xref: /openbmc/qemu/target/arm/cpu.h (revision 6b552b9b)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num: Number of the registers in this XML seen by GDB.
132  * @data: A union with data specific to the set of registers
133  *    @cpregs_keys: Array that contains the corresponding Key of
134  *                  a given cpreg with the same order of the cpreg
135  *                  in the XML description.
136  */
137 typedef struct DynamicGDBXMLInfo {
138     char *desc;
139     int num;
140     union {
141         struct {
142             uint32_t *keys;
143         } cpregs;
144     } data;
145 } DynamicGDBXMLInfo;
146 
147 /* CPU state for each instance of a generic timer (in cp15 c14) */
148 typedef struct ARMGenericTimer {
149     uint64_t cval; /* Timer CompareValue register */
150     uint64_t ctl; /* Timer Control register */
151 } ARMGenericTimer;
152 
153 #define GTIMER_PHYS     0
154 #define GTIMER_VIRT     1
155 #define GTIMER_HYP      2
156 #define GTIMER_SEC      3
157 #define GTIMER_HYPVIRT  4
158 #define NUM_GTIMERS     5
159 
160 typedef struct {
161     uint64_t raw_tcr;
162     uint32_t mask;
163     uint32_t base_mask;
164 } TCR;
165 
166 /* Define a maximum sized vector register.
167  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
168  * For 64-bit, this is a 2048-bit SVE register.
169  *
170  * Note that the mapping between S, D, and Q views of the register bank
171  * differs between AArch64 and AArch32.
172  * In AArch32:
173  *  Qn = regs[n].d[1]:regs[n].d[0]
174  *  Dn = regs[n / 2].d[n & 1]
175  *  Sn = regs[n / 4].d[n % 4 / 2],
176  *       bits 31..0 for even n, and bits 63..32 for odd n
177  *       (and regs[16] to regs[31] are inaccessible)
178  * In AArch64:
179  *  Zn = regs[n].d[*]
180  *  Qn = regs[n].d[1]:regs[n].d[0]
181  *  Dn = regs[n].d[0]
182  *  Sn = regs[n].d[0] bits 31..0
183  *  Hn = regs[n].d[0] bits 15..0
184  *
185  * This corresponds to the architecturally defined mapping between
186  * the two execution states, and means we do not need to explicitly
187  * map these registers when changing states.
188  *
189  * Align the data for use with TCG host vector operations.
190  */
191 
192 #ifdef TARGET_AARCH64
193 # define ARM_MAX_VQ    16
194 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
195 #else
196 # define ARM_MAX_VQ    1
197 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
198 #endif
199 
200 typedef struct ARMVectorReg {
201     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
203 
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all.  */
206 typedef struct ARMPredicateReg {
207     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
209 
210 /* In AArch32 mode, PAC keys do not exist at all.  */
211 typedef struct ARMPACKey {
212     uint64_t lo, hi;
213 } ARMPACKey;
214 #endif
215 
216 
217 typedef struct CPUARMState {
218     /* Regs for current mode.  */
219     uint32_t regs[16];
220 
221     /* 32/64 switch only happens when taking and returning from
222      * exceptions so the overlap semantics are taken care of then
223      * instead of having a complicated union.
224      */
225     /* Regs for A64 mode.  */
226     uint64_t xregs[32];
227     uint64_t pc;
228     /* PSTATE isn't an architectural register for ARMv8. However, it is
229      * convenient for us to assemble the underlying state into a 32 bit format
230      * identical to the architectural format used for the SPSR. (This is also
231      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232      * 'pstate' register are.) Of the PSTATE bits:
233      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234      *    semantics as for AArch32, as described in the comments on each field)
235      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
236      *  DAIF (exception masks) are kept in env->daif
237      *  BTYPE is kept in env->btype
238      *  all other bits are stored in their correct places in env->pstate
239      */
240     uint32_t pstate;
241     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
242 
243     /* Cached TBFLAGS state.  See below for which bits are included.  */
244     uint32_t hflags;
245 
246     /* Frequently accessed CPSR bits are stored separately for efficiency.
247        This contains all the other bits.  Use cpsr_{read,write} to access
248        the whole CPSR.  */
249     uint32_t uncached_cpsr;
250     uint32_t spsr;
251 
252     /* Banked registers.  */
253     uint64_t banked_spsr[8];
254     uint32_t banked_r13[8];
255     uint32_t banked_r14[8];
256 
257     /* These hold r8-r12.  */
258     uint32_t usr_regs[5];
259     uint32_t fiq_regs[5];
260 
261     /* cpsr flag cache for faster execution */
262     uint32_t CF; /* 0 or 1 */
263     uint32_t VF; /* V is the bit 31. All other bits are undefined */
264     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
265     uint32_t ZF; /* Z set if zero.  */
266     uint32_t QF; /* 0 or 1 */
267     uint32_t GE; /* cpsr[19:16] */
268     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
269     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
270     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
271     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
272 
273     uint64_t elr_el[4]; /* AArch64 exception link regs  */
274     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
275 
276     /* System control coprocessor (cp15) */
277     struct {
278         uint32_t c0_cpuid;
279         union { /* Cache size selection */
280             struct {
281                 uint64_t _unused_csselr0;
282                 uint64_t csselr_ns;
283                 uint64_t _unused_csselr1;
284                 uint64_t csselr_s;
285             };
286             uint64_t csselr_el[4];
287         };
288         union { /* System control register. */
289             struct {
290                 uint64_t _unused_sctlr;
291                 uint64_t sctlr_ns;
292                 uint64_t hsctlr;
293                 uint64_t sctlr_s;
294             };
295             uint64_t sctlr_el[4];
296         };
297         uint64_t cpacr_el1; /* Architectural feature access control register */
298         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
299         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
300         uint64_t sder; /* Secure debug enable register. */
301         uint32_t nsacr; /* Non-secure access control register. */
302         union { /* MMU translation table base 0. */
303             struct {
304                 uint64_t _unused_ttbr0_0;
305                 uint64_t ttbr0_ns;
306                 uint64_t _unused_ttbr0_1;
307                 uint64_t ttbr0_s;
308             };
309             uint64_t ttbr0_el[4];
310         };
311         union { /* MMU translation table base 1. */
312             struct {
313                 uint64_t _unused_ttbr1_0;
314                 uint64_t ttbr1_ns;
315                 uint64_t _unused_ttbr1_1;
316                 uint64_t ttbr1_s;
317             };
318             uint64_t ttbr1_el[4];
319         };
320         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
321         /* MMU translation table base control. */
322         TCR tcr_el[4];
323         TCR vtcr_el2; /* Virtualization Translation Control.  */
324         uint32_t c2_data; /* MPU data cacheable bits.  */
325         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
326         union { /* MMU domain access control register
327                  * MPU write buffer control.
328                  */
329             struct {
330                 uint64_t dacr_ns;
331                 uint64_t dacr_s;
332             };
333             struct {
334                 uint64_t dacr32_el2;
335             };
336         };
337         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
338         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
339         uint64_t hcr_el2; /* Hypervisor configuration register */
340         uint64_t scr_el3; /* Secure configuration register.  */
341         union { /* Fault status registers.  */
342             struct {
343                 uint64_t ifsr_ns;
344                 uint64_t ifsr_s;
345             };
346             struct {
347                 uint64_t ifsr32_el2;
348             };
349         };
350         union {
351             struct {
352                 uint64_t _unused_dfsr;
353                 uint64_t dfsr_ns;
354                 uint64_t hsr;
355                 uint64_t dfsr_s;
356             };
357             uint64_t esr_el[4];
358         };
359         uint32_t c6_region[8]; /* MPU base/size registers.  */
360         union { /* Fault address registers. */
361             struct {
362                 uint64_t _unused_far0;
363 #ifdef HOST_WORDS_BIGENDIAN
364                 uint32_t ifar_ns;
365                 uint32_t dfar_ns;
366                 uint32_t ifar_s;
367                 uint32_t dfar_s;
368 #else
369                 uint32_t dfar_ns;
370                 uint32_t ifar_ns;
371                 uint32_t dfar_s;
372                 uint32_t ifar_s;
373 #endif
374                 uint64_t _unused_far3;
375             };
376             uint64_t far_el[4];
377         };
378         uint64_t hpfar_el2;
379         uint64_t hstr_el2;
380         union { /* Translation result. */
381             struct {
382                 uint64_t _unused_par_0;
383                 uint64_t par_ns;
384                 uint64_t _unused_par_1;
385                 uint64_t par_s;
386             };
387             uint64_t par_el[4];
388         };
389 
390         uint32_t c9_insn; /* Cache lockdown registers.  */
391         uint32_t c9_data;
392         uint64_t c9_pmcr; /* performance monitor control register */
393         uint64_t c9_pmcnten; /* perf monitor counter enables */
394         uint64_t c9_pmovsr; /* perf monitor overflow status */
395         uint64_t c9_pmuserenr; /* perf monitor user enable */
396         uint64_t c9_pmselr; /* perf monitor counter selection register */
397         uint64_t c9_pminten; /* perf monitor interrupt enables */
398         union { /* Memory attribute redirection */
399             struct {
400 #ifdef HOST_WORDS_BIGENDIAN
401                 uint64_t _unused_mair_0;
402                 uint32_t mair1_ns;
403                 uint32_t mair0_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair1_s;
406                 uint32_t mair0_s;
407 #else
408                 uint64_t _unused_mair_0;
409                 uint32_t mair0_ns;
410                 uint32_t mair1_ns;
411                 uint64_t _unused_mair_1;
412                 uint32_t mair0_s;
413                 uint32_t mair1_s;
414 #endif
415             };
416             uint64_t mair_el[4];
417         };
418         union { /* vector base address register */
419             struct {
420                 uint64_t _unused_vbar;
421                 uint64_t vbar_ns;
422                 uint64_t hvbar;
423                 uint64_t vbar_s;
424             };
425             uint64_t vbar_el[4];
426         };
427         uint32_t mvbar; /* (monitor) vector base address register */
428         struct { /* FCSE PID. */
429             uint32_t fcseidr_ns;
430             uint32_t fcseidr_s;
431         };
432         union { /* Context ID. */
433             struct {
434                 uint64_t _unused_contextidr_0;
435                 uint64_t contextidr_ns;
436                 uint64_t _unused_contextidr_1;
437                 uint64_t contextidr_s;
438             };
439             uint64_t contextidr_el[4];
440         };
441         union { /* User RW Thread register. */
442             struct {
443                 uint64_t tpidrurw_ns;
444                 uint64_t tpidrprw_ns;
445                 uint64_t htpidr;
446                 uint64_t _tpidr_el3;
447             };
448             uint64_t tpidr_el[4];
449         };
450         /* The secure banks of these registers don't map anywhere */
451         uint64_t tpidrurw_s;
452         uint64_t tpidrprw_s;
453         uint64_t tpidruro_s;
454 
455         union { /* User RO Thread register. */
456             uint64_t tpidruro_ns;
457             uint64_t tpidrro_el[1];
458         };
459         uint64_t c14_cntfrq; /* Counter Frequency register */
460         uint64_t c14_cntkctl; /* Timer Control register */
461         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
462         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
463         ARMGenericTimer c14_timer[NUM_GTIMERS];
464         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
465         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
466         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
467         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
468         uint32_t c15_threadid; /* TI debugger thread-ID.  */
469         uint32_t c15_config_base_address; /* SCU base address.  */
470         uint32_t c15_diagnostic; /* diagnostic register */
471         uint32_t c15_power_diagnostic;
472         uint32_t c15_power_control; /* power control */
473         uint64_t dbgbvr[16]; /* breakpoint value registers */
474         uint64_t dbgbcr[16]; /* breakpoint control registers */
475         uint64_t dbgwvr[16]; /* watchpoint value registers */
476         uint64_t dbgwcr[16]; /* watchpoint control registers */
477         uint64_t mdscr_el1;
478         uint64_t oslsr_el1; /* OS Lock Status */
479         uint64_t mdcr_el2;
480         uint64_t mdcr_el3;
481         /* Stores the architectural value of the counter *the last time it was
482          * updated* by pmccntr_op_start. Accesses should always be surrounded
483          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484          * architecturally-correct value is being read/set.
485          */
486         uint64_t c15_ccnt;
487         /* Stores the delta between the architectural value and the underlying
488          * cycle count during normal operation. It is used to update c15_ccnt
489          * to be the correct architectural value before accesses. During
490          * accesses, c15_ccnt_delta contains the underlying count being used
491          * for the access, after which it reverts to the delta value in
492          * pmccntr_op_finish.
493          */
494         uint64_t c15_ccnt_delta;
495         uint64_t c14_pmevcntr[31];
496         uint64_t c14_pmevcntr_delta[31];
497         uint64_t c14_pmevtyper[31];
498         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
499         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
500         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
501     } cp15;
502 
503     struct {
504         /* M profile has up to 4 stack pointers:
505          * a Main Stack Pointer and a Process Stack Pointer for each
506          * of the Secure and Non-Secure states. (If the CPU doesn't support
507          * the security extension then it has only two SPs.)
508          * In QEMU we always store the currently active SP in regs[13],
509          * and the non-active SP for the current security state in
510          * v7m.other_sp. The stack pointers for the inactive security state
511          * are stored in other_ss_msp and other_ss_psp.
512          * switch_v7m_security_state() is responsible for rearranging them
513          * when we change security state.
514          */
515         uint32_t other_sp;
516         uint32_t other_ss_msp;
517         uint32_t other_ss_psp;
518         uint32_t vecbase[M_REG_NUM_BANKS];
519         uint32_t basepri[M_REG_NUM_BANKS];
520         uint32_t control[M_REG_NUM_BANKS];
521         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
522         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
523         uint32_t hfsr; /* HardFault Status */
524         uint32_t dfsr; /* Debug Fault Status Register */
525         uint32_t sfsr; /* Secure Fault Status Register */
526         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
527         uint32_t bfar; /* BusFault Address */
528         uint32_t sfar; /* Secure Fault Address Register */
529         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
530         int exception;
531         uint32_t primask[M_REG_NUM_BANKS];
532         uint32_t faultmask[M_REG_NUM_BANKS];
533         uint32_t aircr; /* only holds r/w state if security extn implemented */
534         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
535         uint32_t csselr[M_REG_NUM_BANKS];
536         uint32_t scr[M_REG_NUM_BANKS];
537         uint32_t msplim[M_REG_NUM_BANKS];
538         uint32_t psplim[M_REG_NUM_BANKS];
539         uint32_t fpcar[M_REG_NUM_BANKS];
540         uint32_t fpccr[M_REG_NUM_BANKS];
541         uint32_t fpdscr[M_REG_NUM_BANKS];
542         uint32_t cpacr[M_REG_NUM_BANKS];
543         uint32_t nsacr;
544     } v7m;
545 
546     /* Information associated with an exception about to be taken:
547      * code which raises an exception must set cs->exception_index and
548      * the relevant parts of this structure; the cpu_do_interrupt function
549      * will then set the guest-visible registers as part of the exception
550      * entry process.
551      */
552     struct {
553         uint32_t syndrome; /* AArch64 format syndrome register */
554         uint32_t fsr; /* AArch32 format fault status register info */
555         uint64_t vaddress; /* virtual addr associated with exception, if any */
556         uint32_t target_el; /* EL the exception should be targeted for */
557         /* If we implement EL2 we will also need to store information
558          * about the intermediate physical address for stage 2 faults.
559          */
560     } exception;
561 
562     /* Information associated with an SError */
563     struct {
564         uint8_t pending;
565         uint8_t has_esr;
566         uint64_t esr;
567     } serror;
568 
569     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
570     uint32_t irq_line_state;
571 
572     /* Thumb-2 EE state.  */
573     uint32_t teecr;
574     uint32_t teehbr;
575 
576     /* VFP coprocessor state.  */
577     struct {
578         ARMVectorReg zregs[32];
579 
580 #ifdef TARGET_AARCH64
581         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
582 #define FFR_PRED_NUM 16
583         ARMPredicateReg pregs[17];
584         /* Scratch space for aa64 sve predicate temporary.  */
585         ARMPredicateReg preg_tmp;
586 #endif
587 
588         /* We store these fpcsr fields separately for convenience.  */
589         uint32_t qc[4] QEMU_ALIGNED(16);
590         int vec_len;
591         int vec_stride;
592 
593         uint32_t xregs[16];
594 
595         /* Scratch space for aa32 neon expansion.  */
596         uint32_t scratch[8];
597 
598         /* There are a number of distinct float control structures:
599          *
600          *  fp_status: is the "normal" fp status.
601          *  fp_status_fp16: used for half-precision calculations
602          *  standard_fp_status : the ARM "Standard FPSCR Value"
603          *
604          * Half-precision operations are governed by a separate
605          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
606          * status structure to control this.
607          *
608          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
609          * round-to-nearest and is used by any operations (generally
610          * Neon) which the architecture defines as controlled by the
611          * standard FPSCR value rather than the FPSCR.
612          *
613          * To avoid having to transfer exception bits around, we simply
614          * say that the FPSCR cumulative exception flags are the logical
615          * OR of the flags in the three fp statuses. This relies on the
616          * only thing which needs to read the exception flags being
617          * an explicit FPSCR read.
618          */
619         float_status fp_status;
620         float_status fp_status_f16;
621         float_status standard_fp_status;
622 
623         /* ZCR_EL[1-3] */
624         uint64_t zcr_el[4];
625     } vfp;
626     uint64_t exclusive_addr;
627     uint64_t exclusive_val;
628     uint64_t exclusive_high;
629 
630     /* iwMMXt coprocessor state.  */
631     struct {
632         uint64_t regs[16];
633         uint64_t val;
634 
635         uint32_t cregs[16];
636     } iwmmxt;
637 
638 #ifdef TARGET_AARCH64
639     struct {
640         ARMPACKey apia;
641         ARMPACKey apib;
642         ARMPACKey apda;
643         ARMPACKey apdb;
644         ARMPACKey apga;
645     } keys;
646 #endif
647 
648 #if defined(CONFIG_USER_ONLY)
649     /* For usermode syscall translation.  */
650     int eabi;
651 #endif
652 
653     struct CPUBreakpoint *cpu_breakpoint[16];
654     struct CPUWatchpoint *cpu_watchpoint[16];
655 
656     /* Fields up to this point are cleared by a CPU reset */
657     struct {} end_reset_fields;
658 
659     /* Fields after this point are preserved across CPU reset. */
660 
661     /* Internal CPU feature flags.  */
662     uint64_t features;
663 
664     /* PMSAv7 MPU */
665     struct {
666         uint32_t *drbar;
667         uint32_t *drsr;
668         uint32_t *dracr;
669         uint32_t rnr[M_REG_NUM_BANKS];
670     } pmsav7;
671 
672     /* PMSAv8 MPU */
673     struct {
674         /* The PMSAv8 implementation also shares some PMSAv7 config
675          * and state:
676          *  pmsav7.rnr (region number register)
677          *  pmsav7_dregion (number of configured regions)
678          */
679         uint32_t *rbar[M_REG_NUM_BANKS];
680         uint32_t *rlar[M_REG_NUM_BANKS];
681         uint32_t mair0[M_REG_NUM_BANKS];
682         uint32_t mair1[M_REG_NUM_BANKS];
683     } pmsav8;
684 
685     /* v8M SAU */
686     struct {
687         uint32_t *rbar;
688         uint32_t *rlar;
689         uint32_t rnr;
690         uint32_t ctrl;
691     } sau;
692 
693     void *nvic;
694     const struct arm_boot_info *boot_info;
695     /* Store GICv3CPUState to access from this struct */
696     void *gicv3state;
697 } CPUARMState;
698 
699 static inline void set_feature(CPUARMState *env, int feature)
700 {
701     env->features |= 1ULL << feature;
702 }
703 
704 static inline void unset_feature(CPUARMState *env, int feature)
705 {
706     env->features &= ~(1ULL << feature);
707 }
708 
709 /**
710  * ARMELChangeHookFn:
711  * type of a function which can be registered via arm_register_el_change_hook()
712  * to get callbacks when the CPU changes its exception level or mode.
713  */
714 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
715 typedef struct ARMELChangeHook ARMELChangeHook;
716 struct ARMELChangeHook {
717     ARMELChangeHookFn *hook;
718     void *opaque;
719     QLIST_ENTRY(ARMELChangeHook) node;
720 };
721 
722 /* These values map onto the return values for
723  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
724 typedef enum ARMPSCIState {
725     PSCI_ON = 0,
726     PSCI_OFF = 1,
727     PSCI_ON_PENDING = 2
728 } ARMPSCIState;
729 
730 typedef struct ARMISARegisters ARMISARegisters;
731 
732 /**
733  * ARMCPU:
734  * @env: #CPUARMState
735  *
736  * An ARM CPU core.
737  */
738 struct ARMCPU {
739     /*< private >*/
740     CPUState parent_obj;
741     /*< public >*/
742 
743     CPUNegativeOffsetState neg;
744     CPUARMState env;
745 
746     /* Coprocessor information */
747     GHashTable *cp_regs;
748     /* For marshalling (mostly coprocessor) register state between the
749      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
750      * we use these arrays.
751      */
752     /* List of register indexes managed via these arrays; (full KVM style
753      * 64 bit indexes, not CPRegInfo 32 bit indexes)
754      */
755     uint64_t *cpreg_indexes;
756     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
757     uint64_t *cpreg_values;
758     /* Length of the indexes, values, reset_values arrays */
759     int32_t cpreg_array_len;
760     /* These are used only for migration: incoming data arrives in
761      * these fields and is sanity checked in post_load before copying
762      * to the working data structures above.
763      */
764     uint64_t *cpreg_vmstate_indexes;
765     uint64_t *cpreg_vmstate_values;
766     int32_t cpreg_vmstate_array_len;
767 
768     DynamicGDBXMLInfo dyn_sysreg_xml;
769     DynamicGDBXMLInfo dyn_svereg_xml;
770 
771     /* Timers used by the generic (architected) timer */
772     QEMUTimer *gt_timer[NUM_GTIMERS];
773     /*
774      * Timer used by the PMU. Its state is restored after migration by
775      * pmu_op_finish() - it does not need other handling during migration
776      */
777     QEMUTimer *pmu_timer;
778     /* GPIO outputs for generic timer */
779     qemu_irq gt_timer_outputs[NUM_GTIMERS];
780     /* GPIO output for GICv3 maintenance interrupt signal */
781     qemu_irq gicv3_maintenance_interrupt;
782     /* GPIO output for the PMU interrupt */
783     qemu_irq pmu_interrupt;
784 
785     /* MemoryRegion to use for secure physical accesses */
786     MemoryRegion *secure_memory;
787 
788     /* For v8M, pointer to the IDAU interface provided by board/SoC */
789     Object *idau;
790 
791     /* 'compatible' string for this CPU for Linux device trees */
792     const char *dtb_compatible;
793 
794     /* PSCI version for this CPU
795      * Bits[31:16] = Major Version
796      * Bits[15:0] = Minor Version
797      */
798     uint32_t psci_version;
799 
800     /* Should CPU start in PSCI powered-off state? */
801     bool start_powered_off;
802 
803     /* Current power state, access guarded by BQL */
804     ARMPSCIState power_state;
805 
806     /* CPU has virtualization extension */
807     bool has_el2;
808     /* CPU has security extension */
809     bool has_el3;
810     /* CPU has PMU (Performance Monitor Unit) */
811     bool has_pmu;
812     /* CPU has VFP */
813     bool has_vfp;
814     /* CPU has Neon */
815     bool has_neon;
816     /* CPU has M-profile DSP extension */
817     bool has_dsp;
818 
819     /* CPU has memory protection unit */
820     bool has_mpu;
821     /* PMSAv7 MPU number of supported regions */
822     uint32_t pmsav7_dregion;
823     /* v8M SAU number of supported regions */
824     uint32_t sau_sregion;
825 
826     /* PSCI conduit used to invoke PSCI methods
827      * 0 - disabled, 1 - smc, 2 - hvc
828      */
829     uint32_t psci_conduit;
830 
831     /* For v8M, initial value of the Secure VTOR */
832     uint32_t init_svtor;
833 
834     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
835      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
836      */
837     uint32_t kvm_target;
838 
839     /* KVM init features for this CPU */
840     uint32_t kvm_init_features[7];
841 
842     /* KVM CPU state */
843 
844     /* KVM virtual time adjustment */
845     bool kvm_adjvtime;
846     bool kvm_vtime_dirty;
847     uint64_t kvm_vtime;
848 
849     /* Uniprocessor system with MP extensions */
850     bool mp_is_up;
851 
852     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
853      * and the probe failed (so we need to report the error in realize)
854      */
855     bool host_cpu_probe_failed;
856 
857     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
858      * register.
859      */
860     int32_t core_count;
861 
862     /* The instance init functions for implementation-specific subclasses
863      * set these fields to specify the implementation-dependent values of
864      * various constant registers and reset values of non-constant
865      * registers.
866      * Some of these might become QOM properties eventually.
867      * Field names match the official register names as defined in the
868      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
869      * is used for reset values of non-constant registers; no reset_
870      * prefix means a constant register.
871      * Some of these registers are split out into a substructure that
872      * is shared with the translators to control the ISA.
873      *
874      * Note that if you add an ID register to the ARMISARegisters struct
875      * you need to also update the 32-bit and 64-bit versions of the
876      * kvm_arm_get_host_cpu_features() function to correctly populate the
877      * field by reading the value from the KVM vCPU.
878      */
879     struct ARMISARegisters {
880         uint32_t id_isar0;
881         uint32_t id_isar1;
882         uint32_t id_isar2;
883         uint32_t id_isar3;
884         uint32_t id_isar4;
885         uint32_t id_isar5;
886         uint32_t id_isar6;
887         uint32_t id_mmfr0;
888         uint32_t id_mmfr1;
889         uint32_t id_mmfr2;
890         uint32_t id_mmfr3;
891         uint32_t id_mmfr4;
892         uint32_t mvfr0;
893         uint32_t mvfr1;
894         uint32_t mvfr2;
895         uint32_t id_dfr0;
896         uint32_t dbgdidr;
897         uint64_t id_aa64isar0;
898         uint64_t id_aa64isar1;
899         uint64_t id_aa64pfr0;
900         uint64_t id_aa64pfr1;
901         uint64_t id_aa64mmfr0;
902         uint64_t id_aa64mmfr1;
903         uint64_t id_aa64mmfr2;
904         uint64_t id_aa64dfr0;
905         uint64_t id_aa64dfr1;
906     } isar;
907     uint64_t midr;
908     uint32_t revidr;
909     uint32_t reset_fpsid;
910     uint32_t ctr;
911     uint32_t reset_sctlr;
912     uint32_t id_pfr0;
913     uint32_t id_pfr1;
914     uint64_t pmceid0;
915     uint64_t pmceid1;
916     uint32_t id_afr0;
917     uint64_t id_aa64afr0;
918     uint64_t id_aa64afr1;
919     uint32_t clidr;
920     uint64_t mp_affinity; /* MP ID without feature bits */
921     /* The elements of this array are the CCSIDR values for each cache,
922      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
923      */
924     uint64_t ccsidr[16];
925     uint64_t reset_cbar;
926     uint32_t reset_auxcr;
927     bool reset_hivecs;
928     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
929     uint32_t dcz_blocksize;
930     uint64_t rvbar;
931 
932     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
933     int gic_num_lrs; /* number of list registers */
934     int gic_vpribits; /* number of virtual priority bits */
935     int gic_vprebits; /* number of virtual preemption bits */
936 
937     /* Whether the cfgend input is high (i.e. this CPU should reset into
938      * big-endian mode).  This setting isn't used directly: instead it modifies
939      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
940      * architecture version.
941      */
942     bool cfgend;
943 
944     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
945     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
946 
947     int32_t node_id; /* NUMA node this CPU belongs to */
948 
949     /* Used to synchronize KVM and QEMU in-kernel device levels */
950     uint8_t device_irq_level;
951 
952     /* Used to set the maximum vector length the cpu will support.  */
953     uint32_t sve_max_vq;
954 
955     /*
956      * In sve_vq_map each set bit is a supported vector length of
957      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
958      * length in quadwords.
959      *
960      * While processing properties during initialization, corresponding
961      * sve_vq_init bits are set for bits in sve_vq_map that have been
962      * set by properties.
963      */
964     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
965     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
966 
967     /* Generic timer counter frequency, in Hz */
968     uint64_t gt_cntfrq_hz;
969 };
970 
971 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
972 
973 void arm_cpu_post_init(Object *obj);
974 
975 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
976 
977 #ifndef CONFIG_USER_ONLY
978 extern const VMStateDescription vmstate_arm_cpu;
979 #endif
980 
981 void arm_cpu_do_interrupt(CPUState *cpu);
982 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
983 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
984 
985 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
986                                          MemTxAttrs *attrs);
987 
988 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
989 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
990 
991 /*
992  * Helpers to dynamically generates XML descriptions of the sysregs
993  * and SVE registers. Returns the number of registers in each set.
994  */
995 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
996 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
997 
998 /* Returns the dynamically generated XML for the gdb stub.
999  * Returns a pointer to the XML contents for the specified XML file or NULL
1000  * if the XML name doesn't match the predefined one.
1001  */
1002 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1003 
1004 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1005                              int cpuid, void *opaque);
1006 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1007                              int cpuid, void *opaque);
1008 
1009 #ifdef TARGET_AARCH64
1010 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1011 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1012 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1013 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1014                            int new_el, bool el0_a64);
1015 void aarch64_add_sve_properties(Object *obj);
1016 
1017 /*
1018  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1019  * The byte at offset i from the start of the in-memory representation contains
1020  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1021  * lowest offsets are stored in the lowest memory addresses, then that nearly
1022  * matches QEMU's representation, which is to use an array of host-endian
1023  * uint64_t's, where the lower offsets are at the lower indices. To complete
1024  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1025  */
1026 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1027 {
1028 #ifdef HOST_WORDS_BIGENDIAN
1029     int i;
1030 
1031     for (i = 0; i < nr; ++i) {
1032         dst[i] = bswap64(src[i]);
1033     }
1034 
1035     return dst;
1036 #else
1037     return src;
1038 #endif
1039 }
1040 
1041 #else
1042 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1043 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1044                                          int n, bool a)
1045 { }
1046 static inline void aarch64_add_sve_properties(Object *obj) { }
1047 #endif
1048 
1049 #if !defined(CONFIG_TCG)
1050 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1051 {
1052     g_assert_not_reached();
1053 }
1054 #else
1055 target_ulong do_arm_semihosting(CPUARMState *env);
1056 #endif
1057 void aarch64_sync_32_to_64(CPUARMState *env);
1058 void aarch64_sync_64_to_32(CPUARMState *env);
1059 
1060 int fp_exception_el(CPUARMState *env, int cur_el);
1061 int sve_exception_el(CPUARMState *env, int cur_el);
1062 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1063 
1064 static inline bool is_a64(CPUARMState *env)
1065 {
1066     return env->aarch64;
1067 }
1068 
1069 /* you can call this signal handler from your SIGBUS and SIGSEGV
1070    signal handlers to inform the virtual CPU of exceptions. non zero
1071    is returned if the signal was handled by the virtual CPU.  */
1072 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1073                            void *puc);
1074 
1075 /**
1076  * pmu_op_start/finish
1077  * @env: CPUARMState
1078  *
1079  * Convert all PMU counters between their delta form (the typical mode when
1080  * they are enabled) and the guest-visible values. These two calls must
1081  * surround any action which might affect the counters.
1082  */
1083 void pmu_op_start(CPUARMState *env);
1084 void pmu_op_finish(CPUARMState *env);
1085 
1086 /*
1087  * Called when a PMU counter is due to overflow
1088  */
1089 void arm_pmu_timer_cb(void *opaque);
1090 
1091 /**
1092  * Functions to register as EL change hooks for PMU mode filtering
1093  */
1094 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1095 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1096 
1097 /*
1098  * pmu_init
1099  * @cpu: ARMCPU
1100  *
1101  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1102  * for the current configuration
1103  */
1104 void pmu_init(ARMCPU *cpu);
1105 
1106 /* SCTLR bit meanings. Several bits have been reused in newer
1107  * versions of the architecture; in that case we define constants
1108  * for both old and new bit meanings. Code which tests against those
1109  * bits should probably check or otherwise arrange that the CPU
1110  * is the architectural version it expects.
1111  */
1112 #define SCTLR_M       (1U << 0)
1113 #define SCTLR_A       (1U << 1)
1114 #define SCTLR_C       (1U << 2)
1115 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1116 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1117 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1118 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1119 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1120 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1121 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1122 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1123 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1124 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1125 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1126 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1127 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1128 #define SCTLR_SED     (1U << 8) /* v8 onward */
1129 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1130 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1131 #define SCTLR_F       (1U << 10) /* up to v6 */
1132 #define SCTLR_SW      (1U << 10) /* v7 */
1133 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1134 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1135 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1136 #define SCTLR_I       (1U << 12)
1137 #define SCTLR_V       (1U << 13) /* AArch32 only */
1138 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1139 #define SCTLR_RR      (1U << 14) /* up to v7 */
1140 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1141 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1142 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1143 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1144 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1145 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1146 #define SCTLR_BR      (1U << 17) /* PMSA only */
1147 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1148 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1149 #define SCTLR_WXN     (1U << 19)
1150 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1151 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1152 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1153 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1154 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1155 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1156 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1157 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1158 #define SCTLR_VE      (1U << 24) /* up to v7 */
1159 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1160 #define SCTLR_EE      (1U << 25)
1161 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1162 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1163 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1164 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1165 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1166 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1167 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1168 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1169 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1170 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1171 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1172 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1173 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1174 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1175 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1176 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1177 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1178 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1179 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1180 
1181 #define CPTR_TCPAC    (1U << 31)
1182 #define CPTR_TTA      (1U << 20)
1183 #define CPTR_TFP      (1U << 10)
1184 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1185 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1186 
1187 #define MDCR_EPMAD    (1U << 21)
1188 #define MDCR_EDAD     (1U << 20)
1189 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1190 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1191 #define MDCR_SDD      (1U << 16)
1192 #define MDCR_SPD      (3U << 14)
1193 #define MDCR_TDRA     (1U << 11)
1194 #define MDCR_TDOSA    (1U << 10)
1195 #define MDCR_TDA      (1U << 9)
1196 #define MDCR_TDE      (1U << 8)
1197 #define MDCR_HPME     (1U << 7)
1198 #define MDCR_TPM      (1U << 6)
1199 #define MDCR_TPMCR    (1U << 5)
1200 #define MDCR_HPMN     (0x1fU)
1201 
1202 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1203 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1204 
1205 #define CPSR_M (0x1fU)
1206 #define CPSR_T (1U << 5)
1207 #define CPSR_F (1U << 6)
1208 #define CPSR_I (1U << 7)
1209 #define CPSR_A (1U << 8)
1210 #define CPSR_E (1U << 9)
1211 #define CPSR_IT_2_7 (0xfc00U)
1212 #define CPSR_GE (0xfU << 16)
1213 #define CPSR_IL (1U << 20)
1214 #define CPSR_PAN (1U << 22)
1215 #define CPSR_J (1U << 24)
1216 #define CPSR_IT_0_1 (3U << 25)
1217 #define CPSR_Q (1U << 27)
1218 #define CPSR_V (1U << 28)
1219 #define CPSR_C (1U << 29)
1220 #define CPSR_Z (1U << 30)
1221 #define CPSR_N (1U << 31)
1222 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1223 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1224 
1225 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1226 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1227     | CPSR_NZCV)
1228 /* Bits writable in user mode.  */
1229 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1230 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1231 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1232 
1233 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1234 #define XPSR_EXCP 0x1ffU
1235 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1236 #define XPSR_IT_2_7 CPSR_IT_2_7
1237 #define XPSR_GE CPSR_GE
1238 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1239 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1240 #define XPSR_IT_0_1 CPSR_IT_0_1
1241 #define XPSR_Q CPSR_Q
1242 #define XPSR_V CPSR_V
1243 #define XPSR_C CPSR_C
1244 #define XPSR_Z CPSR_Z
1245 #define XPSR_N CPSR_N
1246 #define XPSR_NZCV CPSR_NZCV
1247 #define XPSR_IT CPSR_IT
1248 
1249 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1250 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1251 #define TTBCR_PD0    (1U << 4)
1252 #define TTBCR_PD1    (1U << 5)
1253 #define TTBCR_EPD0   (1U << 7)
1254 #define TTBCR_IRGN0  (3U << 8)
1255 #define TTBCR_ORGN0  (3U << 10)
1256 #define TTBCR_SH0    (3U << 12)
1257 #define TTBCR_T1SZ   (3U << 16)
1258 #define TTBCR_A1     (1U << 22)
1259 #define TTBCR_EPD1   (1U << 23)
1260 #define TTBCR_IRGN1  (3U << 24)
1261 #define TTBCR_ORGN1  (3U << 26)
1262 #define TTBCR_SH1    (1U << 28)
1263 #define TTBCR_EAE    (1U << 31)
1264 
1265 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1266  * Only these are valid when in AArch64 mode; in
1267  * AArch32 mode SPSRs are basically CPSR-format.
1268  */
1269 #define PSTATE_SP (1U)
1270 #define PSTATE_M (0xFU)
1271 #define PSTATE_nRW (1U << 4)
1272 #define PSTATE_F (1U << 6)
1273 #define PSTATE_I (1U << 7)
1274 #define PSTATE_A (1U << 8)
1275 #define PSTATE_D (1U << 9)
1276 #define PSTATE_BTYPE (3U << 10)
1277 #define PSTATE_IL (1U << 20)
1278 #define PSTATE_SS (1U << 21)
1279 #define PSTATE_PAN (1U << 22)
1280 #define PSTATE_UAO (1U << 23)
1281 #define PSTATE_V (1U << 28)
1282 #define PSTATE_C (1U << 29)
1283 #define PSTATE_Z (1U << 30)
1284 #define PSTATE_N (1U << 31)
1285 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1286 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1287 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1288 /* Mode values for AArch64 */
1289 #define PSTATE_MODE_EL3h 13
1290 #define PSTATE_MODE_EL3t 12
1291 #define PSTATE_MODE_EL2h 9
1292 #define PSTATE_MODE_EL2t 8
1293 #define PSTATE_MODE_EL1h 5
1294 #define PSTATE_MODE_EL1t 4
1295 #define PSTATE_MODE_EL0t 0
1296 
1297 /* Write a new value to v7m.exception, thus transitioning into or out
1298  * of Handler mode; this may result in a change of active stack pointer.
1299  */
1300 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1301 
1302 /* Map EL and handler into a PSTATE_MODE.  */
1303 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1304 {
1305     return (el << 2) | handler;
1306 }
1307 
1308 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1309  * interprocessing, so we don't attempt to sync with the cpsr state used by
1310  * the 32 bit decoder.
1311  */
1312 static inline uint32_t pstate_read(CPUARMState *env)
1313 {
1314     int ZF;
1315 
1316     ZF = (env->ZF == 0);
1317     return (env->NF & 0x80000000) | (ZF << 30)
1318         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1319         | env->pstate | env->daif | (env->btype << 10);
1320 }
1321 
1322 static inline void pstate_write(CPUARMState *env, uint32_t val)
1323 {
1324     env->ZF = (~val) & PSTATE_Z;
1325     env->NF = val;
1326     env->CF = (val >> 29) & 1;
1327     env->VF = (val << 3) & 0x80000000;
1328     env->daif = val & PSTATE_DAIF;
1329     env->btype = (val >> 10) & 3;
1330     env->pstate = val & ~CACHED_PSTATE_BITS;
1331 }
1332 
1333 /* Return the current CPSR value.  */
1334 uint32_t cpsr_read(CPUARMState *env);
1335 
1336 typedef enum CPSRWriteType {
1337     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1338     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1339     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1340     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1341 } CPSRWriteType;
1342 
1343 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1344 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1345                 CPSRWriteType write_type);
1346 
1347 /* Return the current xPSR value.  */
1348 static inline uint32_t xpsr_read(CPUARMState *env)
1349 {
1350     int ZF;
1351     ZF = (env->ZF == 0);
1352     return (env->NF & 0x80000000) | (ZF << 30)
1353         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1354         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1355         | ((env->condexec_bits & 0xfc) << 8)
1356         | (env->GE << 16)
1357         | env->v7m.exception;
1358 }
1359 
1360 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1361 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1362 {
1363     if (mask & XPSR_NZCV) {
1364         env->ZF = (~val) & XPSR_Z;
1365         env->NF = val;
1366         env->CF = (val >> 29) & 1;
1367         env->VF = (val << 3) & 0x80000000;
1368     }
1369     if (mask & XPSR_Q) {
1370         env->QF = ((val & XPSR_Q) != 0);
1371     }
1372     if (mask & XPSR_GE) {
1373         env->GE = (val & XPSR_GE) >> 16;
1374     }
1375 #ifndef CONFIG_USER_ONLY
1376     if (mask & XPSR_T) {
1377         env->thumb = ((val & XPSR_T) != 0);
1378     }
1379     if (mask & XPSR_IT_0_1) {
1380         env->condexec_bits &= ~3;
1381         env->condexec_bits |= (val >> 25) & 3;
1382     }
1383     if (mask & XPSR_IT_2_7) {
1384         env->condexec_bits &= 3;
1385         env->condexec_bits |= (val >> 8) & 0xfc;
1386     }
1387     if (mask & XPSR_EXCP) {
1388         /* Note that this only happens on exception exit */
1389         write_v7m_exception(env, val & XPSR_EXCP);
1390     }
1391 #endif
1392 }
1393 
1394 #define HCR_VM        (1ULL << 0)
1395 #define HCR_SWIO      (1ULL << 1)
1396 #define HCR_PTW       (1ULL << 2)
1397 #define HCR_FMO       (1ULL << 3)
1398 #define HCR_IMO       (1ULL << 4)
1399 #define HCR_AMO       (1ULL << 5)
1400 #define HCR_VF        (1ULL << 6)
1401 #define HCR_VI        (1ULL << 7)
1402 #define HCR_VSE       (1ULL << 8)
1403 #define HCR_FB        (1ULL << 9)
1404 #define HCR_BSU_MASK  (3ULL << 10)
1405 #define HCR_DC        (1ULL << 12)
1406 #define HCR_TWI       (1ULL << 13)
1407 #define HCR_TWE       (1ULL << 14)
1408 #define HCR_TID0      (1ULL << 15)
1409 #define HCR_TID1      (1ULL << 16)
1410 #define HCR_TID2      (1ULL << 17)
1411 #define HCR_TID3      (1ULL << 18)
1412 #define HCR_TSC       (1ULL << 19)
1413 #define HCR_TIDCP     (1ULL << 20)
1414 #define HCR_TACR      (1ULL << 21)
1415 #define HCR_TSW       (1ULL << 22)
1416 #define HCR_TPCP      (1ULL << 23)
1417 #define HCR_TPU       (1ULL << 24)
1418 #define HCR_TTLB      (1ULL << 25)
1419 #define HCR_TVM       (1ULL << 26)
1420 #define HCR_TGE       (1ULL << 27)
1421 #define HCR_TDZ       (1ULL << 28)
1422 #define HCR_HCD       (1ULL << 29)
1423 #define HCR_TRVM      (1ULL << 30)
1424 #define HCR_RW        (1ULL << 31)
1425 #define HCR_CD        (1ULL << 32)
1426 #define HCR_ID        (1ULL << 33)
1427 #define HCR_E2H       (1ULL << 34)
1428 #define HCR_TLOR      (1ULL << 35)
1429 #define HCR_TERR      (1ULL << 36)
1430 #define HCR_TEA       (1ULL << 37)
1431 #define HCR_MIOCNCE   (1ULL << 38)
1432 /* RES0 bit 39 */
1433 #define HCR_APK       (1ULL << 40)
1434 #define HCR_API       (1ULL << 41)
1435 #define HCR_NV        (1ULL << 42)
1436 #define HCR_NV1       (1ULL << 43)
1437 #define HCR_AT        (1ULL << 44)
1438 #define HCR_NV2       (1ULL << 45)
1439 #define HCR_FWB       (1ULL << 46)
1440 #define HCR_FIEN      (1ULL << 47)
1441 /* RES0 bit 48 */
1442 #define HCR_TID4      (1ULL << 49)
1443 #define HCR_TICAB     (1ULL << 50)
1444 #define HCR_AMVOFFEN  (1ULL << 51)
1445 #define HCR_TOCU      (1ULL << 52)
1446 #define HCR_ENSCXT    (1ULL << 53)
1447 #define HCR_TTLBIS    (1ULL << 54)
1448 #define HCR_TTLBOS    (1ULL << 55)
1449 #define HCR_ATA       (1ULL << 56)
1450 #define HCR_DCT       (1ULL << 57)
1451 #define HCR_TID5      (1ULL << 58)
1452 #define HCR_TWEDEN    (1ULL << 59)
1453 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1454 
1455 #define SCR_NS                (1U << 0)
1456 #define SCR_IRQ               (1U << 1)
1457 #define SCR_FIQ               (1U << 2)
1458 #define SCR_EA                (1U << 3)
1459 #define SCR_FW                (1U << 4)
1460 #define SCR_AW                (1U << 5)
1461 #define SCR_NET               (1U << 6)
1462 #define SCR_SMD               (1U << 7)
1463 #define SCR_HCE               (1U << 8)
1464 #define SCR_SIF               (1U << 9)
1465 #define SCR_RW                (1U << 10)
1466 #define SCR_ST                (1U << 11)
1467 #define SCR_TWI               (1U << 12)
1468 #define SCR_TWE               (1U << 13)
1469 #define SCR_TLOR              (1U << 14)
1470 #define SCR_TERR              (1U << 15)
1471 #define SCR_APK               (1U << 16)
1472 #define SCR_API               (1U << 17)
1473 #define SCR_EEL2              (1U << 18)
1474 #define SCR_EASE              (1U << 19)
1475 #define SCR_NMEA              (1U << 20)
1476 #define SCR_FIEN              (1U << 21)
1477 #define SCR_ENSCXT            (1U << 25)
1478 #define SCR_ATA               (1U << 26)
1479 
1480 /* Return the current FPSCR value.  */
1481 uint32_t vfp_get_fpscr(CPUARMState *env);
1482 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1483 
1484 /* FPCR, Floating Point Control Register
1485  * FPSR, Floating Poiht Status Register
1486  *
1487  * For A64 the FPSCR is split into two logically distinct registers,
1488  * FPCR and FPSR. However since they still use non-overlapping bits
1489  * we store the underlying state in fpscr and just mask on read/write.
1490  */
1491 #define FPSR_MASK 0xf800009f
1492 #define FPCR_MASK 0x07ff9f00
1493 
1494 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1495 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1496 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1497 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1498 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1499 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1500 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1501 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1502 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1503 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1504 
1505 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1506 {
1507     return vfp_get_fpscr(env) & FPSR_MASK;
1508 }
1509 
1510 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1511 {
1512     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1513     vfp_set_fpscr(env, new_fpscr);
1514 }
1515 
1516 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1517 {
1518     return vfp_get_fpscr(env) & FPCR_MASK;
1519 }
1520 
1521 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1522 {
1523     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1524     vfp_set_fpscr(env, new_fpscr);
1525 }
1526 
1527 enum arm_cpu_mode {
1528   ARM_CPU_MODE_USR = 0x10,
1529   ARM_CPU_MODE_FIQ = 0x11,
1530   ARM_CPU_MODE_IRQ = 0x12,
1531   ARM_CPU_MODE_SVC = 0x13,
1532   ARM_CPU_MODE_MON = 0x16,
1533   ARM_CPU_MODE_ABT = 0x17,
1534   ARM_CPU_MODE_HYP = 0x1a,
1535   ARM_CPU_MODE_UND = 0x1b,
1536   ARM_CPU_MODE_SYS = 0x1f
1537 };
1538 
1539 /* VFP system registers.  */
1540 #define ARM_VFP_FPSID   0
1541 #define ARM_VFP_FPSCR   1
1542 #define ARM_VFP_MVFR2   5
1543 #define ARM_VFP_MVFR1   6
1544 #define ARM_VFP_MVFR0   7
1545 #define ARM_VFP_FPEXC   8
1546 #define ARM_VFP_FPINST  9
1547 #define ARM_VFP_FPINST2 10
1548 
1549 /* iwMMXt coprocessor control registers.  */
1550 #define ARM_IWMMXT_wCID  0
1551 #define ARM_IWMMXT_wCon  1
1552 #define ARM_IWMMXT_wCSSF 2
1553 #define ARM_IWMMXT_wCASF 3
1554 #define ARM_IWMMXT_wCGR0 8
1555 #define ARM_IWMMXT_wCGR1 9
1556 #define ARM_IWMMXT_wCGR2 10
1557 #define ARM_IWMMXT_wCGR3 11
1558 
1559 /* V7M CCR bits */
1560 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1561 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1562 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1563 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1564 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1565 FIELD(V7M_CCR, STKALIGN, 9, 1)
1566 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1567 FIELD(V7M_CCR, DC, 16, 1)
1568 FIELD(V7M_CCR, IC, 17, 1)
1569 FIELD(V7M_CCR, BP, 18, 1)
1570 
1571 /* V7M SCR bits */
1572 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1573 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1574 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1575 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1576 
1577 /* V7M AIRCR bits */
1578 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1579 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1580 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1581 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1582 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1583 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1584 FIELD(V7M_AIRCR, PRIS, 14, 1)
1585 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1586 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1587 
1588 /* V7M CFSR bits for MMFSR */
1589 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1590 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1591 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1592 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1593 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1594 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1595 
1596 /* V7M CFSR bits for BFSR */
1597 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1598 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1599 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1600 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1601 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1602 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1603 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1604 
1605 /* V7M CFSR bits for UFSR */
1606 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1607 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1608 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1609 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1610 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1611 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1612 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1613 
1614 /* V7M CFSR bit masks covering all of the subregister bits */
1615 FIELD(V7M_CFSR, MMFSR, 0, 8)
1616 FIELD(V7M_CFSR, BFSR, 8, 8)
1617 FIELD(V7M_CFSR, UFSR, 16, 16)
1618 
1619 /* V7M HFSR bits */
1620 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1621 FIELD(V7M_HFSR, FORCED, 30, 1)
1622 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1623 
1624 /* V7M DFSR bits */
1625 FIELD(V7M_DFSR, HALTED, 0, 1)
1626 FIELD(V7M_DFSR, BKPT, 1, 1)
1627 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1628 FIELD(V7M_DFSR, VCATCH, 3, 1)
1629 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1630 
1631 /* V7M SFSR bits */
1632 FIELD(V7M_SFSR, INVEP, 0, 1)
1633 FIELD(V7M_SFSR, INVIS, 1, 1)
1634 FIELD(V7M_SFSR, INVER, 2, 1)
1635 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1636 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1637 FIELD(V7M_SFSR, LSPERR, 5, 1)
1638 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1639 FIELD(V7M_SFSR, LSERR, 7, 1)
1640 
1641 /* v7M MPU_CTRL bits */
1642 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1643 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1644 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1645 
1646 /* v7M CLIDR bits */
1647 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1648 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1649 FIELD(V7M_CLIDR, LOC, 24, 3)
1650 FIELD(V7M_CLIDR, LOUU, 27, 3)
1651 FIELD(V7M_CLIDR, ICB, 30, 2)
1652 
1653 FIELD(V7M_CSSELR, IND, 0, 1)
1654 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1655 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1656  * define a mask for this and check that it doesn't permit running off
1657  * the end of the array.
1658  */
1659 FIELD(V7M_CSSELR, INDEX, 0, 4)
1660 
1661 /* v7M FPCCR bits */
1662 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1663 FIELD(V7M_FPCCR, USER, 1, 1)
1664 FIELD(V7M_FPCCR, S, 2, 1)
1665 FIELD(V7M_FPCCR, THREAD, 3, 1)
1666 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1667 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1668 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1669 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1670 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1671 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1672 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1673 FIELD(V7M_FPCCR, RES0, 11, 15)
1674 FIELD(V7M_FPCCR, TS, 26, 1)
1675 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1676 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1677 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1678 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1679 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1680 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1681 #define R_V7M_FPCCR_BANKED_MASK                 \
1682     (R_V7M_FPCCR_LSPACT_MASK |                  \
1683      R_V7M_FPCCR_USER_MASK |                    \
1684      R_V7M_FPCCR_THREAD_MASK |                  \
1685      R_V7M_FPCCR_MMRDY_MASK |                   \
1686      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1687      R_V7M_FPCCR_UFRDY_MASK |                   \
1688      R_V7M_FPCCR_ASPEN_MASK)
1689 
1690 /*
1691  * System register ID fields.
1692  */
1693 FIELD(MIDR_EL1, REVISION, 0, 4)
1694 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1695 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1696 FIELD(MIDR_EL1, VARIANT, 20, 4)
1697 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1698 
1699 FIELD(ID_ISAR0, SWAP, 0, 4)
1700 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1701 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1702 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1703 FIELD(ID_ISAR0, COPROC, 16, 4)
1704 FIELD(ID_ISAR0, DEBUG, 20, 4)
1705 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1706 
1707 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1708 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1709 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1710 FIELD(ID_ISAR1, EXTEND, 12, 4)
1711 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1712 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1713 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1714 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1715 
1716 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1717 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1718 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1719 FIELD(ID_ISAR2, MULT, 12, 4)
1720 FIELD(ID_ISAR2, MULTS, 16, 4)
1721 FIELD(ID_ISAR2, MULTU, 20, 4)
1722 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1723 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1724 
1725 FIELD(ID_ISAR3, SATURATE, 0, 4)
1726 FIELD(ID_ISAR3, SIMD, 4, 4)
1727 FIELD(ID_ISAR3, SVC, 8, 4)
1728 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1729 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1730 FIELD(ID_ISAR3, T32COPY, 20, 4)
1731 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1732 FIELD(ID_ISAR3, T32EE, 28, 4)
1733 
1734 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1735 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1736 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1737 FIELD(ID_ISAR4, SMC, 12, 4)
1738 FIELD(ID_ISAR4, BARRIER, 16, 4)
1739 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1740 FIELD(ID_ISAR4, PSR_M, 24, 4)
1741 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1742 
1743 FIELD(ID_ISAR5, SEVL, 0, 4)
1744 FIELD(ID_ISAR5, AES, 4, 4)
1745 FIELD(ID_ISAR5, SHA1, 8, 4)
1746 FIELD(ID_ISAR5, SHA2, 12, 4)
1747 FIELD(ID_ISAR5, CRC32, 16, 4)
1748 FIELD(ID_ISAR5, RDM, 24, 4)
1749 FIELD(ID_ISAR5, VCMA, 28, 4)
1750 
1751 FIELD(ID_ISAR6, JSCVT, 0, 4)
1752 FIELD(ID_ISAR6, DP, 4, 4)
1753 FIELD(ID_ISAR6, FHM, 8, 4)
1754 FIELD(ID_ISAR6, SB, 12, 4)
1755 FIELD(ID_ISAR6, SPECRES, 16, 4)
1756 
1757 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1758 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1759 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1760 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1761 FIELD(ID_MMFR3, PAN, 16, 4)
1762 FIELD(ID_MMFR3, COHWALK, 20, 4)
1763 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1764 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1765 
1766 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1767 FIELD(ID_MMFR4, AC2, 4, 4)
1768 FIELD(ID_MMFR4, XNX, 8, 4)
1769 FIELD(ID_MMFR4, CNP, 12, 4)
1770 FIELD(ID_MMFR4, HPDS, 16, 4)
1771 FIELD(ID_MMFR4, LSM, 20, 4)
1772 FIELD(ID_MMFR4, CCIDX, 24, 4)
1773 FIELD(ID_MMFR4, EVT, 28, 4)
1774 
1775 FIELD(ID_AA64ISAR0, AES, 4, 4)
1776 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1777 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1778 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1779 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1780 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1781 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1782 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1783 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1784 FIELD(ID_AA64ISAR0, DP, 44, 4)
1785 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1786 FIELD(ID_AA64ISAR0, TS, 52, 4)
1787 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1788 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1789 
1790 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1791 FIELD(ID_AA64ISAR1, APA, 4, 4)
1792 FIELD(ID_AA64ISAR1, API, 8, 4)
1793 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1794 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1795 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1796 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1797 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1798 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1799 FIELD(ID_AA64ISAR1, SB, 36, 4)
1800 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1801 
1802 FIELD(ID_AA64PFR0, EL0, 0, 4)
1803 FIELD(ID_AA64PFR0, EL1, 4, 4)
1804 FIELD(ID_AA64PFR0, EL2, 8, 4)
1805 FIELD(ID_AA64PFR0, EL3, 12, 4)
1806 FIELD(ID_AA64PFR0, FP, 16, 4)
1807 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1808 FIELD(ID_AA64PFR0, GIC, 24, 4)
1809 FIELD(ID_AA64PFR0, RAS, 28, 4)
1810 FIELD(ID_AA64PFR0, SVE, 32, 4)
1811 
1812 FIELD(ID_AA64PFR1, BT, 0, 4)
1813 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1814 FIELD(ID_AA64PFR1, MTE, 8, 4)
1815 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1816 
1817 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1818 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1819 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1820 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1821 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1822 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1823 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1824 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1825 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1826 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1827 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1828 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1829 
1830 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1831 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1832 FIELD(ID_AA64MMFR1, VH, 8, 4)
1833 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1834 FIELD(ID_AA64MMFR1, LO, 16, 4)
1835 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1836 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1837 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1838 
1839 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1840 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1841 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1842 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1843 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1844 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1845 FIELD(ID_AA64MMFR2, NV, 24, 4)
1846 FIELD(ID_AA64MMFR2, ST, 28, 4)
1847 FIELD(ID_AA64MMFR2, AT, 32, 4)
1848 FIELD(ID_AA64MMFR2, IDS, 36, 4)
1849 FIELD(ID_AA64MMFR2, FWB, 40, 4)
1850 FIELD(ID_AA64MMFR2, TTL, 48, 4)
1851 FIELD(ID_AA64MMFR2, BBM, 52, 4)
1852 FIELD(ID_AA64MMFR2, EVT, 56, 4)
1853 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1854 
1855 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1856 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1857 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1858 FIELD(ID_AA64DFR0, BRPS, 12, 4)
1859 FIELD(ID_AA64DFR0, WRPS, 20, 4)
1860 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1861 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1862 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1863 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1864 
1865 FIELD(ID_DFR0, COPDBG, 0, 4)
1866 FIELD(ID_DFR0, COPSDBG, 4, 4)
1867 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1868 FIELD(ID_DFR0, COPTRC, 12, 4)
1869 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1870 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1871 FIELD(ID_DFR0, PERFMON, 24, 4)
1872 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1873 
1874 FIELD(DBGDIDR, SE_IMP, 12, 1)
1875 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1876 FIELD(DBGDIDR, VERSION, 16, 4)
1877 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1878 FIELD(DBGDIDR, BRPS, 24, 4)
1879 FIELD(DBGDIDR, WRPS, 28, 4)
1880 
1881 FIELD(MVFR0, SIMDREG, 0, 4)
1882 FIELD(MVFR0, FPSP, 4, 4)
1883 FIELD(MVFR0, FPDP, 8, 4)
1884 FIELD(MVFR0, FPTRAP, 12, 4)
1885 FIELD(MVFR0, FPDIVIDE, 16, 4)
1886 FIELD(MVFR0, FPSQRT, 20, 4)
1887 FIELD(MVFR0, FPSHVEC, 24, 4)
1888 FIELD(MVFR0, FPROUND, 28, 4)
1889 
1890 FIELD(MVFR1, FPFTZ, 0, 4)
1891 FIELD(MVFR1, FPDNAN, 4, 4)
1892 FIELD(MVFR1, SIMDLS, 8, 4)
1893 FIELD(MVFR1, SIMDINT, 12, 4)
1894 FIELD(MVFR1, SIMDSP, 16, 4)
1895 FIELD(MVFR1, SIMDHP, 20, 4)
1896 FIELD(MVFR1, FPHP, 24, 4)
1897 FIELD(MVFR1, SIMDFMAC, 28, 4)
1898 
1899 FIELD(MVFR2, SIMDMISC, 0, 4)
1900 FIELD(MVFR2, FPMISC, 4, 4)
1901 
1902 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1903 
1904 /* If adding a feature bit which corresponds to a Linux ELF
1905  * HWCAP bit, remember to update the feature-bit-to-hwcap
1906  * mapping in linux-user/elfload.c:get_elf_hwcap().
1907  */
1908 enum arm_features {
1909     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1910     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1911     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1912     ARM_FEATURE_V6,
1913     ARM_FEATURE_V6K,
1914     ARM_FEATURE_V7,
1915     ARM_FEATURE_THUMB2,
1916     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1917     ARM_FEATURE_NEON,
1918     ARM_FEATURE_M, /* Microcontroller profile.  */
1919     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1920     ARM_FEATURE_THUMB2EE,
1921     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1922     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1923     ARM_FEATURE_V4T,
1924     ARM_FEATURE_V5,
1925     ARM_FEATURE_STRONGARM,
1926     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1927     ARM_FEATURE_GENERIC_TIMER,
1928     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1929     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1930     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1931     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1932     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1933     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1934     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1935     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1936     ARM_FEATURE_V8,
1937     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1938     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1939     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1940     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1941     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1942     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1943     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1944     ARM_FEATURE_PMU, /* has PMU support */
1945     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1946     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1947     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1948 };
1949 
1950 static inline int arm_feature(CPUARMState *env, int feature)
1951 {
1952     return (env->features & (1ULL << feature)) != 0;
1953 }
1954 
1955 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1956 
1957 #if !defined(CONFIG_USER_ONLY)
1958 /* Return true if exception levels below EL3 are in secure state,
1959  * or would be following an exception return to that level.
1960  * Unlike arm_is_secure() (which is always a question about the
1961  * _current_ state of the CPU) this doesn't care about the current
1962  * EL or mode.
1963  */
1964 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1965 {
1966     if (arm_feature(env, ARM_FEATURE_EL3)) {
1967         return !(env->cp15.scr_el3 & SCR_NS);
1968     } else {
1969         /* If EL3 is not supported then the secure state is implementation
1970          * defined, in which case QEMU defaults to non-secure.
1971          */
1972         return false;
1973     }
1974 }
1975 
1976 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1977 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1978 {
1979     if (arm_feature(env, ARM_FEATURE_EL3)) {
1980         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1981             /* CPU currently in AArch64 state and EL3 */
1982             return true;
1983         } else if (!is_a64(env) &&
1984                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1985             /* CPU currently in AArch32 state and monitor mode */
1986             return true;
1987         }
1988     }
1989     return false;
1990 }
1991 
1992 /* Return true if the processor is in secure state */
1993 static inline bool arm_is_secure(CPUARMState *env)
1994 {
1995     if (arm_is_el3_or_mon(env)) {
1996         return true;
1997     }
1998     return arm_is_secure_below_el3(env);
1999 }
2000 
2001 #else
2002 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2003 {
2004     return false;
2005 }
2006 
2007 static inline bool arm_is_secure(CPUARMState *env)
2008 {
2009     return false;
2010 }
2011 #endif
2012 
2013 /**
2014  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2015  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2016  * "for all purposes other than a direct read or write access of HCR_EL2."
2017  * Not included here is HCR_RW.
2018  */
2019 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2020 
2021 /* Return true if the specified exception level is running in AArch64 state. */
2022 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2023 {
2024     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2025      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2026      */
2027     assert(el >= 1 && el <= 3);
2028     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2029 
2030     /* The highest exception level is always at the maximum supported
2031      * register width, and then lower levels have a register width controlled
2032      * by bits in the SCR or HCR registers.
2033      */
2034     if (el == 3) {
2035         return aa64;
2036     }
2037 
2038     if (arm_feature(env, ARM_FEATURE_EL3)) {
2039         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2040     }
2041 
2042     if (el == 2) {
2043         return aa64;
2044     }
2045 
2046     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2047         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2048     }
2049 
2050     return aa64;
2051 }
2052 
2053 /* Function for determing whether guest cp register reads and writes should
2054  * access the secure or non-secure bank of a cp register.  When EL3 is
2055  * operating in AArch32 state, the NS-bit determines whether the secure
2056  * instance of a cp register should be used. When EL3 is AArch64 (or if
2057  * it doesn't exist at all) then there is no register banking, and all
2058  * accesses are to the non-secure version.
2059  */
2060 static inline bool access_secure_reg(CPUARMState *env)
2061 {
2062     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2063                 !arm_el_is_aa64(env, 3) &&
2064                 !(env->cp15.scr_el3 & SCR_NS));
2065 
2066     return ret;
2067 }
2068 
2069 /* Macros for accessing a specified CP register bank */
2070 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2071     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2072 
2073 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2074     do {                                                \
2075         if (_secure) {                                   \
2076             (_env)->cp15._regname##_s = (_val);            \
2077         } else {                                        \
2078             (_env)->cp15._regname##_ns = (_val);           \
2079         }                                               \
2080     } while (0)
2081 
2082 /* Macros for automatically accessing a specific CP register bank depending on
2083  * the current secure state of the system.  These macros are not intended for
2084  * supporting instruction translation reads/writes as these are dependent
2085  * solely on the SCR.NS bit and not the mode.
2086  */
2087 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2088     A32_BANKED_REG_GET((_env), _regname,                \
2089                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2090 
2091 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2092     A32_BANKED_REG_SET((_env), _regname,                                    \
2093                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2094                        (_val))
2095 
2096 void arm_cpu_list(void);
2097 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2098                                  uint32_t cur_el, bool secure);
2099 
2100 /* Interface between CPU and Interrupt controller.  */
2101 #ifndef CONFIG_USER_ONLY
2102 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2103 #else
2104 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2105 {
2106     return true;
2107 }
2108 #endif
2109 /**
2110  * armv7m_nvic_set_pending: mark the specified exception as pending
2111  * @opaque: the NVIC
2112  * @irq: the exception number to mark pending
2113  * @secure: false for non-banked exceptions or for the nonsecure
2114  * version of a banked exception, true for the secure version of a banked
2115  * exception.
2116  *
2117  * Marks the specified exception as pending. Note that we will assert()
2118  * if @secure is true and @irq does not specify one of the fixed set
2119  * of architecturally banked exceptions.
2120  */
2121 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2122 /**
2123  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2124  * @opaque: the NVIC
2125  * @irq: the exception number to mark pending
2126  * @secure: false for non-banked exceptions or for the nonsecure
2127  * version of a banked exception, true for the secure version of a banked
2128  * exception.
2129  *
2130  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2131  * exceptions (exceptions generated in the course of trying to take
2132  * a different exception).
2133  */
2134 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2135 /**
2136  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2137  * @opaque: the NVIC
2138  * @irq: the exception number to mark pending
2139  * @secure: false for non-banked exceptions or for the nonsecure
2140  * version of a banked exception, true for the secure version of a banked
2141  * exception.
2142  *
2143  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2144  * generated in the course of lazy stacking of FP registers.
2145  */
2146 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2147 /**
2148  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2149  *    exception, and whether it targets Secure state
2150  * @opaque: the NVIC
2151  * @pirq: set to pending exception number
2152  * @ptargets_secure: set to whether pending exception targets Secure
2153  *
2154  * This function writes the number of the highest priority pending
2155  * exception (the one which would be made active by
2156  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2157  * to true if the current highest priority pending exception should
2158  * be taken to Secure state, false for NS.
2159  */
2160 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2161                                       bool *ptargets_secure);
2162 /**
2163  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2164  * @opaque: the NVIC
2165  *
2166  * Move the current highest priority pending exception from the pending
2167  * state to the active state, and update v7m.exception to indicate that
2168  * it is the exception currently being handled.
2169  */
2170 void armv7m_nvic_acknowledge_irq(void *opaque);
2171 /**
2172  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2173  * @opaque: the NVIC
2174  * @irq: the exception number to complete
2175  * @secure: true if this exception was secure
2176  *
2177  * Returns: -1 if the irq was not active
2178  *           1 if completing this irq brought us back to base (no active irqs)
2179  *           0 if there is still an irq active after this one was completed
2180  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2181  */
2182 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2183 /**
2184  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2185  * @opaque: the NVIC
2186  * @irq: the exception number to mark pending
2187  * @secure: false for non-banked exceptions or for the nonsecure
2188  * version of a banked exception, true for the secure version of a banked
2189  * exception.
2190  *
2191  * Return whether an exception is "ready", i.e. whether the exception is
2192  * enabled and is configured at a priority which would allow it to
2193  * interrupt the current execution priority. This controls whether the
2194  * RDY bit for it in the FPCCR is set.
2195  */
2196 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2197 /**
2198  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2199  * @opaque: the NVIC
2200  *
2201  * Returns: the raw execution priority as defined by the v8M architecture.
2202  * This is the execution priority minus the effects of AIRCR.PRIS,
2203  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2204  * (v8M ARM ARM I_PKLD.)
2205  */
2206 int armv7m_nvic_raw_execution_priority(void *opaque);
2207 /**
2208  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2209  * priority is negative for the specified security state.
2210  * @opaque: the NVIC
2211  * @secure: the security state to test
2212  * This corresponds to the pseudocode IsReqExecPriNeg().
2213  */
2214 #ifndef CONFIG_USER_ONLY
2215 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2216 #else
2217 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2218 {
2219     return false;
2220 }
2221 #endif
2222 
2223 /* Interface for defining coprocessor registers.
2224  * Registers are defined in tables of arm_cp_reginfo structs
2225  * which are passed to define_arm_cp_regs().
2226  */
2227 
2228 /* When looking up a coprocessor register we look for it
2229  * via an integer which encodes all of:
2230  *  coprocessor number
2231  *  Crn, Crm, opc1, opc2 fields
2232  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2233  *    or via MRRC/MCRR?)
2234  *  non-secure/secure bank (AArch32 only)
2235  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2236  * (In this case crn and opc2 should be zero.)
2237  * For AArch64, there is no 32/64 bit size distinction;
2238  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2239  * and 4 bit CRn and CRm. The encoding patterns are chosen
2240  * to be easy to convert to and from the KVM encodings, and also
2241  * so that the hashtable can contain both AArch32 and AArch64
2242  * registers (to allow for interprocessing where we might run
2243  * 32 bit code on a 64 bit core).
2244  */
2245 /* This bit is private to our hashtable cpreg; in KVM register
2246  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2247  * in the upper bits of the 64 bit ID.
2248  */
2249 #define CP_REG_AA64_SHIFT 28
2250 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2251 
2252 /* To enable banking of coprocessor registers depending on ns-bit we
2253  * add a bit to distinguish between secure and non-secure cpregs in the
2254  * hashtable.
2255  */
2256 #define CP_REG_NS_SHIFT 29
2257 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2258 
2259 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2260     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2261      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2262 
2263 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2264     (CP_REG_AA64_MASK |                                 \
2265      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2266      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2267      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2268      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2269      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2270      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2271 
2272 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2273  * version used as a key for the coprocessor register hashtable
2274  */
2275 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2276 {
2277     uint32_t cpregid = kvmid;
2278     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2279         cpregid |= CP_REG_AA64_MASK;
2280     } else {
2281         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2282             cpregid |= (1 << 15);
2283         }
2284 
2285         /* KVM is always non-secure so add the NS flag on AArch32 register
2286          * entries.
2287          */
2288          cpregid |= 1 << CP_REG_NS_SHIFT;
2289     }
2290     return cpregid;
2291 }
2292 
2293 /* Convert a truncated 32 bit hashtable key into the full
2294  * 64 bit KVM register ID.
2295  */
2296 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2297 {
2298     uint64_t kvmid;
2299 
2300     if (cpregid & CP_REG_AA64_MASK) {
2301         kvmid = cpregid & ~CP_REG_AA64_MASK;
2302         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2303     } else {
2304         kvmid = cpregid & ~(1 << 15);
2305         if (cpregid & (1 << 15)) {
2306             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2307         } else {
2308             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2309         }
2310     }
2311     return kvmid;
2312 }
2313 
2314 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2315  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2316  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2317  * TCG can assume the value to be constant (ie load at translate time)
2318  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2319  * indicates that the TB should not be ended after a write to this register
2320  * (the default is that the TB ends after cp writes). OVERRIDE permits
2321  * a register definition to override a previous definition for the
2322  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2323  * old must have the OVERRIDE bit set.
2324  * ALIAS indicates that this register is an alias view of some underlying
2325  * state which is also visible via another register, and that the other
2326  * register is handling migration and reset; registers marked ALIAS will not be
2327  * migrated but may have their state set by syncing of register state from KVM.
2328  * NO_RAW indicates that this register has no underlying state and does not
2329  * support raw access for state saving/loading; it will not be used for either
2330  * migration or KVM state synchronization. (Typically this is for "registers"
2331  * which are actually used as instructions for cache maintenance and so on.)
2332  * IO indicates that this register does I/O and therefore its accesses
2333  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2334  * registers which implement clocks or timers require this.
2335  * RAISES_EXC is for when the read or write hook might raise an exception;
2336  * the generated code will synchronize the CPU state before calling the hook
2337  * so that it is safe for the hook to call raise_exception().
2338  * NEWEL is for writes to registers that might change the exception
2339  * level - typically on older ARM chips. For those cases we need to
2340  * re-read the new el when recomputing the translation flags.
2341  */
2342 #define ARM_CP_SPECIAL           0x0001
2343 #define ARM_CP_CONST             0x0002
2344 #define ARM_CP_64BIT             0x0004
2345 #define ARM_CP_SUPPRESS_TB_END   0x0008
2346 #define ARM_CP_OVERRIDE          0x0010
2347 #define ARM_CP_ALIAS             0x0020
2348 #define ARM_CP_IO                0x0040
2349 #define ARM_CP_NO_RAW            0x0080
2350 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2351 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2352 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2353 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2354 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2355 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2356 #define ARM_CP_FPU               0x1000
2357 #define ARM_CP_SVE               0x2000
2358 #define ARM_CP_NO_GDB            0x4000
2359 #define ARM_CP_RAISES_EXC        0x8000
2360 #define ARM_CP_NEWEL             0x10000
2361 /* Used only as a terminator for ARMCPRegInfo lists */
2362 #define ARM_CP_SENTINEL          0xfffff
2363 /* Mask of only the flag bits in a type field */
2364 #define ARM_CP_FLAG_MASK         0x1f0ff
2365 
2366 /* Valid values for ARMCPRegInfo state field, indicating which of
2367  * the AArch32 and AArch64 execution states this register is visible in.
2368  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2369  * If the reginfo is declared to be visible in both states then a second
2370  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2371  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2372  * Note that we rely on the values of these enums as we iterate through
2373  * the various states in some places.
2374  */
2375 enum {
2376     ARM_CP_STATE_AA32 = 0,
2377     ARM_CP_STATE_AA64 = 1,
2378     ARM_CP_STATE_BOTH = 2,
2379 };
2380 
2381 /* ARM CP register secure state flags.  These flags identify security state
2382  * attributes for a given CP register entry.
2383  * The existence of both or neither secure and non-secure flags indicates that
2384  * the register has both a secure and non-secure hash entry.  A single one of
2385  * these flags causes the register to only be hashed for the specified
2386  * security state.
2387  * Although definitions may have any combination of the S/NS bits, each
2388  * registered entry will only have one to identify whether the entry is secure
2389  * or non-secure.
2390  */
2391 enum {
2392     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2393     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2394 };
2395 
2396 /* Return true if cptype is a valid type field. This is used to try to
2397  * catch errors where the sentinel has been accidentally left off the end
2398  * of a list of registers.
2399  */
2400 static inline bool cptype_valid(int cptype)
2401 {
2402     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2403         || ((cptype & ARM_CP_SPECIAL) &&
2404             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2405 }
2406 
2407 /* Access rights:
2408  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2409  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2410  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2411  * (ie any of the privileged modes in Secure state, or Monitor mode).
2412  * If a register is accessible in one privilege level it's always accessible
2413  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2414  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2415  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2416  * terminology a little and call this PL3.
2417  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2418  * with the ELx exception levels.
2419  *
2420  * If access permissions for a register are more complex than can be
2421  * described with these bits, then use a laxer set of restrictions, and
2422  * do the more restrictive/complex check inside a helper function.
2423  */
2424 #define PL3_R 0x80
2425 #define PL3_W 0x40
2426 #define PL2_R (0x20 | PL3_R)
2427 #define PL2_W (0x10 | PL3_W)
2428 #define PL1_R (0x08 | PL2_R)
2429 #define PL1_W (0x04 | PL2_W)
2430 #define PL0_R (0x02 | PL1_R)
2431 #define PL0_W (0x01 | PL1_W)
2432 
2433 /*
2434  * For user-mode some registers are accessible to EL0 via a kernel
2435  * trap-and-emulate ABI. In this case we define the read permissions
2436  * as actually being PL0_R. However some bits of any given register
2437  * may still be masked.
2438  */
2439 #ifdef CONFIG_USER_ONLY
2440 #define PL0U_R PL0_R
2441 #else
2442 #define PL0U_R PL1_R
2443 #endif
2444 
2445 #define PL3_RW (PL3_R | PL3_W)
2446 #define PL2_RW (PL2_R | PL2_W)
2447 #define PL1_RW (PL1_R | PL1_W)
2448 #define PL0_RW (PL0_R | PL0_W)
2449 
2450 /* Return the highest implemented Exception Level */
2451 static inline int arm_highest_el(CPUARMState *env)
2452 {
2453     if (arm_feature(env, ARM_FEATURE_EL3)) {
2454         return 3;
2455     }
2456     if (arm_feature(env, ARM_FEATURE_EL2)) {
2457         return 2;
2458     }
2459     return 1;
2460 }
2461 
2462 /* Return true if a v7M CPU is in Handler mode */
2463 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2464 {
2465     return env->v7m.exception != 0;
2466 }
2467 
2468 /* Return the current Exception Level (as per ARMv8; note that this differs
2469  * from the ARMv7 Privilege Level).
2470  */
2471 static inline int arm_current_el(CPUARMState *env)
2472 {
2473     if (arm_feature(env, ARM_FEATURE_M)) {
2474         return arm_v7m_is_handler_mode(env) ||
2475             !(env->v7m.control[env->v7m.secure] & 1);
2476     }
2477 
2478     if (is_a64(env)) {
2479         return extract32(env->pstate, 2, 2);
2480     }
2481 
2482     switch (env->uncached_cpsr & 0x1f) {
2483     case ARM_CPU_MODE_USR:
2484         return 0;
2485     case ARM_CPU_MODE_HYP:
2486         return 2;
2487     case ARM_CPU_MODE_MON:
2488         return 3;
2489     default:
2490         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2491             /* If EL3 is 32-bit then all secure privileged modes run in
2492              * EL3
2493              */
2494             return 3;
2495         }
2496 
2497         return 1;
2498     }
2499 }
2500 
2501 typedef struct ARMCPRegInfo ARMCPRegInfo;
2502 
2503 typedef enum CPAccessResult {
2504     /* Access is permitted */
2505     CP_ACCESS_OK = 0,
2506     /* Access fails due to a configurable trap or enable which would
2507      * result in a categorized exception syndrome giving information about
2508      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2509      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2510      * PL1 if in EL0, otherwise to the current EL).
2511      */
2512     CP_ACCESS_TRAP = 1,
2513     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2514      * Note that this is not a catch-all case -- the set of cases which may
2515      * result in this failure is specifically defined by the architecture.
2516      */
2517     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2518     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2519     CP_ACCESS_TRAP_EL2 = 3,
2520     CP_ACCESS_TRAP_EL3 = 4,
2521     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2522     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2523     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2524     /* Access fails and results in an exception syndrome for an FP access,
2525      * trapped directly to EL2 or EL3
2526      */
2527     CP_ACCESS_TRAP_FP_EL2 = 7,
2528     CP_ACCESS_TRAP_FP_EL3 = 8,
2529 } CPAccessResult;
2530 
2531 /* Access functions for coprocessor registers. These cannot fail and
2532  * may not raise exceptions.
2533  */
2534 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2535 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2536                        uint64_t value);
2537 /* Access permission check functions for coprocessor registers. */
2538 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2539                                   const ARMCPRegInfo *opaque,
2540                                   bool isread);
2541 /* Hook function for register reset */
2542 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2543 
2544 #define CP_ANY 0xff
2545 
2546 /* Definition of an ARM coprocessor register */
2547 struct ARMCPRegInfo {
2548     /* Name of register (useful mainly for debugging, need not be unique) */
2549     const char *name;
2550     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2551      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2552      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2553      * will be decoded to this register. The register read and write
2554      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2555      * used by the program, so it is possible to register a wildcard and
2556      * then behave differently on read/write if necessary.
2557      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2558      * must both be zero.
2559      * For AArch64-visible registers, opc0 is also used.
2560      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2561      * way to distinguish (for KVM's benefit) guest-visible system registers
2562      * from demuxed ones provided to preserve the "no side effects on
2563      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2564      * visible (to match KVM's encoding); cp==0 will be converted to
2565      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2566      */
2567     uint8_t cp;
2568     uint8_t crn;
2569     uint8_t crm;
2570     uint8_t opc0;
2571     uint8_t opc1;
2572     uint8_t opc2;
2573     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2574     int state;
2575     /* Register type: ARM_CP_* bits/values */
2576     int type;
2577     /* Access rights: PL*_[RW] */
2578     int access;
2579     /* Security state: ARM_CP_SECSTATE_* bits/values */
2580     int secure;
2581     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2582      * this register was defined: can be used to hand data through to the
2583      * register read/write functions, since they are passed the ARMCPRegInfo*.
2584      */
2585     void *opaque;
2586     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2587      * fieldoffset is non-zero, the reset value of the register.
2588      */
2589     uint64_t resetvalue;
2590     /* Offset of the field in CPUARMState for this register.
2591      *
2592      * This is not needed if either:
2593      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2594      *  2. both readfn and writefn are specified
2595      */
2596     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2597 
2598     /* Offsets of the secure and non-secure fields in CPUARMState for the
2599      * register if it is banked.  These fields are only used during the static
2600      * registration of a register.  During hashing the bank associated
2601      * with a given security state is copied to fieldoffset which is used from
2602      * there on out.
2603      *
2604      * It is expected that register definitions use either fieldoffset or
2605      * bank_fieldoffsets in the definition but not both.  It is also expected
2606      * that both bank offsets are set when defining a banked register.  This
2607      * use indicates that a register is banked.
2608      */
2609     ptrdiff_t bank_fieldoffsets[2];
2610 
2611     /* Function for making any access checks for this register in addition to
2612      * those specified by the 'access' permissions bits. If NULL, no extra
2613      * checks required. The access check is performed at runtime, not at
2614      * translate time.
2615      */
2616     CPAccessFn *accessfn;
2617     /* Function for handling reads of this register. If NULL, then reads
2618      * will be done by loading from the offset into CPUARMState specified
2619      * by fieldoffset.
2620      */
2621     CPReadFn *readfn;
2622     /* Function for handling writes of this register. If NULL, then writes
2623      * will be done by writing to the offset into CPUARMState specified
2624      * by fieldoffset.
2625      */
2626     CPWriteFn *writefn;
2627     /* Function for doing a "raw" read; used when we need to copy
2628      * coprocessor state to the kernel for KVM or out for
2629      * migration. This only needs to be provided if there is also a
2630      * readfn and it has side effects (for instance clear-on-read bits).
2631      */
2632     CPReadFn *raw_readfn;
2633     /* Function for doing a "raw" write; used when we need to copy KVM
2634      * kernel coprocessor state into userspace, or for inbound
2635      * migration. This only needs to be provided if there is also a
2636      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2637      * or similar behaviour.
2638      */
2639     CPWriteFn *raw_writefn;
2640     /* Function for resetting the register. If NULL, then reset will be done
2641      * by writing resetvalue to the field specified in fieldoffset. If
2642      * fieldoffset is 0 then no reset will be done.
2643      */
2644     CPResetFn *resetfn;
2645 
2646     /*
2647      * "Original" writefn and readfn.
2648      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2649      * accessor functions of various EL1/EL0 to perform the runtime
2650      * check for which sysreg should actually be modified, and then
2651      * forwards the operation.  Before overwriting the accessors,
2652      * the original function is copied here, so that accesses that
2653      * really do go to the EL1/EL0 version proceed normally.
2654      * (The corresponding EL2 register is linked via opaque.)
2655      */
2656     CPReadFn *orig_readfn;
2657     CPWriteFn *orig_writefn;
2658 };
2659 
2660 /* Macros which are lvalues for the field in CPUARMState for the
2661  * ARMCPRegInfo *ri.
2662  */
2663 #define CPREG_FIELD32(env, ri) \
2664     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2665 #define CPREG_FIELD64(env, ri) \
2666     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2667 
2668 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2669 
2670 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2671                                     const ARMCPRegInfo *regs, void *opaque);
2672 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2673                                        const ARMCPRegInfo *regs, void *opaque);
2674 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2675 {
2676     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2677 }
2678 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2679 {
2680     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2681 }
2682 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2683 
2684 /*
2685  * Definition of an ARM co-processor register as viewed from
2686  * userspace. This is used for presenting sanitised versions of
2687  * registers to userspace when emulating the Linux AArch64 CPU
2688  * ID/feature ABI (advertised as HWCAP_CPUID).
2689  */
2690 typedef struct ARMCPRegUserSpaceInfo {
2691     /* Name of register */
2692     const char *name;
2693 
2694     /* Is the name actually a glob pattern */
2695     bool is_glob;
2696 
2697     /* Only some bits are exported to user space */
2698     uint64_t exported_bits;
2699 
2700     /* Fixed bits are applied after the mask */
2701     uint64_t fixed_bits;
2702 } ARMCPRegUserSpaceInfo;
2703 
2704 #define REGUSERINFO_SENTINEL { .name = NULL }
2705 
2706 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2707 
2708 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2709 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2710                          uint64_t value);
2711 /* CPReadFn that can be used for read-as-zero behaviour */
2712 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2713 
2714 /* CPResetFn that does nothing, for use if no reset is required even
2715  * if fieldoffset is non zero.
2716  */
2717 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2718 
2719 /* Return true if this reginfo struct's field in the cpu state struct
2720  * is 64 bits wide.
2721  */
2722 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2723 {
2724     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2725 }
2726 
2727 static inline bool cp_access_ok(int current_el,
2728                                 const ARMCPRegInfo *ri, int isread)
2729 {
2730     return (ri->access >> ((current_el * 2) + isread)) & 1;
2731 }
2732 
2733 /* Raw read of a coprocessor register (as needed for migration, etc) */
2734 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2735 
2736 /**
2737  * write_list_to_cpustate
2738  * @cpu: ARMCPU
2739  *
2740  * For each register listed in the ARMCPU cpreg_indexes list, write
2741  * its value from the cpreg_values list into the ARMCPUState structure.
2742  * This updates TCG's working data structures from KVM data or
2743  * from incoming migration state.
2744  *
2745  * Returns: true if all register values were updated correctly,
2746  * false if some register was unknown or could not be written.
2747  * Note that we do not stop early on failure -- we will attempt
2748  * writing all registers in the list.
2749  */
2750 bool write_list_to_cpustate(ARMCPU *cpu);
2751 
2752 /**
2753  * write_cpustate_to_list:
2754  * @cpu: ARMCPU
2755  * @kvm_sync: true if this is for syncing back to KVM
2756  *
2757  * For each register listed in the ARMCPU cpreg_indexes list, write
2758  * its value from the ARMCPUState structure into the cpreg_values list.
2759  * This is used to copy info from TCG's working data structures into
2760  * KVM or for outbound migration.
2761  *
2762  * @kvm_sync is true if we are doing this in order to sync the
2763  * register state back to KVM. In this case we will only update
2764  * values in the list if the previous list->cpustate sync actually
2765  * successfully wrote the CPU state. Otherwise we will keep the value
2766  * that is in the list.
2767  *
2768  * Returns: true if all register values were read correctly,
2769  * false if some register was unknown or could not be read.
2770  * Note that we do not stop early on failure -- we will attempt
2771  * reading all registers in the list.
2772  */
2773 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2774 
2775 #define ARM_CPUID_TI915T      0x54029152
2776 #define ARM_CPUID_TI925T      0x54029252
2777 
2778 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2779 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2780 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2781 
2782 #define cpu_signal_handler cpu_arm_signal_handler
2783 #define cpu_list arm_cpu_list
2784 
2785 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2786  *
2787  * If EL3 is 64-bit:
2788  *  + NonSecure EL1 & 0 stage 1
2789  *  + NonSecure EL1 & 0 stage 2
2790  *  + NonSecure EL2
2791  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2792  *  + Secure EL1 & 0
2793  *  + Secure EL3
2794  * If EL3 is 32-bit:
2795  *  + NonSecure PL1 & 0 stage 1
2796  *  + NonSecure PL1 & 0 stage 2
2797  *  + NonSecure PL2
2798  *  + Secure PL0
2799  *  + Secure PL1
2800  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2801  *
2802  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2803  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2804  *     because they may differ in access permissions even if the VA->PA map is
2805  *     the same
2806  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2807  *     translation, which means that we have one mmu_idx that deals with two
2808  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2809  *     architecturally permitted]
2810  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2811  *     handling via the TLB. The only way to do a stage 1 translation without
2812  *     the immediate stage 2 translation is via the ATS or AT system insns,
2813  *     which can be slow-pathed and always do a page table walk.
2814  *     The only use of stage 2 translations is either as part of an s1+2
2815  *     lookup or when loading the descriptors during a stage 1 page table walk,
2816  *     and in both those cases we don't use the TLB.
2817  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2818  *     translation regimes, because they map reasonably well to each other
2819  *     and they can't both be active at the same time.
2820  *  5. we want to be able to use the TLB for accesses done as part of a
2821  *     stage1 page table walk, rather than having to walk the stage2 page
2822  *     table over and over.
2823  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2824  *     Never (PAN) bit within PSTATE.
2825  *
2826  * This gives us the following list of cases:
2827  *
2828  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2829  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2830  * NS EL1 EL1&0 stage 1+2 +PAN
2831  * NS EL0 EL2&0
2832  * NS EL2 EL2&0
2833  * NS EL2 EL2&0 +PAN
2834  * NS EL2 (aka NS PL2)
2835  * S EL0 EL1&0 (aka S PL0)
2836  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2837  * S EL1 EL1&0 +PAN
2838  * S EL3 (aka S PL1)
2839  *
2840  * for a total of 11 different mmu_idx.
2841  *
2842  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2843  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2844  * NS EL2 if we ever model a Cortex-R52).
2845  *
2846  * M profile CPUs are rather different as they do not have a true MMU.
2847  * They have the following different MMU indexes:
2848  *  User
2849  *  Privileged
2850  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2851  *  Privileged, execution priority negative (ditto)
2852  * If the CPU supports the v8M Security Extension then there are also:
2853  *  Secure User
2854  *  Secure Privileged
2855  *  Secure User, execution priority negative
2856  *  Secure Privileged, execution priority negative
2857  *
2858  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2859  * are not quite the same -- different CPU types (most notably M profile
2860  * vs A/R profile) would like to use MMU indexes with different semantics,
2861  * but since we don't ever need to use all of those in a single CPU we
2862  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2863  * modes + total number of M profile MMU modes". The lower bits of
2864  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2865  * the same for any particular CPU.
2866  * Variables of type ARMMUIdx are always full values, and the core
2867  * index values are in variables of type 'int'.
2868  *
2869  * Our enumeration includes at the end some entries which are not "true"
2870  * mmu_idx values in that they don't have corresponding TLBs and are only
2871  * valid for doing slow path page table walks.
2872  *
2873  * The constant names here are patterned after the general style of the names
2874  * of the AT/ATS operations.
2875  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2876  * For M profile we arrange them to have a bit for priv, a bit for negpri
2877  * and a bit for secure.
2878  */
2879 #define ARM_MMU_IDX_A     0x10  /* A profile */
2880 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2881 #define ARM_MMU_IDX_M     0x40  /* M profile */
2882 
2883 /* Meanings of the bits for M profile mmu idx values */
2884 #define ARM_MMU_IDX_M_PRIV   0x1
2885 #define ARM_MMU_IDX_M_NEGPRI 0x2
2886 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2887 
2888 #define ARM_MMU_IDX_TYPE_MASK \
2889     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2890 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2891 
2892 typedef enum ARMMMUIdx {
2893     /*
2894      * A-profile.
2895      */
2896     ARMMMUIdx_E10_0      =  0 | ARM_MMU_IDX_A,
2897     ARMMMUIdx_E20_0      =  1 | ARM_MMU_IDX_A,
2898 
2899     ARMMMUIdx_E10_1      =  2 | ARM_MMU_IDX_A,
2900     ARMMMUIdx_E10_1_PAN  =  3 | ARM_MMU_IDX_A,
2901 
2902     ARMMMUIdx_E2         =  4 | ARM_MMU_IDX_A,
2903     ARMMMUIdx_E20_2      =  5 | ARM_MMU_IDX_A,
2904     ARMMMUIdx_E20_2_PAN  =  6 | ARM_MMU_IDX_A,
2905 
2906     ARMMMUIdx_SE10_0     = 7 | ARM_MMU_IDX_A,
2907     ARMMMUIdx_SE10_1     = 8 | ARM_MMU_IDX_A,
2908     ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2909     ARMMMUIdx_SE3        = 10 | ARM_MMU_IDX_A,
2910 
2911     /*
2912      * These are not allocated TLBs and are used only for AT system
2913      * instructions or for the first stage of an S12 page table walk.
2914      */
2915     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2916     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2917     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2918     /*
2919      * Not allocated a TLB: used only for second stage of an S12 page
2920      * table walk, or for descriptor loads during first stage of an S1
2921      * page table walk. Note that if we ever want to have a TLB for this
2922      * then various TLB flush insns which currently are no-ops or flush
2923      * only stage 1 MMU indexes will need to change to flush stage 2.
2924      */
2925     ARMMMUIdx_Stage2     = 3 | ARM_MMU_IDX_NOTLB,
2926 
2927     /*
2928      * M-profile.
2929      */
2930     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2931     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2932     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2933     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2934     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2935     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2936     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2937     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2938 } ARMMMUIdx;
2939 
2940 /*
2941  * Bit macros for the core-mmu-index values for each index,
2942  * for use when calling tlb_flush_by_mmuidx() and friends.
2943  */
2944 #define TO_CORE_BIT(NAME) \
2945     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2946 
2947 typedef enum ARMMMUIdxBit {
2948     TO_CORE_BIT(E10_0),
2949     TO_CORE_BIT(E20_0),
2950     TO_CORE_BIT(E10_1),
2951     TO_CORE_BIT(E10_1_PAN),
2952     TO_CORE_BIT(E2),
2953     TO_CORE_BIT(E20_2),
2954     TO_CORE_BIT(E20_2_PAN),
2955     TO_CORE_BIT(SE10_0),
2956     TO_CORE_BIT(SE10_1),
2957     TO_CORE_BIT(SE10_1_PAN),
2958     TO_CORE_BIT(SE3),
2959 
2960     TO_CORE_BIT(MUser),
2961     TO_CORE_BIT(MPriv),
2962     TO_CORE_BIT(MUserNegPri),
2963     TO_CORE_BIT(MPrivNegPri),
2964     TO_CORE_BIT(MSUser),
2965     TO_CORE_BIT(MSPriv),
2966     TO_CORE_BIT(MSUserNegPri),
2967     TO_CORE_BIT(MSPrivNegPri),
2968 } ARMMMUIdxBit;
2969 
2970 #undef TO_CORE_BIT
2971 
2972 #define MMU_USER_IDX 0
2973 
2974 /* Indexes used when registering address spaces with cpu_address_space_init */
2975 typedef enum ARMASIdx {
2976     ARMASIdx_NS = 0,
2977     ARMASIdx_S = 1,
2978 } ARMASIdx;
2979 
2980 /* Return the Exception Level targeted by debug exceptions. */
2981 static inline int arm_debug_target_el(CPUARMState *env)
2982 {
2983     bool secure = arm_is_secure(env);
2984     bool route_to_el2 = false;
2985 
2986     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2987         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2988                        env->cp15.mdcr_el2 & MDCR_TDE;
2989     }
2990 
2991     if (route_to_el2) {
2992         return 2;
2993     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2994                !arm_el_is_aa64(env, 3) && secure) {
2995         return 3;
2996     } else {
2997         return 1;
2998     }
2999 }
3000 
3001 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3002 {
3003     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3004      * CSSELR is RAZ/WI.
3005      */
3006     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3007 }
3008 
3009 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3010 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3011 {
3012     int cur_el = arm_current_el(env);
3013     int debug_el;
3014 
3015     if (cur_el == 3) {
3016         return false;
3017     }
3018 
3019     /* MDCR_EL3.SDD disables debug events from Secure state */
3020     if (arm_is_secure_below_el3(env)
3021         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3022         return false;
3023     }
3024 
3025     /*
3026      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3027      * while not masking the (D)ebug bit in DAIF.
3028      */
3029     debug_el = arm_debug_target_el(env);
3030 
3031     if (cur_el == debug_el) {
3032         return extract32(env->cp15.mdscr_el1, 13, 1)
3033             && !(env->daif & PSTATE_D);
3034     }
3035 
3036     /* Otherwise the debug target needs to be a higher EL */
3037     return debug_el > cur_el;
3038 }
3039 
3040 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3041 {
3042     int el = arm_current_el(env);
3043 
3044     if (el == 0 && arm_el_is_aa64(env, 1)) {
3045         return aa64_generate_debug_exceptions(env);
3046     }
3047 
3048     if (arm_is_secure(env)) {
3049         int spd;
3050 
3051         if (el == 0 && (env->cp15.sder & 1)) {
3052             /* SDER.SUIDEN means debug exceptions from Secure EL0
3053              * are always enabled. Otherwise they are controlled by
3054              * SDCR.SPD like those from other Secure ELs.
3055              */
3056             return true;
3057         }
3058 
3059         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3060         switch (spd) {
3061         case 1:
3062             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3063         case 0:
3064             /* For 0b00 we return true if external secure invasive debug
3065              * is enabled. On real hardware this is controlled by external
3066              * signals to the core. QEMU always permits debug, and behaves
3067              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3068              */
3069             return true;
3070         case 2:
3071             return false;
3072         case 3:
3073             return true;
3074         }
3075     }
3076 
3077     return el != 2;
3078 }
3079 
3080 /* Return true if debugging exceptions are currently enabled.
3081  * This corresponds to what in ARM ARM pseudocode would be
3082  *    if UsingAArch32() then
3083  *        return AArch32.GenerateDebugExceptions()
3084  *    else
3085  *        return AArch64.GenerateDebugExceptions()
3086  * We choose to push the if() down into this function for clarity,
3087  * since the pseudocode has it at all callsites except for the one in
3088  * CheckSoftwareStep(), where it is elided because both branches would
3089  * always return the same value.
3090  */
3091 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3092 {
3093     if (env->aarch64) {
3094         return aa64_generate_debug_exceptions(env);
3095     } else {
3096         return aa32_generate_debug_exceptions(env);
3097     }
3098 }
3099 
3100 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3101  * implicitly means this always returns false in pre-v8 CPUs.)
3102  */
3103 static inline bool arm_singlestep_active(CPUARMState *env)
3104 {
3105     return extract32(env->cp15.mdscr_el1, 0, 1)
3106         && arm_el_is_aa64(env, arm_debug_target_el(env))
3107         && arm_generate_debug_exceptions(env);
3108 }
3109 
3110 static inline bool arm_sctlr_b(CPUARMState *env)
3111 {
3112     return
3113         /* We need not implement SCTLR.ITD in user-mode emulation, so
3114          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3115          * This lets people run BE32 binaries with "-cpu any".
3116          */
3117 #ifndef CONFIG_USER_ONLY
3118         !arm_feature(env, ARM_FEATURE_V7) &&
3119 #endif
3120         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3121 }
3122 
3123 uint64_t arm_sctlr(CPUARMState *env, int el);
3124 
3125 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3126                                                   bool sctlr_b)
3127 {
3128 #ifdef CONFIG_USER_ONLY
3129     /*
3130      * In system mode, BE32 is modelled in line with the
3131      * architecture (as word-invariant big-endianness), where loads
3132      * and stores are done little endian but from addresses which
3133      * are adjusted by XORing with the appropriate constant. So the
3134      * endianness to use for the raw data access is not affected by
3135      * SCTLR.B.
3136      * In user mode, however, we model BE32 as byte-invariant
3137      * big-endianness (because user-only code cannot tell the
3138      * difference), and so we need to use a data access endianness
3139      * that depends on SCTLR.B.
3140      */
3141     if (sctlr_b) {
3142         return true;
3143     }
3144 #endif
3145     /* In 32bit endianness is determined by looking at CPSR's E bit */
3146     return env->uncached_cpsr & CPSR_E;
3147 }
3148 
3149 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3150 {
3151     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3152 }
3153 
3154 /* Return true if the processor is in big-endian mode. */
3155 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3156 {
3157     if (!is_a64(env)) {
3158         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3159     } else {
3160         int cur_el = arm_current_el(env);
3161         uint64_t sctlr = arm_sctlr(env, cur_el);
3162         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3163     }
3164 }
3165 
3166 typedef CPUARMState CPUArchState;
3167 typedef ARMCPU ArchCPU;
3168 
3169 #include "exec/cpu-all.h"
3170 
3171 /*
3172  * Bit usage in the TB flags field: bit 31 indicates whether we are
3173  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3174  * We put flags which are shared between 32 and 64 bit mode at the top
3175  * of the word, and flags which apply to only one mode at the bottom.
3176  *
3177  *  31          20    18    14          9              0
3178  * +--------------+-----+-----+----------+--------------+
3179  * |              |     |   TBFLAG_A32   |              |
3180  * |              |     +-----+----------+  TBFLAG_AM32 |
3181  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3182  * |              |         +-+----------+--------------|
3183  * |              |         |         TBFLAG_A64        |
3184  * +--------------+---------+---------------------------+
3185  *  31          20        15                           0
3186  *
3187  * Unless otherwise noted, these bits are cached in env->hflags.
3188  */
3189 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3190 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3191 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3192 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3193 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3194 /* Target EL if we take a floating-point-disabled exception */
3195 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3196 /* For A-profile only, target EL for debug exceptions.  */
3197 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3198 
3199 /*
3200  * Bit usage when in AArch32 state, both A- and M-profile.
3201  */
3202 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3203 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3204 
3205 /*
3206  * Bit usage when in AArch32 state, for A-profile only.
3207  */
3208 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3209 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3210 /*
3211  * We store the bottom two bits of the CPAR as TB flags and handle
3212  * checks on the other bits at runtime. This shares the same bits as
3213  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3214  * Not cached, because VECLEN+VECSTRIDE are not cached.
3215  */
3216 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3217 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3218 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3219 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3220 /*
3221  * Indicates whether cp register reads and writes by guest code should access
3222  * the secure or nonsecure bank of banked registers; note that this is not
3223  * the same thing as the current security state of the processor!
3224  */
3225 FIELD(TBFLAG_A32, NS, 17, 1)
3226 
3227 /*
3228  * Bit usage when in AArch32 state, for M-profile only.
3229  */
3230 /* Handler (ie not Thread) mode */
3231 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3232 /* Whether we should generate stack-limit checks */
3233 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3234 /* Set if FPCCR.LSPACT is set */
3235 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3236 /* Set if we must create a new FP context */
3237 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3238 /* Set if FPCCR.S does not match current security state */
3239 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3240 
3241 /*
3242  * Bit usage when in AArch64 state
3243  */
3244 FIELD(TBFLAG_A64, TBII, 0, 2)
3245 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3246 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3247 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3248 FIELD(TBFLAG_A64, BT, 9, 1)
3249 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3250 FIELD(TBFLAG_A64, TBID, 12, 2)
3251 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3252 
3253 /**
3254  * cpu_mmu_index:
3255  * @env: The cpu environment
3256  * @ifetch: True for code access, false for data access.
3257  *
3258  * Return the core mmu index for the current translation regime.
3259  * This function is used by generic TCG code paths.
3260  */
3261 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3262 {
3263     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3264 }
3265 
3266 static inline bool bswap_code(bool sctlr_b)
3267 {
3268 #ifdef CONFIG_USER_ONLY
3269     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3270      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3271      * would also end up as a mixed-endian mode with BE code, LE data.
3272      */
3273     return
3274 #ifdef TARGET_WORDS_BIGENDIAN
3275         1 ^
3276 #endif
3277         sctlr_b;
3278 #else
3279     /* All code access in ARM is little endian, and there are no loaders
3280      * doing swaps that need to be reversed
3281      */
3282     return 0;
3283 #endif
3284 }
3285 
3286 #ifdef CONFIG_USER_ONLY
3287 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3288 {
3289     return
3290 #ifdef TARGET_WORDS_BIGENDIAN
3291        1 ^
3292 #endif
3293        arm_cpu_data_is_big_endian(env);
3294 }
3295 #endif
3296 
3297 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3298                           target_ulong *cs_base, uint32_t *flags);
3299 
3300 enum {
3301     QEMU_PSCI_CONDUIT_DISABLED = 0,
3302     QEMU_PSCI_CONDUIT_SMC = 1,
3303     QEMU_PSCI_CONDUIT_HVC = 2,
3304 };
3305 
3306 #ifndef CONFIG_USER_ONLY
3307 /* Return the address space index to use for a memory access */
3308 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3309 {
3310     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3311 }
3312 
3313 /* Return the AddressSpace to use for a memory access
3314  * (which depends on whether the access is S or NS, and whether
3315  * the board gave us a separate AddressSpace for S accesses).
3316  */
3317 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3318 {
3319     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3320 }
3321 #endif
3322 
3323 /**
3324  * arm_register_pre_el_change_hook:
3325  * Register a hook function which will be called immediately before this
3326  * CPU changes exception level or mode. The hook function will be
3327  * passed a pointer to the ARMCPU and the opaque data pointer passed
3328  * to this function when the hook was registered.
3329  *
3330  * Note that if a pre-change hook is called, any registered post-change hooks
3331  * are guaranteed to subsequently be called.
3332  */
3333 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3334                                  void *opaque);
3335 /**
3336  * arm_register_el_change_hook:
3337  * Register a hook function which will be called immediately after this
3338  * CPU changes exception level or mode. The hook function will be
3339  * passed a pointer to the ARMCPU and the opaque data pointer passed
3340  * to this function when the hook was registered.
3341  *
3342  * Note that any registered hooks registered here are guaranteed to be called
3343  * if pre-change hooks have been.
3344  */
3345 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3346         *opaque);
3347 
3348 /**
3349  * arm_rebuild_hflags:
3350  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3351  */
3352 void arm_rebuild_hflags(CPUARMState *env);
3353 
3354 /**
3355  * aa32_vfp_dreg:
3356  * Return a pointer to the Dn register within env in 32-bit mode.
3357  */
3358 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3359 {
3360     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3361 }
3362 
3363 /**
3364  * aa32_vfp_qreg:
3365  * Return a pointer to the Qn register within env in 32-bit mode.
3366  */
3367 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3368 {
3369     return &env->vfp.zregs[regno].d[0];
3370 }
3371 
3372 /**
3373  * aa64_vfp_qreg:
3374  * Return a pointer to the Qn register within env in 64-bit mode.
3375  */
3376 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3377 {
3378     return &env->vfp.zregs[regno].d[0];
3379 }
3380 
3381 /* Shared between translate-sve.c and sve_helper.c.  */
3382 extern const uint64_t pred_esz_masks[4];
3383 
3384 /*
3385  * Naming convention for isar_feature functions:
3386  * Functions which test 32-bit ID registers should have _aa32_ in
3387  * their name. Functions which test 64-bit ID registers should have
3388  * _aa64_ in their name. These must only be used in code where we
3389  * know for certain that the CPU has AArch32 or AArch64 respectively
3390  * or where the correct answer for a CPU which doesn't implement that
3391  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3392  * system registers that are specific to that CPU state, for "should
3393  * we let this system register bit be set" tests where the 32-bit
3394  * flavour of the register doesn't have the bit, and so on).
3395  * Functions which simply ask "does this feature exist at all" have
3396  * _any_ in their name, and always return the logical OR of the _aa64_
3397  * and the _aa32_ function.
3398  */
3399 
3400 /*
3401  * 32-bit feature tests via id registers.
3402  */
3403 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3404 {
3405     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3406 }
3407 
3408 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3409 {
3410     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3411 }
3412 
3413 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3414 {
3415     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3416 }
3417 
3418 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3419 {
3420     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3421 }
3422 
3423 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3424 {
3425     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3426 }
3427 
3428 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3429 {
3430     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3431 }
3432 
3433 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3434 {
3435     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3436 }
3437 
3438 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3439 {
3440     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3441 }
3442 
3443 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3444 {
3445     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3446 }
3447 
3448 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3449 {
3450     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3451 }
3452 
3453 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3454 {
3455     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3456 }
3457 
3458 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3459 {
3460     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3461 }
3462 
3463 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3464 {
3465     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3466 }
3467 
3468 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3469 {
3470     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3471 }
3472 
3473 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3476 }
3477 
3478 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3479 {
3480     /*
3481      * This is a placeholder for use by VCMA until the rest of
3482      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3483      * At which point we can properly set and check MVFR1.FPHP.
3484      */
3485     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3486 }
3487 
3488 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3489 {
3490     /*
3491      * Return true if either VFP or SIMD is implemented.
3492      * In this case, a minimum of VFP w/ D0-D15.
3493      */
3494     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3495 }
3496 
3497 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3498 {
3499     /* Return true if D16-D31 are implemented */
3500     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3501 }
3502 
3503 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3504 {
3505     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3506 }
3507 
3508 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3509 {
3510     /* Return true if CPU supports single precision floating point, VFPv2 */
3511     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3512 }
3513 
3514 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3515 {
3516     /* Return true if CPU supports single precision floating point, VFPv3 */
3517     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3518 }
3519 
3520 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3521 {
3522     /* Return true if CPU supports double precision floating point, VFPv2 */
3523     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3524 }
3525 
3526 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3527 {
3528     /* Return true if CPU supports double precision floating point, VFPv3 */
3529     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3530 }
3531 
3532 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3533 {
3534     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3535 }
3536 
3537 /*
3538  * We always set the FP and SIMD FP16 fields to indicate identical
3539  * levels of support (assuming SIMD is implemented at all), so
3540  * we only need one set of accessors.
3541  */
3542 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3543 {
3544     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3545 }
3546 
3547 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3548 {
3549     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3550 }
3551 
3552 /*
3553  * Note that this ID register field covers both VFP and Neon FMAC,
3554  * so should usually be tested in combination with some other
3555  * check that confirms the presence of whichever of VFP or Neon is
3556  * relevant, to avoid accidentally enabling a Neon feature on
3557  * a VFP-no-Neon core or vice-versa.
3558  */
3559 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3560 {
3561     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3562 }
3563 
3564 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3565 {
3566     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3567 }
3568 
3569 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3570 {
3571     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3572 }
3573 
3574 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3575 {
3576     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3577 }
3578 
3579 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3580 {
3581     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3582 }
3583 
3584 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3585 {
3586     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3587 }
3588 
3589 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3590 {
3591     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3592 }
3593 
3594 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3595 {
3596     /* 0xf means "non-standard IMPDEF PMU" */
3597     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3598         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3599 }
3600 
3601 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3602 {
3603     /* 0xf means "non-standard IMPDEF PMU" */
3604     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3605         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3606 }
3607 
3608 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3609 {
3610     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3611 }
3612 
3613 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3614 {
3615     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3616 }
3617 
3618 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3619 {
3620     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3621 }
3622 
3623 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3624 {
3625     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3626 }
3627 
3628 /*
3629  * 64-bit feature tests via id registers.
3630  */
3631 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3632 {
3633     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3634 }
3635 
3636 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3637 {
3638     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3639 }
3640 
3641 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3642 {
3643     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3644 }
3645 
3646 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3647 {
3648     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3649 }
3650 
3651 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3652 {
3653     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3654 }
3655 
3656 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3657 {
3658     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3659 }
3660 
3661 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3662 {
3663     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3664 }
3665 
3666 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3667 {
3668     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3669 }
3670 
3671 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3672 {
3673     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3674 }
3675 
3676 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3677 {
3678     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3679 }
3680 
3681 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3682 {
3683     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3684 }
3685 
3686 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3687 {
3688     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3689 }
3690 
3691 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3692 {
3693     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3694 }
3695 
3696 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3697 {
3698     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3699 }
3700 
3701 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3702 {
3703     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3704 }
3705 
3706 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3707 {
3708     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3709 }
3710 
3711 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3712 {
3713     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3714 }
3715 
3716 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3717 {
3718     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3719 }
3720 
3721 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3722 {
3723     /*
3724      * Note that while QEMU will only implement the architected algorithm
3725      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3726      * defined algorithms, and thus API+GPI, and this predicate controls
3727      * migration of the 128-bit keys.
3728      */
3729     return (id->id_aa64isar1 &
3730             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3731              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3732              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3733              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3734 }
3735 
3736 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3737 {
3738     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3739 }
3740 
3741 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3742 {
3743     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3744 }
3745 
3746 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3747 {
3748     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3749 }
3750 
3751 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3752 {
3753     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3754 }
3755 
3756 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3757 {
3758     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3759 }
3760 
3761 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3762 {
3763     /* We always set the AdvSIMD and FP fields identically.  */
3764     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3765 }
3766 
3767 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3768 {
3769     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3770     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3771 }
3772 
3773 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3774 {
3775     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3776 }
3777 
3778 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3779 {
3780     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3781 }
3782 
3783 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3784 {
3785     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3786 }
3787 
3788 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3789 {
3790     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3791 }
3792 
3793 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3794 {
3795     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3796 }
3797 
3798 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3799 {
3800     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3801 }
3802 
3803 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3804 {
3805     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3806 }
3807 
3808 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3809 {
3810     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3811 }
3812 
3813 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3814 {
3815     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3816         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3817 }
3818 
3819 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3820 {
3821     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3822         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3823 }
3824 
3825 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3826 {
3827     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3828 }
3829 
3830 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3831 {
3832     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3833 }
3834 
3835 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3836 {
3837     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3838 }
3839 
3840 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3841 {
3842     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3843 }
3844 
3845 /*
3846  * Feature tests for "does this exist in either 32-bit or 64-bit?"
3847  */
3848 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3849 {
3850     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3851 }
3852 
3853 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3854 {
3855     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3856 }
3857 
3858 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3859 {
3860     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3861 }
3862 
3863 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3864 {
3865     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3866 }
3867 
3868 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3869 {
3870     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3871 }
3872 
3873 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3874 {
3875     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3876 }
3877 
3878 /*
3879  * Forward to the above feature tests given an ARMCPU pointer.
3880  */
3881 #define cpu_isar_feature(name, cpu) \
3882     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3883 
3884 #endif
3885