xref: /openbmc/qemu/target/arm/cpu.h (revision 6b568e3f)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "qapi/qapi-types-common.h"
30 #include "target/arm/multiprocessing.h"
31 #include "target/arm/gtimer.h"
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
61 #define EXCP_NMI            26
62 #define EXCP_VINMI          27
63 #define EXCP_VFNMI          28
64 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
65 
66 #define ARMV7M_EXCP_RESET   1
67 #define ARMV7M_EXCP_NMI     2
68 #define ARMV7M_EXCP_HARD    3
69 #define ARMV7M_EXCP_MEM     4
70 #define ARMV7M_EXCP_BUS     5
71 #define ARMV7M_EXCP_USAGE   6
72 #define ARMV7M_EXCP_SECURE  7
73 #define ARMV7M_EXCP_SVC     11
74 #define ARMV7M_EXCP_DEBUG   12
75 #define ARMV7M_EXCP_PENDSV  14
76 #define ARMV7M_EXCP_SYSTICK 15
77 
78 /* ARM-specific interrupt pending bits.  */
79 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
80 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
81 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
82 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
83 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
84 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
85 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
86 
87 /* The usual mapping for an AArch64 system register to its AArch32
88  * counterpart is for the 32 bit world to have access to the lower
89  * half only (with writes leaving the upper half untouched). It's
90  * therefore useful to be able to pass TCG the offset of the least
91  * significant half of a uint64_t struct member.
92  */
93 #if HOST_BIG_ENDIAN
94 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
95 #define offsetofhigh32(S, M) offsetof(S, M)
96 #else
97 #define offsetoflow32(S, M) offsetof(S, M)
98 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #endif
100 
101 /* ARM-specific extra insn start words:
102  * 1: Conditional execution bits
103  * 2: Partial exception syndrome for data aborts
104  */
105 #define TARGET_INSN_START_EXTRA_WORDS 2
106 
107 /* The 2nd extra word holding syndrome info for data aborts does not use
108  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
109  * help the sleb128 encoder do a better job.
110  * When restoring the CPU state, we shift it back up.
111  */
112 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
113 #define ARM_INSN_START_WORD2_SHIFT 13
114 
115 /* We currently assume float and double are IEEE single and double
116    precision respectively.
117    Doing runtime conversions is tricky because VFP registers may contain
118    integer values (eg. as the result of a FTOSI instruction).
119    s<2n> maps to the least significant half of d<n>
120    s<2n+1> maps to the most significant half of d<n>
121  */
122 
123 /**
124  * DynamicGDBFeatureInfo:
125  * @desc: Contains the feature descriptions.
126  * @data: A union with data specific to the set of registers
127  *    @cpregs_keys: Array that contains the corresponding Key of
128  *                  a given cpreg with the same order of the cpreg
129  *                  in the XML description.
130  */
131 typedef struct DynamicGDBFeatureInfo {
132     GDBFeature desc;
133     union {
134         struct {
135             uint32_t *keys;
136         } cpregs;
137     } data;
138 } DynamicGDBFeatureInfo;
139 
140 /* CPU state for each instance of a generic timer (in cp15 c14) */
141 typedef struct ARMGenericTimer {
142     uint64_t cval; /* Timer CompareValue register */
143     uint64_t ctl; /* Timer Control register */
144 } ARMGenericTimer;
145 
146 /* Define a maximum sized vector register.
147  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
148  * For 64-bit, this is a 2048-bit SVE register.
149  *
150  * Note that the mapping between S, D, and Q views of the register bank
151  * differs between AArch64 and AArch32.
152  * In AArch32:
153  *  Qn = regs[n].d[1]:regs[n].d[0]
154  *  Dn = regs[n / 2].d[n & 1]
155  *  Sn = regs[n / 4].d[n % 4 / 2],
156  *       bits 31..0 for even n, and bits 63..32 for odd n
157  *       (and regs[16] to regs[31] are inaccessible)
158  * In AArch64:
159  *  Zn = regs[n].d[*]
160  *  Qn = regs[n].d[1]:regs[n].d[0]
161  *  Dn = regs[n].d[0]
162  *  Sn = regs[n].d[0] bits 31..0
163  *  Hn = regs[n].d[0] bits 15..0
164  *
165  * This corresponds to the architecturally defined mapping between
166  * the two execution states, and means we do not need to explicitly
167  * map these registers when changing states.
168  *
169  * Align the data for use with TCG host vector operations.
170  */
171 
172 #ifdef TARGET_AARCH64
173 # define ARM_MAX_VQ    16
174 #else
175 # define ARM_MAX_VQ    1
176 #endif
177 
178 typedef struct ARMVectorReg {
179     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
180 } ARMVectorReg;
181 
182 #ifdef TARGET_AARCH64
183 /* In AArch32 mode, predicate registers do not exist at all.  */
184 typedef struct ARMPredicateReg {
185     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
186 } ARMPredicateReg;
187 
188 /* In AArch32 mode, PAC keys do not exist at all.  */
189 typedef struct ARMPACKey {
190     uint64_t lo, hi;
191 } ARMPACKey;
192 #endif
193 
194 /* See the commentary above the TBFLAG field definitions.  */
195 typedef struct CPUARMTBFlags {
196     uint32_t flags;
197     target_ulong flags2;
198 } CPUARMTBFlags;
199 
200 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
201 
202 typedef struct NVICState NVICState;
203 
204 typedef struct CPUArchState {
205     /* Regs for current mode.  */
206     uint32_t regs[16];
207 
208     /* 32/64 switch only happens when taking and returning from
209      * exceptions so the overlap semantics are taken care of then
210      * instead of having a complicated union.
211      */
212     /* Regs for A64 mode.  */
213     uint64_t xregs[32];
214     uint64_t pc;
215     /* PSTATE isn't an architectural register for ARMv8. However, it is
216      * convenient for us to assemble the underlying state into a 32 bit format
217      * identical to the architectural format used for the SPSR. (This is also
218      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
219      * 'pstate' register are.) Of the PSTATE bits:
220      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
221      *    semantics as for AArch32, as described in the comments on each field)
222      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
223      *  DAIF (exception masks) are kept in env->daif
224      *  BTYPE is kept in env->btype
225      *  SM and ZA are kept in env->svcr
226      *  all other bits are stored in their correct places in env->pstate
227      */
228     uint32_t pstate;
229     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
230     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
231 
232     /* Cached TBFLAGS state.  See below for which bits are included.  */
233     CPUARMTBFlags hflags;
234 
235     /* Frequently accessed CPSR bits are stored separately for efficiency.
236        This contains all the other bits.  Use cpsr_{read,write} to access
237        the whole CPSR.  */
238     uint32_t uncached_cpsr;
239     uint32_t spsr;
240 
241     /* Banked registers.  */
242     uint64_t banked_spsr[8];
243     uint32_t banked_r13[8];
244     uint32_t banked_r14[8];
245 
246     /* These hold r8-r12.  */
247     uint32_t usr_regs[5];
248     uint32_t fiq_regs[5];
249 
250     /* cpsr flag cache for faster execution */
251     uint32_t CF; /* 0 or 1 */
252     uint32_t VF; /* V is the bit 31. All other bits are undefined */
253     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
254     uint32_t ZF; /* Z set if zero.  */
255     uint32_t QF; /* 0 or 1 */
256     uint32_t GE; /* cpsr[19:16] */
257     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
258     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
259     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
260     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
261 
262     uint64_t elr_el[4]; /* AArch64 exception link regs  */
263     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
264 
265     /* System control coprocessor (cp15) */
266     struct {
267         uint32_t c0_cpuid;
268         union { /* Cache size selection */
269             struct {
270                 uint64_t _unused_csselr0;
271                 uint64_t csselr_ns;
272                 uint64_t _unused_csselr1;
273                 uint64_t csselr_s;
274             };
275             uint64_t csselr_el[4];
276         };
277         union { /* System control register. */
278             struct {
279                 uint64_t _unused_sctlr;
280                 uint64_t sctlr_ns;
281                 uint64_t hsctlr;
282                 uint64_t sctlr_s;
283             };
284             uint64_t sctlr_el[4];
285         };
286         uint64_t vsctlr; /* Virtualization System control register. */
287         uint64_t cpacr_el1; /* Architectural feature access control register */
288         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
289         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
290         uint64_t sder; /* Secure debug enable register. */
291         uint32_t nsacr; /* Non-secure access control register. */
292         union { /* MMU translation table base 0. */
293             struct {
294                 uint64_t _unused_ttbr0_0;
295                 uint64_t ttbr0_ns;
296                 uint64_t _unused_ttbr0_1;
297                 uint64_t ttbr0_s;
298             };
299             uint64_t ttbr0_el[4];
300         };
301         union { /* MMU translation table base 1. */
302             struct {
303                 uint64_t _unused_ttbr1_0;
304                 uint64_t ttbr1_ns;
305                 uint64_t _unused_ttbr1_1;
306                 uint64_t ttbr1_s;
307             };
308             uint64_t ttbr1_el[4];
309         };
310         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
311         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
312         /* MMU translation table base control. */
313         uint64_t tcr_el[4];
314         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
315         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
316         uint32_t c2_data; /* MPU data cacheable bits.  */
317         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
318         union { /* MMU domain access control register
319                  * MPU write buffer control.
320                  */
321             struct {
322                 uint64_t dacr_ns;
323                 uint64_t dacr_s;
324             };
325             struct {
326                 uint64_t dacr32_el2;
327             };
328         };
329         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
330         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
331         uint64_t hcr_el2; /* Hypervisor configuration register */
332         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
333         uint64_t scr_el3; /* Secure configuration register.  */
334         union { /* Fault status registers.  */
335             struct {
336                 uint64_t ifsr_ns;
337                 uint64_t ifsr_s;
338             };
339             struct {
340                 uint64_t ifsr32_el2;
341             };
342         };
343         union {
344             struct {
345                 uint64_t _unused_dfsr;
346                 uint64_t dfsr_ns;
347                 uint64_t hsr;
348                 uint64_t dfsr_s;
349             };
350             uint64_t esr_el[4];
351         };
352         uint32_t c6_region[8]; /* MPU base/size registers.  */
353         union { /* Fault address registers. */
354             struct {
355                 uint64_t _unused_far0;
356 #if HOST_BIG_ENDIAN
357                 uint32_t ifar_ns;
358                 uint32_t dfar_ns;
359                 uint32_t ifar_s;
360                 uint32_t dfar_s;
361 #else
362                 uint32_t dfar_ns;
363                 uint32_t ifar_ns;
364                 uint32_t dfar_s;
365                 uint32_t ifar_s;
366 #endif
367                 uint64_t _unused_far3;
368             };
369             uint64_t far_el[4];
370         };
371         uint64_t hpfar_el2;
372         uint64_t hstr_el2;
373         union { /* Translation result. */
374             struct {
375                 uint64_t _unused_par_0;
376                 uint64_t par_ns;
377                 uint64_t _unused_par_1;
378                 uint64_t par_s;
379             };
380             uint64_t par_el[4];
381         };
382 
383         uint32_t c9_insn; /* Cache lockdown registers.  */
384         uint32_t c9_data;
385         uint64_t c9_pmcr; /* performance monitor control register */
386         uint64_t c9_pmcnten; /* perf monitor counter enables */
387         uint64_t c9_pmovsr; /* perf monitor overflow status */
388         uint64_t c9_pmuserenr; /* perf monitor user enable */
389         uint64_t c9_pmselr; /* perf monitor counter selection register */
390         uint64_t c9_pminten; /* perf monitor interrupt enables */
391         union { /* Memory attribute redirection */
392             struct {
393 #if HOST_BIG_ENDIAN
394                 uint64_t _unused_mair_0;
395                 uint32_t mair1_ns;
396                 uint32_t mair0_ns;
397                 uint64_t _unused_mair_1;
398                 uint32_t mair1_s;
399                 uint32_t mair0_s;
400 #else
401                 uint64_t _unused_mair_0;
402                 uint32_t mair0_ns;
403                 uint32_t mair1_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair0_s;
406                 uint32_t mair1_s;
407 #endif
408             };
409             uint64_t mair_el[4];
410         };
411         union { /* vector base address register */
412             struct {
413                 uint64_t _unused_vbar;
414                 uint64_t vbar_ns;
415                 uint64_t hvbar;
416                 uint64_t vbar_s;
417             };
418             uint64_t vbar_el[4];
419         };
420         uint32_t mvbar; /* (monitor) vector base address register */
421         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
422         struct { /* FCSE PID. */
423             uint32_t fcseidr_ns;
424             uint32_t fcseidr_s;
425         };
426         union { /* Context ID. */
427             struct {
428                 uint64_t _unused_contextidr_0;
429                 uint64_t contextidr_ns;
430                 uint64_t _unused_contextidr_1;
431                 uint64_t contextidr_s;
432             };
433             uint64_t contextidr_el[4];
434         };
435         union { /* User RW Thread register. */
436             struct {
437                 uint64_t tpidrurw_ns;
438                 uint64_t tpidrprw_ns;
439                 uint64_t htpidr;
440                 uint64_t _tpidr_el3;
441             };
442             uint64_t tpidr_el[4];
443         };
444         uint64_t tpidr2_el0;
445         /* The secure banks of these registers don't map anywhere */
446         uint64_t tpidrurw_s;
447         uint64_t tpidrprw_s;
448         uint64_t tpidruro_s;
449 
450         union { /* User RO Thread register. */
451             uint64_t tpidruro_ns;
452             uint64_t tpidrro_el[1];
453         };
454         uint64_t c14_cntfrq; /* Counter Frequency register */
455         uint64_t c14_cntkctl; /* Timer Control register */
456         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
457         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
458         uint64_t cntpoff_el2; /* Counter Physical Offset register */
459         ARMGenericTimer c14_timer[NUM_GTIMERS];
460         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
461         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
462         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
463         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
464         uint32_t c15_threadid; /* TI debugger thread-ID.  */
465         uint32_t c15_config_base_address; /* SCU base address.  */
466         uint32_t c15_diagnostic; /* diagnostic register */
467         uint32_t c15_power_diagnostic;
468         uint32_t c15_power_control; /* power control */
469         uint64_t dbgbvr[16]; /* breakpoint value registers */
470         uint64_t dbgbcr[16]; /* breakpoint control registers */
471         uint64_t dbgwvr[16]; /* watchpoint value registers */
472         uint64_t dbgwcr[16]; /* watchpoint control registers */
473         uint64_t dbgclaim;   /* DBGCLAIM bits */
474         uint64_t mdscr_el1;
475         uint64_t oslsr_el1; /* OS Lock Status */
476         uint64_t osdlr_el1; /* OS DoubleLock status */
477         uint64_t mdcr_el2;
478         uint64_t mdcr_el3;
479         /* Stores the architectural value of the counter *the last time it was
480          * updated* by pmccntr_op_start. Accesses should always be surrounded
481          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
482          * architecturally-correct value is being read/set.
483          */
484         uint64_t c15_ccnt;
485         /* Stores the delta between the architectural value and the underlying
486          * cycle count during normal operation. It is used to update c15_ccnt
487          * to be the correct architectural value before accesses. During
488          * accesses, c15_ccnt_delta contains the underlying count being used
489          * for the access, after which it reverts to the delta value in
490          * pmccntr_op_finish.
491          */
492         uint64_t c15_ccnt_delta;
493         uint64_t c14_pmevcntr[31];
494         uint64_t c14_pmevcntr_delta[31];
495         uint64_t c14_pmevtyper[31];
496         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
497         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
498         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
499         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
500         uint64_t gcr_el1;
501         uint64_t rgsr_el1;
502 
503         /* Minimal RAS registers */
504         uint64_t disr_el1;
505         uint64_t vdisr_el2;
506         uint64_t vsesr_el2;
507 
508         /*
509          * Fine-Grained Trap registers. We store these as arrays so the
510          * access checking code doesn't have to manually select
511          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
512          * FEAT_FGT2 will add more elements to these arrays.
513          */
514         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
515         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
516         uint64_t fgt_exec[1]; /* HFGITR */
517 
518         /* RME registers */
519         uint64_t gpccr_el3;
520         uint64_t gptbr_el3;
521         uint64_t mfar_el3;
522 
523         /* NV2 register */
524         uint64_t vncr_el2;
525     } cp15;
526 
527     struct {
528         /* M profile has up to 4 stack pointers:
529          * a Main Stack Pointer and a Process Stack Pointer for each
530          * of the Secure and Non-Secure states. (If the CPU doesn't support
531          * the security extension then it has only two SPs.)
532          * In QEMU we always store the currently active SP in regs[13],
533          * and the non-active SP for the current security state in
534          * v7m.other_sp. The stack pointers for the inactive security state
535          * are stored in other_ss_msp and other_ss_psp.
536          * switch_v7m_security_state() is responsible for rearranging them
537          * when we change security state.
538          */
539         uint32_t other_sp;
540         uint32_t other_ss_msp;
541         uint32_t other_ss_psp;
542         uint32_t vecbase[M_REG_NUM_BANKS];
543         uint32_t basepri[M_REG_NUM_BANKS];
544         uint32_t control[M_REG_NUM_BANKS];
545         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
546         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
547         uint32_t hfsr; /* HardFault Status */
548         uint32_t dfsr; /* Debug Fault Status Register */
549         uint32_t sfsr; /* Secure Fault Status Register */
550         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
551         uint32_t bfar; /* BusFault Address */
552         uint32_t sfar; /* Secure Fault Address Register */
553         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
554         int exception;
555         uint32_t primask[M_REG_NUM_BANKS];
556         uint32_t faultmask[M_REG_NUM_BANKS];
557         uint32_t aircr; /* only holds r/w state if security extn implemented */
558         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
559         uint32_t csselr[M_REG_NUM_BANKS];
560         uint32_t scr[M_REG_NUM_BANKS];
561         uint32_t msplim[M_REG_NUM_BANKS];
562         uint32_t psplim[M_REG_NUM_BANKS];
563         uint32_t fpcar[M_REG_NUM_BANKS];
564         uint32_t fpccr[M_REG_NUM_BANKS];
565         uint32_t fpdscr[M_REG_NUM_BANKS];
566         uint32_t cpacr[M_REG_NUM_BANKS];
567         uint32_t nsacr;
568         uint32_t ltpsize;
569         uint32_t vpr;
570     } v7m;
571 
572     /* Information associated with an exception about to be taken:
573      * code which raises an exception must set cs->exception_index and
574      * the relevant parts of this structure; the cpu_do_interrupt function
575      * will then set the guest-visible registers as part of the exception
576      * entry process.
577      */
578     struct {
579         uint32_t syndrome; /* AArch64 format syndrome register */
580         uint32_t fsr; /* AArch32 format fault status register info */
581         uint64_t vaddress; /* virtual addr associated with exception, if any */
582         uint32_t target_el; /* EL the exception should be targeted for */
583         /* If we implement EL2 we will also need to store information
584          * about the intermediate physical address for stage 2 faults.
585          */
586     } exception;
587 
588     /* Information associated with an SError */
589     struct {
590         uint8_t pending;
591         uint8_t has_esr;
592         uint64_t esr;
593     } serror;
594 
595     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
596 
597     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
598     uint32_t irq_line_state;
599 
600     /* Thumb-2 EE state.  */
601     uint32_t teecr;
602     uint32_t teehbr;
603 
604     /* VFP coprocessor state.  */
605     struct {
606         ARMVectorReg zregs[32];
607 
608 #ifdef TARGET_AARCH64
609         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
610 #define FFR_PRED_NUM 16
611         ARMPredicateReg pregs[17];
612         /* Scratch space for aa64 sve predicate temporary.  */
613         ARMPredicateReg preg_tmp;
614 #endif
615 
616         /* We store these fpcsr fields separately for convenience.  */
617         uint32_t qc[4] QEMU_ALIGNED(16);
618         int vec_len;
619         int vec_stride;
620 
621         uint32_t xregs[16];
622 
623         /* Scratch space for aa32 neon expansion.  */
624         uint32_t scratch[8];
625 
626         /* There are a number of distinct float control structures:
627          *
628          *  fp_status: is the "normal" fp status.
629          *  fp_status_fp16: used for half-precision calculations
630          *  standard_fp_status : the ARM "Standard FPSCR Value"
631          *  standard_fp_status_fp16 : used for half-precision
632          *       calculations with the ARM "Standard FPSCR Value"
633          *
634          * Half-precision operations are governed by a separate
635          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
636          * status structure to control this.
637          *
638          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
639          * round-to-nearest and is used by any operations (generally
640          * Neon) which the architecture defines as controlled by the
641          * standard FPSCR value rather than the FPSCR.
642          *
643          * The "standard FPSCR but for fp16 ops" is needed because
644          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
645          * using a fixed value for it.
646          *
647          * To avoid having to transfer exception bits around, we simply
648          * say that the FPSCR cumulative exception flags are the logical
649          * OR of the flags in the four fp statuses. This relies on the
650          * only thing which needs to read the exception flags being
651          * an explicit FPSCR read.
652          */
653         float_status fp_status;
654         float_status fp_status_f16;
655         float_status standard_fp_status;
656         float_status standard_fp_status_f16;
657 
658         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
659         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
660     } vfp;
661 
662     uint64_t exclusive_addr;
663     uint64_t exclusive_val;
664     /*
665      * Contains the 'val' for the second 64-bit register of LDXP, which comes
666      * from the higher address, not the high part of a complete 128-bit value.
667      * In some ways it might be more convenient to record the exclusive value
668      * as the low and high halves of a 128 bit data value, but the current
669      * semantics of these fields are baked into the migration format.
670      */
671     uint64_t exclusive_high;
672 
673     /* iwMMXt coprocessor state.  */
674     struct {
675         uint64_t regs[16];
676         uint64_t val;
677 
678         uint32_t cregs[16];
679     } iwmmxt;
680 
681 #ifdef TARGET_AARCH64
682     struct {
683         ARMPACKey apia;
684         ARMPACKey apib;
685         ARMPACKey apda;
686         ARMPACKey apdb;
687         ARMPACKey apga;
688     } keys;
689 
690     uint64_t scxtnum_el[4];
691 
692     /*
693      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
694      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
695      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
696      * When SVL is less than the architectural maximum, the accessible
697      * storage is restricted, such that if the SVL is X bytes the guest can
698      * see only the bottom X elements of zarray[], and only the least
699      * significant X bytes of each element of the array. (In other words,
700      * the observable part is always square.)
701      *
702      * The ZA storage can also be considered as a set of square tiles of
703      * elements of different sizes. The mapping from tiles to the ZA array
704      * is architecturally defined, such that for tiles of elements of esz
705      * bytes, the Nth row (or "horizontal slice") of tile T is in
706      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
707      * in the ZA storage, because its rows are striped through the ZA array.
708      *
709      * Because this is so large, keep this toward the end of the reset area,
710      * to keep the offsets into the rest of the structure smaller.
711      */
712     ARMVectorReg zarray[ARM_MAX_VQ * 16];
713 #endif
714 
715     struct CPUBreakpoint *cpu_breakpoint[16];
716     struct CPUWatchpoint *cpu_watchpoint[16];
717 
718     /* Optional fault info across tlb lookup. */
719     ARMMMUFaultInfo *tlb_fi;
720 
721     /* Fields up to this point are cleared by a CPU reset */
722     struct {} end_reset_fields;
723 
724     /* Fields after this point are preserved across CPU reset. */
725 
726     /* Internal CPU feature flags.  */
727     uint64_t features;
728 
729     /* PMSAv7 MPU */
730     struct {
731         uint32_t *drbar;
732         uint32_t *drsr;
733         uint32_t *dracr;
734         uint32_t rnr[M_REG_NUM_BANKS];
735     } pmsav7;
736 
737     /* PMSAv8 MPU */
738     struct {
739         /* The PMSAv8 implementation also shares some PMSAv7 config
740          * and state:
741          *  pmsav7.rnr (region number register)
742          *  pmsav7_dregion (number of configured regions)
743          */
744         uint32_t *rbar[M_REG_NUM_BANKS];
745         uint32_t *rlar[M_REG_NUM_BANKS];
746         uint32_t *hprbar;
747         uint32_t *hprlar;
748         uint32_t mair0[M_REG_NUM_BANKS];
749         uint32_t mair1[M_REG_NUM_BANKS];
750         uint32_t hprselr;
751     } pmsav8;
752 
753     /* v8M SAU */
754     struct {
755         uint32_t *rbar;
756         uint32_t *rlar;
757         uint32_t rnr;
758         uint32_t ctrl;
759     } sau;
760 
761 #if !defined(CONFIG_USER_ONLY)
762     NVICState *nvic;
763     const struct arm_boot_info *boot_info;
764     /* Store GICv3CPUState to access from this struct */
765     void *gicv3state;
766 #else /* CONFIG_USER_ONLY */
767     /* For usermode syscall translation.  */
768     bool eabi;
769 #endif /* CONFIG_USER_ONLY */
770 
771 #ifdef TARGET_TAGGED_ADDRESSES
772     /* Linux syscall tagged address support */
773     bool tagged_addr_enable;
774 #endif
775 } CPUARMState;
776 
777 static inline void set_feature(CPUARMState *env, int feature)
778 {
779     env->features |= 1ULL << feature;
780 }
781 
782 static inline void unset_feature(CPUARMState *env, int feature)
783 {
784     env->features &= ~(1ULL << feature);
785 }
786 
787 /**
788  * ARMELChangeHookFn:
789  * type of a function which can be registered via arm_register_el_change_hook()
790  * to get callbacks when the CPU changes its exception level or mode.
791  */
792 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
793 typedef struct ARMELChangeHook ARMELChangeHook;
794 struct ARMELChangeHook {
795     ARMELChangeHookFn *hook;
796     void *opaque;
797     QLIST_ENTRY(ARMELChangeHook) node;
798 };
799 
800 /* These values map onto the return values for
801  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
802 typedef enum ARMPSCIState {
803     PSCI_ON = 0,
804     PSCI_OFF = 1,
805     PSCI_ON_PENDING = 2
806 } ARMPSCIState;
807 
808 typedef struct ARMISARegisters ARMISARegisters;
809 
810 /*
811  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
812  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
813  *
814  * While processing properties during initialization, corresponding init bits
815  * are set for bits in sve_vq_map that have been set by properties.
816  *
817  * Bits set in supported represent valid vector lengths for the CPU type.
818  */
819 typedef struct {
820     uint32_t map, init, supported;
821 } ARMVQMap;
822 
823 /**
824  * ARMCPU:
825  * @env: #CPUARMState
826  *
827  * An ARM CPU core.
828  */
829 struct ArchCPU {
830     CPUState parent_obj;
831 
832     CPUARMState env;
833 
834     /* Coprocessor information */
835     GHashTable *cp_regs;
836     /* For marshalling (mostly coprocessor) register state between the
837      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
838      * we use these arrays.
839      */
840     /* List of register indexes managed via these arrays; (full KVM style
841      * 64 bit indexes, not CPRegInfo 32 bit indexes)
842      */
843     uint64_t *cpreg_indexes;
844     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
845     uint64_t *cpreg_values;
846     /* Length of the indexes, values, reset_values arrays */
847     int32_t cpreg_array_len;
848     /* These are used only for migration: incoming data arrives in
849      * these fields and is sanity checked in post_load before copying
850      * to the working data structures above.
851      */
852     uint64_t *cpreg_vmstate_indexes;
853     uint64_t *cpreg_vmstate_values;
854     int32_t cpreg_vmstate_array_len;
855 
856     DynamicGDBFeatureInfo dyn_sysreg_feature;
857     DynamicGDBFeatureInfo dyn_svereg_feature;
858     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
859     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
860 
861     /* Timers used by the generic (architected) timer */
862     QEMUTimer *gt_timer[NUM_GTIMERS];
863     /*
864      * Timer used by the PMU. Its state is restored after migration by
865      * pmu_op_finish() - it does not need other handling during migration
866      */
867     QEMUTimer *pmu_timer;
868     /* GPIO outputs for generic timer */
869     qemu_irq gt_timer_outputs[NUM_GTIMERS];
870     /* GPIO output for GICv3 maintenance interrupt signal */
871     qemu_irq gicv3_maintenance_interrupt;
872     /* GPIO output for the PMU interrupt */
873     qemu_irq pmu_interrupt;
874 
875     /* MemoryRegion to use for secure physical accesses */
876     MemoryRegion *secure_memory;
877 
878     /* MemoryRegion to use for allocation tag accesses */
879     MemoryRegion *tag_memory;
880     MemoryRegion *secure_tag_memory;
881 
882     /* For v8M, pointer to the IDAU interface provided by board/SoC */
883     Object *idau;
884 
885     /* 'compatible' string for this CPU for Linux device trees */
886     const char *dtb_compatible;
887 
888     /* PSCI version for this CPU
889      * Bits[31:16] = Major Version
890      * Bits[15:0] = Minor Version
891      */
892     uint32_t psci_version;
893 
894     /* Current power state, access guarded by BQL */
895     ARMPSCIState power_state;
896 
897     /* CPU has virtualization extension */
898     bool has_el2;
899     /* CPU has security extension */
900     bool has_el3;
901     /* CPU has PMU (Performance Monitor Unit) */
902     bool has_pmu;
903     /* CPU has VFP */
904     bool has_vfp;
905     /* CPU has 32 VFP registers */
906     bool has_vfp_d32;
907     /* CPU has Neon */
908     bool has_neon;
909     /* CPU has M-profile DSP extension */
910     bool has_dsp;
911 
912     /* CPU has memory protection unit */
913     bool has_mpu;
914     /* PMSAv7 MPU number of supported regions */
915     uint32_t pmsav7_dregion;
916     /* PMSAv8 MPU number of supported hyp regions */
917     uint32_t pmsav8r_hdregion;
918     /* v8M SAU number of supported regions */
919     uint32_t sau_sregion;
920 
921     /* PSCI conduit used to invoke PSCI methods
922      * 0 - disabled, 1 - smc, 2 - hvc
923      */
924     uint32_t psci_conduit;
925 
926     /* For v8M, initial value of the Secure VTOR */
927     uint32_t init_svtor;
928     /* For v8M, initial value of the Non-secure VTOR */
929     uint32_t init_nsvtor;
930 
931     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
932      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
933      */
934     uint32_t kvm_target;
935 
936 #ifdef CONFIG_KVM
937     /* KVM init features for this CPU */
938     uint32_t kvm_init_features[7];
939 
940     /* KVM CPU state */
941 
942     /* KVM virtual time adjustment */
943     bool kvm_adjvtime;
944     bool kvm_vtime_dirty;
945     uint64_t kvm_vtime;
946 
947     /* KVM steal time */
948     OnOffAuto kvm_steal_time;
949 #endif /* CONFIG_KVM */
950 
951     /* Uniprocessor system with MP extensions */
952     bool mp_is_up;
953 
954     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
955      * and the probe failed (so we need to report the error in realize)
956      */
957     bool host_cpu_probe_failed;
958 
959     /* QOM property to indicate we should use the back-compat CNTFRQ default */
960     bool backcompat_cntfrq;
961 
962     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
963      * register.
964      */
965     int32_t core_count;
966 
967     /* The instance init functions for implementation-specific subclasses
968      * set these fields to specify the implementation-dependent values of
969      * various constant registers and reset values of non-constant
970      * registers.
971      * Some of these might become QOM properties eventually.
972      * Field names match the official register names as defined in the
973      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
974      * is used for reset values of non-constant registers; no reset_
975      * prefix means a constant register.
976      * Some of these registers are split out into a substructure that
977      * is shared with the translators to control the ISA.
978      *
979      * Note that if you add an ID register to the ARMISARegisters struct
980      * you need to also update the 32-bit and 64-bit versions of the
981      * kvm_arm_get_host_cpu_features() function to correctly populate the
982      * field by reading the value from the KVM vCPU.
983      */
984     struct ARMISARegisters {
985         uint32_t id_isar0;
986         uint32_t id_isar1;
987         uint32_t id_isar2;
988         uint32_t id_isar3;
989         uint32_t id_isar4;
990         uint32_t id_isar5;
991         uint32_t id_isar6;
992         uint32_t id_mmfr0;
993         uint32_t id_mmfr1;
994         uint32_t id_mmfr2;
995         uint32_t id_mmfr3;
996         uint32_t id_mmfr4;
997         uint32_t id_mmfr5;
998         uint32_t id_pfr0;
999         uint32_t id_pfr1;
1000         uint32_t id_pfr2;
1001         uint32_t mvfr0;
1002         uint32_t mvfr1;
1003         uint32_t mvfr2;
1004         uint32_t id_dfr0;
1005         uint32_t id_dfr1;
1006         uint32_t dbgdidr;
1007         uint32_t dbgdevid;
1008         uint32_t dbgdevid1;
1009         uint64_t id_aa64isar0;
1010         uint64_t id_aa64isar1;
1011         uint64_t id_aa64isar2;
1012         uint64_t id_aa64pfr0;
1013         uint64_t id_aa64pfr1;
1014         uint64_t id_aa64mmfr0;
1015         uint64_t id_aa64mmfr1;
1016         uint64_t id_aa64mmfr2;
1017         uint64_t id_aa64mmfr3;
1018         uint64_t id_aa64dfr0;
1019         uint64_t id_aa64dfr1;
1020         uint64_t id_aa64zfr0;
1021         uint64_t id_aa64smfr0;
1022         uint64_t reset_pmcr_el0;
1023     } isar;
1024     uint64_t midr;
1025     uint32_t revidr;
1026     uint32_t reset_fpsid;
1027     uint64_t ctr;
1028     uint32_t reset_sctlr;
1029     uint64_t pmceid0;
1030     uint64_t pmceid1;
1031     uint32_t id_afr0;
1032     uint64_t id_aa64afr0;
1033     uint64_t id_aa64afr1;
1034     uint64_t clidr;
1035     uint64_t mp_affinity; /* MP ID without feature bits */
1036     /* The elements of this array are the CCSIDR values for each cache,
1037      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1038      */
1039     uint64_t ccsidr[16];
1040     uint64_t reset_cbar;
1041     uint32_t reset_auxcr;
1042     bool reset_hivecs;
1043     uint8_t reset_l0gptsz;
1044 
1045     /*
1046      * Intermediate values used during property parsing.
1047      * Once finalized, the values should be read from ID_AA64*.
1048      */
1049     bool prop_pauth;
1050     bool prop_pauth_impdef;
1051     bool prop_pauth_qarma3;
1052     bool prop_lpa2;
1053 
1054     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1055     uint8_t dcz_blocksize;
1056     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1057     uint8_t gm_blocksize;
1058 
1059     uint64_t rvbar_prop; /* Property/input signals.  */
1060 
1061     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1062     int gic_num_lrs; /* number of list registers */
1063     int gic_vpribits; /* number of virtual priority bits */
1064     int gic_vprebits; /* number of virtual preemption bits */
1065     int gic_pribits; /* number of physical priority bits */
1066 
1067     /* Whether the cfgend input is high (i.e. this CPU should reset into
1068      * big-endian mode).  This setting isn't used directly: instead it modifies
1069      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1070      * architecture version.
1071      */
1072     bool cfgend;
1073 
1074     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1075     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1076 
1077     int32_t node_id; /* NUMA node this CPU belongs to */
1078 
1079     /* Used to synchronize KVM and QEMU in-kernel device levels */
1080     uint8_t device_irq_level;
1081 
1082     /* Used to set the maximum vector length the cpu will support.  */
1083     uint32_t sve_max_vq;
1084 
1085 #ifdef CONFIG_USER_ONLY
1086     /* Used to set the default vector length at process start. */
1087     uint32_t sve_default_vq;
1088     uint32_t sme_default_vq;
1089 #endif
1090 
1091     ARMVQMap sve_vq;
1092     ARMVQMap sme_vq;
1093 
1094     /* Generic timer counter frequency, in Hz */
1095     uint64_t gt_cntfrq_hz;
1096 };
1097 
1098 typedef struct ARMCPUInfo {
1099     const char *name;
1100     void (*initfn)(Object *obj);
1101     void (*class_init)(ObjectClass *oc, void *data);
1102 } ARMCPUInfo;
1103 
1104 /**
1105  * ARMCPUClass:
1106  * @parent_realize: The parent class' realize handler.
1107  * @parent_phases: The parent class' reset phase handlers.
1108  *
1109  * An ARM CPU model.
1110  */
1111 struct ARMCPUClass {
1112     CPUClass parent_class;
1113 
1114     const ARMCPUInfo *info;
1115     DeviceRealize parent_realize;
1116     ResettablePhases parent_phases;
1117 };
1118 
1119 struct AArch64CPUClass {
1120     ARMCPUClass parent_class;
1121 };
1122 
1123 /* Callback functions for the generic timer's timers. */
1124 void arm_gt_ptimer_cb(void *opaque);
1125 void arm_gt_vtimer_cb(void *opaque);
1126 void arm_gt_htimer_cb(void *opaque);
1127 void arm_gt_stimer_cb(void *opaque);
1128 void arm_gt_hvtimer_cb(void *opaque);
1129 
1130 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1131 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1132 
1133 void arm_cpu_post_init(Object *obj);
1134 
1135 #define ARM_AFF0_SHIFT 0
1136 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1137 #define ARM_AFF1_SHIFT 8
1138 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1139 #define ARM_AFF2_SHIFT 16
1140 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1141 #define ARM_AFF3_SHIFT 32
1142 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1143 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1144 
1145 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1146 #define ARM64_AFFINITY_MASK \
1147     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1148 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1149 
1150 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1151 
1152 #ifndef CONFIG_USER_ONLY
1153 extern const VMStateDescription vmstate_arm_cpu;
1154 
1155 void arm_cpu_do_interrupt(CPUState *cpu);
1156 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1157 
1158 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1159                                          MemTxAttrs *attrs);
1160 #endif /* !CONFIG_USER_ONLY */
1161 
1162 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1163 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1164 
1165 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1166                              int cpuid, DumpState *s);
1167 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1168                              int cpuid, DumpState *s);
1169 
1170 /**
1171  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1172  * @cpu: CPU (which must have been freshly reset)
1173  * @target_el: exception level to put the CPU into
1174  * @secure: whether to put the CPU in secure state
1175  *
1176  * When QEMU is directly running a guest kernel at a lower level than
1177  * EL3 it implicitly emulates some aspects of the guest firmware.
1178  * This includes that on reset we need to configure the parts of the
1179  * CPU corresponding to EL3 so that the real guest code can run at its
1180  * lower exception level. This function does that post-reset CPU setup,
1181  * for when we do direct boot of a guest kernel, and for when we
1182  * emulate PSCI and similar firmware interfaces starting a CPU at a
1183  * lower exception level.
1184  *
1185  * @target_el must be an EL implemented by the CPU between 1 and 3.
1186  * We do not support dropping into a Secure EL other than 3.
1187  *
1188  * It is the responsibility of the caller to call arm_rebuild_hflags().
1189  */
1190 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1191 
1192 #ifdef TARGET_AARCH64
1193 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1194 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1195 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1196 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1197                            int new_el, bool el0_a64);
1198 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1199 
1200 /*
1201  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1202  * The byte at offset i from the start of the in-memory representation contains
1203  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1204  * lowest offsets are stored in the lowest memory addresses, then that nearly
1205  * matches QEMU's representation, which is to use an array of host-endian
1206  * uint64_t's, where the lower offsets are at the lower indices. To complete
1207  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1208  */
1209 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1210 {
1211 #if HOST_BIG_ENDIAN
1212     int i;
1213 
1214     for (i = 0; i < nr; ++i) {
1215         dst[i] = bswap64(src[i]);
1216     }
1217 
1218     return dst;
1219 #else
1220     return src;
1221 #endif
1222 }
1223 
1224 #else
1225 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1226 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1227                                          int n, bool a)
1228 { }
1229 #endif
1230 
1231 void aarch64_sync_32_to_64(CPUARMState *env);
1232 void aarch64_sync_64_to_32(CPUARMState *env);
1233 
1234 int fp_exception_el(CPUARMState *env, int cur_el);
1235 int sve_exception_el(CPUARMState *env, int cur_el);
1236 int sme_exception_el(CPUARMState *env, int cur_el);
1237 
1238 /**
1239  * sve_vqm1_for_el_sm:
1240  * @env: CPUARMState
1241  * @el: exception level
1242  * @sm: streaming mode
1243  *
1244  * Compute the current vector length for @el & @sm, in units of
1245  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1246  * If @sm, compute for SVL, otherwise NVL.
1247  */
1248 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1249 
1250 /* Likewise, but using @sm = PSTATE.SM. */
1251 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1252 
1253 static inline bool is_a64(CPUARMState *env)
1254 {
1255     return env->aarch64;
1256 }
1257 
1258 /**
1259  * pmu_op_start/finish
1260  * @env: CPUARMState
1261  *
1262  * Convert all PMU counters between their delta form (the typical mode when
1263  * they are enabled) and the guest-visible values. These two calls must
1264  * surround any action which might affect the counters.
1265  */
1266 void pmu_op_start(CPUARMState *env);
1267 void pmu_op_finish(CPUARMState *env);
1268 
1269 /*
1270  * Called when a PMU counter is due to overflow
1271  */
1272 void arm_pmu_timer_cb(void *opaque);
1273 
1274 /**
1275  * Functions to register as EL change hooks for PMU mode filtering
1276  */
1277 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1278 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1279 
1280 /*
1281  * pmu_init
1282  * @cpu: ARMCPU
1283  *
1284  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1285  * for the current configuration
1286  */
1287 void pmu_init(ARMCPU *cpu);
1288 
1289 /* SCTLR bit meanings. Several bits have been reused in newer
1290  * versions of the architecture; in that case we define constants
1291  * for both old and new bit meanings. Code which tests against those
1292  * bits should probably check or otherwise arrange that the CPU
1293  * is the architectural version it expects.
1294  */
1295 #define SCTLR_M       (1U << 0)
1296 #define SCTLR_A       (1U << 1)
1297 #define SCTLR_C       (1U << 2)
1298 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1299 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1300 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1301 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1302 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1303 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1304 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1305 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1306 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1307 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1308 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1309 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1310 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1311 #define SCTLR_SED     (1U << 8) /* v8 onward */
1312 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1313 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1314 #define SCTLR_F       (1U << 10) /* up to v6 */
1315 #define SCTLR_SW      (1U << 10) /* v7 */
1316 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1317 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1318 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1319 #define SCTLR_I       (1U << 12)
1320 #define SCTLR_V       (1U << 13) /* AArch32 only */
1321 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1322 #define SCTLR_RR      (1U << 14) /* up to v7 */
1323 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1324 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1325 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1326 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1327 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1328 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1329 #define SCTLR_BR      (1U << 17) /* PMSA only */
1330 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1331 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1332 #define SCTLR_WXN     (1U << 19)
1333 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1334 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1335 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1336 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1337 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1338 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1339 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1340 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1341 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1342 #define SCTLR_VE      (1U << 24) /* up to v7 */
1343 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1344 #define SCTLR_EE      (1U << 25)
1345 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1346 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1347 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1348 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1349 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1350 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1351 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1352 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1353 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1354 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1355 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1356 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1357 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1358 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1359 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1360 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1361 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1362 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1363 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1364 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1365 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1366 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1367 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1368 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1369 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1370 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1371 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1372 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1373 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1374 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1375 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1376 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1377 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1378 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1379 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1380 
1381 #define CPSR_M (0x1fU)
1382 #define CPSR_T (1U << 5)
1383 #define CPSR_F (1U << 6)
1384 #define CPSR_I (1U << 7)
1385 #define CPSR_A (1U << 8)
1386 #define CPSR_E (1U << 9)
1387 #define CPSR_IT_2_7 (0xfc00U)
1388 #define CPSR_GE (0xfU << 16)
1389 #define CPSR_IL (1U << 20)
1390 #define CPSR_DIT (1U << 21)
1391 #define CPSR_PAN (1U << 22)
1392 #define CPSR_SSBS (1U << 23)
1393 #define CPSR_J (1U << 24)
1394 #define CPSR_IT_0_1 (3U << 25)
1395 #define CPSR_Q (1U << 27)
1396 #define CPSR_V (1U << 28)
1397 #define CPSR_C (1U << 29)
1398 #define CPSR_Z (1U << 30)
1399 #define CPSR_N (1U << 31)
1400 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1401 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1402 #define ISR_FS (1U << 9)
1403 #define ISR_IS (1U << 10)
1404 
1405 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1406 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1407     | CPSR_NZCV)
1408 /* Bits writable in user mode.  */
1409 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1410 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1411 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1412 
1413 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1414 #define XPSR_EXCP 0x1ffU
1415 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1416 #define XPSR_IT_2_7 CPSR_IT_2_7
1417 #define XPSR_GE CPSR_GE
1418 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1419 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1420 #define XPSR_IT_0_1 CPSR_IT_0_1
1421 #define XPSR_Q CPSR_Q
1422 #define XPSR_V CPSR_V
1423 #define XPSR_C CPSR_C
1424 #define XPSR_Z CPSR_Z
1425 #define XPSR_N CPSR_N
1426 #define XPSR_NZCV CPSR_NZCV
1427 #define XPSR_IT CPSR_IT
1428 
1429 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1430  * Only these are valid when in AArch64 mode; in
1431  * AArch32 mode SPSRs are basically CPSR-format.
1432  */
1433 #define PSTATE_SP (1U)
1434 #define PSTATE_M (0xFU)
1435 #define PSTATE_nRW (1U << 4)
1436 #define PSTATE_F (1U << 6)
1437 #define PSTATE_I (1U << 7)
1438 #define PSTATE_A (1U << 8)
1439 #define PSTATE_D (1U << 9)
1440 #define PSTATE_BTYPE (3U << 10)
1441 #define PSTATE_SSBS (1U << 12)
1442 #define PSTATE_ALLINT (1U << 13)
1443 #define PSTATE_IL (1U << 20)
1444 #define PSTATE_SS (1U << 21)
1445 #define PSTATE_PAN (1U << 22)
1446 #define PSTATE_UAO (1U << 23)
1447 #define PSTATE_DIT (1U << 24)
1448 #define PSTATE_TCO (1U << 25)
1449 #define PSTATE_V (1U << 28)
1450 #define PSTATE_C (1U << 29)
1451 #define PSTATE_Z (1U << 30)
1452 #define PSTATE_N (1U << 31)
1453 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1454 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1455 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1456 /* Mode values for AArch64 */
1457 #define PSTATE_MODE_EL3h 13
1458 #define PSTATE_MODE_EL3t 12
1459 #define PSTATE_MODE_EL2h 9
1460 #define PSTATE_MODE_EL2t 8
1461 #define PSTATE_MODE_EL1h 5
1462 #define PSTATE_MODE_EL1t 4
1463 #define PSTATE_MODE_EL0t 0
1464 
1465 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1466 FIELD(SVCR, SM, 0, 1)
1467 FIELD(SVCR, ZA, 1, 1)
1468 
1469 /* Fields for SMCR_ELx. */
1470 FIELD(SMCR, LEN, 0, 4)
1471 FIELD(SMCR, FA64, 31, 1)
1472 
1473 /* Write a new value to v7m.exception, thus transitioning into or out
1474  * of Handler mode; this may result in a change of active stack pointer.
1475  */
1476 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1477 
1478 /* Map EL and handler into a PSTATE_MODE.  */
1479 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1480 {
1481     return (el << 2) | handler;
1482 }
1483 
1484 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1485  * interprocessing, so we don't attempt to sync with the cpsr state used by
1486  * the 32 bit decoder.
1487  */
1488 static inline uint32_t pstate_read(CPUARMState *env)
1489 {
1490     int ZF;
1491 
1492     ZF = (env->ZF == 0);
1493     return (env->NF & 0x80000000) | (ZF << 30)
1494         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1495         | env->pstate | env->daif | (env->btype << 10);
1496 }
1497 
1498 static inline void pstate_write(CPUARMState *env, uint32_t val)
1499 {
1500     env->ZF = (~val) & PSTATE_Z;
1501     env->NF = val;
1502     env->CF = (val >> 29) & 1;
1503     env->VF = (val << 3) & 0x80000000;
1504     env->daif = val & PSTATE_DAIF;
1505     env->btype = (val >> 10) & 3;
1506     env->pstate = val & ~CACHED_PSTATE_BITS;
1507 }
1508 
1509 /* Return the current CPSR value.  */
1510 uint32_t cpsr_read(CPUARMState *env);
1511 
1512 typedef enum CPSRWriteType {
1513     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1514     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1515     CPSRWriteRaw = 2,
1516         /* trust values, no reg bank switch, no hflags rebuild */
1517     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1518 } CPSRWriteType;
1519 
1520 /*
1521  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1522  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1523  * correspond to TB flags bits cached in the hflags, unless @write_type
1524  * is CPSRWriteRaw.
1525  */
1526 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1527                 CPSRWriteType write_type);
1528 
1529 /* Return the current xPSR value.  */
1530 static inline uint32_t xpsr_read(CPUARMState *env)
1531 {
1532     int ZF;
1533     ZF = (env->ZF == 0);
1534     return (env->NF & 0x80000000) | (ZF << 30)
1535         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1536         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1537         | ((env->condexec_bits & 0xfc) << 8)
1538         | (env->GE << 16)
1539         | env->v7m.exception;
1540 }
1541 
1542 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1543 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1544 {
1545     if (mask & XPSR_NZCV) {
1546         env->ZF = (~val) & XPSR_Z;
1547         env->NF = val;
1548         env->CF = (val >> 29) & 1;
1549         env->VF = (val << 3) & 0x80000000;
1550     }
1551     if (mask & XPSR_Q) {
1552         env->QF = ((val & XPSR_Q) != 0);
1553     }
1554     if (mask & XPSR_GE) {
1555         env->GE = (val & XPSR_GE) >> 16;
1556     }
1557 #ifndef CONFIG_USER_ONLY
1558     if (mask & XPSR_T) {
1559         env->thumb = ((val & XPSR_T) != 0);
1560     }
1561     if (mask & XPSR_IT_0_1) {
1562         env->condexec_bits &= ~3;
1563         env->condexec_bits |= (val >> 25) & 3;
1564     }
1565     if (mask & XPSR_IT_2_7) {
1566         env->condexec_bits &= 3;
1567         env->condexec_bits |= (val >> 8) & 0xfc;
1568     }
1569     if (mask & XPSR_EXCP) {
1570         /* Note that this only happens on exception exit */
1571         write_v7m_exception(env, val & XPSR_EXCP);
1572     }
1573 #endif
1574 }
1575 
1576 #define HCR_VM        (1ULL << 0)
1577 #define HCR_SWIO      (1ULL << 1)
1578 #define HCR_PTW       (1ULL << 2)
1579 #define HCR_FMO       (1ULL << 3)
1580 #define HCR_IMO       (1ULL << 4)
1581 #define HCR_AMO       (1ULL << 5)
1582 #define HCR_VF        (1ULL << 6)
1583 #define HCR_VI        (1ULL << 7)
1584 #define HCR_VSE       (1ULL << 8)
1585 #define HCR_FB        (1ULL << 9)
1586 #define HCR_BSU_MASK  (3ULL << 10)
1587 #define HCR_DC        (1ULL << 12)
1588 #define HCR_TWI       (1ULL << 13)
1589 #define HCR_TWE       (1ULL << 14)
1590 #define HCR_TID0      (1ULL << 15)
1591 #define HCR_TID1      (1ULL << 16)
1592 #define HCR_TID2      (1ULL << 17)
1593 #define HCR_TID3      (1ULL << 18)
1594 #define HCR_TSC       (1ULL << 19)
1595 #define HCR_TIDCP     (1ULL << 20)
1596 #define HCR_TACR      (1ULL << 21)
1597 #define HCR_TSW       (1ULL << 22)
1598 #define HCR_TPCP      (1ULL << 23)
1599 #define HCR_TPU       (1ULL << 24)
1600 #define HCR_TTLB      (1ULL << 25)
1601 #define HCR_TVM       (1ULL << 26)
1602 #define HCR_TGE       (1ULL << 27)
1603 #define HCR_TDZ       (1ULL << 28)
1604 #define HCR_HCD       (1ULL << 29)
1605 #define HCR_TRVM      (1ULL << 30)
1606 #define HCR_RW        (1ULL << 31)
1607 #define HCR_CD        (1ULL << 32)
1608 #define HCR_ID        (1ULL << 33)
1609 #define HCR_E2H       (1ULL << 34)
1610 #define HCR_TLOR      (1ULL << 35)
1611 #define HCR_TERR      (1ULL << 36)
1612 #define HCR_TEA       (1ULL << 37)
1613 #define HCR_MIOCNCE   (1ULL << 38)
1614 #define HCR_TME       (1ULL << 39)
1615 #define HCR_APK       (1ULL << 40)
1616 #define HCR_API       (1ULL << 41)
1617 #define HCR_NV        (1ULL << 42)
1618 #define HCR_NV1       (1ULL << 43)
1619 #define HCR_AT        (1ULL << 44)
1620 #define HCR_NV2       (1ULL << 45)
1621 #define HCR_FWB       (1ULL << 46)
1622 #define HCR_FIEN      (1ULL << 47)
1623 #define HCR_GPF       (1ULL << 48)
1624 #define HCR_TID4      (1ULL << 49)
1625 #define HCR_TICAB     (1ULL << 50)
1626 #define HCR_AMVOFFEN  (1ULL << 51)
1627 #define HCR_TOCU      (1ULL << 52)
1628 #define HCR_ENSCXT    (1ULL << 53)
1629 #define HCR_TTLBIS    (1ULL << 54)
1630 #define HCR_TTLBOS    (1ULL << 55)
1631 #define HCR_ATA       (1ULL << 56)
1632 #define HCR_DCT       (1ULL << 57)
1633 #define HCR_TID5      (1ULL << 58)
1634 #define HCR_TWEDEN    (1ULL << 59)
1635 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1636 
1637 #define SCR_NS                (1ULL << 0)
1638 #define SCR_IRQ               (1ULL << 1)
1639 #define SCR_FIQ               (1ULL << 2)
1640 #define SCR_EA                (1ULL << 3)
1641 #define SCR_FW                (1ULL << 4)
1642 #define SCR_AW                (1ULL << 5)
1643 #define SCR_NET               (1ULL << 6)
1644 #define SCR_SMD               (1ULL << 7)
1645 #define SCR_HCE               (1ULL << 8)
1646 #define SCR_SIF               (1ULL << 9)
1647 #define SCR_RW                (1ULL << 10)
1648 #define SCR_ST                (1ULL << 11)
1649 #define SCR_TWI               (1ULL << 12)
1650 #define SCR_TWE               (1ULL << 13)
1651 #define SCR_TLOR              (1ULL << 14)
1652 #define SCR_TERR              (1ULL << 15)
1653 #define SCR_APK               (1ULL << 16)
1654 #define SCR_API               (1ULL << 17)
1655 #define SCR_EEL2              (1ULL << 18)
1656 #define SCR_EASE              (1ULL << 19)
1657 #define SCR_NMEA              (1ULL << 20)
1658 #define SCR_FIEN              (1ULL << 21)
1659 #define SCR_ENSCXT            (1ULL << 25)
1660 #define SCR_ATA               (1ULL << 26)
1661 #define SCR_FGTEN             (1ULL << 27)
1662 #define SCR_ECVEN             (1ULL << 28)
1663 #define SCR_TWEDEN            (1ULL << 29)
1664 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1665 #define SCR_TME               (1ULL << 34)
1666 #define SCR_AMVOFFEN          (1ULL << 35)
1667 #define SCR_ENAS0             (1ULL << 36)
1668 #define SCR_ADEN              (1ULL << 37)
1669 #define SCR_HXEN              (1ULL << 38)
1670 #define SCR_TRNDR             (1ULL << 40)
1671 #define SCR_ENTP2             (1ULL << 41)
1672 #define SCR_GPF               (1ULL << 48)
1673 #define SCR_NSE               (1ULL << 62)
1674 
1675 /* Return the current FPSCR value.  */
1676 uint32_t vfp_get_fpscr(CPUARMState *env);
1677 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1678 
1679 /* FPCR, Floating Point Control Register
1680  * FPSR, Floating Poiht Status Register
1681  *
1682  * For A64 the FPSCR is split into two logically distinct registers,
1683  * FPCR and FPSR. However since they still use non-overlapping bits
1684  * we store the underlying state in fpscr and just mask on read/write.
1685  */
1686 #define FPSR_MASK 0xf800009f
1687 #define FPCR_MASK 0x07ff9f00
1688 
1689 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1690 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1691 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1692 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1693 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1694 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1695 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1696 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1697 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1698 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1699 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1700 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1701 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1702 #define FPCR_C      (1 << 29)   /* FP carry flag */
1703 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1704 #define FPCR_N      (1 << 31)   /* FP negative flag */
1705 
1706 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1707 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1708 #define FPCR_LTPSIZE_LENGTH 3
1709 
1710 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1711 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1712 
1713 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1714 {
1715     return vfp_get_fpscr(env) & FPSR_MASK;
1716 }
1717 
1718 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1719 {
1720     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1721     vfp_set_fpscr(env, new_fpscr);
1722 }
1723 
1724 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1725 {
1726     return vfp_get_fpscr(env) & FPCR_MASK;
1727 }
1728 
1729 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1730 {
1731     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1732     vfp_set_fpscr(env, new_fpscr);
1733 }
1734 
1735 enum arm_cpu_mode {
1736   ARM_CPU_MODE_USR = 0x10,
1737   ARM_CPU_MODE_FIQ = 0x11,
1738   ARM_CPU_MODE_IRQ = 0x12,
1739   ARM_CPU_MODE_SVC = 0x13,
1740   ARM_CPU_MODE_MON = 0x16,
1741   ARM_CPU_MODE_ABT = 0x17,
1742   ARM_CPU_MODE_HYP = 0x1a,
1743   ARM_CPU_MODE_UND = 0x1b,
1744   ARM_CPU_MODE_SYS = 0x1f
1745 };
1746 
1747 /* VFP system registers.  */
1748 #define ARM_VFP_FPSID   0
1749 #define ARM_VFP_FPSCR   1
1750 #define ARM_VFP_MVFR2   5
1751 #define ARM_VFP_MVFR1   6
1752 #define ARM_VFP_MVFR0   7
1753 #define ARM_VFP_FPEXC   8
1754 #define ARM_VFP_FPINST  9
1755 #define ARM_VFP_FPINST2 10
1756 /* These ones are M-profile only */
1757 #define ARM_VFP_FPSCR_NZCVQC 2
1758 #define ARM_VFP_VPR 12
1759 #define ARM_VFP_P0 13
1760 #define ARM_VFP_FPCXT_NS 14
1761 #define ARM_VFP_FPCXT_S 15
1762 
1763 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1764 #define QEMU_VFP_FPSCR_NZCV 0xffff
1765 
1766 /* iwMMXt coprocessor control registers.  */
1767 #define ARM_IWMMXT_wCID  0
1768 #define ARM_IWMMXT_wCon  1
1769 #define ARM_IWMMXT_wCSSF 2
1770 #define ARM_IWMMXT_wCASF 3
1771 #define ARM_IWMMXT_wCGR0 8
1772 #define ARM_IWMMXT_wCGR1 9
1773 #define ARM_IWMMXT_wCGR2 10
1774 #define ARM_IWMMXT_wCGR3 11
1775 
1776 /* V7M CCR bits */
1777 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1778 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1779 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1780 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1781 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1782 FIELD(V7M_CCR, STKALIGN, 9, 1)
1783 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1784 FIELD(V7M_CCR, DC, 16, 1)
1785 FIELD(V7M_CCR, IC, 17, 1)
1786 FIELD(V7M_CCR, BP, 18, 1)
1787 FIELD(V7M_CCR, LOB, 19, 1)
1788 FIELD(V7M_CCR, TRD, 20, 1)
1789 
1790 /* V7M SCR bits */
1791 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1792 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1793 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1794 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1795 
1796 /* V7M AIRCR bits */
1797 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1798 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1799 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1800 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1801 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1802 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1803 FIELD(V7M_AIRCR, PRIS, 14, 1)
1804 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1805 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1806 
1807 /* V7M CFSR bits for MMFSR */
1808 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1809 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1810 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1811 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1812 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1813 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1814 
1815 /* V7M CFSR bits for BFSR */
1816 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1817 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1818 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1819 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1820 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1821 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1822 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1823 
1824 /* V7M CFSR bits for UFSR */
1825 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1826 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1827 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1828 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1829 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1830 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1831 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1832 
1833 /* V7M CFSR bit masks covering all of the subregister bits */
1834 FIELD(V7M_CFSR, MMFSR, 0, 8)
1835 FIELD(V7M_CFSR, BFSR, 8, 8)
1836 FIELD(V7M_CFSR, UFSR, 16, 16)
1837 
1838 /* V7M HFSR bits */
1839 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1840 FIELD(V7M_HFSR, FORCED, 30, 1)
1841 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1842 
1843 /* V7M DFSR bits */
1844 FIELD(V7M_DFSR, HALTED, 0, 1)
1845 FIELD(V7M_DFSR, BKPT, 1, 1)
1846 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1847 FIELD(V7M_DFSR, VCATCH, 3, 1)
1848 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1849 
1850 /* V7M SFSR bits */
1851 FIELD(V7M_SFSR, INVEP, 0, 1)
1852 FIELD(V7M_SFSR, INVIS, 1, 1)
1853 FIELD(V7M_SFSR, INVER, 2, 1)
1854 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1855 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1856 FIELD(V7M_SFSR, LSPERR, 5, 1)
1857 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1858 FIELD(V7M_SFSR, LSERR, 7, 1)
1859 
1860 /* v7M MPU_CTRL bits */
1861 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1862 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1863 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1864 
1865 /* v7M CLIDR bits */
1866 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1867 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1868 FIELD(V7M_CLIDR, LOC, 24, 3)
1869 FIELD(V7M_CLIDR, LOUU, 27, 3)
1870 FIELD(V7M_CLIDR, ICB, 30, 2)
1871 
1872 FIELD(V7M_CSSELR, IND, 0, 1)
1873 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1874 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1875  * define a mask for this and check that it doesn't permit running off
1876  * the end of the array.
1877  */
1878 FIELD(V7M_CSSELR, INDEX, 0, 4)
1879 
1880 /* v7M FPCCR bits */
1881 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1882 FIELD(V7M_FPCCR, USER, 1, 1)
1883 FIELD(V7M_FPCCR, S, 2, 1)
1884 FIELD(V7M_FPCCR, THREAD, 3, 1)
1885 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1886 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1887 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1888 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1889 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1890 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1891 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1892 FIELD(V7M_FPCCR, RES0, 11, 15)
1893 FIELD(V7M_FPCCR, TS, 26, 1)
1894 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1895 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1896 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1897 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1898 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1899 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1900 #define R_V7M_FPCCR_BANKED_MASK                 \
1901     (R_V7M_FPCCR_LSPACT_MASK |                  \
1902      R_V7M_FPCCR_USER_MASK |                    \
1903      R_V7M_FPCCR_THREAD_MASK |                  \
1904      R_V7M_FPCCR_MMRDY_MASK |                   \
1905      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1906      R_V7M_FPCCR_UFRDY_MASK |                   \
1907      R_V7M_FPCCR_ASPEN_MASK)
1908 
1909 /* v7M VPR bits */
1910 FIELD(V7M_VPR, P0, 0, 16)
1911 FIELD(V7M_VPR, MASK01, 16, 4)
1912 FIELD(V7M_VPR, MASK23, 20, 4)
1913 
1914 /*
1915  * System register ID fields.
1916  */
1917 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1918 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1919 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1920 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1921 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1922 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1923 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1924 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1925 FIELD(CLIDR_EL1, LOC, 24, 3)
1926 FIELD(CLIDR_EL1, LOUU, 27, 3)
1927 FIELD(CLIDR_EL1, ICB, 30, 3)
1928 
1929 /* When FEAT_CCIDX is implemented */
1930 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1931 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1932 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1933 
1934 /* When FEAT_CCIDX is not implemented */
1935 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1936 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1937 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1938 
1939 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1940 FIELD(CTR_EL0,  L1IP, 14, 2)
1941 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1942 FIELD(CTR_EL0,  ERG, 20, 4)
1943 FIELD(CTR_EL0,  CWG, 24, 4)
1944 FIELD(CTR_EL0,  IDC, 28, 1)
1945 FIELD(CTR_EL0,  DIC, 29, 1)
1946 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1947 
1948 FIELD(MIDR_EL1, REVISION, 0, 4)
1949 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1950 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1951 FIELD(MIDR_EL1, VARIANT, 20, 4)
1952 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1953 
1954 FIELD(ID_ISAR0, SWAP, 0, 4)
1955 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1956 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1957 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1958 FIELD(ID_ISAR0, COPROC, 16, 4)
1959 FIELD(ID_ISAR0, DEBUG, 20, 4)
1960 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1961 
1962 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1963 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1964 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1965 FIELD(ID_ISAR1, EXTEND, 12, 4)
1966 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1967 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1968 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1969 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1970 
1971 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1972 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1973 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1974 FIELD(ID_ISAR2, MULT, 12, 4)
1975 FIELD(ID_ISAR2, MULTS, 16, 4)
1976 FIELD(ID_ISAR2, MULTU, 20, 4)
1977 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1978 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1979 
1980 FIELD(ID_ISAR3, SATURATE, 0, 4)
1981 FIELD(ID_ISAR3, SIMD, 4, 4)
1982 FIELD(ID_ISAR3, SVC, 8, 4)
1983 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1984 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1985 FIELD(ID_ISAR3, T32COPY, 20, 4)
1986 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1987 FIELD(ID_ISAR3, T32EE, 28, 4)
1988 
1989 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1990 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1991 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1992 FIELD(ID_ISAR4, SMC, 12, 4)
1993 FIELD(ID_ISAR4, BARRIER, 16, 4)
1994 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1995 FIELD(ID_ISAR4, PSR_M, 24, 4)
1996 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1997 
1998 FIELD(ID_ISAR5, SEVL, 0, 4)
1999 FIELD(ID_ISAR5, AES, 4, 4)
2000 FIELD(ID_ISAR5, SHA1, 8, 4)
2001 FIELD(ID_ISAR5, SHA2, 12, 4)
2002 FIELD(ID_ISAR5, CRC32, 16, 4)
2003 FIELD(ID_ISAR5, RDM, 24, 4)
2004 FIELD(ID_ISAR5, VCMA, 28, 4)
2005 
2006 FIELD(ID_ISAR6, JSCVT, 0, 4)
2007 FIELD(ID_ISAR6, DP, 4, 4)
2008 FIELD(ID_ISAR6, FHM, 8, 4)
2009 FIELD(ID_ISAR6, SB, 12, 4)
2010 FIELD(ID_ISAR6, SPECRES, 16, 4)
2011 FIELD(ID_ISAR6, BF16, 20, 4)
2012 FIELD(ID_ISAR6, I8MM, 24, 4)
2013 
2014 FIELD(ID_MMFR0, VMSA, 0, 4)
2015 FIELD(ID_MMFR0, PMSA, 4, 4)
2016 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2017 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2018 FIELD(ID_MMFR0, TCM, 16, 4)
2019 FIELD(ID_MMFR0, AUXREG, 20, 4)
2020 FIELD(ID_MMFR0, FCSE, 24, 4)
2021 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2022 
2023 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2024 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2025 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2026 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2027 FIELD(ID_MMFR1, L1HVD, 16, 4)
2028 FIELD(ID_MMFR1, L1UNI, 20, 4)
2029 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2030 FIELD(ID_MMFR1, BPRED, 28, 4)
2031 
2032 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2033 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2034 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2035 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2036 FIELD(ID_MMFR2, UNITLB, 16, 4)
2037 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2038 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2039 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2040 
2041 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2042 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2043 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2044 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2045 FIELD(ID_MMFR3, PAN, 16, 4)
2046 FIELD(ID_MMFR3, COHWALK, 20, 4)
2047 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2048 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2049 
2050 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2051 FIELD(ID_MMFR4, AC2, 4, 4)
2052 FIELD(ID_MMFR4, XNX, 8, 4)
2053 FIELD(ID_MMFR4, CNP, 12, 4)
2054 FIELD(ID_MMFR4, HPDS, 16, 4)
2055 FIELD(ID_MMFR4, LSM, 20, 4)
2056 FIELD(ID_MMFR4, CCIDX, 24, 4)
2057 FIELD(ID_MMFR4, EVT, 28, 4)
2058 
2059 FIELD(ID_MMFR5, ETS, 0, 4)
2060 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2061 
2062 FIELD(ID_PFR0, STATE0, 0, 4)
2063 FIELD(ID_PFR0, STATE1, 4, 4)
2064 FIELD(ID_PFR0, STATE2, 8, 4)
2065 FIELD(ID_PFR0, STATE3, 12, 4)
2066 FIELD(ID_PFR0, CSV2, 16, 4)
2067 FIELD(ID_PFR0, AMU, 20, 4)
2068 FIELD(ID_PFR0, DIT, 24, 4)
2069 FIELD(ID_PFR0, RAS, 28, 4)
2070 
2071 FIELD(ID_PFR1, PROGMOD, 0, 4)
2072 FIELD(ID_PFR1, SECURITY, 4, 4)
2073 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2074 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2075 FIELD(ID_PFR1, GENTIMER, 16, 4)
2076 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2077 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2078 FIELD(ID_PFR1, GIC, 28, 4)
2079 
2080 FIELD(ID_PFR2, CSV3, 0, 4)
2081 FIELD(ID_PFR2, SSBS, 4, 4)
2082 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2083 
2084 FIELD(ID_AA64ISAR0, AES, 4, 4)
2085 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2086 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2087 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2088 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2089 FIELD(ID_AA64ISAR0, TME, 24, 4)
2090 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2091 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2092 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2093 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2094 FIELD(ID_AA64ISAR0, DP, 44, 4)
2095 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2096 FIELD(ID_AA64ISAR0, TS, 52, 4)
2097 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2098 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2099 
2100 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2101 FIELD(ID_AA64ISAR1, APA, 4, 4)
2102 FIELD(ID_AA64ISAR1, API, 8, 4)
2103 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2104 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2105 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2106 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2107 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2108 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2109 FIELD(ID_AA64ISAR1, SB, 36, 4)
2110 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2111 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2112 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2113 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2114 FIELD(ID_AA64ISAR1, XS, 56, 4)
2115 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2116 
2117 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2118 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2119 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2120 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2121 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2122 FIELD(ID_AA64ISAR2, BC, 20, 4)
2123 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2124 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2125 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2126 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2127 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2128 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2129 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2130 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2131 
2132 FIELD(ID_AA64PFR0, EL0, 0, 4)
2133 FIELD(ID_AA64PFR0, EL1, 4, 4)
2134 FIELD(ID_AA64PFR0, EL2, 8, 4)
2135 FIELD(ID_AA64PFR0, EL3, 12, 4)
2136 FIELD(ID_AA64PFR0, FP, 16, 4)
2137 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2138 FIELD(ID_AA64PFR0, GIC, 24, 4)
2139 FIELD(ID_AA64PFR0, RAS, 28, 4)
2140 FIELD(ID_AA64PFR0, SVE, 32, 4)
2141 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2142 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2143 FIELD(ID_AA64PFR0, AMU, 44, 4)
2144 FIELD(ID_AA64PFR0, DIT, 48, 4)
2145 FIELD(ID_AA64PFR0, RME, 52, 4)
2146 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2147 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2148 
2149 FIELD(ID_AA64PFR1, BT, 0, 4)
2150 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2151 FIELD(ID_AA64PFR1, MTE, 8, 4)
2152 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2153 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2154 FIELD(ID_AA64PFR1, SME, 24, 4)
2155 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2156 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2157 FIELD(ID_AA64PFR1, NMI, 36, 4)
2158 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2159 FIELD(ID_AA64PFR1, GCS, 44, 4)
2160 FIELD(ID_AA64PFR1, THE, 48, 4)
2161 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2162 FIELD(ID_AA64PFR1, DF2, 56, 4)
2163 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2164 
2165 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2166 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2167 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2168 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2169 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2170 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2171 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2172 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2173 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2174 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2175 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2176 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2177 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2178 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2179 
2180 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2181 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2182 FIELD(ID_AA64MMFR1, VH, 8, 4)
2183 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2184 FIELD(ID_AA64MMFR1, LO, 16, 4)
2185 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2186 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2187 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2188 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2189 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2190 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2191 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2192 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2193 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2194 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2195 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2196 
2197 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2198 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2199 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2200 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2201 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2202 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2203 FIELD(ID_AA64MMFR2, NV, 24, 4)
2204 FIELD(ID_AA64MMFR2, ST, 28, 4)
2205 FIELD(ID_AA64MMFR2, AT, 32, 4)
2206 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2207 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2208 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2209 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2210 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2211 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2212 
2213 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2214 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2215 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2216 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2217 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2218 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2219 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2220 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2221 FIELD(ID_AA64MMFR3, D128, 32, 4)
2222 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2223 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2224 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2225 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2226 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2227 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2228 
2229 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2230 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2231 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2232 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2233 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2234 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2235 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2236 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2237 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2238 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2239 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2240 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2241 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2242 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2243 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2244 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2245 
2246 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2247 FIELD(ID_AA64ZFR0, AES, 4, 4)
2248 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2249 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2250 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2251 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2252 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2253 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2254 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2255 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2256 
2257 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2258 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2259 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2260 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2261 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2262 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2263 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2264 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2265 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2266 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2267 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2268 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2269 
2270 FIELD(ID_DFR0, COPDBG, 0, 4)
2271 FIELD(ID_DFR0, COPSDBG, 4, 4)
2272 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2273 FIELD(ID_DFR0, COPTRC, 12, 4)
2274 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2275 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2276 FIELD(ID_DFR0, PERFMON, 24, 4)
2277 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2278 
2279 FIELD(ID_DFR1, MTPMU, 0, 4)
2280 FIELD(ID_DFR1, HPMN0, 4, 4)
2281 
2282 FIELD(DBGDIDR, SE_IMP, 12, 1)
2283 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2284 FIELD(DBGDIDR, VERSION, 16, 4)
2285 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2286 FIELD(DBGDIDR, BRPS, 24, 4)
2287 FIELD(DBGDIDR, WRPS, 28, 4)
2288 
2289 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2290 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2291 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2292 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2293 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2294 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2295 FIELD(DBGDEVID, AUXREGS, 24, 4)
2296 FIELD(DBGDEVID, CIDMASK, 28, 4)
2297 
2298 FIELD(MVFR0, SIMDREG, 0, 4)
2299 FIELD(MVFR0, FPSP, 4, 4)
2300 FIELD(MVFR0, FPDP, 8, 4)
2301 FIELD(MVFR0, FPTRAP, 12, 4)
2302 FIELD(MVFR0, FPDIVIDE, 16, 4)
2303 FIELD(MVFR0, FPSQRT, 20, 4)
2304 FIELD(MVFR0, FPSHVEC, 24, 4)
2305 FIELD(MVFR0, FPROUND, 28, 4)
2306 
2307 FIELD(MVFR1, FPFTZ, 0, 4)
2308 FIELD(MVFR1, FPDNAN, 4, 4)
2309 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2310 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2311 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2312 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2313 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2314 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2315 FIELD(MVFR1, FPHP, 24, 4)
2316 FIELD(MVFR1, SIMDFMAC, 28, 4)
2317 
2318 FIELD(MVFR2, SIMDMISC, 0, 4)
2319 FIELD(MVFR2, FPMISC, 4, 4)
2320 
2321 FIELD(GPCCR, PPS, 0, 3)
2322 FIELD(GPCCR, IRGN, 8, 2)
2323 FIELD(GPCCR, ORGN, 10, 2)
2324 FIELD(GPCCR, SH, 12, 2)
2325 FIELD(GPCCR, PGS, 14, 2)
2326 FIELD(GPCCR, GPC, 16, 1)
2327 FIELD(GPCCR, GPCP, 17, 1)
2328 FIELD(GPCCR, L0GPTSZ, 20, 4)
2329 
2330 FIELD(MFAR, FPA, 12, 40)
2331 FIELD(MFAR, NSE, 62, 1)
2332 FIELD(MFAR, NS, 63, 1)
2333 
2334 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2335 
2336 /* If adding a feature bit which corresponds to a Linux ELF
2337  * HWCAP bit, remember to update the feature-bit-to-hwcap
2338  * mapping in linux-user/elfload.c:get_elf_hwcap().
2339  */
2340 enum arm_features {
2341     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2342     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2343     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2344     ARM_FEATURE_V6,
2345     ARM_FEATURE_V6K,
2346     ARM_FEATURE_V7,
2347     ARM_FEATURE_THUMB2,
2348     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2349     ARM_FEATURE_NEON,
2350     ARM_FEATURE_M, /* Microcontroller profile.  */
2351     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2352     ARM_FEATURE_THUMB2EE,
2353     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2354     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2355     ARM_FEATURE_V4T,
2356     ARM_FEATURE_V5,
2357     ARM_FEATURE_STRONGARM,
2358     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2359     ARM_FEATURE_GENERIC_TIMER,
2360     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2361     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2362     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2363     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2364     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2365     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2366     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2367     ARM_FEATURE_V8,
2368     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2369     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2370     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2371     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2372     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2373     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2374     ARM_FEATURE_PMU, /* has PMU support */
2375     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2376     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2377     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2378     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2379     /*
2380      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2381      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2382      * compatibility and used only with CPU definitions that were already
2383      * in QEMU before we changed the default. It should not be set on any
2384      * CPU types added in future.
2385      */
2386     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2387 };
2388 
2389 static inline int arm_feature(CPUARMState *env, int feature)
2390 {
2391     return (env->features & (1ULL << feature)) != 0;
2392 }
2393 
2394 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2395 
2396 /*
2397  * ARM v9 security states.
2398  * The ordering of the enumeration corresponds to the low 2 bits
2399  * of the GPI value, and (except for Root) the concat of NSE:NS.
2400  */
2401 
2402 typedef enum ARMSecuritySpace {
2403     ARMSS_Secure     = 0,
2404     ARMSS_NonSecure  = 1,
2405     ARMSS_Root       = 2,
2406     ARMSS_Realm      = 3,
2407 } ARMSecuritySpace;
2408 
2409 /* Return true if @space is secure, in the pre-v9 sense. */
2410 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2411 {
2412     return space == ARMSS_Secure || space == ARMSS_Root;
2413 }
2414 
2415 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2416 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2417 {
2418     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2419 }
2420 
2421 #if !defined(CONFIG_USER_ONLY)
2422 /**
2423  * arm_security_space_below_el3:
2424  * @env: cpu context
2425  *
2426  * Return the security space of exception levels below EL3, following
2427  * an exception return to those levels.  Unlike arm_security_space,
2428  * this doesn't care about the current EL.
2429  */
2430 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2431 
2432 /**
2433  * arm_is_secure_below_el3:
2434  * @env: cpu context
2435  *
2436  * Return true if exception levels below EL3 are in secure state,
2437  * or would be following an exception return to those levels.
2438  */
2439 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2440 {
2441     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2442     return ss == ARMSS_Secure;
2443 }
2444 
2445 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2446 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2447 {
2448     assert(!arm_feature(env, ARM_FEATURE_M));
2449     if (arm_feature(env, ARM_FEATURE_EL3)) {
2450         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2451             /* CPU currently in AArch64 state and EL3 */
2452             return true;
2453         } else if (!is_a64(env) &&
2454                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2455             /* CPU currently in AArch32 state and monitor mode */
2456             return true;
2457         }
2458     }
2459     return false;
2460 }
2461 
2462 /**
2463  * arm_security_space:
2464  * @env: cpu context
2465  *
2466  * Return the current security space of the cpu.
2467  */
2468 ARMSecuritySpace arm_security_space(CPUARMState *env);
2469 
2470 /**
2471  * arm_is_secure:
2472  * @env: cpu context
2473  *
2474  * Return true if the processor is in secure state.
2475  */
2476 static inline bool arm_is_secure(CPUARMState *env)
2477 {
2478     return arm_space_is_secure(arm_security_space(env));
2479 }
2480 
2481 /*
2482  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2483  * This corresponds to the pseudocode EL2Enabled().
2484  */
2485 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2486                                                ARMSecuritySpace space)
2487 {
2488     assert(space != ARMSS_Root);
2489     return arm_feature(env, ARM_FEATURE_EL2)
2490            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2491 }
2492 
2493 static inline bool arm_is_el2_enabled(CPUARMState *env)
2494 {
2495     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2496 }
2497 
2498 #else
2499 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2500 {
2501     return ARMSS_NonSecure;
2502 }
2503 
2504 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2505 {
2506     return false;
2507 }
2508 
2509 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2510 {
2511     return ARMSS_NonSecure;
2512 }
2513 
2514 static inline bool arm_is_secure(CPUARMState *env)
2515 {
2516     return false;
2517 }
2518 
2519 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2520                                                ARMSecuritySpace space)
2521 {
2522     return false;
2523 }
2524 
2525 static inline bool arm_is_el2_enabled(CPUARMState *env)
2526 {
2527     return false;
2528 }
2529 #endif
2530 
2531 /**
2532  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2533  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2534  * "for all purposes other than a direct read or write access of HCR_EL2."
2535  * Not included here is HCR_RW.
2536  */
2537 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2538 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2539 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2540 
2541 /* Return true if the specified exception level is running in AArch64 state. */
2542 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2543 {
2544     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2545      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2546      */
2547     assert(el >= 1 && el <= 3);
2548     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2549 
2550     /* The highest exception level is always at the maximum supported
2551      * register width, and then lower levels have a register width controlled
2552      * by bits in the SCR or HCR registers.
2553      */
2554     if (el == 3) {
2555         return aa64;
2556     }
2557 
2558     if (arm_feature(env, ARM_FEATURE_EL3) &&
2559         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2560         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2561     }
2562 
2563     if (el == 2) {
2564         return aa64;
2565     }
2566 
2567     if (arm_is_el2_enabled(env)) {
2568         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2569     }
2570 
2571     return aa64;
2572 }
2573 
2574 /* Function for determining whether guest cp register reads and writes should
2575  * access the secure or non-secure bank of a cp register.  When EL3 is
2576  * operating in AArch32 state, the NS-bit determines whether the secure
2577  * instance of a cp register should be used. When EL3 is AArch64 (or if
2578  * it doesn't exist at all) then there is no register banking, and all
2579  * accesses are to the non-secure version.
2580  */
2581 static inline bool access_secure_reg(CPUARMState *env)
2582 {
2583     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2584                 !arm_el_is_aa64(env, 3) &&
2585                 !(env->cp15.scr_el3 & SCR_NS));
2586 
2587     return ret;
2588 }
2589 
2590 /* Macros for accessing a specified CP register bank */
2591 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2592     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2593 
2594 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2595     do {                                                \
2596         if (_secure) {                                   \
2597             (_env)->cp15._regname##_s = (_val);            \
2598         } else {                                        \
2599             (_env)->cp15._regname##_ns = (_val);           \
2600         }                                               \
2601     } while (0)
2602 
2603 /* Macros for automatically accessing a specific CP register bank depending on
2604  * the current secure state of the system.  These macros are not intended for
2605  * supporting instruction translation reads/writes as these are dependent
2606  * solely on the SCR.NS bit and not the mode.
2607  */
2608 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2609     A32_BANKED_REG_GET((_env), _regname,                \
2610                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2611 
2612 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2613     A32_BANKED_REG_SET((_env), _regname,                                    \
2614                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2615                        (_val))
2616 
2617 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2618                                  uint32_t cur_el, bool secure);
2619 
2620 /* Return the highest implemented Exception Level */
2621 static inline int arm_highest_el(CPUARMState *env)
2622 {
2623     if (arm_feature(env, ARM_FEATURE_EL3)) {
2624         return 3;
2625     }
2626     if (arm_feature(env, ARM_FEATURE_EL2)) {
2627         return 2;
2628     }
2629     return 1;
2630 }
2631 
2632 /* Return true if a v7M CPU is in Handler mode */
2633 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2634 {
2635     return env->v7m.exception != 0;
2636 }
2637 
2638 /* Return the current Exception Level (as per ARMv8; note that this differs
2639  * from the ARMv7 Privilege Level).
2640  */
2641 static inline int arm_current_el(CPUARMState *env)
2642 {
2643     if (arm_feature(env, ARM_FEATURE_M)) {
2644         return arm_v7m_is_handler_mode(env) ||
2645             !(env->v7m.control[env->v7m.secure] & 1);
2646     }
2647 
2648     if (is_a64(env)) {
2649         return extract32(env->pstate, 2, 2);
2650     }
2651 
2652     switch (env->uncached_cpsr & 0x1f) {
2653     case ARM_CPU_MODE_USR:
2654         return 0;
2655     case ARM_CPU_MODE_HYP:
2656         return 2;
2657     case ARM_CPU_MODE_MON:
2658         return 3;
2659     default:
2660         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2661             /* If EL3 is 32-bit then all secure privileged modes run in
2662              * EL3
2663              */
2664             return 3;
2665         }
2666 
2667         return 1;
2668     }
2669 }
2670 
2671 /**
2672  * write_list_to_cpustate
2673  * @cpu: ARMCPU
2674  *
2675  * For each register listed in the ARMCPU cpreg_indexes list, write
2676  * its value from the cpreg_values list into the ARMCPUState structure.
2677  * This updates TCG's working data structures from KVM data or
2678  * from incoming migration state.
2679  *
2680  * Returns: true if all register values were updated correctly,
2681  * false if some register was unknown or could not be written.
2682  * Note that we do not stop early on failure -- we will attempt
2683  * writing all registers in the list.
2684  */
2685 bool write_list_to_cpustate(ARMCPU *cpu);
2686 
2687 /**
2688  * write_cpustate_to_list:
2689  * @cpu: ARMCPU
2690  * @kvm_sync: true if this is for syncing back to KVM
2691  *
2692  * For each register listed in the ARMCPU cpreg_indexes list, write
2693  * its value from the ARMCPUState structure into the cpreg_values list.
2694  * This is used to copy info from TCG's working data structures into
2695  * KVM or for outbound migration.
2696  *
2697  * @kvm_sync is true if we are doing this in order to sync the
2698  * register state back to KVM. In this case we will only update
2699  * values in the list if the previous list->cpustate sync actually
2700  * successfully wrote the CPU state. Otherwise we will keep the value
2701  * that is in the list.
2702  *
2703  * Returns: true if all register values were read correctly,
2704  * false if some register was unknown or could not be read.
2705  * Note that we do not stop early on failure -- we will attempt
2706  * reading all registers in the list.
2707  */
2708 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2709 
2710 #define ARM_CPUID_TI915T      0x54029152
2711 #define ARM_CPUID_TI925T      0x54029252
2712 
2713 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2714 
2715 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2716 
2717 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2718  *
2719  * If EL3 is 64-bit:
2720  *  + NonSecure EL1 & 0 stage 1
2721  *  + NonSecure EL1 & 0 stage 2
2722  *  + NonSecure EL2
2723  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2724  *  + Secure EL1 & 0
2725  *  + Secure EL3
2726  * If EL3 is 32-bit:
2727  *  + NonSecure PL1 & 0 stage 1
2728  *  + NonSecure PL1 & 0 stage 2
2729  *  + NonSecure PL2
2730  *  + Secure PL0
2731  *  + Secure PL1
2732  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2733  *
2734  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2735  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2736  *     because they may differ in access permissions even if the VA->PA map is
2737  *     the same
2738  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2739  *     translation, which means that we have one mmu_idx that deals with two
2740  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2741  *     architecturally permitted]
2742  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2743  *     handling via the TLB. The only way to do a stage 1 translation without
2744  *     the immediate stage 2 translation is via the ATS or AT system insns,
2745  *     which can be slow-pathed and always do a page table walk.
2746  *     The only use of stage 2 translations is either as part of an s1+2
2747  *     lookup or when loading the descriptors during a stage 1 page table walk,
2748  *     and in both those cases we don't use the TLB.
2749  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2750  *     translation regimes, because they map reasonably well to each other
2751  *     and they can't both be active at the same time.
2752  *  5. we want to be able to use the TLB for accesses done as part of a
2753  *     stage1 page table walk, rather than having to walk the stage2 page
2754  *     table over and over.
2755  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2756  *     Never (PAN) bit within PSTATE.
2757  *  7. we fold together the secure and non-secure regimes for A-profile,
2758  *     because there are no banked system registers for aarch64, so the
2759  *     process of switching between secure and non-secure is
2760  *     already heavyweight.
2761  *
2762  * This gives us the following list of cases:
2763  *
2764  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2765  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2766  * EL1 EL1&0 stage 1+2 +PAN
2767  * EL0 EL2&0
2768  * EL2 EL2&0
2769  * EL2 EL2&0 +PAN
2770  * EL2 (aka NS PL2)
2771  * EL3 (aka S PL1)
2772  * Physical (NS & S)
2773  * Stage2 (NS & S)
2774  *
2775  * for a total of 12 different mmu_idx.
2776  *
2777  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2778  * as A profile. They only need to distinguish EL0 and EL1 (and
2779  * EL2 if we ever model a Cortex-R52).
2780  *
2781  * M profile CPUs are rather different as they do not have a true MMU.
2782  * They have the following different MMU indexes:
2783  *  User
2784  *  Privileged
2785  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2786  *  Privileged, execution priority negative (ditto)
2787  * If the CPU supports the v8M Security Extension then there are also:
2788  *  Secure User
2789  *  Secure Privileged
2790  *  Secure User, execution priority negative
2791  *  Secure Privileged, execution priority negative
2792  *
2793  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2794  * are not quite the same -- different CPU types (most notably M profile
2795  * vs A/R profile) would like to use MMU indexes with different semantics,
2796  * but since we don't ever need to use all of those in a single CPU we
2797  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2798  * modes + total number of M profile MMU modes". The lower bits of
2799  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2800  * the same for any particular CPU.
2801  * Variables of type ARMMUIdx are always full values, and the core
2802  * index values are in variables of type 'int'.
2803  *
2804  * Our enumeration includes at the end some entries which are not "true"
2805  * mmu_idx values in that they don't have corresponding TLBs and are only
2806  * valid for doing slow path page table walks.
2807  *
2808  * The constant names here are patterned after the general style of the names
2809  * of the AT/ATS operations.
2810  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2811  * For M profile we arrange them to have a bit for priv, a bit for negpri
2812  * and a bit for secure.
2813  */
2814 #define ARM_MMU_IDX_A     0x10  /* A profile */
2815 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2816 #define ARM_MMU_IDX_M     0x40  /* M profile */
2817 
2818 /* Meanings of the bits for M profile mmu idx values */
2819 #define ARM_MMU_IDX_M_PRIV   0x1
2820 #define ARM_MMU_IDX_M_NEGPRI 0x2
2821 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2822 
2823 #define ARM_MMU_IDX_TYPE_MASK \
2824     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2825 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2826 
2827 typedef enum ARMMMUIdx {
2828     /*
2829      * A-profile.
2830      */
2831     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2832     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2833     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2834     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2835     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2836     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2837     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2838     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2839 
2840     /*
2841      * Used for second stage of an S12 page table walk, or for descriptor
2842      * loads during first stage of an S1 page table walk.  Note that both
2843      * are in use simultaneously for SecureEL2: the security state for
2844      * the S2 ptw is selected by the NS bit from the S1 ptw.
2845      */
2846     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2847     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2848 
2849     /* TLBs with 1-1 mapping to the physical address spaces. */
2850     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2851     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2852     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2853     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2854 
2855     /*
2856      * These are not allocated TLBs and are used only for AT system
2857      * instructions or for the first stage of an S12 page table walk.
2858      */
2859     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2860     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2861     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2862 
2863     /*
2864      * M-profile.
2865      */
2866     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2867     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2868     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2869     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2870     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2871     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2872     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2873     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2874 } ARMMMUIdx;
2875 
2876 /*
2877  * Bit macros for the core-mmu-index values for each index,
2878  * for use when calling tlb_flush_by_mmuidx() and friends.
2879  */
2880 #define TO_CORE_BIT(NAME) \
2881     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2882 
2883 typedef enum ARMMMUIdxBit {
2884     TO_CORE_BIT(E10_0),
2885     TO_CORE_BIT(E20_0),
2886     TO_CORE_BIT(E10_1),
2887     TO_CORE_BIT(E10_1_PAN),
2888     TO_CORE_BIT(E2),
2889     TO_CORE_BIT(E20_2),
2890     TO_CORE_BIT(E20_2_PAN),
2891     TO_CORE_BIT(E3),
2892     TO_CORE_BIT(Stage2),
2893     TO_CORE_BIT(Stage2_S),
2894 
2895     TO_CORE_BIT(MUser),
2896     TO_CORE_BIT(MPriv),
2897     TO_CORE_BIT(MUserNegPri),
2898     TO_CORE_BIT(MPrivNegPri),
2899     TO_CORE_BIT(MSUser),
2900     TO_CORE_BIT(MSPriv),
2901     TO_CORE_BIT(MSUserNegPri),
2902     TO_CORE_BIT(MSPrivNegPri),
2903 } ARMMMUIdxBit;
2904 
2905 #undef TO_CORE_BIT
2906 
2907 #define MMU_USER_IDX 0
2908 
2909 /* Indexes used when registering address spaces with cpu_address_space_init */
2910 typedef enum ARMASIdx {
2911     ARMASIdx_NS = 0,
2912     ARMASIdx_S = 1,
2913     ARMASIdx_TagNS = 2,
2914     ARMASIdx_TagS = 3,
2915 } ARMASIdx;
2916 
2917 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2918 {
2919     /* Assert the relative order of the physical mmu indexes. */
2920     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2921     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2922     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2923     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2924 
2925     return ARMMMUIdx_Phys_S + space;
2926 }
2927 
2928 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2929 {
2930     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2931     return idx - ARMMMUIdx_Phys_S;
2932 }
2933 
2934 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2935 {
2936     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2937      * CSSELR is RAZ/WI.
2938      */
2939     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2940 }
2941 
2942 static inline bool arm_sctlr_b(CPUARMState *env)
2943 {
2944     return
2945         /* We need not implement SCTLR.ITD in user-mode emulation, so
2946          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2947          * This lets people run BE32 binaries with "-cpu any".
2948          */
2949 #ifndef CONFIG_USER_ONLY
2950         !arm_feature(env, ARM_FEATURE_V7) &&
2951 #endif
2952         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2953 }
2954 
2955 uint64_t arm_sctlr(CPUARMState *env, int el);
2956 
2957 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2958                                                   bool sctlr_b)
2959 {
2960 #ifdef CONFIG_USER_ONLY
2961     /*
2962      * In system mode, BE32 is modelled in line with the
2963      * architecture (as word-invariant big-endianness), where loads
2964      * and stores are done little endian but from addresses which
2965      * are adjusted by XORing with the appropriate constant. So the
2966      * endianness to use for the raw data access is not affected by
2967      * SCTLR.B.
2968      * In user mode, however, we model BE32 as byte-invariant
2969      * big-endianness (because user-only code cannot tell the
2970      * difference), and so we need to use a data access endianness
2971      * that depends on SCTLR.B.
2972      */
2973     if (sctlr_b) {
2974         return true;
2975     }
2976 #endif
2977     /* In 32bit endianness is determined by looking at CPSR's E bit */
2978     return env->uncached_cpsr & CPSR_E;
2979 }
2980 
2981 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2982 {
2983     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2984 }
2985 
2986 /* Return true if the processor is in big-endian mode. */
2987 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2988 {
2989     if (!is_a64(env)) {
2990         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2991     } else {
2992         int cur_el = arm_current_el(env);
2993         uint64_t sctlr = arm_sctlr(env, cur_el);
2994         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2995     }
2996 }
2997 
2998 #include "exec/cpu-all.h"
2999 
3000 /*
3001  * We have more than 32-bits worth of state per TB, so we split the data
3002  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3003  * We collect these two parts in CPUARMTBFlags where they are named
3004  * flags and flags2 respectively.
3005  *
3006  * The flags that are shared between all execution modes, TBFLAG_ANY,
3007  * are stored in flags.  The flags that are specific to a given mode
3008  * are stores in flags2.  Since cs_base is sized on the configured
3009  * address size, flags2 always has 64-bits for A64, and a minimum of
3010  * 32-bits for A32 and M32.
3011  *
3012  * The bits for 32-bit A-profile and M-profile partially overlap:
3013  *
3014  *  31         23         11 10             0
3015  * +-------------+----------+----------------+
3016  * |             |          |   TBFLAG_A32   |
3017  * | TBFLAG_AM32 |          +-----+----------+
3018  * |             |                |TBFLAG_M32|
3019  * +-------------+----------------+----------+
3020  *  31         23                6 5        0
3021  *
3022  * Unless otherwise noted, these bits are cached in env->hflags.
3023  */
3024 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3025 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3026 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3027 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3028 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3029 /* Target EL if we take a floating-point-disabled exception */
3030 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3031 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3032 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3033 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3034 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3035 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3036 
3037 /*
3038  * Bit usage when in AArch32 state, both A- and M-profile.
3039  */
3040 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3041 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3042 
3043 /*
3044  * Bit usage when in AArch32 state, for A-profile only.
3045  */
3046 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3047 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3048 /*
3049  * We store the bottom two bits of the CPAR as TB flags and handle
3050  * checks on the other bits at runtime. This shares the same bits as
3051  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3052  * Not cached, because VECLEN+VECSTRIDE are not cached.
3053  */
3054 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3055 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3056 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3057 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3058 /*
3059  * Indicates whether cp register reads and writes by guest code should access
3060  * the secure or nonsecure bank of banked registers; note that this is not
3061  * the same thing as the current security state of the processor!
3062  */
3063 FIELD(TBFLAG_A32, NS, 10, 1)
3064 /*
3065  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3066  * This requires an SME trap from AArch32 mode when using NEON.
3067  */
3068 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3069 
3070 /*
3071  * Bit usage when in AArch32 state, for M-profile only.
3072  */
3073 /* Handler (ie not Thread) mode */
3074 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3075 /* Whether we should generate stack-limit checks */
3076 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3077 /* Set if FPCCR.LSPACT is set */
3078 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3079 /* Set if we must create a new FP context */
3080 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3081 /* Set if FPCCR.S does not match current security state */
3082 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3083 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3084 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3085 /* Set if in secure mode */
3086 FIELD(TBFLAG_M32, SECURE, 6, 1)
3087 
3088 /*
3089  * Bit usage when in AArch64 state
3090  */
3091 FIELD(TBFLAG_A64, TBII, 0, 2)
3092 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3093 /* The current vector length, either NVL or SVL. */
3094 FIELD(TBFLAG_A64, VL, 4, 4)
3095 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3096 FIELD(TBFLAG_A64, BT, 9, 1)
3097 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3098 FIELD(TBFLAG_A64, TBID, 12, 2)
3099 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3100 FIELD(TBFLAG_A64, ATA, 15, 1)
3101 FIELD(TBFLAG_A64, TCMA, 16, 2)
3102 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3103 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3104 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3105 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3106 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3107 FIELD(TBFLAG_A64, SVL, 24, 4)
3108 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3109 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3110 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3111 FIELD(TBFLAG_A64, NAA, 30, 1)
3112 FIELD(TBFLAG_A64, ATA0, 31, 1)
3113 FIELD(TBFLAG_A64, NV, 32, 1)
3114 FIELD(TBFLAG_A64, NV1, 33, 1)
3115 FIELD(TBFLAG_A64, NV2, 34, 1)
3116 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3117 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3118 /* Set if FEAT_NV2 RAM accesses are big-endian */
3119 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3120 
3121 /*
3122  * Helpers for using the above. Note that only the A64 accessors use
3123  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3124  * word either is or might be 32 bits only.
3125  */
3126 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3127     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3128 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3129     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3130 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3131     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3132 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3133     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3134 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3135     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3136 
3137 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3138 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3139 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3140 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3141 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3142 
3143 /**
3144  * sve_vq
3145  * @env: the cpu context
3146  *
3147  * Return the VL cached within env->hflags, in units of quadwords.
3148  */
3149 static inline int sve_vq(CPUARMState *env)
3150 {
3151     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3152 }
3153 
3154 /**
3155  * sme_vq
3156  * @env: the cpu context
3157  *
3158  * Return the SVL cached within env->hflags, in units of quadwords.
3159  */
3160 static inline int sme_vq(CPUARMState *env)
3161 {
3162     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3163 }
3164 
3165 static inline bool bswap_code(bool sctlr_b)
3166 {
3167 #ifdef CONFIG_USER_ONLY
3168     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3169      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3170      * would also end up as a mixed-endian mode with BE code, LE data.
3171      */
3172     return TARGET_BIG_ENDIAN ^ sctlr_b;
3173 #else
3174     /* All code access in ARM is little endian, and there are no loaders
3175      * doing swaps that need to be reversed
3176      */
3177     return 0;
3178 #endif
3179 }
3180 
3181 #ifdef CONFIG_USER_ONLY
3182 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3183 {
3184     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3185 }
3186 #endif
3187 
3188 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3189                           uint64_t *cs_base, uint32_t *flags);
3190 
3191 enum {
3192     QEMU_PSCI_CONDUIT_DISABLED = 0,
3193     QEMU_PSCI_CONDUIT_SMC = 1,
3194     QEMU_PSCI_CONDUIT_HVC = 2,
3195 };
3196 
3197 #ifndef CONFIG_USER_ONLY
3198 /* Return the address space index to use for a memory access */
3199 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3200 {
3201     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3202 }
3203 
3204 /* Return the AddressSpace to use for a memory access
3205  * (which depends on whether the access is S or NS, and whether
3206  * the board gave us a separate AddressSpace for S accesses).
3207  */
3208 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3209 {
3210     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3211 }
3212 #endif
3213 
3214 /**
3215  * arm_register_pre_el_change_hook:
3216  * Register a hook function which will be called immediately before this
3217  * CPU changes exception level or mode. The hook function will be
3218  * passed a pointer to the ARMCPU and the opaque data pointer passed
3219  * to this function when the hook was registered.
3220  *
3221  * Note that if a pre-change hook is called, any registered post-change hooks
3222  * are guaranteed to subsequently be called.
3223  */
3224 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3225                                  void *opaque);
3226 /**
3227  * arm_register_el_change_hook:
3228  * Register a hook function which will be called immediately after this
3229  * CPU changes exception level or mode. The hook function will be
3230  * passed a pointer to the ARMCPU and the opaque data pointer passed
3231  * to this function when the hook was registered.
3232  *
3233  * Note that any registered hooks registered here are guaranteed to be called
3234  * if pre-change hooks have been.
3235  */
3236 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3237         *opaque);
3238 
3239 /**
3240  * arm_rebuild_hflags:
3241  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3242  */
3243 void arm_rebuild_hflags(CPUARMState *env);
3244 
3245 /**
3246  * aa32_vfp_dreg:
3247  * Return a pointer to the Dn register within env in 32-bit mode.
3248  */
3249 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3250 {
3251     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3252 }
3253 
3254 /**
3255  * aa32_vfp_qreg:
3256  * Return a pointer to the Qn register within env in 32-bit mode.
3257  */
3258 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3259 {
3260     return &env->vfp.zregs[regno].d[0];
3261 }
3262 
3263 /**
3264  * aa64_vfp_qreg:
3265  * Return a pointer to the Qn register within env in 64-bit mode.
3266  */
3267 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3268 {
3269     return &env->vfp.zregs[regno].d[0];
3270 }
3271 
3272 /* Shared between translate-sve.c and sve_helper.c.  */
3273 extern const uint64_t pred_esz_masks[5];
3274 
3275 /*
3276  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3277  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3278  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3279  */
3280 #define PAGE_BTI            PAGE_TARGET_1
3281 #define PAGE_MTE            PAGE_TARGET_2
3282 #define PAGE_TARGET_STICKY  PAGE_MTE
3283 
3284 /* We associate one allocation tag per 16 bytes, the minimum.  */
3285 #define LOG2_TAG_GRANULE 4
3286 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3287 
3288 #ifdef CONFIG_USER_ONLY
3289 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3290 #endif
3291 
3292 #ifdef TARGET_TAGGED_ADDRESSES
3293 /**
3294  * cpu_untagged_addr:
3295  * @cs: CPU context
3296  * @x: tagged address
3297  *
3298  * Remove any address tag from @x.  This is explicitly related to the
3299  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3300  *
3301  * There should be a better place to put this, but we need this in
3302  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3303  */
3304 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3305 {
3306     ARMCPU *cpu = ARM_CPU(cs);
3307     if (cpu->env.tagged_addr_enable) {
3308         /*
3309          * TBI is enabled for userspace but not kernelspace addresses.
3310          * Only clear the tag if bit 55 is clear.
3311          */
3312         x &= sextract64(x, 0, 56);
3313     }
3314     return x;
3315 }
3316 #endif
3317 
3318 #endif
3319