xref: /openbmc/qemu/target/arm/cpu.h (revision 6fffc837)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 #include "target/arm/multiprocessing.h"
30 #include "target/arm/gtimer.h"
31 
32 /* ARM processors have a weak memory model */
33 #define TCG_GUEST_DEFAULT_MO      (0)
34 
35 #ifdef TARGET_AARCH64
36 #define KVM_HAVE_MCE_INJECTION 1
37 #endif
38 
39 #define EXCP_UDEF            1   /* undefined instruction */
40 #define EXCP_SWI             2   /* software interrupt */
41 #define EXCP_PREFETCH_ABORT  3
42 #define EXCP_DATA_ABORT      4
43 #define EXCP_IRQ             5
44 #define EXCP_FIQ             6
45 #define EXCP_BKPT            7
46 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
47 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
48 #define EXCP_HVC            11   /* HyperVisor Call */
49 #define EXCP_HYP_TRAP       12
50 #define EXCP_SMC            13   /* Secure Monitor Call */
51 #define EXCP_VIRQ           14
52 #define EXCP_VFIQ           15
53 #define EXCP_SEMIHOST       16   /* semihosting call */
54 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
55 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
56 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
57 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
58 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
59 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
60 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
61 #define EXCP_VSERR          24
62 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
63 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
64 
65 #define ARMV7M_EXCP_RESET   1
66 #define ARMV7M_EXCP_NMI     2
67 #define ARMV7M_EXCP_HARD    3
68 #define ARMV7M_EXCP_MEM     4
69 #define ARMV7M_EXCP_BUS     5
70 #define ARMV7M_EXCP_USAGE   6
71 #define ARMV7M_EXCP_SECURE  7
72 #define ARMV7M_EXCP_SVC     11
73 #define ARMV7M_EXCP_DEBUG   12
74 #define ARMV7M_EXCP_PENDSV  14
75 #define ARMV7M_EXCP_SYSTICK 15
76 
77 /* ARM-specific interrupt pending bits.  */
78 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
79 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
80 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
81 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
82 
83 /* The usual mapping for an AArch64 system register to its AArch32
84  * counterpart is for the 32 bit world to have access to the lower
85  * half only (with writes leaving the upper half untouched). It's
86  * therefore useful to be able to pass TCG the offset of the least
87  * significant half of a uint64_t struct member.
88  */
89 #if HOST_BIG_ENDIAN
90 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
91 #define offsetofhigh32(S, M) offsetof(S, M)
92 #else
93 #define offsetoflow32(S, M) offsetof(S, M)
94 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
95 #endif
96 
97 /* ARM-specific extra insn start words:
98  * 1: Conditional execution bits
99  * 2: Partial exception syndrome for data aborts
100  */
101 #define TARGET_INSN_START_EXTRA_WORDS 2
102 
103 /* The 2nd extra word holding syndrome info for data aborts does not use
104  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
105  * help the sleb128 encoder do a better job.
106  * When restoring the CPU state, we shift it back up.
107  */
108 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
109 #define ARM_INSN_START_WORD2_SHIFT 13
110 
111 /* We currently assume float and double are IEEE single and double
112    precision respectively.
113    Doing runtime conversions is tricky because VFP registers may contain
114    integer values (eg. as the result of a FTOSI instruction).
115    s<2n> maps to the least significant half of d<n>
116    s<2n+1> maps to the most significant half of d<n>
117  */
118 
119 /**
120  * DynamicGDBXMLInfo:
121  * @desc: Contains the XML descriptions.
122  * @num: Number of the registers in this XML seen by GDB.
123  * @data: A union with data specific to the set of registers
124  *    @cpregs_keys: Array that contains the corresponding Key of
125  *                  a given cpreg with the same order of the cpreg
126  *                  in the XML description.
127  */
128 typedef struct DynamicGDBXMLInfo {
129     char *desc;
130     int num;
131     union {
132         struct {
133             uint32_t *keys;
134         } cpregs;
135     } data;
136 } DynamicGDBXMLInfo;
137 
138 /* CPU state for each instance of a generic timer (in cp15 c14) */
139 typedef struct ARMGenericTimer {
140     uint64_t cval; /* Timer CompareValue register */
141     uint64_t ctl; /* Timer Control register */
142 } ARMGenericTimer;
143 
144 #define VTCR_NSW (1u << 29)
145 #define VTCR_NSA (1u << 30)
146 #define VSTCR_SW VTCR_NSW
147 #define VSTCR_SA VTCR_NSA
148 
149 /* Define a maximum sized vector register.
150  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
151  * For 64-bit, this is a 2048-bit SVE register.
152  *
153  * Note that the mapping between S, D, and Q views of the register bank
154  * differs between AArch64 and AArch32.
155  * In AArch32:
156  *  Qn = regs[n].d[1]:regs[n].d[0]
157  *  Dn = regs[n / 2].d[n & 1]
158  *  Sn = regs[n / 4].d[n % 4 / 2],
159  *       bits 31..0 for even n, and bits 63..32 for odd n
160  *       (and regs[16] to regs[31] are inaccessible)
161  * In AArch64:
162  *  Zn = regs[n].d[*]
163  *  Qn = regs[n].d[1]:regs[n].d[0]
164  *  Dn = regs[n].d[0]
165  *  Sn = regs[n].d[0] bits 31..0
166  *  Hn = regs[n].d[0] bits 15..0
167  *
168  * This corresponds to the architecturally defined mapping between
169  * the two execution states, and means we do not need to explicitly
170  * map these registers when changing states.
171  *
172  * Align the data for use with TCG host vector operations.
173  */
174 
175 #ifdef TARGET_AARCH64
176 # define ARM_MAX_VQ    16
177 #else
178 # define ARM_MAX_VQ    1
179 #endif
180 
181 typedef struct ARMVectorReg {
182     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
183 } ARMVectorReg;
184 
185 #ifdef TARGET_AARCH64
186 /* In AArch32 mode, predicate registers do not exist at all.  */
187 typedef struct ARMPredicateReg {
188     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
189 } ARMPredicateReg;
190 
191 /* In AArch32 mode, PAC keys do not exist at all.  */
192 typedef struct ARMPACKey {
193     uint64_t lo, hi;
194 } ARMPACKey;
195 #endif
196 
197 /* See the commentary above the TBFLAG field definitions.  */
198 typedef struct CPUARMTBFlags {
199     uint32_t flags;
200     target_ulong flags2;
201 } CPUARMTBFlags;
202 
203 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
204 
205 typedef struct NVICState NVICState;
206 
207 typedef struct CPUArchState {
208     /* Regs for current mode.  */
209     uint32_t regs[16];
210 
211     /* 32/64 switch only happens when taking and returning from
212      * exceptions so the overlap semantics are taken care of then
213      * instead of having a complicated union.
214      */
215     /* Regs for A64 mode.  */
216     uint64_t xregs[32];
217     uint64_t pc;
218     /* PSTATE isn't an architectural register for ARMv8. However, it is
219      * convenient for us to assemble the underlying state into a 32 bit format
220      * identical to the architectural format used for the SPSR. (This is also
221      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
222      * 'pstate' register are.) Of the PSTATE bits:
223      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
224      *    semantics as for AArch32, as described in the comments on each field)
225      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
226      *  DAIF (exception masks) are kept in env->daif
227      *  BTYPE is kept in env->btype
228      *  SM and ZA are kept in env->svcr
229      *  all other bits are stored in their correct places in env->pstate
230      */
231     uint32_t pstate;
232     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
233     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
234 
235     /* Cached TBFLAGS state.  See below for which bits are included.  */
236     CPUARMTBFlags hflags;
237 
238     /* Frequently accessed CPSR bits are stored separately for efficiency.
239        This contains all the other bits.  Use cpsr_{read,write} to access
240        the whole CPSR.  */
241     uint32_t uncached_cpsr;
242     uint32_t spsr;
243 
244     /* Banked registers.  */
245     uint64_t banked_spsr[8];
246     uint32_t banked_r13[8];
247     uint32_t banked_r14[8];
248 
249     /* These hold r8-r12.  */
250     uint32_t usr_regs[5];
251     uint32_t fiq_regs[5];
252 
253     /* cpsr flag cache for faster execution */
254     uint32_t CF; /* 0 or 1 */
255     uint32_t VF; /* V is the bit 31. All other bits are undefined */
256     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
257     uint32_t ZF; /* Z set if zero.  */
258     uint32_t QF; /* 0 or 1 */
259     uint32_t GE; /* cpsr[19:16] */
260     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
261     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
262     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
263     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
264 
265     uint64_t elr_el[4]; /* AArch64 exception link regs  */
266     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
267 
268     /* System control coprocessor (cp15) */
269     struct {
270         uint32_t c0_cpuid;
271         union { /* Cache size selection */
272             struct {
273                 uint64_t _unused_csselr0;
274                 uint64_t csselr_ns;
275                 uint64_t _unused_csselr1;
276                 uint64_t csselr_s;
277             };
278             uint64_t csselr_el[4];
279         };
280         union { /* System control register. */
281             struct {
282                 uint64_t _unused_sctlr;
283                 uint64_t sctlr_ns;
284                 uint64_t hsctlr;
285                 uint64_t sctlr_s;
286             };
287             uint64_t sctlr_el[4];
288         };
289         uint64_t vsctlr; /* Virtualization System control register. */
290         uint64_t cpacr_el1; /* Architectural feature access control register */
291         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
292         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
293         uint64_t sder; /* Secure debug enable register. */
294         uint32_t nsacr; /* Non-secure access control register. */
295         union { /* MMU translation table base 0. */
296             struct {
297                 uint64_t _unused_ttbr0_0;
298                 uint64_t ttbr0_ns;
299                 uint64_t _unused_ttbr0_1;
300                 uint64_t ttbr0_s;
301             };
302             uint64_t ttbr0_el[4];
303         };
304         union { /* MMU translation table base 1. */
305             struct {
306                 uint64_t _unused_ttbr1_0;
307                 uint64_t ttbr1_ns;
308                 uint64_t _unused_ttbr1_1;
309                 uint64_t ttbr1_s;
310             };
311             uint64_t ttbr1_el[4];
312         };
313         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
314         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
315         /* MMU translation table base control. */
316         uint64_t tcr_el[4];
317         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
318         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
319         uint32_t c2_data; /* MPU data cacheable bits.  */
320         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
321         union { /* MMU domain access control register
322                  * MPU write buffer control.
323                  */
324             struct {
325                 uint64_t dacr_ns;
326                 uint64_t dacr_s;
327             };
328             struct {
329                 uint64_t dacr32_el2;
330             };
331         };
332         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
333         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
334         uint64_t hcr_el2; /* Hypervisor configuration register */
335         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
336         uint64_t scr_el3; /* Secure configuration register.  */
337         union { /* Fault status registers.  */
338             struct {
339                 uint64_t ifsr_ns;
340                 uint64_t ifsr_s;
341             };
342             struct {
343                 uint64_t ifsr32_el2;
344             };
345         };
346         union {
347             struct {
348                 uint64_t _unused_dfsr;
349                 uint64_t dfsr_ns;
350                 uint64_t hsr;
351                 uint64_t dfsr_s;
352             };
353             uint64_t esr_el[4];
354         };
355         uint32_t c6_region[8]; /* MPU base/size registers.  */
356         union { /* Fault address registers. */
357             struct {
358                 uint64_t _unused_far0;
359 #if HOST_BIG_ENDIAN
360                 uint32_t ifar_ns;
361                 uint32_t dfar_ns;
362                 uint32_t ifar_s;
363                 uint32_t dfar_s;
364 #else
365                 uint32_t dfar_ns;
366                 uint32_t ifar_ns;
367                 uint32_t dfar_s;
368                 uint32_t ifar_s;
369 #endif
370                 uint64_t _unused_far3;
371             };
372             uint64_t far_el[4];
373         };
374         uint64_t hpfar_el2;
375         uint64_t hstr_el2;
376         union { /* Translation result. */
377             struct {
378                 uint64_t _unused_par_0;
379                 uint64_t par_ns;
380                 uint64_t _unused_par_1;
381                 uint64_t par_s;
382             };
383             uint64_t par_el[4];
384         };
385 
386         uint32_t c9_insn; /* Cache lockdown registers.  */
387         uint32_t c9_data;
388         uint64_t c9_pmcr; /* performance monitor control register */
389         uint64_t c9_pmcnten; /* perf monitor counter enables */
390         uint64_t c9_pmovsr; /* perf monitor overflow status */
391         uint64_t c9_pmuserenr; /* perf monitor user enable */
392         uint64_t c9_pmselr; /* perf monitor counter selection register */
393         uint64_t c9_pminten; /* perf monitor interrupt enables */
394         union { /* Memory attribute redirection */
395             struct {
396 #if HOST_BIG_ENDIAN
397                 uint64_t _unused_mair_0;
398                 uint32_t mair1_ns;
399                 uint32_t mair0_ns;
400                 uint64_t _unused_mair_1;
401                 uint32_t mair1_s;
402                 uint32_t mair0_s;
403 #else
404                 uint64_t _unused_mair_0;
405                 uint32_t mair0_ns;
406                 uint32_t mair1_ns;
407                 uint64_t _unused_mair_1;
408                 uint32_t mair0_s;
409                 uint32_t mair1_s;
410 #endif
411             };
412             uint64_t mair_el[4];
413         };
414         union { /* vector base address register */
415             struct {
416                 uint64_t _unused_vbar;
417                 uint64_t vbar_ns;
418                 uint64_t hvbar;
419                 uint64_t vbar_s;
420             };
421             uint64_t vbar_el[4];
422         };
423         uint32_t mvbar; /* (monitor) vector base address register */
424         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
425         struct { /* FCSE PID. */
426             uint32_t fcseidr_ns;
427             uint32_t fcseidr_s;
428         };
429         union { /* Context ID. */
430             struct {
431                 uint64_t _unused_contextidr_0;
432                 uint64_t contextidr_ns;
433                 uint64_t _unused_contextidr_1;
434                 uint64_t contextidr_s;
435             };
436             uint64_t contextidr_el[4];
437         };
438         union { /* User RW Thread register. */
439             struct {
440                 uint64_t tpidrurw_ns;
441                 uint64_t tpidrprw_ns;
442                 uint64_t htpidr;
443                 uint64_t _tpidr_el3;
444             };
445             uint64_t tpidr_el[4];
446         };
447         uint64_t tpidr2_el0;
448         /* The secure banks of these registers don't map anywhere */
449         uint64_t tpidrurw_s;
450         uint64_t tpidrprw_s;
451         uint64_t tpidruro_s;
452 
453         union { /* User RO Thread register. */
454             uint64_t tpidruro_ns;
455             uint64_t tpidrro_el[1];
456         };
457         uint64_t c14_cntfrq; /* Counter Frequency register */
458         uint64_t c14_cntkctl; /* Timer Control register */
459         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
460         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
461         ARMGenericTimer c14_timer[NUM_GTIMERS];
462         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
463         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
464         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
465         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
466         uint32_t c15_threadid; /* TI debugger thread-ID.  */
467         uint32_t c15_config_base_address; /* SCU base address.  */
468         uint32_t c15_diagnostic; /* diagnostic register */
469         uint32_t c15_power_diagnostic;
470         uint32_t c15_power_control; /* power control */
471         uint64_t dbgbvr[16]; /* breakpoint value registers */
472         uint64_t dbgbcr[16]; /* breakpoint control registers */
473         uint64_t dbgwvr[16]; /* watchpoint value registers */
474         uint64_t dbgwcr[16]; /* watchpoint control registers */
475         uint64_t dbgclaim;   /* DBGCLAIM bits */
476         uint64_t mdscr_el1;
477         uint64_t oslsr_el1; /* OS Lock Status */
478         uint64_t osdlr_el1; /* OS DoubleLock status */
479         uint64_t mdcr_el2;
480         uint64_t mdcr_el3;
481         /* Stores the architectural value of the counter *the last time it was
482          * updated* by pmccntr_op_start. Accesses should always be surrounded
483          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484          * architecturally-correct value is being read/set.
485          */
486         uint64_t c15_ccnt;
487         /* Stores the delta between the architectural value and the underlying
488          * cycle count during normal operation. It is used to update c15_ccnt
489          * to be the correct architectural value before accesses. During
490          * accesses, c15_ccnt_delta contains the underlying count being used
491          * for the access, after which it reverts to the delta value in
492          * pmccntr_op_finish.
493          */
494         uint64_t c15_ccnt_delta;
495         uint64_t c14_pmevcntr[31];
496         uint64_t c14_pmevcntr_delta[31];
497         uint64_t c14_pmevtyper[31];
498         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
499         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
500         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
501         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
502         uint64_t gcr_el1;
503         uint64_t rgsr_el1;
504 
505         /* Minimal RAS registers */
506         uint64_t disr_el1;
507         uint64_t vdisr_el2;
508         uint64_t vsesr_el2;
509 
510         /*
511          * Fine-Grained Trap registers. We store these as arrays so the
512          * access checking code doesn't have to manually select
513          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
514          * FEAT_FGT2 will add more elements to these arrays.
515          */
516         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
517         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
518         uint64_t fgt_exec[1]; /* HFGITR */
519 
520         /* RME registers */
521         uint64_t gpccr_el3;
522         uint64_t gptbr_el3;
523         uint64_t mfar_el3;
524 
525         /* NV2 register */
526         uint64_t vncr_el2;
527     } cp15;
528 
529     struct {
530         /* M profile has up to 4 stack pointers:
531          * a Main Stack Pointer and a Process Stack Pointer for each
532          * of the Secure and Non-Secure states. (If the CPU doesn't support
533          * the security extension then it has only two SPs.)
534          * In QEMU we always store the currently active SP in regs[13],
535          * and the non-active SP for the current security state in
536          * v7m.other_sp. The stack pointers for the inactive security state
537          * are stored in other_ss_msp and other_ss_psp.
538          * switch_v7m_security_state() is responsible for rearranging them
539          * when we change security state.
540          */
541         uint32_t other_sp;
542         uint32_t other_ss_msp;
543         uint32_t other_ss_psp;
544         uint32_t vecbase[M_REG_NUM_BANKS];
545         uint32_t basepri[M_REG_NUM_BANKS];
546         uint32_t control[M_REG_NUM_BANKS];
547         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
548         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
549         uint32_t hfsr; /* HardFault Status */
550         uint32_t dfsr; /* Debug Fault Status Register */
551         uint32_t sfsr; /* Secure Fault Status Register */
552         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
553         uint32_t bfar; /* BusFault Address */
554         uint32_t sfar; /* Secure Fault Address Register */
555         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
556         int exception;
557         uint32_t primask[M_REG_NUM_BANKS];
558         uint32_t faultmask[M_REG_NUM_BANKS];
559         uint32_t aircr; /* only holds r/w state if security extn implemented */
560         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
561         uint32_t csselr[M_REG_NUM_BANKS];
562         uint32_t scr[M_REG_NUM_BANKS];
563         uint32_t msplim[M_REG_NUM_BANKS];
564         uint32_t psplim[M_REG_NUM_BANKS];
565         uint32_t fpcar[M_REG_NUM_BANKS];
566         uint32_t fpccr[M_REG_NUM_BANKS];
567         uint32_t fpdscr[M_REG_NUM_BANKS];
568         uint32_t cpacr[M_REG_NUM_BANKS];
569         uint32_t nsacr;
570         uint32_t ltpsize;
571         uint32_t vpr;
572     } v7m;
573 
574     /* Information associated with an exception about to be taken:
575      * code which raises an exception must set cs->exception_index and
576      * the relevant parts of this structure; the cpu_do_interrupt function
577      * will then set the guest-visible registers as part of the exception
578      * entry process.
579      */
580     struct {
581         uint32_t syndrome; /* AArch64 format syndrome register */
582         uint32_t fsr; /* AArch32 format fault status register info */
583         uint64_t vaddress; /* virtual addr associated with exception, if any */
584         uint32_t target_el; /* EL the exception should be targeted for */
585         /* If we implement EL2 we will also need to store information
586          * about the intermediate physical address for stage 2 faults.
587          */
588     } exception;
589 
590     /* Information associated with an SError */
591     struct {
592         uint8_t pending;
593         uint8_t has_esr;
594         uint64_t esr;
595     } serror;
596 
597     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
598 
599     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
600     uint32_t irq_line_state;
601 
602     /* Thumb-2 EE state.  */
603     uint32_t teecr;
604     uint32_t teehbr;
605 
606     /* VFP coprocessor state.  */
607     struct {
608         ARMVectorReg zregs[32];
609 
610 #ifdef TARGET_AARCH64
611         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
612 #define FFR_PRED_NUM 16
613         ARMPredicateReg pregs[17];
614         /* Scratch space for aa64 sve predicate temporary.  */
615         ARMPredicateReg preg_tmp;
616 #endif
617 
618         /* We store these fpcsr fields separately for convenience.  */
619         uint32_t qc[4] QEMU_ALIGNED(16);
620         int vec_len;
621         int vec_stride;
622 
623         uint32_t xregs[16];
624 
625         /* Scratch space for aa32 neon expansion.  */
626         uint32_t scratch[8];
627 
628         /* There are a number of distinct float control structures:
629          *
630          *  fp_status: is the "normal" fp status.
631          *  fp_status_fp16: used for half-precision calculations
632          *  standard_fp_status : the ARM "Standard FPSCR Value"
633          *  standard_fp_status_fp16 : used for half-precision
634          *       calculations with the ARM "Standard FPSCR Value"
635          *
636          * Half-precision operations are governed by a separate
637          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
638          * status structure to control this.
639          *
640          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
641          * round-to-nearest and is used by any operations (generally
642          * Neon) which the architecture defines as controlled by the
643          * standard FPSCR value rather than the FPSCR.
644          *
645          * The "standard FPSCR but for fp16 ops" is needed because
646          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
647          * using a fixed value for it.
648          *
649          * To avoid having to transfer exception bits around, we simply
650          * say that the FPSCR cumulative exception flags are the logical
651          * OR of the flags in the four fp statuses. This relies on the
652          * only thing which needs to read the exception flags being
653          * an explicit FPSCR read.
654          */
655         float_status fp_status;
656         float_status fp_status_f16;
657         float_status standard_fp_status;
658         float_status standard_fp_status_f16;
659 
660         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
661         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
662     } vfp;
663 
664     uint64_t exclusive_addr;
665     uint64_t exclusive_val;
666     /*
667      * Contains the 'val' for the second 64-bit register of LDXP, which comes
668      * from the higher address, not the high part of a complete 128-bit value.
669      * In some ways it might be more convenient to record the exclusive value
670      * as the low and high halves of a 128 bit data value, but the current
671      * semantics of these fields are baked into the migration format.
672      */
673     uint64_t exclusive_high;
674 
675     /* iwMMXt coprocessor state.  */
676     struct {
677         uint64_t regs[16];
678         uint64_t val;
679 
680         uint32_t cregs[16];
681     } iwmmxt;
682 
683 #ifdef TARGET_AARCH64
684     struct {
685         ARMPACKey apia;
686         ARMPACKey apib;
687         ARMPACKey apda;
688         ARMPACKey apdb;
689         ARMPACKey apga;
690     } keys;
691 
692     uint64_t scxtnum_el[4];
693 
694     /*
695      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
696      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
697      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
698      * When SVL is less than the architectural maximum, the accessible
699      * storage is restricted, such that if the SVL is X bytes the guest can
700      * see only the bottom X elements of zarray[], and only the least
701      * significant X bytes of each element of the array. (In other words,
702      * the observable part is always square.)
703      *
704      * The ZA storage can also be considered as a set of square tiles of
705      * elements of different sizes. The mapping from tiles to the ZA array
706      * is architecturally defined, such that for tiles of elements of esz
707      * bytes, the Nth row (or "horizontal slice") of tile T is in
708      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
709      * in the ZA storage, because its rows are striped through the ZA array.
710      *
711      * Because this is so large, keep this toward the end of the reset area,
712      * to keep the offsets into the rest of the structure smaller.
713      */
714     ARMVectorReg zarray[ARM_MAX_VQ * 16];
715 #endif
716 
717     struct CPUBreakpoint *cpu_breakpoint[16];
718     struct CPUWatchpoint *cpu_watchpoint[16];
719 
720     /* Optional fault info across tlb lookup. */
721     ARMMMUFaultInfo *tlb_fi;
722 
723     /* Fields up to this point are cleared by a CPU reset */
724     struct {} end_reset_fields;
725 
726     /* Fields after this point are preserved across CPU reset. */
727 
728     /* Internal CPU feature flags.  */
729     uint64_t features;
730 
731     /* PMSAv7 MPU */
732     struct {
733         uint32_t *drbar;
734         uint32_t *drsr;
735         uint32_t *dracr;
736         uint32_t rnr[M_REG_NUM_BANKS];
737     } pmsav7;
738 
739     /* PMSAv8 MPU */
740     struct {
741         /* The PMSAv8 implementation also shares some PMSAv7 config
742          * and state:
743          *  pmsav7.rnr (region number register)
744          *  pmsav7_dregion (number of configured regions)
745          */
746         uint32_t *rbar[M_REG_NUM_BANKS];
747         uint32_t *rlar[M_REG_NUM_BANKS];
748         uint32_t *hprbar;
749         uint32_t *hprlar;
750         uint32_t mair0[M_REG_NUM_BANKS];
751         uint32_t mair1[M_REG_NUM_BANKS];
752         uint32_t hprselr;
753     } pmsav8;
754 
755     /* v8M SAU */
756     struct {
757         uint32_t *rbar;
758         uint32_t *rlar;
759         uint32_t rnr;
760         uint32_t ctrl;
761     } sau;
762 
763 #if !defined(CONFIG_USER_ONLY)
764     NVICState *nvic;
765     const struct arm_boot_info *boot_info;
766     /* Store GICv3CPUState to access from this struct */
767     void *gicv3state;
768 #else /* CONFIG_USER_ONLY */
769     /* For usermode syscall translation.  */
770     bool eabi;
771 #endif /* CONFIG_USER_ONLY */
772 
773 #ifdef TARGET_TAGGED_ADDRESSES
774     /* Linux syscall tagged address support */
775     bool tagged_addr_enable;
776 #endif
777 } CPUARMState;
778 
779 static inline void set_feature(CPUARMState *env, int feature)
780 {
781     env->features |= 1ULL << feature;
782 }
783 
784 static inline void unset_feature(CPUARMState *env, int feature)
785 {
786     env->features &= ~(1ULL << feature);
787 }
788 
789 /**
790  * ARMELChangeHookFn:
791  * type of a function which can be registered via arm_register_el_change_hook()
792  * to get callbacks when the CPU changes its exception level or mode.
793  */
794 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
795 typedef struct ARMELChangeHook ARMELChangeHook;
796 struct ARMELChangeHook {
797     ARMELChangeHookFn *hook;
798     void *opaque;
799     QLIST_ENTRY(ARMELChangeHook) node;
800 };
801 
802 /* These values map onto the return values for
803  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
804 typedef enum ARMPSCIState {
805     PSCI_ON = 0,
806     PSCI_OFF = 1,
807     PSCI_ON_PENDING = 2
808 } ARMPSCIState;
809 
810 typedef struct ARMISARegisters ARMISARegisters;
811 
812 /*
813  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
814  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
815  *
816  * While processing properties during initialization, corresponding init bits
817  * are set for bits in sve_vq_map that have been set by properties.
818  *
819  * Bits set in supported represent valid vector lengths for the CPU type.
820  */
821 typedef struct {
822     uint32_t map, init, supported;
823 } ARMVQMap;
824 
825 /**
826  * ARMCPU:
827  * @env: #CPUARMState
828  *
829  * An ARM CPU core.
830  */
831 struct ArchCPU {
832     CPUState parent_obj;
833 
834     CPUARMState env;
835 
836     /* Coprocessor information */
837     GHashTable *cp_regs;
838     /* For marshalling (mostly coprocessor) register state between the
839      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
840      * we use these arrays.
841      */
842     /* List of register indexes managed via these arrays; (full KVM style
843      * 64 bit indexes, not CPRegInfo 32 bit indexes)
844      */
845     uint64_t *cpreg_indexes;
846     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
847     uint64_t *cpreg_values;
848     /* Length of the indexes, values, reset_values arrays */
849     int32_t cpreg_array_len;
850     /* These are used only for migration: incoming data arrives in
851      * these fields and is sanity checked in post_load before copying
852      * to the working data structures above.
853      */
854     uint64_t *cpreg_vmstate_indexes;
855     uint64_t *cpreg_vmstate_values;
856     int32_t cpreg_vmstate_array_len;
857 
858     DynamicGDBXMLInfo dyn_sysreg_xml;
859     DynamicGDBXMLInfo dyn_svereg_xml;
860     DynamicGDBXMLInfo dyn_m_systemreg_xml;
861     DynamicGDBXMLInfo dyn_m_secextreg_xml;
862 
863     /* Timers used by the generic (architected) timer */
864     QEMUTimer *gt_timer[NUM_GTIMERS];
865     /*
866      * Timer used by the PMU. Its state is restored after migration by
867      * pmu_op_finish() - it does not need other handling during migration
868      */
869     QEMUTimer *pmu_timer;
870     /* GPIO outputs for generic timer */
871     qemu_irq gt_timer_outputs[NUM_GTIMERS];
872     /* GPIO output for GICv3 maintenance interrupt signal */
873     qemu_irq gicv3_maintenance_interrupt;
874     /* GPIO output for the PMU interrupt */
875     qemu_irq pmu_interrupt;
876 
877     /* MemoryRegion to use for secure physical accesses */
878     MemoryRegion *secure_memory;
879 
880     /* MemoryRegion to use for allocation tag accesses */
881     MemoryRegion *tag_memory;
882     MemoryRegion *secure_tag_memory;
883 
884     /* For v8M, pointer to the IDAU interface provided by board/SoC */
885     Object *idau;
886 
887     /* 'compatible' string for this CPU for Linux device trees */
888     const char *dtb_compatible;
889 
890     /* PSCI version for this CPU
891      * Bits[31:16] = Major Version
892      * Bits[15:0] = Minor Version
893      */
894     uint32_t psci_version;
895 
896     /* Current power state, access guarded by BQL */
897     ARMPSCIState power_state;
898 
899     /* CPU has virtualization extension */
900     bool has_el2;
901     /* CPU has security extension */
902     bool has_el3;
903     /* CPU has PMU (Performance Monitor Unit) */
904     bool has_pmu;
905     /* CPU has VFP */
906     bool has_vfp;
907     /* CPU has 32 VFP registers */
908     bool has_vfp_d32;
909     /* CPU has Neon */
910     bool has_neon;
911     /* CPU has M-profile DSP extension */
912     bool has_dsp;
913 
914     /* CPU has memory protection unit */
915     bool has_mpu;
916     /* PMSAv7 MPU number of supported regions */
917     uint32_t pmsav7_dregion;
918     /* PMSAv8 MPU number of supported hyp regions */
919     uint32_t pmsav8r_hdregion;
920     /* v8M SAU number of supported regions */
921     uint32_t sau_sregion;
922 
923     /* PSCI conduit used to invoke PSCI methods
924      * 0 - disabled, 1 - smc, 2 - hvc
925      */
926     uint32_t psci_conduit;
927 
928     /* For v8M, initial value of the Secure VTOR */
929     uint32_t init_svtor;
930     /* For v8M, initial value of the Non-secure VTOR */
931     uint32_t init_nsvtor;
932 
933     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
934      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
935      */
936     uint32_t kvm_target;
937 
938 #ifdef CONFIG_KVM
939     /* KVM init features for this CPU */
940     uint32_t kvm_init_features[7];
941 
942     /* KVM CPU state */
943 
944     /* KVM virtual time adjustment */
945     bool kvm_adjvtime;
946     bool kvm_vtime_dirty;
947     uint64_t kvm_vtime;
948 
949     /* KVM steal time */
950     OnOffAuto kvm_steal_time;
951 #endif /* CONFIG_KVM */
952 
953     /* Uniprocessor system with MP extensions */
954     bool mp_is_up;
955 
956     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
957      * and the probe failed (so we need to report the error in realize)
958      */
959     bool host_cpu_probe_failed;
960 
961     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
962      * register.
963      */
964     int32_t core_count;
965 
966     /* The instance init functions for implementation-specific subclasses
967      * set these fields to specify the implementation-dependent values of
968      * various constant registers and reset values of non-constant
969      * registers.
970      * Some of these might become QOM properties eventually.
971      * Field names match the official register names as defined in the
972      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
973      * is used for reset values of non-constant registers; no reset_
974      * prefix means a constant register.
975      * Some of these registers are split out into a substructure that
976      * is shared with the translators to control the ISA.
977      *
978      * Note that if you add an ID register to the ARMISARegisters struct
979      * you need to also update the 32-bit and 64-bit versions of the
980      * kvm_arm_get_host_cpu_features() function to correctly populate the
981      * field by reading the value from the KVM vCPU.
982      */
983     struct ARMISARegisters {
984         uint32_t id_isar0;
985         uint32_t id_isar1;
986         uint32_t id_isar2;
987         uint32_t id_isar3;
988         uint32_t id_isar4;
989         uint32_t id_isar5;
990         uint32_t id_isar6;
991         uint32_t id_mmfr0;
992         uint32_t id_mmfr1;
993         uint32_t id_mmfr2;
994         uint32_t id_mmfr3;
995         uint32_t id_mmfr4;
996         uint32_t id_mmfr5;
997         uint32_t id_pfr0;
998         uint32_t id_pfr1;
999         uint32_t id_pfr2;
1000         uint32_t mvfr0;
1001         uint32_t mvfr1;
1002         uint32_t mvfr2;
1003         uint32_t id_dfr0;
1004         uint32_t id_dfr1;
1005         uint32_t dbgdidr;
1006         uint32_t dbgdevid;
1007         uint32_t dbgdevid1;
1008         uint64_t id_aa64isar0;
1009         uint64_t id_aa64isar1;
1010         uint64_t id_aa64isar2;
1011         uint64_t id_aa64pfr0;
1012         uint64_t id_aa64pfr1;
1013         uint64_t id_aa64mmfr0;
1014         uint64_t id_aa64mmfr1;
1015         uint64_t id_aa64mmfr2;
1016         uint64_t id_aa64dfr0;
1017         uint64_t id_aa64dfr1;
1018         uint64_t id_aa64zfr0;
1019         uint64_t id_aa64smfr0;
1020         uint64_t reset_pmcr_el0;
1021     } isar;
1022     uint64_t midr;
1023     uint32_t revidr;
1024     uint32_t reset_fpsid;
1025     uint64_t ctr;
1026     uint32_t reset_sctlr;
1027     uint64_t pmceid0;
1028     uint64_t pmceid1;
1029     uint32_t id_afr0;
1030     uint64_t id_aa64afr0;
1031     uint64_t id_aa64afr1;
1032     uint64_t clidr;
1033     uint64_t mp_affinity; /* MP ID without feature bits */
1034     /* The elements of this array are the CCSIDR values for each cache,
1035      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1036      */
1037     uint64_t ccsidr[16];
1038     uint64_t reset_cbar;
1039     uint32_t reset_auxcr;
1040     bool reset_hivecs;
1041     uint8_t reset_l0gptsz;
1042 
1043     /*
1044      * Intermediate values used during property parsing.
1045      * Once finalized, the values should be read from ID_AA64*.
1046      */
1047     bool prop_pauth;
1048     bool prop_pauth_impdef;
1049     bool prop_pauth_qarma3;
1050     bool prop_lpa2;
1051 
1052     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1053     uint8_t dcz_blocksize;
1054     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1055     uint8_t gm_blocksize;
1056 
1057     uint64_t rvbar_prop; /* Property/input signals.  */
1058 
1059     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1060     int gic_num_lrs; /* number of list registers */
1061     int gic_vpribits; /* number of virtual priority bits */
1062     int gic_vprebits; /* number of virtual preemption bits */
1063     int gic_pribits; /* number of physical priority bits */
1064 
1065     /* Whether the cfgend input is high (i.e. this CPU should reset into
1066      * big-endian mode).  This setting isn't used directly: instead it modifies
1067      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1068      * architecture version.
1069      */
1070     bool cfgend;
1071 
1072     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1073     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1074 
1075     int32_t node_id; /* NUMA node this CPU belongs to */
1076 
1077     /* Used to synchronize KVM and QEMU in-kernel device levels */
1078     uint8_t device_irq_level;
1079 
1080     /* Used to set the maximum vector length the cpu will support.  */
1081     uint32_t sve_max_vq;
1082 
1083 #ifdef CONFIG_USER_ONLY
1084     /* Used to set the default vector length at process start. */
1085     uint32_t sve_default_vq;
1086     uint32_t sme_default_vq;
1087 #endif
1088 
1089     ARMVQMap sve_vq;
1090     ARMVQMap sme_vq;
1091 
1092     /* Generic timer counter frequency, in Hz */
1093     uint64_t gt_cntfrq_hz;
1094 };
1095 
1096 typedef struct ARMCPUInfo {
1097     const char *name;
1098     void (*initfn)(Object *obj);
1099     void (*class_init)(ObjectClass *oc, void *data);
1100 } ARMCPUInfo;
1101 
1102 /**
1103  * ARMCPUClass:
1104  * @parent_realize: The parent class' realize handler.
1105  * @parent_phases: The parent class' reset phase handlers.
1106  *
1107  * An ARM CPU model.
1108  */
1109 struct ARMCPUClass {
1110     CPUClass parent_class;
1111 
1112     const ARMCPUInfo *info;
1113     DeviceRealize parent_realize;
1114     ResettablePhases parent_phases;
1115 };
1116 
1117 struct AArch64CPUClass {
1118     ARMCPUClass parent_class;
1119 };
1120 
1121 /* Callback functions for the generic timer's timers. */
1122 void arm_gt_ptimer_cb(void *opaque);
1123 void arm_gt_vtimer_cb(void *opaque);
1124 void arm_gt_htimer_cb(void *opaque);
1125 void arm_gt_stimer_cb(void *opaque);
1126 void arm_gt_hvtimer_cb(void *opaque);
1127 
1128 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1129 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1130 
1131 void arm_cpu_post_init(Object *obj);
1132 
1133 #define ARM_AFF0_SHIFT 0
1134 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1135 #define ARM_AFF1_SHIFT 8
1136 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1137 #define ARM_AFF2_SHIFT 16
1138 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1139 #define ARM_AFF3_SHIFT 32
1140 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1141 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1142 
1143 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1144 #define ARM64_AFFINITY_MASK \
1145     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1146 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1147 
1148 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1149 
1150 #ifndef CONFIG_USER_ONLY
1151 extern const VMStateDescription vmstate_arm_cpu;
1152 
1153 void arm_cpu_do_interrupt(CPUState *cpu);
1154 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1155 
1156 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1157                                          MemTxAttrs *attrs);
1158 #endif /* !CONFIG_USER_ONLY */
1159 
1160 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1161 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1162 
1163 /* Returns the dynamically generated XML for the gdb stub.
1164  * Returns a pointer to the XML contents for the specified XML file or NULL
1165  * if the XML name doesn't match the predefined one.
1166  */
1167 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1168 
1169 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1170                              int cpuid, DumpState *s);
1171 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1172                              int cpuid, DumpState *s);
1173 
1174 /**
1175  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1176  * @cpu: CPU (which must have been freshly reset)
1177  * @target_el: exception level to put the CPU into
1178  * @secure: whether to put the CPU in secure state
1179  *
1180  * When QEMU is directly running a guest kernel at a lower level than
1181  * EL3 it implicitly emulates some aspects of the guest firmware.
1182  * This includes that on reset we need to configure the parts of the
1183  * CPU corresponding to EL3 so that the real guest code can run at its
1184  * lower exception level. This function does that post-reset CPU setup,
1185  * for when we do direct boot of a guest kernel, and for when we
1186  * emulate PSCI and similar firmware interfaces starting a CPU at a
1187  * lower exception level.
1188  *
1189  * @target_el must be an EL implemented by the CPU between 1 and 3.
1190  * We do not support dropping into a Secure EL other than 3.
1191  *
1192  * It is the responsibility of the caller to call arm_rebuild_hflags().
1193  */
1194 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1195 
1196 #ifdef TARGET_AARCH64
1197 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1198 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1199 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1200 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1201                            int new_el, bool el0_a64);
1202 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1203 
1204 /*
1205  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1206  * The byte at offset i from the start of the in-memory representation contains
1207  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1208  * lowest offsets are stored in the lowest memory addresses, then that nearly
1209  * matches QEMU's representation, which is to use an array of host-endian
1210  * uint64_t's, where the lower offsets are at the lower indices. To complete
1211  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1212  */
1213 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1214 {
1215 #if HOST_BIG_ENDIAN
1216     int i;
1217 
1218     for (i = 0; i < nr; ++i) {
1219         dst[i] = bswap64(src[i]);
1220     }
1221 
1222     return dst;
1223 #else
1224     return src;
1225 #endif
1226 }
1227 
1228 #else
1229 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1230 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1231                                          int n, bool a)
1232 { }
1233 #endif
1234 
1235 void aarch64_sync_32_to_64(CPUARMState *env);
1236 void aarch64_sync_64_to_32(CPUARMState *env);
1237 
1238 int fp_exception_el(CPUARMState *env, int cur_el);
1239 int sve_exception_el(CPUARMState *env, int cur_el);
1240 int sme_exception_el(CPUARMState *env, int cur_el);
1241 
1242 /**
1243  * sve_vqm1_for_el_sm:
1244  * @env: CPUARMState
1245  * @el: exception level
1246  * @sm: streaming mode
1247  *
1248  * Compute the current vector length for @el & @sm, in units of
1249  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1250  * If @sm, compute for SVL, otherwise NVL.
1251  */
1252 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1253 
1254 /* Likewise, but using @sm = PSTATE.SM. */
1255 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1256 
1257 static inline bool is_a64(CPUARMState *env)
1258 {
1259     return env->aarch64;
1260 }
1261 
1262 /**
1263  * pmu_op_start/finish
1264  * @env: CPUARMState
1265  *
1266  * Convert all PMU counters between their delta form (the typical mode when
1267  * they are enabled) and the guest-visible values. These two calls must
1268  * surround any action which might affect the counters.
1269  */
1270 void pmu_op_start(CPUARMState *env);
1271 void pmu_op_finish(CPUARMState *env);
1272 
1273 /*
1274  * Called when a PMU counter is due to overflow
1275  */
1276 void arm_pmu_timer_cb(void *opaque);
1277 
1278 /**
1279  * Functions to register as EL change hooks for PMU mode filtering
1280  */
1281 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1282 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1283 
1284 /*
1285  * pmu_init
1286  * @cpu: ARMCPU
1287  *
1288  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1289  * for the current configuration
1290  */
1291 void pmu_init(ARMCPU *cpu);
1292 
1293 /* SCTLR bit meanings. Several bits have been reused in newer
1294  * versions of the architecture; in that case we define constants
1295  * for both old and new bit meanings. Code which tests against those
1296  * bits should probably check or otherwise arrange that the CPU
1297  * is the architectural version it expects.
1298  */
1299 #define SCTLR_M       (1U << 0)
1300 #define SCTLR_A       (1U << 1)
1301 #define SCTLR_C       (1U << 2)
1302 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1303 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1304 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1305 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1306 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1307 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1308 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1309 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1310 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1311 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1312 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1313 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1314 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1315 #define SCTLR_SED     (1U << 8) /* v8 onward */
1316 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1317 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1318 #define SCTLR_F       (1U << 10) /* up to v6 */
1319 #define SCTLR_SW      (1U << 10) /* v7 */
1320 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1321 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1322 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1323 #define SCTLR_I       (1U << 12)
1324 #define SCTLR_V       (1U << 13) /* AArch32 only */
1325 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1326 #define SCTLR_RR      (1U << 14) /* up to v7 */
1327 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1328 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1329 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1330 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1331 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1332 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1333 #define SCTLR_BR      (1U << 17) /* PMSA only */
1334 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1335 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1336 #define SCTLR_WXN     (1U << 19)
1337 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1338 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1339 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1340 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1341 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1342 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1343 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1344 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1345 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1346 #define SCTLR_VE      (1U << 24) /* up to v7 */
1347 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1348 #define SCTLR_EE      (1U << 25)
1349 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1350 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1351 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1352 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1353 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1354 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1355 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1356 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1357 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1358 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1359 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1360 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1361 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1362 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1363 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1364 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1365 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1366 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1367 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1368 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1369 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1370 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1371 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1372 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1373 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1374 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1375 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1376 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1377 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1378 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1379 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1380 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1381 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1382 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1383 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1384 
1385 /* Bit definitions for CPACR (AArch32 only) */
1386 FIELD(CPACR, CP10, 20, 2)
1387 FIELD(CPACR, CP11, 22, 2)
1388 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1389 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1390 FIELD(CPACR, ASEDIS, 31, 1)
1391 
1392 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1393 FIELD(CPACR_EL1, ZEN, 16, 2)
1394 FIELD(CPACR_EL1, FPEN, 20, 2)
1395 FIELD(CPACR_EL1, SMEN, 24, 2)
1396 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1397 
1398 /* Bit definitions for HCPTR (AArch32 only) */
1399 FIELD(HCPTR, TCP10, 10, 1)
1400 FIELD(HCPTR, TCP11, 11, 1)
1401 FIELD(HCPTR, TASE, 15, 1)
1402 FIELD(HCPTR, TTA, 20, 1)
1403 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1404 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1405 
1406 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1407 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1408 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1409 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1410 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1411 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1412 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1413 FIELD(CPTR_EL2, TTA, 28, 1)
1414 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1415 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1416 
1417 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1418 FIELD(CPTR_EL3, EZ, 8, 1)
1419 FIELD(CPTR_EL3, TFP, 10, 1)
1420 FIELD(CPTR_EL3, ESM, 12, 1)
1421 FIELD(CPTR_EL3, TTA, 20, 1)
1422 FIELD(CPTR_EL3, TAM, 30, 1)
1423 FIELD(CPTR_EL3, TCPAC, 31, 1)
1424 
1425 #define MDCR_MTPME    (1U << 28)
1426 #define MDCR_TDCC     (1U << 27)
1427 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1428 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1429 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1430 #define MDCR_EPMAD    (1U << 21)
1431 #define MDCR_EDAD     (1U << 20)
1432 #define MDCR_TTRF     (1U << 19)
1433 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1434 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1435 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1436 #define MDCR_SDD      (1U << 16)
1437 #define MDCR_SPD      (3U << 14)
1438 #define MDCR_TDRA     (1U << 11)
1439 #define MDCR_TDOSA    (1U << 10)
1440 #define MDCR_TDA      (1U << 9)
1441 #define MDCR_TDE      (1U << 8)
1442 #define MDCR_HPME     (1U << 7)
1443 #define MDCR_TPM      (1U << 6)
1444 #define MDCR_TPMCR    (1U << 5)
1445 #define MDCR_HPMN     (0x1fU)
1446 
1447 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1448 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1449                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1450                          MDCR_STE | MDCR_SPME | MDCR_SPD)
1451 
1452 #define CPSR_M (0x1fU)
1453 #define CPSR_T (1U << 5)
1454 #define CPSR_F (1U << 6)
1455 #define CPSR_I (1U << 7)
1456 #define CPSR_A (1U << 8)
1457 #define CPSR_E (1U << 9)
1458 #define CPSR_IT_2_7 (0xfc00U)
1459 #define CPSR_GE (0xfU << 16)
1460 #define CPSR_IL (1U << 20)
1461 #define CPSR_DIT (1U << 21)
1462 #define CPSR_PAN (1U << 22)
1463 #define CPSR_SSBS (1U << 23)
1464 #define CPSR_J (1U << 24)
1465 #define CPSR_IT_0_1 (3U << 25)
1466 #define CPSR_Q (1U << 27)
1467 #define CPSR_V (1U << 28)
1468 #define CPSR_C (1U << 29)
1469 #define CPSR_Z (1U << 30)
1470 #define CPSR_N (1U << 31)
1471 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1472 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1473 
1474 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1475 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1476     | CPSR_NZCV)
1477 /* Bits writable in user mode.  */
1478 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1479 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1480 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1481 
1482 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1483 #define XPSR_EXCP 0x1ffU
1484 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1485 #define XPSR_IT_2_7 CPSR_IT_2_7
1486 #define XPSR_GE CPSR_GE
1487 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1488 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1489 #define XPSR_IT_0_1 CPSR_IT_0_1
1490 #define XPSR_Q CPSR_Q
1491 #define XPSR_V CPSR_V
1492 #define XPSR_C CPSR_C
1493 #define XPSR_Z CPSR_Z
1494 #define XPSR_N CPSR_N
1495 #define XPSR_NZCV CPSR_NZCV
1496 #define XPSR_IT CPSR_IT
1497 
1498 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1499 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1500 #define TTBCR_PD0    (1U << 4)
1501 #define TTBCR_PD1    (1U << 5)
1502 #define TTBCR_EPD0   (1U << 7)
1503 #define TTBCR_IRGN0  (3U << 8)
1504 #define TTBCR_ORGN0  (3U << 10)
1505 #define TTBCR_SH0    (3U << 12)
1506 #define TTBCR_T1SZ   (3U << 16)
1507 #define TTBCR_A1     (1U << 22)
1508 #define TTBCR_EPD1   (1U << 23)
1509 #define TTBCR_IRGN1  (3U << 24)
1510 #define TTBCR_ORGN1  (3U << 26)
1511 #define TTBCR_SH1    (1U << 28)
1512 #define TTBCR_EAE    (1U << 31)
1513 
1514 FIELD(VTCR, T0SZ, 0, 6)
1515 FIELD(VTCR, SL0, 6, 2)
1516 FIELD(VTCR, IRGN0, 8, 2)
1517 FIELD(VTCR, ORGN0, 10, 2)
1518 FIELD(VTCR, SH0, 12, 2)
1519 FIELD(VTCR, TG0, 14, 2)
1520 FIELD(VTCR, PS, 16, 3)
1521 FIELD(VTCR, VS, 19, 1)
1522 FIELD(VTCR, HA, 21, 1)
1523 FIELD(VTCR, HD, 22, 1)
1524 FIELD(VTCR, HWU59, 25, 1)
1525 FIELD(VTCR, HWU60, 26, 1)
1526 FIELD(VTCR, HWU61, 27, 1)
1527 FIELD(VTCR, HWU62, 28, 1)
1528 FIELD(VTCR, NSW, 29, 1)
1529 FIELD(VTCR, NSA, 30, 1)
1530 FIELD(VTCR, DS, 32, 1)
1531 FIELD(VTCR, SL2, 33, 1)
1532 
1533 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1534  * Only these are valid when in AArch64 mode; in
1535  * AArch32 mode SPSRs are basically CPSR-format.
1536  */
1537 #define PSTATE_SP (1U)
1538 #define PSTATE_M (0xFU)
1539 #define PSTATE_nRW (1U << 4)
1540 #define PSTATE_F (1U << 6)
1541 #define PSTATE_I (1U << 7)
1542 #define PSTATE_A (1U << 8)
1543 #define PSTATE_D (1U << 9)
1544 #define PSTATE_BTYPE (3U << 10)
1545 #define PSTATE_SSBS (1U << 12)
1546 #define PSTATE_IL (1U << 20)
1547 #define PSTATE_SS (1U << 21)
1548 #define PSTATE_PAN (1U << 22)
1549 #define PSTATE_UAO (1U << 23)
1550 #define PSTATE_DIT (1U << 24)
1551 #define PSTATE_TCO (1U << 25)
1552 #define PSTATE_V (1U << 28)
1553 #define PSTATE_C (1U << 29)
1554 #define PSTATE_Z (1U << 30)
1555 #define PSTATE_N (1U << 31)
1556 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1557 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1558 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1559 /* Mode values for AArch64 */
1560 #define PSTATE_MODE_EL3h 13
1561 #define PSTATE_MODE_EL3t 12
1562 #define PSTATE_MODE_EL2h 9
1563 #define PSTATE_MODE_EL2t 8
1564 #define PSTATE_MODE_EL1h 5
1565 #define PSTATE_MODE_EL1t 4
1566 #define PSTATE_MODE_EL0t 0
1567 
1568 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1569 FIELD(SVCR, SM, 0, 1)
1570 FIELD(SVCR, ZA, 1, 1)
1571 
1572 /* Fields for SMCR_ELx. */
1573 FIELD(SMCR, LEN, 0, 4)
1574 FIELD(SMCR, FA64, 31, 1)
1575 
1576 /* Write a new value to v7m.exception, thus transitioning into or out
1577  * of Handler mode; this may result in a change of active stack pointer.
1578  */
1579 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1580 
1581 /* Map EL and handler into a PSTATE_MODE.  */
1582 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1583 {
1584     return (el << 2) | handler;
1585 }
1586 
1587 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1588  * interprocessing, so we don't attempt to sync with the cpsr state used by
1589  * the 32 bit decoder.
1590  */
1591 static inline uint32_t pstate_read(CPUARMState *env)
1592 {
1593     int ZF;
1594 
1595     ZF = (env->ZF == 0);
1596     return (env->NF & 0x80000000) | (ZF << 30)
1597         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1598         | env->pstate | env->daif | (env->btype << 10);
1599 }
1600 
1601 static inline void pstate_write(CPUARMState *env, uint32_t val)
1602 {
1603     env->ZF = (~val) & PSTATE_Z;
1604     env->NF = val;
1605     env->CF = (val >> 29) & 1;
1606     env->VF = (val << 3) & 0x80000000;
1607     env->daif = val & PSTATE_DAIF;
1608     env->btype = (val >> 10) & 3;
1609     env->pstate = val & ~CACHED_PSTATE_BITS;
1610 }
1611 
1612 /* Return the current CPSR value.  */
1613 uint32_t cpsr_read(CPUARMState *env);
1614 
1615 typedef enum CPSRWriteType {
1616     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1617     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1618     CPSRWriteRaw = 2,
1619         /* trust values, no reg bank switch, no hflags rebuild */
1620     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1621 } CPSRWriteType;
1622 
1623 /*
1624  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1625  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1626  * correspond to TB flags bits cached in the hflags, unless @write_type
1627  * is CPSRWriteRaw.
1628  */
1629 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1630                 CPSRWriteType write_type);
1631 
1632 /* Return the current xPSR value.  */
1633 static inline uint32_t xpsr_read(CPUARMState *env)
1634 {
1635     int ZF;
1636     ZF = (env->ZF == 0);
1637     return (env->NF & 0x80000000) | (ZF << 30)
1638         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1639         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1640         | ((env->condexec_bits & 0xfc) << 8)
1641         | (env->GE << 16)
1642         | env->v7m.exception;
1643 }
1644 
1645 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1646 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1647 {
1648     if (mask & XPSR_NZCV) {
1649         env->ZF = (~val) & XPSR_Z;
1650         env->NF = val;
1651         env->CF = (val >> 29) & 1;
1652         env->VF = (val << 3) & 0x80000000;
1653     }
1654     if (mask & XPSR_Q) {
1655         env->QF = ((val & XPSR_Q) != 0);
1656     }
1657     if (mask & XPSR_GE) {
1658         env->GE = (val & XPSR_GE) >> 16;
1659     }
1660 #ifndef CONFIG_USER_ONLY
1661     if (mask & XPSR_T) {
1662         env->thumb = ((val & XPSR_T) != 0);
1663     }
1664     if (mask & XPSR_IT_0_1) {
1665         env->condexec_bits &= ~3;
1666         env->condexec_bits |= (val >> 25) & 3;
1667     }
1668     if (mask & XPSR_IT_2_7) {
1669         env->condexec_bits &= 3;
1670         env->condexec_bits |= (val >> 8) & 0xfc;
1671     }
1672     if (mask & XPSR_EXCP) {
1673         /* Note that this only happens on exception exit */
1674         write_v7m_exception(env, val & XPSR_EXCP);
1675     }
1676 #endif
1677 }
1678 
1679 #define HCR_VM        (1ULL << 0)
1680 #define HCR_SWIO      (1ULL << 1)
1681 #define HCR_PTW       (1ULL << 2)
1682 #define HCR_FMO       (1ULL << 3)
1683 #define HCR_IMO       (1ULL << 4)
1684 #define HCR_AMO       (1ULL << 5)
1685 #define HCR_VF        (1ULL << 6)
1686 #define HCR_VI        (1ULL << 7)
1687 #define HCR_VSE       (1ULL << 8)
1688 #define HCR_FB        (1ULL << 9)
1689 #define HCR_BSU_MASK  (3ULL << 10)
1690 #define HCR_DC        (1ULL << 12)
1691 #define HCR_TWI       (1ULL << 13)
1692 #define HCR_TWE       (1ULL << 14)
1693 #define HCR_TID0      (1ULL << 15)
1694 #define HCR_TID1      (1ULL << 16)
1695 #define HCR_TID2      (1ULL << 17)
1696 #define HCR_TID3      (1ULL << 18)
1697 #define HCR_TSC       (1ULL << 19)
1698 #define HCR_TIDCP     (1ULL << 20)
1699 #define HCR_TACR      (1ULL << 21)
1700 #define HCR_TSW       (1ULL << 22)
1701 #define HCR_TPCP      (1ULL << 23)
1702 #define HCR_TPU       (1ULL << 24)
1703 #define HCR_TTLB      (1ULL << 25)
1704 #define HCR_TVM       (1ULL << 26)
1705 #define HCR_TGE       (1ULL << 27)
1706 #define HCR_TDZ       (1ULL << 28)
1707 #define HCR_HCD       (1ULL << 29)
1708 #define HCR_TRVM      (1ULL << 30)
1709 #define HCR_RW        (1ULL << 31)
1710 #define HCR_CD        (1ULL << 32)
1711 #define HCR_ID        (1ULL << 33)
1712 #define HCR_E2H       (1ULL << 34)
1713 #define HCR_TLOR      (1ULL << 35)
1714 #define HCR_TERR      (1ULL << 36)
1715 #define HCR_TEA       (1ULL << 37)
1716 #define HCR_MIOCNCE   (1ULL << 38)
1717 #define HCR_TME       (1ULL << 39)
1718 #define HCR_APK       (1ULL << 40)
1719 #define HCR_API       (1ULL << 41)
1720 #define HCR_NV        (1ULL << 42)
1721 #define HCR_NV1       (1ULL << 43)
1722 #define HCR_AT        (1ULL << 44)
1723 #define HCR_NV2       (1ULL << 45)
1724 #define HCR_FWB       (1ULL << 46)
1725 #define HCR_FIEN      (1ULL << 47)
1726 #define HCR_GPF       (1ULL << 48)
1727 #define HCR_TID4      (1ULL << 49)
1728 #define HCR_TICAB     (1ULL << 50)
1729 #define HCR_AMVOFFEN  (1ULL << 51)
1730 #define HCR_TOCU      (1ULL << 52)
1731 #define HCR_ENSCXT    (1ULL << 53)
1732 #define HCR_TTLBIS    (1ULL << 54)
1733 #define HCR_TTLBOS    (1ULL << 55)
1734 #define HCR_ATA       (1ULL << 56)
1735 #define HCR_DCT       (1ULL << 57)
1736 #define HCR_TID5      (1ULL << 58)
1737 #define HCR_TWEDEN    (1ULL << 59)
1738 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1739 
1740 #define HCRX_ENAS0    (1ULL << 0)
1741 #define HCRX_ENALS    (1ULL << 1)
1742 #define HCRX_ENASR    (1ULL << 2)
1743 #define HCRX_FNXS     (1ULL << 3)
1744 #define HCRX_FGTNXS   (1ULL << 4)
1745 #define HCRX_SMPME    (1ULL << 5)
1746 #define HCRX_TALLINT  (1ULL << 6)
1747 #define HCRX_VINMI    (1ULL << 7)
1748 #define HCRX_VFNMI    (1ULL << 8)
1749 #define HCRX_CMOW     (1ULL << 9)
1750 #define HCRX_MCE2     (1ULL << 10)
1751 #define HCRX_MSCEN    (1ULL << 11)
1752 
1753 #define HPFAR_NS      (1ULL << 63)
1754 
1755 #define SCR_NS                (1ULL << 0)
1756 #define SCR_IRQ               (1ULL << 1)
1757 #define SCR_FIQ               (1ULL << 2)
1758 #define SCR_EA                (1ULL << 3)
1759 #define SCR_FW                (1ULL << 4)
1760 #define SCR_AW                (1ULL << 5)
1761 #define SCR_NET               (1ULL << 6)
1762 #define SCR_SMD               (1ULL << 7)
1763 #define SCR_HCE               (1ULL << 8)
1764 #define SCR_SIF               (1ULL << 9)
1765 #define SCR_RW                (1ULL << 10)
1766 #define SCR_ST                (1ULL << 11)
1767 #define SCR_TWI               (1ULL << 12)
1768 #define SCR_TWE               (1ULL << 13)
1769 #define SCR_TLOR              (1ULL << 14)
1770 #define SCR_TERR              (1ULL << 15)
1771 #define SCR_APK               (1ULL << 16)
1772 #define SCR_API               (1ULL << 17)
1773 #define SCR_EEL2              (1ULL << 18)
1774 #define SCR_EASE              (1ULL << 19)
1775 #define SCR_NMEA              (1ULL << 20)
1776 #define SCR_FIEN              (1ULL << 21)
1777 #define SCR_ENSCXT            (1ULL << 25)
1778 #define SCR_ATA               (1ULL << 26)
1779 #define SCR_FGTEN             (1ULL << 27)
1780 #define SCR_ECVEN             (1ULL << 28)
1781 #define SCR_TWEDEN            (1ULL << 29)
1782 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1783 #define SCR_TME               (1ULL << 34)
1784 #define SCR_AMVOFFEN          (1ULL << 35)
1785 #define SCR_ENAS0             (1ULL << 36)
1786 #define SCR_ADEN              (1ULL << 37)
1787 #define SCR_HXEN              (1ULL << 38)
1788 #define SCR_TRNDR             (1ULL << 40)
1789 #define SCR_ENTP2             (1ULL << 41)
1790 #define SCR_GPF               (1ULL << 48)
1791 #define SCR_NSE               (1ULL << 62)
1792 
1793 #define HSTR_TTEE (1 << 16)
1794 #define HSTR_TJDBX (1 << 17)
1795 
1796 #define CNTHCTL_CNTVMASK      (1 << 18)
1797 #define CNTHCTL_CNTPMASK      (1 << 19)
1798 
1799 /* Return the current FPSCR value.  */
1800 uint32_t vfp_get_fpscr(CPUARMState *env);
1801 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1802 
1803 /* FPCR, Floating Point Control Register
1804  * FPSR, Floating Poiht Status Register
1805  *
1806  * For A64 the FPSCR is split into two logically distinct registers,
1807  * FPCR and FPSR. However since they still use non-overlapping bits
1808  * we store the underlying state in fpscr and just mask on read/write.
1809  */
1810 #define FPSR_MASK 0xf800009f
1811 #define FPCR_MASK 0x07ff9f00
1812 
1813 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1814 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1815 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1816 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1817 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1818 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1819 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1820 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1821 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1822 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1823 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1824 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1825 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1826 #define FPCR_C      (1 << 29)   /* FP carry flag */
1827 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1828 #define FPCR_N      (1 << 31)   /* FP negative flag */
1829 
1830 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1831 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1832 #define FPCR_LTPSIZE_LENGTH 3
1833 
1834 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1835 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1836 
1837 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1838 {
1839     return vfp_get_fpscr(env) & FPSR_MASK;
1840 }
1841 
1842 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1843 {
1844     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1845     vfp_set_fpscr(env, new_fpscr);
1846 }
1847 
1848 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1849 {
1850     return vfp_get_fpscr(env) & FPCR_MASK;
1851 }
1852 
1853 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1854 {
1855     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1856     vfp_set_fpscr(env, new_fpscr);
1857 }
1858 
1859 enum arm_cpu_mode {
1860   ARM_CPU_MODE_USR = 0x10,
1861   ARM_CPU_MODE_FIQ = 0x11,
1862   ARM_CPU_MODE_IRQ = 0x12,
1863   ARM_CPU_MODE_SVC = 0x13,
1864   ARM_CPU_MODE_MON = 0x16,
1865   ARM_CPU_MODE_ABT = 0x17,
1866   ARM_CPU_MODE_HYP = 0x1a,
1867   ARM_CPU_MODE_UND = 0x1b,
1868   ARM_CPU_MODE_SYS = 0x1f
1869 };
1870 
1871 /* VFP system registers.  */
1872 #define ARM_VFP_FPSID   0
1873 #define ARM_VFP_FPSCR   1
1874 #define ARM_VFP_MVFR2   5
1875 #define ARM_VFP_MVFR1   6
1876 #define ARM_VFP_MVFR0   7
1877 #define ARM_VFP_FPEXC   8
1878 #define ARM_VFP_FPINST  9
1879 #define ARM_VFP_FPINST2 10
1880 /* These ones are M-profile only */
1881 #define ARM_VFP_FPSCR_NZCVQC 2
1882 #define ARM_VFP_VPR 12
1883 #define ARM_VFP_P0 13
1884 #define ARM_VFP_FPCXT_NS 14
1885 #define ARM_VFP_FPCXT_S 15
1886 
1887 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1888 #define QEMU_VFP_FPSCR_NZCV 0xffff
1889 
1890 /* iwMMXt coprocessor control registers.  */
1891 #define ARM_IWMMXT_wCID  0
1892 #define ARM_IWMMXT_wCon  1
1893 #define ARM_IWMMXT_wCSSF 2
1894 #define ARM_IWMMXT_wCASF 3
1895 #define ARM_IWMMXT_wCGR0 8
1896 #define ARM_IWMMXT_wCGR1 9
1897 #define ARM_IWMMXT_wCGR2 10
1898 #define ARM_IWMMXT_wCGR3 11
1899 
1900 /* V7M CCR bits */
1901 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1902 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1903 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1904 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1905 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1906 FIELD(V7M_CCR, STKALIGN, 9, 1)
1907 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1908 FIELD(V7M_CCR, DC, 16, 1)
1909 FIELD(V7M_CCR, IC, 17, 1)
1910 FIELD(V7M_CCR, BP, 18, 1)
1911 FIELD(V7M_CCR, LOB, 19, 1)
1912 FIELD(V7M_CCR, TRD, 20, 1)
1913 
1914 /* V7M SCR bits */
1915 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1916 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1917 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1918 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1919 
1920 /* V7M AIRCR bits */
1921 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1922 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1923 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1924 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1925 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1926 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1927 FIELD(V7M_AIRCR, PRIS, 14, 1)
1928 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1929 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1930 
1931 /* V7M CFSR bits for MMFSR */
1932 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1933 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1934 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1935 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1936 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1937 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1938 
1939 /* V7M CFSR bits for BFSR */
1940 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1941 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1942 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1943 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1944 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1945 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1946 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1947 
1948 /* V7M CFSR bits for UFSR */
1949 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1950 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1951 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1952 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1953 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1954 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1955 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1956 
1957 /* V7M CFSR bit masks covering all of the subregister bits */
1958 FIELD(V7M_CFSR, MMFSR, 0, 8)
1959 FIELD(V7M_CFSR, BFSR, 8, 8)
1960 FIELD(V7M_CFSR, UFSR, 16, 16)
1961 
1962 /* V7M HFSR bits */
1963 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1964 FIELD(V7M_HFSR, FORCED, 30, 1)
1965 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1966 
1967 /* V7M DFSR bits */
1968 FIELD(V7M_DFSR, HALTED, 0, 1)
1969 FIELD(V7M_DFSR, BKPT, 1, 1)
1970 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1971 FIELD(V7M_DFSR, VCATCH, 3, 1)
1972 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1973 
1974 /* V7M SFSR bits */
1975 FIELD(V7M_SFSR, INVEP, 0, 1)
1976 FIELD(V7M_SFSR, INVIS, 1, 1)
1977 FIELD(V7M_SFSR, INVER, 2, 1)
1978 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1979 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1980 FIELD(V7M_SFSR, LSPERR, 5, 1)
1981 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1982 FIELD(V7M_SFSR, LSERR, 7, 1)
1983 
1984 /* v7M MPU_CTRL bits */
1985 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1986 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1987 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1988 
1989 /* v7M CLIDR bits */
1990 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1991 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1992 FIELD(V7M_CLIDR, LOC, 24, 3)
1993 FIELD(V7M_CLIDR, LOUU, 27, 3)
1994 FIELD(V7M_CLIDR, ICB, 30, 2)
1995 
1996 FIELD(V7M_CSSELR, IND, 0, 1)
1997 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1998 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1999  * define a mask for this and check that it doesn't permit running off
2000  * the end of the array.
2001  */
2002 FIELD(V7M_CSSELR, INDEX, 0, 4)
2003 
2004 /* v7M FPCCR bits */
2005 FIELD(V7M_FPCCR, LSPACT, 0, 1)
2006 FIELD(V7M_FPCCR, USER, 1, 1)
2007 FIELD(V7M_FPCCR, S, 2, 1)
2008 FIELD(V7M_FPCCR, THREAD, 3, 1)
2009 FIELD(V7M_FPCCR, HFRDY, 4, 1)
2010 FIELD(V7M_FPCCR, MMRDY, 5, 1)
2011 FIELD(V7M_FPCCR, BFRDY, 6, 1)
2012 FIELD(V7M_FPCCR, SFRDY, 7, 1)
2013 FIELD(V7M_FPCCR, MONRDY, 8, 1)
2014 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
2015 FIELD(V7M_FPCCR, UFRDY, 10, 1)
2016 FIELD(V7M_FPCCR, RES0, 11, 15)
2017 FIELD(V7M_FPCCR, TS, 26, 1)
2018 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
2019 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
2020 FIELD(V7M_FPCCR, LSPENS, 29, 1)
2021 FIELD(V7M_FPCCR, LSPEN, 30, 1)
2022 FIELD(V7M_FPCCR, ASPEN, 31, 1)
2023 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
2024 #define R_V7M_FPCCR_BANKED_MASK                 \
2025     (R_V7M_FPCCR_LSPACT_MASK |                  \
2026      R_V7M_FPCCR_USER_MASK |                    \
2027      R_V7M_FPCCR_THREAD_MASK |                  \
2028      R_V7M_FPCCR_MMRDY_MASK |                   \
2029      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
2030      R_V7M_FPCCR_UFRDY_MASK |                   \
2031      R_V7M_FPCCR_ASPEN_MASK)
2032 
2033 /* v7M VPR bits */
2034 FIELD(V7M_VPR, P0, 0, 16)
2035 FIELD(V7M_VPR, MASK01, 16, 4)
2036 FIELD(V7M_VPR, MASK23, 20, 4)
2037 
2038 /*
2039  * System register ID fields.
2040  */
2041 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2042 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2043 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2044 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2045 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2046 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2047 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2048 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2049 FIELD(CLIDR_EL1, LOC, 24, 3)
2050 FIELD(CLIDR_EL1, LOUU, 27, 3)
2051 FIELD(CLIDR_EL1, ICB, 30, 3)
2052 
2053 /* When FEAT_CCIDX is implemented */
2054 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2055 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2056 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2057 
2058 /* When FEAT_CCIDX is not implemented */
2059 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2060 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2061 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2062 
2063 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2064 FIELD(CTR_EL0,  L1IP, 14, 2)
2065 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2066 FIELD(CTR_EL0,  ERG, 20, 4)
2067 FIELD(CTR_EL0,  CWG, 24, 4)
2068 FIELD(CTR_EL0,  IDC, 28, 1)
2069 FIELD(CTR_EL0,  DIC, 29, 1)
2070 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2071 
2072 FIELD(MIDR_EL1, REVISION, 0, 4)
2073 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2074 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2075 FIELD(MIDR_EL1, VARIANT, 20, 4)
2076 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2077 
2078 FIELD(ID_ISAR0, SWAP, 0, 4)
2079 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2080 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2081 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2082 FIELD(ID_ISAR0, COPROC, 16, 4)
2083 FIELD(ID_ISAR0, DEBUG, 20, 4)
2084 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2085 
2086 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2087 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2088 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2089 FIELD(ID_ISAR1, EXTEND, 12, 4)
2090 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2091 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2092 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2093 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2094 
2095 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2096 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2097 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2098 FIELD(ID_ISAR2, MULT, 12, 4)
2099 FIELD(ID_ISAR2, MULTS, 16, 4)
2100 FIELD(ID_ISAR2, MULTU, 20, 4)
2101 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2102 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2103 
2104 FIELD(ID_ISAR3, SATURATE, 0, 4)
2105 FIELD(ID_ISAR3, SIMD, 4, 4)
2106 FIELD(ID_ISAR3, SVC, 8, 4)
2107 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2108 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2109 FIELD(ID_ISAR3, T32COPY, 20, 4)
2110 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2111 FIELD(ID_ISAR3, T32EE, 28, 4)
2112 
2113 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2114 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2115 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2116 FIELD(ID_ISAR4, SMC, 12, 4)
2117 FIELD(ID_ISAR4, BARRIER, 16, 4)
2118 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2119 FIELD(ID_ISAR4, PSR_M, 24, 4)
2120 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2121 
2122 FIELD(ID_ISAR5, SEVL, 0, 4)
2123 FIELD(ID_ISAR5, AES, 4, 4)
2124 FIELD(ID_ISAR5, SHA1, 8, 4)
2125 FIELD(ID_ISAR5, SHA2, 12, 4)
2126 FIELD(ID_ISAR5, CRC32, 16, 4)
2127 FIELD(ID_ISAR5, RDM, 24, 4)
2128 FIELD(ID_ISAR5, VCMA, 28, 4)
2129 
2130 FIELD(ID_ISAR6, JSCVT, 0, 4)
2131 FIELD(ID_ISAR6, DP, 4, 4)
2132 FIELD(ID_ISAR6, FHM, 8, 4)
2133 FIELD(ID_ISAR6, SB, 12, 4)
2134 FIELD(ID_ISAR6, SPECRES, 16, 4)
2135 FIELD(ID_ISAR6, BF16, 20, 4)
2136 FIELD(ID_ISAR6, I8MM, 24, 4)
2137 
2138 FIELD(ID_MMFR0, VMSA, 0, 4)
2139 FIELD(ID_MMFR0, PMSA, 4, 4)
2140 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2141 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2142 FIELD(ID_MMFR0, TCM, 16, 4)
2143 FIELD(ID_MMFR0, AUXREG, 20, 4)
2144 FIELD(ID_MMFR0, FCSE, 24, 4)
2145 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2146 
2147 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2148 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2149 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2150 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2151 FIELD(ID_MMFR1, L1HVD, 16, 4)
2152 FIELD(ID_MMFR1, L1UNI, 20, 4)
2153 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2154 FIELD(ID_MMFR1, BPRED, 28, 4)
2155 
2156 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2157 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2158 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2159 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2160 FIELD(ID_MMFR2, UNITLB, 16, 4)
2161 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2162 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2163 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2164 
2165 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2166 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2167 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2168 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2169 FIELD(ID_MMFR3, PAN, 16, 4)
2170 FIELD(ID_MMFR3, COHWALK, 20, 4)
2171 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2172 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2173 
2174 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2175 FIELD(ID_MMFR4, AC2, 4, 4)
2176 FIELD(ID_MMFR4, XNX, 8, 4)
2177 FIELD(ID_MMFR4, CNP, 12, 4)
2178 FIELD(ID_MMFR4, HPDS, 16, 4)
2179 FIELD(ID_MMFR4, LSM, 20, 4)
2180 FIELD(ID_MMFR4, CCIDX, 24, 4)
2181 FIELD(ID_MMFR4, EVT, 28, 4)
2182 
2183 FIELD(ID_MMFR5, ETS, 0, 4)
2184 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2185 
2186 FIELD(ID_PFR0, STATE0, 0, 4)
2187 FIELD(ID_PFR0, STATE1, 4, 4)
2188 FIELD(ID_PFR0, STATE2, 8, 4)
2189 FIELD(ID_PFR0, STATE3, 12, 4)
2190 FIELD(ID_PFR0, CSV2, 16, 4)
2191 FIELD(ID_PFR0, AMU, 20, 4)
2192 FIELD(ID_PFR0, DIT, 24, 4)
2193 FIELD(ID_PFR0, RAS, 28, 4)
2194 
2195 FIELD(ID_PFR1, PROGMOD, 0, 4)
2196 FIELD(ID_PFR1, SECURITY, 4, 4)
2197 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2198 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2199 FIELD(ID_PFR1, GENTIMER, 16, 4)
2200 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2201 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2202 FIELD(ID_PFR1, GIC, 28, 4)
2203 
2204 FIELD(ID_PFR2, CSV3, 0, 4)
2205 FIELD(ID_PFR2, SSBS, 4, 4)
2206 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2207 
2208 FIELD(ID_AA64ISAR0, AES, 4, 4)
2209 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2210 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2211 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2212 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2213 FIELD(ID_AA64ISAR0, TME, 24, 4)
2214 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2215 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2216 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2217 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2218 FIELD(ID_AA64ISAR0, DP, 44, 4)
2219 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2220 FIELD(ID_AA64ISAR0, TS, 52, 4)
2221 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2222 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2223 
2224 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2225 FIELD(ID_AA64ISAR1, APA, 4, 4)
2226 FIELD(ID_AA64ISAR1, API, 8, 4)
2227 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2228 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2229 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2230 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2231 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2232 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2233 FIELD(ID_AA64ISAR1, SB, 36, 4)
2234 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2235 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2236 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2237 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2238 FIELD(ID_AA64ISAR1, XS, 56, 4)
2239 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2240 
2241 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2242 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2243 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2244 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2245 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2246 FIELD(ID_AA64ISAR2, BC, 20, 4)
2247 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2248 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2249 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2250 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2251 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2252 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2253 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2254 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2255 
2256 FIELD(ID_AA64PFR0, EL0, 0, 4)
2257 FIELD(ID_AA64PFR0, EL1, 4, 4)
2258 FIELD(ID_AA64PFR0, EL2, 8, 4)
2259 FIELD(ID_AA64PFR0, EL3, 12, 4)
2260 FIELD(ID_AA64PFR0, FP, 16, 4)
2261 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2262 FIELD(ID_AA64PFR0, GIC, 24, 4)
2263 FIELD(ID_AA64PFR0, RAS, 28, 4)
2264 FIELD(ID_AA64PFR0, SVE, 32, 4)
2265 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2266 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2267 FIELD(ID_AA64PFR0, AMU, 44, 4)
2268 FIELD(ID_AA64PFR0, DIT, 48, 4)
2269 FIELD(ID_AA64PFR0, RME, 52, 4)
2270 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2271 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2272 
2273 FIELD(ID_AA64PFR1, BT, 0, 4)
2274 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2275 FIELD(ID_AA64PFR1, MTE, 8, 4)
2276 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2277 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2278 FIELD(ID_AA64PFR1, SME, 24, 4)
2279 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2280 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2281 FIELD(ID_AA64PFR1, NMI, 36, 4)
2282 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2283 FIELD(ID_AA64PFR1, GCS, 44, 4)
2284 FIELD(ID_AA64PFR1, THE, 48, 4)
2285 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2286 FIELD(ID_AA64PFR1, DF2, 56, 4)
2287 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2288 
2289 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2290 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2291 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2292 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2293 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2294 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2295 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2296 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2297 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2298 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2299 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2300 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2301 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2302 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2303 
2304 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2305 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2306 FIELD(ID_AA64MMFR1, VH, 8, 4)
2307 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2308 FIELD(ID_AA64MMFR1, LO, 16, 4)
2309 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2310 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2311 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2312 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2313 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2314 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2315 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2316 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2317 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2318 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2319 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2320 
2321 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2322 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2323 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2324 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2325 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2326 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2327 FIELD(ID_AA64MMFR2, NV, 24, 4)
2328 FIELD(ID_AA64MMFR2, ST, 28, 4)
2329 FIELD(ID_AA64MMFR2, AT, 32, 4)
2330 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2331 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2332 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2333 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2334 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2335 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2336 
2337 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2338 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2339 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2340 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2341 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2342 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2343 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2344 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2345 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2346 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2347 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2348 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2349 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2350 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2351 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2352 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2353 
2354 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2355 FIELD(ID_AA64ZFR0, AES, 4, 4)
2356 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2357 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2358 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2359 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2360 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2361 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2362 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2363 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2364 
2365 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2366 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2367 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2368 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2369 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2370 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2371 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2372 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2373 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2374 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2375 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2376 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2377 
2378 FIELD(ID_DFR0, COPDBG, 0, 4)
2379 FIELD(ID_DFR0, COPSDBG, 4, 4)
2380 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2381 FIELD(ID_DFR0, COPTRC, 12, 4)
2382 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2383 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2384 FIELD(ID_DFR0, PERFMON, 24, 4)
2385 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2386 
2387 FIELD(ID_DFR1, MTPMU, 0, 4)
2388 FIELD(ID_DFR1, HPMN0, 4, 4)
2389 
2390 FIELD(DBGDIDR, SE_IMP, 12, 1)
2391 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2392 FIELD(DBGDIDR, VERSION, 16, 4)
2393 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2394 FIELD(DBGDIDR, BRPS, 24, 4)
2395 FIELD(DBGDIDR, WRPS, 28, 4)
2396 
2397 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2398 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2399 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2400 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2401 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2402 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2403 FIELD(DBGDEVID, AUXREGS, 24, 4)
2404 FIELD(DBGDEVID, CIDMASK, 28, 4)
2405 
2406 FIELD(MVFR0, SIMDREG, 0, 4)
2407 FIELD(MVFR0, FPSP, 4, 4)
2408 FIELD(MVFR0, FPDP, 8, 4)
2409 FIELD(MVFR0, FPTRAP, 12, 4)
2410 FIELD(MVFR0, FPDIVIDE, 16, 4)
2411 FIELD(MVFR0, FPSQRT, 20, 4)
2412 FIELD(MVFR0, FPSHVEC, 24, 4)
2413 FIELD(MVFR0, FPROUND, 28, 4)
2414 
2415 FIELD(MVFR1, FPFTZ, 0, 4)
2416 FIELD(MVFR1, FPDNAN, 4, 4)
2417 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2418 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2419 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2420 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2421 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2422 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2423 FIELD(MVFR1, FPHP, 24, 4)
2424 FIELD(MVFR1, SIMDFMAC, 28, 4)
2425 
2426 FIELD(MVFR2, SIMDMISC, 0, 4)
2427 FIELD(MVFR2, FPMISC, 4, 4)
2428 
2429 FIELD(GPCCR, PPS, 0, 3)
2430 FIELD(GPCCR, IRGN, 8, 2)
2431 FIELD(GPCCR, ORGN, 10, 2)
2432 FIELD(GPCCR, SH, 12, 2)
2433 FIELD(GPCCR, PGS, 14, 2)
2434 FIELD(GPCCR, GPC, 16, 1)
2435 FIELD(GPCCR, GPCP, 17, 1)
2436 FIELD(GPCCR, L0GPTSZ, 20, 4)
2437 
2438 FIELD(MFAR, FPA, 12, 40)
2439 FIELD(MFAR, NSE, 62, 1)
2440 FIELD(MFAR, NS, 63, 1)
2441 
2442 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2443 
2444 /* If adding a feature bit which corresponds to a Linux ELF
2445  * HWCAP bit, remember to update the feature-bit-to-hwcap
2446  * mapping in linux-user/elfload.c:get_elf_hwcap().
2447  */
2448 enum arm_features {
2449     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2450     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2451     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2452     ARM_FEATURE_V6,
2453     ARM_FEATURE_V6K,
2454     ARM_FEATURE_V7,
2455     ARM_FEATURE_THUMB2,
2456     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2457     ARM_FEATURE_NEON,
2458     ARM_FEATURE_M, /* Microcontroller profile.  */
2459     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2460     ARM_FEATURE_THUMB2EE,
2461     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2462     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2463     ARM_FEATURE_V4T,
2464     ARM_FEATURE_V5,
2465     ARM_FEATURE_STRONGARM,
2466     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2467     ARM_FEATURE_GENERIC_TIMER,
2468     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2469     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2470     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2471     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2472     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2473     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2474     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2475     ARM_FEATURE_V8,
2476     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2477     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2478     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2479     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2480     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2481     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2482     ARM_FEATURE_PMU, /* has PMU support */
2483     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2484     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2485     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2486     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2487 };
2488 
2489 static inline int arm_feature(CPUARMState *env, int feature)
2490 {
2491     return (env->features & (1ULL << feature)) != 0;
2492 }
2493 
2494 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2495 
2496 /*
2497  * ARM v9 security states.
2498  * The ordering of the enumeration corresponds to the low 2 bits
2499  * of the GPI value, and (except for Root) the concat of NSE:NS.
2500  */
2501 
2502 typedef enum ARMSecuritySpace {
2503     ARMSS_Secure     = 0,
2504     ARMSS_NonSecure  = 1,
2505     ARMSS_Root       = 2,
2506     ARMSS_Realm      = 3,
2507 } ARMSecuritySpace;
2508 
2509 /* Return true if @space is secure, in the pre-v9 sense. */
2510 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2511 {
2512     return space == ARMSS_Secure || space == ARMSS_Root;
2513 }
2514 
2515 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2516 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2517 {
2518     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2519 }
2520 
2521 #if !defined(CONFIG_USER_ONLY)
2522 /**
2523  * arm_security_space_below_el3:
2524  * @env: cpu context
2525  *
2526  * Return the security space of exception levels below EL3, following
2527  * an exception return to those levels.  Unlike arm_security_space,
2528  * this doesn't care about the current EL.
2529  */
2530 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2531 
2532 /**
2533  * arm_is_secure_below_el3:
2534  * @env: cpu context
2535  *
2536  * Return true if exception levels below EL3 are in secure state,
2537  * or would be following an exception return to those levels.
2538  */
2539 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2540 {
2541     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2542     return ss == ARMSS_Secure;
2543 }
2544 
2545 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2546 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2547 {
2548     assert(!arm_feature(env, ARM_FEATURE_M));
2549     if (arm_feature(env, ARM_FEATURE_EL3)) {
2550         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2551             /* CPU currently in AArch64 state and EL3 */
2552             return true;
2553         } else if (!is_a64(env) &&
2554                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2555             /* CPU currently in AArch32 state and monitor mode */
2556             return true;
2557         }
2558     }
2559     return false;
2560 }
2561 
2562 /**
2563  * arm_security_space:
2564  * @env: cpu context
2565  *
2566  * Return the current security space of the cpu.
2567  */
2568 ARMSecuritySpace arm_security_space(CPUARMState *env);
2569 
2570 /**
2571  * arm_is_secure:
2572  * @env: cpu context
2573  *
2574  * Return true if the processor is in secure state.
2575  */
2576 static inline bool arm_is_secure(CPUARMState *env)
2577 {
2578     return arm_space_is_secure(arm_security_space(env));
2579 }
2580 
2581 /*
2582  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2583  * This corresponds to the pseudocode EL2Enabled().
2584  */
2585 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2586                                                ARMSecuritySpace space)
2587 {
2588     assert(space != ARMSS_Root);
2589     return arm_feature(env, ARM_FEATURE_EL2)
2590            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2591 }
2592 
2593 static inline bool arm_is_el2_enabled(CPUARMState *env)
2594 {
2595     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2596 }
2597 
2598 #else
2599 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2600 {
2601     return ARMSS_NonSecure;
2602 }
2603 
2604 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2605 {
2606     return false;
2607 }
2608 
2609 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2610 {
2611     return ARMSS_NonSecure;
2612 }
2613 
2614 static inline bool arm_is_secure(CPUARMState *env)
2615 {
2616     return false;
2617 }
2618 
2619 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2620                                                ARMSecuritySpace space)
2621 {
2622     return false;
2623 }
2624 
2625 static inline bool arm_is_el2_enabled(CPUARMState *env)
2626 {
2627     return false;
2628 }
2629 #endif
2630 
2631 /**
2632  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2633  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2634  * "for all purposes other than a direct read or write access of HCR_EL2."
2635  * Not included here is HCR_RW.
2636  */
2637 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2638 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2639 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2640 
2641 /* Return true if the specified exception level is running in AArch64 state. */
2642 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2643 {
2644     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2645      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2646      */
2647     assert(el >= 1 && el <= 3);
2648     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2649 
2650     /* The highest exception level is always at the maximum supported
2651      * register width, and then lower levels have a register width controlled
2652      * by bits in the SCR or HCR registers.
2653      */
2654     if (el == 3) {
2655         return aa64;
2656     }
2657 
2658     if (arm_feature(env, ARM_FEATURE_EL3) &&
2659         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2660         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2661     }
2662 
2663     if (el == 2) {
2664         return aa64;
2665     }
2666 
2667     if (arm_is_el2_enabled(env)) {
2668         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2669     }
2670 
2671     return aa64;
2672 }
2673 
2674 /* Function for determining whether guest cp register reads and writes should
2675  * access the secure or non-secure bank of a cp register.  When EL3 is
2676  * operating in AArch32 state, the NS-bit determines whether the secure
2677  * instance of a cp register should be used. When EL3 is AArch64 (or if
2678  * it doesn't exist at all) then there is no register banking, and all
2679  * accesses are to the non-secure version.
2680  */
2681 static inline bool access_secure_reg(CPUARMState *env)
2682 {
2683     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2684                 !arm_el_is_aa64(env, 3) &&
2685                 !(env->cp15.scr_el3 & SCR_NS));
2686 
2687     return ret;
2688 }
2689 
2690 /* Macros for accessing a specified CP register bank */
2691 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2692     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2693 
2694 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2695     do {                                                \
2696         if (_secure) {                                   \
2697             (_env)->cp15._regname##_s = (_val);            \
2698         } else {                                        \
2699             (_env)->cp15._regname##_ns = (_val);           \
2700         }                                               \
2701     } while (0)
2702 
2703 /* Macros for automatically accessing a specific CP register bank depending on
2704  * the current secure state of the system.  These macros are not intended for
2705  * supporting instruction translation reads/writes as these are dependent
2706  * solely on the SCR.NS bit and not the mode.
2707  */
2708 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2709     A32_BANKED_REG_GET((_env), _regname,                \
2710                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2711 
2712 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2713     A32_BANKED_REG_SET((_env), _regname,                                    \
2714                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2715                        (_val))
2716 
2717 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2718                                  uint32_t cur_el, bool secure);
2719 
2720 /* Return the highest implemented Exception Level */
2721 static inline int arm_highest_el(CPUARMState *env)
2722 {
2723     if (arm_feature(env, ARM_FEATURE_EL3)) {
2724         return 3;
2725     }
2726     if (arm_feature(env, ARM_FEATURE_EL2)) {
2727         return 2;
2728     }
2729     return 1;
2730 }
2731 
2732 /* Return true if a v7M CPU is in Handler mode */
2733 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2734 {
2735     return env->v7m.exception != 0;
2736 }
2737 
2738 /* Return the current Exception Level (as per ARMv8; note that this differs
2739  * from the ARMv7 Privilege Level).
2740  */
2741 static inline int arm_current_el(CPUARMState *env)
2742 {
2743     if (arm_feature(env, ARM_FEATURE_M)) {
2744         return arm_v7m_is_handler_mode(env) ||
2745             !(env->v7m.control[env->v7m.secure] & 1);
2746     }
2747 
2748     if (is_a64(env)) {
2749         return extract32(env->pstate, 2, 2);
2750     }
2751 
2752     switch (env->uncached_cpsr & 0x1f) {
2753     case ARM_CPU_MODE_USR:
2754         return 0;
2755     case ARM_CPU_MODE_HYP:
2756         return 2;
2757     case ARM_CPU_MODE_MON:
2758         return 3;
2759     default:
2760         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2761             /* If EL3 is 32-bit then all secure privileged modes run in
2762              * EL3
2763              */
2764             return 3;
2765         }
2766 
2767         return 1;
2768     }
2769 }
2770 
2771 /**
2772  * write_list_to_cpustate
2773  * @cpu: ARMCPU
2774  *
2775  * For each register listed in the ARMCPU cpreg_indexes list, write
2776  * its value from the cpreg_values list into the ARMCPUState structure.
2777  * This updates TCG's working data structures from KVM data or
2778  * from incoming migration state.
2779  *
2780  * Returns: true if all register values were updated correctly,
2781  * false if some register was unknown or could not be written.
2782  * Note that we do not stop early on failure -- we will attempt
2783  * writing all registers in the list.
2784  */
2785 bool write_list_to_cpustate(ARMCPU *cpu);
2786 
2787 /**
2788  * write_cpustate_to_list:
2789  * @cpu: ARMCPU
2790  * @kvm_sync: true if this is for syncing back to KVM
2791  *
2792  * For each register listed in the ARMCPU cpreg_indexes list, write
2793  * its value from the ARMCPUState structure into the cpreg_values list.
2794  * This is used to copy info from TCG's working data structures into
2795  * KVM or for outbound migration.
2796  *
2797  * @kvm_sync is true if we are doing this in order to sync the
2798  * register state back to KVM. In this case we will only update
2799  * values in the list if the previous list->cpustate sync actually
2800  * successfully wrote the CPU state. Otherwise we will keep the value
2801  * that is in the list.
2802  *
2803  * Returns: true if all register values were read correctly,
2804  * false if some register was unknown or could not be read.
2805  * Note that we do not stop early on failure -- we will attempt
2806  * reading all registers in the list.
2807  */
2808 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2809 
2810 #define ARM_CPUID_TI915T      0x54029152
2811 #define ARM_CPUID_TI925T      0x54029252
2812 
2813 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2814 
2815 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2816 
2817 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2818  *
2819  * If EL3 is 64-bit:
2820  *  + NonSecure EL1 & 0 stage 1
2821  *  + NonSecure EL1 & 0 stage 2
2822  *  + NonSecure EL2
2823  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2824  *  + Secure EL1 & 0
2825  *  + Secure EL3
2826  * If EL3 is 32-bit:
2827  *  + NonSecure PL1 & 0 stage 1
2828  *  + NonSecure PL1 & 0 stage 2
2829  *  + NonSecure PL2
2830  *  + Secure PL0
2831  *  + Secure PL1
2832  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2833  *
2834  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2835  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2836  *     because they may differ in access permissions even if the VA->PA map is
2837  *     the same
2838  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2839  *     translation, which means that we have one mmu_idx that deals with two
2840  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2841  *     architecturally permitted]
2842  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2843  *     handling via the TLB. The only way to do a stage 1 translation without
2844  *     the immediate stage 2 translation is via the ATS or AT system insns,
2845  *     which can be slow-pathed and always do a page table walk.
2846  *     The only use of stage 2 translations is either as part of an s1+2
2847  *     lookup or when loading the descriptors during a stage 1 page table walk,
2848  *     and in both those cases we don't use the TLB.
2849  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2850  *     translation regimes, because they map reasonably well to each other
2851  *     and they can't both be active at the same time.
2852  *  5. we want to be able to use the TLB for accesses done as part of a
2853  *     stage1 page table walk, rather than having to walk the stage2 page
2854  *     table over and over.
2855  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2856  *     Never (PAN) bit within PSTATE.
2857  *  7. we fold together the secure and non-secure regimes for A-profile,
2858  *     because there are no banked system registers for aarch64, so the
2859  *     process of switching between secure and non-secure is
2860  *     already heavyweight.
2861  *
2862  * This gives us the following list of cases:
2863  *
2864  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2865  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2866  * EL1 EL1&0 stage 1+2 +PAN
2867  * EL0 EL2&0
2868  * EL2 EL2&0
2869  * EL2 EL2&0 +PAN
2870  * EL2 (aka NS PL2)
2871  * EL3 (aka S PL1)
2872  * Physical (NS & S)
2873  * Stage2 (NS & S)
2874  *
2875  * for a total of 12 different mmu_idx.
2876  *
2877  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2878  * as A profile. They only need to distinguish EL0 and EL1 (and
2879  * EL2 if we ever model a Cortex-R52).
2880  *
2881  * M profile CPUs are rather different as they do not have a true MMU.
2882  * They have the following different MMU indexes:
2883  *  User
2884  *  Privileged
2885  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2886  *  Privileged, execution priority negative (ditto)
2887  * If the CPU supports the v8M Security Extension then there are also:
2888  *  Secure User
2889  *  Secure Privileged
2890  *  Secure User, execution priority negative
2891  *  Secure Privileged, execution priority negative
2892  *
2893  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2894  * are not quite the same -- different CPU types (most notably M profile
2895  * vs A/R profile) would like to use MMU indexes with different semantics,
2896  * but since we don't ever need to use all of those in a single CPU we
2897  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2898  * modes + total number of M profile MMU modes". The lower bits of
2899  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2900  * the same for any particular CPU.
2901  * Variables of type ARMMUIdx are always full values, and the core
2902  * index values are in variables of type 'int'.
2903  *
2904  * Our enumeration includes at the end some entries which are not "true"
2905  * mmu_idx values in that they don't have corresponding TLBs and are only
2906  * valid for doing slow path page table walks.
2907  *
2908  * The constant names here are patterned after the general style of the names
2909  * of the AT/ATS operations.
2910  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2911  * For M profile we arrange them to have a bit for priv, a bit for negpri
2912  * and a bit for secure.
2913  */
2914 #define ARM_MMU_IDX_A     0x10  /* A profile */
2915 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2916 #define ARM_MMU_IDX_M     0x40  /* M profile */
2917 
2918 /* Meanings of the bits for M profile mmu idx values */
2919 #define ARM_MMU_IDX_M_PRIV   0x1
2920 #define ARM_MMU_IDX_M_NEGPRI 0x2
2921 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2922 
2923 #define ARM_MMU_IDX_TYPE_MASK \
2924     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2925 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2926 
2927 typedef enum ARMMMUIdx {
2928     /*
2929      * A-profile.
2930      */
2931     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2932     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2933     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2934     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2935     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2936     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2937     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2938     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2939 
2940     /*
2941      * Used for second stage of an S12 page table walk, or for descriptor
2942      * loads during first stage of an S1 page table walk.  Note that both
2943      * are in use simultaneously for SecureEL2: the security state for
2944      * the S2 ptw is selected by the NS bit from the S1 ptw.
2945      */
2946     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2947     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2948 
2949     /* TLBs with 1-1 mapping to the physical address spaces. */
2950     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2951     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2952     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2953     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2954 
2955     /*
2956      * These are not allocated TLBs and are used only for AT system
2957      * instructions or for the first stage of an S12 page table walk.
2958      */
2959     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2960     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2961     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2962 
2963     /*
2964      * M-profile.
2965      */
2966     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2967     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2968     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2969     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2970     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2971     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2972     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2973     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2974 } ARMMMUIdx;
2975 
2976 /*
2977  * Bit macros for the core-mmu-index values for each index,
2978  * for use when calling tlb_flush_by_mmuidx() and friends.
2979  */
2980 #define TO_CORE_BIT(NAME) \
2981     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2982 
2983 typedef enum ARMMMUIdxBit {
2984     TO_CORE_BIT(E10_0),
2985     TO_CORE_BIT(E20_0),
2986     TO_CORE_BIT(E10_1),
2987     TO_CORE_BIT(E10_1_PAN),
2988     TO_CORE_BIT(E2),
2989     TO_CORE_BIT(E20_2),
2990     TO_CORE_BIT(E20_2_PAN),
2991     TO_CORE_BIT(E3),
2992     TO_CORE_BIT(Stage2),
2993     TO_CORE_BIT(Stage2_S),
2994 
2995     TO_CORE_BIT(MUser),
2996     TO_CORE_BIT(MPriv),
2997     TO_CORE_BIT(MUserNegPri),
2998     TO_CORE_BIT(MPrivNegPri),
2999     TO_CORE_BIT(MSUser),
3000     TO_CORE_BIT(MSPriv),
3001     TO_CORE_BIT(MSUserNegPri),
3002     TO_CORE_BIT(MSPrivNegPri),
3003 } ARMMMUIdxBit;
3004 
3005 #undef TO_CORE_BIT
3006 
3007 #define MMU_USER_IDX 0
3008 
3009 /* Indexes used when registering address spaces with cpu_address_space_init */
3010 typedef enum ARMASIdx {
3011     ARMASIdx_NS = 0,
3012     ARMASIdx_S = 1,
3013     ARMASIdx_TagNS = 2,
3014     ARMASIdx_TagS = 3,
3015 } ARMASIdx;
3016 
3017 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3018 {
3019     /* Assert the relative order of the physical mmu indexes. */
3020     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3021     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3022     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3023     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3024 
3025     return ARMMMUIdx_Phys_S + space;
3026 }
3027 
3028 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3029 {
3030     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3031     return idx - ARMMMUIdx_Phys_S;
3032 }
3033 
3034 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3035 {
3036     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3037      * CSSELR is RAZ/WI.
3038      */
3039     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3040 }
3041 
3042 static inline bool arm_sctlr_b(CPUARMState *env)
3043 {
3044     return
3045         /* We need not implement SCTLR.ITD in user-mode emulation, so
3046          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3047          * This lets people run BE32 binaries with "-cpu any".
3048          */
3049 #ifndef CONFIG_USER_ONLY
3050         !arm_feature(env, ARM_FEATURE_V7) &&
3051 #endif
3052         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3053 }
3054 
3055 uint64_t arm_sctlr(CPUARMState *env, int el);
3056 
3057 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3058                                                   bool sctlr_b)
3059 {
3060 #ifdef CONFIG_USER_ONLY
3061     /*
3062      * In system mode, BE32 is modelled in line with the
3063      * architecture (as word-invariant big-endianness), where loads
3064      * and stores are done little endian but from addresses which
3065      * are adjusted by XORing with the appropriate constant. So the
3066      * endianness to use for the raw data access is not affected by
3067      * SCTLR.B.
3068      * In user mode, however, we model BE32 as byte-invariant
3069      * big-endianness (because user-only code cannot tell the
3070      * difference), and so we need to use a data access endianness
3071      * that depends on SCTLR.B.
3072      */
3073     if (sctlr_b) {
3074         return true;
3075     }
3076 #endif
3077     /* In 32bit endianness is determined by looking at CPSR's E bit */
3078     return env->uncached_cpsr & CPSR_E;
3079 }
3080 
3081 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3082 {
3083     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3084 }
3085 
3086 /* Return true if the processor is in big-endian mode. */
3087 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3088 {
3089     if (!is_a64(env)) {
3090         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3091     } else {
3092         int cur_el = arm_current_el(env);
3093         uint64_t sctlr = arm_sctlr(env, cur_el);
3094         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3095     }
3096 }
3097 
3098 #include "exec/cpu-all.h"
3099 
3100 /*
3101  * We have more than 32-bits worth of state per TB, so we split the data
3102  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3103  * We collect these two parts in CPUARMTBFlags where they are named
3104  * flags and flags2 respectively.
3105  *
3106  * The flags that are shared between all execution modes, TBFLAG_ANY,
3107  * are stored in flags.  The flags that are specific to a given mode
3108  * are stores in flags2.  Since cs_base is sized on the configured
3109  * address size, flags2 always has 64-bits for A64, and a minimum of
3110  * 32-bits for A32 and M32.
3111  *
3112  * The bits for 32-bit A-profile and M-profile partially overlap:
3113  *
3114  *  31         23         11 10             0
3115  * +-------------+----------+----------------+
3116  * |             |          |   TBFLAG_A32   |
3117  * | TBFLAG_AM32 |          +-----+----------+
3118  * |             |                |TBFLAG_M32|
3119  * +-------------+----------------+----------+
3120  *  31         23                6 5        0
3121  *
3122  * Unless otherwise noted, these bits are cached in env->hflags.
3123  */
3124 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3125 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3126 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3127 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3128 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3129 /* Target EL if we take a floating-point-disabled exception */
3130 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3131 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3132 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3133 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3134 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3135 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3136 
3137 /*
3138  * Bit usage when in AArch32 state, both A- and M-profile.
3139  */
3140 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3141 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3142 
3143 /*
3144  * Bit usage when in AArch32 state, for A-profile only.
3145  */
3146 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3147 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3148 /*
3149  * We store the bottom two bits of the CPAR as TB flags and handle
3150  * checks on the other bits at runtime. This shares the same bits as
3151  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3152  * Not cached, because VECLEN+VECSTRIDE are not cached.
3153  */
3154 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3155 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3156 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3157 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3158 /*
3159  * Indicates whether cp register reads and writes by guest code should access
3160  * the secure or nonsecure bank of banked registers; note that this is not
3161  * the same thing as the current security state of the processor!
3162  */
3163 FIELD(TBFLAG_A32, NS, 10, 1)
3164 /*
3165  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3166  * This requires an SME trap from AArch32 mode when using NEON.
3167  */
3168 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3169 
3170 /*
3171  * Bit usage when in AArch32 state, for M-profile only.
3172  */
3173 /* Handler (ie not Thread) mode */
3174 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3175 /* Whether we should generate stack-limit checks */
3176 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3177 /* Set if FPCCR.LSPACT is set */
3178 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3179 /* Set if we must create a new FP context */
3180 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3181 /* Set if FPCCR.S does not match current security state */
3182 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3183 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3184 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3185 /* Set if in secure mode */
3186 FIELD(TBFLAG_M32, SECURE, 6, 1)
3187 
3188 /*
3189  * Bit usage when in AArch64 state
3190  */
3191 FIELD(TBFLAG_A64, TBII, 0, 2)
3192 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3193 /* The current vector length, either NVL or SVL. */
3194 FIELD(TBFLAG_A64, VL, 4, 4)
3195 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3196 FIELD(TBFLAG_A64, BT, 9, 1)
3197 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3198 FIELD(TBFLAG_A64, TBID, 12, 2)
3199 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3200 FIELD(TBFLAG_A64, ATA, 15, 1)
3201 FIELD(TBFLAG_A64, TCMA, 16, 2)
3202 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3203 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3204 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3205 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3206 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3207 FIELD(TBFLAG_A64, SVL, 24, 4)
3208 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3209 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3210 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3211 FIELD(TBFLAG_A64, NAA, 30, 1)
3212 FIELD(TBFLAG_A64, ATA0, 31, 1)
3213 FIELD(TBFLAG_A64, NV, 32, 1)
3214 FIELD(TBFLAG_A64, NV1, 33, 1)
3215 FIELD(TBFLAG_A64, NV2, 34, 1)
3216 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3217 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3218 /* Set if FEAT_NV2 RAM accesses are big-endian */
3219 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3220 
3221 /*
3222  * Helpers for using the above. Note that only the A64 accessors use
3223  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3224  * word either is or might be 32 bits only.
3225  */
3226 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3227     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3228 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3229     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3230 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3231     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3232 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3233     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3234 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3235     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3236 
3237 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3238 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3239 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3240 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3241 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3242 
3243 /**
3244  * cpu_mmu_index:
3245  * @env: The cpu environment
3246  * @ifetch: True for code access, false for data access.
3247  *
3248  * Return the core mmu index for the current translation regime.
3249  * This function is used by generic TCG code paths.
3250  */
3251 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3252 {
3253     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3254 }
3255 
3256 /**
3257  * sve_vq
3258  * @env: the cpu context
3259  *
3260  * Return the VL cached within env->hflags, in units of quadwords.
3261  */
3262 static inline int sve_vq(CPUARMState *env)
3263 {
3264     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3265 }
3266 
3267 /**
3268  * sme_vq
3269  * @env: the cpu context
3270  *
3271  * Return the SVL cached within env->hflags, in units of quadwords.
3272  */
3273 static inline int sme_vq(CPUARMState *env)
3274 {
3275     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3276 }
3277 
3278 static inline bool bswap_code(bool sctlr_b)
3279 {
3280 #ifdef CONFIG_USER_ONLY
3281     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3282      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3283      * would also end up as a mixed-endian mode with BE code, LE data.
3284      */
3285     return TARGET_BIG_ENDIAN ^ sctlr_b;
3286 #else
3287     /* All code access in ARM is little endian, and there are no loaders
3288      * doing swaps that need to be reversed
3289      */
3290     return 0;
3291 #endif
3292 }
3293 
3294 #ifdef CONFIG_USER_ONLY
3295 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3296 {
3297     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3298 }
3299 #endif
3300 
3301 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3302                           uint64_t *cs_base, uint32_t *flags);
3303 
3304 enum {
3305     QEMU_PSCI_CONDUIT_DISABLED = 0,
3306     QEMU_PSCI_CONDUIT_SMC = 1,
3307     QEMU_PSCI_CONDUIT_HVC = 2,
3308 };
3309 
3310 #ifndef CONFIG_USER_ONLY
3311 /* Return the address space index to use for a memory access */
3312 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3313 {
3314     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3315 }
3316 
3317 /* Return the AddressSpace to use for a memory access
3318  * (which depends on whether the access is S or NS, and whether
3319  * the board gave us a separate AddressSpace for S accesses).
3320  */
3321 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3322 {
3323     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3324 }
3325 #endif
3326 
3327 /**
3328  * arm_register_pre_el_change_hook:
3329  * Register a hook function which will be called immediately before this
3330  * CPU changes exception level or mode. The hook function will be
3331  * passed a pointer to the ARMCPU and the opaque data pointer passed
3332  * to this function when the hook was registered.
3333  *
3334  * Note that if a pre-change hook is called, any registered post-change hooks
3335  * are guaranteed to subsequently be called.
3336  */
3337 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3338                                  void *opaque);
3339 /**
3340  * arm_register_el_change_hook:
3341  * Register a hook function which will be called immediately after this
3342  * CPU changes exception level or mode. The hook function will be
3343  * passed a pointer to the ARMCPU and the opaque data pointer passed
3344  * to this function when the hook was registered.
3345  *
3346  * Note that any registered hooks registered here are guaranteed to be called
3347  * if pre-change hooks have been.
3348  */
3349 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3350         *opaque);
3351 
3352 /**
3353  * arm_rebuild_hflags:
3354  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3355  */
3356 void arm_rebuild_hflags(CPUARMState *env);
3357 
3358 /**
3359  * aa32_vfp_dreg:
3360  * Return a pointer to the Dn register within env in 32-bit mode.
3361  */
3362 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3363 {
3364     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3365 }
3366 
3367 /**
3368  * aa32_vfp_qreg:
3369  * Return a pointer to the Qn register within env in 32-bit mode.
3370  */
3371 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3372 {
3373     return &env->vfp.zregs[regno].d[0];
3374 }
3375 
3376 /**
3377  * aa64_vfp_qreg:
3378  * Return a pointer to the Qn register within env in 64-bit mode.
3379  */
3380 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3381 {
3382     return &env->vfp.zregs[regno].d[0];
3383 }
3384 
3385 /* Shared between translate-sve.c and sve_helper.c.  */
3386 extern const uint64_t pred_esz_masks[5];
3387 
3388 /*
3389  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3390  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3391  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3392  */
3393 #define PAGE_BTI            PAGE_TARGET_1
3394 #define PAGE_MTE            PAGE_TARGET_2
3395 #define PAGE_TARGET_STICKY  PAGE_MTE
3396 
3397 /* We associate one allocation tag per 16 bytes, the minimum.  */
3398 #define LOG2_TAG_GRANULE 4
3399 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3400 
3401 #ifdef CONFIG_USER_ONLY
3402 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3403 #endif
3404 
3405 #ifdef TARGET_TAGGED_ADDRESSES
3406 /**
3407  * cpu_untagged_addr:
3408  * @cs: CPU context
3409  * @x: tagged address
3410  *
3411  * Remove any address tag from @x.  This is explicitly related to the
3412  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3413  *
3414  * There should be a better place to put this, but we need this in
3415  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3416  */
3417 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3418 {
3419     ARMCPU *cpu = ARM_CPU(cs);
3420     if (cpu->env.tagged_addr_enable) {
3421         /*
3422          * TBI is enabled for userspace but not kernelspace addresses.
3423          * Only clear the tag if bit 55 is clear.
3424          */
3425         x &= sextract64(x, 0, 56);
3426     }
3427     return x;
3428 }
3429 #endif
3430 
3431 #endif
3432