1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "qemu-common.h" 26 #include "cpu-qom.h" 27 #include "exec/cpu-defs.h" 28 29 /* ARM processors have a weak memory model */ 30 #define TCG_GUEST_DEFAULT_MO (0) 31 32 #define CPUArchState struct CPUARMState 33 34 #define EXCP_UDEF 1 /* undefined instruction */ 35 #define EXCP_SWI 2 /* software interrupt */ 36 #define EXCP_PREFETCH_ABORT 3 37 #define EXCP_DATA_ABORT 4 38 #define EXCP_IRQ 5 39 #define EXCP_FIQ 6 40 #define EXCP_BKPT 7 41 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 42 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 43 #define EXCP_HVC 11 /* HyperVisor Call */ 44 #define EXCP_HYP_TRAP 12 45 #define EXCP_SMC 13 /* Secure Monitor Call */ 46 #define EXCP_VIRQ 14 47 #define EXCP_VFIQ 15 48 #define EXCP_SEMIHOST 16 /* semihosting call */ 49 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 50 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 51 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 52 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 53 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 54 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 55 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 56 57 #define ARMV7M_EXCP_RESET 1 58 #define ARMV7M_EXCP_NMI 2 59 #define ARMV7M_EXCP_HARD 3 60 #define ARMV7M_EXCP_MEM 4 61 #define ARMV7M_EXCP_BUS 5 62 #define ARMV7M_EXCP_USAGE 6 63 #define ARMV7M_EXCP_SECURE 7 64 #define ARMV7M_EXCP_SVC 11 65 #define ARMV7M_EXCP_DEBUG 12 66 #define ARMV7M_EXCP_PENDSV 14 67 #define ARMV7M_EXCP_SYSTICK 15 68 69 /* For M profile, some registers are banked secure vs non-secure; 70 * these are represented as a 2-element array where the first element 71 * is the non-secure copy and the second is the secure copy. 72 * When the CPU does not have implement the security extension then 73 * only the first element is used. 74 * This means that the copy for the current security state can be 75 * accessed via env->registerfield[env->v7m.secure] (whether the security 76 * extension is implemented or not). 77 */ 78 enum { 79 M_REG_NS = 0, 80 M_REG_S = 1, 81 M_REG_NUM_BANKS = 2, 82 }; 83 84 /* ARM-specific interrupt pending bits. */ 85 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 86 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 87 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 88 89 /* The usual mapping for an AArch64 system register to its AArch32 90 * counterpart is for the 32 bit world to have access to the lower 91 * half only (with writes leaving the upper half untouched). It's 92 * therefore useful to be able to pass TCG the offset of the least 93 * significant half of a uint64_t struct member. 94 */ 95 #ifdef HOST_WORDS_BIGENDIAN 96 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 97 #define offsetofhigh32(S, M) offsetof(S, M) 98 #else 99 #define offsetoflow32(S, M) offsetof(S, M) 100 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 101 #endif 102 103 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 104 #define ARM_CPU_IRQ 0 105 #define ARM_CPU_FIQ 1 106 #define ARM_CPU_VIRQ 2 107 #define ARM_CPU_VFIQ 3 108 109 /* ARM-specific extra insn start words: 110 * 1: Conditional execution bits 111 * 2: Partial exception syndrome for data aborts 112 */ 113 #define TARGET_INSN_START_EXTRA_WORDS 2 114 115 /* The 2nd extra word holding syndrome info for data aborts does not use 116 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 117 * help the sleb128 encoder do a better job. 118 * When restoring the CPU state, we shift it back up. 119 */ 120 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 121 #define ARM_INSN_START_WORD2_SHIFT 14 122 123 /* We currently assume float and double are IEEE single and double 124 precision respectively. 125 Doing runtime conversions is tricky because VFP registers may contain 126 integer values (eg. as the result of a FTOSI instruction). 127 s<2n> maps to the least significant half of d<n> 128 s<2n+1> maps to the most significant half of d<n> 129 */ 130 131 /** 132 * DynamicGDBXMLInfo: 133 * @desc: Contains the XML descriptions. 134 * @num_cpregs: Number of the Coprocessor registers seen by GDB. 135 * @cpregs_keys: Array that contains the corresponding Key of 136 * a given cpreg with the same order of the cpreg in the XML description. 137 */ 138 typedef struct DynamicGDBXMLInfo { 139 char *desc; 140 int num_cpregs; 141 uint32_t *cpregs_keys; 142 } DynamicGDBXMLInfo; 143 144 /* CPU state for each instance of a generic timer (in cp15 c14) */ 145 typedef struct ARMGenericTimer { 146 uint64_t cval; /* Timer CompareValue register */ 147 uint64_t ctl; /* Timer Control register */ 148 } ARMGenericTimer; 149 150 #define GTIMER_PHYS 0 151 #define GTIMER_VIRT 1 152 #define GTIMER_HYP 2 153 #define GTIMER_SEC 3 154 #define NUM_GTIMERS 4 155 156 typedef struct { 157 uint64_t raw_tcr; 158 uint32_t mask; 159 uint32_t base_mask; 160 } TCR; 161 162 /* Define a maximum sized vector register. 163 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 164 * For 64-bit, this is a 2048-bit SVE register. 165 * 166 * Note that the mapping between S, D, and Q views of the register bank 167 * differs between AArch64 and AArch32. 168 * In AArch32: 169 * Qn = regs[n].d[1]:regs[n].d[0] 170 * Dn = regs[n / 2].d[n & 1] 171 * Sn = regs[n / 4].d[n % 4 / 2], 172 * bits 31..0 for even n, and bits 63..32 for odd n 173 * (and regs[16] to regs[31] are inaccessible) 174 * In AArch64: 175 * Zn = regs[n].d[*] 176 * Qn = regs[n].d[1]:regs[n].d[0] 177 * Dn = regs[n].d[0] 178 * Sn = regs[n].d[0] bits 31..0 179 * Hn = regs[n].d[0] bits 15..0 180 * 181 * This corresponds to the architecturally defined mapping between 182 * the two execution states, and means we do not need to explicitly 183 * map these registers when changing states. 184 * 185 * Align the data for use with TCG host vector operations. 186 */ 187 188 #ifdef TARGET_AARCH64 189 # define ARM_MAX_VQ 16 190 #else 191 # define ARM_MAX_VQ 1 192 #endif 193 194 typedef struct ARMVectorReg { 195 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 196 } ARMVectorReg; 197 198 #ifdef TARGET_AARCH64 199 /* In AArch32 mode, predicate registers do not exist at all. */ 200 typedef struct ARMPredicateReg { 201 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16); 202 } ARMPredicateReg; 203 204 /* In AArch32 mode, PAC keys do not exist at all. */ 205 typedef struct ARMPACKey { 206 uint64_t lo, hi; 207 } ARMPACKey; 208 #endif 209 210 211 typedef struct CPUARMState { 212 /* Regs for current mode. */ 213 uint32_t regs[16]; 214 215 /* 32/64 switch only happens when taking and returning from 216 * exceptions so the overlap semantics are taken care of then 217 * instead of having a complicated union. 218 */ 219 /* Regs for A64 mode. */ 220 uint64_t xregs[32]; 221 uint64_t pc; 222 /* PSTATE isn't an architectural register for ARMv8. However, it is 223 * convenient for us to assemble the underlying state into a 32 bit format 224 * identical to the architectural format used for the SPSR. (This is also 225 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 226 * 'pstate' register are.) Of the PSTATE bits: 227 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 228 * semantics as for AArch32, as described in the comments on each field) 229 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 230 * DAIF (exception masks) are kept in env->daif 231 * BTYPE is kept in env->btype 232 * all other bits are stored in their correct places in env->pstate 233 */ 234 uint32_t pstate; 235 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 236 237 /* Frequently accessed CPSR bits are stored separately for efficiency. 238 This contains all the other bits. Use cpsr_{read,write} to access 239 the whole CPSR. */ 240 uint32_t uncached_cpsr; 241 uint32_t spsr; 242 243 /* Banked registers. */ 244 uint64_t banked_spsr[8]; 245 uint32_t banked_r13[8]; 246 uint32_t banked_r14[8]; 247 248 /* These hold r8-r12. */ 249 uint32_t usr_regs[5]; 250 uint32_t fiq_regs[5]; 251 252 /* cpsr flag cache for faster execution */ 253 uint32_t CF; /* 0 or 1 */ 254 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 255 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 256 uint32_t ZF; /* Z set if zero. */ 257 uint32_t QF; /* 0 or 1 */ 258 uint32_t GE; /* cpsr[19:16] */ 259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 261 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 262 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 263 264 uint64_t elr_el[4]; /* AArch64 exception link regs */ 265 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 266 267 /* System control coprocessor (cp15) */ 268 struct { 269 uint32_t c0_cpuid; 270 union { /* Cache size selection */ 271 struct { 272 uint64_t _unused_csselr0; 273 uint64_t csselr_ns; 274 uint64_t _unused_csselr1; 275 uint64_t csselr_s; 276 }; 277 uint64_t csselr_el[4]; 278 }; 279 union { /* System control register. */ 280 struct { 281 uint64_t _unused_sctlr; 282 uint64_t sctlr_ns; 283 uint64_t hsctlr; 284 uint64_t sctlr_s; 285 }; 286 uint64_t sctlr_el[4]; 287 }; 288 uint64_t cpacr_el1; /* Architectural feature access control register */ 289 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 290 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 291 uint64_t sder; /* Secure debug enable register. */ 292 uint32_t nsacr; /* Non-secure access control register. */ 293 union { /* MMU translation table base 0. */ 294 struct { 295 uint64_t _unused_ttbr0_0; 296 uint64_t ttbr0_ns; 297 uint64_t _unused_ttbr0_1; 298 uint64_t ttbr0_s; 299 }; 300 uint64_t ttbr0_el[4]; 301 }; 302 union { /* MMU translation table base 1. */ 303 struct { 304 uint64_t _unused_ttbr1_0; 305 uint64_t ttbr1_ns; 306 uint64_t _unused_ttbr1_1; 307 uint64_t ttbr1_s; 308 }; 309 uint64_t ttbr1_el[4]; 310 }; 311 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 312 /* MMU translation table base control. */ 313 TCR tcr_el[4]; 314 TCR vtcr_el2; /* Virtualization Translation Control. */ 315 uint32_t c2_data; /* MPU data cacheable bits. */ 316 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 317 union { /* MMU domain access control register 318 * MPU write buffer control. 319 */ 320 struct { 321 uint64_t dacr_ns; 322 uint64_t dacr_s; 323 }; 324 struct { 325 uint64_t dacr32_el2; 326 }; 327 }; 328 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 329 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 330 uint64_t hcr_el2; /* Hypervisor configuration register */ 331 uint64_t scr_el3; /* Secure configuration register. */ 332 union { /* Fault status registers. */ 333 struct { 334 uint64_t ifsr_ns; 335 uint64_t ifsr_s; 336 }; 337 struct { 338 uint64_t ifsr32_el2; 339 }; 340 }; 341 union { 342 struct { 343 uint64_t _unused_dfsr; 344 uint64_t dfsr_ns; 345 uint64_t hsr; 346 uint64_t dfsr_s; 347 }; 348 uint64_t esr_el[4]; 349 }; 350 uint32_t c6_region[8]; /* MPU base/size registers. */ 351 union { /* Fault address registers. */ 352 struct { 353 uint64_t _unused_far0; 354 #ifdef HOST_WORDS_BIGENDIAN 355 uint32_t ifar_ns; 356 uint32_t dfar_ns; 357 uint32_t ifar_s; 358 uint32_t dfar_s; 359 #else 360 uint32_t dfar_ns; 361 uint32_t ifar_ns; 362 uint32_t dfar_s; 363 uint32_t ifar_s; 364 #endif 365 uint64_t _unused_far3; 366 }; 367 uint64_t far_el[4]; 368 }; 369 uint64_t hpfar_el2; 370 uint64_t hstr_el2; 371 union { /* Translation result. */ 372 struct { 373 uint64_t _unused_par_0; 374 uint64_t par_ns; 375 uint64_t _unused_par_1; 376 uint64_t par_s; 377 }; 378 uint64_t par_el[4]; 379 }; 380 381 uint32_t c9_insn; /* Cache lockdown registers. */ 382 uint32_t c9_data; 383 uint64_t c9_pmcr; /* performance monitor control register */ 384 uint64_t c9_pmcnten; /* perf monitor counter enables */ 385 uint64_t c9_pmovsr; /* perf monitor overflow status */ 386 uint64_t c9_pmuserenr; /* perf monitor user enable */ 387 uint64_t c9_pmselr; /* perf monitor counter selection register */ 388 uint64_t c9_pminten; /* perf monitor interrupt enables */ 389 union { /* Memory attribute redirection */ 390 struct { 391 #ifdef HOST_WORDS_BIGENDIAN 392 uint64_t _unused_mair_0; 393 uint32_t mair1_ns; 394 uint32_t mair0_ns; 395 uint64_t _unused_mair_1; 396 uint32_t mair1_s; 397 uint32_t mair0_s; 398 #else 399 uint64_t _unused_mair_0; 400 uint32_t mair0_ns; 401 uint32_t mair1_ns; 402 uint64_t _unused_mair_1; 403 uint32_t mair0_s; 404 uint32_t mair1_s; 405 #endif 406 }; 407 uint64_t mair_el[4]; 408 }; 409 union { /* vector base address register */ 410 struct { 411 uint64_t _unused_vbar; 412 uint64_t vbar_ns; 413 uint64_t hvbar; 414 uint64_t vbar_s; 415 }; 416 uint64_t vbar_el[4]; 417 }; 418 uint32_t mvbar; /* (monitor) vector base address register */ 419 struct { /* FCSE PID. */ 420 uint32_t fcseidr_ns; 421 uint32_t fcseidr_s; 422 }; 423 union { /* Context ID. */ 424 struct { 425 uint64_t _unused_contextidr_0; 426 uint64_t contextidr_ns; 427 uint64_t _unused_contextidr_1; 428 uint64_t contextidr_s; 429 }; 430 uint64_t contextidr_el[4]; 431 }; 432 union { /* User RW Thread register. */ 433 struct { 434 uint64_t tpidrurw_ns; 435 uint64_t tpidrprw_ns; 436 uint64_t htpidr; 437 uint64_t _tpidr_el3; 438 }; 439 uint64_t tpidr_el[4]; 440 }; 441 /* The secure banks of these registers don't map anywhere */ 442 uint64_t tpidrurw_s; 443 uint64_t tpidrprw_s; 444 uint64_t tpidruro_s; 445 446 union { /* User RO Thread register. */ 447 uint64_t tpidruro_ns; 448 uint64_t tpidrro_el[1]; 449 }; 450 uint64_t c14_cntfrq; /* Counter Frequency register */ 451 uint64_t c14_cntkctl; /* Timer Control register */ 452 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 453 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 454 ARMGenericTimer c14_timer[NUM_GTIMERS]; 455 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 456 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 457 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 458 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 459 uint32_t c15_threadid; /* TI debugger thread-ID. */ 460 uint32_t c15_config_base_address; /* SCU base address. */ 461 uint32_t c15_diagnostic; /* diagnostic register */ 462 uint32_t c15_power_diagnostic; 463 uint32_t c15_power_control; /* power control */ 464 uint64_t dbgbvr[16]; /* breakpoint value registers */ 465 uint64_t dbgbcr[16]; /* breakpoint control registers */ 466 uint64_t dbgwvr[16]; /* watchpoint value registers */ 467 uint64_t dbgwcr[16]; /* watchpoint control registers */ 468 uint64_t mdscr_el1; 469 uint64_t oslsr_el1; /* OS Lock Status */ 470 uint64_t mdcr_el2; 471 uint64_t mdcr_el3; 472 /* Stores the architectural value of the counter *the last time it was 473 * updated* by pmccntr_op_start. Accesses should always be surrounded 474 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 475 * architecturally-correct value is being read/set. 476 */ 477 uint64_t c15_ccnt; 478 /* Stores the delta between the architectural value and the underlying 479 * cycle count during normal operation. It is used to update c15_ccnt 480 * to be the correct architectural value before accesses. During 481 * accesses, c15_ccnt_delta contains the underlying count being used 482 * for the access, after which it reverts to the delta value in 483 * pmccntr_op_finish. 484 */ 485 uint64_t c15_ccnt_delta; 486 uint64_t c14_pmevcntr[31]; 487 uint64_t c14_pmevcntr_delta[31]; 488 uint64_t c14_pmevtyper[31]; 489 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 490 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 491 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 492 } cp15; 493 494 struct { 495 /* M profile has up to 4 stack pointers: 496 * a Main Stack Pointer and a Process Stack Pointer for each 497 * of the Secure and Non-Secure states. (If the CPU doesn't support 498 * the security extension then it has only two SPs.) 499 * In QEMU we always store the currently active SP in regs[13], 500 * and the non-active SP for the current security state in 501 * v7m.other_sp. The stack pointers for the inactive security state 502 * are stored in other_ss_msp and other_ss_psp. 503 * switch_v7m_security_state() is responsible for rearranging them 504 * when we change security state. 505 */ 506 uint32_t other_sp; 507 uint32_t other_ss_msp; 508 uint32_t other_ss_psp; 509 uint32_t vecbase[M_REG_NUM_BANKS]; 510 uint32_t basepri[M_REG_NUM_BANKS]; 511 uint32_t control[M_REG_NUM_BANKS]; 512 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 513 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 514 uint32_t hfsr; /* HardFault Status */ 515 uint32_t dfsr; /* Debug Fault Status Register */ 516 uint32_t sfsr; /* Secure Fault Status Register */ 517 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 518 uint32_t bfar; /* BusFault Address */ 519 uint32_t sfar; /* Secure Fault Address Register */ 520 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 521 int exception; 522 uint32_t primask[M_REG_NUM_BANKS]; 523 uint32_t faultmask[M_REG_NUM_BANKS]; 524 uint32_t aircr; /* only holds r/w state if security extn implemented */ 525 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 526 uint32_t csselr[M_REG_NUM_BANKS]; 527 uint32_t scr[M_REG_NUM_BANKS]; 528 uint32_t msplim[M_REG_NUM_BANKS]; 529 uint32_t psplim[M_REG_NUM_BANKS]; 530 uint32_t fpcar[M_REG_NUM_BANKS]; 531 uint32_t fpccr[M_REG_NUM_BANKS]; 532 uint32_t fpdscr[M_REG_NUM_BANKS]; 533 uint32_t cpacr[M_REG_NUM_BANKS]; 534 uint32_t nsacr; 535 } v7m; 536 537 /* Information associated with an exception about to be taken: 538 * code which raises an exception must set cs->exception_index and 539 * the relevant parts of this structure; the cpu_do_interrupt function 540 * will then set the guest-visible registers as part of the exception 541 * entry process. 542 */ 543 struct { 544 uint32_t syndrome; /* AArch64 format syndrome register */ 545 uint32_t fsr; /* AArch32 format fault status register info */ 546 uint64_t vaddress; /* virtual addr associated with exception, if any */ 547 uint32_t target_el; /* EL the exception should be targeted for */ 548 /* If we implement EL2 we will also need to store information 549 * about the intermediate physical address for stage 2 faults. 550 */ 551 } exception; 552 553 /* Information associated with an SError */ 554 struct { 555 uint8_t pending; 556 uint8_t has_esr; 557 uint64_t esr; 558 } serror; 559 560 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 561 uint32_t irq_line_state; 562 563 /* Thumb-2 EE state. */ 564 uint32_t teecr; 565 uint32_t teehbr; 566 567 /* VFP coprocessor state. */ 568 struct { 569 ARMVectorReg zregs[32]; 570 571 #ifdef TARGET_AARCH64 572 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 573 #define FFR_PRED_NUM 16 574 ARMPredicateReg pregs[17]; 575 /* Scratch space for aa64 sve predicate temporary. */ 576 ARMPredicateReg preg_tmp; 577 #endif 578 579 /* We store these fpcsr fields separately for convenience. */ 580 uint32_t qc[4] QEMU_ALIGNED(16); 581 int vec_len; 582 int vec_stride; 583 584 uint32_t xregs[16]; 585 586 /* Scratch space for aa32 neon expansion. */ 587 uint32_t scratch[8]; 588 589 /* There are a number of distinct float control structures: 590 * 591 * fp_status: is the "normal" fp status. 592 * fp_status_fp16: used for half-precision calculations 593 * standard_fp_status : the ARM "Standard FPSCR Value" 594 * 595 * Half-precision operations are governed by a separate 596 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 597 * status structure to control this. 598 * 599 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 600 * round-to-nearest and is used by any operations (generally 601 * Neon) which the architecture defines as controlled by the 602 * standard FPSCR value rather than the FPSCR. 603 * 604 * To avoid having to transfer exception bits around, we simply 605 * say that the FPSCR cumulative exception flags are the logical 606 * OR of the flags in the three fp statuses. This relies on the 607 * only thing which needs to read the exception flags being 608 * an explicit FPSCR read. 609 */ 610 float_status fp_status; 611 float_status fp_status_f16; 612 float_status standard_fp_status; 613 614 /* ZCR_EL[1-3] */ 615 uint64_t zcr_el[4]; 616 } vfp; 617 uint64_t exclusive_addr; 618 uint64_t exclusive_val; 619 uint64_t exclusive_high; 620 621 /* iwMMXt coprocessor state. */ 622 struct { 623 uint64_t regs[16]; 624 uint64_t val; 625 626 uint32_t cregs[16]; 627 } iwmmxt; 628 629 #ifdef TARGET_AARCH64 630 struct { 631 ARMPACKey apia; 632 ARMPACKey apib; 633 ARMPACKey apda; 634 ARMPACKey apdb; 635 ARMPACKey apga; 636 } keys; 637 #endif 638 639 #if defined(CONFIG_USER_ONLY) 640 /* For usermode syscall translation. */ 641 int eabi; 642 #endif 643 644 struct CPUBreakpoint *cpu_breakpoint[16]; 645 struct CPUWatchpoint *cpu_watchpoint[16]; 646 647 /* Fields up to this point are cleared by a CPU reset */ 648 struct {} end_reset_fields; 649 650 CPU_COMMON 651 652 /* Fields after CPU_COMMON are preserved across CPU reset. */ 653 654 /* Internal CPU feature flags. */ 655 uint64_t features; 656 657 /* PMSAv7 MPU */ 658 struct { 659 uint32_t *drbar; 660 uint32_t *drsr; 661 uint32_t *dracr; 662 uint32_t rnr[M_REG_NUM_BANKS]; 663 } pmsav7; 664 665 /* PMSAv8 MPU */ 666 struct { 667 /* The PMSAv8 implementation also shares some PMSAv7 config 668 * and state: 669 * pmsav7.rnr (region number register) 670 * pmsav7_dregion (number of configured regions) 671 */ 672 uint32_t *rbar[M_REG_NUM_BANKS]; 673 uint32_t *rlar[M_REG_NUM_BANKS]; 674 uint32_t mair0[M_REG_NUM_BANKS]; 675 uint32_t mair1[M_REG_NUM_BANKS]; 676 } pmsav8; 677 678 /* v8M SAU */ 679 struct { 680 uint32_t *rbar; 681 uint32_t *rlar; 682 uint32_t rnr; 683 uint32_t ctrl; 684 } sau; 685 686 void *nvic; 687 const struct arm_boot_info *boot_info; 688 /* Store GICv3CPUState to access from this struct */ 689 void *gicv3state; 690 } CPUARMState; 691 692 /** 693 * ARMELChangeHookFn: 694 * type of a function which can be registered via arm_register_el_change_hook() 695 * to get callbacks when the CPU changes its exception level or mode. 696 */ 697 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 698 typedef struct ARMELChangeHook ARMELChangeHook; 699 struct ARMELChangeHook { 700 ARMELChangeHookFn *hook; 701 void *opaque; 702 QLIST_ENTRY(ARMELChangeHook) node; 703 }; 704 705 /* These values map onto the return values for 706 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 707 typedef enum ARMPSCIState { 708 PSCI_ON = 0, 709 PSCI_OFF = 1, 710 PSCI_ON_PENDING = 2 711 } ARMPSCIState; 712 713 typedef struct ARMISARegisters ARMISARegisters; 714 715 /** 716 * ARMCPU: 717 * @env: #CPUARMState 718 * 719 * An ARM CPU core. 720 */ 721 struct ARMCPU { 722 /*< private >*/ 723 CPUState parent_obj; 724 /*< public >*/ 725 726 CPUARMState env; 727 728 /* Coprocessor information */ 729 GHashTable *cp_regs; 730 /* For marshalling (mostly coprocessor) register state between the 731 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 732 * we use these arrays. 733 */ 734 /* List of register indexes managed via these arrays; (full KVM style 735 * 64 bit indexes, not CPRegInfo 32 bit indexes) 736 */ 737 uint64_t *cpreg_indexes; 738 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 739 uint64_t *cpreg_values; 740 /* Length of the indexes, values, reset_values arrays */ 741 int32_t cpreg_array_len; 742 /* These are used only for migration: incoming data arrives in 743 * these fields and is sanity checked in post_load before copying 744 * to the working data structures above. 745 */ 746 uint64_t *cpreg_vmstate_indexes; 747 uint64_t *cpreg_vmstate_values; 748 int32_t cpreg_vmstate_array_len; 749 750 DynamicGDBXMLInfo dyn_xml; 751 752 /* Timers used by the generic (architected) timer */ 753 QEMUTimer *gt_timer[NUM_GTIMERS]; 754 /* 755 * Timer used by the PMU. Its state is restored after migration by 756 * pmu_op_finish() - it does not need other handling during migration 757 */ 758 QEMUTimer *pmu_timer; 759 /* GPIO outputs for generic timer */ 760 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 761 /* GPIO output for GICv3 maintenance interrupt signal */ 762 qemu_irq gicv3_maintenance_interrupt; 763 /* GPIO output for the PMU interrupt */ 764 qemu_irq pmu_interrupt; 765 766 /* MemoryRegion to use for secure physical accesses */ 767 MemoryRegion *secure_memory; 768 769 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 770 Object *idau; 771 772 /* 'compatible' string for this CPU for Linux device trees */ 773 const char *dtb_compatible; 774 775 /* PSCI version for this CPU 776 * Bits[31:16] = Major Version 777 * Bits[15:0] = Minor Version 778 */ 779 uint32_t psci_version; 780 781 /* Should CPU start in PSCI powered-off state? */ 782 bool start_powered_off; 783 784 /* Current power state, access guarded by BQL */ 785 ARMPSCIState power_state; 786 787 /* CPU has virtualization extension */ 788 bool has_el2; 789 /* CPU has security extension */ 790 bool has_el3; 791 /* CPU has PMU (Performance Monitor Unit) */ 792 bool has_pmu; 793 794 /* CPU has memory protection unit */ 795 bool has_mpu; 796 /* PMSAv7 MPU number of supported regions */ 797 uint32_t pmsav7_dregion; 798 /* v8M SAU number of supported regions */ 799 uint32_t sau_sregion; 800 801 /* PSCI conduit used to invoke PSCI methods 802 * 0 - disabled, 1 - smc, 2 - hvc 803 */ 804 uint32_t psci_conduit; 805 806 /* For v8M, initial value of the Secure VTOR */ 807 uint32_t init_svtor; 808 809 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 810 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 811 */ 812 uint32_t kvm_target; 813 814 /* KVM init features for this CPU */ 815 uint32_t kvm_init_features[7]; 816 817 /* Uniprocessor system with MP extensions */ 818 bool mp_is_up; 819 820 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 821 * and the probe failed (so we need to report the error in realize) 822 */ 823 bool host_cpu_probe_failed; 824 825 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 826 * register. 827 */ 828 int32_t core_count; 829 830 /* The instance init functions for implementation-specific subclasses 831 * set these fields to specify the implementation-dependent values of 832 * various constant registers and reset values of non-constant 833 * registers. 834 * Some of these might become QOM properties eventually. 835 * Field names match the official register names as defined in the 836 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 837 * is used for reset values of non-constant registers; no reset_ 838 * prefix means a constant register. 839 * Some of these registers are split out into a substructure that 840 * is shared with the translators to control the ISA. 841 */ 842 struct ARMISARegisters { 843 uint32_t id_isar0; 844 uint32_t id_isar1; 845 uint32_t id_isar2; 846 uint32_t id_isar3; 847 uint32_t id_isar4; 848 uint32_t id_isar5; 849 uint32_t id_isar6; 850 uint32_t mvfr0; 851 uint32_t mvfr1; 852 uint32_t mvfr2; 853 uint64_t id_aa64isar0; 854 uint64_t id_aa64isar1; 855 uint64_t id_aa64pfr0; 856 uint64_t id_aa64pfr1; 857 uint64_t id_aa64mmfr0; 858 uint64_t id_aa64mmfr1; 859 } isar; 860 uint32_t midr; 861 uint32_t revidr; 862 uint32_t reset_fpsid; 863 uint32_t ctr; 864 uint32_t reset_sctlr; 865 uint32_t id_pfr0; 866 uint32_t id_pfr1; 867 uint32_t id_dfr0; 868 uint64_t pmceid0; 869 uint64_t pmceid1; 870 uint32_t id_afr0; 871 uint32_t id_mmfr0; 872 uint32_t id_mmfr1; 873 uint32_t id_mmfr2; 874 uint32_t id_mmfr3; 875 uint32_t id_mmfr4; 876 uint64_t id_aa64dfr0; 877 uint64_t id_aa64dfr1; 878 uint64_t id_aa64afr0; 879 uint64_t id_aa64afr1; 880 uint32_t dbgdidr; 881 uint32_t clidr; 882 uint64_t mp_affinity; /* MP ID without feature bits */ 883 /* The elements of this array are the CCSIDR values for each cache, 884 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 885 */ 886 uint32_t ccsidr[16]; 887 uint64_t reset_cbar; 888 uint32_t reset_auxcr; 889 bool reset_hivecs; 890 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 891 uint32_t dcz_blocksize; 892 uint64_t rvbar; 893 894 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 895 int gic_num_lrs; /* number of list registers */ 896 int gic_vpribits; /* number of virtual priority bits */ 897 int gic_vprebits; /* number of virtual preemption bits */ 898 899 /* Whether the cfgend input is high (i.e. this CPU should reset into 900 * big-endian mode). This setting isn't used directly: instead it modifies 901 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 902 * architecture version. 903 */ 904 bool cfgend; 905 906 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 907 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 908 909 int32_t node_id; /* NUMA node this CPU belongs to */ 910 911 /* Used to synchronize KVM and QEMU in-kernel device levels */ 912 uint8_t device_irq_level; 913 914 /* Used to set the maximum vector length the cpu will support. */ 915 uint32_t sve_max_vq; 916 }; 917 918 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) 919 { 920 return container_of(env, ARMCPU, env); 921 } 922 923 void arm_cpu_post_init(Object *obj); 924 925 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 926 927 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) 928 929 #define ENV_OFFSET offsetof(ARMCPU, env) 930 931 #ifndef CONFIG_USER_ONLY 932 extern const struct VMStateDescription vmstate_arm_cpu; 933 #endif 934 935 void arm_cpu_do_interrupt(CPUState *cpu); 936 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 937 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 938 939 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags); 940 941 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 942 MemTxAttrs *attrs); 943 944 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 945 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 946 947 /* Dynamically generates for gdb stub an XML description of the sysregs from 948 * the cp_regs hashtable. Returns the registered sysregs number. 949 */ 950 int arm_gen_dynamic_xml(CPUState *cpu); 951 952 /* Returns the dynamically generated XML for the gdb stub. 953 * Returns a pointer to the XML contents for the specified XML file or NULL 954 * if the XML name doesn't match the predefined one. 955 */ 956 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 957 958 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 959 int cpuid, void *opaque); 960 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 961 int cpuid, void *opaque); 962 963 #ifdef TARGET_AARCH64 964 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 965 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 966 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 967 void aarch64_sve_change_el(CPUARMState *env, int old_el, 968 int new_el, bool el0_a64); 969 #else 970 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 971 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 972 int n, bool a) 973 { } 974 #endif 975 976 target_ulong do_arm_semihosting(CPUARMState *env); 977 void aarch64_sync_32_to_64(CPUARMState *env); 978 void aarch64_sync_64_to_32(CPUARMState *env); 979 980 int fp_exception_el(CPUARMState *env, int cur_el); 981 int sve_exception_el(CPUARMState *env, int cur_el); 982 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 983 984 static inline bool is_a64(CPUARMState *env) 985 { 986 return env->aarch64; 987 } 988 989 /* you can call this signal handler from your SIGBUS and SIGSEGV 990 signal handlers to inform the virtual CPU of exceptions. non zero 991 is returned if the signal was handled by the virtual CPU. */ 992 int cpu_arm_signal_handler(int host_signum, void *pinfo, 993 void *puc); 994 995 /** 996 * pmu_op_start/finish 997 * @env: CPUARMState 998 * 999 * Convert all PMU counters between their delta form (the typical mode when 1000 * they are enabled) and the guest-visible values. These two calls must 1001 * surround any action which might affect the counters. 1002 */ 1003 void pmu_op_start(CPUARMState *env); 1004 void pmu_op_finish(CPUARMState *env); 1005 1006 /* 1007 * Called when a PMU counter is due to overflow 1008 */ 1009 void arm_pmu_timer_cb(void *opaque); 1010 1011 /** 1012 * Functions to register as EL change hooks for PMU mode filtering 1013 */ 1014 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1015 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1016 1017 /* 1018 * pmu_init 1019 * @cpu: ARMCPU 1020 * 1021 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1022 * for the current configuration 1023 */ 1024 void pmu_init(ARMCPU *cpu); 1025 1026 /* SCTLR bit meanings. Several bits have been reused in newer 1027 * versions of the architecture; in that case we define constants 1028 * for both old and new bit meanings. Code which tests against those 1029 * bits should probably check or otherwise arrange that the CPU 1030 * is the architectural version it expects. 1031 */ 1032 #define SCTLR_M (1U << 0) 1033 #define SCTLR_A (1U << 1) 1034 #define SCTLR_C (1U << 2) 1035 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1036 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1037 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1038 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1039 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1040 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1041 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1042 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1043 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1044 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1045 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1046 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1047 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1048 #define SCTLR_SED (1U << 8) /* v8 onward */ 1049 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1050 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1051 #define SCTLR_F (1U << 10) /* up to v6 */ 1052 #define SCTLR_SW (1U << 10) /* v7 */ 1053 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1054 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1055 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1056 #define SCTLR_I (1U << 12) 1057 #define SCTLR_V (1U << 13) /* AArch32 only */ 1058 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1059 #define SCTLR_RR (1U << 14) /* up to v7 */ 1060 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1061 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1062 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1063 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1064 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1065 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1066 #define SCTLR_BR (1U << 17) /* PMSA only */ 1067 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1068 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1069 #define SCTLR_WXN (1U << 19) 1070 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1071 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1072 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1073 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1074 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1075 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1076 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1077 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1078 #define SCTLR_VE (1U << 24) /* up to v7 */ 1079 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1080 #define SCTLR_EE (1U << 25) 1081 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1082 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1083 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1084 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1085 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1086 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1087 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1088 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1089 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1090 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1091 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1092 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1093 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1094 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1095 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1096 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1097 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1098 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1099 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1100 1101 #define CPTR_TCPAC (1U << 31) 1102 #define CPTR_TTA (1U << 20) 1103 #define CPTR_TFP (1U << 10) 1104 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1105 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1106 1107 #define MDCR_EPMAD (1U << 21) 1108 #define MDCR_EDAD (1U << 20) 1109 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1110 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1111 #define MDCR_SDD (1U << 16) 1112 #define MDCR_SPD (3U << 14) 1113 #define MDCR_TDRA (1U << 11) 1114 #define MDCR_TDOSA (1U << 10) 1115 #define MDCR_TDA (1U << 9) 1116 #define MDCR_TDE (1U << 8) 1117 #define MDCR_HPME (1U << 7) 1118 #define MDCR_TPM (1U << 6) 1119 #define MDCR_TPMCR (1U << 5) 1120 #define MDCR_HPMN (0x1fU) 1121 1122 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1123 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1124 1125 #define CPSR_M (0x1fU) 1126 #define CPSR_T (1U << 5) 1127 #define CPSR_F (1U << 6) 1128 #define CPSR_I (1U << 7) 1129 #define CPSR_A (1U << 8) 1130 #define CPSR_E (1U << 9) 1131 #define CPSR_IT_2_7 (0xfc00U) 1132 #define CPSR_GE (0xfU << 16) 1133 #define CPSR_IL (1U << 20) 1134 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 1135 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 1136 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 1137 * where it is live state but not accessible to the AArch32 code. 1138 */ 1139 #define CPSR_RESERVED (0x7U << 21) 1140 #define CPSR_J (1U << 24) 1141 #define CPSR_IT_0_1 (3U << 25) 1142 #define CPSR_Q (1U << 27) 1143 #define CPSR_V (1U << 28) 1144 #define CPSR_C (1U << 29) 1145 #define CPSR_Z (1U << 30) 1146 #define CPSR_N (1U << 31) 1147 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1148 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1149 1150 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1151 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1152 | CPSR_NZCV) 1153 /* Bits writable in user mode. */ 1154 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 1155 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1156 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1157 /* Mask of bits which may be set by exception return copying them from SPSR */ 1158 #define CPSR_ERET_MASK (~CPSR_RESERVED) 1159 1160 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1161 #define XPSR_EXCP 0x1ffU 1162 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1163 #define XPSR_IT_2_7 CPSR_IT_2_7 1164 #define XPSR_GE CPSR_GE 1165 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1166 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1167 #define XPSR_IT_0_1 CPSR_IT_0_1 1168 #define XPSR_Q CPSR_Q 1169 #define XPSR_V CPSR_V 1170 #define XPSR_C CPSR_C 1171 #define XPSR_Z CPSR_Z 1172 #define XPSR_N CPSR_N 1173 #define XPSR_NZCV CPSR_NZCV 1174 #define XPSR_IT CPSR_IT 1175 1176 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1177 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1178 #define TTBCR_PD0 (1U << 4) 1179 #define TTBCR_PD1 (1U << 5) 1180 #define TTBCR_EPD0 (1U << 7) 1181 #define TTBCR_IRGN0 (3U << 8) 1182 #define TTBCR_ORGN0 (3U << 10) 1183 #define TTBCR_SH0 (3U << 12) 1184 #define TTBCR_T1SZ (3U << 16) 1185 #define TTBCR_A1 (1U << 22) 1186 #define TTBCR_EPD1 (1U << 23) 1187 #define TTBCR_IRGN1 (3U << 24) 1188 #define TTBCR_ORGN1 (3U << 26) 1189 #define TTBCR_SH1 (1U << 28) 1190 #define TTBCR_EAE (1U << 31) 1191 1192 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1193 * Only these are valid when in AArch64 mode; in 1194 * AArch32 mode SPSRs are basically CPSR-format. 1195 */ 1196 #define PSTATE_SP (1U) 1197 #define PSTATE_M (0xFU) 1198 #define PSTATE_nRW (1U << 4) 1199 #define PSTATE_F (1U << 6) 1200 #define PSTATE_I (1U << 7) 1201 #define PSTATE_A (1U << 8) 1202 #define PSTATE_D (1U << 9) 1203 #define PSTATE_BTYPE (3U << 10) 1204 #define PSTATE_IL (1U << 20) 1205 #define PSTATE_SS (1U << 21) 1206 #define PSTATE_V (1U << 28) 1207 #define PSTATE_C (1U << 29) 1208 #define PSTATE_Z (1U << 30) 1209 #define PSTATE_N (1U << 31) 1210 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1211 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1212 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1213 /* Mode values for AArch64 */ 1214 #define PSTATE_MODE_EL3h 13 1215 #define PSTATE_MODE_EL3t 12 1216 #define PSTATE_MODE_EL2h 9 1217 #define PSTATE_MODE_EL2t 8 1218 #define PSTATE_MODE_EL1h 5 1219 #define PSTATE_MODE_EL1t 4 1220 #define PSTATE_MODE_EL0t 0 1221 1222 /* Write a new value to v7m.exception, thus transitioning into or out 1223 * of Handler mode; this may result in a change of active stack pointer. 1224 */ 1225 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1226 1227 /* Map EL and handler into a PSTATE_MODE. */ 1228 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1229 { 1230 return (el << 2) | handler; 1231 } 1232 1233 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1234 * interprocessing, so we don't attempt to sync with the cpsr state used by 1235 * the 32 bit decoder. 1236 */ 1237 static inline uint32_t pstate_read(CPUARMState *env) 1238 { 1239 int ZF; 1240 1241 ZF = (env->ZF == 0); 1242 return (env->NF & 0x80000000) | (ZF << 30) 1243 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1244 | env->pstate | env->daif | (env->btype << 10); 1245 } 1246 1247 static inline void pstate_write(CPUARMState *env, uint32_t val) 1248 { 1249 env->ZF = (~val) & PSTATE_Z; 1250 env->NF = val; 1251 env->CF = (val >> 29) & 1; 1252 env->VF = (val << 3) & 0x80000000; 1253 env->daif = val & PSTATE_DAIF; 1254 env->btype = (val >> 10) & 3; 1255 env->pstate = val & ~CACHED_PSTATE_BITS; 1256 } 1257 1258 /* Return the current CPSR value. */ 1259 uint32_t cpsr_read(CPUARMState *env); 1260 1261 typedef enum CPSRWriteType { 1262 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1263 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1264 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1265 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1266 } CPSRWriteType; 1267 1268 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1269 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1270 CPSRWriteType write_type); 1271 1272 /* Return the current xPSR value. */ 1273 static inline uint32_t xpsr_read(CPUARMState *env) 1274 { 1275 int ZF; 1276 ZF = (env->ZF == 0); 1277 return (env->NF & 0x80000000) | (ZF << 30) 1278 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1279 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1280 | ((env->condexec_bits & 0xfc) << 8) 1281 | (env->GE << 16) 1282 | env->v7m.exception; 1283 } 1284 1285 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1286 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1287 { 1288 if (mask & XPSR_NZCV) { 1289 env->ZF = (~val) & XPSR_Z; 1290 env->NF = val; 1291 env->CF = (val >> 29) & 1; 1292 env->VF = (val << 3) & 0x80000000; 1293 } 1294 if (mask & XPSR_Q) { 1295 env->QF = ((val & XPSR_Q) != 0); 1296 } 1297 if (mask & XPSR_GE) { 1298 env->GE = (val & XPSR_GE) >> 16; 1299 } 1300 if (mask & XPSR_T) { 1301 env->thumb = ((val & XPSR_T) != 0); 1302 } 1303 if (mask & XPSR_IT_0_1) { 1304 env->condexec_bits &= ~3; 1305 env->condexec_bits |= (val >> 25) & 3; 1306 } 1307 if (mask & XPSR_IT_2_7) { 1308 env->condexec_bits &= 3; 1309 env->condexec_bits |= (val >> 8) & 0xfc; 1310 } 1311 if (mask & XPSR_EXCP) { 1312 /* Note that this only happens on exception exit */ 1313 write_v7m_exception(env, val & XPSR_EXCP); 1314 } 1315 } 1316 1317 #define HCR_VM (1ULL << 0) 1318 #define HCR_SWIO (1ULL << 1) 1319 #define HCR_PTW (1ULL << 2) 1320 #define HCR_FMO (1ULL << 3) 1321 #define HCR_IMO (1ULL << 4) 1322 #define HCR_AMO (1ULL << 5) 1323 #define HCR_VF (1ULL << 6) 1324 #define HCR_VI (1ULL << 7) 1325 #define HCR_VSE (1ULL << 8) 1326 #define HCR_FB (1ULL << 9) 1327 #define HCR_BSU_MASK (3ULL << 10) 1328 #define HCR_DC (1ULL << 12) 1329 #define HCR_TWI (1ULL << 13) 1330 #define HCR_TWE (1ULL << 14) 1331 #define HCR_TID0 (1ULL << 15) 1332 #define HCR_TID1 (1ULL << 16) 1333 #define HCR_TID2 (1ULL << 17) 1334 #define HCR_TID3 (1ULL << 18) 1335 #define HCR_TSC (1ULL << 19) 1336 #define HCR_TIDCP (1ULL << 20) 1337 #define HCR_TACR (1ULL << 21) 1338 #define HCR_TSW (1ULL << 22) 1339 #define HCR_TPCP (1ULL << 23) 1340 #define HCR_TPU (1ULL << 24) 1341 #define HCR_TTLB (1ULL << 25) 1342 #define HCR_TVM (1ULL << 26) 1343 #define HCR_TGE (1ULL << 27) 1344 #define HCR_TDZ (1ULL << 28) 1345 #define HCR_HCD (1ULL << 29) 1346 #define HCR_TRVM (1ULL << 30) 1347 #define HCR_RW (1ULL << 31) 1348 #define HCR_CD (1ULL << 32) 1349 #define HCR_ID (1ULL << 33) 1350 #define HCR_E2H (1ULL << 34) 1351 #define HCR_TLOR (1ULL << 35) 1352 #define HCR_TERR (1ULL << 36) 1353 #define HCR_TEA (1ULL << 37) 1354 #define HCR_MIOCNCE (1ULL << 38) 1355 #define HCR_APK (1ULL << 40) 1356 #define HCR_API (1ULL << 41) 1357 #define HCR_NV (1ULL << 42) 1358 #define HCR_NV1 (1ULL << 43) 1359 #define HCR_AT (1ULL << 44) 1360 #define HCR_NV2 (1ULL << 45) 1361 #define HCR_FWB (1ULL << 46) 1362 #define HCR_FIEN (1ULL << 47) 1363 #define HCR_TID4 (1ULL << 49) 1364 #define HCR_TICAB (1ULL << 50) 1365 #define HCR_TOCU (1ULL << 52) 1366 #define HCR_TTLBIS (1ULL << 54) 1367 #define HCR_TTLBOS (1ULL << 55) 1368 #define HCR_ATA (1ULL << 56) 1369 #define HCR_DCT (1ULL << 57) 1370 1371 /* 1372 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to 1373 * HCR_MASK and then clear it again if the feature bit is not set in 1374 * hcr_write(). 1375 */ 1376 #define HCR_MASK ((1ULL << 34) - 1) 1377 1378 #define SCR_NS (1U << 0) 1379 #define SCR_IRQ (1U << 1) 1380 #define SCR_FIQ (1U << 2) 1381 #define SCR_EA (1U << 3) 1382 #define SCR_FW (1U << 4) 1383 #define SCR_AW (1U << 5) 1384 #define SCR_NET (1U << 6) 1385 #define SCR_SMD (1U << 7) 1386 #define SCR_HCE (1U << 8) 1387 #define SCR_SIF (1U << 9) 1388 #define SCR_RW (1U << 10) 1389 #define SCR_ST (1U << 11) 1390 #define SCR_TWI (1U << 12) 1391 #define SCR_TWE (1U << 13) 1392 #define SCR_TLOR (1U << 14) 1393 #define SCR_TERR (1U << 15) 1394 #define SCR_APK (1U << 16) 1395 #define SCR_API (1U << 17) 1396 #define SCR_EEL2 (1U << 18) 1397 #define SCR_EASE (1U << 19) 1398 #define SCR_NMEA (1U << 20) 1399 #define SCR_FIEN (1U << 21) 1400 #define SCR_ENSCXT (1U << 25) 1401 #define SCR_ATA (1U << 26) 1402 1403 /* Return the current FPSCR value. */ 1404 uint32_t vfp_get_fpscr(CPUARMState *env); 1405 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1406 1407 /* FPCR, Floating Point Control Register 1408 * FPSR, Floating Poiht Status Register 1409 * 1410 * For A64 the FPSCR is split into two logically distinct registers, 1411 * FPCR and FPSR. However since they still use non-overlapping bits 1412 * we store the underlying state in fpscr and just mask on read/write. 1413 */ 1414 #define FPSR_MASK 0xf800009f 1415 #define FPCR_MASK 0x07ff9f00 1416 1417 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1418 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1419 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1420 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1421 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1422 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1423 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1424 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1425 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1426 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1427 1428 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1429 { 1430 return vfp_get_fpscr(env) & FPSR_MASK; 1431 } 1432 1433 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1434 { 1435 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1436 vfp_set_fpscr(env, new_fpscr); 1437 } 1438 1439 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1440 { 1441 return vfp_get_fpscr(env) & FPCR_MASK; 1442 } 1443 1444 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1445 { 1446 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1447 vfp_set_fpscr(env, new_fpscr); 1448 } 1449 1450 enum arm_cpu_mode { 1451 ARM_CPU_MODE_USR = 0x10, 1452 ARM_CPU_MODE_FIQ = 0x11, 1453 ARM_CPU_MODE_IRQ = 0x12, 1454 ARM_CPU_MODE_SVC = 0x13, 1455 ARM_CPU_MODE_MON = 0x16, 1456 ARM_CPU_MODE_ABT = 0x17, 1457 ARM_CPU_MODE_HYP = 0x1a, 1458 ARM_CPU_MODE_UND = 0x1b, 1459 ARM_CPU_MODE_SYS = 0x1f 1460 }; 1461 1462 /* VFP system registers. */ 1463 #define ARM_VFP_FPSID 0 1464 #define ARM_VFP_FPSCR 1 1465 #define ARM_VFP_MVFR2 5 1466 #define ARM_VFP_MVFR1 6 1467 #define ARM_VFP_MVFR0 7 1468 #define ARM_VFP_FPEXC 8 1469 #define ARM_VFP_FPINST 9 1470 #define ARM_VFP_FPINST2 10 1471 1472 /* iwMMXt coprocessor control registers. */ 1473 #define ARM_IWMMXT_wCID 0 1474 #define ARM_IWMMXT_wCon 1 1475 #define ARM_IWMMXT_wCSSF 2 1476 #define ARM_IWMMXT_wCASF 3 1477 #define ARM_IWMMXT_wCGR0 8 1478 #define ARM_IWMMXT_wCGR1 9 1479 #define ARM_IWMMXT_wCGR2 10 1480 #define ARM_IWMMXT_wCGR3 11 1481 1482 /* V7M CCR bits */ 1483 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1484 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1485 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1486 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1487 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1488 FIELD(V7M_CCR, STKALIGN, 9, 1) 1489 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1490 FIELD(V7M_CCR, DC, 16, 1) 1491 FIELD(V7M_CCR, IC, 17, 1) 1492 FIELD(V7M_CCR, BP, 18, 1) 1493 1494 /* V7M SCR bits */ 1495 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1496 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1497 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1498 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1499 1500 /* V7M AIRCR bits */ 1501 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1502 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1503 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1504 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1505 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1506 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1507 FIELD(V7M_AIRCR, PRIS, 14, 1) 1508 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1509 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1510 1511 /* V7M CFSR bits for MMFSR */ 1512 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1513 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1514 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1515 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1516 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1517 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1518 1519 /* V7M CFSR bits for BFSR */ 1520 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1521 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1522 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1523 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1524 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1525 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1526 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1527 1528 /* V7M CFSR bits for UFSR */ 1529 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1530 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1531 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1532 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1533 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1534 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1535 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1536 1537 /* V7M CFSR bit masks covering all of the subregister bits */ 1538 FIELD(V7M_CFSR, MMFSR, 0, 8) 1539 FIELD(V7M_CFSR, BFSR, 8, 8) 1540 FIELD(V7M_CFSR, UFSR, 16, 16) 1541 1542 /* V7M HFSR bits */ 1543 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1544 FIELD(V7M_HFSR, FORCED, 30, 1) 1545 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1546 1547 /* V7M DFSR bits */ 1548 FIELD(V7M_DFSR, HALTED, 0, 1) 1549 FIELD(V7M_DFSR, BKPT, 1, 1) 1550 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1551 FIELD(V7M_DFSR, VCATCH, 3, 1) 1552 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1553 1554 /* V7M SFSR bits */ 1555 FIELD(V7M_SFSR, INVEP, 0, 1) 1556 FIELD(V7M_SFSR, INVIS, 1, 1) 1557 FIELD(V7M_SFSR, INVER, 2, 1) 1558 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1559 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1560 FIELD(V7M_SFSR, LSPERR, 5, 1) 1561 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1562 FIELD(V7M_SFSR, LSERR, 7, 1) 1563 1564 /* v7M MPU_CTRL bits */ 1565 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1566 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1567 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1568 1569 /* v7M CLIDR bits */ 1570 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1571 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1572 FIELD(V7M_CLIDR, LOC, 24, 3) 1573 FIELD(V7M_CLIDR, LOUU, 27, 3) 1574 FIELD(V7M_CLIDR, ICB, 30, 2) 1575 1576 FIELD(V7M_CSSELR, IND, 0, 1) 1577 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1578 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1579 * define a mask for this and check that it doesn't permit running off 1580 * the end of the array. 1581 */ 1582 FIELD(V7M_CSSELR, INDEX, 0, 4) 1583 1584 /* v7M FPCCR bits */ 1585 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1586 FIELD(V7M_FPCCR, USER, 1, 1) 1587 FIELD(V7M_FPCCR, S, 2, 1) 1588 FIELD(V7M_FPCCR, THREAD, 3, 1) 1589 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1590 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1591 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1592 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1593 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1594 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1595 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1596 FIELD(V7M_FPCCR, RES0, 11, 15) 1597 FIELD(V7M_FPCCR, TS, 26, 1) 1598 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1599 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1600 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1601 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1602 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1603 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1604 #define R_V7M_FPCCR_BANKED_MASK \ 1605 (R_V7M_FPCCR_LSPACT_MASK | \ 1606 R_V7M_FPCCR_USER_MASK | \ 1607 R_V7M_FPCCR_THREAD_MASK | \ 1608 R_V7M_FPCCR_MMRDY_MASK | \ 1609 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1610 R_V7M_FPCCR_UFRDY_MASK | \ 1611 R_V7M_FPCCR_ASPEN_MASK) 1612 1613 /* 1614 * System register ID fields. 1615 */ 1616 FIELD(ID_ISAR0, SWAP, 0, 4) 1617 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1618 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1619 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1620 FIELD(ID_ISAR0, COPROC, 16, 4) 1621 FIELD(ID_ISAR0, DEBUG, 20, 4) 1622 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1623 1624 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1625 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1626 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1627 FIELD(ID_ISAR1, EXTEND, 12, 4) 1628 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1629 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1630 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1631 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1632 1633 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1634 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1635 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1636 FIELD(ID_ISAR2, MULT, 12, 4) 1637 FIELD(ID_ISAR2, MULTS, 16, 4) 1638 FIELD(ID_ISAR2, MULTU, 20, 4) 1639 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1640 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1641 1642 FIELD(ID_ISAR3, SATURATE, 0, 4) 1643 FIELD(ID_ISAR3, SIMD, 4, 4) 1644 FIELD(ID_ISAR3, SVC, 8, 4) 1645 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1646 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1647 FIELD(ID_ISAR3, T32COPY, 20, 4) 1648 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1649 FIELD(ID_ISAR3, T32EE, 28, 4) 1650 1651 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1652 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1653 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1654 FIELD(ID_ISAR4, SMC, 12, 4) 1655 FIELD(ID_ISAR4, BARRIER, 16, 4) 1656 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1657 FIELD(ID_ISAR4, PSR_M, 24, 4) 1658 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1659 1660 FIELD(ID_ISAR5, SEVL, 0, 4) 1661 FIELD(ID_ISAR5, AES, 4, 4) 1662 FIELD(ID_ISAR5, SHA1, 8, 4) 1663 FIELD(ID_ISAR5, SHA2, 12, 4) 1664 FIELD(ID_ISAR5, CRC32, 16, 4) 1665 FIELD(ID_ISAR5, RDM, 24, 4) 1666 FIELD(ID_ISAR5, VCMA, 28, 4) 1667 1668 FIELD(ID_ISAR6, JSCVT, 0, 4) 1669 FIELD(ID_ISAR6, DP, 4, 4) 1670 FIELD(ID_ISAR6, FHM, 8, 4) 1671 FIELD(ID_ISAR6, SB, 12, 4) 1672 FIELD(ID_ISAR6, SPECRES, 16, 4) 1673 1674 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1675 FIELD(ID_MMFR4, AC2, 4, 4) 1676 FIELD(ID_MMFR4, XNX, 8, 4) 1677 FIELD(ID_MMFR4, CNP, 12, 4) 1678 FIELD(ID_MMFR4, HPDS, 16, 4) 1679 FIELD(ID_MMFR4, LSM, 20, 4) 1680 FIELD(ID_MMFR4, CCIDX, 24, 4) 1681 FIELD(ID_MMFR4, EVT, 28, 4) 1682 1683 FIELD(ID_AA64ISAR0, AES, 4, 4) 1684 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1685 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1686 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1687 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1688 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1689 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1690 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1691 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1692 FIELD(ID_AA64ISAR0, DP, 44, 4) 1693 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1694 FIELD(ID_AA64ISAR0, TS, 52, 4) 1695 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1696 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1697 1698 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1699 FIELD(ID_AA64ISAR1, APA, 4, 4) 1700 FIELD(ID_AA64ISAR1, API, 8, 4) 1701 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1702 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1703 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1704 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1705 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1706 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1707 FIELD(ID_AA64ISAR1, SB, 36, 4) 1708 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1709 1710 FIELD(ID_AA64PFR0, EL0, 0, 4) 1711 FIELD(ID_AA64PFR0, EL1, 4, 4) 1712 FIELD(ID_AA64PFR0, EL2, 8, 4) 1713 FIELD(ID_AA64PFR0, EL3, 12, 4) 1714 FIELD(ID_AA64PFR0, FP, 16, 4) 1715 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1716 FIELD(ID_AA64PFR0, GIC, 24, 4) 1717 FIELD(ID_AA64PFR0, RAS, 28, 4) 1718 FIELD(ID_AA64PFR0, SVE, 32, 4) 1719 1720 FIELD(ID_AA64PFR1, BT, 0, 4) 1721 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1722 FIELD(ID_AA64PFR1, MTE, 8, 4) 1723 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1724 1725 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1726 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1727 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1728 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1729 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1730 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1731 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1732 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1733 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1734 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1735 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1736 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1737 1738 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1739 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1740 FIELD(ID_AA64MMFR1, VH, 8, 4) 1741 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1742 FIELD(ID_AA64MMFR1, LO, 16, 4) 1743 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1744 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1745 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1746 1747 FIELD(ID_DFR0, COPDBG, 0, 4) 1748 FIELD(ID_DFR0, COPSDBG, 4, 4) 1749 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1750 FIELD(ID_DFR0, COPTRC, 12, 4) 1751 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1752 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1753 FIELD(ID_DFR0, PERFMON, 24, 4) 1754 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1755 1756 FIELD(MVFR0, SIMDREG, 0, 4) 1757 FIELD(MVFR0, FPSP, 4, 4) 1758 FIELD(MVFR0, FPDP, 8, 4) 1759 FIELD(MVFR0, FPTRAP, 12, 4) 1760 FIELD(MVFR0, FPDIVIDE, 16, 4) 1761 FIELD(MVFR0, FPSQRT, 20, 4) 1762 FIELD(MVFR0, FPSHVEC, 24, 4) 1763 FIELD(MVFR0, FPROUND, 28, 4) 1764 1765 FIELD(MVFR1, FPFTZ, 0, 4) 1766 FIELD(MVFR1, FPDNAN, 4, 4) 1767 FIELD(MVFR1, SIMDLS, 8, 4) 1768 FIELD(MVFR1, SIMDINT, 12, 4) 1769 FIELD(MVFR1, SIMDSP, 16, 4) 1770 FIELD(MVFR1, SIMDHP, 20, 4) 1771 FIELD(MVFR1, FPHP, 24, 4) 1772 FIELD(MVFR1, SIMDFMAC, 28, 4) 1773 1774 FIELD(MVFR2, SIMDMISC, 0, 4) 1775 FIELD(MVFR2, FPMISC, 4, 4) 1776 1777 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1778 1779 /* If adding a feature bit which corresponds to a Linux ELF 1780 * HWCAP bit, remember to update the feature-bit-to-hwcap 1781 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1782 */ 1783 enum arm_features { 1784 ARM_FEATURE_VFP, 1785 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1786 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1787 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1788 ARM_FEATURE_V6, 1789 ARM_FEATURE_V6K, 1790 ARM_FEATURE_V7, 1791 ARM_FEATURE_THUMB2, 1792 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1793 ARM_FEATURE_VFP3, 1794 ARM_FEATURE_NEON, 1795 ARM_FEATURE_M, /* Microcontroller profile. */ 1796 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1797 ARM_FEATURE_THUMB2EE, 1798 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1799 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1800 ARM_FEATURE_V4T, 1801 ARM_FEATURE_V5, 1802 ARM_FEATURE_STRONGARM, 1803 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1804 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1805 ARM_FEATURE_GENERIC_TIMER, 1806 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1807 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1808 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1809 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1810 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1811 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1812 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1813 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1814 ARM_FEATURE_V8, 1815 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1816 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1817 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1818 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1819 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1820 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1821 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1822 ARM_FEATURE_PMU, /* has PMU support */ 1823 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1824 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1825 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1826 }; 1827 1828 static inline int arm_feature(CPUARMState *env, int feature) 1829 { 1830 return (env->features & (1ULL << feature)) != 0; 1831 } 1832 1833 #if !defined(CONFIG_USER_ONLY) 1834 /* Return true if exception levels below EL3 are in secure state, 1835 * or would be following an exception return to that level. 1836 * Unlike arm_is_secure() (which is always a question about the 1837 * _current_ state of the CPU) this doesn't care about the current 1838 * EL or mode. 1839 */ 1840 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1841 { 1842 if (arm_feature(env, ARM_FEATURE_EL3)) { 1843 return !(env->cp15.scr_el3 & SCR_NS); 1844 } else { 1845 /* If EL3 is not supported then the secure state is implementation 1846 * defined, in which case QEMU defaults to non-secure. 1847 */ 1848 return false; 1849 } 1850 } 1851 1852 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1853 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1854 { 1855 if (arm_feature(env, ARM_FEATURE_EL3)) { 1856 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1857 /* CPU currently in AArch64 state and EL3 */ 1858 return true; 1859 } else if (!is_a64(env) && 1860 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1861 /* CPU currently in AArch32 state and monitor mode */ 1862 return true; 1863 } 1864 } 1865 return false; 1866 } 1867 1868 /* Return true if the processor is in secure state */ 1869 static inline bool arm_is_secure(CPUARMState *env) 1870 { 1871 if (arm_is_el3_or_mon(env)) { 1872 return true; 1873 } 1874 return arm_is_secure_below_el3(env); 1875 } 1876 1877 #else 1878 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1879 { 1880 return false; 1881 } 1882 1883 static inline bool arm_is_secure(CPUARMState *env) 1884 { 1885 return false; 1886 } 1887 #endif 1888 1889 /** 1890 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 1891 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 1892 * "for all purposes other than a direct read or write access of HCR_EL2." 1893 * Not included here is HCR_RW. 1894 */ 1895 uint64_t arm_hcr_el2_eff(CPUARMState *env); 1896 1897 /* Return true if the specified exception level is running in AArch64 state. */ 1898 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1899 { 1900 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1901 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1902 */ 1903 assert(el >= 1 && el <= 3); 1904 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1905 1906 /* The highest exception level is always at the maximum supported 1907 * register width, and then lower levels have a register width controlled 1908 * by bits in the SCR or HCR registers. 1909 */ 1910 if (el == 3) { 1911 return aa64; 1912 } 1913 1914 if (arm_feature(env, ARM_FEATURE_EL3)) { 1915 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1916 } 1917 1918 if (el == 2) { 1919 return aa64; 1920 } 1921 1922 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1923 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1924 } 1925 1926 return aa64; 1927 } 1928 1929 /* Function for determing whether guest cp register reads and writes should 1930 * access the secure or non-secure bank of a cp register. When EL3 is 1931 * operating in AArch32 state, the NS-bit determines whether the secure 1932 * instance of a cp register should be used. When EL3 is AArch64 (or if 1933 * it doesn't exist at all) then there is no register banking, and all 1934 * accesses are to the non-secure version. 1935 */ 1936 static inline bool access_secure_reg(CPUARMState *env) 1937 { 1938 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1939 !arm_el_is_aa64(env, 3) && 1940 !(env->cp15.scr_el3 & SCR_NS)); 1941 1942 return ret; 1943 } 1944 1945 /* Macros for accessing a specified CP register bank */ 1946 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 1947 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 1948 1949 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 1950 do { \ 1951 if (_secure) { \ 1952 (_env)->cp15._regname##_s = (_val); \ 1953 } else { \ 1954 (_env)->cp15._regname##_ns = (_val); \ 1955 } \ 1956 } while (0) 1957 1958 /* Macros for automatically accessing a specific CP register bank depending on 1959 * the current secure state of the system. These macros are not intended for 1960 * supporting instruction translation reads/writes as these are dependent 1961 * solely on the SCR.NS bit and not the mode. 1962 */ 1963 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 1964 A32_BANKED_REG_GET((_env), _regname, \ 1965 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 1966 1967 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 1968 A32_BANKED_REG_SET((_env), _regname, \ 1969 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 1970 (_val)) 1971 1972 void arm_cpu_list(void); 1973 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 1974 uint32_t cur_el, bool secure); 1975 1976 /* Interface between CPU and Interrupt controller. */ 1977 #ifndef CONFIG_USER_ONLY 1978 bool armv7m_nvic_can_take_pending_exception(void *opaque); 1979 #else 1980 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 1981 { 1982 return true; 1983 } 1984 #endif 1985 /** 1986 * armv7m_nvic_set_pending: mark the specified exception as pending 1987 * @opaque: the NVIC 1988 * @irq: the exception number to mark pending 1989 * @secure: false for non-banked exceptions or for the nonsecure 1990 * version of a banked exception, true for the secure version of a banked 1991 * exception. 1992 * 1993 * Marks the specified exception as pending. Note that we will assert() 1994 * if @secure is true and @irq does not specify one of the fixed set 1995 * of architecturally banked exceptions. 1996 */ 1997 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 1998 /** 1999 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2000 * @opaque: the NVIC 2001 * @irq: the exception number to mark pending 2002 * @secure: false for non-banked exceptions or for the nonsecure 2003 * version of a banked exception, true for the secure version of a banked 2004 * exception. 2005 * 2006 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2007 * exceptions (exceptions generated in the course of trying to take 2008 * a different exception). 2009 */ 2010 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2011 /** 2012 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2013 * @opaque: the NVIC 2014 * @irq: the exception number to mark pending 2015 * @secure: false for non-banked exceptions or for the nonsecure 2016 * version of a banked exception, true for the secure version of a banked 2017 * exception. 2018 * 2019 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2020 * generated in the course of lazy stacking of FP registers. 2021 */ 2022 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2023 /** 2024 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2025 * exception, and whether it targets Secure state 2026 * @opaque: the NVIC 2027 * @pirq: set to pending exception number 2028 * @ptargets_secure: set to whether pending exception targets Secure 2029 * 2030 * This function writes the number of the highest priority pending 2031 * exception (the one which would be made active by 2032 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2033 * to true if the current highest priority pending exception should 2034 * be taken to Secure state, false for NS. 2035 */ 2036 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2037 bool *ptargets_secure); 2038 /** 2039 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2040 * @opaque: the NVIC 2041 * 2042 * Move the current highest priority pending exception from the pending 2043 * state to the active state, and update v7m.exception to indicate that 2044 * it is the exception currently being handled. 2045 */ 2046 void armv7m_nvic_acknowledge_irq(void *opaque); 2047 /** 2048 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2049 * @opaque: the NVIC 2050 * @irq: the exception number to complete 2051 * @secure: true if this exception was secure 2052 * 2053 * Returns: -1 if the irq was not active 2054 * 1 if completing this irq brought us back to base (no active irqs) 2055 * 0 if there is still an irq active after this one was completed 2056 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2057 */ 2058 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2059 /** 2060 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2061 * @opaque: the NVIC 2062 * @irq: the exception number to mark pending 2063 * @secure: false for non-banked exceptions or for the nonsecure 2064 * version of a banked exception, true for the secure version of a banked 2065 * exception. 2066 * 2067 * Return whether an exception is "ready", i.e. whether the exception is 2068 * enabled and is configured at a priority which would allow it to 2069 * interrupt the current execution priority. This controls whether the 2070 * RDY bit for it in the FPCCR is set. 2071 */ 2072 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2073 /** 2074 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2075 * @opaque: the NVIC 2076 * 2077 * Returns: the raw execution priority as defined by the v8M architecture. 2078 * This is the execution priority minus the effects of AIRCR.PRIS, 2079 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2080 * (v8M ARM ARM I_PKLD.) 2081 */ 2082 int armv7m_nvic_raw_execution_priority(void *opaque); 2083 /** 2084 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2085 * priority is negative for the specified security state. 2086 * @opaque: the NVIC 2087 * @secure: the security state to test 2088 * This corresponds to the pseudocode IsReqExecPriNeg(). 2089 */ 2090 #ifndef CONFIG_USER_ONLY 2091 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2092 #else 2093 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2094 { 2095 return false; 2096 } 2097 #endif 2098 2099 /* Interface for defining coprocessor registers. 2100 * Registers are defined in tables of arm_cp_reginfo structs 2101 * which are passed to define_arm_cp_regs(). 2102 */ 2103 2104 /* When looking up a coprocessor register we look for it 2105 * via an integer which encodes all of: 2106 * coprocessor number 2107 * Crn, Crm, opc1, opc2 fields 2108 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2109 * or via MRRC/MCRR?) 2110 * non-secure/secure bank (AArch32 only) 2111 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2112 * (In this case crn and opc2 should be zero.) 2113 * For AArch64, there is no 32/64 bit size distinction; 2114 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2115 * and 4 bit CRn and CRm. The encoding patterns are chosen 2116 * to be easy to convert to and from the KVM encodings, and also 2117 * so that the hashtable can contain both AArch32 and AArch64 2118 * registers (to allow for interprocessing where we might run 2119 * 32 bit code on a 64 bit core). 2120 */ 2121 /* This bit is private to our hashtable cpreg; in KVM register 2122 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2123 * in the upper bits of the 64 bit ID. 2124 */ 2125 #define CP_REG_AA64_SHIFT 28 2126 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2127 2128 /* To enable banking of coprocessor registers depending on ns-bit we 2129 * add a bit to distinguish between secure and non-secure cpregs in the 2130 * hashtable. 2131 */ 2132 #define CP_REG_NS_SHIFT 29 2133 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2134 2135 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2136 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2137 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2138 2139 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2140 (CP_REG_AA64_MASK | \ 2141 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2142 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2143 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2144 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2145 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2146 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2147 2148 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2149 * version used as a key for the coprocessor register hashtable 2150 */ 2151 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2152 { 2153 uint32_t cpregid = kvmid; 2154 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2155 cpregid |= CP_REG_AA64_MASK; 2156 } else { 2157 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2158 cpregid |= (1 << 15); 2159 } 2160 2161 /* KVM is always non-secure so add the NS flag on AArch32 register 2162 * entries. 2163 */ 2164 cpregid |= 1 << CP_REG_NS_SHIFT; 2165 } 2166 return cpregid; 2167 } 2168 2169 /* Convert a truncated 32 bit hashtable key into the full 2170 * 64 bit KVM register ID. 2171 */ 2172 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2173 { 2174 uint64_t kvmid; 2175 2176 if (cpregid & CP_REG_AA64_MASK) { 2177 kvmid = cpregid & ~CP_REG_AA64_MASK; 2178 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2179 } else { 2180 kvmid = cpregid & ~(1 << 15); 2181 if (cpregid & (1 << 15)) { 2182 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2183 } else { 2184 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2185 } 2186 } 2187 return kvmid; 2188 } 2189 2190 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2191 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2192 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2193 * TCG can assume the value to be constant (ie load at translate time) 2194 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2195 * indicates that the TB should not be ended after a write to this register 2196 * (the default is that the TB ends after cp writes). OVERRIDE permits 2197 * a register definition to override a previous definition for the 2198 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2199 * old must have the OVERRIDE bit set. 2200 * ALIAS indicates that this register is an alias view of some underlying 2201 * state which is also visible via another register, and that the other 2202 * register is handling migration and reset; registers marked ALIAS will not be 2203 * migrated but may have their state set by syncing of register state from KVM. 2204 * NO_RAW indicates that this register has no underlying state and does not 2205 * support raw access for state saving/loading; it will not be used for either 2206 * migration or KVM state synchronization. (Typically this is for "registers" 2207 * which are actually used as instructions for cache maintenance and so on.) 2208 * IO indicates that this register does I/O and therefore its accesses 2209 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 2210 * registers which implement clocks or timers require this. 2211 */ 2212 #define ARM_CP_SPECIAL 0x0001 2213 #define ARM_CP_CONST 0x0002 2214 #define ARM_CP_64BIT 0x0004 2215 #define ARM_CP_SUPPRESS_TB_END 0x0008 2216 #define ARM_CP_OVERRIDE 0x0010 2217 #define ARM_CP_ALIAS 0x0020 2218 #define ARM_CP_IO 0x0040 2219 #define ARM_CP_NO_RAW 0x0080 2220 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2221 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2222 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2223 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2224 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2225 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 2226 #define ARM_CP_FPU 0x1000 2227 #define ARM_CP_SVE 0x2000 2228 #define ARM_CP_NO_GDB 0x4000 2229 /* Used only as a terminator for ARMCPRegInfo lists */ 2230 #define ARM_CP_SENTINEL 0xffff 2231 /* Mask of only the flag bits in a type field */ 2232 #define ARM_CP_FLAG_MASK 0x70ff 2233 2234 /* Valid values for ARMCPRegInfo state field, indicating which of 2235 * the AArch32 and AArch64 execution states this register is visible in. 2236 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2237 * If the reginfo is declared to be visible in both states then a second 2238 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2239 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2240 * Note that we rely on the values of these enums as we iterate through 2241 * the various states in some places. 2242 */ 2243 enum { 2244 ARM_CP_STATE_AA32 = 0, 2245 ARM_CP_STATE_AA64 = 1, 2246 ARM_CP_STATE_BOTH = 2, 2247 }; 2248 2249 /* ARM CP register secure state flags. These flags identify security state 2250 * attributes for a given CP register entry. 2251 * The existence of both or neither secure and non-secure flags indicates that 2252 * the register has both a secure and non-secure hash entry. A single one of 2253 * these flags causes the register to only be hashed for the specified 2254 * security state. 2255 * Although definitions may have any combination of the S/NS bits, each 2256 * registered entry will only have one to identify whether the entry is secure 2257 * or non-secure. 2258 */ 2259 enum { 2260 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2261 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2262 }; 2263 2264 /* Return true if cptype is a valid type field. This is used to try to 2265 * catch errors where the sentinel has been accidentally left off the end 2266 * of a list of registers. 2267 */ 2268 static inline bool cptype_valid(int cptype) 2269 { 2270 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2271 || ((cptype & ARM_CP_SPECIAL) && 2272 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2273 } 2274 2275 /* Access rights: 2276 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2277 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2278 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2279 * (ie any of the privileged modes in Secure state, or Monitor mode). 2280 * If a register is accessible in one privilege level it's always accessible 2281 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2282 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2283 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2284 * terminology a little and call this PL3. 2285 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2286 * with the ELx exception levels. 2287 * 2288 * If access permissions for a register are more complex than can be 2289 * described with these bits, then use a laxer set of restrictions, and 2290 * do the more restrictive/complex check inside a helper function. 2291 */ 2292 #define PL3_R 0x80 2293 #define PL3_W 0x40 2294 #define PL2_R (0x20 | PL3_R) 2295 #define PL2_W (0x10 | PL3_W) 2296 #define PL1_R (0x08 | PL2_R) 2297 #define PL1_W (0x04 | PL2_W) 2298 #define PL0_R (0x02 | PL1_R) 2299 #define PL0_W (0x01 | PL1_W) 2300 2301 /* 2302 * For user-mode some registers are accessible to EL0 via a kernel 2303 * trap-and-emulate ABI. In this case we define the read permissions 2304 * as actually being PL0_R. However some bits of any given register 2305 * may still be masked. 2306 */ 2307 #ifdef CONFIG_USER_ONLY 2308 #define PL0U_R PL0_R 2309 #else 2310 #define PL0U_R PL1_R 2311 #endif 2312 2313 #define PL3_RW (PL3_R | PL3_W) 2314 #define PL2_RW (PL2_R | PL2_W) 2315 #define PL1_RW (PL1_R | PL1_W) 2316 #define PL0_RW (PL0_R | PL0_W) 2317 2318 /* Return the highest implemented Exception Level */ 2319 static inline int arm_highest_el(CPUARMState *env) 2320 { 2321 if (arm_feature(env, ARM_FEATURE_EL3)) { 2322 return 3; 2323 } 2324 if (arm_feature(env, ARM_FEATURE_EL2)) { 2325 return 2; 2326 } 2327 return 1; 2328 } 2329 2330 /* Return true if a v7M CPU is in Handler mode */ 2331 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2332 { 2333 return env->v7m.exception != 0; 2334 } 2335 2336 /* Return the current Exception Level (as per ARMv8; note that this differs 2337 * from the ARMv7 Privilege Level). 2338 */ 2339 static inline int arm_current_el(CPUARMState *env) 2340 { 2341 if (arm_feature(env, ARM_FEATURE_M)) { 2342 return arm_v7m_is_handler_mode(env) || 2343 !(env->v7m.control[env->v7m.secure] & 1); 2344 } 2345 2346 if (is_a64(env)) { 2347 return extract32(env->pstate, 2, 2); 2348 } 2349 2350 switch (env->uncached_cpsr & 0x1f) { 2351 case ARM_CPU_MODE_USR: 2352 return 0; 2353 case ARM_CPU_MODE_HYP: 2354 return 2; 2355 case ARM_CPU_MODE_MON: 2356 return 3; 2357 default: 2358 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2359 /* If EL3 is 32-bit then all secure privileged modes run in 2360 * EL3 2361 */ 2362 return 3; 2363 } 2364 2365 return 1; 2366 } 2367 } 2368 2369 typedef struct ARMCPRegInfo ARMCPRegInfo; 2370 2371 typedef enum CPAccessResult { 2372 /* Access is permitted */ 2373 CP_ACCESS_OK = 0, 2374 /* Access fails due to a configurable trap or enable which would 2375 * result in a categorized exception syndrome giving information about 2376 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2377 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2378 * PL1 if in EL0, otherwise to the current EL). 2379 */ 2380 CP_ACCESS_TRAP = 1, 2381 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2382 * Note that this is not a catch-all case -- the set of cases which may 2383 * result in this failure is specifically defined by the architecture. 2384 */ 2385 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2386 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2387 CP_ACCESS_TRAP_EL2 = 3, 2388 CP_ACCESS_TRAP_EL3 = 4, 2389 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2390 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2391 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2392 /* Access fails and results in an exception syndrome for an FP access, 2393 * trapped directly to EL2 or EL3 2394 */ 2395 CP_ACCESS_TRAP_FP_EL2 = 7, 2396 CP_ACCESS_TRAP_FP_EL3 = 8, 2397 } CPAccessResult; 2398 2399 /* Access functions for coprocessor registers. These cannot fail and 2400 * may not raise exceptions. 2401 */ 2402 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2403 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2404 uint64_t value); 2405 /* Access permission check functions for coprocessor registers. */ 2406 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2407 const ARMCPRegInfo *opaque, 2408 bool isread); 2409 /* Hook function for register reset */ 2410 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2411 2412 #define CP_ANY 0xff 2413 2414 /* Definition of an ARM coprocessor register */ 2415 struct ARMCPRegInfo { 2416 /* Name of register (useful mainly for debugging, need not be unique) */ 2417 const char *name; 2418 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2419 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2420 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2421 * will be decoded to this register. The register read and write 2422 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2423 * used by the program, so it is possible to register a wildcard and 2424 * then behave differently on read/write if necessary. 2425 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2426 * must both be zero. 2427 * For AArch64-visible registers, opc0 is also used. 2428 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2429 * way to distinguish (for KVM's benefit) guest-visible system registers 2430 * from demuxed ones provided to preserve the "no side effects on 2431 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2432 * visible (to match KVM's encoding); cp==0 will be converted to 2433 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2434 */ 2435 uint8_t cp; 2436 uint8_t crn; 2437 uint8_t crm; 2438 uint8_t opc0; 2439 uint8_t opc1; 2440 uint8_t opc2; 2441 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2442 int state; 2443 /* Register type: ARM_CP_* bits/values */ 2444 int type; 2445 /* Access rights: PL*_[RW] */ 2446 int access; 2447 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2448 int secure; 2449 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2450 * this register was defined: can be used to hand data through to the 2451 * register read/write functions, since they are passed the ARMCPRegInfo*. 2452 */ 2453 void *opaque; 2454 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2455 * fieldoffset is non-zero, the reset value of the register. 2456 */ 2457 uint64_t resetvalue; 2458 /* Offset of the field in CPUARMState for this register. 2459 * 2460 * This is not needed if either: 2461 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2462 * 2. both readfn and writefn are specified 2463 */ 2464 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2465 2466 /* Offsets of the secure and non-secure fields in CPUARMState for the 2467 * register if it is banked. These fields are only used during the static 2468 * registration of a register. During hashing the bank associated 2469 * with a given security state is copied to fieldoffset which is used from 2470 * there on out. 2471 * 2472 * It is expected that register definitions use either fieldoffset or 2473 * bank_fieldoffsets in the definition but not both. It is also expected 2474 * that both bank offsets are set when defining a banked register. This 2475 * use indicates that a register is banked. 2476 */ 2477 ptrdiff_t bank_fieldoffsets[2]; 2478 2479 /* Function for making any access checks for this register in addition to 2480 * those specified by the 'access' permissions bits. If NULL, no extra 2481 * checks required. The access check is performed at runtime, not at 2482 * translate time. 2483 */ 2484 CPAccessFn *accessfn; 2485 /* Function for handling reads of this register. If NULL, then reads 2486 * will be done by loading from the offset into CPUARMState specified 2487 * by fieldoffset. 2488 */ 2489 CPReadFn *readfn; 2490 /* Function for handling writes of this register. If NULL, then writes 2491 * will be done by writing to the offset into CPUARMState specified 2492 * by fieldoffset. 2493 */ 2494 CPWriteFn *writefn; 2495 /* Function for doing a "raw" read; used when we need to copy 2496 * coprocessor state to the kernel for KVM or out for 2497 * migration. This only needs to be provided if there is also a 2498 * readfn and it has side effects (for instance clear-on-read bits). 2499 */ 2500 CPReadFn *raw_readfn; 2501 /* Function for doing a "raw" write; used when we need to copy KVM 2502 * kernel coprocessor state into userspace, or for inbound 2503 * migration. This only needs to be provided if there is also a 2504 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2505 * or similar behaviour. 2506 */ 2507 CPWriteFn *raw_writefn; 2508 /* Function for resetting the register. If NULL, then reset will be done 2509 * by writing resetvalue to the field specified in fieldoffset. If 2510 * fieldoffset is 0 then no reset will be done. 2511 */ 2512 CPResetFn *resetfn; 2513 }; 2514 2515 /* Macros which are lvalues for the field in CPUARMState for the 2516 * ARMCPRegInfo *ri. 2517 */ 2518 #define CPREG_FIELD32(env, ri) \ 2519 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2520 #define CPREG_FIELD64(env, ri) \ 2521 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2522 2523 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2524 2525 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2526 const ARMCPRegInfo *regs, void *opaque); 2527 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2528 const ARMCPRegInfo *regs, void *opaque); 2529 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2530 { 2531 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2532 } 2533 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2534 { 2535 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2536 } 2537 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2538 2539 /* 2540 * Definition of an ARM co-processor register as viewed from 2541 * userspace. This is used for presenting sanitised versions of 2542 * registers to userspace when emulating the Linux AArch64 CPU 2543 * ID/feature ABI (advertised as HWCAP_CPUID). 2544 */ 2545 typedef struct ARMCPRegUserSpaceInfo { 2546 /* Name of register */ 2547 const char *name; 2548 2549 /* Is the name actually a glob pattern */ 2550 bool is_glob; 2551 2552 /* Only some bits are exported to user space */ 2553 uint64_t exported_bits; 2554 2555 /* Fixed bits are applied after the mask */ 2556 uint64_t fixed_bits; 2557 } ARMCPRegUserSpaceInfo; 2558 2559 #define REGUSERINFO_SENTINEL { .name = NULL } 2560 2561 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2562 2563 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2564 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2565 uint64_t value); 2566 /* CPReadFn that can be used for read-as-zero behaviour */ 2567 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2568 2569 /* CPResetFn that does nothing, for use if no reset is required even 2570 * if fieldoffset is non zero. 2571 */ 2572 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2573 2574 /* Return true if this reginfo struct's field in the cpu state struct 2575 * is 64 bits wide. 2576 */ 2577 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2578 { 2579 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2580 } 2581 2582 static inline bool cp_access_ok(int current_el, 2583 const ARMCPRegInfo *ri, int isread) 2584 { 2585 return (ri->access >> ((current_el * 2) + isread)) & 1; 2586 } 2587 2588 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2589 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2590 2591 /** 2592 * write_list_to_cpustate 2593 * @cpu: ARMCPU 2594 * 2595 * For each register listed in the ARMCPU cpreg_indexes list, write 2596 * its value from the cpreg_values list into the ARMCPUState structure. 2597 * This updates TCG's working data structures from KVM data or 2598 * from incoming migration state. 2599 * 2600 * Returns: true if all register values were updated correctly, 2601 * false if some register was unknown or could not be written. 2602 * Note that we do not stop early on failure -- we will attempt 2603 * writing all registers in the list. 2604 */ 2605 bool write_list_to_cpustate(ARMCPU *cpu); 2606 2607 /** 2608 * write_cpustate_to_list: 2609 * @cpu: ARMCPU 2610 * @kvm_sync: true if this is for syncing back to KVM 2611 * 2612 * For each register listed in the ARMCPU cpreg_indexes list, write 2613 * its value from the ARMCPUState structure into the cpreg_values list. 2614 * This is used to copy info from TCG's working data structures into 2615 * KVM or for outbound migration. 2616 * 2617 * @kvm_sync is true if we are doing this in order to sync the 2618 * register state back to KVM. In this case we will only update 2619 * values in the list if the previous list->cpustate sync actually 2620 * successfully wrote the CPU state. Otherwise we will keep the value 2621 * that is in the list. 2622 * 2623 * Returns: true if all register values were read correctly, 2624 * false if some register was unknown or could not be read. 2625 * Note that we do not stop early on failure -- we will attempt 2626 * reading all registers in the list. 2627 */ 2628 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2629 2630 #define ARM_CPUID_TI915T 0x54029152 2631 #define ARM_CPUID_TI925T 0x54029252 2632 2633 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 2634 unsigned int target_el) 2635 { 2636 CPUARMState *env = cs->env_ptr; 2637 unsigned int cur_el = arm_current_el(env); 2638 bool secure = arm_is_secure(env); 2639 bool pstate_unmasked; 2640 int8_t unmasked = 0; 2641 uint64_t hcr_el2; 2642 2643 /* Don't take exceptions if they target a lower EL. 2644 * This check should catch any exceptions that would not be taken but left 2645 * pending. 2646 */ 2647 if (cur_el > target_el) { 2648 return false; 2649 } 2650 2651 hcr_el2 = arm_hcr_el2_eff(env); 2652 2653 switch (excp_idx) { 2654 case EXCP_FIQ: 2655 pstate_unmasked = !(env->daif & PSTATE_F); 2656 break; 2657 2658 case EXCP_IRQ: 2659 pstate_unmasked = !(env->daif & PSTATE_I); 2660 break; 2661 2662 case EXCP_VFIQ: 2663 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 2664 /* VFIQs are only taken when hypervized and non-secure. */ 2665 return false; 2666 } 2667 return !(env->daif & PSTATE_F); 2668 case EXCP_VIRQ: 2669 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 2670 /* VIRQs are only taken when hypervized and non-secure. */ 2671 return false; 2672 } 2673 return !(env->daif & PSTATE_I); 2674 default: 2675 g_assert_not_reached(); 2676 } 2677 2678 /* Use the target EL, current execution state and SCR/HCR settings to 2679 * determine whether the corresponding CPSR bit is used to mask the 2680 * interrupt. 2681 */ 2682 if ((target_el > cur_el) && (target_el != 1)) { 2683 /* Exceptions targeting a higher EL may not be maskable */ 2684 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 2685 /* 64-bit masking rules are simple: exceptions to EL3 2686 * can't be masked, and exceptions to EL2 can only be 2687 * masked from Secure state. The HCR and SCR settings 2688 * don't affect the masking logic, only the interrupt routing. 2689 */ 2690 if (target_el == 3 || !secure) { 2691 unmasked = 1; 2692 } 2693 } else { 2694 /* The old 32-bit-only environment has a more complicated 2695 * masking setup. HCR and SCR bits not only affect interrupt 2696 * routing but also change the behaviour of masking. 2697 */ 2698 bool hcr, scr; 2699 2700 switch (excp_idx) { 2701 case EXCP_FIQ: 2702 /* If FIQs are routed to EL3 or EL2 then there are cases where 2703 * we override the CPSR.F in determining if the exception is 2704 * masked or not. If neither of these are set then we fall back 2705 * to the CPSR.F setting otherwise we further assess the state 2706 * below. 2707 */ 2708 hcr = hcr_el2 & HCR_FMO; 2709 scr = (env->cp15.scr_el3 & SCR_FIQ); 2710 2711 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 2712 * CPSR.F bit masks FIQ interrupts when taken in non-secure 2713 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 2714 * when non-secure but only when FIQs are only routed to EL3. 2715 */ 2716 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 2717 break; 2718 case EXCP_IRQ: 2719 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 2720 * we may override the CPSR.I masking when in non-secure state. 2721 * The SCR.IRQ setting has already been taken into consideration 2722 * when setting the target EL, so it does not have a further 2723 * affect here. 2724 */ 2725 hcr = hcr_el2 & HCR_IMO; 2726 scr = false; 2727 break; 2728 default: 2729 g_assert_not_reached(); 2730 } 2731 2732 if ((scr || hcr) && !secure) { 2733 unmasked = 1; 2734 } 2735 } 2736 } 2737 2738 /* The PSTATE bits only mask the interrupt if we have not overriden the 2739 * ability above. 2740 */ 2741 return unmasked || pstate_unmasked; 2742 } 2743 2744 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2745 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2746 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2747 2748 #define cpu_signal_handler cpu_arm_signal_handler 2749 #define cpu_list arm_cpu_list 2750 2751 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2752 * 2753 * If EL3 is 64-bit: 2754 * + NonSecure EL1 & 0 stage 1 2755 * + NonSecure EL1 & 0 stage 2 2756 * + NonSecure EL2 2757 * + Secure EL1 & EL0 2758 * + Secure EL3 2759 * If EL3 is 32-bit: 2760 * + NonSecure PL1 & 0 stage 1 2761 * + NonSecure PL1 & 0 stage 2 2762 * + NonSecure PL2 2763 * + Secure PL0 & PL1 2764 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2765 * 2766 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2767 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2768 * may differ in access permissions even if the VA->PA map is the same 2769 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2770 * translation, which means that we have one mmu_idx that deals with two 2771 * concatenated translation regimes [this sort of combined s1+2 TLB is 2772 * architecturally permitted] 2773 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2774 * handling via the TLB. The only way to do a stage 1 translation without 2775 * the immediate stage 2 translation is via the ATS or AT system insns, 2776 * which can be slow-pathed and always do a page table walk. 2777 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2778 * translation regimes, because they map reasonably well to each other 2779 * and they can't both be active at the same time. 2780 * This gives us the following list of mmu_idx values: 2781 * 2782 * NS EL0 (aka NS PL0) stage 1+2 2783 * NS EL1 (aka NS PL1) stage 1+2 2784 * NS EL2 (aka NS PL2) 2785 * S EL3 (aka S PL1) 2786 * S EL0 (aka S PL0) 2787 * S EL1 (not used if EL3 is 32 bit) 2788 * NS EL0+1 stage 2 2789 * 2790 * (The last of these is an mmu_idx because we want to be able to use the TLB 2791 * for the accesses done as part of a stage 1 page table walk, rather than 2792 * having to walk the stage 2 page table over and over.) 2793 * 2794 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2795 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2796 * NS EL2 if we ever model a Cortex-R52). 2797 * 2798 * M profile CPUs are rather different as they do not have a true MMU. 2799 * They have the following different MMU indexes: 2800 * User 2801 * Privileged 2802 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2803 * Privileged, execution priority negative (ditto) 2804 * If the CPU supports the v8M Security Extension then there are also: 2805 * Secure User 2806 * Secure Privileged 2807 * Secure User, execution priority negative 2808 * Secure Privileged, execution priority negative 2809 * 2810 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2811 * are not quite the same -- different CPU types (most notably M profile 2812 * vs A/R profile) would like to use MMU indexes with different semantics, 2813 * but since we don't ever need to use all of those in a single CPU we 2814 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2815 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2816 * the same for any particular CPU. 2817 * Variables of type ARMMUIdx are always full values, and the core 2818 * index values are in variables of type 'int'. 2819 * 2820 * Our enumeration includes at the end some entries which are not "true" 2821 * mmu_idx values in that they don't have corresponding TLBs and are only 2822 * valid for doing slow path page table walks. 2823 * 2824 * The constant names here are patterned after the general style of the names 2825 * of the AT/ATS operations. 2826 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2827 * For M profile we arrange them to have a bit for priv, a bit for negpri 2828 * and a bit for secure. 2829 */ 2830 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2831 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2832 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2833 2834 /* meanings of the bits for M profile mmu idx values */ 2835 #define ARM_MMU_IDX_M_PRIV 0x1 2836 #define ARM_MMU_IDX_M_NEGPRI 0x2 2837 #define ARM_MMU_IDX_M_S 0x4 2838 2839 #define ARM_MMU_IDX_TYPE_MASK (~0x7) 2840 #define ARM_MMU_IDX_COREIDX_MASK 0x7 2841 2842 typedef enum ARMMMUIdx { 2843 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, 2844 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, 2845 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, 2846 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, 2847 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, 2848 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, 2849 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, 2850 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, 2851 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, 2852 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M, 2853 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M, 2854 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M, 2855 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M, 2856 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M, 2857 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M, 2858 /* Indexes below here don't have TLBs and are used only for AT system 2859 * instructions or for the first stage of an S12 page table walk. 2860 */ 2861 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, 2862 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, 2863 } ARMMMUIdx; 2864 2865 /* Bit macros for the core-mmu-index values for each index, 2866 * for use when calling tlb_flush_by_mmuidx() and friends. 2867 */ 2868 typedef enum ARMMMUIdxBit { 2869 ARMMMUIdxBit_S12NSE0 = 1 << 0, 2870 ARMMMUIdxBit_S12NSE1 = 1 << 1, 2871 ARMMMUIdxBit_S1E2 = 1 << 2, 2872 ARMMMUIdxBit_S1E3 = 1 << 3, 2873 ARMMMUIdxBit_S1SE0 = 1 << 4, 2874 ARMMMUIdxBit_S1SE1 = 1 << 5, 2875 ARMMMUIdxBit_S2NS = 1 << 6, 2876 ARMMMUIdxBit_MUser = 1 << 0, 2877 ARMMMUIdxBit_MPriv = 1 << 1, 2878 ARMMMUIdxBit_MUserNegPri = 1 << 2, 2879 ARMMMUIdxBit_MPrivNegPri = 1 << 3, 2880 ARMMMUIdxBit_MSUser = 1 << 4, 2881 ARMMMUIdxBit_MSPriv = 1 << 5, 2882 ARMMMUIdxBit_MSUserNegPri = 1 << 6, 2883 ARMMMUIdxBit_MSPrivNegPri = 1 << 7, 2884 } ARMMMUIdxBit; 2885 2886 #define MMU_USER_IDX 0 2887 2888 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 2889 { 2890 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 2891 } 2892 2893 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 2894 { 2895 if (arm_feature(env, ARM_FEATURE_M)) { 2896 return mmu_idx | ARM_MMU_IDX_M; 2897 } else { 2898 return mmu_idx | ARM_MMU_IDX_A; 2899 } 2900 } 2901 2902 /* Return the exception level we're running at if this is our mmu_idx */ 2903 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2904 { 2905 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { 2906 case ARM_MMU_IDX_A: 2907 return mmu_idx & 3; 2908 case ARM_MMU_IDX_M: 2909 return mmu_idx & ARM_MMU_IDX_M_PRIV; 2910 default: 2911 g_assert_not_reached(); 2912 } 2913 } 2914 2915 /* 2916 * Return the MMU index for a v7M CPU with all relevant information 2917 * manually specified. 2918 */ 2919 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 2920 bool secstate, bool priv, bool negpri); 2921 2922 /* Return the MMU index for a v7M CPU in the specified security and 2923 * privilege state. 2924 */ 2925 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 2926 bool secstate, bool priv); 2927 2928 /* Return the MMU index for a v7M CPU in the specified security state */ 2929 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 2930 2931 /** 2932 * cpu_mmu_index: 2933 * @env: The cpu environment 2934 * @ifetch: True for code access, false for data access. 2935 * 2936 * Return the core mmu index for the current translation regime. 2937 * This function is used by generic TCG code paths. 2938 */ 2939 int cpu_mmu_index(CPUARMState *env, bool ifetch); 2940 2941 /* Indexes used when registering address spaces with cpu_address_space_init */ 2942 typedef enum ARMASIdx { 2943 ARMASIdx_NS = 0, 2944 ARMASIdx_S = 1, 2945 } ARMASIdx; 2946 2947 /* Return the Exception Level targeted by debug exceptions. */ 2948 static inline int arm_debug_target_el(CPUARMState *env) 2949 { 2950 bool secure = arm_is_secure(env); 2951 bool route_to_el2 = false; 2952 2953 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2954 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2955 env->cp15.mdcr_el2 & MDCR_TDE; 2956 } 2957 2958 if (route_to_el2) { 2959 return 2; 2960 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2961 !arm_el_is_aa64(env, 3) && secure) { 2962 return 3; 2963 } else { 2964 return 1; 2965 } 2966 } 2967 2968 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 2969 { 2970 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 2971 * CSSELR is RAZ/WI. 2972 */ 2973 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 2974 } 2975 2976 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 2977 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2978 { 2979 int cur_el = arm_current_el(env); 2980 int debug_el; 2981 2982 if (cur_el == 3) { 2983 return false; 2984 } 2985 2986 /* MDCR_EL3.SDD disables debug events from Secure state */ 2987 if (arm_is_secure_below_el3(env) 2988 && extract32(env->cp15.mdcr_el3, 16, 1)) { 2989 return false; 2990 } 2991 2992 /* 2993 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 2994 * while not masking the (D)ebug bit in DAIF. 2995 */ 2996 debug_el = arm_debug_target_el(env); 2997 2998 if (cur_el == debug_el) { 2999 return extract32(env->cp15.mdscr_el1, 13, 1) 3000 && !(env->daif & PSTATE_D); 3001 } 3002 3003 /* Otherwise the debug target needs to be a higher EL */ 3004 return debug_el > cur_el; 3005 } 3006 3007 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3008 { 3009 int el = arm_current_el(env); 3010 3011 if (el == 0 && arm_el_is_aa64(env, 1)) { 3012 return aa64_generate_debug_exceptions(env); 3013 } 3014 3015 if (arm_is_secure(env)) { 3016 int spd; 3017 3018 if (el == 0 && (env->cp15.sder & 1)) { 3019 /* SDER.SUIDEN means debug exceptions from Secure EL0 3020 * are always enabled. Otherwise they are controlled by 3021 * SDCR.SPD like those from other Secure ELs. 3022 */ 3023 return true; 3024 } 3025 3026 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3027 switch (spd) { 3028 case 1: 3029 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3030 case 0: 3031 /* For 0b00 we return true if external secure invasive debug 3032 * is enabled. On real hardware this is controlled by external 3033 * signals to the core. QEMU always permits debug, and behaves 3034 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3035 */ 3036 return true; 3037 case 2: 3038 return false; 3039 case 3: 3040 return true; 3041 } 3042 } 3043 3044 return el != 2; 3045 } 3046 3047 /* Return true if debugging exceptions are currently enabled. 3048 * This corresponds to what in ARM ARM pseudocode would be 3049 * if UsingAArch32() then 3050 * return AArch32.GenerateDebugExceptions() 3051 * else 3052 * return AArch64.GenerateDebugExceptions() 3053 * We choose to push the if() down into this function for clarity, 3054 * since the pseudocode has it at all callsites except for the one in 3055 * CheckSoftwareStep(), where it is elided because both branches would 3056 * always return the same value. 3057 */ 3058 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3059 { 3060 if (env->aarch64) { 3061 return aa64_generate_debug_exceptions(env); 3062 } else { 3063 return aa32_generate_debug_exceptions(env); 3064 } 3065 } 3066 3067 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3068 * implicitly means this always returns false in pre-v8 CPUs.) 3069 */ 3070 static inline bool arm_singlestep_active(CPUARMState *env) 3071 { 3072 return extract32(env->cp15.mdscr_el1, 0, 1) 3073 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3074 && arm_generate_debug_exceptions(env); 3075 } 3076 3077 static inline bool arm_sctlr_b(CPUARMState *env) 3078 { 3079 return 3080 /* We need not implement SCTLR.ITD in user-mode emulation, so 3081 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3082 * This lets people run BE32 binaries with "-cpu any". 3083 */ 3084 #ifndef CONFIG_USER_ONLY 3085 !arm_feature(env, ARM_FEATURE_V7) && 3086 #endif 3087 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3088 } 3089 3090 static inline uint64_t arm_sctlr(CPUARMState *env, int el) 3091 { 3092 if (el == 0) { 3093 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 3094 return env->cp15.sctlr_el[1]; 3095 } else { 3096 return env->cp15.sctlr_el[el]; 3097 } 3098 } 3099 3100 3101 /* Return true if the processor is in big-endian mode. */ 3102 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3103 { 3104 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3105 if (!is_a64(env)) { 3106 return 3107 #ifdef CONFIG_USER_ONLY 3108 /* In system mode, BE32 is modelled in line with the 3109 * architecture (as word-invariant big-endianness), where loads 3110 * and stores are done little endian but from addresses which 3111 * are adjusted by XORing with the appropriate constant. So the 3112 * endianness to use for the raw data access is not affected by 3113 * SCTLR.B. 3114 * In user mode, however, we model BE32 as byte-invariant 3115 * big-endianness (because user-only code cannot tell the 3116 * difference), and so we need to use a data access endianness 3117 * that depends on SCTLR.B. 3118 */ 3119 arm_sctlr_b(env) || 3120 #endif 3121 ((env->uncached_cpsr & CPSR_E) ? 1 : 0); 3122 } else { 3123 int cur_el = arm_current_el(env); 3124 uint64_t sctlr = arm_sctlr(env, cur_el); 3125 3126 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0; 3127 } 3128 } 3129 3130 #include "exec/cpu-all.h" 3131 3132 /* Bit usage in the TB flags field: bit 31 indicates whether we are 3133 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3134 * We put flags which are shared between 32 and 64 bit mode at the top 3135 * of the word, and flags which apply to only one mode at the bottom. 3136 */ 3137 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3138 FIELD(TBFLAG_ANY, MMUIDX, 28, 3) 3139 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1) 3140 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) 3141 /* Target EL if we take a floating-point-disabled exception */ 3142 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2) 3143 FIELD(TBFLAG_ANY, BE_DATA, 23, 1) 3144 3145 /* Bit usage when in AArch32 state: */ 3146 FIELD(TBFLAG_A32, THUMB, 0, 1) 3147 FIELD(TBFLAG_A32, VECLEN, 1, 3) 3148 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) 3149 /* 3150 * We store the bottom two bits of the CPAR as TB flags and handle 3151 * checks on the other bits at runtime. This shares the same bits as 3152 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3153 */ 3154 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2) 3155 /* 3156 * Indicates whether cp register reads and writes by guest code should access 3157 * the secure or nonsecure bank of banked registers; note that this is not 3158 * the same thing as the current security state of the processor! 3159 */ 3160 FIELD(TBFLAG_A32, NS, 6, 1) 3161 FIELD(TBFLAG_A32, VFPEN, 7, 1) 3162 FIELD(TBFLAG_A32, CONDEXEC, 8, 8) 3163 FIELD(TBFLAG_A32, SCTLR_B, 16, 1) 3164 /* For M profile only, set if FPCCR.LSPACT is set */ 3165 FIELD(TBFLAG_A32, LSPACT, 18, 1) 3166 /* For M profile only, set if we must create a new FP context */ 3167 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) 3168 /* For M profile only, set if FPCCR.S does not match current security state */ 3169 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) 3170 /* For M profile only, Handler (ie not Thread) mode */ 3171 FIELD(TBFLAG_A32, HANDLER, 21, 1) 3172 /* For M profile only, whether we should generate stack-limit checks */ 3173 FIELD(TBFLAG_A32, STACKCHECK, 22, 1) 3174 3175 /* Bit usage when in AArch64 state */ 3176 FIELD(TBFLAG_A64, TBII, 0, 2) 3177 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3178 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3179 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3180 FIELD(TBFLAG_A64, BT, 9, 1) 3181 FIELD(TBFLAG_A64, BTYPE, 10, 2) 3182 FIELD(TBFLAG_A64, TBID, 12, 2) 3183 3184 static inline bool bswap_code(bool sctlr_b) 3185 { 3186 #ifdef CONFIG_USER_ONLY 3187 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3188 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3189 * would also end up as a mixed-endian mode with BE code, LE data. 3190 */ 3191 return 3192 #ifdef TARGET_WORDS_BIGENDIAN 3193 1 ^ 3194 #endif 3195 sctlr_b; 3196 #else 3197 /* All code access in ARM is little endian, and there are no loaders 3198 * doing swaps that need to be reversed 3199 */ 3200 return 0; 3201 #endif 3202 } 3203 3204 #ifdef CONFIG_USER_ONLY 3205 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3206 { 3207 return 3208 #ifdef TARGET_WORDS_BIGENDIAN 3209 1 ^ 3210 #endif 3211 arm_cpu_data_is_big_endian(env); 3212 } 3213 #endif 3214 3215 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3216 target_ulong *cs_base, uint32_t *flags); 3217 3218 enum { 3219 QEMU_PSCI_CONDUIT_DISABLED = 0, 3220 QEMU_PSCI_CONDUIT_SMC = 1, 3221 QEMU_PSCI_CONDUIT_HVC = 2, 3222 }; 3223 3224 #ifndef CONFIG_USER_ONLY 3225 /* Return the address space index to use for a memory access */ 3226 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3227 { 3228 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3229 } 3230 3231 /* Return the AddressSpace to use for a memory access 3232 * (which depends on whether the access is S or NS, and whether 3233 * the board gave us a separate AddressSpace for S accesses). 3234 */ 3235 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3236 { 3237 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3238 } 3239 #endif 3240 3241 /** 3242 * arm_register_pre_el_change_hook: 3243 * Register a hook function which will be called immediately before this 3244 * CPU changes exception level or mode. The hook function will be 3245 * passed a pointer to the ARMCPU and the opaque data pointer passed 3246 * to this function when the hook was registered. 3247 * 3248 * Note that if a pre-change hook is called, any registered post-change hooks 3249 * are guaranteed to subsequently be called. 3250 */ 3251 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3252 void *opaque); 3253 /** 3254 * arm_register_el_change_hook: 3255 * Register a hook function which will be called immediately after this 3256 * CPU changes exception level or mode. The hook function will be 3257 * passed a pointer to the ARMCPU and the opaque data pointer passed 3258 * to this function when the hook was registered. 3259 * 3260 * Note that any registered hooks registered here are guaranteed to be called 3261 * if pre-change hooks have been. 3262 */ 3263 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3264 *opaque); 3265 3266 /** 3267 * aa32_vfp_dreg: 3268 * Return a pointer to the Dn register within env in 32-bit mode. 3269 */ 3270 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3271 { 3272 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3273 } 3274 3275 /** 3276 * aa32_vfp_qreg: 3277 * Return a pointer to the Qn register within env in 32-bit mode. 3278 */ 3279 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3280 { 3281 return &env->vfp.zregs[regno].d[0]; 3282 } 3283 3284 /** 3285 * aa64_vfp_qreg: 3286 * Return a pointer to the Qn register within env in 64-bit mode. 3287 */ 3288 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3289 { 3290 return &env->vfp.zregs[regno].d[0]; 3291 } 3292 3293 /* Shared between translate-sve.c and sve_helper.c. */ 3294 extern const uint64_t pred_esz_masks[4]; 3295 3296 /* 3297 * 32-bit feature tests via id registers. 3298 */ 3299 static inline bool isar_feature_thumb_div(const ARMISARegisters *id) 3300 { 3301 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3302 } 3303 3304 static inline bool isar_feature_arm_div(const ARMISARegisters *id) 3305 { 3306 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3307 } 3308 3309 static inline bool isar_feature_jazelle(const ARMISARegisters *id) 3310 { 3311 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3312 } 3313 3314 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3315 { 3316 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3317 } 3318 3319 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3320 { 3321 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3322 } 3323 3324 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3325 { 3326 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3327 } 3328 3329 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3330 { 3331 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3332 } 3333 3334 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3335 { 3336 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3337 } 3338 3339 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3340 { 3341 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3342 } 3343 3344 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3345 { 3346 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3347 } 3348 3349 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3350 { 3351 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3352 } 3353 3354 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3355 { 3356 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3357 } 3358 3359 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3360 { 3361 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3362 } 3363 3364 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3365 { 3366 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3367 } 3368 3369 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3370 { 3371 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3372 } 3373 3374 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3375 { 3376 /* 3377 * This is a placeholder for use by VCMA until the rest of 3378 * the ARMv8.2-FP16 extension is implemented for aa32 mode. 3379 * At which point we can properly set and check MVFR1.FPHP. 3380 */ 3381 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3382 } 3383 3384 /* 3385 * We always set the FP and SIMD FP16 fields to indicate identical 3386 * levels of support (assuming SIMD is implemented at all), so 3387 * we only need one set of accessors. 3388 */ 3389 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3390 { 3391 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0; 3392 } 3393 3394 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3395 { 3396 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1; 3397 } 3398 3399 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3400 { 3401 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1; 3402 } 3403 3404 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3405 { 3406 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2; 3407 } 3408 3409 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3410 { 3411 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3; 3412 } 3413 3414 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3415 { 3416 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4; 3417 } 3418 3419 /* 3420 * 64-bit feature tests via id registers. 3421 */ 3422 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3423 { 3424 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3425 } 3426 3427 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3428 { 3429 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3430 } 3431 3432 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3433 { 3434 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3435 } 3436 3437 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3438 { 3439 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3440 } 3441 3442 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3443 { 3444 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3445 } 3446 3447 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3448 { 3449 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3450 } 3451 3452 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3453 { 3454 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3455 } 3456 3457 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3458 { 3459 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3460 } 3461 3462 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3463 { 3464 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3465 } 3466 3467 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3468 { 3469 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3470 } 3471 3472 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3473 { 3474 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3475 } 3476 3477 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3478 { 3479 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3480 } 3481 3482 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3483 { 3484 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3485 } 3486 3487 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3488 { 3489 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3490 } 3491 3492 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3493 { 3494 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3495 } 3496 3497 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3498 { 3499 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3500 } 3501 3502 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3503 { 3504 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3505 } 3506 3507 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3508 { 3509 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3510 } 3511 3512 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3513 { 3514 /* 3515 * Note that while QEMU will only implement the architected algorithm 3516 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3517 * defined algorithms, and thus API+GPI, and this predicate controls 3518 * migration of the 128-bit keys. 3519 */ 3520 return (id->id_aa64isar1 & 3521 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3522 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3523 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3524 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3525 } 3526 3527 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3528 { 3529 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3530 } 3531 3532 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3533 { 3534 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3535 } 3536 3537 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3538 { 3539 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3540 } 3541 3542 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3543 { 3544 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3545 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3546 } 3547 3548 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3549 { 3550 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3551 } 3552 3553 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3554 { 3555 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3556 } 3557 3558 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3559 { 3560 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3561 } 3562 3563 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3564 { 3565 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3566 } 3567 3568 /* 3569 * Forward to the above feature tests given an ARMCPU pointer. 3570 */ 3571 #define cpu_isar_feature(name, cpu) \ 3572 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3573 3574 #endif 3575