xref: /openbmc/qemu/target/arm/cpu.h (revision 74433bf0)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "qemu-common.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #define CPUArchState struct CPUARMState
33 
34 #define EXCP_UDEF            1   /* undefined instruction */
35 #define EXCP_SWI             2   /* software interrupt */
36 #define EXCP_PREFETCH_ABORT  3
37 #define EXCP_DATA_ABORT      4
38 #define EXCP_IRQ             5
39 #define EXCP_FIQ             6
40 #define EXCP_BKPT            7
41 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
42 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
43 #define EXCP_HVC            11   /* HyperVisor Call */
44 #define EXCP_HYP_TRAP       12
45 #define EXCP_SMC            13   /* Secure Monitor Call */
46 #define EXCP_VIRQ           14
47 #define EXCP_VFIQ           15
48 #define EXCP_SEMIHOST       16   /* semihosting call */
49 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
50 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
51 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
52 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
53 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
54 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
55 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
56 
57 #define ARMV7M_EXCP_RESET   1
58 #define ARMV7M_EXCP_NMI     2
59 #define ARMV7M_EXCP_HARD    3
60 #define ARMV7M_EXCP_MEM     4
61 #define ARMV7M_EXCP_BUS     5
62 #define ARMV7M_EXCP_USAGE   6
63 #define ARMV7M_EXCP_SECURE  7
64 #define ARMV7M_EXCP_SVC     11
65 #define ARMV7M_EXCP_DEBUG   12
66 #define ARMV7M_EXCP_PENDSV  14
67 #define ARMV7M_EXCP_SYSTICK 15
68 
69 /* For M profile, some registers are banked secure vs non-secure;
70  * these are represented as a 2-element array where the first element
71  * is the non-secure copy and the second is the secure copy.
72  * When the CPU does not have implement the security extension then
73  * only the first element is used.
74  * This means that the copy for the current security state can be
75  * accessed via env->registerfield[env->v7m.secure] (whether the security
76  * extension is implemented or not).
77  */
78 enum {
79     M_REG_NS = 0,
80     M_REG_S = 1,
81     M_REG_NUM_BANKS = 2,
82 };
83 
84 /* ARM-specific interrupt pending bits.  */
85 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
86 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
87 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
88 
89 /* The usual mapping for an AArch64 system register to its AArch32
90  * counterpart is for the 32 bit world to have access to the lower
91  * half only (with writes leaving the upper half untouched). It's
92  * therefore useful to be able to pass TCG the offset of the least
93  * significant half of a uint64_t struct member.
94  */
95 #ifdef HOST_WORDS_BIGENDIAN
96 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
97 #define offsetofhigh32(S, M) offsetof(S, M)
98 #else
99 #define offsetoflow32(S, M) offsetof(S, M)
100 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #endif
102 
103 /* Meanings of the ARMCPU object's four inbound GPIO lines */
104 #define ARM_CPU_IRQ 0
105 #define ARM_CPU_FIQ 1
106 #define ARM_CPU_VIRQ 2
107 #define ARM_CPU_VFIQ 3
108 
109 /* ARM-specific extra insn start words:
110  * 1: Conditional execution bits
111  * 2: Partial exception syndrome for data aborts
112  */
113 #define TARGET_INSN_START_EXTRA_WORDS 2
114 
115 /* The 2nd extra word holding syndrome info for data aborts does not use
116  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
117  * help the sleb128 encoder do a better job.
118  * When restoring the CPU state, we shift it back up.
119  */
120 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
121 #define ARM_INSN_START_WORD2_SHIFT 14
122 
123 /* We currently assume float and double are IEEE single and double
124    precision respectively.
125    Doing runtime conversions is tricky because VFP registers may contain
126    integer values (eg. as the result of a FTOSI instruction).
127    s<2n> maps to the least significant half of d<n>
128    s<2n+1> maps to the most significant half of d<n>
129  */
130 
131 /**
132  * DynamicGDBXMLInfo:
133  * @desc: Contains the XML descriptions.
134  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
135  * @cpregs_keys: Array that contains the corresponding Key of
136  * a given cpreg with the same order of the cpreg in the XML description.
137  */
138 typedef struct DynamicGDBXMLInfo {
139     char *desc;
140     int num_cpregs;
141     uint32_t *cpregs_keys;
142 } DynamicGDBXMLInfo;
143 
144 /* CPU state for each instance of a generic timer (in cp15 c14) */
145 typedef struct ARMGenericTimer {
146     uint64_t cval; /* Timer CompareValue register */
147     uint64_t ctl; /* Timer Control register */
148 } ARMGenericTimer;
149 
150 #define GTIMER_PHYS 0
151 #define GTIMER_VIRT 1
152 #define GTIMER_HYP  2
153 #define GTIMER_SEC  3
154 #define NUM_GTIMERS 4
155 
156 typedef struct {
157     uint64_t raw_tcr;
158     uint32_t mask;
159     uint32_t base_mask;
160 } TCR;
161 
162 /* Define a maximum sized vector register.
163  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
164  * For 64-bit, this is a 2048-bit SVE register.
165  *
166  * Note that the mapping between S, D, and Q views of the register bank
167  * differs between AArch64 and AArch32.
168  * In AArch32:
169  *  Qn = regs[n].d[1]:regs[n].d[0]
170  *  Dn = regs[n / 2].d[n & 1]
171  *  Sn = regs[n / 4].d[n % 4 / 2],
172  *       bits 31..0 for even n, and bits 63..32 for odd n
173  *       (and regs[16] to regs[31] are inaccessible)
174  * In AArch64:
175  *  Zn = regs[n].d[*]
176  *  Qn = regs[n].d[1]:regs[n].d[0]
177  *  Dn = regs[n].d[0]
178  *  Sn = regs[n].d[0] bits 31..0
179  *  Hn = regs[n].d[0] bits 15..0
180  *
181  * This corresponds to the architecturally defined mapping between
182  * the two execution states, and means we do not need to explicitly
183  * map these registers when changing states.
184  *
185  * Align the data for use with TCG host vector operations.
186  */
187 
188 #ifdef TARGET_AARCH64
189 # define ARM_MAX_VQ    16
190 #else
191 # define ARM_MAX_VQ    1
192 #endif
193 
194 typedef struct ARMVectorReg {
195     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
196 } ARMVectorReg;
197 
198 #ifdef TARGET_AARCH64
199 /* In AArch32 mode, predicate registers do not exist at all.  */
200 typedef struct ARMPredicateReg {
201     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
202 } ARMPredicateReg;
203 
204 /* In AArch32 mode, PAC keys do not exist at all.  */
205 typedef struct ARMPACKey {
206     uint64_t lo, hi;
207 } ARMPACKey;
208 #endif
209 
210 
211 typedef struct CPUARMState {
212     /* Regs for current mode.  */
213     uint32_t regs[16];
214 
215     /* 32/64 switch only happens when taking and returning from
216      * exceptions so the overlap semantics are taken care of then
217      * instead of having a complicated union.
218      */
219     /* Regs for A64 mode.  */
220     uint64_t xregs[32];
221     uint64_t pc;
222     /* PSTATE isn't an architectural register for ARMv8. However, it is
223      * convenient for us to assemble the underlying state into a 32 bit format
224      * identical to the architectural format used for the SPSR. (This is also
225      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
226      * 'pstate' register are.) Of the PSTATE bits:
227      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
228      *    semantics as for AArch32, as described in the comments on each field)
229      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
230      *  DAIF (exception masks) are kept in env->daif
231      *  BTYPE is kept in env->btype
232      *  all other bits are stored in their correct places in env->pstate
233      */
234     uint32_t pstate;
235     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236 
237     /* Frequently accessed CPSR bits are stored separately for efficiency.
238        This contains all the other bits.  Use cpsr_{read,write} to access
239        the whole CPSR.  */
240     uint32_t uncached_cpsr;
241     uint32_t spsr;
242 
243     /* Banked registers.  */
244     uint64_t banked_spsr[8];
245     uint32_t banked_r13[8];
246     uint32_t banked_r14[8];
247 
248     /* These hold r8-r12.  */
249     uint32_t usr_regs[5];
250     uint32_t fiq_regs[5];
251 
252     /* cpsr flag cache for faster execution */
253     uint32_t CF; /* 0 or 1 */
254     uint32_t VF; /* V is the bit 31. All other bits are undefined */
255     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
256     uint32_t ZF; /* Z set if zero.  */
257     uint32_t QF; /* 0 or 1 */
258     uint32_t GE; /* cpsr[19:16] */
259     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
260     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
261     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
262     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
263 
264     uint64_t elr_el[4]; /* AArch64 exception link regs  */
265     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
266 
267     /* System control coprocessor (cp15) */
268     struct {
269         uint32_t c0_cpuid;
270         union { /* Cache size selection */
271             struct {
272                 uint64_t _unused_csselr0;
273                 uint64_t csselr_ns;
274                 uint64_t _unused_csselr1;
275                 uint64_t csselr_s;
276             };
277             uint64_t csselr_el[4];
278         };
279         union { /* System control register. */
280             struct {
281                 uint64_t _unused_sctlr;
282                 uint64_t sctlr_ns;
283                 uint64_t hsctlr;
284                 uint64_t sctlr_s;
285             };
286             uint64_t sctlr_el[4];
287         };
288         uint64_t cpacr_el1; /* Architectural feature access control register */
289         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
290         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
291         uint64_t sder; /* Secure debug enable register. */
292         uint32_t nsacr; /* Non-secure access control register. */
293         union { /* MMU translation table base 0. */
294             struct {
295                 uint64_t _unused_ttbr0_0;
296                 uint64_t ttbr0_ns;
297                 uint64_t _unused_ttbr0_1;
298                 uint64_t ttbr0_s;
299             };
300             uint64_t ttbr0_el[4];
301         };
302         union { /* MMU translation table base 1. */
303             struct {
304                 uint64_t _unused_ttbr1_0;
305                 uint64_t ttbr1_ns;
306                 uint64_t _unused_ttbr1_1;
307                 uint64_t ttbr1_s;
308             };
309             uint64_t ttbr1_el[4];
310         };
311         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
312         /* MMU translation table base control. */
313         TCR tcr_el[4];
314         TCR vtcr_el2; /* Virtualization Translation Control.  */
315         uint32_t c2_data; /* MPU data cacheable bits.  */
316         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
317         union { /* MMU domain access control register
318                  * MPU write buffer control.
319                  */
320             struct {
321                 uint64_t dacr_ns;
322                 uint64_t dacr_s;
323             };
324             struct {
325                 uint64_t dacr32_el2;
326             };
327         };
328         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
329         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
330         uint64_t hcr_el2; /* Hypervisor configuration register */
331         uint64_t scr_el3; /* Secure configuration register.  */
332         union { /* Fault status registers.  */
333             struct {
334                 uint64_t ifsr_ns;
335                 uint64_t ifsr_s;
336             };
337             struct {
338                 uint64_t ifsr32_el2;
339             };
340         };
341         union {
342             struct {
343                 uint64_t _unused_dfsr;
344                 uint64_t dfsr_ns;
345                 uint64_t hsr;
346                 uint64_t dfsr_s;
347             };
348             uint64_t esr_el[4];
349         };
350         uint32_t c6_region[8]; /* MPU base/size registers.  */
351         union { /* Fault address registers. */
352             struct {
353                 uint64_t _unused_far0;
354 #ifdef HOST_WORDS_BIGENDIAN
355                 uint32_t ifar_ns;
356                 uint32_t dfar_ns;
357                 uint32_t ifar_s;
358                 uint32_t dfar_s;
359 #else
360                 uint32_t dfar_ns;
361                 uint32_t ifar_ns;
362                 uint32_t dfar_s;
363                 uint32_t ifar_s;
364 #endif
365                 uint64_t _unused_far3;
366             };
367             uint64_t far_el[4];
368         };
369         uint64_t hpfar_el2;
370         uint64_t hstr_el2;
371         union { /* Translation result. */
372             struct {
373                 uint64_t _unused_par_0;
374                 uint64_t par_ns;
375                 uint64_t _unused_par_1;
376                 uint64_t par_s;
377             };
378             uint64_t par_el[4];
379         };
380 
381         uint32_t c9_insn; /* Cache lockdown registers.  */
382         uint32_t c9_data;
383         uint64_t c9_pmcr; /* performance monitor control register */
384         uint64_t c9_pmcnten; /* perf monitor counter enables */
385         uint64_t c9_pmovsr; /* perf monitor overflow status */
386         uint64_t c9_pmuserenr; /* perf monitor user enable */
387         uint64_t c9_pmselr; /* perf monitor counter selection register */
388         uint64_t c9_pminten; /* perf monitor interrupt enables */
389         union { /* Memory attribute redirection */
390             struct {
391 #ifdef HOST_WORDS_BIGENDIAN
392                 uint64_t _unused_mair_0;
393                 uint32_t mair1_ns;
394                 uint32_t mair0_ns;
395                 uint64_t _unused_mair_1;
396                 uint32_t mair1_s;
397                 uint32_t mair0_s;
398 #else
399                 uint64_t _unused_mair_0;
400                 uint32_t mair0_ns;
401                 uint32_t mair1_ns;
402                 uint64_t _unused_mair_1;
403                 uint32_t mair0_s;
404                 uint32_t mair1_s;
405 #endif
406             };
407             uint64_t mair_el[4];
408         };
409         union { /* vector base address register */
410             struct {
411                 uint64_t _unused_vbar;
412                 uint64_t vbar_ns;
413                 uint64_t hvbar;
414                 uint64_t vbar_s;
415             };
416             uint64_t vbar_el[4];
417         };
418         uint32_t mvbar; /* (monitor) vector base address register */
419         struct { /* FCSE PID. */
420             uint32_t fcseidr_ns;
421             uint32_t fcseidr_s;
422         };
423         union { /* Context ID. */
424             struct {
425                 uint64_t _unused_contextidr_0;
426                 uint64_t contextidr_ns;
427                 uint64_t _unused_contextidr_1;
428                 uint64_t contextidr_s;
429             };
430             uint64_t contextidr_el[4];
431         };
432         union { /* User RW Thread register. */
433             struct {
434                 uint64_t tpidrurw_ns;
435                 uint64_t tpidrprw_ns;
436                 uint64_t htpidr;
437                 uint64_t _tpidr_el3;
438             };
439             uint64_t tpidr_el[4];
440         };
441         /* The secure banks of these registers don't map anywhere */
442         uint64_t tpidrurw_s;
443         uint64_t tpidrprw_s;
444         uint64_t tpidruro_s;
445 
446         union { /* User RO Thread register. */
447             uint64_t tpidruro_ns;
448             uint64_t tpidrro_el[1];
449         };
450         uint64_t c14_cntfrq; /* Counter Frequency register */
451         uint64_t c14_cntkctl; /* Timer Control register */
452         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
453         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
454         ARMGenericTimer c14_timer[NUM_GTIMERS];
455         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
456         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
457         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
458         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
459         uint32_t c15_threadid; /* TI debugger thread-ID.  */
460         uint32_t c15_config_base_address; /* SCU base address.  */
461         uint32_t c15_diagnostic; /* diagnostic register */
462         uint32_t c15_power_diagnostic;
463         uint32_t c15_power_control; /* power control */
464         uint64_t dbgbvr[16]; /* breakpoint value registers */
465         uint64_t dbgbcr[16]; /* breakpoint control registers */
466         uint64_t dbgwvr[16]; /* watchpoint value registers */
467         uint64_t dbgwcr[16]; /* watchpoint control registers */
468         uint64_t mdscr_el1;
469         uint64_t oslsr_el1; /* OS Lock Status */
470         uint64_t mdcr_el2;
471         uint64_t mdcr_el3;
472         /* Stores the architectural value of the counter *the last time it was
473          * updated* by pmccntr_op_start. Accesses should always be surrounded
474          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
475          * architecturally-correct value is being read/set.
476          */
477         uint64_t c15_ccnt;
478         /* Stores the delta between the architectural value and the underlying
479          * cycle count during normal operation. It is used to update c15_ccnt
480          * to be the correct architectural value before accesses. During
481          * accesses, c15_ccnt_delta contains the underlying count being used
482          * for the access, after which it reverts to the delta value in
483          * pmccntr_op_finish.
484          */
485         uint64_t c15_ccnt_delta;
486         uint64_t c14_pmevcntr[31];
487         uint64_t c14_pmevcntr_delta[31];
488         uint64_t c14_pmevtyper[31];
489         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
490         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
491         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
492     } cp15;
493 
494     struct {
495         /* M profile has up to 4 stack pointers:
496          * a Main Stack Pointer and a Process Stack Pointer for each
497          * of the Secure and Non-Secure states. (If the CPU doesn't support
498          * the security extension then it has only two SPs.)
499          * In QEMU we always store the currently active SP in regs[13],
500          * and the non-active SP for the current security state in
501          * v7m.other_sp. The stack pointers for the inactive security state
502          * are stored in other_ss_msp and other_ss_psp.
503          * switch_v7m_security_state() is responsible for rearranging them
504          * when we change security state.
505          */
506         uint32_t other_sp;
507         uint32_t other_ss_msp;
508         uint32_t other_ss_psp;
509         uint32_t vecbase[M_REG_NUM_BANKS];
510         uint32_t basepri[M_REG_NUM_BANKS];
511         uint32_t control[M_REG_NUM_BANKS];
512         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
513         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
514         uint32_t hfsr; /* HardFault Status */
515         uint32_t dfsr; /* Debug Fault Status Register */
516         uint32_t sfsr; /* Secure Fault Status Register */
517         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
518         uint32_t bfar; /* BusFault Address */
519         uint32_t sfar; /* Secure Fault Address Register */
520         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
521         int exception;
522         uint32_t primask[M_REG_NUM_BANKS];
523         uint32_t faultmask[M_REG_NUM_BANKS];
524         uint32_t aircr; /* only holds r/w state if security extn implemented */
525         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
526         uint32_t csselr[M_REG_NUM_BANKS];
527         uint32_t scr[M_REG_NUM_BANKS];
528         uint32_t msplim[M_REG_NUM_BANKS];
529         uint32_t psplim[M_REG_NUM_BANKS];
530         uint32_t fpcar[M_REG_NUM_BANKS];
531         uint32_t fpccr[M_REG_NUM_BANKS];
532         uint32_t fpdscr[M_REG_NUM_BANKS];
533         uint32_t cpacr[M_REG_NUM_BANKS];
534         uint32_t nsacr;
535     } v7m;
536 
537     /* Information associated with an exception about to be taken:
538      * code which raises an exception must set cs->exception_index and
539      * the relevant parts of this structure; the cpu_do_interrupt function
540      * will then set the guest-visible registers as part of the exception
541      * entry process.
542      */
543     struct {
544         uint32_t syndrome; /* AArch64 format syndrome register */
545         uint32_t fsr; /* AArch32 format fault status register info */
546         uint64_t vaddress; /* virtual addr associated with exception, if any */
547         uint32_t target_el; /* EL the exception should be targeted for */
548         /* If we implement EL2 we will also need to store information
549          * about the intermediate physical address for stage 2 faults.
550          */
551     } exception;
552 
553     /* Information associated with an SError */
554     struct {
555         uint8_t pending;
556         uint8_t has_esr;
557         uint64_t esr;
558     } serror;
559 
560     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
561     uint32_t irq_line_state;
562 
563     /* Thumb-2 EE state.  */
564     uint32_t teecr;
565     uint32_t teehbr;
566 
567     /* VFP coprocessor state.  */
568     struct {
569         ARMVectorReg zregs[32];
570 
571 #ifdef TARGET_AARCH64
572         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
573 #define FFR_PRED_NUM 16
574         ARMPredicateReg pregs[17];
575         /* Scratch space for aa64 sve predicate temporary.  */
576         ARMPredicateReg preg_tmp;
577 #endif
578 
579         /* We store these fpcsr fields separately for convenience.  */
580         uint32_t qc[4] QEMU_ALIGNED(16);
581         int vec_len;
582         int vec_stride;
583 
584         uint32_t xregs[16];
585 
586         /* Scratch space for aa32 neon expansion.  */
587         uint32_t scratch[8];
588 
589         /* There are a number of distinct float control structures:
590          *
591          *  fp_status: is the "normal" fp status.
592          *  fp_status_fp16: used for half-precision calculations
593          *  standard_fp_status : the ARM "Standard FPSCR Value"
594          *
595          * Half-precision operations are governed by a separate
596          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
597          * status structure to control this.
598          *
599          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
600          * round-to-nearest and is used by any operations (generally
601          * Neon) which the architecture defines as controlled by the
602          * standard FPSCR value rather than the FPSCR.
603          *
604          * To avoid having to transfer exception bits around, we simply
605          * say that the FPSCR cumulative exception flags are the logical
606          * OR of the flags in the three fp statuses. This relies on the
607          * only thing which needs to read the exception flags being
608          * an explicit FPSCR read.
609          */
610         float_status fp_status;
611         float_status fp_status_f16;
612         float_status standard_fp_status;
613 
614         /* ZCR_EL[1-3] */
615         uint64_t zcr_el[4];
616     } vfp;
617     uint64_t exclusive_addr;
618     uint64_t exclusive_val;
619     uint64_t exclusive_high;
620 
621     /* iwMMXt coprocessor state.  */
622     struct {
623         uint64_t regs[16];
624         uint64_t val;
625 
626         uint32_t cregs[16];
627     } iwmmxt;
628 
629 #ifdef TARGET_AARCH64
630     struct {
631         ARMPACKey apia;
632         ARMPACKey apib;
633         ARMPACKey apda;
634         ARMPACKey apdb;
635         ARMPACKey apga;
636     } keys;
637 #endif
638 
639 #if defined(CONFIG_USER_ONLY)
640     /* For usermode syscall translation.  */
641     int eabi;
642 #endif
643 
644     struct CPUBreakpoint *cpu_breakpoint[16];
645     struct CPUWatchpoint *cpu_watchpoint[16];
646 
647     /* Fields up to this point are cleared by a CPU reset */
648     struct {} end_reset_fields;
649 
650     CPU_COMMON
651 
652     /* Fields after CPU_COMMON are preserved across CPU reset. */
653 
654     /* Internal CPU feature flags.  */
655     uint64_t features;
656 
657     /* PMSAv7 MPU */
658     struct {
659         uint32_t *drbar;
660         uint32_t *drsr;
661         uint32_t *dracr;
662         uint32_t rnr[M_REG_NUM_BANKS];
663     } pmsav7;
664 
665     /* PMSAv8 MPU */
666     struct {
667         /* The PMSAv8 implementation also shares some PMSAv7 config
668          * and state:
669          *  pmsav7.rnr (region number register)
670          *  pmsav7_dregion (number of configured regions)
671          */
672         uint32_t *rbar[M_REG_NUM_BANKS];
673         uint32_t *rlar[M_REG_NUM_BANKS];
674         uint32_t mair0[M_REG_NUM_BANKS];
675         uint32_t mair1[M_REG_NUM_BANKS];
676     } pmsav8;
677 
678     /* v8M SAU */
679     struct {
680         uint32_t *rbar;
681         uint32_t *rlar;
682         uint32_t rnr;
683         uint32_t ctrl;
684     } sau;
685 
686     void *nvic;
687     const struct arm_boot_info *boot_info;
688     /* Store GICv3CPUState to access from this struct */
689     void *gicv3state;
690 } CPUARMState;
691 
692 /**
693  * ARMELChangeHookFn:
694  * type of a function which can be registered via arm_register_el_change_hook()
695  * to get callbacks when the CPU changes its exception level or mode.
696  */
697 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
698 typedef struct ARMELChangeHook ARMELChangeHook;
699 struct ARMELChangeHook {
700     ARMELChangeHookFn *hook;
701     void *opaque;
702     QLIST_ENTRY(ARMELChangeHook) node;
703 };
704 
705 /* These values map onto the return values for
706  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
707 typedef enum ARMPSCIState {
708     PSCI_ON = 0,
709     PSCI_OFF = 1,
710     PSCI_ON_PENDING = 2
711 } ARMPSCIState;
712 
713 typedef struct ARMISARegisters ARMISARegisters;
714 
715 /**
716  * ARMCPU:
717  * @env: #CPUARMState
718  *
719  * An ARM CPU core.
720  */
721 struct ARMCPU {
722     /*< private >*/
723     CPUState parent_obj;
724     /*< public >*/
725 
726     CPUARMState env;
727 
728     /* Coprocessor information */
729     GHashTable *cp_regs;
730     /* For marshalling (mostly coprocessor) register state between the
731      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
732      * we use these arrays.
733      */
734     /* List of register indexes managed via these arrays; (full KVM style
735      * 64 bit indexes, not CPRegInfo 32 bit indexes)
736      */
737     uint64_t *cpreg_indexes;
738     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
739     uint64_t *cpreg_values;
740     /* Length of the indexes, values, reset_values arrays */
741     int32_t cpreg_array_len;
742     /* These are used only for migration: incoming data arrives in
743      * these fields and is sanity checked in post_load before copying
744      * to the working data structures above.
745      */
746     uint64_t *cpreg_vmstate_indexes;
747     uint64_t *cpreg_vmstate_values;
748     int32_t cpreg_vmstate_array_len;
749 
750     DynamicGDBXMLInfo dyn_xml;
751 
752     /* Timers used by the generic (architected) timer */
753     QEMUTimer *gt_timer[NUM_GTIMERS];
754     /*
755      * Timer used by the PMU. Its state is restored after migration by
756      * pmu_op_finish() - it does not need other handling during migration
757      */
758     QEMUTimer *pmu_timer;
759     /* GPIO outputs for generic timer */
760     qemu_irq gt_timer_outputs[NUM_GTIMERS];
761     /* GPIO output for GICv3 maintenance interrupt signal */
762     qemu_irq gicv3_maintenance_interrupt;
763     /* GPIO output for the PMU interrupt */
764     qemu_irq pmu_interrupt;
765 
766     /* MemoryRegion to use for secure physical accesses */
767     MemoryRegion *secure_memory;
768 
769     /* For v8M, pointer to the IDAU interface provided by board/SoC */
770     Object *idau;
771 
772     /* 'compatible' string for this CPU for Linux device trees */
773     const char *dtb_compatible;
774 
775     /* PSCI version for this CPU
776      * Bits[31:16] = Major Version
777      * Bits[15:0] = Minor Version
778      */
779     uint32_t psci_version;
780 
781     /* Should CPU start in PSCI powered-off state? */
782     bool start_powered_off;
783 
784     /* Current power state, access guarded by BQL */
785     ARMPSCIState power_state;
786 
787     /* CPU has virtualization extension */
788     bool has_el2;
789     /* CPU has security extension */
790     bool has_el3;
791     /* CPU has PMU (Performance Monitor Unit) */
792     bool has_pmu;
793 
794     /* CPU has memory protection unit */
795     bool has_mpu;
796     /* PMSAv7 MPU number of supported regions */
797     uint32_t pmsav7_dregion;
798     /* v8M SAU number of supported regions */
799     uint32_t sau_sregion;
800 
801     /* PSCI conduit used to invoke PSCI methods
802      * 0 - disabled, 1 - smc, 2 - hvc
803      */
804     uint32_t psci_conduit;
805 
806     /* For v8M, initial value of the Secure VTOR */
807     uint32_t init_svtor;
808 
809     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
810      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
811      */
812     uint32_t kvm_target;
813 
814     /* KVM init features for this CPU */
815     uint32_t kvm_init_features[7];
816 
817     /* Uniprocessor system with MP extensions */
818     bool mp_is_up;
819 
820     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
821      * and the probe failed (so we need to report the error in realize)
822      */
823     bool host_cpu_probe_failed;
824 
825     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
826      * register.
827      */
828     int32_t core_count;
829 
830     /* The instance init functions for implementation-specific subclasses
831      * set these fields to specify the implementation-dependent values of
832      * various constant registers and reset values of non-constant
833      * registers.
834      * Some of these might become QOM properties eventually.
835      * Field names match the official register names as defined in the
836      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
837      * is used for reset values of non-constant registers; no reset_
838      * prefix means a constant register.
839      * Some of these registers are split out into a substructure that
840      * is shared with the translators to control the ISA.
841      */
842     struct ARMISARegisters {
843         uint32_t id_isar0;
844         uint32_t id_isar1;
845         uint32_t id_isar2;
846         uint32_t id_isar3;
847         uint32_t id_isar4;
848         uint32_t id_isar5;
849         uint32_t id_isar6;
850         uint32_t mvfr0;
851         uint32_t mvfr1;
852         uint32_t mvfr2;
853         uint64_t id_aa64isar0;
854         uint64_t id_aa64isar1;
855         uint64_t id_aa64pfr0;
856         uint64_t id_aa64pfr1;
857         uint64_t id_aa64mmfr0;
858         uint64_t id_aa64mmfr1;
859     } isar;
860     uint32_t midr;
861     uint32_t revidr;
862     uint32_t reset_fpsid;
863     uint32_t ctr;
864     uint32_t reset_sctlr;
865     uint32_t id_pfr0;
866     uint32_t id_pfr1;
867     uint32_t id_dfr0;
868     uint64_t pmceid0;
869     uint64_t pmceid1;
870     uint32_t id_afr0;
871     uint32_t id_mmfr0;
872     uint32_t id_mmfr1;
873     uint32_t id_mmfr2;
874     uint32_t id_mmfr3;
875     uint32_t id_mmfr4;
876     uint64_t id_aa64dfr0;
877     uint64_t id_aa64dfr1;
878     uint64_t id_aa64afr0;
879     uint64_t id_aa64afr1;
880     uint32_t dbgdidr;
881     uint32_t clidr;
882     uint64_t mp_affinity; /* MP ID without feature bits */
883     /* The elements of this array are the CCSIDR values for each cache,
884      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
885      */
886     uint32_t ccsidr[16];
887     uint64_t reset_cbar;
888     uint32_t reset_auxcr;
889     bool reset_hivecs;
890     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
891     uint32_t dcz_blocksize;
892     uint64_t rvbar;
893 
894     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
895     int gic_num_lrs; /* number of list registers */
896     int gic_vpribits; /* number of virtual priority bits */
897     int gic_vprebits; /* number of virtual preemption bits */
898 
899     /* Whether the cfgend input is high (i.e. this CPU should reset into
900      * big-endian mode).  This setting isn't used directly: instead it modifies
901      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
902      * architecture version.
903      */
904     bool cfgend;
905 
906     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
907     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
908 
909     int32_t node_id; /* NUMA node this CPU belongs to */
910 
911     /* Used to synchronize KVM and QEMU in-kernel device levels */
912     uint8_t device_irq_level;
913 
914     /* Used to set the maximum vector length the cpu will support.  */
915     uint32_t sve_max_vq;
916 };
917 
918 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
919 {
920     return container_of(env, ARMCPU, env);
921 }
922 
923 void arm_cpu_post_init(Object *obj);
924 
925 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
926 
927 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
928 
929 #define ENV_OFFSET offsetof(ARMCPU, env)
930 
931 #ifndef CONFIG_USER_ONLY
932 extern const struct VMStateDescription vmstate_arm_cpu;
933 #endif
934 
935 void arm_cpu_do_interrupt(CPUState *cpu);
936 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
937 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
938 
939 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
940 
941 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
942                                          MemTxAttrs *attrs);
943 
944 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
945 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
946 
947 /* Dynamically generates for gdb stub an XML description of the sysregs from
948  * the cp_regs hashtable. Returns the registered sysregs number.
949  */
950 int arm_gen_dynamic_xml(CPUState *cpu);
951 
952 /* Returns the dynamically generated XML for the gdb stub.
953  * Returns a pointer to the XML contents for the specified XML file or NULL
954  * if the XML name doesn't match the predefined one.
955  */
956 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
957 
958 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
959                              int cpuid, void *opaque);
960 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
961                              int cpuid, void *opaque);
962 
963 #ifdef TARGET_AARCH64
964 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
965 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
966 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
967 void aarch64_sve_change_el(CPUARMState *env, int old_el,
968                            int new_el, bool el0_a64);
969 #else
970 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
971 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
972                                          int n, bool a)
973 { }
974 #endif
975 
976 target_ulong do_arm_semihosting(CPUARMState *env);
977 void aarch64_sync_32_to_64(CPUARMState *env);
978 void aarch64_sync_64_to_32(CPUARMState *env);
979 
980 int fp_exception_el(CPUARMState *env, int cur_el);
981 int sve_exception_el(CPUARMState *env, int cur_el);
982 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
983 
984 static inline bool is_a64(CPUARMState *env)
985 {
986     return env->aarch64;
987 }
988 
989 /* you can call this signal handler from your SIGBUS and SIGSEGV
990    signal handlers to inform the virtual CPU of exceptions. non zero
991    is returned if the signal was handled by the virtual CPU.  */
992 int cpu_arm_signal_handler(int host_signum, void *pinfo,
993                            void *puc);
994 
995 /**
996  * pmu_op_start/finish
997  * @env: CPUARMState
998  *
999  * Convert all PMU counters between their delta form (the typical mode when
1000  * they are enabled) and the guest-visible values. These two calls must
1001  * surround any action which might affect the counters.
1002  */
1003 void pmu_op_start(CPUARMState *env);
1004 void pmu_op_finish(CPUARMState *env);
1005 
1006 /*
1007  * Called when a PMU counter is due to overflow
1008  */
1009 void arm_pmu_timer_cb(void *opaque);
1010 
1011 /**
1012  * Functions to register as EL change hooks for PMU mode filtering
1013  */
1014 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1015 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1016 
1017 /*
1018  * pmu_init
1019  * @cpu: ARMCPU
1020  *
1021  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1022  * for the current configuration
1023  */
1024 void pmu_init(ARMCPU *cpu);
1025 
1026 /* SCTLR bit meanings. Several bits have been reused in newer
1027  * versions of the architecture; in that case we define constants
1028  * for both old and new bit meanings. Code which tests against those
1029  * bits should probably check or otherwise arrange that the CPU
1030  * is the architectural version it expects.
1031  */
1032 #define SCTLR_M       (1U << 0)
1033 #define SCTLR_A       (1U << 1)
1034 #define SCTLR_C       (1U << 2)
1035 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1036 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1037 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1038 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1039 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1040 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1041 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1042 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1043 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1044 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1045 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1046 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1047 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1048 #define SCTLR_SED     (1U << 8) /* v8 onward */
1049 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1050 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1051 #define SCTLR_F       (1U << 10) /* up to v6 */
1052 #define SCTLR_SW      (1U << 10) /* v7 */
1053 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1054 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1055 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1056 #define SCTLR_I       (1U << 12)
1057 #define SCTLR_V       (1U << 13) /* AArch32 only */
1058 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1059 #define SCTLR_RR      (1U << 14) /* up to v7 */
1060 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1061 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1062 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1063 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1064 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1065 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1066 #define SCTLR_BR      (1U << 17) /* PMSA only */
1067 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1068 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1069 #define SCTLR_WXN     (1U << 19)
1070 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1071 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1072 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1073 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1074 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1075 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1076 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1077 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1078 #define SCTLR_VE      (1U << 24) /* up to v7 */
1079 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1080 #define SCTLR_EE      (1U << 25)
1081 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1082 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1083 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1084 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1085 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1086 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1087 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1088 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1089 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1090 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1091 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1092 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1093 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1094 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1095 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1096 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1097 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1098 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1099 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1100 
1101 #define CPTR_TCPAC    (1U << 31)
1102 #define CPTR_TTA      (1U << 20)
1103 #define CPTR_TFP      (1U << 10)
1104 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1105 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1106 
1107 #define MDCR_EPMAD    (1U << 21)
1108 #define MDCR_EDAD     (1U << 20)
1109 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1110 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1111 #define MDCR_SDD      (1U << 16)
1112 #define MDCR_SPD      (3U << 14)
1113 #define MDCR_TDRA     (1U << 11)
1114 #define MDCR_TDOSA    (1U << 10)
1115 #define MDCR_TDA      (1U << 9)
1116 #define MDCR_TDE      (1U << 8)
1117 #define MDCR_HPME     (1U << 7)
1118 #define MDCR_TPM      (1U << 6)
1119 #define MDCR_TPMCR    (1U << 5)
1120 #define MDCR_HPMN     (0x1fU)
1121 
1122 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1123 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1124 
1125 #define CPSR_M (0x1fU)
1126 #define CPSR_T (1U << 5)
1127 #define CPSR_F (1U << 6)
1128 #define CPSR_I (1U << 7)
1129 #define CPSR_A (1U << 8)
1130 #define CPSR_E (1U << 9)
1131 #define CPSR_IT_2_7 (0xfc00U)
1132 #define CPSR_GE (0xfU << 16)
1133 #define CPSR_IL (1U << 20)
1134 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1135  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1136  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1137  * where it is live state but not accessible to the AArch32 code.
1138  */
1139 #define CPSR_RESERVED (0x7U << 21)
1140 #define CPSR_J (1U << 24)
1141 #define CPSR_IT_0_1 (3U << 25)
1142 #define CPSR_Q (1U << 27)
1143 #define CPSR_V (1U << 28)
1144 #define CPSR_C (1U << 29)
1145 #define CPSR_Z (1U << 30)
1146 #define CPSR_N (1U << 31)
1147 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1148 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1149 
1150 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1151 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1152     | CPSR_NZCV)
1153 /* Bits writable in user mode.  */
1154 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1155 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1156 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1157 /* Mask of bits which may be set by exception return copying them from SPSR */
1158 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1159 
1160 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1161 #define XPSR_EXCP 0x1ffU
1162 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1163 #define XPSR_IT_2_7 CPSR_IT_2_7
1164 #define XPSR_GE CPSR_GE
1165 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1166 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1167 #define XPSR_IT_0_1 CPSR_IT_0_1
1168 #define XPSR_Q CPSR_Q
1169 #define XPSR_V CPSR_V
1170 #define XPSR_C CPSR_C
1171 #define XPSR_Z CPSR_Z
1172 #define XPSR_N CPSR_N
1173 #define XPSR_NZCV CPSR_NZCV
1174 #define XPSR_IT CPSR_IT
1175 
1176 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1177 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1178 #define TTBCR_PD0    (1U << 4)
1179 #define TTBCR_PD1    (1U << 5)
1180 #define TTBCR_EPD0   (1U << 7)
1181 #define TTBCR_IRGN0  (3U << 8)
1182 #define TTBCR_ORGN0  (3U << 10)
1183 #define TTBCR_SH0    (3U << 12)
1184 #define TTBCR_T1SZ   (3U << 16)
1185 #define TTBCR_A1     (1U << 22)
1186 #define TTBCR_EPD1   (1U << 23)
1187 #define TTBCR_IRGN1  (3U << 24)
1188 #define TTBCR_ORGN1  (3U << 26)
1189 #define TTBCR_SH1    (1U << 28)
1190 #define TTBCR_EAE    (1U << 31)
1191 
1192 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1193  * Only these are valid when in AArch64 mode; in
1194  * AArch32 mode SPSRs are basically CPSR-format.
1195  */
1196 #define PSTATE_SP (1U)
1197 #define PSTATE_M (0xFU)
1198 #define PSTATE_nRW (1U << 4)
1199 #define PSTATE_F (1U << 6)
1200 #define PSTATE_I (1U << 7)
1201 #define PSTATE_A (1U << 8)
1202 #define PSTATE_D (1U << 9)
1203 #define PSTATE_BTYPE (3U << 10)
1204 #define PSTATE_IL (1U << 20)
1205 #define PSTATE_SS (1U << 21)
1206 #define PSTATE_V (1U << 28)
1207 #define PSTATE_C (1U << 29)
1208 #define PSTATE_Z (1U << 30)
1209 #define PSTATE_N (1U << 31)
1210 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1211 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1212 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1213 /* Mode values for AArch64 */
1214 #define PSTATE_MODE_EL3h 13
1215 #define PSTATE_MODE_EL3t 12
1216 #define PSTATE_MODE_EL2h 9
1217 #define PSTATE_MODE_EL2t 8
1218 #define PSTATE_MODE_EL1h 5
1219 #define PSTATE_MODE_EL1t 4
1220 #define PSTATE_MODE_EL0t 0
1221 
1222 /* Write a new value to v7m.exception, thus transitioning into or out
1223  * of Handler mode; this may result in a change of active stack pointer.
1224  */
1225 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1226 
1227 /* Map EL and handler into a PSTATE_MODE.  */
1228 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1229 {
1230     return (el << 2) | handler;
1231 }
1232 
1233 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1234  * interprocessing, so we don't attempt to sync with the cpsr state used by
1235  * the 32 bit decoder.
1236  */
1237 static inline uint32_t pstate_read(CPUARMState *env)
1238 {
1239     int ZF;
1240 
1241     ZF = (env->ZF == 0);
1242     return (env->NF & 0x80000000) | (ZF << 30)
1243         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1244         | env->pstate | env->daif | (env->btype << 10);
1245 }
1246 
1247 static inline void pstate_write(CPUARMState *env, uint32_t val)
1248 {
1249     env->ZF = (~val) & PSTATE_Z;
1250     env->NF = val;
1251     env->CF = (val >> 29) & 1;
1252     env->VF = (val << 3) & 0x80000000;
1253     env->daif = val & PSTATE_DAIF;
1254     env->btype = (val >> 10) & 3;
1255     env->pstate = val & ~CACHED_PSTATE_BITS;
1256 }
1257 
1258 /* Return the current CPSR value.  */
1259 uint32_t cpsr_read(CPUARMState *env);
1260 
1261 typedef enum CPSRWriteType {
1262     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1263     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1264     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1265     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1266 } CPSRWriteType;
1267 
1268 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1269 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1270                 CPSRWriteType write_type);
1271 
1272 /* Return the current xPSR value.  */
1273 static inline uint32_t xpsr_read(CPUARMState *env)
1274 {
1275     int ZF;
1276     ZF = (env->ZF == 0);
1277     return (env->NF & 0x80000000) | (ZF << 30)
1278         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1279         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1280         | ((env->condexec_bits & 0xfc) << 8)
1281         | (env->GE << 16)
1282         | env->v7m.exception;
1283 }
1284 
1285 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1286 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1287 {
1288     if (mask & XPSR_NZCV) {
1289         env->ZF = (~val) & XPSR_Z;
1290         env->NF = val;
1291         env->CF = (val >> 29) & 1;
1292         env->VF = (val << 3) & 0x80000000;
1293     }
1294     if (mask & XPSR_Q) {
1295         env->QF = ((val & XPSR_Q) != 0);
1296     }
1297     if (mask & XPSR_GE) {
1298         env->GE = (val & XPSR_GE) >> 16;
1299     }
1300     if (mask & XPSR_T) {
1301         env->thumb = ((val & XPSR_T) != 0);
1302     }
1303     if (mask & XPSR_IT_0_1) {
1304         env->condexec_bits &= ~3;
1305         env->condexec_bits |= (val >> 25) & 3;
1306     }
1307     if (mask & XPSR_IT_2_7) {
1308         env->condexec_bits &= 3;
1309         env->condexec_bits |= (val >> 8) & 0xfc;
1310     }
1311     if (mask & XPSR_EXCP) {
1312         /* Note that this only happens on exception exit */
1313         write_v7m_exception(env, val & XPSR_EXCP);
1314     }
1315 }
1316 
1317 #define HCR_VM        (1ULL << 0)
1318 #define HCR_SWIO      (1ULL << 1)
1319 #define HCR_PTW       (1ULL << 2)
1320 #define HCR_FMO       (1ULL << 3)
1321 #define HCR_IMO       (1ULL << 4)
1322 #define HCR_AMO       (1ULL << 5)
1323 #define HCR_VF        (1ULL << 6)
1324 #define HCR_VI        (1ULL << 7)
1325 #define HCR_VSE       (1ULL << 8)
1326 #define HCR_FB        (1ULL << 9)
1327 #define HCR_BSU_MASK  (3ULL << 10)
1328 #define HCR_DC        (1ULL << 12)
1329 #define HCR_TWI       (1ULL << 13)
1330 #define HCR_TWE       (1ULL << 14)
1331 #define HCR_TID0      (1ULL << 15)
1332 #define HCR_TID1      (1ULL << 16)
1333 #define HCR_TID2      (1ULL << 17)
1334 #define HCR_TID3      (1ULL << 18)
1335 #define HCR_TSC       (1ULL << 19)
1336 #define HCR_TIDCP     (1ULL << 20)
1337 #define HCR_TACR      (1ULL << 21)
1338 #define HCR_TSW       (1ULL << 22)
1339 #define HCR_TPCP      (1ULL << 23)
1340 #define HCR_TPU       (1ULL << 24)
1341 #define HCR_TTLB      (1ULL << 25)
1342 #define HCR_TVM       (1ULL << 26)
1343 #define HCR_TGE       (1ULL << 27)
1344 #define HCR_TDZ       (1ULL << 28)
1345 #define HCR_HCD       (1ULL << 29)
1346 #define HCR_TRVM      (1ULL << 30)
1347 #define HCR_RW        (1ULL << 31)
1348 #define HCR_CD        (1ULL << 32)
1349 #define HCR_ID        (1ULL << 33)
1350 #define HCR_E2H       (1ULL << 34)
1351 #define HCR_TLOR      (1ULL << 35)
1352 #define HCR_TERR      (1ULL << 36)
1353 #define HCR_TEA       (1ULL << 37)
1354 #define HCR_MIOCNCE   (1ULL << 38)
1355 #define HCR_APK       (1ULL << 40)
1356 #define HCR_API       (1ULL << 41)
1357 #define HCR_NV        (1ULL << 42)
1358 #define HCR_NV1       (1ULL << 43)
1359 #define HCR_AT        (1ULL << 44)
1360 #define HCR_NV2       (1ULL << 45)
1361 #define HCR_FWB       (1ULL << 46)
1362 #define HCR_FIEN      (1ULL << 47)
1363 #define HCR_TID4      (1ULL << 49)
1364 #define HCR_TICAB     (1ULL << 50)
1365 #define HCR_TOCU      (1ULL << 52)
1366 #define HCR_TTLBIS    (1ULL << 54)
1367 #define HCR_TTLBOS    (1ULL << 55)
1368 #define HCR_ATA       (1ULL << 56)
1369 #define HCR_DCT       (1ULL << 57)
1370 
1371 /*
1372  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1373  * HCR_MASK and then clear it again if the feature bit is not set in
1374  * hcr_write().
1375  */
1376 #define HCR_MASK      ((1ULL << 34) - 1)
1377 
1378 #define SCR_NS                (1U << 0)
1379 #define SCR_IRQ               (1U << 1)
1380 #define SCR_FIQ               (1U << 2)
1381 #define SCR_EA                (1U << 3)
1382 #define SCR_FW                (1U << 4)
1383 #define SCR_AW                (1U << 5)
1384 #define SCR_NET               (1U << 6)
1385 #define SCR_SMD               (1U << 7)
1386 #define SCR_HCE               (1U << 8)
1387 #define SCR_SIF               (1U << 9)
1388 #define SCR_RW                (1U << 10)
1389 #define SCR_ST                (1U << 11)
1390 #define SCR_TWI               (1U << 12)
1391 #define SCR_TWE               (1U << 13)
1392 #define SCR_TLOR              (1U << 14)
1393 #define SCR_TERR              (1U << 15)
1394 #define SCR_APK               (1U << 16)
1395 #define SCR_API               (1U << 17)
1396 #define SCR_EEL2              (1U << 18)
1397 #define SCR_EASE              (1U << 19)
1398 #define SCR_NMEA              (1U << 20)
1399 #define SCR_FIEN              (1U << 21)
1400 #define SCR_ENSCXT            (1U << 25)
1401 #define SCR_ATA               (1U << 26)
1402 
1403 /* Return the current FPSCR value.  */
1404 uint32_t vfp_get_fpscr(CPUARMState *env);
1405 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1406 
1407 /* FPCR, Floating Point Control Register
1408  * FPSR, Floating Poiht Status Register
1409  *
1410  * For A64 the FPSCR is split into two logically distinct registers,
1411  * FPCR and FPSR. However since they still use non-overlapping bits
1412  * we store the underlying state in fpscr and just mask on read/write.
1413  */
1414 #define FPSR_MASK 0xf800009f
1415 #define FPCR_MASK 0x07ff9f00
1416 
1417 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1418 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1419 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1420 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1421 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1422 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1423 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1424 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1425 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1426 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1427 
1428 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1429 {
1430     return vfp_get_fpscr(env) & FPSR_MASK;
1431 }
1432 
1433 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1434 {
1435     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1436     vfp_set_fpscr(env, new_fpscr);
1437 }
1438 
1439 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1440 {
1441     return vfp_get_fpscr(env) & FPCR_MASK;
1442 }
1443 
1444 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1445 {
1446     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1447     vfp_set_fpscr(env, new_fpscr);
1448 }
1449 
1450 enum arm_cpu_mode {
1451   ARM_CPU_MODE_USR = 0x10,
1452   ARM_CPU_MODE_FIQ = 0x11,
1453   ARM_CPU_MODE_IRQ = 0x12,
1454   ARM_CPU_MODE_SVC = 0x13,
1455   ARM_CPU_MODE_MON = 0x16,
1456   ARM_CPU_MODE_ABT = 0x17,
1457   ARM_CPU_MODE_HYP = 0x1a,
1458   ARM_CPU_MODE_UND = 0x1b,
1459   ARM_CPU_MODE_SYS = 0x1f
1460 };
1461 
1462 /* VFP system registers.  */
1463 #define ARM_VFP_FPSID   0
1464 #define ARM_VFP_FPSCR   1
1465 #define ARM_VFP_MVFR2   5
1466 #define ARM_VFP_MVFR1   6
1467 #define ARM_VFP_MVFR0   7
1468 #define ARM_VFP_FPEXC   8
1469 #define ARM_VFP_FPINST  9
1470 #define ARM_VFP_FPINST2 10
1471 
1472 /* iwMMXt coprocessor control registers.  */
1473 #define ARM_IWMMXT_wCID  0
1474 #define ARM_IWMMXT_wCon  1
1475 #define ARM_IWMMXT_wCSSF 2
1476 #define ARM_IWMMXT_wCASF 3
1477 #define ARM_IWMMXT_wCGR0 8
1478 #define ARM_IWMMXT_wCGR1 9
1479 #define ARM_IWMMXT_wCGR2 10
1480 #define ARM_IWMMXT_wCGR3 11
1481 
1482 /* V7M CCR bits */
1483 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1484 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1485 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1486 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1487 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1488 FIELD(V7M_CCR, STKALIGN, 9, 1)
1489 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1490 FIELD(V7M_CCR, DC, 16, 1)
1491 FIELD(V7M_CCR, IC, 17, 1)
1492 FIELD(V7M_CCR, BP, 18, 1)
1493 
1494 /* V7M SCR bits */
1495 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1496 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1497 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1498 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1499 
1500 /* V7M AIRCR bits */
1501 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1502 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1503 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1504 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1505 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1506 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1507 FIELD(V7M_AIRCR, PRIS, 14, 1)
1508 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1509 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1510 
1511 /* V7M CFSR bits for MMFSR */
1512 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1513 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1514 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1515 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1516 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1517 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1518 
1519 /* V7M CFSR bits for BFSR */
1520 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1521 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1522 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1523 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1524 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1525 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1526 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1527 
1528 /* V7M CFSR bits for UFSR */
1529 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1530 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1531 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1532 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1533 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1534 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1535 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1536 
1537 /* V7M CFSR bit masks covering all of the subregister bits */
1538 FIELD(V7M_CFSR, MMFSR, 0, 8)
1539 FIELD(V7M_CFSR, BFSR, 8, 8)
1540 FIELD(V7M_CFSR, UFSR, 16, 16)
1541 
1542 /* V7M HFSR bits */
1543 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1544 FIELD(V7M_HFSR, FORCED, 30, 1)
1545 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1546 
1547 /* V7M DFSR bits */
1548 FIELD(V7M_DFSR, HALTED, 0, 1)
1549 FIELD(V7M_DFSR, BKPT, 1, 1)
1550 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1551 FIELD(V7M_DFSR, VCATCH, 3, 1)
1552 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1553 
1554 /* V7M SFSR bits */
1555 FIELD(V7M_SFSR, INVEP, 0, 1)
1556 FIELD(V7M_SFSR, INVIS, 1, 1)
1557 FIELD(V7M_SFSR, INVER, 2, 1)
1558 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1559 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1560 FIELD(V7M_SFSR, LSPERR, 5, 1)
1561 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1562 FIELD(V7M_SFSR, LSERR, 7, 1)
1563 
1564 /* v7M MPU_CTRL bits */
1565 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1566 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1567 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1568 
1569 /* v7M CLIDR bits */
1570 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1571 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1572 FIELD(V7M_CLIDR, LOC, 24, 3)
1573 FIELD(V7M_CLIDR, LOUU, 27, 3)
1574 FIELD(V7M_CLIDR, ICB, 30, 2)
1575 
1576 FIELD(V7M_CSSELR, IND, 0, 1)
1577 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1578 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1579  * define a mask for this and check that it doesn't permit running off
1580  * the end of the array.
1581  */
1582 FIELD(V7M_CSSELR, INDEX, 0, 4)
1583 
1584 /* v7M FPCCR bits */
1585 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1586 FIELD(V7M_FPCCR, USER, 1, 1)
1587 FIELD(V7M_FPCCR, S, 2, 1)
1588 FIELD(V7M_FPCCR, THREAD, 3, 1)
1589 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1590 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1591 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1592 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1593 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1594 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1595 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1596 FIELD(V7M_FPCCR, RES0, 11, 15)
1597 FIELD(V7M_FPCCR, TS, 26, 1)
1598 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1599 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1600 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1601 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1602 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1603 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1604 #define R_V7M_FPCCR_BANKED_MASK                 \
1605     (R_V7M_FPCCR_LSPACT_MASK |                  \
1606      R_V7M_FPCCR_USER_MASK |                    \
1607      R_V7M_FPCCR_THREAD_MASK |                  \
1608      R_V7M_FPCCR_MMRDY_MASK |                   \
1609      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1610      R_V7M_FPCCR_UFRDY_MASK |                   \
1611      R_V7M_FPCCR_ASPEN_MASK)
1612 
1613 /*
1614  * System register ID fields.
1615  */
1616 FIELD(ID_ISAR0, SWAP, 0, 4)
1617 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1618 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1619 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1620 FIELD(ID_ISAR0, COPROC, 16, 4)
1621 FIELD(ID_ISAR0, DEBUG, 20, 4)
1622 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1623 
1624 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1625 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1626 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1627 FIELD(ID_ISAR1, EXTEND, 12, 4)
1628 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1629 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1630 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1631 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1632 
1633 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1634 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1635 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1636 FIELD(ID_ISAR2, MULT, 12, 4)
1637 FIELD(ID_ISAR2, MULTS, 16, 4)
1638 FIELD(ID_ISAR2, MULTU, 20, 4)
1639 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1640 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1641 
1642 FIELD(ID_ISAR3, SATURATE, 0, 4)
1643 FIELD(ID_ISAR3, SIMD, 4, 4)
1644 FIELD(ID_ISAR3, SVC, 8, 4)
1645 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1646 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1647 FIELD(ID_ISAR3, T32COPY, 20, 4)
1648 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1649 FIELD(ID_ISAR3, T32EE, 28, 4)
1650 
1651 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1652 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1653 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1654 FIELD(ID_ISAR4, SMC, 12, 4)
1655 FIELD(ID_ISAR4, BARRIER, 16, 4)
1656 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1657 FIELD(ID_ISAR4, PSR_M, 24, 4)
1658 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1659 
1660 FIELD(ID_ISAR5, SEVL, 0, 4)
1661 FIELD(ID_ISAR5, AES, 4, 4)
1662 FIELD(ID_ISAR5, SHA1, 8, 4)
1663 FIELD(ID_ISAR5, SHA2, 12, 4)
1664 FIELD(ID_ISAR5, CRC32, 16, 4)
1665 FIELD(ID_ISAR5, RDM, 24, 4)
1666 FIELD(ID_ISAR5, VCMA, 28, 4)
1667 
1668 FIELD(ID_ISAR6, JSCVT, 0, 4)
1669 FIELD(ID_ISAR6, DP, 4, 4)
1670 FIELD(ID_ISAR6, FHM, 8, 4)
1671 FIELD(ID_ISAR6, SB, 12, 4)
1672 FIELD(ID_ISAR6, SPECRES, 16, 4)
1673 
1674 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1675 FIELD(ID_MMFR4, AC2, 4, 4)
1676 FIELD(ID_MMFR4, XNX, 8, 4)
1677 FIELD(ID_MMFR4, CNP, 12, 4)
1678 FIELD(ID_MMFR4, HPDS, 16, 4)
1679 FIELD(ID_MMFR4, LSM, 20, 4)
1680 FIELD(ID_MMFR4, CCIDX, 24, 4)
1681 FIELD(ID_MMFR4, EVT, 28, 4)
1682 
1683 FIELD(ID_AA64ISAR0, AES, 4, 4)
1684 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1685 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1686 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1687 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1688 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1689 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1690 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1691 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1692 FIELD(ID_AA64ISAR0, DP, 44, 4)
1693 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1694 FIELD(ID_AA64ISAR0, TS, 52, 4)
1695 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1696 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1697 
1698 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1699 FIELD(ID_AA64ISAR1, APA, 4, 4)
1700 FIELD(ID_AA64ISAR1, API, 8, 4)
1701 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1702 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1703 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1704 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1705 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1706 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1707 FIELD(ID_AA64ISAR1, SB, 36, 4)
1708 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1709 
1710 FIELD(ID_AA64PFR0, EL0, 0, 4)
1711 FIELD(ID_AA64PFR0, EL1, 4, 4)
1712 FIELD(ID_AA64PFR0, EL2, 8, 4)
1713 FIELD(ID_AA64PFR0, EL3, 12, 4)
1714 FIELD(ID_AA64PFR0, FP, 16, 4)
1715 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1716 FIELD(ID_AA64PFR0, GIC, 24, 4)
1717 FIELD(ID_AA64PFR0, RAS, 28, 4)
1718 FIELD(ID_AA64PFR0, SVE, 32, 4)
1719 
1720 FIELD(ID_AA64PFR1, BT, 0, 4)
1721 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1722 FIELD(ID_AA64PFR1, MTE, 8, 4)
1723 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1724 
1725 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1726 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1727 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1728 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1729 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1730 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1731 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1732 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1733 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1734 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1735 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1736 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1737 
1738 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1739 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1740 FIELD(ID_AA64MMFR1, VH, 8, 4)
1741 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1742 FIELD(ID_AA64MMFR1, LO, 16, 4)
1743 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1744 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1745 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1746 
1747 FIELD(ID_DFR0, COPDBG, 0, 4)
1748 FIELD(ID_DFR0, COPSDBG, 4, 4)
1749 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1750 FIELD(ID_DFR0, COPTRC, 12, 4)
1751 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1752 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1753 FIELD(ID_DFR0, PERFMON, 24, 4)
1754 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1755 
1756 FIELD(MVFR0, SIMDREG, 0, 4)
1757 FIELD(MVFR0, FPSP, 4, 4)
1758 FIELD(MVFR0, FPDP, 8, 4)
1759 FIELD(MVFR0, FPTRAP, 12, 4)
1760 FIELD(MVFR0, FPDIVIDE, 16, 4)
1761 FIELD(MVFR0, FPSQRT, 20, 4)
1762 FIELD(MVFR0, FPSHVEC, 24, 4)
1763 FIELD(MVFR0, FPROUND, 28, 4)
1764 
1765 FIELD(MVFR1, FPFTZ, 0, 4)
1766 FIELD(MVFR1, FPDNAN, 4, 4)
1767 FIELD(MVFR1, SIMDLS, 8, 4)
1768 FIELD(MVFR1, SIMDINT, 12, 4)
1769 FIELD(MVFR1, SIMDSP, 16, 4)
1770 FIELD(MVFR1, SIMDHP, 20, 4)
1771 FIELD(MVFR1, FPHP, 24, 4)
1772 FIELD(MVFR1, SIMDFMAC, 28, 4)
1773 
1774 FIELD(MVFR2, SIMDMISC, 0, 4)
1775 FIELD(MVFR2, FPMISC, 4, 4)
1776 
1777 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1778 
1779 /* If adding a feature bit which corresponds to a Linux ELF
1780  * HWCAP bit, remember to update the feature-bit-to-hwcap
1781  * mapping in linux-user/elfload.c:get_elf_hwcap().
1782  */
1783 enum arm_features {
1784     ARM_FEATURE_VFP,
1785     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1786     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1787     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1788     ARM_FEATURE_V6,
1789     ARM_FEATURE_V6K,
1790     ARM_FEATURE_V7,
1791     ARM_FEATURE_THUMB2,
1792     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1793     ARM_FEATURE_VFP3,
1794     ARM_FEATURE_NEON,
1795     ARM_FEATURE_M, /* Microcontroller profile.  */
1796     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1797     ARM_FEATURE_THUMB2EE,
1798     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1799     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1800     ARM_FEATURE_V4T,
1801     ARM_FEATURE_V5,
1802     ARM_FEATURE_STRONGARM,
1803     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1804     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1805     ARM_FEATURE_GENERIC_TIMER,
1806     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1807     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1808     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1809     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1810     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1811     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1812     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1813     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1814     ARM_FEATURE_V8,
1815     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1816     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1817     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1818     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1819     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1820     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1821     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1822     ARM_FEATURE_PMU, /* has PMU support */
1823     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1824     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1825     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1826 };
1827 
1828 static inline int arm_feature(CPUARMState *env, int feature)
1829 {
1830     return (env->features & (1ULL << feature)) != 0;
1831 }
1832 
1833 #if !defined(CONFIG_USER_ONLY)
1834 /* Return true if exception levels below EL3 are in secure state,
1835  * or would be following an exception return to that level.
1836  * Unlike arm_is_secure() (which is always a question about the
1837  * _current_ state of the CPU) this doesn't care about the current
1838  * EL or mode.
1839  */
1840 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1841 {
1842     if (arm_feature(env, ARM_FEATURE_EL3)) {
1843         return !(env->cp15.scr_el3 & SCR_NS);
1844     } else {
1845         /* If EL3 is not supported then the secure state is implementation
1846          * defined, in which case QEMU defaults to non-secure.
1847          */
1848         return false;
1849     }
1850 }
1851 
1852 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1853 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1854 {
1855     if (arm_feature(env, ARM_FEATURE_EL3)) {
1856         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1857             /* CPU currently in AArch64 state and EL3 */
1858             return true;
1859         } else if (!is_a64(env) &&
1860                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1861             /* CPU currently in AArch32 state and monitor mode */
1862             return true;
1863         }
1864     }
1865     return false;
1866 }
1867 
1868 /* Return true if the processor is in secure state */
1869 static inline bool arm_is_secure(CPUARMState *env)
1870 {
1871     if (arm_is_el3_or_mon(env)) {
1872         return true;
1873     }
1874     return arm_is_secure_below_el3(env);
1875 }
1876 
1877 #else
1878 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1879 {
1880     return false;
1881 }
1882 
1883 static inline bool arm_is_secure(CPUARMState *env)
1884 {
1885     return false;
1886 }
1887 #endif
1888 
1889 /**
1890  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1891  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1892  * "for all purposes other than a direct read or write access of HCR_EL2."
1893  * Not included here is HCR_RW.
1894  */
1895 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1896 
1897 /* Return true if the specified exception level is running in AArch64 state. */
1898 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1899 {
1900     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1901      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1902      */
1903     assert(el >= 1 && el <= 3);
1904     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1905 
1906     /* The highest exception level is always at the maximum supported
1907      * register width, and then lower levels have a register width controlled
1908      * by bits in the SCR or HCR registers.
1909      */
1910     if (el == 3) {
1911         return aa64;
1912     }
1913 
1914     if (arm_feature(env, ARM_FEATURE_EL3)) {
1915         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1916     }
1917 
1918     if (el == 2) {
1919         return aa64;
1920     }
1921 
1922     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1923         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1924     }
1925 
1926     return aa64;
1927 }
1928 
1929 /* Function for determing whether guest cp register reads and writes should
1930  * access the secure or non-secure bank of a cp register.  When EL3 is
1931  * operating in AArch32 state, the NS-bit determines whether the secure
1932  * instance of a cp register should be used. When EL3 is AArch64 (or if
1933  * it doesn't exist at all) then there is no register banking, and all
1934  * accesses are to the non-secure version.
1935  */
1936 static inline bool access_secure_reg(CPUARMState *env)
1937 {
1938     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1939                 !arm_el_is_aa64(env, 3) &&
1940                 !(env->cp15.scr_el3 & SCR_NS));
1941 
1942     return ret;
1943 }
1944 
1945 /* Macros for accessing a specified CP register bank */
1946 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1947     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1948 
1949 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1950     do {                                                \
1951         if (_secure) {                                   \
1952             (_env)->cp15._regname##_s = (_val);            \
1953         } else {                                        \
1954             (_env)->cp15._regname##_ns = (_val);           \
1955         }                                               \
1956     } while (0)
1957 
1958 /* Macros for automatically accessing a specific CP register bank depending on
1959  * the current secure state of the system.  These macros are not intended for
1960  * supporting instruction translation reads/writes as these are dependent
1961  * solely on the SCR.NS bit and not the mode.
1962  */
1963 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1964     A32_BANKED_REG_GET((_env), _regname,                \
1965                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1966 
1967 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1968     A32_BANKED_REG_SET((_env), _regname,                                    \
1969                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1970                        (_val))
1971 
1972 void arm_cpu_list(void);
1973 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1974                                  uint32_t cur_el, bool secure);
1975 
1976 /* Interface between CPU and Interrupt controller.  */
1977 #ifndef CONFIG_USER_ONLY
1978 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1979 #else
1980 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1981 {
1982     return true;
1983 }
1984 #endif
1985 /**
1986  * armv7m_nvic_set_pending: mark the specified exception as pending
1987  * @opaque: the NVIC
1988  * @irq: the exception number to mark pending
1989  * @secure: false for non-banked exceptions or for the nonsecure
1990  * version of a banked exception, true for the secure version of a banked
1991  * exception.
1992  *
1993  * Marks the specified exception as pending. Note that we will assert()
1994  * if @secure is true and @irq does not specify one of the fixed set
1995  * of architecturally banked exceptions.
1996  */
1997 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1998 /**
1999  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2000  * @opaque: the NVIC
2001  * @irq: the exception number to mark pending
2002  * @secure: false for non-banked exceptions or for the nonsecure
2003  * version of a banked exception, true for the secure version of a banked
2004  * exception.
2005  *
2006  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2007  * exceptions (exceptions generated in the course of trying to take
2008  * a different exception).
2009  */
2010 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2011 /**
2012  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2013  * @opaque: the NVIC
2014  * @irq: the exception number to mark pending
2015  * @secure: false for non-banked exceptions or for the nonsecure
2016  * version of a banked exception, true for the secure version of a banked
2017  * exception.
2018  *
2019  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2020  * generated in the course of lazy stacking of FP registers.
2021  */
2022 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2023 /**
2024  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2025  *    exception, and whether it targets Secure state
2026  * @opaque: the NVIC
2027  * @pirq: set to pending exception number
2028  * @ptargets_secure: set to whether pending exception targets Secure
2029  *
2030  * This function writes the number of the highest priority pending
2031  * exception (the one which would be made active by
2032  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2033  * to true if the current highest priority pending exception should
2034  * be taken to Secure state, false for NS.
2035  */
2036 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2037                                       bool *ptargets_secure);
2038 /**
2039  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2040  * @opaque: the NVIC
2041  *
2042  * Move the current highest priority pending exception from the pending
2043  * state to the active state, and update v7m.exception to indicate that
2044  * it is the exception currently being handled.
2045  */
2046 void armv7m_nvic_acknowledge_irq(void *opaque);
2047 /**
2048  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2049  * @opaque: the NVIC
2050  * @irq: the exception number to complete
2051  * @secure: true if this exception was secure
2052  *
2053  * Returns: -1 if the irq was not active
2054  *           1 if completing this irq brought us back to base (no active irqs)
2055  *           0 if there is still an irq active after this one was completed
2056  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2057  */
2058 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2059 /**
2060  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2061  * @opaque: the NVIC
2062  * @irq: the exception number to mark pending
2063  * @secure: false for non-banked exceptions or for the nonsecure
2064  * version of a banked exception, true for the secure version of a banked
2065  * exception.
2066  *
2067  * Return whether an exception is "ready", i.e. whether the exception is
2068  * enabled and is configured at a priority which would allow it to
2069  * interrupt the current execution priority. This controls whether the
2070  * RDY bit for it in the FPCCR is set.
2071  */
2072 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2073 /**
2074  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2075  * @opaque: the NVIC
2076  *
2077  * Returns: the raw execution priority as defined by the v8M architecture.
2078  * This is the execution priority minus the effects of AIRCR.PRIS,
2079  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2080  * (v8M ARM ARM I_PKLD.)
2081  */
2082 int armv7m_nvic_raw_execution_priority(void *opaque);
2083 /**
2084  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2085  * priority is negative for the specified security state.
2086  * @opaque: the NVIC
2087  * @secure: the security state to test
2088  * This corresponds to the pseudocode IsReqExecPriNeg().
2089  */
2090 #ifndef CONFIG_USER_ONLY
2091 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2092 #else
2093 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2094 {
2095     return false;
2096 }
2097 #endif
2098 
2099 /* Interface for defining coprocessor registers.
2100  * Registers are defined in tables of arm_cp_reginfo structs
2101  * which are passed to define_arm_cp_regs().
2102  */
2103 
2104 /* When looking up a coprocessor register we look for it
2105  * via an integer which encodes all of:
2106  *  coprocessor number
2107  *  Crn, Crm, opc1, opc2 fields
2108  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2109  *    or via MRRC/MCRR?)
2110  *  non-secure/secure bank (AArch32 only)
2111  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2112  * (In this case crn and opc2 should be zero.)
2113  * For AArch64, there is no 32/64 bit size distinction;
2114  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2115  * and 4 bit CRn and CRm. The encoding patterns are chosen
2116  * to be easy to convert to and from the KVM encodings, and also
2117  * so that the hashtable can contain both AArch32 and AArch64
2118  * registers (to allow for interprocessing where we might run
2119  * 32 bit code on a 64 bit core).
2120  */
2121 /* This bit is private to our hashtable cpreg; in KVM register
2122  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2123  * in the upper bits of the 64 bit ID.
2124  */
2125 #define CP_REG_AA64_SHIFT 28
2126 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2127 
2128 /* To enable banking of coprocessor registers depending on ns-bit we
2129  * add a bit to distinguish between secure and non-secure cpregs in the
2130  * hashtable.
2131  */
2132 #define CP_REG_NS_SHIFT 29
2133 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2134 
2135 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2136     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2137      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2138 
2139 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2140     (CP_REG_AA64_MASK |                                 \
2141      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2142      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2143      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2144      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2145      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2146      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2147 
2148 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2149  * version used as a key for the coprocessor register hashtable
2150  */
2151 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2152 {
2153     uint32_t cpregid = kvmid;
2154     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2155         cpregid |= CP_REG_AA64_MASK;
2156     } else {
2157         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2158             cpregid |= (1 << 15);
2159         }
2160 
2161         /* KVM is always non-secure so add the NS flag on AArch32 register
2162          * entries.
2163          */
2164          cpregid |= 1 << CP_REG_NS_SHIFT;
2165     }
2166     return cpregid;
2167 }
2168 
2169 /* Convert a truncated 32 bit hashtable key into the full
2170  * 64 bit KVM register ID.
2171  */
2172 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2173 {
2174     uint64_t kvmid;
2175 
2176     if (cpregid & CP_REG_AA64_MASK) {
2177         kvmid = cpregid & ~CP_REG_AA64_MASK;
2178         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2179     } else {
2180         kvmid = cpregid & ~(1 << 15);
2181         if (cpregid & (1 << 15)) {
2182             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2183         } else {
2184             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2185         }
2186     }
2187     return kvmid;
2188 }
2189 
2190 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2191  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2192  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2193  * TCG can assume the value to be constant (ie load at translate time)
2194  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2195  * indicates that the TB should not be ended after a write to this register
2196  * (the default is that the TB ends after cp writes). OVERRIDE permits
2197  * a register definition to override a previous definition for the
2198  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2199  * old must have the OVERRIDE bit set.
2200  * ALIAS indicates that this register is an alias view of some underlying
2201  * state which is also visible via another register, and that the other
2202  * register is handling migration and reset; registers marked ALIAS will not be
2203  * migrated but may have their state set by syncing of register state from KVM.
2204  * NO_RAW indicates that this register has no underlying state and does not
2205  * support raw access for state saving/loading; it will not be used for either
2206  * migration or KVM state synchronization. (Typically this is for "registers"
2207  * which are actually used as instructions for cache maintenance and so on.)
2208  * IO indicates that this register does I/O and therefore its accesses
2209  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2210  * registers which implement clocks or timers require this.
2211  */
2212 #define ARM_CP_SPECIAL           0x0001
2213 #define ARM_CP_CONST             0x0002
2214 #define ARM_CP_64BIT             0x0004
2215 #define ARM_CP_SUPPRESS_TB_END   0x0008
2216 #define ARM_CP_OVERRIDE          0x0010
2217 #define ARM_CP_ALIAS             0x0020
2218 #define ARM_CP_IO                0x0040
2219 #define ARM_CP_NO_RAW            0x0080
2220 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2221 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2222 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2223 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2224 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2225 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2226 #define ARM_CP_FPU               0x1000
2227 #define ARM_CP_SVE               0x2000
2228 #define ARM_CP_NO_GDB            0x4000
2229 /* Used only as a terminator for ARMCPRegInfo lists */
2230 #define ARM_CP_SENTINEL          0xffff
2231 /* Mask of only the flag bits in a type field */
2232 #define ARM_CP_FLAG_MASK         0x70ff
2233 
2234 /* Valid values for ARMCPRegInfo state field, indicating which of
2235  * the AArch32 and AArch64 execution states this register is visible in.
2236  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2237  * If the reginfo is declared to be visible in both states then a second
2238  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2239  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2240  * Note that we rely on the values of these enums as we iterate through
2241  * the various states in some places.
2242  */
2243 enum {
2244     ARM_CP_STATE_AA32 = 0,
2245     ARM_CP_STATE_AA64 = 1,
2246     ARM_CP_STATE_BOTH = 2,
2247 };
2248 
2249 /* ARM CP register secure state flags.  These flags identify security state
2250  * attributes for a given CP register entry.
2251  * The existence of both or neither secure and non-secure flags indicates that
2252  * the register has both a secure and non-secure hash entry.  A single one of
2253  * these flags causes the register to only be hashed for the specified
2254  * security state.
2255  * Although definitions may have any combination of the S/NS bits, each
2256  * registered entry will only have one to identify whether the entry is secure
2257  * or non-secure.
2258  */
2259 enum {
2260     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2261     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2262 };
2263 
2264 /* Return true if cptype is a valid type field. This is used to try to
2265  * catch errors where the sentinel has been accidentally left off the end
2266  * of a list of registers.
2267  */
2268 static inline bool cptype_valid(int cptype)
2269 {
2270     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2271         || ((cptype & ARM_CP_SPECIAL) &&
2272             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2273 }
2274 
2275 /* Access rights:
2276  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2277  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2278  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2279  * (ie any of the privileged modes in Secure state, or Monitor mode).
2280  * If a register is accessible in one privilege level it's always accessible
2281  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2282  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2283  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2284  * terminology a little and call this PL3.
2285  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2286  * with the ELx exception levels.
2287  *
2288  * If access permissions for a register are more complex than can be
2289  * described with these bits, then use a laxer set of restrictions, and
2290  * do the more restrictive/complex check inside a helper function.
2291  */
2292 #define PL3_R 0x80
2293 #define PL3_W 0x40
2294 #define PL2_R (0x20 | PL3_R)
2295 #define PL2_W (0x10 | PL3_W)
2296 #define PL1_R (0x08 | PL2_R)
2297 #define PL1_W (0x04 | PL2_W)
2298 #define PL0_R (0x02 | PL1_R)
2299 #define PL0_W (0x01 | PL1_W)
2300 
2301 /*
2302  * For user-mode some registers are accessible to EL0 via a kernel
2303  * trap-and-emulate ABI. In this case we define the read permissions
2304  * as actually being PL0_R. However some bits of any given register
2305  * may still be masked.
2306  */
2307 #ifdef CONFIG_USER_ONLY
2308 #define PL0U_R PL0_R
2309 #else
2310 #define PL0U_R PL1_R
2311 #endif
2312 
2313 #define PL3_RW (PL3_R | PL3_W)
2314 #define PL2_RW (PL2_R | PL2_W)
2315 #define PL1_RW (PL1_R | PL1_W)
2316 #define PL0_RW (PL0_R | PL0_W)
2317 
2318 /* Return the highest implemented Exception Level */
2319 static inline int arm_highest_el(CPUARMState *env)
2320 {
2321     if (arm_feature(env, ARM_FEATURE_EL3)) {
2322         return 3;
2323     }
2324     if (arm_feature(env, ARM_FEATURE_EL2)) {
2325         return 2;
2326     }
2327     return 1;
2328 }
2329 
2330 /* Return true if a v7M CPU is in Handler mode */
2331 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2332 {
2333     return env->v7m.exception != 0;
2334 }
2335 
2336 /* Return the current Exception Level (as per ARMv8; note that this differs
2337  * from the ARMv7 Privilege Level).
2338  */
2339 static inline int arm_current_el(CPUARMState *env)
2340 {
2341     if (arm_feature(env, ARM_FEATURE_M)) {
2342         return arm_v7m_is_handler_mode(env) ||
2343             !(env->v7m.control[env->v7m.secure] & 1);
2344     }
2345 
2346     if (is_a64(env)) {
2347         return extract32(env->pstate, 2, 2);
2348     }
2349 
2350     switch (env->uncached_cpsr & 0x1f) {
2351     case ARM_CPU_MODE_USR:
2352         return 0;
2353     case ARM_CPU_MODE_HYP:
2354         return 2;
2355     case ARM_CPU_MODE_MON:
2356         return 3;
2357     default:
2358         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2359             /* If EL3 is 32-bit then all secure privileged modes run in
2360              * EL3
2361              */
2362             return 3;
2363         }
2364 
2365         return 1;
2366     }
2367 }
2368 
2369 typedef struct ARMCPRegInfo ARMCPRegInfo;
2370 
2371 typedef enum CPAccessResult {
2372     /* Access is permitted */
2373     CP_ACCESS_OK = 0,
2374     /* Access fails due to a configurable trap or enable which would
2375      * result in a categorized exception syndrome giving information about
2376      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2377      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2378      * PL1 if in EL0, otherwise to the current EL).
2379      */
2380     CP_ACCESS_TRAP = 1,
2381     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2382      * Note that this is not a catch-all case -- the set of cases which may
2383      * result in this failure is specifically defined by the architecture.
2384      */
2385     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2386     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2387     CP_ACCESS_TRAP_EL2 = 3,
2388     CP_ACCESS_TRAP_EL3 = 4,
2389     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2390     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2391     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2392     /* Access fails and results in an exception syndrome for an FP access,
2393      * trapped directly to EL2 or EL3
2394      */
2395     CP_ACCESS_TRAP_FP_EL2 = 7,
2396     CP_ACCESS_TRAP_FP_EL3 = 8,
2397 } CPAccessResult;
2398 
2399 /* Access functions for coprocessor registers. These cannot fail and
2400  * may not raise exceptions.
2401  */
2402 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2403 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2404                        uint64_t value);
2405 /* Access permission check functions for coprocessor registers. */
2406 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2407                                   const ARMCPRegInfo *opaque,
2408                                   bool isread);
2409 /* Hook function for register reset */
2410 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2411 
2412 #define CP_ANY 0xff
2413 
2414 /* Definition of an ARM coprocessor register */
2415 struct ARMCPRegInfo {
2416     /* Name of register (useful mainly for debugging, need not be unique) */
2417     const char *name;
2418     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2419      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2420      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2421      * will be decoded to this register. The register read and write
2422      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2423      * used by the program, so it is possible to register a wildcard and
2424      * then behave differently on read/write if necessary.
2425      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2426      * must both be zero.
2427      * For AArch64-visible registers, opc0 is also used.
2428      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2429      * way to distinguish (for KVM's benefit) guest-visible system registers
2430      * from demuxed ones provided to preserve the "no side effects on
2431      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2432      * visible (to match KVM's encoding); cp==0 will be converted to
2433      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2434      */
2435     uint8_t cp;
2436     uint8_t crn;
2437     uint8_t crm;
2438     uint8_t opc0;
2439     uint8_t opc1;
2440     uint8_t opc2;
2441     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2442     int state;
2443     /* Register type: ARM_CP_* bits/values */
2444     int type;
2445     /* Access rights: PL*_[RW] */
2446     int access;
2447     /* Security state: ARM_CP_SECSTATE_* bits/values */
2448     int secure;
2449     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2450      * this register was defined: can be used to hand data through to the
2451      * register read/write functions, since they are passed the ARMCPRegInfo*.
2452      */
2453     void *opaque;
2454     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2455      * fieldoffset is non-zero, the reset value of the register.
2456      */
2457     uint64_t resetvalue;
2458     /* Offset of the field in CPUARMState for this register.
2459      *
2460      * This is not needed if either:
2461      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2462      *  2. both readfn and writefn are specified
2463      */
2464     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2465 
2466     /* Offsets of the secure and non-secure fields in CPUARMState for the
2467      * register if it is banked.  These fields are only used during the static
2468      * registration of a register.  During hashing the bank associated
2469      * with a given security state is copied to fieldoffset which is used from
2470      * there on out.
2471      *
2472      * It is expected that register definitions use either fieldoffset or
2473      * bank_fieldoffsets in the definition but not both.  It is also expected
2474      * that both bank offsets are set when defining a banked register.  This
2475      * use indicates that a register is banked.
2476      */
2477     ptrdiff_t bank_fieldoffsets[2];
2478 
2479     /* Function for making any access checks for this register in addition to
2480      * those specified by the 'access' permissions bits. If NULL, no extra
2481      * checks required. The access check is performed at runtime, not at
2482      * translate time.
2483      */
2484     CPAccessFn *accessfn;
2485     /* Function for handling reads of this register. If NULL, then reads
2486      * will be done by loading from the offset into CPUARMState specified
2487      * by fieldoffset.
2488      */
2489     CPReadFn *readfn;
2490     /* Function for handling writes of this register. If NULL, then writes
2491      * will be done by writing to the offset into CPUARMState specified
2492      * by fieldoffset.
2493      */
2494     CPWriteFn *writefn;
2495     /* Function for doing a "raw" read; used when we need to copy
2496      * coprocessor state to the kernel for KVM or out for
2497      * migration. This only needs to be provided if there is also a
2498      * readfn and it has side effects (for instance clear-on-read bits).
2499      */
2500     CPReadFn *raw_readfn;
2501     /* Function for doing a "raw" write; used when we need to copy KVM
2502      * kernel coprocessor state into userspace, or for inbound
2503      * migration. This only needs to be provided if there is also a
2504      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2505      * or similar behaviour.
2506      */
2507     CPWriteFn *raw_writefn;
2508     /* Function for resetting the register. If NULL, then reset will be done
2509      * by writing resetvalue to the field specified in fieldoffset. If
2510      * fieldoffset is 0 then no reset will be done.
2511      */
2512     CPResetFn *resetfn;
2513 };
2514 
2515 /* Macros which are lvalues for the field in CPUARMState for the
2516  * ARMCPRegInfo *ri.
2517  */
2518 #define CPREG_FIELD32(env, ri) \
2519     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2520 #define CPREG_FIELD64(env, ri) \
2521     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2522 
2523 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2524 
2525 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2526                                     const ARMCPRegInfo *regs, void *opaque);
2527 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2528                                        const ARMCPRegInfo *regs, void *opaque);
2529 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2530 {
2531     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2532 }
2533 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2534 {
2535     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2536 }
2537 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2538 
2539 /*
2540  * Definition of an ARM co-processor register as viewed from
2541  * userspace. This is used for presenting sanitised versions of
2542  * registers to userspace when emulating the Linux AArch64 CPU
2543  * ID/feature ABI (advertised as HWCAP_CPUID).
2544  */
2545 typedef struct ARMCPRegUserSpaceInfo {
2546     /* Name of register */
2547     const char *name;
2548 
2549     /* Is the name actually a glob pattern */
2550     bool is_glob;
2551 
2552     /* Only some bits are exported to user space */
2553     uint64_t exported_bits;
2554 
2555     /* Fixed bits are applied after the mask */
2556     uint64_t fixed_bits;
2557 } ARMCPRegUserSpaceInfo;
2558 
2559 #define REGUSERINFO_SENTINEL { .name = NULL }
2560 
2561 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2562 
2563 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2564 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2565                          uint64_t value);
2566 /* CPReadFn that can be used for read-as-zero behaviour */
2567 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2568 
2569 /* CPResetFn that does nothing, for use if no reset is required even
2570  * if fieldoffset is non zero.
2571  */
2572 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2573 
2574 /* Return true if this reginfo struct's field in the cpu state struct
2575  * is 64 bits wide.
2576  */
2577 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2578 {
2579     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2580 }
2581 
2582 static inline bool cp_access_ok(int current_el,
2583                                 const ARMCPRegInfo *ri, int isread)
2584 {
2585     return (ri->access >> ((current_el * 2) + isread)) & 1;
2586 }
2587 
2588 /* Raw read of a coprocessor register (as needed for migration, etc) */
2589 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2590 
2591 /**
2592  * write_list_to_cpustate
2593  * @cpu: ARMCPU
2594  *
2595  * For each register listed in the ARMCPU cpreg_indexes list, write
2596  * its value from the cpreg_values list into the ARMCPUState structure.
2597  * This updates TCG's working data structures from KVM data or
2598  * from incoming migration state.
2599  *
2600  * Returns: true if all register values were updated correctly,
2601  * false if some register was unknown or could not be written.
2602  * Note that we do not stop early on failure -- we will attempt
2603  * writing all registers in the list.
2604  */
2605 bool write_list_to_cpustate(ARMCPU *cpu);
2606 
2607 /**
2608  * write_cpustate_to_list:
2609  * @cpu: ARMCPU
2610  * @kvm_sync: true if this is for syncing back to KVM
2611  *
2612  * For each register listed in the ARMCPU cpreg_indexes list, write
2613  * its value from the ARMCPUState structure into the cpreg_values list.
2614  * This is used to copy info from TCG's working data structures into
2615  * KVM or for outbound migration.
2616  *
2617  * @kvm_sync is true if we are doing this in order to sync the
2618  * register state back to KVM. In this case we will only update
2619  * values in the list if the previous list->cpustate sync actually
2620  * successfully wrote the CPU state. Otherwise we will keep the value
2621  * that is in the list.
2622  *
2623  * Returns: true if all register values were read correctly,
2624  * false if some register was unknown or could not be read.
2625  * Note that we do not stop early on failure -- we will attempt
2626  * reading all registers in the list.
2627  */
2628 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2629 
2630 #define ARM_CPUID_TI915T      0x54029152
2631 #define ARM_CPUID_TI925T      0x54029252
2632 
2633 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2634                                      unsigned int target_el)
2635 {
2636     CPUARMState *env = cs->env_ptr;
2637     unsigned int cur_el = arm_current_el(env);
2638     bool secure = arm_is_secure(env);
2639     bool pstate_unmasked;
2640     int8_t unmasked = 0;
2641     uint64_t hcr_el2;
2642 
2643     /* Don't take exceptions if they target a lower EL.
2644      * This check should catch any exceptions that would not be taken but left
2645      * pending.
2646      */
2647     if (cur_el > target_el) {
2648         return false;
2649     }
2650 
2651     hcr_el2 = arm_hcr_el2_eff(env);
2652 
2653     switch (excp_idx) {
2654     case EXCP_FIQ:
2655         pstate_unmasked = !(env->daif & PSTATE_F);
2656         break;
2657 
2658     case EXCP_IRQ:
2659         pstate_unmasked = !(env->daif & PSTATE_I);
2660         break;
2661 
2662     case EXCP_VFIQ:
2663         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2664             /* VFIQs are only taken when hypervized and non-secure.  */
2665             return false;
2666         }
2667         return !(env->daif & PSTATE_F);
2668     case EXCP_VIRQ:
2669         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2670             /* VIRQs are only taken when hypervized and non-secure.  */
2671             return false;
2672         }
2673         return !(env->daif & PSTATE_I);
2674     default:
2675         g_assert_not_reached();
2676     }
2677 
2678     /* Use the target EL, current execution state and SCR/HCR settings to
2679      * determine whether the corresponding CPSR bit is used to mask the
2680      * interrupt.
2681      */
2682     if ((target_el > cur_el) && (target_el != 1)) {
2683         /* Exceptions targeting a higher EL may not be maskable */
2684         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2685             /* 64-bit masking rules are simple: exceptions to EL3
2686              * can't be masked, and exceptions to EL2 can only be
2687              * masked from Secure state. The HCR and SCR settings
2688              * don't affect the masking logic, only the interrupt routing.
2689              */
2690             if (target_el == 3 || !secure) {
2691                 unmasked = 1;
2692             }
2693         } else {
2694             /* The old 32-bit-only environment has a more complicated
2695              * masking setup. HCR and SCR bits not only affect interrupt
2696              * routing but also change the behaviour of masking.
2697              */
2698             bool hcr, scr;
2699 
2700             switch (excp_idx) {
2701             case EXCP_FIQ:
2702                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2703                  * we override the CPSR.F in determining if the exception is
2704                  * masked or not. If neither of these are set then we fall back
2705                  * to the CPSR.F setting otherwise we further assess the state
2706                  * below.
2707                  */
2708                 hcr = hcr_el2 & HCR_FMO;
2709                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2710 
2711                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2712                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2713                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2714                  * when non-secure but only when FIQs are only routed to EL3.
2715                  */
2716                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2717                 break;
2718             case EXCP_IRQ:
2719                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2720                  * we may override the CPSR.I masking when in non-secure state.
2721                  * The SCR.IRQ setting has already been taken into consideration
2722                  * when setting the target EL, so it does not have a further
2723                  * affect here.
2724                  */
2725                 hcr = hcr_el2 & HCR_IMO;
2726                 scr = false;
2727                 break;
2728             default:
2729                 g_assert_not_reached();
2730             }
2731 
2732             if ((scr || hcr) && !secure) {
2733                 unmasked = 1;
2734             }
2735         }
2736     }
2737 
2738     /* The PSTATE bits only mask the interrupt if we have not overriden the
2739      * ability above.
2740      */
2741     return unmasked || pstate_unmasked;
2742 }
2743 
2744 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2745 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2746 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2747 
2748 #define cpu_signal_handler cpu_arm_signal_handler
2749 #define cpu_list arm_cpu_list
2750 
2751 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2752  *
2753  * If EL3 is 64-bit:
2754  *  + NonSecure EL1 & 0 stage 1
2755  *  + NonSecure EL1 & 0 stage 2
2756  *  + NonSecure EL2
2757  *  + Secure EL1 & EL0
2758  *  + Secure EL3
2759  * If EL3 is 32-bit:
2760  *  + NonSecure PL1 & 0 stage 1
2761  *  + NonSecure PL1 & 0 stage 2
2762  *  + NonSecure PL2
2763  *  + Secure PL0 & PL1
2764  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2765  *
2766  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2767  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2768  *     may differ in access permissions even if the VA->PA map is the same
2769  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2770  *     translation, which means that we have one mmu_idx that deals with two
2771  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2772  *     architecturally permitted]
2773  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2774  *     handling via the TLB. The only way to do a stage 1 translation without
2775  *     the immediate stage 2 translation is via the ATS or AT system insns,
2776  *     which can be slow-pathed and always do a page table walk.
2777  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2778  *     translation regimes, because they map reasonably well to each other
2779  *     and they can't both be active at the same time.
2780  * This gives us the following list of mmu_idx values:
2781  *
2782  * NS EL0 (aka NS PL0) stage 1+2
2783  * NS EL1 (aka NS PL1) stage 1+2
2784  * NS EL2 (aka NS PL2)
2785  * S EL3 (aka S PL1)
2786  * S EL0 (aka S PL0)
2787  * S EL1 (not used if EL3 is 32 bit)
2788  * NS EL0+1 stage 2
2789  *
2790  * (The last of these is an mmu_idx because we want to be able to use the TLB
2791  * for the accesses done as part of a stage 1 page table walk, rather than
2792  * having to walk the stage 2 page table over and over.)
2793  *
2794  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2795  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2796  * NS EL2 if we ever model a Cortex-R52).
2797  *
2798  * M profile CPUs are rather different as they do not have a true MMU.
2799  * They have the following different MMU indexes:
2800  *  User
2801  *  Privileged
2802  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2803  *  Privileged, execution priority negative (ditto)
2804  * If the CPU supports the v8M Security Extension then there are also:
2805  *  Secure User
2806  *  Secure Privileged
2807  *  Secure User, execution priority negative
2808  *  Secure Privileged, execution priority negative
2809  *
2810  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2811  * are not quite the same -- different CPU types (most notably M profile
2812  * vs A/R profile) would like to use MMU indexes with different semantics,
2813  * but since we don't ever need to use all of those in a single CPU we
2814  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2815  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2816  * the same for any particular CPU.
2817  * Variables of type ARMMUIdx are always full values, and the core
2818  * index values are in variables of type 'int'.
2819  *
2820  * Our enumeration includes at the end some entries which are not "true"
2821  * mmu_idx values in that they don't have corresponding TLBs and are only
2822  * valid for doing slow path page table walks.
2823  *
2824  * The constant names here are patterned after the general style of the names
2825  * of the AT/ATS operations.
2826  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2827  * For M profile we arrange them to have a bit for priv, a bit for negpri
2828  * and a bit for secure.
2829  */
2830 #define ARM_MMU_IDX_A 0x10 /* A profile */
2831 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2832 #define ARM_MMU_IDX_M 0x40 /* M profile */
2833 
2834 /* meanings of the bits for M profile mmu idx values */
2835 #define ARM_MMU_IDX_M_PRIV 0x1
2836 #define ARM_MMU_IDX_M_NEGPRI 0x2
2837 #define ARM_MMU_IDX_M_S 0x4
2838 
2839 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2840 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2841 
2842 typedef enum ARMMMUIdx {
2843     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2844     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2845     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2846     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2847     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2848     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2849     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2850     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2851     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2852     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2853     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2854     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2855     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2856     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2857     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2858     /* Indexes below here don't have TLBs and are used only for AT system
2859      * instructions or for the first stage of an S12 page table walk.
2860      */
2861     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2862     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2863 } ARMMMUIdx;
2864 
2865 /* Bit macros for the core-mmu-index values for each index,
2866  * for use when calling tlb_flush_by_mmuidx() and friends.
2867  */
2868 typedef enum ARMMMUIdxBit {
2869     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2870     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2871     ARMMMUIdxBit_S1E2 = 1 << 2,
2872     ARMMMUIdxBit_S1E3 = 1 << 3,
2873     ARMMMUIdxBit_S1SE0 = 1 << 4,
2874     ARMMMUIdxBit_S1SE1 = 1 << 5,
2875     ARMMMUIdxBit_S2NS = 1 << 6,
2876     ARMMMUIdxBit_MUser = 1 << 0,
2877     ARMMMUIdxBit_MPriv = 1 << 1,
2878     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2879     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2880     ARMMMUIdxBit_MSUser = 1 << 4,
2881     ARMMMUIdxBit_MSPriv = 1 << 5,
2882     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2883     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2884 } ARMMMUIdxBit;
2885 
2886 #define MMU_USER_IDX 0
2887 
2888 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2889 {
2890     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2891 }
2892 
2893 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2894 {
2895     if (arm_feature(env, ARM_FEATURE_M)) {
2896         return mmu_idx | ARM_MMU_IDX_M;
2897     } else {
2898         return mmu_idx | ARM_MMU_IDX_A;
2899     }
2900 }
2901 
2902 /* Return the exception level we're running at if this is our mmu_idx */
2903 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2904 {
2905     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2906     case ARM_MMU_IDX_A:
2907         return mmu_idx & 3;
2908     case ARM_MMU_IDX_M:
2909         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2910     default:
2911         g_assert_not_reached();
2912     }
2913 }
2914 
2915 /*
2916  * Return the MMU index for a v7M CPU with all relevant information
2917  * manually specified.
2918  */
2919 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2920                               bool secstate, bool priv, bool negpri);
2921 
2922 /* Return the MMU index for a v7M CPU in the specified security and
2923  * privilege state.
2924  */
2925 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2926                                                 bool secstate, bool priv);
2927 
2928 /* Return the MMU index for a v7M CPU in the specified security state */
2929 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2930 
2931 /**
2932  * cpu_mmu_index:
2933  * @env: The cpu environment
2934  * @ifetch: True for code access, false for data access.
2935  *
2936  * Return the core mmu index for the current translation regime.
2937  * This function is used by generic TCG code paths.
2938  */
2939 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2940 
2941 /* Indexes used when registering address spaces with cpu_address_space_init */
2942 typedef enum ARMASIdx {
2943     ARMASIdx_NS = 0,
2944     ARMASIdx_S = 1,
2945 } ARMASIdx;
2946 
2947 /* Return the Exception Level targeted by debug exceptions. */
2948 static inline int arm_debug_target_el(CPUARMState *env)
2949 {
2950     bool secure = arm_is_secure(env);
2951     bool route_to_el2 = false;
2952 
2953     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2954         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2955                        env->cp15.mdcr_el2 & MDCR_TDE;
2956     }
2957 
2958     if (route_to_el2) {
2959         return 2;
2960     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2961                !arm_el_is_aa64(env, 3) && secure) {
2962         return 3;
2963     } else {
2964         return 1;
2965     }
2966 }
2967 
2968 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2969 {
2970     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2971      * CSSELR is RAZ/WI.
2972      */
2973     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2974 }
2975 
2976 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2977 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2978 {
2979     int cur_el = arm_current_el(env);
2980     int debug_el;
2981 
2982     if (cur_el == 3) {
2983         return false;
2984     }
2985 
2986     /* MDCR_EL3.SDD disables debug events from Secure state */
2987     if (arm_is_secure_below_el3(env)
2988         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2989         return false;
2990     }
2991 
2992     /*
2993      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2994      * while not masking the (D)ebug bit in DAIF.
2995      */
2996     debug_el = arm_debug_target_el(env);
2997 
2998     if (cur_el == debug_el) {
2999         return extract32(env->cp15.mdscr_el1, 13, 1)
3000             && !(env->daif & PSTATE_D);
3001     }
3002 
3003     /* Otherwise the debug target needs to be a higher EL */
3004     return debug_el > cur_el;
3005 }
3006 
3007 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3008 {
3009     int el = arm_current_el(env);
3010 
3011     if (el == 0 && arm_el_is_aa64(env, 1)) {
3012         return aa64_generate_debug_exceptions(env);
3013     }
3014 
3015     if (arm_is_secure(env)) {
3016         int spd;
3017 
3018         if (el == 0 && (env->cp15.sder & 1)) {
3019             /* SDER.SUIDEN means debug exceptions from Secure EL0
3020              * are always enabled. Otherwise they are controlled by
3021              * SDCR.SPD like those from other Secure ELs.
3022              */
3023             return true;
3024         }
3025 
3026         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3027         switch (spd) {
3028         case 1:
3029             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3030         case 0:
3031             /* For 0b00 we return true if external secure invasive debug
3032              * is enabled. On real hardware this is controlled by external
3033              * signals to the core. QEMU always permits debug, and behaves
3034              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3035              */
3036             return true;
3037         case 2:
3038             return false;
3039         case 3:
3040             return true;
3041         }
3042     }
3043 
3044     return el != 2;
3045 }
3046 
3047 /* Return true if debugging exceptions are currently enabled.
3048  * This corresponds to what in ARM ARM pseudocode would be
3049  *    if UsingAArch32() then
3050  *        return AArch32.GenerateDebugExceptions()
3051  *    else
3052  *        return AArch64.GenerateDebugExceptions()
3053  * We choose to push the if() down into this function for clarity,
3054  * since the pseudocode has it at all callsites except for the one in
3055  * CheckSoftwareStep(), where it is elided because both branches would
3056  * always return the same value.
3057  */
3058 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3059 {
3060     if (env->aarch64) {
3061         return aa64_generate_debug_exceptions(env);
3062     } else {
3063         return aa32_generate_debug_exceptions(env);
3064     }
3065 }
3066 
3067 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3068  * implicitly means this always returns false in pre-v8 CPUs.)
3069  */
3070 static inline bool arm_singlestep_active(CPUARMState *env)
3071 {
3072     return extract32(env->cp15.mdscr_el1, 0, 1)
3073         && arm_el_is_aa64(env, arm_debug_target_el(env))
3074         && arm_generate_debug_exceptions(env);
3075 }
3076 
3077 static inline bool arm_sctlr_b(CPUARMState *env)
3078 {
3079     return
3080         /* We need not implement SCTLR.ITD in user-mode emulation, so
3081          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3082          * This lets people run BE32 binaries with "-cpu any".
3083          */
3084 #ifndef CONFIG_USER_ONLY
3085         !arm_feature(env, ARM_FEATURE_V7) &&
3086 #endif
3087         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3088 }
3089 
3090 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3091 {
3092     if (el == 0) {
3093         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3094         return env->cp15.sctlr_el[1];
3095     } else {
3096         return env->cp15.sctlr_el[el];
3097     }
3098 }
3099 
3100 
3101 /* Return true if the processor is in big-endian mode. */
3102 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3103 {
3104     /* In 32bit endianness is determined by looking at CPSR's E bit */
3105     if (!is_a64(env)) {
3106         return
3107 #ifdef CONFIG_USER_ONLY
3108             /* In system mode, BE32 is modelled in line with the
3109              * architecture (as word-invariant big-endianness), where loads
3110              * and stores are done little endian but from addresses which
3111              * are adjusted by XORing with the appropriate constant. So the
3112              * endianness to use for the raw data access is not affected by
3113              * SCTLR.B.
3114              * In user mode, however, we model BE32 as byte-invariant
3115              * big-endianness (because user-only code cannot tell the
3116              * difference), and so we need to use a data access endianness
3117              * that depends on SCTLR.B.
3118              */
3119             arm_sctlr_b(env) ||
3120 #endif
3121                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3122     } else {
3123         int cur_el = arm_current_el(env);
3124         uint64_t sctlr = arm_sctlr(env, cur_el);
3125 
3126         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3127     }
3128 }
3129 
3130 #include "exec/cpu-all.h"
3131 
3132 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3133  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3134  * We put flags which are shared between 32 and 64 bit mode at the top
3135  * of the word, and flags which apply to only one mode at the bottom.
3136  */
3137 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3138 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3139 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3140 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3141 /* Target EL if we take a floating-point-disabled exception */
3142 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3143 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3144 
3145 /* Bit usage when in AArch32 state: */
3146 FIELD(TBFLAG_A32, THUMB, 0, 1)
3147 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3148 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3149 /*
3150  * We store the bottom two bits of the CPAR as TB flags and handle
3151  * checks on the other bits at runtime. This shares the same bits as
3152  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3153  */
3154 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3155 /*
3156  * Indicates whether cp register reads and writes by guest code should access
3157  * the secure or nonsecure bank of banked registers; note that this is not
3158  * the same thing as the current security state of the processor!
3159  */
3160 FIELD(TBFLAG_A32, NS, 6, 1)
3161 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3162 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3163 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3164 /* For M profile only, set if FPCCR.LSPACT is set */
3165 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3166 /* For M profile only, set if we must create a new FP context */
3167 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3168 /* For M profile only, set if FPCCR.S does not match current security state */
3169 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3170 /* For M profile only, Handler (ie not Thread) mode */
3171 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3172 /* For M profile only, whether we should generate stack-limit checks */
3173 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3174 
3175 /* Bit usage when in AArch64 state */
3176 FIELD(TBFLAG_A64, TBII, 0, 2)
3177 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3178 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3179 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3180 FIELD(TBFLAG_A64, BT, 9, 1)
3181 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3182 FIELD(TBFLAG_A64, TBID, 12, 2)
3183 
3184 static inline bool bswap_code(bool sctlr_b)
3185 {
3186 #ifdef CONFIG_USER_ONLY
3187     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3188      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3189      * would also end up as a mixed-endian mode with BE code, LE data.
3190      */
3191     return
3192 #ifdef TARGET_WORDS_BIGENDIAN
3193         1 ^
3194 #endif
3195         sctlr_b;
3196 #else
3197     /* All code access in ARM is little endian, and there are no loaders
3198      * doing swaps that need to be reversed
3199      */
3200     return 0;
3201 #endif
3202 }
3203 
3204 #ifdef CONFIG_USER_ONLY
3205 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3206 {
3207     return
3208 #ifdef TARGET_WORDS_BIGENDIAN
3209        1 ^
3210 #endif
3211        arm_cpu_data_is_big_endian(env);
3212 }
3213 #endif
3214 
3215 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3216                           target_ulong *cs_base, uint32_t *flags);
3217 
3218 enum {
3219     QEMU_PSCI_CONDUIT_DISABLED = 0,
3220     QEMU_PSCI_CONDUIT_SMC = 1,
3221     QEMU_PSCI_CONDUIT_HVC = 2,
3222 };
3223 
3224 #ifndef CONFIG_USER_ONLY
3225 /* Return the address space index to use for a memory access */
3226 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3227 {
3228     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3229 }
3230 
3231 /* Return the AddressSpace to use for a memory access
3232  * (which depends on whether the access is S or NS, and whether
3233  * the board gave us a separate AddressSpace for S accesses).
3234  */
3235 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3236 {
3237     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3238 }
3239 #endif
3240 
3241 /**
3242  * arm_register_pre_el_change_hook:
3243  * Register a hook function which will be called immediately before this
3244  * CPU changes exception level or mode. The hook function will be
3245  * passed a pointer to the ARMCPU and the opaque data pointer passed
3246  * to this function when the hook was registered.
3247  *
3248  * Note that if a pre-change hook is called, any registered post-change hooks
3249  * are guaranteed to subsequently be called.
3250  */
3251 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3252                                  void *opaque);
3253 /**
3254  * arm_register_el_change_hook:
3255  * Register a hook function which will be called immediately after this
3256  * CPU changes exception level or mode. The hook function will be
3257  * passed a pointer to the ARMCPU and the opaque data pointer passed
3258  * to this function when the hook was registered.
3259  *
3260  * Note that any registered hooks registered here are guaranteed to be called
3261  * if pre-change hooks have been.
3262  */
3263 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3264         *opaque);
3265 
3266 /**
3267  * aa32_vfp_dreg:
3268  * Return a pointer to the Dn register within env in 32-bit mode.
3269  */
3270 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3271 {
3272     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3273 }
3274 
3275 /**
3276  * aa32_vfp_qreg:
3277  * Return a pointer to the Qn register within env in 32-bit mode.
3278  */
3279 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3280 {
3281     return &env->vfp.zregs[regno].d[0];
3282 }
3283 
3284 /**
3285  * aa64_vfp_qreg:
3286  * Return a pointer to the Qn register within env in 64-bit mode.
3287  */
3288 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3289 {
3290     return &env->vfp.zregs[regno].d[0];
3291 }
3292 
3293 /* Shared between translate-sve.c and sve_helper.c.  */
3294 extern const uint64_t pred_esz_masks[4];
3295 
3296 /*
3297  * 32-bit feature tests via id registers.
3298  */
3299 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3300 {
3301     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3302 }
3303 
3304 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3305 {
3306     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3307 }
3308 
3309 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3310 {
3311     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3312 }
3313 
3314 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3315 {
3316     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3317 }
3318 
3319 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3320 {
3321     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3322 }
3323 
3324 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3325 {
3326     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3327 }
3328 
3329 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3330 {
3331     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3332 }
3333 
3334 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3335 {
3336     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3337 }
3338 
3339 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3340 {
3341     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3342 }
3343 
3344 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3345 {
3346     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3347 }
3348 
3349 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3350 {
3351     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3352 }
3353 
3354 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3355 {
3356     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3357 }
3358 
3359 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3360 {
3361     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3362 }
3363 
3364 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3365 {
3366     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3367 }
3368 
3369 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3370 {
3371     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3372 }
3373 
3374 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3375 {
3376     /*
3377      * This is a placeholder for use by VCMA until the rest of
3378      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3379      * At which point we can properly set and check MVFR1.FPHP.
3380      */
3381     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3382 }
3383 
3384 /*
3385  * We always set the FP and SIMD FP16 fields to indicate identical
3386  * levels of support (assuming SIMD is implemented at all), so
3387  * we only need one set of accessors.
3388  */
3389 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3390 {
3391     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3392 }
3393 
3394 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3395 {
3396     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3397 }
3398 
3399 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3400 {
3401     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3402 }
3403 
3404 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3405 {
3406     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3407 }
3408 
3409 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3410 {
3411     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3412 }
3413 
3414 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3415 {
3416     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3417 }
3418 
3419 /*
3420  * 64-bit feature tests via id registers.
3421  */
3422 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3423 {
3424     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3425 }
3426 
3427 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3428 {
3429     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3430 }
3431 
3432 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3433 {
3434     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3435 }
3436 
3437 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3438 {
3439     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3440 }
3441 
3442 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3443 {
3444     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3445 }
3446 
3447 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3448 {
3449     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3450 }
3451 
3452 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3453 {
3454     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3455 }
3456 
3457 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3458 {
3459     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3460 }
3461 
3462 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3463 {
3464     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3465 }
3466 
3467 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3468 {
3469     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3470 }
3471 
3472 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3473 {
3474     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3475 }
3476 
3477 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3478 {
3479     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3480 }
3481 
3482 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3483 {
3484     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3485 }
3486 
3487 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3488 {
3489     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3490 }
3491 
3492 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3493 {
3494     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3495 }
3496 
3497 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3498 {
3499     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3500 }
3501 
3502 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3503 {
3504     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3505 }
3506 
3507 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3510 }
3511 
3512 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3513 {
3514     /*
3515      * Note that while QEMU will only implement the architected algorithm
3516      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3517      * defined algorithms, and thus API+GPI, and this predicate controls
3518      * migration of the 128-bit keys.
3519      */
3520     return (id->id_aa64isar1 &
3521             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3522              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3523              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3524              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3525 }
3526 
3527 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3528 {
3529     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3530 }
3531 
3532 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3533 {
3534     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3535 }
3536 
3537 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3538 {
3539     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3540 }
3541 
3542 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3543 {
3544     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3545     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3546 }
3547 
3548 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3549 {
3550     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3551 }
3552 
3553 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3554 {
3555     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3556 }
3557 
3558 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3559 {
3560     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3561 }
3562 
3563 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3564 {
3565     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3566 }
3567 
3568 /*
3569  * Forward to the above feature tests given an ARMCPU pointer.
3570  */
3571 #define cpu_isar_feature(name, cpu) \
3572     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3573 
3574 #endif
3575