: ARM_CP_SECSTATE_* bits/values */
1690     int secure;
1691     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1692      * this register was defined: can be used to hand data through to the
1693      * register read/write functions, since they are passed the ARMCPRegInfo*.
1694      */
1695     void *opaque;
1696     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1697      * fieldoffset is non-zero, the reset value of the register.
1698      */
1699     uint64_t resetvalue;
1700     /* Offset of the field in CPUARMState for this register.
1701      *
1702      * This is not needed if either:
1703      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1704      *  2. both readfn and writefn are specified
1705      */
1706     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1707 
1708     /* Offsets of the secure and non-secure fields in CPUARMState for the
1709      * register if it is banked.  These fields are only used during the static
1710      * registration of a register.  During hashing the bank associated
1711      * with a given security state is copied to fieldoffset which is used from
1712      * there on out.
1713      *
1714      * It is expected that register definitions use either fieldoffset or
1715      * bank_fieldoffsets in the definition but not both.  It is also expected
1716      * that both bank offsets are set when defining a banked register.  This
1717      * use indicates that a register is banked.
1718      */
1719     ptrdiff_t bank_fieldoffsets[2];
1720 
1721     /* Function for making any access checks for this register in addition to
1722      * those specified by the 'access' permissions bits. If NULL, no extra
1723      * checks required. The access check is performed at runtime, not at
1724      * translate time.
1725      */
1726     CPAccessFn *accessfn;
1727     /* Function for handling reads of this register. If NULL, then reads
1728      * will be done by loading from the offset into CPUARMState specified
1729      * by fieldoffset.
1730      */
1731     CPReadFn *readfn;
1732     /* Function for handling writes of this register. If NULL, then writes
1733      * will be done by writing to the offset into CPUARMState specified
1734      * by fieldoffset.
1735      */
1736     CPWriteFn *writefn;
1737     /* Function for doing a "raw" read; used when we need to copy
1738      * coprocessor state to the kernel for KVM or out for
1739      * migration. This only needs to be provided if there is also a
1740      * readfn and it has side effects (for instance clear-on-read bits).
1741      */
1742     CPReadFn *raw_readfn;
1743     /* Function for doing a "raw" write; used when we need to copy KVM
1744      * kernel coprocessor state into userspace, or for inbound
1745      * migration. This only needs to be provided if there is also a
1746      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1747      * or similar behaviour.
1748      */
1749     CPWriteFn *raw_writefn;
1750     /* Function for resetting the register. If NULL, then reset will be done
1751      * by writing resetvalue to the field specified in fieldoffset. If
1752      * fieldoffset is 0 then no reset will be done.
1753      */
1754     CPResetFn *resetfn;
1755 };
1756 
1757 /* Macros which are lvalues for the field in CPUARMState for the
1758  * ARMCPRegInfo *ri.
1759  */
1760 #define CPREG_FIELD32(env, ri) \
1761     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1762 #define CPREG_FIELD64(env, ri) \
1763     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1764 
1765 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1766 
1767 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1768                                     const ARMCPRegInfo *regs, void *opaque);
1769 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1770                                        const ARMCPRegInfo *regs, void *opaque);
1771 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1772 {
1773     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1774 }
1775 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1776 {
1777     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1778 }
1779 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1780 
1781 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1782 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1783                          uint64_t value);
1784 /* CPReadFn that can be used for read-as-zero behaviour */
1785 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1786 
1787 /* CPResetFn that does nothing, for use if no reset is required even
1788  * if fieldoffset is non zero.
1789  */
1790 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1791 
1792 /* Return true if this reginfo struct's field in the cpu state struct
1793  * is 64 bits wide.
1794  */
1795 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1796 {
1797     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1798 }
1799 
1800 static inline bool cp_access_ok(int current_el,
1801                                 const ARMCPRegInfo *ri, int isread)
1802 {
1803     return (ri->access >> ((current_el * 2) + isread)) & 1;
1804 }
1805 
1806 /* Raw read of a coprocessor register (as needed for migration, etc) */
1807 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1808 
1809 /**
1810  * write_list_to_cpustate
1811  * @cpu: ARMCPU
1812  *
1813  * For each register listed in the ARMCPU cpreg_indexes list, write
1814  * its value from the cpreg_values list into the ARMCPUState structure.
1815  * This updates TCG's working data structures from KVM data or
1816  * from incoming migration state.
1817  *
1818  * Returns: true if all register values were updated correctly,
1819  * false if some register was unknown or could not be written.
1820  * Note that we do not stop early on failure -- we will attempt
1821  * writing all registers in the list.
1822  */
1823 bool write_list_to_cpustate(ARMCPU *cpu);
1824 
1825 /**
1826  * write_cpustate_to_list:
1827  * @cpu: ARMCPU
1828  *
1829  * For each register listed in the ARMCPU cpreg_indexes list, write
1830  * its value from the ARMCPUState structure into the cpreg_values list.
1831  * This is used to copy info from TCG's working data structures into
1832  * KVM or for outbound migration.
1833  *
1834  * Returns: true if all register values were read correctly,
1835  * false if some register was unknown or could not be read.
1836  * Note that we do not stop early on failure -- we will attempt
1837  * reading all registers in the list.
1838  */
1839 bool write_cpustate_to_list(ARMCPU *cpu);
1840 
1841 #define ARM_CPUID_TI915T      0x54029152
1842 #define ARM_CPUID_TI925T      0x54029252
1843 
1844 #if defined(CONFIG_USER_ONLY)
1845 #define TARGET_PAGE_BITS 12
1846 #else
1847 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1848  * have to support 1K tiny pages.
1849  */
1850 #define TARGET_PAGE_BITS_VARY
1851 #define TARGET_PAGE_BITS_MIN 10
1852 #endif
1853 
1854 #if defined(TARGET_AARCH64)
1855 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1856 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1857 #else
1858 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1859 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1860 #endif
1861 
1862 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1863                                      unsigned int target_el)
1864 {
1865     CPUARMState *env = cs->env_ptr;
1866     unsigned int cur_el = arm_current_el(env);
1867     bool secure = arm_is_secure(env);
1868     bool pstate_unmasked;
1869     int8_t unmasked = 0;
1870 
1871     /* Don't take exceptions if they target a lower EL.
1872      * This check should catch any exceptions that would not be taken but left
1873      * pending.
1874      */
1875     if (cur_el > target_el) {
1876         return false;
1877     }
1878 
1879     switch (excp_idx) {
1880     case EXCP_FIQ:
1881         pstate_unmasked = !(env->daif & PSTATE_F);
1882         break;
1883 
1884     case EXCP_IRQ:
1885         pstate_unmasked = !(env->daif & PSTATE_I);
1886         break;
1887 
1888     case EXCP_VFIQ:
1889         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1890             /* VFIQs are only taken when hypervized and non-secure.  */
1891             return false;
1892         }
1893         return !(env->daif & PSTATE_F);
1894     case EXCP_VIRQ:
1895         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1896             /* VIRQs are only taken when hypervized and non-secure.  */
1897             return false;
1898         }
1899         return !(env->daif & PSTATE_I);
1900     default:
1901         g_assert_not_reached();
1902     }
1903 
1904     /* Use the target EL, current execution state and SCR/HCR settings to
1905      * determine whether the corresponding CPSR bit is used to mask the
1906      * interrupt.
1907      */
1908     if ((target_el > cur_el) && (target_el != 1)) {
1909         /* Exceptions targeting a higher EL may not be maskable */
1910         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1911             /* 64-bit masking rules are simple: exceptions to EL3
1912              * can't be masked, and exceptions to EL2 can only be
1913              * masked from Secure state. The HCR and SCR settings
1914              * don't affect the masking logic, only the interrupt routing.
1915              */
1916             if (target_el == 3 || !secure) {
1917                 unmasked = 1;
1918             }
1919         } else {
1920             /* The old 32-bit-only environment has a more complicated
1921              * masking setup. HCR and SCR bits not only affect interrupt
1922              * routing but also change the behaviour of masking.
1923              */
1924             bool hcr, scr;
1925 
1926             switch (excp_idx) {
1927             case EXCP_FIQ:
1928                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1929                  * we override the CPSR.F in determining if the exception is
1930                  * masked or not. If neither of these are set then we fall back
1931                  * to the CPSR.F setting otherwise we further assess the state
1932                  * below.
1933                  */
1934                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1935                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1936 
1937                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1938                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1939                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1940                  * when non-secure but only when FIQs are only routed to EL3.
1941                  */
1942                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1943                 break;
1944             case EXCP_IRQ:
1945                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1946                  * we may override the CPSR.I masking when in non-secure state.
1947                  * The SCR.IRQ setting has already been taken into consideration
1948                  * when setting the target EL, so it does not have a further
1949                  * affect here.
1950                  */
1951                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1952                 scr = false;
1953                 break;
1954             default:
1955                 g_assert_not_reached();
1956             }
1957 
1958             if ((scr || hcr) && !secure) {
1959                 unmasked = 1;
1960             }
1961         }
1962     }
1963 
1964     /* The PSTATE bits only mask the interrupt if we have not overriden the
1965      * ability above.
1966      */
1967     return unmasked || pstate_unmasked;
1968 }
1969 
1970 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1971 
1972 #define cpu_signal_handler cpu_arm_signal_handler
1973 #define cpu_list arm_cpu_list
1974 
1975 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1976  *
1977  * If EL3 is 64-bit:
1978  *  + NonSecure EL1 & 0 stage 1
1979  *  + NonSecure EL1 & 0 stage 2
1980  *  + NonSecure EL2
1981  *  + Secure EL1 & EL0
1982  *  + Secure EL3
1983  * If EL3 is 32-bit:
1984  *  + NonSecure PL1 & 0 stage 1
1985  *  + NonSecure PL1 & 0 stage 2
1986  *  + NonSecure PL2
1987  *  + Secure PL0 & PL1
1988  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1989  *
1990  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1991  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1992  *     may differ in access permissions even if the VA->PA map is the same
1993  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1994  *     translation, which means that we have one mmu_idx that deals with two
1995  *     concatenated translation regimes [this sort of combined s1+2 TLB is
1996  *     architecturally permitted]
1997  *  3. we don't need to allocate an mmu_idx to translations that we won't be
1998  *     handling via the TLB. The only way to do a stage 1 translation without
1999  *     the immediate stage 2 translation is via the ATS or AT system insns,
2000  *     which can be slow-pathed and always do a page table walk.
2001  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2002  *     translation regimes, because they map reasonably well to each other
2003  *     and they can't both be active at the same time.
2004  * This gives us the following list of mmu_idx values:
2005  *
2006  * NS EL0 (aka NS PL0) stage 1+2
2007  * NS EL1 (aka NS PL1) stage 1+2
2008  * NS EL2 (aka NS PL2)
2009  * S EL3 (aka S PL1)
2010  * S EL0 (aka S PL0)
2011  * S EL1 (not used if EL3 is 32 bit)
2012  * NS EL0+1 stage 2
2013  *
2014  * (The last of these is an mmu_idx because we want to be able to use the TLB
2015  * for the accesses done as part of a stage 1 page table walk, rather than
2016  * having to walk the stage 2 page table over and over.)
2017  *
2018  * Our enumeration includes at the end some entries which are not "true"
2019  * mmu_idx values in that they don't have corresponding TLBs and are only
2020  * valid for doing slow path page table walks.
2021  *
2022  * The constant names here are patterned after the general style of the names
2023  * of the AT/ATS operations.
2024  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2025  */
2026 typedef enum ARMMMUIdx {
2027     ARMMMUIdx_S12NSE0 = 0,
2028     ARMMMUIdx_S12NSE1 = 1,
2029     ARMMMUIdx_S1E2 = 2,
2030     ARMMMUIdx_S1E3 = 3,
2031     ARMMMUIdx_S1SE0 = 4,
2032     ARMMMUIdx_S1SE1 = 5,
2033     ARMMMUIdx_S2NS = 6,
2034     /* Indexes below here don't have TLBs and are used only for AT system
2035      * instructions or for the first stage of an S12 page table walk.
2036      */
2037     ARMMMUIdx_S1NSE0 = 7,
2038     ARMMMUIdx_S1NSE1 = 8,
2039 } ARMMMUIdx;
2040 
2041 #define MMU_USER_IDX 0
2042 
2043 /* Return the exception level we're running at if this is our mmu_idx */
2044 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2045 {
2046     assert(mmu_idx < ARMMMUIdx_S2NS);
2047     return mmu_idx & 3;
2048 }
2049 
2050 /* Determine the current mmu_idx to use for normal loads/stores */
2051 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2052 {
2053     int el = arm_current_el(env);
2054 
2055     if (el < 2 && arm_is_secure_below_el3(env)) {
2056         return ARMMMUIdx_S1SE0 + el;
2057     }
2058     return el;
2059 }
2060 
2061 /* Indexes used when registering address spaces with cpu_address_space_init */
2062 typedef enum ARMASIdx {
2063     ARMASIdx_NS = 0,
2064     ARMASIdx_S = 1,
2065 } ARMASIdx;
2066 
2067 /* Return the Exception Level targeted by debug exceptions. */
2068 static inline int arm_debug_target_el(CPUARMState *env)
2069 {
2070     bool secure = arm_is_secure(env);
2071     bool route_to_el2 = false;
2072 
2073     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2074         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2075                        env->cp15.mdcr_el2 & (1 << 8);
2076     }
2077 
2078     if (route_to_el2) {
2079         return 2;
2080     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2081                !arm_el_is_aa64(env, 3) && secure) {
2082         return 3;
2083     } else {
2084         return 1;
2085     }
2086 }
2087 
2088 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2089 {
2090     if (arm_is_secure(env)) {
2091         /* MDCR_EL3.SDD disables debug events from Secure state */
2092         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2093             || arm_current_el(env) == 3) {
2094             return false;
2095         }
2096     }
2097 
2098     if (arm_current_el(env) == arm_debug_target_el(env)) {
2099         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2100             || (env->daif & PSTATE_D)) {
2101             return false;
2102         }
2103     }
2104     return true;
2105 }
2106 
2107 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2108 {
2109     int el = arm_current_el(env);
2110 
2111     if (el == 0 && arm_el_is_aa64(env, 1)) {
2112         return aa64_generate_debug_exceptions(env);
2113     }
2114 
2115     if (arm_is_secure(env)) {
2116         int spd;
2117 
2118         if (el == 0 && (env->cp15.sder & 1)) {
2119             /* SDER.SUIDEN means debug exceptions from Secure EL0
2120              * are always enabled. Otherwise they are controlled by
2121              * SDCR.SPD like those from other Secure ELs.
2122              */
2123             return true;
2124         }
2125 
2126         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2127         switch (spd) {
2128         case 1:
2129             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2130         case 0:
2131             /* For 0b00 we return true if external secure invasive debug
2132              * is enabled. On real hardware this is controlled by external
2133              * signals to the core. QEMU always permits debug, and behaves
2134              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2135              */
2136             return true;
2137         case 2:
2138             return false;
2139         case 3:
2140             return true;
2141         }
2142     }
2143 
2144     return el != 2;
2145 }
2146 
2147 /* Return true if debugging exceptions are currently enabled.
2148  * This corresponds to what in ARM ARM pseudocode would be
2149  *    if UsingAArch32() then
2150  *        return AArch32.GenerateDebugExceptions()
2151  *    else
2152  *        return AArch64.GenerateDebugExceptions()
2153  * We choose to push the if() down into this function for clarity,
2154  * since the pseudocode has it at all callsites except for the one in
2155  * CheckSoftwareStep(), where it is elided because both branches would
2156  * always return the same value.
2157  *
2158  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2159  * don't yet implement those exception levels or their associated trap bits.
2160  */
2161 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2162 {
2163     if (env->aarch64) {
2164         return aa64_generate_debug_exceptions(env);
2165     } else {
2166         return aa32_generate_debug_exceptions(env);
2167     }
2168 }
2169 
2170 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2171  * implicitly means this always returns false in pre-v8 CPUs.)
2172  */
2173 static inline bool arm_singlestep_active(CPUARMState *env)
2174 {
2175     return extract32(env->cp15.mdscr_el1, 0, 1)
2176         && arm_el_is_aa64(env, arm_debug_target_el(env))
2177         && arm_generate_debug_exceptions(env);
2178 }
2179 
2180 static inline bool arm_sctlr_b(CPUARMState *env)
2181 {
2182     return
2183         /* We need not implement SCTLR.ITD in user-mode emulation, so
2184          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2185          * This lets people run BE32 binaries with "-cpu any".
2186          */
2187 #ifndef CONFIG_USER_ONLY
2188         !arm_feature(env, ARM_FEATURE_V7) &&
2189 #endif
2190         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2191 }
2192 
2193 /* Return true if the processor is in big-endian mode. */
2194 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2195 {
2196     int cur_el;
2197 
2198     /* In 32bit endianness is determined by looking at CPSR's E bit */
2199     if (!is_a64(env)) {
2200         return
2201 #ifdef CONFIG_USER_ONLY
2202             /* In system mode, BE32 is modelled in line with the
2203              * architecture (as word-invariant big-endianness), where loads
2204              * and stores are done little endian but from addresses which
2205              * are adjusted by XORing with the appropriate constant. So the
2206              * endianness to use for the raw data access is not affected by
2207              * SCTLR.B.
2208              * In user mode, however, we model BE32 as byte-invariant
2209              * big-endianness (because user-only code cannot tell the
2210              * difference), and so we need to use a data access endianness
2211              * that depends on SCTLR.B.
2212              */
2213             arm_sctlr_b(env) ||
2214 #endif
2215                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2216     }
2217 
2218     cur_el = arm_current_el(env);
2219 
2220     if (cur_el == 0) {
2221         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2222     }
2223 
2224     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2225 }
2226 
2227 #include "exec/cpu-all.h"
2228 
2229 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2230  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2231  * We put flags which are shared between 32 and 64 bit mode at the top
2232  * of the word, and flags which apply to only one mode at the bottom.
2233  */
2234 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2235 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2236 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2237 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2238 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2239 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2240 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2241 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2242 /* Target EL if we take a floating-point-disabled exception */
2243 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2244 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2245 
2246 /* Bit usage when in AArch32 state: */
2247 #define ARM_TBFLAG_THUMB_SHIFT      0
2248 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2249 #define ARM_TBFLAG_VECLEN_SHIFT     1
2250 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2251 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2252 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2253 #define ARM_TBFLAG_VFPEN_SHIFT      7
2254 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2255 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2256 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2257 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2258 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2259 /* We store the bottom two bits of the CPAR as TB flags and handle
2260  * checks on the other bits at runtime
2261  */
2262 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2263 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2264 /* Indicates whether cp register reads and writes by guest code should access
2265  * the secure or nonsecure bank of banked registers; note that this is not
2266  * the same thing as the current security state of the processor!
2267  */
2268 #define ARM_TBFLAG_NS_SHIFT         19
2269 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2270 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2271 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2272 
2273 /* Bit usage when in AArch64 state */
2274 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2275 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2276 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2277 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2278 
2279 /* some convenience accessor macros */
2280 #define ARM_TBFLAG_AARCH64_STATE(F) \
2281     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2282 #define ARM_TBFLAG_MMUIDX(F) \
2283     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2284 #define ARM_TBFLAG_SS_ACTIVE(F) \
2285     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2286 #define ARM_TBFLAG_PSTATE_SS(F) \
2287     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2288 #define ARM_TBFLAG_FPEXC_EL(F) \
2289     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2290 #define ARM_TBFLAG_THUMB(F) \
2291     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2292 #define ARM_TBFLAG_VECLEN(F) \
2293     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2294 #define ARM_TBFLAG_VECSTRIDE(F) \
2295     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2296 #define ARM_TBFLAG_VFPEN(F) \
2297     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2298 #define ARM_TBFLAG_CONDEXEC(F) \
2299     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2300 #define ARM_TBFLAG_SCTLR_B(F) \
2301     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2302 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2303     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2304 #define ARM_TBFLAG_NS(F) \
2305     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2306 #define ARM_TBFLAG_BE_DATA(F) \
2307     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2308 #define ARM_TBFLAG_TBI0(F) \
2309     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2310 #define ARM_TBFLAG_TBI1(F) \
2311     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2312 
2313 static inline bool bswap_code(bool sctlr_b)
2314 {
2315 #ifdef CONFIG_USER_ONLY
2316     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2317      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2318      * would also end up as a mixed-endian mode with BE code, LE data.
2319      */
2320     return
2321 #ifdef TARGET_WORDS_BIGENDIAN
2322         1 ^
2323 #endif
2324         sctlr_b;
2325 #else
2326     /* All code access in ARM is little endian, and there are no loaders
2327      * doing swaps that need to be reversed
2328      */
2329     return 0;
2330 #endif
2331 }
2332 
2333 /* Return the exception level to which FP-disabled exceptions should
2334  * be taken, or 0 if FP is enabled.
2335  */
2336 static inline int fp_exception_el(CPUARMState *env)
2337 {
2338     int fpen;
2339     int cur_el = arm_current_el(env);
2340 
2341     /* CPACR and the CPTR registers don't exist before v6, so FP is
2342      * always accessible
2343      */
2344     if (!arm_feature(env, ARM_FEATURE_V6)) {
2345         return 0;
2346     }
2347 
2348     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2349      * 0, 2 : trap EL0 and EL1/PL1 accesses
2350      * 1    : trap only EL0 accesses
2351      * 3    : trap no accesses
2352      */
2353     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2354     switch (fpen) {
2355     case 0:
2356     case 2:
2357         if (cur_el == 0 || cur_el == 1) {
2358             /* Trap to PL1, which might be EL1 or EL3 */
2359             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2360                 return 3;
2361             }
2362             return 1;
2363         }
2364         if (cur_el == 3 && !is_a64(env)) {
2365             /* Secure PL1 running at EL3 */
2366             return 3;
2367         }
2368         break;
2369     case 1:
2370         if (cur_el == 0) {
2371             return 1;
2372         }
2373         break;
2374     case 3:
2375         break;
2376     }
2377 
2378     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2379      * check because zero bits in the registers mean "don't trap".
2380      */
2381 
2382     /* CPTR_EL2 : present in v7VE or v8 */
2383     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2384         && !arm_is_secure_below_el3(env)) {
2385         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2386         return 2;
2387     }
2388 
2389     /* CPTR_EL3 : present in v8 */
2390     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2391         /* Trap all FP ops to EL3 */
2392         return 3;
2393     }
2394 
2395     return 0;
2396 }
2397 
2398 #ifdef CONFIG_USER_ONLY
2399 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2400 {
2401     return
2402 #ifdef TARGET_WORDS_BIGENDIAN
2403        1 ^
2404 #endif
2405        arm_cpu_data_is_big_endian(env);
2406 }
2407 #endif
2408 
2409 #ifndef CONFIG_USER_ONLY
2410 /**
2411  * arm_regime_tbi0:
2412  * @env: CPUARMState
2413  * @mmu_idx: MMU index indicating required translation regime
2414  *
2415  * Extracts the TBI0 value from the appropriate TCR for the current EL
2416  *
2417  * Returns: the TBI0 value.
2418  */
2419 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2420 
2421 /**
2422  * arm_regime_tbi1:
2423  * @env: CPUARMState
2424  * @mmu_idx: MMU index indicating required translation regime
2425  *
2426  * Extracts the TBI1 value from the appropriate TCR for the current EL
2427  *
2428  * Returns: the TBI1 value.
2429  */
2430 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2431 #else
2432 /* We can't handle tagged addresses properly in user-only mode */
2433 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2434 {
2435     return 0;
2436 }
2437 
2438 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2439 {
2440     return 0;
2441 }
2442 #endif
2443 
2444 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2445                                         target_ulong *cs_base, uint32_t *flags)
2446 {
2447     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2448     if (is_a64(env)) {
2449         *pc = env->pc;
2450         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2451         /* Get control bits for tagged addresses */
2452         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2453         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2454     } else {
2455         *pc = env->regs[15];
2456         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2457             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2458             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2459             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2460             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2461         if (!(access_secure_reg(env))) {
2462             *flags |= ARM_TBFLAG_NS_MASK;
2463         }
2464         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2465             || arm_el_is_aa64(env, 1)) {
2466             *flags |= ARM_TBFLAG_VFPEN_MASK;
2467         }
2468         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2469                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2470     }
2471 
2472     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2473 
2474     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2475      * states defined in the ARM ARM for software singlestep:
2476      *  SS_ACTIVE   PSTATE.SS   State
2477      *     0            x       Inactive (the TB flag for SS is always 0)
2478      *     1            0       Active-pending
2479      *     1            1       Active-not-pending
2480      */
2481     if (arm_singlestep_active(env)) {
2482         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2483         if (is_a64(env)) {
2484             if (env->pstate & PSTATE_SS) {
2485                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2486             }
2487         } else {
2488             if (env->uncached_cpsr & PSTATE_SS) {
2489                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2490             }
2491         }
2492     }
2493     if (arm_cpu_data_is_big_endian(env)) {
2494         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2495     }
2496     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2497 
2498     *cs_base = 0;
2499 }
2500 
2501 enum {
2502     QEMU_PSCI_CONDUIT_DISABLED = 0,
2503     QEMU_PSCI_CONDUIT_SMC = 1,
2504     QEMU_PSCI_CONDUIT_HVC = 2,
2505 };
2506 
2507 #ifndef CONFIG_USER_ONLY
2508 /* Return the address space index to use for a memory access */
2509 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2510 {
2511     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2512 }
2513 
2514 /* Return the AddressSpace to use for a memory access
2515  * (which depends on whether the access is S or NS, and whether
2516  * the board gave us a separate AddressSpace for S accesses).
2517  */
2518 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2519 {
2520     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2521 }
2522 #endif
2523 
2524 /**
2525  * arm_register_el_change_hook:
2526  * Register a hook function which will be called back whenever this
2527  * CPU changes exception level or mode. The hook function will be
2528  * passed a pointer to the ARMCPU and the opaque data pointer passed
2529  * to this function when the hook was registered.
2530  *
2531  * Note that we currently only support registering a single hook function,
2532  * and will assert if this function is called twice.
2533  * This facility is intended for the use of the GICv3 emulation.
2534  */
2535 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2536                                  void *opaque);
2537 
2538 /**
2539  * arm_get_el_change_hook_opaque:
2540  * Return the opaque data that will be used by the el_change_hook
2541  * for this CPU.
2542  */
2543 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2544 {
2545     return cpu->el_change_hook_opaque;
2546 }
2547 
2548 #endif
2549