1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "qemu/cpu-float.h" 25 #include "hw/registerfields.h" 26 #include "cpu-qom.h" 27 #include "exec/cpu-defs.h" 28 #include "qapi/qapi-types-common.h" 29 30 /* ARM processors have a weak memory model */ 31 #define TCG_GUEST_DEFAULT_MO (0) 32 33 #ifdef TARGET_AARCH64 34 #define KVM_HAVE_MCE_INJECTION 1 35 #endif 36 37 #define EXCP_UDEF 1 /* undefined instruction */ 38 #define EXCP_SWI 2 /* software interrupt */ 39 #define EXCP_PREFETCH_ABORT 3 40 #define EXCP_DATA_ABORT 4 41 #define EXCP_IRQ 5 42 #define EXCP_FIQ 6 43 #define EXCP_BKPT 7 44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 46 #define EXCP_HVC 11 /* HyperVisor Call */ 47 #define EXCP_HYP_TRAP 12 48 #define EXCP_SMC 13 /* Secure Monitor Call */ 49 #define EXCP_VIRQ 14 50 #define EXCP_VFIQ 15 51 #define EXCP_SEMIHOST 16 /* semihosting call */ 52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ 59 #define EXCP_VSERR 24 60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 61 62 #define ARMV7M_EXCP_RESET 1 63 #define ARMV7M_EXCP_NMI 2 64 #define ARMV7M_EXCP_HARD 3 65 #define ARMV7M_EXCP_MEM 4 66 #define ARMV7M_EXCP_BUS 5 67 #define ARMV7M_EXCP_USAGE 6 68 #define ARMV7M_EXCP_SECURE 7 69 #define ARMV7M_EXCP_SVC 11 70 #define ARMV7M_EXCP_DEBUG 12 71 #define ARMV7M_EXCP_PENDSV 14 72 #define ARMV7M_EXCP_SYSTICK 15 73 74 /* For M profile, some registers are banked secure vs non-secure; 75 * these are represented as a 2-element array where the first element 76 * is the non-secure copy and the second is the secure copy. 77 * When the CPU does not have implement the security extension then 78 * only the first element is used. 79 * This means that the copy for the current security state can be 80 * accessed via env->registerfield[env->v7m.secure] (whether the security 81 * extension is implemented or not). 82 */ 83 enum { 84 M_REG_NS = 0, 85 M_REG_S = 1, 86 M_REG_NUM_BANKS = 2, 87 }; 88 89 /* ARM-specific interrupt pending bits. */ 90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0 94 95 /* The usual mapping for an AArch64 system register to its AArch32 96 * counterpart is for the 32 bit world to have access to the lower 97 * half only (with writes leaving the upper half untouched). It's 98 * therefore useful to be able to pass TCG the offset of the least 99 * significant half of a uint64_t struct member. 100 */ 101 #if HOST_BIG_ENDIAN 102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #define offsetofhigh32(S, M) offsetof(S, M) 104 #else 105 #define offsetoflow32(S, M) offsetof(S, M) 106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 107 #endif 108 109 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 110 #define ARM_CPU_IRQ 0 111 #define ARM_CPU_FIQ 1 112 #define ARM_CPU_VIRQ 2 113 #define ARM_CPU_VFIQ 3 114 115 /* ARM-specific extra insn start words: 116 * 1: Conditional execution bits 117 * 2: Partial exception syndrome for data aborts 118 */ 119 #define TARGET_INSN_START_EXTRA_WORDS 2 120 121 /* The 2nd extra word holding syndrome info for data aborts does not use 122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 123 * help the sleb128 encoder do a better job. 124 * When restoring the CPU state, we shift it back up. 125 */ 126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 127 #define ARM_INSN_START_WORD2_SHIFT 14 128 129 /* We currently assume float and double are IEEE single and double 130 precision respectively. 131 Doing runtime conversions is tricky because VFP registers may contain 132 integer values (eg. as the result of a FTOSI instruction). 133 s<2n> maps to the least significant half of d<n> 134 s<2n+1> maps to the most significant half of d<n> 135 */ 136 137 /** 138 * DynamicGDBXMLInfo: 139 * @desc: Contains the XML descriptions. 140 * @num: Number of the registers in this XML seen by GDB. 141 * @data: A union with data specific to the set of registers 142 * @cpregs_keys: Array that contains the corresponding Key of 143 * a given cpreg with the same order of the cpreg 144 * in the XML description. 145 */ 146 typedef struct DynamicGDBXMLInfo { 147 char *desc; 148 int num; 149 union { 150 struct { 151 uint32_t *keys; 152 } cpregs; 153 } data; 154 } DynamicGDBXMLInfo; 155 156 /* CPU state for each instance of a generic timer (in cp15 c14) */ 157 typedef struct ARMGenericTimer { 158 uint64_t cval; /* Timer CompareValue register */ 159 uint64_t ctl; /* Timer Control register */ 160 } ARMGenericTimer; 161 162 #define GTIMER_PHYS 0 163 #define GTIMER_VIRT 1 164 #define GTIMER_HYP 2 165 #define GTIMER_SEC 3 166 #define GTIMER_HYPVIRT 4 167 #define NUM_GTIMERS 5 168 169 #define VTCR_NSW (1u << 29) 170 #define VTCR_NSA (1u << 30) 171 #define VSTCR_SW VTCR_NSW 172 #define VSTCR_SA VTCR_NSA 173 174 /* Define a maximum sized vector register. 175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 176 * For 64-bit, this is a 2048-bit SVE register. 177 * 178 * Note that the mapping between S, D, and Q views of the register bank 179 * differs between AArch64 and AArch32. 180 * In AArch32: 181 * Qn = regs[n].d[1]:regs[n].d[0] 182 * Dn = regs[n / 2].d[n & 1] 183 * Sn = regs[n / 4].d[n % 4 / 2], 184 * bits 31..0 for even n, and bits 63..32 for odd n 185 * (and regs[16] to regs[31] are inaccessible) 186 * In AArch64: 187 * Zn = regs[n].d[*] 188 * Qn = regs[n].d[1]:regs[n].d[0] 189 * Dn = regs[n].d[0] 190 * Sn = regs[n].d[0] bits 31..0 191 * Hn = regs[n].d[0] bits 15..0 192 * 193 * This corresponds to the architecturally defined mapping between 194 * the two execution states, and means we do not need to explicitly 195 * map these registers when changing states. 196 * 197 * Align the data for use with TCG host vector operations. 198 */ 199 200 #ifdef TARGET_AARCH64 201 # define ARM_MAX_VQ 16 202 #else 203 # define ARM_MAX_VQ 1 204 #endif 205 206 typedef struct ARMVectorReg { 207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 208 } ARMVectorReg; 209 210 #ifdef TARGET_AARCH64 211 /* In AArch32 mode, predicate registers do not exist at all. */ 212 typedef struct ARMPredicateReg { 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 214 } ARMPredicateReg; 215 216 /* In AArch32 mode, PAC keys do not exist at all. */ 217 typedef struct ARMPACKey { 218 uint64_t lo, hi; 219 } ARMPACKey; 220 #endif 221 222 /* See the commentary above the TBFLAG field definitions. */ 223 typedef struct CPUARMTBFlags { 224 uint32_t flags; 225 target_ulong flags2; 226 } CPUARMTBFlags; 227 228 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 229 230 typedef struct CPUArchState { 231 /* Regs for current mode. */ 232 uint32_t regs[16]; 233 234 /* 32/64 switch only happens when taking and returning from 235 * exceptions so the overlap semantics are taken care of then 236 * instead of having a complicated union. 237 */ 238 /* Regs for A64 mode. */ 239 uint64_t xregs[32]; 240 uint64_t pc; 241 /* PSTATE isn't an architectural register for ARMv8. However, it is 242 * convenient for us to assemble the underlying state into a 32 bit format 243 * identical to the architectural format used for the SPSR. (This is also 244 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 245 * 'pstate' register are.) Of the PSTATE bits: 246 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 247 * semantics as for AArch32, as described in the comments on each field) 248 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 249 * DAIF (exception masks) are kept in env->daif 250 * BTYPE is kept in env->btype 251 * SM and ZA are kept in env->svcr 252 * all other bits are stored in their correct places in env->pstate 253 */ 254 uint32_t pstate; 255 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */ 256 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */ 257 258 /* Cached TBFLAGS state. See below for which bits are included. */ 259 CPUARMTBFlags hflags; 260 261 /* Frequently accessed CPSR bits are stored separately for efficiency. 262 This contains all the other bits. Use cpsr_{read,write} to access 263 the whole CPSR. */ 264 uint32_t uncached_cpsr; 265 uint32_t spsr; 266 267 /* Banked registers. */ 268 uint64_t banked_spsr[8]; 269 uint32_t banked_r13[8]; 270 uint32_t banked_r14[8]; 271 272 /* These hold r8-r12. */ 273 uint32_t usr_regs[5]; 274 uint32_t fiq_regs[5]; 275 276 /* cpsr flag cache for faster execution */ 277 uint32_t CF; /* 0 or 1 */ 278 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 279 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 280 uint32_t ZF; /* Z set if zero. */ 281 uint32_t QF; /* 0 or 1 */ 282 uint32_t GE; /* cpsr[19:16] */ 283 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 284 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 285 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 286 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */ 287 288 uint64_t elr_el[4]; /* AArch64 exception link regs */ 289 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 290 291 /* System control coprocessor (cp15) */ 292 struct { 293 uint32_t c0_cpuid; 294 union { /* Cache size selection */ 295 struct { 296 uint64_t _unused_csselr0; 297 uint64_t csselr_ns; 298 uint64_t _unused_csselr1; 299 uint64_t csselr_s; 300 }; 301 uint64_t csselr_el[4]; 302 }; 303 union { /* System control register. */ 304 struct { 305 uint64_t _unused_sctlr; 306 uint64_t sctlr_ns; 307 uint64_t hsctlr; 308 uint64_t sctlr_s; 309 }; 310 uint64_t sctlr_el[4]; 311 }; 312 uint64_t cpacr_el1; /* Architectural feature access control register */ 313 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 314 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 315 uint64_t sder; /* Secure debug enable register. */ 316 uint32_t nsacr; /* Non-secure access control register. */ 317 union { /* MMU translation table base 0. */ 318 struct { 319 uint64_t _unused_ttbr0_0; 320 uint64_t ttbr0_ns; 321 uint64_t _unused_ttbr0_1; 322 uint64_t ttbr0_s; 323 }; 324 uint64_t ttbr0_el[4]; 325 }; 326 union { /* MMU translation table base 1. */ 327 struct { 328 uint64_t _unused_ttbr1_0; 329 uint64_t ttbr1_ns; 330 uint64_t _unused_ttbr1_1; 331 uint64_t ttbr1_s; 332 }; 333 uint64_t ttbr1_el[4]; 334 }; 335 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 336 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ 337 /* MMU translation table base control. */ 338 uint64_t tcr_el[4]; 339 uint64_t vtcr_el2; /* Virtualization Translation Control. */ 340 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */ 341 uint32_t c2_data; /* MPU data cacheable bits. */ 342 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 343 union { /* MMU domain access control register 344 * MPU write buffer control. 345 */ 346 struct { 347 uint64_t dacr_ns; 348 uint64_t dacr_s; 349 }; 350 struct { 351 uint64_t dacr32_el2; 352 }; 353 }; 354 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 355 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 356 uint64_t hcr_el2; /* Hypervisor configuration register */ 357 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */ 358 uint64_t scr_el3; /* Secure configuration register. */ 359 union { /* Fault status registers. */ 360 struct { 361 uint64_t ifsr_ns; 362 uint64_t ifsr_s; 363 }; 364 struct { 365 uint64_t ifsr32_el2; 366 }; 367 }; 368 union { 369 struct { 370 uint64_t _unused_dfsr; 371 uint64_t dfsr_ns; 372 uint64_t hsr; 373 uint64_t dfsr_s; 374 }; 375 uint64_t esr_el[4]; 376 }; 377 uint32_t c6_region[8]; /* MPU base/size registers. */ 378 union { /* Fault address registers. */ 379 struct { 380 uint64_t _unused_far0; 381 #if HOST_BIG_ENDIAN 382 uint32_t ifar_ns; 383 uint32_t dfar_ns; 384 uint32_t ifar_s; 385 uint32_t dfar_s; 386 #else 387 uint32_t dfar_ns; 388 uint32_t ifar_ns; 389 uint32_t dfar_s; 390 uint32_t ifar_s; 391 #endif 392 uint64_t _unused_far3; 393 }; 394 uint64_t far_el[4]; 395 }; 396 uint64_t hpfar_el2; 397 uint64_t hstr_el2; 398 union { /* Translation result. */ 399 struct { 400 uint64_t _unused_par_0; 401 uint64_t par_ns; 402 uint64_t _unused_par_1; 403 uint64_t par_s; 404 }; 405 uint64_t par_el[4]; 406 }; 407 408 uint32_t c9_insn; /* Cache lockdown registers. */ 409 uint32_t c9_data; 410 uint64_t c9_pmcr; /* performance monitor control register */ 411 uint64_t c9_pmcnten; /* perf monitor counter enables */ 412 uint64_t c9_pmovsr; /* perf monitor overflow status */ 413 uint64_t c9_pmuserenr; /* perf monitor user enable */ 414 uint64_t c9_pmselr; /* perf monitor counter selection register */ 415 uint64_t c9_pminten; /* perf monitor interrupt enables */ 416 union { /* Memory attribute redirection */ 417 struct { 418 #if HOST_BIG_ENDIAN 419 uint64_t _unused_mair_0; 420 uint32_t mair1_ns; 421 uint32_t mair0_ns; 422 uint64_t _unused_mair_1; 423 uint32_t mair1_s; 424 uint32_t mair0_s; 425 #else 426 uint64_t _unused_mair_0; 427 uint32_t mair0_ns; 428 uint32_t mair1_ns; 429 uint64_t _unused_mair_1; 430 uint32_t mair0_s; 431 uint32_t mair1_s; 432 #endif 433 }; 434 uint64_t mair_el[4]; 435 }; 436 union { /* vector base address register */ 437 struct { 438 uint64_t _unused_vbar; 439 uint64_t vbar_ns; 440 uint64_t hvbar; 441 uint64_t vbar_s; 442 }; 443 uint64_t vbar_el[4]; 444 }; 445 uint32_t mvbar; /* (monitor) vector base address register */ 446 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */ 447 struct { /* FCSE PID. */ 448 uint32_t fcseidr_ns; 449 uint32_t fcseidr_s; 450 }; 451 union { /* Context ID. */ 452 struct { 453 uint64_t _unused_contextidr_0; 454 uint64_t contextidr_ns; 455 uint64_t _unused_contextidr_1; 456 uint64_t contextidr_s; 457 }; 458 uint64_t contextidr_el[4]; 459 }; 460 union { /* User RW Thread register. */ 461 struct { 462 uint64_t tpidrurw_ns; 463 uint64_t tpidrprw_ns; 464 uint64_t htpidr; 465 uint64_t _tpidr_el3; 466 }; 467 uint64_t tpidr_el[4]; 468 }; 469 uint64_t tpidr2_el0; 470 /* The secure banks of these registers don't map anywhere */ 471 uint64_t tpidrurw_s; 472 uint64_t tpidrprw_s; 473 uint64_t tpidruro_s; 474 475 union { /* User RO Thread register. */ 476 uint64_t tpidruro_ns; 477 uint64_t tpidrro_el[1]; 478 }; 479 uint64_t c14_cntfrq; /* Counter Frequency register */ 480 uint64_t c14_cntkctl; /* Timer Control register */ 481 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 482 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 483 ARMGenericTimer c14_timer[NUM_GTIMERS]; 484 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 485 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 486 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 487 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 488 uint32_t c15_threadid; /* TI debugger thread-ID. */ 489 uint32_t c15_config_base_address; /* SCU base address. */ 490 uint32_t c15_diagnostic; /* diagnostic register */ 491 uint32_t c15_power_diagnostic; 492 uint32_t c15_power_control; /* power control */ 493 uint64_t dbgbvr[16]; /* breakpoint value registers */ 494 uint64_t dbgbcr[16]; /* breakpoint control registers */ 495 uint64_t dbgwvr[16]; /* watchpoint value registers */ 496 uint64_t dbgwcr[16]; /* watchpoint control registers */ 497 uint64_t mdscr_el1; 498 uint64_t oslsr_el1; /* OS Lock Status */ 499 uint64_t osdlr_el1; /* OS DoubleLock status */ 500 uint64_t mdcr_el2; 501 uint64_t mdcr_el3; 502 /* Stores the architectural value of the counter *the last time it was 503 * updated* by pmccntr_op_start. Accesses should always be surrounded 504 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 505 * architecturally-correct value is being read/set. 506 */ 507 uint64_t c15_ccnt; 508 /* Stores the delta between the architectural value and the underlying 509 * cycle count during normal operation. It is used to update c15_ccnt 510 * to be the correct architectural value before accesses. During 511 * accesses, c15_ccnt_delta contains the underlying count being used 512 * for the access, after which it reverts to the delta value in 513 * pmccntr_op_finish. 514 */ 515 uint64_t c15_ccnt_delta; 516 uint64_t c14_pmevcntr[31]; 517 uint64_t c14_pmevcntr_delta[31]; 518 uint64_t c14_pmevtyper[31]; 519 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 520 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 521 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 522 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 523 uint64_t gcr_el1; 524 uint64_t rgsr_el1; 525 526 /* Minimal RAS registers */ 527 uint64_t disr_el1; 528 uint64_t vdisr_el2; 529 uint64_t vsesr_el2; 530 } cp15; 531 532 struct { 533 /* M profile has up to 4 stack pointers: 534 * a Main Stack Pointer and a Process Stack Pointer for each 535 * of the Secure and Non-Secure states. (If the CPU doesn't support 536 * the security extension then it has only two SPs.) 537 * In QEMU we always store the currently active SP in regs[13], 538 * and the non-active SP for the current security state in 539 * v7m.other_sp. The stack pointers for the inactive security state 540 * are stored in other_ss_msp and other_ss_psp. 541 * switch_v7m_security_state() is responsible for rearranging them 542 * when we change security state. 543 */ 544 uint32_t other_sp; 545 uint32_t other_ss_msp; 546 uint32_t other_ss_psp; 547 uint32_t vecbase[M_REG_NUM_BANKS]; 548 uint32_t basepri[M_REG_NUM_BANKS]; 549 uint32_t control[M_REG_NUM_BANKS]; 550 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 551 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 552 uint32_t hfsr; /* HardFault Status */ 553 uint32_t dfsr; /* Debug Fault Status Register */ 554 uint32_t sfsr; /* Secure Fault Status Register */ 555 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 556 uint32_t bfar; /* BusFault Address */ 557 uint32_t sfar; /* Secure Fault Address Register */ 558 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 559 int exception; 560 uint32_t primask[M_REG_NUM_BANKS]; 561 uint32_t faultmask[M_REG_NUM_BANKS]; 562 uint32_t aircr; /* only holds r/w state if security extn implemented */ 563 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 564 uint32_t csselr[M_REG_NUM_BANKS]; 565 uint32_t scr[M_REG_NUM_BANKS]; 566 uint32_t msplim[M_REG_NUM_BANKS]; 567 uint32_t psplim[M_REG_NUM_BANKS]; 568 uint32_t fpcar[M_REG_NUM_BANKS]; 569 uint32_t fpccr[M_REG_NUM_BANKS]; 570 uint32_t fpdscr[M_REG_NUM_BANKS]; 571 uint32_t cpacr[M_REG_NUM_BANKS]; 572 uint32_t nsacr; 573 uint32_t ltpsize; 574 uint32_t vpr; 575 } v7m; 576 577 /* Information associated with an exception about to be taken: 578 * code which raises an exception must set cs->exception_index and 579 * the relevant parts of this structure; the cpu_do_interrupt function 580 * will then set the guest-visible registers as part of the exception 581 * entry process. 582 */ 583 struct { 584 uint32_t syndrome; /* AArch64 format syndrome register */ 585 uint32_t fsr; /* AArch32 format fault status register info */ 586 uint64_t vaddress; /* virtual addr associated with exception, if any */ 587 uint32_t target_el; /* EL the exception should be targeted for */ 588 /* If we implement EL2 we will also need to store information 589 * about the intermediate physical address for stage 2 faults. 590 */ 591 } exception; 592 593 /* Information associated with an SError */ 594 struct { 595 uint8_t pending; 596 uint8_t has_esr; 597 uint64_t esr; 598 } serror; 599 600 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 601 602 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 603 uint32_t irq_line_state; 604 605 /* Thumb-2 EE state. */ 606 uint32_t teecr; 607 uint32_t teehbr; 608 609 /* VFP coprocessor state. */ 610 struct { 611 ARMVectorReg zregs[32]; 612 613 #ifdef TARGET_AARCH64 614 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 615 #define FFR_PRED_NUM 16 616 ARMPredicateReg pregs[17]; 617 /* Scratch space for aa64 sve predicate temporary. */ 618 ARMPredicateReg preg_tmp; 619 #endif 620 621 /* We store these fpcsr fields separately for convenience. */ 622 uint32_t qc[4] QEMU_ALIGNED(16); 623 int vec_len; 624 int vec_stride; 625 626 uint32_t xregs[16]; 627 628 /* Scratch space for aa32 neon expansion. */ 629 uint32_t scratch[8]; 630 631 /* There are a number of distinct float control structures: 632 * 633 * fp_status: is the "normal" fp status. 634 * fp_status_fp16: used for half-precision calculations 635 * standard_fp_status : the ARM "Standard FPSCR Value" 636 * standard_fp_status_fp16 : used for half-precision 637 * calculations with the ARM "Standard FPSCR Value" 638 * 639 * Half-precision operations are governed by a separate 640 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 641 * status structure to control this. 642 * 643 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 644 * round-to-nearest and is used by any operations (generally 645 * Neon) which the architecture defines as controlled by the 646 * standard FPSCR value rather than the FPSCR. 647 * 648 * The "standard FPSCR but for fp16 ops" is needed because 649 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 650 * using a fixed value for it. 651 * 652 * To avoid having to transfer exception bits around, we simply 653 * say that the FPSCR cumulative exception flags are the logical 654 * OR of the flags in the four fp statuses. This relies on the 655 * only thing which needs to read the exception flags being 656 * an explicit FPSCR read. 657 */ 658 float_status fp_status; 659 float_status fp_status_f16; 660 float_status standard_fp_status; 661 float_status standard_fp_status_f16; 662 663 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ 664 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ 665 } vfp; 666 uint64_t exclusive_addr; 667 uint64_t exclusive_val; 668 uint64_t exclusive_high; 669 670 /* iwMMXt coprocessor state. */ 671 struct { 672 uint64_t regs[16]; 673 uint64_t val; 674 675 uint32_t cregs[16]; 676 } iwmmxt; 677 678 #ifdef TARGET_AARCH64 679 struct { 680 ARMPACKey apia; 681 ARMPACKey apib; 682 ARMPACKey apda; 683 ARMPACKey apdb; 684 ARMPACKey apga; 685 } keys; 686 687 uint64_t scxtnum_el[4]; 688 689 /* 690 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order, 691 * as we do with vfp.zregs[]. This corresponds to the architectural ZA 692 * array, where ZA[N] is in the least-significant bytes of env->zarray[N]. 693 * When SVL is less than the architectural maximum, the accessible 694 * storage is restricted, such that if the SVL is X bytes the guest can 695 * see only the bottom X elements of zarray[], and only the least 696 * significant X bytes of each element of the array. (In other words, 697 * the observable part is always square.) 698 * 699 * The ZA storage can also be considered as a set of square tiles of 700 * elements of different sizes. The mapping from tiles to the ZA array 701 * is architecturally defined, such that for tiles of elements of esz 702 * bytes, the Nth row (or "horizontal slice") of tile T is in 703 * ZA[T + N * esz]. Note that this means that each tile is not contiguous 704 * in the ZA storage, because its rows are striped through the ZA array. 705 * 706 * Because this is so large, keep this toward the end of the reset area, 707 * to keep the offsets into the rest of the structure smaller. 708 */ 709 ARMVectorReg zarray[ARM_MAX_VQ * 16]; 710 #endif 711 712 #if defined(CONFIG_USER_ONLY) 713 /* For usermode syscall translation. */ 714 int eabi; 715 #endif 716 717 struct CPUBreakpoint *cpu_breakpoint[16]; 718 struct CPUWatchpoint *cpu_watchpoint[16]; 719 720 /* Optional fault info across tlb lookup. */ 721 ARMMMUFaultInfo *tlb_fi; 722 723 /* Fields up to this point are cleared by a CPU reset */ 724 struct {} end_reset_fields; 725 726 /* Fields after this point are preserved across CPU reset. */ 727 728 /* Internal CPU feature flags. */ 729 uint64_t features; 730 731 /* PMSAv7 MPU */ 732 struct { 733 uint32_t *drbar; 734 uint32_t *drsr; 735 uint32_t *dracr; 736 uint32_t rnr[M_REG_NUM_BANKS]; 737 } pmsav7; 738 739 /* PMSAv8 MPU */ 740 struct { 741 /* The PMSAv8 implementation also shares some PMSAv7 config 742 * and state: 743 * pmsav7.rnr (region number register) 744 * pmsav7_dregion (number of configured regions) 745 */ 746 uint32_t *rbar[M_REG_NUM_BANKS]; 747 uint32_t *rlar[M_REG_NUM_BANKS]; 748 uint32_t mair0[M_REG_NUM_BANKS]; 749 uint32_t mair1[M_REG_NUM_BANKS]; 750 } pmsav8; 751 752 /* v8M SAU */ 753 struct { 754 uint32_t *rbar; 755 uint32_t *rlar; 756 uint32_t rnr; 757 uint32_t ctrl; 758 } sau; 759 760 void *nvic; 761 const struct arm_boot_info *boot_info; 762 /* Store GICv3CPUState to access from this struct */ 763 void *gicv3state; 764 765 #ifdef TARGET_TAGGED_ADDRESSES 766 /* Linux syscall tagged address support */ 767 bool tagged_addr_enable; 768 #endif 769 } CPUARMState; 770 771 static inline void set_feature(CPUARMState *env, int feature) 772 { 773 env->features |= 1ULL << feature; 774 } 775 776 static inline void unset_feature(CPUARMState *env, int feature) 777 { 778 env->features &= ~(1ULL << feature); 779 } 780 781 /** 782 * ARMELChangeHookFn: 783 * type of a function which can be registered via arm_register_el_change_hook() 784 * to get callbacks when the CPU changes its exception level or mode. 785 */ 786 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 787 typedef struct ARMELChangeHook ARMELChangeHook; 788 struct ARMELChangeHook { 789 ARMELChangeHookFn *hook; 790 void *opaque; 791 QLIST_ENTRY(ARMELChangeHook) node; 792 }; 793 794 /* These values map onto the return values for 795 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 796 typedef enum ARMPSCIState { 797 PSCI_ON = 0, 798 PSCI_OFF = 1, 799 PSCI_ON_PENDING = 2 800 } ARMPSCIState; 801 802 typedef struct ARMISARegisters ARMISARegisters; 803 804 /* 805 * In map, each set bit is a supported vector length of (bit-number + 1) * 16 806 * bytes, i.e. each bit number + 1 is the vector length in quadwords. 807 * 808 * While processing properties during initialization, corresponding init bits 809 * are set for bits in sve_vq_map that have been set by properties. 810 * 811 * Bits set in supported represent valid vector lengths for the CPU type. 812 */ 813 typedef struct { 814 uint32_t map, init, supported; 815 } ARMVQMap; 816 817 /** 818 * ARMCPU: 819 * @env: #CPUARMState 820 * 821 * An ARM CPU core. 822 */ 823 struct ArchCPU { 824 /*< private >*/ 825 CPUState parent_obj; 826 /*< public >*/ 827 828 CPUNegativeOffsetState neg; 829 CPUARMState env; 830 831 /* Coprocessor information */ 832 GHashTable *cp_regs; 833 /* For marshalling (mostly coprocessor) register state between the 834 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 835 * we use these arrays. 836 */ 837 /* List of register indexes managed via these arrays; (full KVM style 838 * 64 bit indexes, not CPRegInfo 32 bit indexes) 839 */ 840 uint64_t *cpreg_indexes; 841 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 842 uint64_t *cpreg_values; 843 /* Length of the indexes, values, reset_values arrays */ 844 int32_t cpreg_array_len; 845 /* These are used only for migration: incoming data arrives in 846 * these fields and is sanity checked in post_load before copying 847 * to the working data structures above. 848 */ 849 uint64_t *cpreg_vmstate_indexes; 850 uint64_t *cpreg_vmstate_values; 851 int32_t cpreg_vmstate_array_len; 852 853 DynamicGDBXMLInfo dyn_sysreg_xml; 854 DynamicGDBXMLInfo dyn_svereg_xml; 855 856 /* Timers used by the generic (architected) timer */ 857 QEMUTimer *gt_timer[NUM_GTIMERS]; 858 /* 859 * Timer used by the PMU. Its state is restored after migration by 860 * pmu_op_finish() - it does not need other handling during migration 861 */ 862 QEMUTimer *pmu_timer; 863 /* GPIO outputs for generic timer */ 864 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 865 /* GPIO output for GICv3 maintenance interrupt signal */ 866 qemu_irq gicv3_maintenance_interrupt; 867 /* GPIO output for the PMU interrupt */ 868 qemu_irq pmu_interrupt; 869 870 /* MemoryRegion to use for secure physical accesses */ 871 MemoryRegion *secure_memory; 872 873 /* MemoryRegion to use for allocation tag accesses */ 874 MemoryRegion *tag_memory; 875 MemoryRegion *secure_tag_memory; 876 877 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 878 Object *idau; 879 880 /* 'compatible' string for this CPU for Linux device trees */ 881 const char *dtb_compatible; 882 883 /* PSCI version for this CPU 884 * Bits[31:16] = Major Version 885 * Bits[15:0] = Minor Version 886 */ 887 uint32_t psci_version; 888 889 /* Current power state, access guarded by BQL */ 890 ARMPSCIState power_state; 891 892 /* CPU has virtualization extension */ 893 bool has_el2; 894 /* CPU has security extension */ 895 bool has_el3; 896 /* CPU has PMU (Performance Monitor Unit) */ 897 bool has_pmu; 898 /* CPU has VFP */ 899 bool has_vfp; 900 /* CPU has Neon */ 901 bool has_neon; 902 /* CPU has M-profile DSP extension */ 903 bool has_dsp; 904 905 /* CPU has memory protection unit */ 906 bool has_mpu; 907 /* PMSAv7 MPU number of supported regions */ 908 uint32_t pmsav7_dregion; 909 /* v8M SAU number of supported regions */ 910 uint32_t sau_sregion; 911 912 /* PSCI conduit used to invoke PSCI methods 913 * 0 - disabled, 1 - smc, 2 - hvc 914 */ 915 uint32_t psci_conduit; 916 917 /* For v8M, initial value of the Secure VTOR */ 918 uint32_t init_svtor; 919 /* For v8M, initial value of the Non-secure VTOR */ 920 uint32_t init_nsvtor; 921 922 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 923 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 924 */ 925 uint32_t kvm_target; 926 927 /* KVM init features for this CPU */ 928 uint32_t kvm_init_features[7]; 929 930 /* KVM CPU state */ 931 932 /* KVM virtual time adjustment */ 933 bool kvm_adjvtime; 934 bool kvm_vtime_dirty; 935 uint64_t kvm_vtime; 936 937 /* KVM steal time */ 938 OnOffAuto kvm_steal_time; 939 940 /* Uniprocessor system with MP extensions */ 941 bool mp_is_up; 942 943 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 944 * and the probe failed (so we need to report the error in realize) 945 */ 946 bool host_cpu_probe_failed; 947 948 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 949 * register. 950 */ 951 int32_t core_count; 952 953 /* The instance init functions for implementation-specific subclasses 954 * set these fields to specify the implementation-dependent values of 955 * various constant registers and reset values of non-constant 956 * registers. 957 * Some of these might become QOM properties eventually. 958 * Field names match the official register names as defined in the 959 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 960 * is used for reset values of non-constant registers; no reset_ 961 * prefix means a constant register. 962 * Some of these registers are split out into a substructure that 963 * is shared with the translators to control the ISA. 964 * 965 * Note that if you add an ID register to the ARMISARegisters struct 966 * you need to also update the 32-bit and 64-bit versions of the 967 * kvm_arm_get_host_cpu_features() function to correctly populate the 968 * field by reading the value from the KVM vCPU. 969 */ 970 struct ARMISARegisters { 971 uint32_t id_isar0; 972 uint32_t id_isar1; 973 uint32_t id_isar2; 974 uint32_t id_isar3; 975 uint32_t id_isar4; 976 uint32_t id_isar5; 977 uint32_t id_isar6; 978 uint32_t id_mmfr0; 979 uint32_t id_mmfr1; 980 uint32_t id_mmfr2; 981 uint32_t id_mmfr3; 982 uint32_t id_mmfr4; 983 uint32_t id_mmfr5; 984 uint32_t id_pfr0; 985 uint32_t id_pfr1; 986 uint32_t id_pfr2; 987 uint32_t mvfr0; 988 uint32_t mvfr1; 989 uint32_t mvfr2; 990 uint32_t id_dfr0; 991 uint32_t id_dfr1; 992 uint32_t dbgdidr; 993 uint32_t dbgdevid; 994 uint32_t dbgdevid1; 995 uint64_t id_aa64isar0; 996 uint64_t id_aa64isar1; 997 uint64_t id_aa64pfr0; 998 uint64_t id_aa64pfr1; 999 uint64_t id_aa64mmfr0; 1000 uint64_t id_aa64mmfr1; 1001 uint64_t id_aa64mmfr2; 1002 uint64_t id_aa64dfr0; 1003 uint64_t id_aa64dfr1; 1004 uint64_t id_aa64zfr0; 1005 uint64_t id_aa64smfr0; 1006 uint64_t reset_pmcr_el0; 1007 } isar; 1008 uint64_t midr; 1009 uint32_t revidr; 1010 uint32_t reset_fpsid; 1011 uint64_t ctr; 1012 uint32_t reset_sctlr; 1013 uint64_t pmceid0; 1014 uint64_t pmceid1; 1015 uint32_t id_afr0; 1016 uint64_t id_aa64afr0; 1017 uint64_t id_aa64afr1; 1018 uint64_t clidr; 1019 uint64_t mp_affinity; /* MP ID without feature bits */ 1020 /* The elements of this array are the CCSIDR values for each cache, 1021 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 1022 */ 1023 uint64_t ccsidr[16]; 1024 uint64_t reset_cbar; 1025 uint32_t reset_auxcr; 1026 bool reset_hivecs; 1027 1028 /* 1029 * Intermediate values used during property parsing. 1030 * Once finalized, the values should be read from ID_AA64*. 1031 */ 1032 bool prop_pauth; 1033 bool prop_pauth_impdef; 1034 bool prop_lpa2; 1035 1036 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 1037 uint32_t dcz_blocksize; 1038 uint64_t rvbar_prop; /* Property/input signals. */ 1039 1040 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 1041 int gic_num_lrs; /* number of list registers */ 1042 int gic_vpribits; /* number of virtual priority bits */ 1043 int gic_vprebits; /* number of virtual preemption bits */ 1044 int gic_pribits; /* number of physical priority bits */ 1045 1046 /* Whether the cfgend input is high (i.e. this CPU should reset into 1047 * big-endian mode). This setting isn't used directly: instead it modifies 1048 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 1049 * architecture version. 1050 */ 1051 bool cfgend; 1052 1053 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 1054 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 1055 1056 int32_t node_id; /* NUMA node this CPU belongs to */ 1057 1058 /* Used to synchronize KVM and QEMU in-kernel device levels */ 1059 uint8_t device_irq_level; 1060 1061 /* Used to set the maximum vector length the cpu will support. */ 1062 uint32_t sve_max_vq; 1063 1064 #ifdef CONFIG_USER_ONLY 1065 /* Used to set the default vector length at process start. */ 1066 uint32_t sve_default_vq; 1067 uint32_t sme_default_vq; 1068 #endif 1069 1070 ARMVQMap sve_vq; 1071 ARMVQMap sme_vq; 1072 1073 /* Generic timer counter frequency, in Hz */ 1074 uint64_t gt_cntfrq_hz; 1075 }; 1076 1077 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 1078 1079 void arm_cpu_post_init(Object *obj); 1080 1081 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 1082 1083 #ifndef CONFIG_USER_ONLY 1084 extern const VMStateDescription vmstate_arm_cpu; 1085 1086 void arm_cpu_do_interrupt(CPUState *cpu); 1087 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1088 #endif /* !CONFIG_USER_ONLY */ 1089 1090 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1091 MemTxAttrs *attrs); 1092 1093 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1094 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1095 1096 /* 1097 * Helpers to dynamically generates XML descriptions of the sysregs 1098 * and SVE registers. Returns the number of registers in each set. 1099 */ 1100 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1101 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1102 1103 /* Returns the dynamically generated XML for the gdb stub. 1104 * Returns a pointer to the XML contents for the specified XML file or NULL 1105 * if the XML name doesn't match the predefined one. 1106 */ 1107 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1108 1109 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1110 int cpuid, DumpState *s); 1111 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1112 int cpuid, DumpState *s); 1113 1114 #ifdef TARGET_AARCH64 1115 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1116 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1117 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1118 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1119 int new_el, bool el0_a64); 1120 void arm_reset_sve_state(CPUARMState *env); 1121 1122 /* 1123 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1124 * The byte at offset i from the start of the in-memory representation contains 1125 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1126 * lowest offsets are stored in the lowest memory addresses, then that nearly 1127 * matches QEMU's representation, which is to use an array of host-endian 1128 * uint64_t's, where the lower offsets are at the lower indices. To complete 1129 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1130 */ 1131 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1132 { 1133 #if HOST_BIG_ENDIAN 1134 int i; 1135 1136 for (i = 0; i < nr; ++i) { 1137 dst[i] = bswap64(src[i]); 1138 } 1139 1140 return dst; 1141 #else 1142 return src; 1143 #endif 1144 } 1145 1146 #else 1147 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1148 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1149 int n, bool a) 1150 { } 1151 #endif 1152 1153 void aarch64_sync_32_to_64(CPUARMState *env); 1154 void aarch64_sync_64_to_32(CPUARMState *env); 1155 1156 int fp_exception_el(CPUARMState *env, int cur_el); 1157 int sve_exception_el(CPUARMState *env, int cur_el); 1158 int sme_exception_el(CPUARMState *env, int cur_el); 1159 1160 /** 1161 * sve_vqm1_for_el_sm: 1162 * @env: CPUARMState 1163 * @el: exception level 1164 * @sm: streaming mode 1165 * 1166 * Compute the current vector length for @el & @sm, in units of 1167 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN. 1168 * If @sm, compute for SVL, otherwise NVL. 1169 */ 1170 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm); 1171 1172 /* Likewise, but using @sm = PSTATE.SM. */ 1173 uint32_t sve_vqm1_for_el(CPUARMState *env, int el); 1174 1175 static inline bool is_a64(CPUARMState *env) 1176 { 1177 return env->aarch64; 1178 } 1179 1180 /** 1181 * pmu_op_start/finish 1182 * @env: CPUARMState 1183 * 1184 * Convert all PMU counters between their delta form (the typical mode when 1185 * they are enabled) and the guest-visible values. These two calls must 1186 * surround any action which might affect the counters. 1187 */ 1188 void pmu_op_start(CPUARMState *env); 1189 void pmu_op_finish(CPUARMState *env); 1190 1191 /* 1192 * Called when a PMU counter is due to overflow 1193 */ 1194 void arm_pmu_timer_cb(void *opaque); 1195 1196 /** 1197 * Functions to register as EL change hooks for PMU mode filtering 1198 */ 1199 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1200 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1201 1202 /* 1203 * pmu_init 1204 * @cpu: ARMCPU 1205 * 1206 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1207 * for the current configuration 1208 */ 1209 void pmu_init(ARMCPU *cpu); 1210 1211 /* SCTLR bit meanings. Several bits have been reused in newer 1212 * versions of the architecture; in that case we define constants 1213 * for both old and new bit meanings. Code which tests against those 1214 * bits should probably check or otherwise arrange that the CPU 1215 * is the architectural version it expects. 1216 */ 1217 #define SCTLR_M (1U << 0) 1218 #define SCTLR_A (1U << 1) 1219 #define SCTLR_C (1U << 2) 1220 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1221 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1222 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1223 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1224 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1225 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1226 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1227 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1228 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1229 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1230 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1231 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1232 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1233 #define SCTLR_SED (1U << 8) /* v8 onward */ 1234 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1235 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1236 #define SCTLR_F (1U << 10) /* up to v6 */ 1237 #define SCTLR_SW (1U << 10) /* v7 */ 1238 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1239 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1240 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1241 #define SCTLR_I (1U << 12) 1242 #define SCTLR_V (1U << 13) /* AArch32 only */ 1243 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1244 #define SCTLR_RR (1U << 14) /* up to v7 */ 1245 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1246 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1247 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1248 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1249 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1250 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1251 #define SCTLR_BR (1U << 17) /* PMSA only */ 1252 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1253 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1254 #define SCTLR_WXN (1U << 19) 1255 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1256 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1257 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */ 1258 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1259 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1260 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1261 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1262 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1263 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1264 #define SCTLR_VE (1U << 24) /* up to v7 */ 1265 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1266 #define SCTLR_EE (1U << 25) 1267 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1268 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1269 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1270 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1271 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1272 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1273 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1274 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1275 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1276 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1277 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1278 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ 1279 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1280 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1281 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1282 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1283 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1284 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1285 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1286 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ 1287 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */ 1288 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */ 1289 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */ 1290 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */ 1291 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */ 1292 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */ 1293 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */ 1294 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */ 1295 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */ 1296 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */ 1297 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */ 1298 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */ 1299 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */ 1300 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */ 1301 1302 /* Bit definitions for CPACR (AArch32 only) */ 1303 FIELD(CPACR, CP10, 20, 2) 1304 FIELD(CPACR, CP11, 22, 2) 1305 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */ 1306 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */ 1307 FIELD(CPACR, ASEDIS, 31, 1) 1308 1309 /* Bit definitions for CPACR_EL1 (AArch64 only) */ 1310 FIELD(CPACR_EL1, ZEN, 16, 2) 1311 FIELD(CPACR_EL1, FPEN, 20, 2) 1312 FIELD(CPACR_EL1, SMEN, 24, 2) 1313 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */ 1314 1315 /* Bit definitions for HCPTR (AArch32 only) */ 1316 FIELD(HCPTR, TCP10, 10, 1) 1317 FIELD(HCPTR, TCP11, 11, 1) 1318 FIELD(HCPTR, TASE, 15, 1) 1319 FIELD(HCPTR, TTA, 20, 1) 1320 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */ 1321 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */ 1322 1323 /* Bit definitions for CPTR_EL2 (AArch64 only) */ 1324 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */ 1325 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */ 1326 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */ 1327 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */ 1328 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */ 1329 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */ 1330 FIELD(CPTR_EL2, TTA, 28, 1) 1331 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */ 1332 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */ 1333 1334 /* Bit definitions for CPTR_EL3 (AArch64 only) */ 1335 FIELD(CPTR_EL3, EZ, 8, 1) 1336 FIELD(CPTR_EL3, TFP, 10, 1) 1337 FIELD(CPTR_EL3, ESM, 12, 1) 1338 FIELD(CPTR_EL3, TTA, 20, 1) 1339 FIELD(CPTR_EL3, TAM, 30, 1) 1340 FIELD(CPTR_EL3, TCPAC, 31, 1) 1341 1342 #define MDCR_MTPME (1U << 28) 1343 #define MDCR_TDCC (1U << 27) 1344 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */ 1345 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */ 1346 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */ 1347 #define MDCR_EPMAD (1U << 21) 1348 #define MDCR_EDAD (1U << 20) 1349 #define MDCR_TTRF (1U << 19) 1350 #define MDCR_STE (1U << 18) /* MDCR_EL3 */ 1351 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1352 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1353 #define MDCR_SDD (1U << 16) 1354 #define MDCR_SPD (3U << 14) 1355 #define MDCR_TDRA (1U << 11) 1356 #define MDCR_TDOSA (1U << 10) 1357 #define MDCR_TDA (1U << 9) 1358 #define MDCR_TDE (1U << 8) 1359 #define MDCR_HPME (1U << 7) 1360 #define MDCR_TPM (1U << 6) 1361 #define MDCR_TPMCR (1U << 5) 1362 #define MDCR_HPMN (0x1fU) 1363 1364 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1365 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \ 1366 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \ 1367 MDCR_STE | MDCR_SPME | MDCR_SPD) 1368 1369 #define CPSR_M (0x1fU) 1370 #define CPSR_T (1U << 5) 1371 #define CPSR_F (1U << 6) 1372 #define CPSR_I (1U << 7) 1373 #define CPSR_A (1U << 8) 1374 #define CPSR_E (1U << 9) 1375 #define CPSR_IT_2_7 (0xfc00U) 1376 #define CPSR_GE (0xfU << 16) 1377 #define CPSR_IL (1U << 20) 1378 #define CPSR_DIT (1U << 21) 1379 #define CPSR_PAN (1U << 22) 1380 #define CPSR_SSBS (1U << 23) 1381 #define CPSR_J (1U << 24) 1382 #define CPSR_IT_0_1 (3U << 25) 1383 #define CPSR_Q (1U << 27) 1384 #define CPSR_V (1U << 28) 1385 #define CPSR_C (1U << 29) 1386 #define CPSR_Z (1U << 30) 1387 #define CPSR_N (1U << 31) 1388 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1389 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1390 1391 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1392 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1393 | CPSR_NZCV) 1394 /* Bits writable in user mode. */ 1395 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1396 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1397 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1398 1399 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1400 #define XPSR_EXCP 0x1ffU 1401 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1402 #define XPSR_IT_2_7 CPSR_IT_2_7 1403 #define XPSR_GE CPSR_GE 1404 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1405 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1406 #define XPSR_IT_0_1 CPSR_IT_0_1 1407 #define XPSR_Q CPSR_Q 1408 #define XPSR_V CPSR_V 1409 #define XPSR_C CPSR_C 1410 #define XPSR_Z CPSR_Z 1411 #define XPSR_N CPSR_N 1412 #define XPSR_NZCV CPSR_NZCV 1413 #define XPSR_IT CPSR_IT 1414 1415 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1416 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1417 #define TTBCR_PD0 (1U << 4) 1418 #define TTBCR_PD1 (1U << 5) 1419 #define TTBCR_EPD0 (1U << 7) 1420 #define TTBCR_IRGN0 (3U << 8) 1421 #define TTBCR_ORGN0 (3U << 10) 1422 #define TTBCR_SH0 (3U << 12) 1423 #define TTBCR_T1SZ (3U << 16) 1424 #define TTBCR_A1 (1U << 22) 1425 #define TTBCR_EPD1 (1U << 23) 1426 #define TTBCR_IRGN1 (3U << 24) 1427 #define TTBCR_ORGN1 (3U << 26) 1428 #define TTBCR_SH1 (1U << 28) 1429 #define TTBCR_EAE (1U << 31) 1430 1431 FIELD(VTCR, T0SZ, 0, 6) 1432 FIELD(VTCR, SL0, 6, 2) 1433 FIELD(VTCR, IRGN0, 8, 2) 1434 FIELD(VTCR, ORGN0, 10, 2) 1435 FIELD(VTCR, SH0, 12, 2) 1436 FIELD(VTCR, TG0, 14, 2) 1437 FIELD(VTCR, PS, 16, 3) 1438 FIELD(VTCR, VS, 19, 1) 1439 FIELD(VTCR, HA, 21, 1) 1440 FIELD(VTCR, HD, 22, 1) 1441 FIELD(VTCR, HWU59, 25, 1) 1442 FIELD(VTCR, HWU60, 26, 1) 1443 FIELD(VTCR, HWU61, 27, 1) 1444 FIELD(VTCR, HWU62, 28, 1) 1445 FIELD(VTCR, NSW, 29, 1) 1446 FIELD(VTCR, NSA, 30, 1) 1447 FIELD(VTCR, DS, 32, 1) 1448 FIELD(VTCR, SL2, 33, 1) 1449 1450 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1451 * Only these are valid when in AArch64 mode; in 1452 * AArch32 mode SPSRs are basically CPSR-format. 1453 */ 1454 #define PSTATE_SP (1U) 1455 #define PSTATE_M (0xFU) 1456 #define PSTATE_nRW (1U << 4) 1457 #define PSTATE_F (1U << 6) 1458 #define PSTATE_I (1U << 7) 1459 #define PSTATE_A (1U << 8) 1460 #define PSTATE_D (1U << 9) 1461 #define PSTATE_BTYPE (3U << 10) 1462 #define PSTATE_SSBS (1U << 12) 1463 #define PSTATE_IL (1U << 20) 1464 #define PSTATE_SS (1U << 21) 1465 #define PSTATE_PAN (1U << 22) 1466 #define PSTATE_UAO (1U << 23) 1467 #define PSTATE_DIT (1U << 24) 1468 #define PSTATE_TCO (1U << 25) 1469 #define PSTATE_V (1U << 28) 1470 #define PSTATE_C (1U << 29) 1471 #define PSTATE_Z (1U << 30) 1472 #define PSTATE_N (1U << 31) 1473 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1474 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1475 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1476 /* Mode values for AArch64 */ 1477 #define PSTATE_MODE_EL3h 13 1478 #define PSTATE_MODE_EL3t 12 1479 #define PSTATE_MODE_EL2h 9 1480 #define PSTATE_MODE_EL2t 8 1481 #define PSTATE_MODE_EL1h 5 1482 #define PSTATE_MODE_EL1t 4 1483 #define PSTATE_MODE_EL0t 0 1484 1485 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */ 1486 FIELD(SVCR, SM, 0, 1) 1487 FIELD(SVCR, ZA, 1, 1) 1488 1489 /* Fields for SMCR_ELx. */ 1490 FIELD(SMCR, LEN, 0, 4) 1491 FIELD(SMCR, FA64, 31, 1) 1492 1493 /* Write a new value to v7m.exception, thus transitioning into or out 1494 * of Handler mode; this may result in a change of active stack pointer. 1495 */ 1496 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1497 1498 /* Map EL and handler into a PSTATE_MODE. */ 1499 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1500 { 1501 return (el << 2) | handler; 1502 } 1503 1504 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1505 * interprocessing, so we don't attempt to sync with the cpsr state used by 1506 * the 32 bit decoder. 1507 */ 1508 static inline uint32_t pstate_read(CPUARMState *env) 1509 { 1510 int ZF; 1511 1512 ZF = (env->ZF == 0); 1513 return (env->NF & 0x80000000) | (ZF << 30) 1514 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1515 | env->pstate | env->daif | (env->btype << 10); 1516 } 1517 1518 static inline void pstate_write(CPUARMState *env, uint32_t val) 1519 { 1520 env->ZF = (~val) & PSTATE_Z; 1521 env->NF = val; 1522 env->CF = (val >> 29) & 1; 1523 env->VF = (val << 3) & 0x80000000; 1524 env->daif = val & PSTATE_DAIF; 1525 env->btype = (val >> 10) & 3; 1526 env->pstate = val & ~CACHED_PSTATE_BITS; 1527 } 1528 1529 /* Return the current CPSR value. */ 1530 uint32_t cpsr_read(CPUARMState *env); 1531 1532 typedef enum CPSRWriteType { 1533 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1534 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1535 CPSRWriteRaw = 2, 1536 /* trust values, no reg bank switch, no hflags rebuild */ 1537 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1538 } CPSRWriteType; 1539 1540 /* 1541 * Set the CPSR. Note that some bits of mask must be all-set or all-clear. 1542 * This will do an arm_rebuild_hflags() if any of the bits in @mask 1543 * correspond to TB flags bits cached in the hflags, unless @write_type 1544 * is CPSRWriteRaw. 1545 */ 1546 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1547 CPSRWriteType write_type); 1548 1549 /* Return the current xPSR value. */ 1550 static inline uint32_t xpsr_read(CPUARMState *env) 1551 { 1552 int ZF; 1553 ZF = (env->ZF == 0); 1554 return (env->NF & 0x80000000) | (ZF << 30) 1555 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1556 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1557 | ((env->condexec_bits & 0xfc) << 8) 1558 | (env->GE << 16) 1559 | env->v7m.exception; 1560 } 1561 1562 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1563 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1564 { 1565 if (mask & XPSR_NZCV) { 1566 env->ZF = (~val) & XPSR_Z; 1567 env->NF = val; 1568 env->CF = (val >> 29) & 1; 1569 env->VF = (val << 3) & 0x80000000; 1570 } 1571 if (mask & XPSR_Q) { 1572 env->QF = ((val & XPSR_Q) != 0); 1573 } 1574 if (mask & XPSR_GE) { 1575 env->GE = (val & XPSR_GE) >> 16; 1576 } 1577 #ifndef CONFIG_USER_ONLY 1578 if (mask & XPSR_T) { 1579 env->thumb = ((val & XPSR_T) != 0); 1580 } 1581 if (mask & XPSR_IT_0_1) { 1582 env->condexec_bits &= ~3; 1583 env->condexec_bits |= (val >> 25) & 3; 1584 } 1585 if (mask & XPSR_IT_2_7) { 1586 env->condexec_bits &= 3; 1587 env->condexec_bits |= (val >> 8) & 0xfc; 1588 } 1589 if (mask & XPSR_EXCP) { 1590 /* Note that this only happens on exception exit */ 1591 write_v7m_exception(env, val & XPSR_EXCP); 1592 } 1593 #endif 1594 } 1595 1596 #define HCR_VM (1ULL << 0) 1597 #define HCR_SWIO (1ULL << 1) 1598 #define HCR_PTW (1ULL << 2) 1599 #define HCR_FMO (1ULL << 3) 1600 #define HCR_IMO (1ULL << 4) 1601 #define HCR_AMO (1ULL << 5) 1602 #define HCR_VF (1ULL << 6) 1603 #define HCR_VI (1ULL << 7) 1604 #define HCR_VSE (1ULL << 8) 1605 #define HCR_FB (1ULL << 9) 1606 #define HCR_BSU_MASK (3ULL << 10) 1607 #define HCR_DC (1ULL << 12) 1608 #define HCR_TWI (1ULL << 13) 1609 #define HCR_TWE (1ULL << 14) 1610 #define HCR_TID0 (1ULL << 15) 1611 #define HCR_TID1 (1ULL << 16) 1612 #define HCR_TID2 (1ULL << 17) 1613 #define HCR_TID3 (1ULL << 18) 1614 #define HCR_TSC (1ULL << 19) 1615 #define HCR_TIDCP (1ULL << 20) 1616 #define HCR_TACR (1ULL << 21) 1617 #define HCR_TSW (1ULL << 22) 1618 #define HCR_TPCP (1ULL << 23) 1619 #define HCR_TPU (1ULL << 24) 1620 #define HCR_TTLB (1ULL << 25) 1621 #define HCR_TVM (1ULL << 26) 1622 #define HCR_TGE (1ULL << 27) 1623 #define HCR_TDZ (1ULL << 28) 1624 #define HCR_HCD (1ULL << 29) 1625 #define HCR_TRVM (1ULL << 30) 1626 #define HCR_RW (1ULL << 31) 1627 #define HCR_CD (1ULL << 32) 1628 #define HCR_ID (1ULL << 33) 1629 #define HCR_E2H (1ULL << 34) 1630 #define HCR_TLOR (1ULL << 35) 1631 #define HCR_TERR (1ULL << 36) 1632 #define HCR_TEA (1ULL << 37) 1633 #define HCR_MIOCNCE (1ULL << 38) 1634 /* RES0 bit 39 */ 1635 #define HCR_APK (1ULL << 40) 1636 #define HCR_API (1ULL << 41) 1637 #define HCR_NV (1ULL << 42) 1638 #define HCR_NV1 (1ULL << 43) 1639 #define HCR_AT (1ULL << 44) 1640 #define HCR_NV2 (1ULL << 45) 1641 #define HCR_FWB (1ULL << 46) 1642 #define HCR_FIEN (1ULL << 47) 1643 /* RES0 bit 48 */ 1644 #define HCR_TID4 (1ULL << 49) 1645 #define HCR_TICAB (1ULL << 50) 1646 #define HCR_AMVOFFEN (1ULL << 51) 1647 #define HCR_TOCU (1ULL << 52) 1648 #define HCR_ENSCXT (1ULL << 53) 1649 #define HCR_TTLBIS (1ULL << 54) 1650 #define HCR_TTLBOS (1ULL << 55) 1651 #define HCR_ATA (1ULL << 56) 1652 #define HCR_DCT (1ULL << 57) 1653 #define HCR_TID5 (1ULL << 58) 1654 #define HCR_TWEDEN (1ULL << 59) 1655 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1656 1657 #define HCRX_ENAS0 (1ULL << 0) 1658 #define HCRX_ENALS (1ULL << 1) 1659 #define HCRX_ENASR (1ULL << 2) 1660 #define HCRX_FNXS (1ULL << 3) 1661 #define HCRX_FGTNXS (1ULL << 4) 1662 #define HCRX_SMPME (1ULL << 5) 1663 #define HCRX_TALLINT (1ULL << 6) 1664 #define HCRX_VINMI (1ULL << 7) 1665 #define HCRX_VFNMI (1ULL << 8) 1666 #define HCRX_CMOW (1ULL << 9) 1667 #define HCRX_MCE2 (1ULL << 10) 1668 #define HCRX_MSCEN (1ULL << 11) 1669 1670 #define HPFAR_NS (1ULL << 63) 1671 1672 #define SCR_NS (1ULL << 0) 1673 #define SCR_IRQ (1ULL << 1) 1674 #define SCR_FIQ (1ULL << 2) 1675 #define SCR_EA (1ULL << 3) 1676 #define SCR_FW (1ULL << 4) 1677 #define SCR_AW (1ULL << 5) 1678 #define SCR_NET (1ULL << 6) 1679 #define SCR_SMD (1ULL << 7) 1680 #define SCR_HCE (1ULL << 8) 1681 #define SCR_SIF (1ULL << 9) 1682 #define SCR_RW (1ULL << 10) 1683 #define SCR_ST (1ULL << 11) 1684 #define SCR_TWI (1ULL << 12) 1685 #define SCR_TWE (1ULL << 13) 1686 #define SCR_TLOR (1ULL << 14) 1687 #define SCR_TERR (1ULL << 15) 1688 #define SCR_APK (1ULL << 16) 1689 #define SCR_API (1ULL << 17) 1690 #define SCR_EEL2 (1ULL << 18) 1691 #define SCR_EASE (1ULL << 19) 1692 #define SCR_NMEA (1ULL << 20) 1693 #define SCR_FIEN (1ULL << 21) 1694 #define SCR_ENSCXT (1ULL << 25) 1695 #define SCR_ATA (1ULL << 26) 1696 #define SCR_FGTEN (1ULL << 27) 1697 #define SCR_ECVEN (1ULL << 28) 1698 #define SCR_TWEDEN (1ULL << 29) 1699 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4) 1700 #define SCR_TME (1ULL << 34) 1701 #define SCR_AMVOFFEN (1ULL << 35) 1702 #define SCR_ENAS0 (1ULL << 36) 1703 #define SCR_ADEN (1ULL << 37) 1704 #define SCR_HXEN (1ULL << 38) 1705 #define SCR_TRNDR (1ULL << 40) 1706 #define SCR_ENTP2 (1ULL << 41) 1707 #define SCR_GPF (1ULL << 48) 1708 1709 #define HSTR_TTEE (1 << 16) 1710 #define HSTR_TJDBX (1 << 17) 1711 1712 /* Return the current FPSCR value. */ 1713 uint32_t vfp_get_fpscr(CPUARMState *env); 1714 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1715 1716 /* FPCR, Floating Point Control Register 1717 * FPSR, Floating Poiht Status Register 1718 * 1719 * For A64 the FPSCR is split into two logically distinct registers, 1720 * FPCR and FPSR. However since they still use non-overlapping bits 1721 * we store the underlying state in fpscr and just mask on read/write. 1722 */ 1723 #define FPSR_MASK 0xf800009f 1724 #define FPCR_MASK 0x07ff9f00 1725 1726 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1727 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1728 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1729 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1730 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1731 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1732 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1733 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1734 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1735 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1736 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1737 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1738 #define FPCR_V (1 << 28) /* FP overflow flag */ 1739 #define FPCR_C (1 << 29) /* FP carry flag */ 1740 #define FPCR_Z (1 << 30) /* FP zero flag */ 1741 #define FPCR_N (1 << 31) /* FP negative flag */ 1742 1743 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1744 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1745 #define FPCR_LTPSIZE_LENGTH 3 1746 1747 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) 1748 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) 1749 1750 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1751 { 1752 return vfp_get_fpscr(env) & FPSR_MASK; 1753 } 1754 1755 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1756 { 1757 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1758 vfp_set_fpscr(env, new_fpscr); 1759 } 1760 1761 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1762 { 1763 return vfp_get_fpscr(env) & FPCR_MASK; 1764 } 1765 1766 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1767 { 1768 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1769 vfp_set_fpscr(env, new_fpscr); 1770 } 1771 1772 enum arm_cpu_mode { 1773 ARM_CPU_MODE_USR = 0x10, 1774 ARM_CPU_MODE_FIQ = 0x11, 1775 ARM_CPU_MODE_IRQ = 0x12, 1776 ARM_CPU_MODE_SVC = 0x13, 1777 ARM_CPU_MODE_MON = 0x16, 1778 ARM_CPU_MODE_ABT = 0x17, 1779 ARM_CPU_MODE_HYP = 0x1a, 1780 ARM_CPU_MODE_UND = 0x1b, 1781 ARM_CPU_MODE_SYS = 0x1f 1782 }; 1783 1784 /* VFP system registers. */ 1785 #define ARM_VFP_FPSID 0 1786 #define ARM_VFP_FPSCR 1 1787 #define ARM_VFP_MVFR2 5 1788 #define ARM_VFP_MVFR1 6 1789 #define ARM_VFP_MVFR0 7 1790 #define ARM_VFP_FPEXC 8 1791 #define ARM_VFP_FPINST 9 1792 #define ARM_VFP_FPINST2 10 1793 /* These ones are M-profile only */ 1794 #define ARM_VFP_FPSCR_NZCVQC 2 1795 #define ARM_VFP_VPR 12 1796 #define ARM_VFP_P0 13 1797 #define ARM_VFP_FPCXT_NS 14 1798 #define ARM_VFP_FPCXT_S 15 1799 1800 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1801 #define QEMU_VFP_FPSCR_NZCV 0xffff 1802 1803 /* iwMMXt coprocessor control registers. */ 1804 #define ARM_IWMMXT_wCID 0 1805 #define ARM_IWMMXT_wCon 1 1806 #define ARM_IWMMXT_wCSSF 2 1807 #define ARM_IWMMXT_wCASF 3 1808 #define ARM_IWMMXT_wCGR0 8 1809 #define ARM_IWMMXT_wCGR1 9 1810 #define ARM_IWMMXT_wCGR2 10 1811 #define ARM_IWMMXT_wCGR3 11 1812 1813 /* V7M CCR bits */ 1814 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1815 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1816 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1817 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1818 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1819 FIELD(V7M_CCR, STKALIGN, 9, 1) 1820 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1821 FIELD(V7M_CCR, DC, 16, 1) 1822 FIELD(V7M_CCR, IC, 17, 1) 1823 FIELD(V7M_CCR, BP, 18, 1) 1824 FIELD(V7M_CCR, LOB, 19, 1) 1825 FIELD(V7M_CCR, TRD, 20, 1) 1826 1827 /* V7M SCR bits */ 1828 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1829 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1830 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1831 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1832 1833 /* V7M AIRCR bits */ 1834 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1835 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1836 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1837 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1838 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1839 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1840 FIELD(V7M_AIRCR, PRIS, 14, 1) 1841 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1842 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1843 1844 /* V7M CFSR bits for MMFSR */ 1845 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1846 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1847 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1848 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1849 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1850 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1851 1852 /* V7M CFSR bits for BFSR */ 1853 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1854 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1855 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1856 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1857 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1858 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1859 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1860 1861 /* V7M CFSR bits for UFSR */ 1862 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1863 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1864 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1865 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1866 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1867 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1868 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1869 1870 /* V7M CFSR bit masks covering all of the subregister bits */ 1871 FIELD(V7M_CFSR, MMFSR, 0, 8) 1872 FIELD(V7M_CFSR, BFSR, 8, 8) 1873 FIELD(V7M_CFSR, UFSR, 16, 16) 1874 1875 /* V7M HFSR bits */ 1876 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1877 FIELD(V7M_HFSR, FORCED, 30, 1) 1878 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1879 1880 /* V7M DFSR bits */ 1881 FIELD(V7M_DFSR, HALTED, 0, 1) 1882 FIELD(V7M_DFSR, BKPT, 1, 1) 1883 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1884 FIELD(V7M_DFSR, VCATCH, 3, 1) 1885 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1886 1887 /* V7M SFSR bits */ 1888 FIELD(V7M_SFSR, INVEP, 0, 1) 1889 FIELD(V7M_SFSR, INVIS, 1, 1) 1890 FIELD(V7M_SFSR, INVER, 2, 1) 1891 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1892 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1893 FIELD(V7M_SFSR, LSPERR, 5, 1) 1894 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1895 FIELD(V7M_SFSR, LSERR, 7, 1) 1896 1897 /* v7M MPU_CTRL bits */ 1898 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1899 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1900 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1901 1902 /* v7M CLIDR bits */ 1903 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1904 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1905 FIELD(V7M_CLIDR, LOC, 24, 3) 1906 FIELD(V7M_CLIDR, LOUU, 27, 3) 1907 FIELD(V7M_CLIDR, ICB, 30, 2) 1908 1909 FIELD(V7M_CSSELR, IND, 0, 1) 1910 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1911 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1912 * define a mask for this and check that it doesn't permit running off 1913 * the end of the array. 1914 */ 1915 FIELD(V7M_CSSELR, INDEX, 0, 4) 1916 1917 /* v7M FPCCR bits */ 1918 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1919 FIELD(V7M_FPCCR, USER, 1, 1) 1920 FIELD(V7M_FPCCR, S, 2, 1) 1921 FIELD(V7M_FPCCR, THREAD, 3, 1) 1922 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1923 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1924 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1925 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1926 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1927 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1928 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1929 FIELD(V7M_FPCCR, RES0, 11, 15) 1930 FIELD(V7M_FPCCR, TS, 26, 1) 1931 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1932 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1933 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1934 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1935 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1936 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1937 #define R_V7M_FPCCR_BANKED_MASK \ 1938 (R_V7M_FPCCR_LSPACT_MASK | \ 1939 R_V7M_FPCCR_USER_MASK | \ 1940 R_V7M_FPCCR_THREAD_MASK | \ 1941 R_V7M_FPCCR_MMRDY_MASK | \ 1942 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1943 R_V7M_FPCCR_UFRDY_MASK | \ 1944 R_V7M_FPCCR_ASPEN_MASK) 1945 1946 /* v7M VPR bits */ 1947 FIELD(V7M_VPR, P0, 0, 16) 1948 FIELD(V7M_VPR, MASK01, 16, 4) 1949 FIELD(V7M_VPR, MASK23, 20, 4) 1950 1951 /* 1952 * System register ID fields. 1953 */ 1954 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1955 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1956 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1957 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1958 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1959 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1960 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1961 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1962 FIELD(CLIDR_EL1, LOC, 24, 3) 1963 FIELD(CLIDR_EL1, LOUU, 27, 3) 1964 FIELD(CLIDR_EL1, ICB, 30, 3) 1965 1966 /* When FEAT_CCIDX is implemented */ 1967 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 1968 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 1969 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 1970 1971 /* When FEAT_CCIDX is not implemented */ 1972 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 1973 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 1974 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 1975 1976 FIELD(CTR_EL0, IMINLINE, 0, 4) 1977 FIELD(CTR_EL0, L1IP, 14, 2) 1978 FIELD(CTR_EL0, DMINLINE, 16, 4) 1979 FIELD(CTR_EL0, ERG, 20, 4) 1980 FIELD(CTR_EL0, CWG, 24, 4) 1981 FIELD(CTR_EL0, IDC, 28, 1) 1982 FIELD(CTR_EL0, DIC, 29, 1) 1983 FIELD(CTR_EL0, TMINLINE, 32, 6) 1984 1985 FIELD(MIDR_EL1, REVISION, 0, 4) 1986 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1987 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1988 FIELD(MIDR_EL1, VARIANT, 20, 4) 1989 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1990 1991 FIELD(ID_ISAR0, SWAP, 0, 4) 1992 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1993 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1994 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1995 FIELD(ID_ISAR0, COPROC, 16, 4) 1996 FIELD(ID_ISAR0, DEBUG, 20, 4) 1997 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1998 1999 FIELD(ID_ISAR1, ENDIAN, 0, 4) 2000 FIELD(ID_ISAR1, EXCEPT, 4, 4) 2001 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 2002 FIELD(ID_ISAR1, EXTEND, 12, 4) 2003 FIELD(ID_ISAR1, IFTHEN, 16, 4) 2004 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 2005 FIELD(ID_ISAR1, INTERWORK, 24, 4) 2006 FIELD(ID_ISAR1, JAZELLE, 28, 4) 2007 2008 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 2009 FIELD(ID_ISAR2, MEMHINT, 4, 4) 2010 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 2011 FIELD(ID_ISAR2, MULT, 12, 4) 2012 FIELD(ID_ISAR2, MULTS, 16, 4) 2013 FIELD(ID_ISAR2, MULTU, 20, 4) 2014 FIELD(ID_ISAR2, PSR_AR, 24, 4) 2015 FIELD(ID_ISAR2, REVERSAL, 28, 4) 2016 2017 FIELD(ID_ISAR3, SATURATE, 0, 4) 2018 FIELD(ID_ISAR3, SIMD, 4, 4) 2019 FIELD(ID_ISAR3, SVC, 8, 4) 2020 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 2021 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 2022 FIELD(ID_ISAR3, T32COPY, 20, 4) 2023 FIELD(ID_ISAR3, TRUENOP, 24, 4) 2024 FIELD(ID_ISAR3, T32EE, 28, 4) 2025 2026 FIELD(ID_ISAR4, UNPRIV, 0, 4) 2027 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 2028 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 2029 FIELD(ID_ISAR4, SMC, 12, 4) 2030 FIELD(ID_ISAR4, BARRIER, 16, 4) 2031 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 2032 FIELD(ID_ISAR4, PSR_M, 24, 4) 2033 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 2034 2035 FIELD(ID_ISAR5, SEVL, 0, 4) 2036 FIELD(ID_ISAR5, AES, 4, 4) 2037 FIELD(ID_ISAR5, SHA1, 8, 4) 2038 FIELD(ID_ISAR5, SHA2, 12, 4) 2039 FIELD(ID_ISAR5, CRC32, 16, 4) 2040 FIELD(ID_ISAR5, RDM, 24, 4) 2041 FIELD(ID_ISAR5, VCMA, 28, 4) 2042 2043 FIELD(ID_ISAR6, JSCVT, 0, 4) 2044 FIELD(ID_ISAR6, DP, 4, 4) 2045 FIELD(ID_ISAR6, FHM, 8, 4) 2046 FIELD(ID_ISAR6, SB, 12, 4) 2047 FIELD(ID_ISAR6, SPECRES, 16, 4) 2048 FIELD(ID_ISAR6, BF16, 20, 4) 2049 FIELD(ID_ISAR6, I8MM, 24, 4) 2050 2051 FIELD(ID_MMFR0, VMSA, 0, 4) 2052 FIELD(ID_MMFR0, PMSA, 4, 4) 2053 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 2054 FIELD(ID_MMFR0, SHARELVL, 12, 4) 2055 FIELD(ID_MMFR0, TCM, 16, 4) 2056 FIELD(ID_MMFR0, AUXREG, 20, 4) 2057 FIELD(ID_MMFR0, FCSE, 24, 4) 2058 FIELD(ID_MMFR0, INNERSHR, 28, 4) 2059 2060 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 2061 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 2062 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 2063 FIELD(ID_MMFR1, L1UNISW, 12, 4) 2064 FIELD(ID_MMFR1, L1HVD, 16, 4) 2065 FIELD(ID_MMFR1, L1UNI, 20, 4) 2066 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 2067 FIELD(ID_MMFR1, BPRED, 28, 4) 2068 2069 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 2070 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 2071 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 2072 FIELD(ID_MMFR2, HVDTLB, 12, 4) 2073 FIELD(ID_MMFR2, UNITLB, 16, 4) 2074 FIELD(ID_MMFR2, MEMBARR, 20, 4) 2075 FIELD(ID_MMFR2, WFISTALL, 24, 4) 2076 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 2077 2078 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 2079 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 2080 FIELD(ID_MMFR3, BPMAINT, 8, 4) 2081 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 2082 FIELD(ID_MMFR3, PAN, 16, 4) 2083 FIELD(ID_MMFR3, COHWALK, 20, 4) 2084 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 2085 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 2086 2087 FIELD(ID_MMFR4, SPECSEI, 0, 4) 2088 FIELD(ID_MMFR4, AC2, 4, 4) 2089 FIELD(ID_MMFR4, XNX, 8, 4) 2090 FIELD(ID_MMFR4, CNP, 12, 4) 2091 FIELD(ID_MMFR4, HPDS, 16, 4) 2092 FIELD(ID_MMFR4, LSM, 20, 4) 2093 FIELD(ID_MMFR4, CCIDX, 24, 4) 2094 FIELD(ID_MMFR4, EVT, 28, 4) 2095 2096 FIELD(ID_MMFR5, ETS, 0, 4) 2097 FIELD(ID_MMFR5, NTLBPA, 4, 4) 2098 2099 FIELD(ID_PFR0, STATE0, 0, 4) 2100 FIELD(ID_PFR0, STATE1, 4, 4) 2101 FIELD(ID_PFR0, STATE2, 8, 4) 2102 FIELD(ID_PFR0, STATE3, 12, 4) 2103 FIELD(ID_PFR0, CSV2, 16, 4) 2104 FIELD(ID_PFR0, AMU, 20, 4) 2105 FIELD(ID_PFR0, DIT, 24, 4) 2106 FIELD(ID_PFR0, RAS, 28, 4) 2107 2108 FIELD(ID_PFR1, PROGMOD, 0, 4) 2109 FIELD(ID_PFR1, SECURITY, 4, 4) 2110 FIELD(ID_PFR1, MPROGMOD, 8, 4) 2111 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 2112 FIELD(ID_PFR1, GENTIMER, 16, 4) 2113 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 2114 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 2115 FIELD(ID_PFR1, GIC, 28, 4) 2116 2117 FIELD(ID_PFR2, CSV3, 0, 4) 2118 FIELD(ID_PFR2, SSBS, 4, 4) 2119 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 2120 2121 FIELD(ID_AA64ISAR0, AES, 4, 4) 2122 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 2123 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 2124 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 2125 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 2126 FIELD(ID_AA64ISAR0, RDM, 28, 4) 2127 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 2128 FIELD(ID_AA64ISAR0, SM3, 36, 4) 2129 FIELD(ID_AA64ISAR0, SM4, 40, 4) 2130 FIELD(ID_AA64ISAR0, DP, 44, 4) 2131 FIELD(ID_AA64ISAR0, FHM, 48, 4) 2132 FIELD(ID_AA64ISAR0, TS, 52, 4) 2133 FIELD(ID_AA64ISAR0, TLB, 56, 4) 2134 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 2135 2136 FIELD(ID_AA64ISAR1, DPB, 0, 4) 2137 FIELD(ID_AA64ISAR1, APA, 4, 4) 2138 FIELD(ID_AA64ISAR1, API, 8, 4) 2139 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 2140 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 2141 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 2142 FIELD(ID_AA64ISAR1, GPA, 24, 4) 2143 FIELD(ID_AA64ISAR1, GPI, 28, 4) 2144 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 2145 FIELD(ID_AA64ISAR1, SB, 36, 4) 2146 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 2147 FIELD(ID_AA64ISAR1, BF16, 44, 4) 2148 FIELD(ID_AA64ISAR1, DGH, 48, 4) 2149 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 2150 FIELD(ID_AA64ISAR1, XS, 56, 4) 2151 FIELD(ID_AA64ISAR1, LS64, 60, 4) 2152 2153 FIELD(ID_AA64ISAR2, WFXT, 0, 4) 2154 FIELD(ID_AA64ISAR2, RPRES, 4, 4) 2155 FIELD(ID_AA64ISAR2, GPA3, 8, 4) 2156 FIELD(ID_AA64ISAR2, APA3, 12, 4) 2157 FIELD(ID_AA64ISAR2, MOPS, 16, 4) 2158 FIELD(ID_AA64ISAR2, BC, 20, 4) 2159 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4) 2160 2161 FIELD(ID_AA64PFR0, EL0, 0, 4) 2162 FIELD(ID_AA64PFR0, EL1, 4, 4) 2163 FIELD(ID_AA64PFR0, EL2, 8, 4) 2164 FIELD(ID_AA64PFR0, EL3, 12, 4) 2165 FIELD(ID_AA64PFR0, FP, 16, 4) 2166 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 2167 FIELD(ID_AA64PFR0, GIC, 24, 4) 2168 FIELD(ID_AA64PFR0, RAS, 28, 4) 2169 FIELD(ID_AA64PFR0, SVE, 32, 4) 2170 FIELD(ID_AA64PFR0, SEL2, 36, 4) 2171 FIELD(ID_AA64PFR0, MPAM, 40, 4) 2172 FIELD(ID_AA64PFR0, AMU, 44, 4) 2173 FIELD(ID_AA64PFR0, DIT, 48, 4) 2174 FIELD(ID_AA64PFR0, CSV2, 56, 4) 2175 FIELD(ID_AA64PFR0, CSV3, 60, 4) 2176 2177 FIELD(ID_AA64PFR1, BT, 0, 4) 2178 FIELD(ID_AA64PFR1, SSBS, 4, 4) 2179 FIELD(ID_AA64PFR1, MTE, 8, 4) 2180 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 2181 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 2182 FIELD(ID_AA64PFR1, SME, 24, 4) 2183 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4) 2184 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4) 2185 FIELD(ID_AA64PFR1, NMI, 36, 4) 2186 2187 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 2188 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 2189 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 2190 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 2191 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 2192 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 2193 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 2194 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 2195 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 2196 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 2197 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 2198 FIELD(ID_AA64MMFR0, EXS, 44, 4) 2199 FIELD(ID_AA64MMFR0, FGT, 56, 4) 2200 FIELD(ID_AA64MMFR0, ECV, 60, 4) 2201 2202 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 2203 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 2204 FIELD(ID_AA64MMFR1, VH, 8, 4) 2205 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 2206 FIELD(ID_AA64MMFR1, LO, 16, 4) 2207 FIELD(ID_AA64MMFR1, PAN, 20, 4) 2208 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 2209 FIELD(ID_AA64MMFR1, XNX, 28, 4) 2210 FIELD(ID_AA64MMFR1, TWED, 32, 4) 2211 FIELD(ID_AA64MMFR1, ETS, 36, 4) 2212 FIELD(ID_AA64MMFR1, HCX, 40, 4) 2213 FIELD(ID_AA64MMFR1, AFP, 44, 4) 2214 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4) 2215 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4) 2216 FIELD(ID_AA64MMFR1, CMOW, 56, 4) 2217 2218 FIELD(ID_AA64MMFR2, CNP, 0, 4) 2219 FIELD(ID_AA64MMFR2, UAO, 4, 4) 2220 FIELD(ID_AA64MMFR2, LSM, 8, 4) 2221 FIELD(ID_AA64MMFR2, IESB, 12, 4) 2222 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 2223 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 2224 FIELD(ID_AA64MMFR2, NV, 24, 4) 2225 FIELD(ID_AA64MMFR2, ST, 28, 4) 2226 FIELD(ID_AA64MMFR2, AT, 32, 4) 2227 FIELD(ID_AA64MMFR2, IDS, 36, 4) 2228 FIELD(ID_AA64MMFR2, FWB, 40, 4) 2229 FIELD(ID_AA64MMFR2, TTL, 48, 4) 2230 FIELD(ID_AA64MMFR2, BBM, 52, 4) 2231 FIELD(ID_AA64MMFR2, EVT, 56, 4) 2232 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 2233 2234 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2235 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2236 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2237 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2238 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2239 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2240 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2241 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2242 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2243 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4) 2244 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2245 FIELD(ID_AA64DFR0, BRBE, 52, 4) 2246 FIELD(ID_AA64DFR0, HPMN0, 60, 4) 2247 2248 FIELD(ID_AA64ZFR0, SVEVER, 0, 4) 2249 FIELD(ID_AA64ZFR0, AES, 4, 4) 2250 FIELD(ID_AA64ZFR0, BITPERM, 16, 4) 2251 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) 2252 FIELD(ID_AA64ZFR0, SHA3, 32, 4) 2253 FIELD(ID_AA64ZFR0, SM4, 40, 4) 2254 FIELD(ID_AA64ZFR0, I8MM, 44, 4) 2255 FIELD(ID_AA64ZFR0, F32MM, 52, 4) 2256 FIELD(ID_AA64ZFR0, F64MM, 56, 4) 2257 2258 FIELD(ID_AA64SMFR0, F32F32, 32, 1) 2259 FIELD(ID_AA64SMFR0, B16F32, 34, 1) 2260 FIELD(ID_AA64SMFR0, F16F32, 35, 1) 2261 FIELD(ID_AA64SMFR0, I8I32, 36, 4) 2262 FIELD(ID_AA64SMFR0, F64F64, 48, 1) 2263 FIELD(ID_AA64SMFR0, I16I64, 52, 4) 2264 FIELD(ID_AA64SMFR0, SMEVER, 56, 4) 2265 FIELD(ID_AA64SMFR0, FA64, 63, 1) 2266 2267 FIELD(ID_DFR0, COPDBG, 0, 4) 2268 FIELD(ID_DFR0, COPSDBG, 4, 4) 2269 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2270 FIELD(ID_DFR0, COPTRC, 12, 4) 2271 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2272 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2273 FIELD(ID_DFR0, PERFMON, 24, 4) 2274 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2275 2276 FIELD(ID_DFR1, MTPMU, 0, 4) 2277 FIELD(ID_DFR1, HPMN0, 4, 4) 2278 2279 FIELD(DBGDIDR, SE_IMP, 12, 1) 2280 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2281 FIELD(DBGDIDR, VERSION, 16, 4) 2282 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2283 FIELD(DBGDIDR, BRPS, 24, 4) 2284 FIELD(DBGDIDR, WRPS, 28, 4) 2285 2286 FIELD(DBGDEVID, PCSAMPLE, 0, 4) 2287 FIELD(DBGDEVID, WPADDRMASK, 4, 4) 2288 FIELD(DBGDEVID, BPADDRMASK, 8, 4) 2289 FIELD(DBGDEVID, VECTORCATCH, 12, 4) 2290 FIELD(DBGDEVID, VIRTEXTNS, 16, 4) 2291 FIELD(DBGDEVID, DOUBLELOCK, 20, 4) 2292 FIELD(DBGDEVID, AUXREGS, 24, 4) 2293 FIELD(DBGDEVID, CIDMASK, 28, 4) 2294 2295 FIELD(MVFR0, SIMDREG, 0, 4) 2296 FIELD(MVFR0, FPSP, 4, 4) 2297 FIELD(MVFR0, FPDP, 8, 4) 2298 FIELD(MVFR0, FPTRAP, 12, 4) 2299 FIELD(MVFR0, FPDIVIDE, 16, 4) 2300 FIELD(MVFR0, FPSQRT, 20, 4) 2301 FIELD(MVFR0, FPSHVEC, 24, 4) 2302 FIELD(MVFR0, FPROUND, 28, 4) 2303 2304 FIELD(MVFR1, FPFTZ, 0, 4) 2305 FIELD(MVFR1, FPDNAN, 4, 4) 2306 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2307 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2308 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2309 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2310 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2311 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2312 FIELD(MVFR1, FPHP, 24, 4) 2313 FIELD(MVFR1, SIMDFMAC, 28, 4) 2314 2315 FIELD(MVFR2, SIMDMISC, 0, 4) 2316 FIELD(MVFR2, FPMISC, 4, 4) 2317 2318 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2319 2320 /* If adding a feature bit which corresponds to a Linux ELF 2321 * HWCAP bit, remember to update the feature-bit-to-hwcap 2322 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2323 */ 2324 enum arm_features { 2325 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2326 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2327 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2328 ARM_FEATURE_V6, 2329 ARM_FEATURE_V6K, 2330 ARM_FEATURE_V7, 2331 ARM_FEATURE_THUMB2, 2332 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2333 ARM_FEATURE_NEON, 2334 ARM_FEATURE_M, /* Microcontroller profile. */ 2335 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2336 ARM_FEATURE_THUMB2EE, 2337 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2338 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2339 ARM_FEATURE_V4T, 2340 ARM_FEATURE_V5, 2341 ARM_FEATURE_STRONGARM, 2342 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2343 ARM_FEATURE_GENERIC_TIMER, 2344 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2345 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2346 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2347 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2348 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2349 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2350 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2351 ARM_FEATURE_V8, 2352 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2353 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2354 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2355 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2356 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2357 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2358 ARM_FEATURE_PMU, /* has PMU support */ 2359 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2360 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2361 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2362 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2363 }; 2364 2365 static inline int arm_feature(CPUARMState *env, int feature) 2366 { 2367 return (env->features & (1ULL << feature)) != 0; 2368 } 2369 2370 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2371 2372 #if !defined(CONFIG_USER_ONLY) 2373 /* Return true if exception levels below EL3 are in secure state, 2374 * or would be following an exception return to that level. 2375 * Unlike arm_is_secure() (which is always a question about the 2376 * _current_ state of the CPU) this doesn't care about the current 2377 * EL or mode. 2378 */ 2379 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2380 { 2381 if (arm_feature(env, ARM_FEATURE_EL3)) { 2382 return !(env->cp15.scr_el3 & SCR_NS); 2383 } else { 2384 /* If EL3 is not supported then the secure state is implementation 2385 * defined, in which case QEMU defaults to non-secure. 2386 */ 2387 return false; 2388 } 2389 } 2390 2391 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2392 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2393 { 2394 if (arm_feature(env, ARM_FEATURE_EL3)) { 2395 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2396 /* CPU currently in AArch64 state and EL3 */ 2397 return true; 2398 } else if (!is_a64(env) && 2399 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2400 /* CPU currently in AArch32 state and monitor mode */ 2401 return true; 2402 } 2403 } 2404 return false; 2405 } 2406 2407 /* Return true if the processor is in secure state */ 2408 static inline bool arm_is_secure(CPUARMState *env) 2409 { 2410 if (arm_is_el3_or_mon(env)) { 2411 return true; 2412 } 2413 return arm_is_secure_below_el3(env); 2414 } 2415 2416 /* 2417 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. 2418 * This corresponds to the pseudocode EL2Enabled() 2419 */ 2420 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure) 2421 { 2422 return arm_feature(env, ARM_FEATURE_EL2) 2423 && (!secure || (env->cp15.scr_el3 & SCR_EEL2)); 2424 } 2425 2426 static inline bool arm_is_el2_enabled(CPUARMState *env) 2427 { 2428 return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env)); 2429 } 2430 2431 #else 2432 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2433 { 2434 return false; 2435 } 2436 2437 static inline bool arm_is_secure(CPUARMState *env) 2438 { 2439 return false; 2440 } 2441 2442 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure) 2443 { 2444 return false; 2445 } 2446 2447 static inline bool arm_is_el2_enabled(CPUARMState *env) 2448 { 2449 return false; 2450 } 2451 #endif 2452 2453 /** 2454 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2455 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2456 * "for all purposes other than a direct read or write access of HCR_EL2." 2457 * Not included here is HCR_RW. 2458 */ 2459 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure); 2460 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2461 uint64_t arm_hcrx_el2_eff(CPUARMState *env); 2462 2463 /* Return true if the specified exception level is running in AArch64 state. */ 2464 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2465 { 2466 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2467 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2468 */ 2469 assert(el >= 1 && el <= 3); 2470 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2471 2472 /* The highest exception level is always at the maximum supported 2473 * register width, and then lower levels have a register width controlled 2474 * by bits in the SCR or HCR registers. 2475 */ 2476 if (el == 3) { 2477 return aa64; 2478 } 2479 2480 if (arm_feature(env, ARM_FEATURE_EL3) && 2481 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { 2482 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2483 } 2484 2485 if (el == 2) { 2486 return aa64; 2487 } 2488 2489 if (arm_is_el2_enabled(env)) { 2490 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2491 } 2492 2493 return aa64; 2494 } 2495 2496 /* Function for determing whether guest cp register reads and writes should 2497 * access the secure or non-secure bank of a cp register. When EL3 is 2498 * operating in AArch32 state, the NS-bit determines whether the secure 2499 * instance of a cp register should be used. When EL3 is AArch64 (or if 2500 * it doesn't exist at all) then there is no register banking, and all 2501 * accesses are to the non-secure version. 2502 */ 2503 static inline bool access_secure_reg(CPUARMState *env) 2504 { 2505 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2506 !arm_el_is_aa64(env, 3) && 2507 !(env->cp15.scr_el3 & SCR_NS)); 2508 2509 return ret; 2510 } 2511 2512 /* Macros for accessing a specified CP register bank */ 2513 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2514 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2515 2516 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2517 do { \ 2518 if (_secure) { \ 2519 (_env)->cp15._regname##_s = (_val); \ 2520 } else { \ 2521 (_env)->cp15._regname##_ns = (_val); \ 2522 } \ 2523 } while (0) 2524 2525 /* Macros for automatically accessing a specific CP register bank depending on 2526 * the current secure state of the system. These macros are not intended for 2527 * supporting instruction translation reads/writes as these are dependent 2528 * solely on the SCR.NS bit and not the mode. 2529 */ 2530 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2531 A32_BANKED_REG_GET((_env), _regname, \ 2532 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2533 2534 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2535 A32_BANKED_REG_SET((_env), _regname, \ 2536 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2537 (_val)) 2538 2539 void arm_cpu_list(void); 2540 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2541 uint32_t cur_el, bool secure); 2542 2543 /* Interface between CPU and Interrupt controller. */ 2544 #ifndef CONFIG_USER_ONLY 2545 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2546 #else 2547 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2548 { 2549 return true; 2550 } 2551 #endif 2552 /** 2553 * armv7m_nvic_set_pending: mark the specified exception as pending 2554 * @opaque: the NVIC 2555 * @irq: the exception number to mark pending 2556 * @secure: false for non-banked exceptions or for the nonsecure 2557 * version of a banked exception, true for the secure version of a banked 2558 * exception. 2559 * 2560 * Marks the specified exception as pending. Note that we will assert() 2561 * if @secure is true and @irq does not specify one of the fixed set 2562 * of architecturally banked exceptions. 2563 */ 2564 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2565 /** 2566 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2567 * @opaque: the NVIC 2568 * @irq: the exception number to mark pending 2569 * @secure: false for non-banked exceptions or for the nonsecure 2570 * version of a banked exception, true for the secure version of a banked 2571 * exception. 2572 * 2573 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2574 * exceptions (exceptions generated in the course of trying to take 2575 * a different exception). 2576 */ 2577 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2578 /** 2579 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2580 * @opaque: the NVIC 2581 * @irq: the exception number to mark pending 2582 * @secure: false for non-banked exceptions or for the nonsecure 2583 * version of a banked exception, true for the secure version of a banked 2584 * exception. 2585 * 2586 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2587 * generated in the course of lazy stacking of FP registers. 2588 */ 2589 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2590 /** 2591 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2592 * exception, and whether it targets Secure state 2593 * @opaque: the NVIC 2594 * @pirq: set to pending exception number 2595 * @ptargets_secure: set to whether pending exception targets Secure 2596 * 2597 * This function writes the number of the highest priority pending 2598 * exception (the one which would be made active by 2599 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2600 * to true if the current highest priority pending exception should 2601 * be taken to Secure state, false for NS. 2602 */ 2603 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2604 bool *ptargets_secure); 2605 /** 2606 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2607 * @opaque: the NVIC 2608 * 2609 * Move the current highest priority pending exception from the pending 2610 * state to the active state, and update v7m.exception to indicate that 2611 * it is the exception currently being handled. 2612 */ 2613 void armv7m_nvic_acknowledge_irq(void *opaque); 2614 /** 2615 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2616 * @opaque: the NVIC 2617 * @irq: the exception number to complete 2618 * @secure: true if this exception was secure 2619 * 2620 * Returns: -1 if the irq was not active 2621 * 1 if completing this irq brought us back to base (no active irqs) 2622 * 0 if there is still an irq active after this one was completed 2623 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2624 */ 2625 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2626 /** 2627 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2628 * @opaque: the NVIC 2629 * @irq: the exception number to mark pending 2630 * @secure: false for non-banked exceptions or for the nonsecure 2631 * version of a banked exception, true for the secure version of a banked 2632 * exception. 2633 * 2634 * Return whether an exception is "ready", i.e. whether the exception is 2635 * enabled and is configured at a priority which would allow it to 2636 * interrupt the current execution priority. This controls whether the 2637 * RDY bit for it in the FPCCR is set. 2638 */ 2639 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2640 /** 2641 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2642 * @opaque: the NVIC 2643 * 2644 * Returns: the raw execution priority as defined by the v8M architecture. 2645 * This is the execution priority minus the effects of AIRCR.PRIS, 2646 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2647 * (v8M ARM ARM I_PKLD.) 2648 */ 2649 int armv7m_nvic_raw_execution_priority(void *opaque); 2650 /** 2651 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2652 * priority is negative for the specified security state. 2653 * @opaque: the NVIC 2654 * @secure: the security state to test 2655 * This corresponds to the pseudocode IsReqExecPriNeg(). 2656 */ 2657 #ifndef CONFIG_USER_ONLY 2658 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2659 #else 2660 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2661 { 2662 return false; 2663 } 2664 #endif 2665 2666 /* Interface for defining coprocessor registers. 2667 * Registers are defined in tables of arm_cp_reginfo structs 2668 * which are passed to define_arm_cp_regs(). 2669 */ 2670 2671 /* When looking up a coprocessor register we look for it 2672 * via an integer which encodes all of: 2673 * coprocessor number 2674 * Crn, Crm, opc1, opc2 fields 2675 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2676 * or via MRRC/MCRR?) 2677 * non-secure/secure bank (AArch32 only) 2678 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2679 * (In this case crn and opc2 should be zero.) 2680 * For AArch64, there is no 32/64 bit size distinction; 2681 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2682 * and 4 bit CRn and CRm. The encoding patterns are chosen 2683 * to be easy to convert to and from the KVM encodings, and also 2684 * so that the hashtable can contain both AArch32 and AArch64 2685 * registers (to allow for interprocessing where we might run 2686 * 32 bit code on a 64 bit core). 2687 */ 2688 /* This bit is private to our hashtable cpreg; in KVM register 2689 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2690 * in the upper bits of the 64 bit ID. 2691 */ 2692 #define CP_REG_AA64_SHIFT 28 2693 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2694 2695 /* To enable banking of coprocessor registers depending on ns-bit we 2696 * add a bit to distinguish between secure and non-secure cpregs in the 2697 * hashtable. 2698 */ 2699 #define CP_REG_NS_SHIFT 29 2700 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2701 2702 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2703 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2704 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2705 2706 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2707 (CP_REG_AA64_MASK | \ 2708 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2709 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2710 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2711 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2712 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2713 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2714 2715 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2716 * version used as a key for the coprocessor register hashtable 2717 */ 2718 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2719 { 2720 uint32_t cpregid = kvmid; 2721 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2722 cpregid |= CP_REG_AA64_MASK; 2723 } else { 2724 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2725 cpregid |= (1 << 15); 2726 } 2727 2728 /* KVM is always non-secure so add the NS flag on AArch32 register 2729 * entries. 2730 */ 2731 cpregid |= 1 << CP_REG_NS_SHIFT; 2732 } 2733 return cpregid; 2734 } 2735 2736 /* Convert a truncated 32 bit hashtable key into the full 2737 * 64 bit KVM register ID. 2738 */ 2739 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2740 { 2741 uint64_t kvmid; 2742 2743 if (cpregid & CP_REG_AA64_MASK) { 2744 kvmid = cpregid & ~CP_REG_AA64_MASK; 2745 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2746 } else { 2747 kvmid = cpregid & ~(1 << 15); 2748 if (cpregid & (1 << 15)) { 2749 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2750 } else { 2751 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2752 } 2753 } 2754 return kvmid; 2755 } 2756 2757 /* Return the highest implemented Exception Level */ 2758 static inline int arm_highest_el(CPUARMState *env) 2759 { 2760 if (arm_feature(env, ARM_FEATURE_EL3)) { 2761 return 3; 2762 } 2763 if (arm_feature(env, ARM_FEATURE_EL2)) { 2764 return 2; 2765 } 2766 return 1; 2767 } 2768 2769 /* Return true if a v7M CPU is in Handler mode */ 2770 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2771 { 2772 return env->v7m.exception != 0; 2773 } 2774 2775 /* Return the current Exception Level (as per ARMv8; note that this differs 2776 * from the ARMv7 Privilege Level). 2777 */ 2778 static inline int arm_current_el(CPUARMState *env) 2779 { 2780 if (arm_feature(env, ARM_FEATURE_M)) { 2781 return arm_v7m_is_handler_mode(env) || 2782 !(env->v7m.control[env->v7m.secure] & 1); 2783 } 2784 2785 if (is_a64(env)) { 2786 return extract32(env->pstate, 2, 2); 2787 } 2788 2789 switch (env->uncached_cpsr & 0x1f) { 2790 case ARM_CPU_MODE_USR: 2791 return 0; 2792 case ARM_CPU_MODE_HYP: 2793 return 2; 2794 case ARM_CPU_MODE_MON: 2795 return 3; 2796 default: 2797 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2798 /* If EL3 is 32-bit then all secure privileged modes run in 2799 * EL3 2800 */ 2801 return 3; 2802 } 2803 2804 return 1; 2805 } 2806 } 2807 2808 /** 2809 * write_list_to_cpustate 2810 * @cpu: ARMCPU 2811 * 2812 * For each register listed in the ARMCPU cpreg_indexes list, write 2813 * its value from the cpreg_values list into the ARMCPUState structure. 2814 * This updates TCG's working data structures from KVM data or 2815 * from incoming migration state. 2816 * 2817 * Returns: true if all register values were updated correctly, 2818 * false if some register was unknown or could not be written. 2819 * Note that we do not stop early on failure -- we will attempt 2820 * writing all registers in the list. 2821 */ 2822 bool write_list_to_cpustate(ARMCPU *cpu); 2823 2824 /** 2825 * write_cpustate_to_list: 2826 * @cpu: ARMCPU 2827 * @kvm_sync: true if this is for syncing back to KVM 2828 * 2829 * For each register listed in the ARMCPU cpreg_indexes list, write 2830 * its value from the ARMCPUState structure into the cpreg_values list. 2831 * This is used to copy info from TCG's working data structures into 2832 * KVM or for outbound migration. 2833 * 2834 * @kvm_sync is true if we are doing this in order to sync the 2835 * register state back to KVM. In this case we will only update 2836 * values in the list if the previous list->cpustate sync actually 2837 * successfully wrote the CPU state. Otherwise we will keep the value 2838 * that is in the list. 2839 * 2840 * Returns: true if all register values were read correctly, 2841 * false if some register was unknown or could not be read. 2842 * Note that we do not stop early on failure -- we will attempt 2843 * reading all registers in the list. 2844 */ 2845 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2846 2847 #define ARM_CPUID_TI915T 0x54029152 2848 #define ARM_CPUID_TI925T 0x54029252 2849 2850 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2851 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2852 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2853 2854 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU 2855 2856 #define cpu_list arm_cpu_list 2857 2858 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2859 * 2860 * If EL3 is 64-bit: 2861 * + NonSecure EL1 & 0 stage 1 2862 * + NonSecure EL1 & 0 stage 2 2863 * + NonSecure EL2 2864 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2865 * + Secure EL1 & 0 2866 * + Secure EL3 2867 * If EL3 is 32-bit: 2868 * + NonSecure PL1 & 0 stage 1 2869 * + NonSecure PL1 & 0 stage 2 2870 * + NonSecure PL2 2871 * + Secure PL0 2872 * + Secure PL1 2873 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2874 * 2875 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2876 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2877 * because they may differ in access permissions even if the VA->PA map is 2878 * the same 2879 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2880 * translation, which means that we have one mmu_idx that deals with two 2881 * concatenated translation regimes [this sort of combined s1+2 TLB is 2882 * architecturally permitted] 2883 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2884 * handling via the TLB. The only way to do a stage 1 translation without 2885 * the immediate stage 2 translation is via the ATS or AT system insns, 2886 * which can be slow-pathed and always do a page table walk. 2887 * The only use of stage 2 translations is either as part of an s1+2 2888 * lookup or when loading the descriptors during a stage 1 page table walk, 2889 * and in both those cases we don't use the TLB. 2890 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2891 * translation regimes, because they map reasonably well to each other 2892 * and they can't both be active at the same time. 2893 * 5. we want to be able to use the TLB for accesses done as part of a 2894 * stage1 page table walk, rather than having to walk the stage2 page 2895 * table over and over. 2896 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2897 * Never (PAN) bit within PSTATE. 2898 * 7. we fold together the secure and non-secure regimes for A-profile, 2899 * because there are no banked system registers for aarch64, so the 2900 * process of switching between secure and non-secure is 2901 * already heavyweight. 2902 * 2903 * This gives us the following list of cases: 2904 * 2905 * EL0 EL1&0 stage 1+2 (aka NS PL0) 2906 * EL1 EL1&0 stage 1+2 (aka NS PL1) 2907 * EL1 EL1&0 stage 1+2 +PAN 2908 * EL0 EL2&0 2909 * EL2 EL2&0 2910 * EL2 EL2&0 +PAN 2911 * EL2 (aka NS PL2) 2912 * EL3 (aka S PL1) 2913 * Physical (NS & S) 2914 * Stage2 (NS & S) 2915 * 2916 * for a total of 12 different mmu_idx. 2917 * 2918 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2919 * as A profile. They only need to distinguish EL0 and EL1 (and 2920 * EL2 if we ever model a Cortex-R52). 2921 * 2922 * M profile CPUs are rather different as they do not have a true MMU. 2923 * They have the following different MMU indexes: 2924 * User 2925 * Privileged 2926 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2927 * Privileged, execution priority negative (ditto) 2928 * If the CPU supports the v8M Security Extension then there are also: 2929 * Secure User 2930 * Secure Privileged 2931 * Secure User, execution priority negative 2932 * Secure Privileged, execution priority negative 2933 * 2934 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2935 * are not quite the same -- different CPU types (most notably M profile 2936 * vs A/R profile) would like to use MMU indexes with different semantics, 2937 * but since we don't ever need to use all of those in a single CPU we 2938 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2939 * modes + total number of M profile MMU modes". The lower bits of 2940 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2941 * the same for any particular CPU. 2942 * Variables of type ARMMUIdx are always full values, and the core 2943 * index values are in variables of type 'int'. 2944 * 2945 * Our enumeration includes at the end some entries which are not "true" 2946 * mmu_idx values in that they don't have corresponding TLBs and are only 2947 * valid for doing slow path page table walks. 2948 * 2949 * The constant names here are patterned after the general style of the names 2950 * of the AT/ATS operations. 2951 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2952 * For M profile we arrange them to have a bit for priv, a bit for negpri 2953 * and a bit for secure. 2954 */ 2955 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2956 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2957 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2958 2959 /* Meanings of the bits for M profile mmu idx values */ 2960 #define ARM_MMU_IDX_M_PRIV 0x1 2961 #define ARM_MMU_IDX_M_NEGPRI 0x2 2962 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2963 2964 #define ARM_MMU_IDX_TYPE_MASK \ 2965 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2966 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2967 2968 typedef enum ARMMMUIdx { 2969 /* 2970 * A-profile. 2971 */ 2972 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2973 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2974 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2975 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A, 2976 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A, 2977 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A, 2978 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A, 2979 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A, 2980 2981 /* TLBs with 1-1 mapping to the physical address spaces. */ 2982 ARMMMUIdx_Phys_NS = 8 | ARM_MMU_IDX_A, 2983 ARMMMUIdx_Phys_S = 9 | ARM_MMU_IDX_A, 2984 2985 /* 2986 * Used for second stage of an S12 page table walk, or for descriptor 2987 * loads during first stage of an S1 page table walk. Note that both 2988 * are in use simultaneously for SecureEL2: the security state for 2989 * the S2 ptw is selected by the NS bit from the S1 ptw. 2990 */ 2991 ARMMMUIdx_Stage2 = 10 | ARM_MMU_IDX_A, 2992 ARMMMUIdx_Stage2_S = 11 | ARM_MMU_IDX_A, 2993 2994 /* 2995 * These are not allocated TLBs and are used only for AT system 2996 * instructions or for the first stage of an S12 page table walk. 2997 */ 2998 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2999 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 3000 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 3001 3002 /* 3003 * M-profile. 3004 */ 3005 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 3006 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 3007 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 3008 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 3009 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 3010 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 3011 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 3012 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 3013 } ARMMMUIdx; 3014 3015 /* 3016 * Bit macros for the core-mmu-index values for each index, 3017 * for use when calling tlb_flush_by_mmuidx() and friends. 3018 */ 3019 #define TO_CORE_BIT(NAME) \ 3020 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 3021 3022 typedef enum ARMMMUIdxBit { 3023 TO_CORE_BIT(E10_0), 3024 TO_CORE_BIT(E20_0), 3025 TO_CORE_BIT(E10_1), 3026 TO_CORE_BIT(E10_1_PAN), 3027 TO_CORE_BIT(E2), 3028 TO_CORE_BIT(E20_2), 3029 TO_CORE_BIT(E20_2_PAN), 3030 TO_CORE_BIT(E3), 3031 TO_CORE_BIT(Stage2), 3032 TO_CORE_BIT(Stage2_S), 3033 3034 TO_CORE_BIT(MUser), 3035 TO_CORE_BIT(MPriv), 3036 TO_CORE_BIT(MUserNegPri), 3037 TO_CORE_BIT(MPrivNegPri), 3038 TO_CORE_BIT(MSUser), 3039 TO_CORE_BIT(MSPriv), 3040 TO_CORE_BIT(MSUserNegPri), 3041 TO_CORE_BIT(MSPrivNegPri), 3042 } ARMMMUIdxBit; 3043 3044 #undef TO_CORE_BIT 3045 3046 #define MMU_USER_IDX 0 3047 3048 /* Indexes used when registering address spaces with cpu_address_space_init */ 3049 typedef enum ARMASIdx { 3050 ARMASIdx_NS = 0, 3051 ARMASIdx_S = 1, 3052 ARMASIdx_TagNS = 2, 3053 ARMASIdx_TagS = 3, 3054 } ARMASIdx; 3055 3056 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3057 { 3058 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3059 * CSSELR is RAZ/WI. 3060 */ 3061 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3062 } 3063 3064 static inline bool arm_sctlr_b(CPUARMState *env) 3065 { 3066 return 3067 /* We need not implement SCTLR.ITD in user-mode emulation, so 3068 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3069 * This lets people run BE32 binaries with "-cpu any". 3070 */ 3071 #ifndef CONFIG_USER_ONLY 3072 !arm_feature(env, ARM_FEATURE_V7) && 3073 #endif 3074 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3075 } 3076 3077 uint64_t arm_sctlr(CPUARMState *env, int el); 3078 3079 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3080 bool sctlr_b) 3081 { 3082 #ifdef CONFIG_USER_ONLY 3083 /* 3084 * In system mode, BE32 is modelled in line with the 3085 * architecture (as word-invariant big-endianness), where loads 3086 * and stores are done little endian but from addresses which 3087 * are adjusted by XORing with the appropriate constant. So the 3088 * endianness to use for the raw data access is not affected by 3089 * SCTLR.B. 3090 * In user mode, however, we model BE32 as byte-invariant 3091 * big-endianness (because user-only code cannot tell the 3092 * difference), and so we need to use a data access endianness 3093 * that depends on SCTLR.B. 3094 */ 3095 if (sctlr_b) { 3096 return true; 3097 } 3098 #endif 3099 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3100 return env->uncached_cpsr & CPSR_E; 3101 } 3102 3103 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3104 { 3105 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3106 } 3107 3108 /* Return true if the processor is in big-endian mode. */ 3109 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3110 { 3111 if (!is_a64(env)) { 3112 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3113 } else { 3114 int cur_el = arm_current_el(env); 3115 uint64_t sctlr = arm_sctlr(env, cur_el); 3116 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3117 } 3118 } 3119 3120 #include "exec/cpu-all.h" 3121 3122 /* 3123 * We have more than 32-bits worth of state per TB, so we split the data 3124 * between tb->flags and tb->cs_base, which is otherwise unused for ARM. 3125 * We collect these two parts in CPUARMTBFlags where they are named 3126 * flags and flags2 respectively. 3127 * 3128 * The flags that are shared between all execution modes, TBFLAG_ANY, 3129 * are stored in flags. The flags that are specific to a given mode 3130 * are stores in flags2. Since cs_base is sized on the configured 3131 * address size, flags2 always has 64-bits for A64, and a minimum of 3132 * 32-bits for A32 and M32. 3133 * 3134 * The bits for 32-bit A-profile and M-profile partially overlap: 3135 * 3136 * 31 23 11 10 0 3137 * +-------------+----------+----------------+ 3138 * | | | TBFLAG_A32 | 3139 * | TBFLAG_AM32 | +-----+----------+ 3140 * | | |TBFLAG_M32| 3141 * +-------------+----------------+----------+ 3142 * 31 23 6 5 0 3143 * 3144 * Unless otherwise noted, these bits are cached in env->hflags. 3145 */ 3146 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) 3147 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) 3148 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ 3149 FIELD(TBFLAG_ANY, BE_DATA, 3, 1) 3150 FIELD(TBFLAG_ANY, MMUIDX, 4, 4) 3151 /* Target EL if we take a floating-point-disabled exception */ 3152 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) 3153 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ 3154 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1) 3155 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1) 3156 3157 /* 3158 * Bit usage when in AArch32 state, both A- and M-profile. 3159 */ 3160 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ 3161 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ 3162 3163 /* 3164 * Bit usage when in AArch32 state, for A-profile only. 3165 */ 3166 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ 3167 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ 3168 /* 3169 * We store the bottom two bits of the CPAR as TB flags and handle 3170 * checks on the other bits at runtime. This shares the same bits as 3171 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3172 * Not cached, because VECLEN+VECSTRIDE are not cached. 3173 */ 3174 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) 3175 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 3176 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ 3177 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) 3178 /* 3179 * Indicates whether cp register reads and writes by guest code should access 3180 * the secure or nonsecure bank of banked registers; note that this is not 3181 * the same thing as the current security state of the processor! 3182 */ 3183 FIELD(TBFLAG_A32, NS, 10, 1) 3184 /* 3185 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. 3186 * This requires an SME trap from AArch32 mode when using NEON. 3187 */ 3188 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1) 3189 3190 /* 3191 * Bit usage when in AArch32 state, for M-profile only. 3192 */ 3193 /* Handler (ie not Thread) mode */ 3194 FIELD(TBFLAG_M32, HANDLER, 0, 1) 3195 /* Whether we should generate stack-limit checks */ 3196 FIELD(TBFLAG_M32, STACKCHECK, 1, 1) 3197 /* Set if FPCCR.LSPACT is set */ 3198 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ 3199 /* Set if we must create a new FP context */ 3200 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ 3201 /* Set if FPCCR.S does not match current security state */ 3202 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ 3203 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ 3204 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ 3205 /* Set if in secure mode */ 3206 FIELD(TBFLAG_M32, SECURE, 6, 1) 3207 3208 /* 3209 * Bit usage when in AArch64 state 3210 */ 3211 FIELD(TBFLAG_A64, TBII, 0, 2) 3212 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3213 /* The current vector length, either NVL or SVL. */ 3214 FIELD(TBFLAG_A64, VL, 4, 4) 3215 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3216 FIELD(TBFLAG_A64, BT, 9, 1) 3217 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3218 FIELD(TBFLAG_A64, TBID, 12, 2) 3219 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3220 FIELD(TBFLAG_A64, ATA, 15, 1) 3221 FIELD(TBFLAG_A64, TCMA, 16, 2) 3222 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3223 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3224 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2) 3225 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1) 3226 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1) 3227 FIELD(TBFLAG_A64, SVL, 24, 4) 3228 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */ 3229 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1) 3230 3231 /* 3232 * Helpers for using the above. 3233 */ 3234 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ 3235 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) 3236 #define DP_TBFLAG_A64(DST, WHICH, VAL) \ 3237 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL)) 3238 #define DP_TBFLAG_A32(DST, WHICH, VAL) \ 3239 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) 3240 #define DP_TBFLAG_M32(DST, WHICH, VAL) \ 3241 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) 3242 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ 3243 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) 3244 3245 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) 3246 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH) 3247 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) 3248 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) 3249 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) 3250 3251 /** 3252 * cpu_mmu_index: 3253 * @env: The cpu environment 3254 * @ifetch: True for code access, false for data access. 3255 * 3256 * Return the core mmu index for the current translation regime. 3257 * This function is used by generic TCG code paths. 3258 */ 3259 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3260 { 3261 return EX_TBFLAG_ANY(env->hflags, MMUIDX); 3262 } 3263 3264 /** 3265 * sve_vq 3266 * @env: the cpu context 3267 * 3268 * Return the VL cached within env->hflags, in units of quadwords. 3269 */ 3270 static inline int sve_vq(CPUARMState *env) 3271 { 3272 return EX_TBFLAG_A64(env->hflags, VL) + 1; 3273 } 3274 3275 /** 3276 * sme_vq 3277 * @env: the cpu context 3278 * 3279 * Return the SVL cached within env->hflags, in units of quadwords. 3280 */ 3281 static inline int sme_vq(CPUARMState *env) 3282 { 3283 return EX_TBFLAG_A64(env->hflags, SVL) + 1; 3284 } 3285 3286 static inline bool bswap_code(bool sctlr_b) 3287 { 3288 #ifdef CONFIG_USER_ONLY 3289 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian. 3290 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0 3291 * would also end up as a mixed-endian mode with BE code, LE data. 3292 */ 3293 return 3294 #if TARGET_BIG_ENDIAN 3295 1 ^ 3296 #endif 3297 sctlr_b; 3298 #else 3299 /* All code access in ARM is little endian, and there are no loaders 3300 * doing swaps that need to be reversed 3301 */ 3302 return 0; 3303 #endif 3304 } 3305 3306 #ifdef CONFIG_USER_ONLY 3307 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3308 { 3309 return 3310 #if TARGET_BIG_ENDIAN 3311 1 ^ 3312 #endif 3313 arm_cpu_data_is_big_endian(env); 3314 } 3315 #endif 3316 3317 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3318 target_ulong *cs_base, uint32_t *flags); 3319 3320 enum { 3321 QEMU_PSCI_CONDUIT_DISABLED = 0, 3322 QEMU_PSCI_CONDUIT_SMC = 1, 3323 QEMU_PSCI_CONDUIT_HVC = 2, 3324 }; 3325 3326 #ifndef CONFIG_USER_ONLY 3327 /* Return the address space index to use for a memory access */ 3328 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3329 { 3330 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3331 } 3332 3333 /* Return the AddressSpace to use for a memory access 3334 * (which depends on whether the access is S or NS, and whether 3335 * the board gave us a separate AddressSpace for S accesses). 3336 */ 3337 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3338 { 3339 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3340 } 3341 #endif 3342 3343 /** 3344 * arm_register_pre_el_change_hook: 3345 * Register a hook function which will be called immediately before this 3346 * CPU changes exception level or mode. The hook function will be 3347 * passed a pointer to the ARMCPU and the opaque data pointer passed 3348 * to this function when the hook was registered. 3349 * 3350 * Note that if a pre-change hook is called, any registered post-change hooks 3351 * are guaranteed to subsequently be called. 3352 */ 3353 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3354 void *opaque); 3355 /** 3356 * arm_register_el_change_hook: 3357 * Register a hook function which will be called immediately after this 3358 * CPU changes exception level or mode. The hook function will be 3359 * passed a pointer to the ARMCPU and the opaque data pointer passed 3360 * to this function when the hook was registered. 3361 * 3362 * Note that any registered hooks registered here are guaranteed to be called 3363 * if pre-change hooks have been. 3364 */ 3365 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3366 *opaque); 3367 3368 /** 3369 * arm_rebuild_hflags: 3370 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3371 */ 3372 void arm_rebuild_hflags(CPUARMState *env); 3373 3374 /** 3375 * aa32_vfp_dreg: 3376 * Return a pointer to the Dn register within env in 32-bit mode. 3377 */ 3378 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3379 { 3380 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3381 } 3382 3383 /** 3384 * aa32_vfp_qreg: 3385 * Return a pointer to the Qn register within env in 32-bit mode. 3386 */ 3387 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3388 { 3389 return &env->vfp.zregs[regno].d[0]; 3390 } 3391 3392 /** 3393 * aa64_vfp_qreg: 3394 * Return a pointer to the Qn register within env in 64-bit mode. 3395 */ 3396 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3397 { 3398 return &env->vfp.zregs[regno].d[0]; 3399 } 3400 3401 /* Shared between translate-sve.c and sve_helper.c. */ 3402 extern const uint64_t pred_esz_masks[5]; 3403 3404 /* 3405 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3406 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect 3407 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR. 3408 */ 3409 #define PAGE_BTI PAGE_TARGET_1 3410 #define PAGE_MTE PAGE_TARGET_2 3411 #define PAGE_TARGET_STICKY PAGE_MTE 3412 3413 #ifdef TARGET_TAGGED_ADDRESSES 3414 /** 3415 * cpu_untagged_addr: 3416 * @cs: CPU context 3417 * @x: tagged address 3418 * 3419 * Remove any address tag from @x. This is explicitly related to the 3420 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. 3421 * 3422 * There should be a better place to put this, but we need this in 3423 * include/exec/cpu_ldst.h, and not some place linux-user specific. 3424 */ 3425 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) 3426 { 3427 ARMCPU *cpu = ARM_CPU(cs); 3428 if (cpu->env.tagged_addr_enable) { 3429 /* 3430 * TBI is enabled for userspace but not kernelspace addresses. 3431 * Only clear the tag if bit 55 is clear. 3432 */ 3433 x &= sextract64(x, 0, 56); 3434 } 3435 return x; 3436 } 3437 #endif 3438 3439 /* 3440 * Naming convention for isar_feature functions: 3441 * Functions which test 32-bit ID registers should have _aa32_ in 3442 * their name. Functions which test 64-bit ID registers should have 3443 * _aa64_ in their name. These must only be used in code where we 3444 * know for certain that the CPU has AArch32 or AArch64 respectively 3445 * or where the correct answer for a CPU which doesn't implement that 3446 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3447 * system registers that are specific to that CPU state, for "should 3448 * we let this system register bit be set" tests where the 32-bit 3449 * flavour of the register doesn't have the bit, and so on). 3450 * Functions which simply ask "does this feature exist at all" have 3451 * _any_ in their name, and always return the logical OR of the _aa64_ 3452 * and the _aa32_ function. 3453 */ 3454 3455 /* 3456 * 32-bit feature tests via id registers. 3457 */ 3458 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3459 { 3460 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3461 } 3462 3463 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3464 { 3465 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3466 } 3467 3468 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) 3469 { 3470 /* (M-profile) low-overhead loops and branch future */ 3471 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; 3472 } 3473 3474 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3475 { 3476 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3477 } 3478 3479 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3480 { 3481 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3482 } 3483 3484 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3485 { 3486 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3487 } 3488 3489 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3490 { 3491 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3492 } 3493 3494 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3495 { 3496 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3497 } 3498 3499 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3500 { 3501 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3502 } 3503 3504 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3505 { 3506 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3507 } 3508 3509 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3510 { 3511 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3512 } 3513 3514 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3515 { 3516 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3517 } 3518 3519 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3520 { 3521 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3522 } 3523 3524 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3525 { 3526 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3527 } 3528 3529 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3530 { 3531 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3532 } 3533 3534 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3535 { 3536 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3537 } 3538 3539 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id) 3540 { 3541 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0; 3542 } 3543 3544 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id) 3545 { 3546 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0; 3547 } 3548 3549 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) 3550 { 3551 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; 3552 } 3553 3554 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3555 { 3556 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3557 } 3558 3559 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) 3560 { 3561 /* 3562 * Return true if M-profile state handling insns 3563 * (VSCCLRM, CLRM, FPCTX access insns) are implemented 3564 */ 3565 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; 3566 } 3567 3568 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3569 { 3570 /* Sadly this is encoded differently for A-profile and M-profile */ 3571 if (isar_feature_aa32_mprofile(id)) { 3572 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3573 } else { 3574 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3575 } 3576 } 3577 3578 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id) 3579 { 3580 /* 3581 * Return true if MVE is supported (either integer or floating point). 3582 * We must check for M-profile as the MVFR1 field means something 3583 * else for A-profile. 3584 */ 3585 return isar_feature_aa32_mprofile(id) && 3586 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0; 3587 } 3588 3589 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id) 3590 { 3591 /* 3592 * Return true if MVE is supported (either integer or floating point). 3593 * We must check for M-profile as the MVFR1 field means something 3594 * else for A-profile. 3595 */ 3596 return isar_feature_aa32_mprofile(id) && 3597 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2; 3598 } 3599 3600 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3601 { 3602 /* 3603 * Return true if either VFP or SIMD is implemented. 3604 * In this case, a minimum of VFP w/ D0-D15. 3605 */ 3606 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3607 } 3608 3609 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3610 { 3611 /* Return true if D16-D31 are implemented */ 3612 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3613 } 3614 3615 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3616 { 3617 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3618 } 3619 3620 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3621 { 3622 /* Return true if CPU supports single precision floating point, VFPv2 */ 3623 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3624 } 3625 3626 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3627 { 3628 /* Return true if CPU supports single precision floating point, VFPv3 */ 3629 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3630 } 3631 3632 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3633 { 3634 /* Return true if CPU supports double precision floating point, VFPv2 */ 3635 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3636 } 3637 3638 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3639 { 3640 /* Return true if CPU supports double precision floating point, VFPv3 */ 3641 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3642 } 3643 3644 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3645 { 3646 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3647 } 3648 3649 /* 3650 * We always set the FP and SIMD FP16 fields to indicate identical 3651 * levels of support (assuming SIMD is implemented at all), so 3652 * we only need one set of accessors. 3653 */ 3654 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3655 { 3656 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3657 } 3658 3659 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3660 { 3661 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3662 } 3663 3664 /* 3665 * Note that this ID register field covers both VFP and Neon FMAC, 3666 * so should usually be tested in combination with some other 3667 * check that confirms the presence of whichever of VFP or Neon is 3668 * relevant, to avoid accidentally enabling a Neon feature on 3669 * a VFP-no-Neon core or vice-versa. 3670 */ 3671 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3672 { 3673 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3674 } 3675 3676 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3677 { 3678 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3679 } 3680 3681 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3682 { 3683 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3684 } 3685 3686 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3687 { 3688 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3689 } 3690 3691 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3692 { 3693 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3694 } 3695 3696 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3697 { 3698 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3699 } 3700 3701 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3702 { 3703 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3704 } 3705 3706 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3707 { 3708 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3709 } 3710 3711 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id) 3712 { 3713 /* 0xf means "non-standard IMPDEF PMU" */ 3714 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3715 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3716 } 3717 3718 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id) 3719 { 3720 /* 0xf means "non-standard IMPDEF PMU" */ 3721 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3722 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3723 } 3724 3725 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id) 3726 { 3727 /* 0xf means "non-standard IMPDEF PMU" */ 3728 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 && 3729 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3730 } 3731 3732 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3733 { 3734 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3735 } 3736 3737 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3738 { 3739 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3740 } 3741 3742 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3743 { 3744 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3745 } 3746 3747 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3748 { 3749 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3750 } 3751 3752 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id) 3753 { 3754 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0; 3755 } 3756 3757 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id) 3758 { 3759 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0; 3760 } 3761 3762 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id) 3763 { 3764 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5; 3765 } 3766 3767 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id) 3768 { 3769 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8; 3770 } 3771 3772 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id) 3773 { 3774 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0; 3775 } 3776 3777 /* 3778 * 64-bit feature tests via id registers. 3779 */ 3780 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3781 { 3782 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3783 } 3784 3785 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3786 { 3787 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3788 } 3789 3790 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3791 { 3792 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3793 } 3794 3795 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3796 { 3797 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3798 } 3799 3800 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3801 { 3802 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3803 } 3804 3805 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3806 { 3807 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3808 } 3809 3810 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3811 { 3812 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3813 } 3814 3815 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3816 { 3817 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3818 } 3819 3820 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3821 { 3822 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3823 } 3824 3825 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3826 { 3827 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3828 } 3829 3830 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3831 { 3832 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3833 } 3834 3835 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3836 { 3837 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3838 } 3839 3840 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3841 { 3842 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3843 } 3844 3845 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3846 { 3847 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3848 } 3849 3850 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3851 { 3852 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3853 } 3854 3855 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3856 { 3857 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3858 } 3859 3860 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3861 { 3862 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3863 } 3864 3865 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3866 { 3867 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3868 } 3869 3870 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3871 { 3872 /* 3873 * Return true if any form of pauth is enabled, as this 3874 * predicate controls migration of the 128-bit keys. 3875 */ 3876 return (id->id_aa64isar1 & 3877 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3878 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3879 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3880 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3881 } 3882 3883 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id) 3884 { 3885 /* 3886 * Return true if pauth is enabled with the architected QARMA algorithm. 3887 * QEMU will always set APA+GPA to the same value. 3888 */ 3889 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0; 3890 } 3891 3892 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id) 3893 { 3894 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2; 3895 } 3896 3897 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id) 3898 { 3899 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0; 3900 } 3901 3902 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3903 { 3904 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3905 } 3906 3907 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3908 { 3909 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3910 } 3911 3912 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3913 { 3914 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3915 } 3916 3917 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3918 { 3919 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3920 } 3921 3922 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3923 { 3924 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3925 } 3926 3927 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id) 3928 { 3929 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0; 3930 } 3931 3932 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3933 { 3934 /* We always set the AdvSIMD and FP fields identically. */ 3935 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3936 } 3937 3938 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3939 { 3940 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3941 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3942 } 3943 3944 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3945 { 3946 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3947 } 3948 3949 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id) 3950 { 3951 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2; 3952 } 3953 3954 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id) 3955 { 3956 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2; 3957 } 3958 3959 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id) 3960 { 3961 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0; 3962 } 3963 3964 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id) 3965 { 3966 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2; 3967 } 3968 3969 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3970 { 3971 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3972 } 3973 3974 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id) 3975 { 3976 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0; 3977 } 3978 3979 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3980 { 3981 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3982 } 3983 3984 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3985 { 3986 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3987 } 3988 3989 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3990 { 3991 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3992 } 3993 3994 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3995 { 3996 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3997 } 3998 3999 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id) 4000 { 4001 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0; 4002 } 4003 4004 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 4005 { 4006 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 4007 } 4008 4009 static inline bool isar_feature_aa64_st(const ARMISARegisters *id) 4010 { 4011 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; 4012 } 4013 4014 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id) 4015 { 4016 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0; 4017 } 4018 4019 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id) 4020 { 4021 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0; 4022 } 4023 4024 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 4025 { 4026 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 4027 } 4028 4029 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 4030 { 4031 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 4032 } 4033 4034 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 4035 { 4036 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 4037 } 4038 4039 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id) 4040 { 4041 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0; 4042 } 4043 4044 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id) 4045 { 4046 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 4047 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4048 } 4049 4050 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id) 4051 { 4052 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 4053 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4054 } 4055 4056 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id) 4057 { 4058 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 && 4059 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4060 } 4061 4062 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 4063 { 4064 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 4065 } 4066 4067 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 4068 { 4069 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 4070 } 4071 4072 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id) 4073 { 4074 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0; 4075 } 4076 4077 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id) 4078 { 4079 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1; 4080 } 4081 4082 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id) 4083 { 4084 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); 4085 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id)); 4086 } 4087 4088 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id) 4089 { 4090 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2; 4091 } 4092 4093 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id) 4094 { 4095 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); 4096 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id)); 4097 } 4098 4099 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id) 4100 { 4101 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0; 4102 } 4103 4104 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id) 4105 { 4106 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1; 4107 } 4108 4109 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id) 4110 { 4111 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0; 4112 } 4113 4114 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id) 4115 { 4116 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); 4117 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id)); 4118 } 4119 4120 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id) 4121 { 4122 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); 4123 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id)); 4124 } 4125 4126 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id) 4127 { 4128 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2); 4129 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id)); 4130 } 4131 4132 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 4133 { 4134 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 4135 } 4136 4137 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id) 4138 { 4139 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0; 4140 } 4141 4142 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 4143 { 4144 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 4145 } 4146 4147 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id) 4148 { 4149 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0; 4150 } 4151 4152 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id) 4153 { 4154 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2); 4155 if (key >= 2) { 4156 return true; /* FEAT_CSV2_2 */ 4157 } 4158 if (key == 1) { 4159 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC); 4160 return key >= 2; /* FEAT_CSV2_1p2 */ 4161 } 4162 return false; 4163 } 4164 4165 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id) 4166 { 4167 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0; 4168 } 4169 4170 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id) 4171 { 4172 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8; 4173 } 4174 4175 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id) 4176 { 4177 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0; 4178 } 4179 4180 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id) 4181 { 4182 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0; 4183 } 4184 4185 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id) 4186 { 4187 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2; 4188 } 4189 4190 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id) 4191 { 4192 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0; 4193 } 4194 4195 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id) 4196 { 4197 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0; 4198 } 4199 4200 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id) 4201 { 4202 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0; 4203 } 4204 4205 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id) 4206 { 4207 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0; 4208 } 4209 4210 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id) 4211 { 4212 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0; 4213 } 4214 4215 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id) 4216 { 4217 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0; 4218 } 4219 4220 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id) 4221 { 4222 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0; 4223 } 4224 4225 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id) 4226 { 4227 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64); 4228 } 4229 4230 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id) 4231 { 4232 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf; 4233 } 4234 4235 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id) 4236 { 4237 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64); 4238 } 4239 4240 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id) 4241 { 4242 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0; 4243 } 4244 4245 /* 4246 * Feature tests for "does this exist in either 32-bit or 64-bit?" 4247 */ 4248 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 4249 { 4250 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 4251 } 4252 4253 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 4254 { 4255 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 4256 } 4257 4258 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id) 4259 { 4260 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id); 4261 } 4262 4263 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id) 4264 { 4265 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id); 4266 } 4267 4268 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id) 4269 { 4270 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id); 4271 } 4272 4273 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 4274 { 4275 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 4276 } 4277 4278 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 4279 { 4280 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 4281 } 4282 4283 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id) 4284 { 4285 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id); 4286 } 4287 4288 static inline bool isar_feature_any_ras(const ARMISARegisters *id) 4289 { 4290 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id); 4291 } 4292 4293 /* 4294 * Forward to the above feature tests given an ARMCPU pointer. 4295 */ 4296 #define cpu_isar_feature(name, cpu) \ 4297 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 4298 4299 #endif 4300