1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 28 /* ARM processors have a weak memory model */ 29 #define TCG_GUEST_DEFAULT_MO (0) 30 31 #define EXCP_UDEF 1 /* undefined instruction */ 32 #define EXCP_SWI 2 /* software interrupt */ 33 #define EXCP_PREFETCH_ABORT 3 34 #define EXCP_DATA_ABORT 4 35 #define EXCP_IRQ 5 36 #define EXCP_FIQ 6 37 #define EXCP_BKPT 7 38 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 39 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 40 #define EXCP_HVC 11 /* HyperVisor Call */ 41 #define EXCP_HYP_TRAP 12 42 #define EXCP_SMC 13 /* Secure Monitor Call */ 43 #define EXCP_VIRQ 14 44 #define EXCP_VFIQ 15 45 #define EXCP_SEMIHOST 16 /* semihosting call */ 46 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 47 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 48 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 49 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 50 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 51 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 53 54 #define ARMV7M_EXCP_RESET 1 55 #define ARMV7M_EXCP_NMI 2 56 #define ARMV7M_EXCP_HARD 3 57 #define ARMV7M_EXCP_MEM 4 58 #define ARMV7M_EXCP_BUS 5 59 #define ARMV7M_EXCP_USAGE 6 60 #define ARMV7M_EXCP_SECURE 7 61 #define ARMV7M_EXCP_SVC 11 62 #define ARMV7M_EXCP_DEBUG 12 63 #define ARMV7M_EXCP_PENDSV 14 64 #define ARMV7M_EXCP_SYSTICK 15 65 66 /* For M profile, some registers are banked secure vs non-secure; 67 * these are represented as a 2-element array where the first element 68 * is the non-secure copy and the second is the secure copy. 69 * When the CPU does not have implement the security extension then 70 * only the first element is used. 71 * This means that the copy for the current security state can be 72 * accessed via env->registerfield[env->v7m.secure] (whether the security 73 * extension is implemented or not). 74 */ 75 enum { 76 M_REG_NS = 0, 77 M_REG_S = 1, 78 M_REG_NUM_BANKS = 2, 79 }; 80 81 /* ARM-specific interrupt pending bits. */ 82 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 83 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 84 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 85 86 /* The usual mapping for an AArch64 system register to its AArch32 87 * counterpart is for the 32 bit world to have access to the lower 88 * half only (with writes leaving the upper half untouched). It's 89 * therefore useful to be able to pass TCG the offset of the least 90 * significant half of a uint64_t struct member. 91 */ 92 #ifdef HOST_WORDS_BIGENDIAN 93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 94 #define offsetofhigh32(S, M) offsetof(S, M) 95 #else 96 #define offsetoflow32(S, M) offsetof(S, M) 97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 98 #endif 99 100 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 101 #define ARM_CPU_IRQ 0 102 #define ARM_CPU_FIQ 1 103 #define ARM_CPU_VIRQ 2 104 #define ARM_CPU_VFIQ 3 105 106 /* ARM-specific extra insn start words: 107 * 1: Conditional execution bits 108 * 2: Partial exception syndrome for data aborts 109 */ 110 #define TARGET_INSN_START_EXTRA_WORDS 2 111 112 /* The 2nd extra word holding syndrome info for data aborts does not use 113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 114 * help the sleb128 encoder do a better job. 115 * When restoring the CPU state, we shift it back up. 116 */ 117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 118 #define ARM_INSN_START_WORD2_SHIFT 14 119 120 /* We currently assume float and double are IEEE single and double 121 precision respectively. 122 Doing runtime conversions is tricky because VFP registers may contain 123 integer values (eg. as the result of a FTOSI instruction). 124 s<2n> maps to the least significant half of d<n> 125 s<2n+1> maps to the most significant half of d<n> 126 */ 127 128 /** 129 * DynamicGDBXMLInfo: 130 * @desc: Contains the XML descriptions. 131 * @num_cpregs: Number of the Coprocessor registers seen by GDB. 132 * @cpregs_keys: Array that contains the corresponding Key of 133 * a given cpreg with the same order of the cpreg in the XML description. 134 */ 135 typedef struct DynamicGDBXMLInfo { 136 char *desc; 137 int num_cpregs; 138 uint32_t *cpregs_keys; 139 } DynamicGDBXMLInfo; 140 141 /* CPU state for each instance of a generic timer (in cp15 c14) */ 142 typedef struct ARMGenericTimer { 143 uint64_t cval; /* Timer CompareValue register */ 144 uint64_t ctl; /* Timer Control register */ 145 } ARMGenericTimer; 146 147 #define GTIMER_PHYS 0 148 #define GTIMER_VIRT 1 149 #define GTIMER_HYP 2 150 #define GTIMER_SEC 3 151 #define NUM_GTIMERS 4 152 153 typedef struct { 154 uint64_t raw_tcr; 155 uint32_t mask; 156 uint32_t base_mask; 157 } TCR; 158 159 /* Define a maximum sized vector register. 160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 161 * For 64-bit, this is a 2048-bit SVE register. 162 * 163 * Note that the mapping between S, D, and Q views of the register bank 164 * differs between AArch64 and AArch32. 165 * In AArch32: 166 * Qn = regs[n].d[1]:regs[n].d[0] 167 * Dn = regs[n / 2].d[n & 1] 168 * Sn = regs[n / 4].d[n % 4 / 2], 169 * bits 31..0 for even n, and bits 63..32 for odd n 170 * (and regs[16] to regs[31] are inaccessible) 171 * In AArch64: 172 * Zn = regs[n].d[*] 173 * Qn = regs[n].d[1]:regs[n].d[0] 174 * Dn = regs[n].d[0] 175 * Sn = regs[n].d[0] bits 31..0 176 * Hn = regs[n].d[0] bits 15..0 177 * 178 * This corresponds to the architecturally defined mapping between 179 * the two execution states, and means we do not need to explicitly 180 * map these registers when changing states. 181 * 182 * Align the data for use with TCG host vector operations. 183 */ 184 185 #ifdef TARGET_AARCH64 186 # define ARM_MAX_VQ 16 187 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 188 #else 189 # define ARM_MAX_VQ 1 190 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 191 #endif 192 193 typedef struct ARMVectorReg { 194 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 195 } ARMVectorReg; 196 197 #ifdef TARGET_AARCH64 198 /* In AArch32 mode, predicate registers do not exist at all. */ 199 typedef struct ARMPredicateReg { 200 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 201 } ARMPredicateReg; 202 203 /* In AArch32 mode, PAC keys do not exist at all. */ 204 typedef struct ARMPACKey { 205 uint64_t lo, hi; 206 } ARMPACKey; 207 #endif 208 209 210 typedef struct CPUARMState { 211 /* Regs for current mode. */ 212 uint32_t regs[16]; 213 214 /* 32/64 switch only happens when taking and returning from 215 * exceptions so the overlap semantics are taken care of then 216 * instead of having a complicated union. 217 */ 218 /* Regs for A64 mode. */ 219 uint64_t xregs[32]; 220 uint64_t pc; 221 /* PSTATE isn't an architectural register for ARMv8. However, it is 222 * convenient for us to assemble the underlying state into a 32 bit format 223 * identical to the architectural format used for the SPSR. (This is also 224 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 225 * 'pstate' register are.) Of the PSTATE bits: 226 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 227 * semantics as for AArch32, as described in the comments on each field) 228 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 229 * DAIF (exception masks) are kept in env->daif 230 * BTYPE is kept in env->btype 231 * all other bits are stored in their correct places in env->pstate 232 */ 233 uint32_t pstate; 234 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 235 236 /* Cached TBFLAGS state. See below for which bits are included. */ 237 uint32_t hflags; 238 239 /* Frequently accessed CPSR bits are stored separately for efficiency. 240 This contains all the other bits. Use cpsr_{read,write} to access 241 the whole CPSR. */ 242 uint32_t uncached_cpsr; 243 uint32_t spsr; 244 245 /* Banked registers. */ 246 uint64_t banked_spsr[8]; 247 uint32_t banked_r13[8]; 248 uint32_t banked_r14[8]; 249 250 /* These hold r8-r12. */ 251 uint32_t usr_regs[5]; 252 uint32_t fiq_regs[5]; 253 254 /* cpsr flag cache for faster execution */ 255 uint32_t CF; /* 0 or 1 */ 256 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 257 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 258 uint32_t ZF; /* Z set if zero. */ 259 uint32_t QF; /* 0 or 1 */ 260 uint32_t GE; /* cpsr[19:16] */ 261 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 262 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 263 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 264 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 265 266 uint64_t elr_el[4]; /* AArch64 exception link regs */ 267 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 268 269 /* System control coprocessor (cp15) */ 270 struct { 271 uint32_t c0_cpuid; 272 union { /* Cache size selection */ 273 struct { 274 uint64_t _unused_csselr0; 275 uint64_t csselr_ns; 276 uint64_t _unused_csselr1; 277 uint64_t csselr_s; 278 }; 279 uint64_t csselr_el[4]; 280 }; 281 union { /* System control register. */ 282 struct { 283 uint64_t _unused_sctlr; 284 uint64_t sctlr_ns; 285 uint64_t hsctlr; 286 uint64_t sctlr_s; 287 }; 288 uint64_t sctlr_el[4]; 289 }; 290 uint64_t cpacr_el1; /* Architectural feature access control register */ 291 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 292 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 293 uint64_t sder; /* Secure debug enable register. */ 294 uint32_t nsacr; /* Non-secure access control register. */ 295 union { /* MMU translation table base 0. */ 296 struct { 297 uint64_t _unused_ttbr0_0; 298 uint64_t ttbr0_ns; 299 uint64_t _unused_ttbr0_1; 300 uint64_t ttbr0_s; 301 }; 302 uint64_t ttbr0_el[4]; 303 }; 304 union { /* MMU translation table base 1. */ 305 struct { 306 uint64_t _unused_ttbr1_0; 307 uint64_t ttbr1_ns; 308 uint64_t _unused_ttbr1_1; 309 uint64_t ttbr1_s; 310 }; 311 uint64_t ttbr1_el[4]; 312 }; 313 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 314 /* MMU translation table base control. */ 315 TCR tcr_el[4]; 316 TCR vtcr_el2; /* Virtualization Translation Control. */ 317 uint32_t c2_data; /* MPU data cacheable bits. */ 318 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 319 union { /* MMU domain access control register 320 * MPU write buffer control. 321 */ 322 struct { 323 uint64_t dacr_ns; 324 uint64_t dacr_s; 325 }; 326 struct { 327 uint64_t dacr32_el2; 328 }; 329 }; 330 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 331 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 332 uint64_t hcr_el2; /* Hypervisor configuration register */ 333 uint64_t scr_el3; /* Secure configuration register. */ 334 union { /* Fault status registers. */ 335 struct { 336 uint64_t ifsr_ns; 337 uint64_t ifsr_s; 338 }; 339 struct { 340 uint64_t ifsr32_el2; 341 }; 342 }; 343 union { 344 struct { 345 uint64_t _unused_dfsr; 346 uint64_t dfsr_ns; 347 uint64_t hsr; 348 uint64_t dfsr_s; 349 }; 350 uint64_t esr_el[4]; 351 }; 352 uint32_t c6_region[8]; /* MPU base/size registers. */ 353 union { /* Fault address registers. */ 354 struct { 355 uint64_t _unused_far0; 356 #ifdef HOST_WORDS_BIGENDIAN 357 uint32_t ifar_ns; 358 uint32_t dfar_ns; 359 uint32_t ifar_s; 360 uint32_t dfar_s; 361 #else 362 uint32_t dfar_ns; 363 uint32_t ifar_ns; 364 uint32_t dfar_s; 365 uint32_t ifar_s; 366 #endif 367 uint64_t _unused_far3; 368 }; 369 uint64_t far_el[4]; 370 }; 371 uint64_t hpfar_el2; 372 uint64_t hstr_el2; 373 union { /* Translation result. */ 374 struct { 375 uint64_t _unused_par_0; 376 uint64_t par_ns; 377 uint64_t _unused_par_1; 378 uint64_t par_s; 379 }; 380 uint64_t par_el[4]; 381 }; 382 383 uint32_t c9_insn; /* Cache lockdown registers. */ 384 uint32_t c9_data; 385 uint64_t c9_pmcr; /* performance monitor control register */ 386 uint64_t c9_pmcnten; /* perf monitor counter enables */ 387 uint64_t c9_pmovsr; /* perf monitor overflow status */ 388 uint64_t c9_pmuserenr; /* perf monitor user enable */ 389 uint64_t c9_pmselr; /* perf monitor counter selection register */ 390 uint64_t c9_pminten; /* perf monitor interrupt enables */ 391 union { /* Memory attribute redirection */ 392 struct { 393 #ifdef HOST_WORDS_BIGENDIAN 394 uint64_t _unused_mair_0; 395 uint32_t mair1_ns; 396 uint32_t mair0_ns; 397 uint64_t _unused_mair_1; 398 uint32_t mair1_s; 399 uint32_t mair0_s; 400 #else 401 uint64_t _unused_mair_0; 402 uint32_t mair0_ns; 403 uint32_t mair1_ns; 404 uint64_t _unused_mair_1; 405 uint32_t mair0_s; 406 uint32_t mair1_s; 407 #endif 408 }; 409 uint64_t mair_el[4]; 410 }; 411 union { /* vector base address register */ 412 struct { 413 uint64_t _unused_vbar; 414 uint64_t vbar_ns; 415 uint64_t hvbar; 416 uint64_t vbar_s; 417 }; 418 uint64_t vbar_el[4]; 419 }; 420 uint32_t mvbar; /* (monitor) vector base address register */ 421 struct { /* FCSE PID. */ 422 uint32_t fcseidr_ns; 423 uint32_t fcseidr_s; 424 }; 425 union { /* Context ID. */ 426 struct { 427 uint64_t _unused_contextidr_0; 428 uint64_t contextidr_ns; 429 uint64_t _unused_contextidr_1; 430 uint64_t contextidr_s; 431 }; 432 uint64_t contextidr_el[4]; 433 }; 434 union { /* User RW Thread register. */ 435 struct { 436 uint64_t tpidrurw_ns; 437 uint64_t tpidrprw_ns; 438 uint64_t htpidr; 439 uint64_t _tpidr_el3; 440 }; 441 uint64_t tpidr_el[4]; 442 }; 443 /* The secure banks of these registers don't map anywhere */ 444 uint64_t tpidrurw_s; 445 uint64_t tpidrprw_s; 446 uint64_t tpidruro_s; 447 448 union { /* User RO Thread register. */ 449 uint64_t tpidruro_ns; 450 uint64_t tpidrro_el[1]; 451 }; 452 uint64_t c14_cntfrq; /* Counter Frequency register */ 453 uint64_t c14_cntkctl; /* Timer Control register */ 454 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 455 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 456 ARMGenericTimer c14_timer[NUM_GTIMERS]; 457 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 458 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 459 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 460 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 461 uint32_t c15_threadid; /* TI debugger thread-ID. */ 462 uint32_t c15_config_base_address; /* SCU base address. */ 463 uint32_t c15_diagnostic; /* diagnostic register */ 464 uint32_t c15_power_diagnostic; 465 uint32_t c15_power_control; /* power control */ 466 uint64_t dbgbvr[16]; /* breakpoint value registers */ 467 uint64_t dbgbcr[16]; /* breakpoint control registers */ 468 uint64_t dbgwvr[16]; /* watchpoint value registers */ 469 uint64_t dbgwcr[16]; /* watchpoint control registers */ 470 uint64_t mdscr_el1; 471 uint64_t oslsr_el1; /* OS Lock Status */ 472 uint64_t mdcr_el2; 473 uint64_t mdcr_el3; 474 /* Stores the architectural value of the counter *the last time it was 475 * updated* by pmccntr_op_start. Accesses should always be surrounded 476 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 477 * architecturally-correct value is being read/set. 478 */ 479 uint64_t c15_ccnt; 480 /* Stores the delta between the architectural value and the underlying 481 * cycle count during normal operation. It is used to update c15_ccnt 482 * to be the correct architectural value before accesses. During 483 * accesses, c15_ccnt_delta contains the underlying count being used 484 * for the access, after which it reverts to the delta value in 485 * pmccntr_op_finish. 486 */ 487 uint64_t c15_ccnt_delta; 488 uint64_t c14_pmevcntr[31]; 489 uint64_t c14_pmevcntr_delta[31]; 490 uint64_t c14_pmevtyper[31]; 491 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 492 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 493 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 494 } cp15; 495 496 struct { 497 /* M profile has up to 4 stack pointers: 498 * a Main Stack Pointer and a Process Stack Pointer for each 499 * of the Secure and Non-Secure states. (If the CPU doesn't support 500 * the security extension then it has only two SPs.) 501 * In QEMU we always store the currently active SP in regs[13], 502 * and the non-active SP for the current security state in 503 * v7m.other_sp. The stack pointers for the inactive security state 504 * are stored in other_ss_msp and other_ss_psp. 505 * switch_v7m_security_state() is responsible for rearranging them 506 * when we change security state. 507 */ 508 uint32_t other_sp; 509 uint32_t other_ss_msp; 510 uint32_t other_ss_psp; 511 uint32_t vecbase[M_REG_NUM_BANKS]; 512 uint32_t basepri[M_REG_NUM_BANKS]; 513 uint32_t control[M_REG_NUM_BANKS]; 514 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 515 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 516 uint32_t hfsr; /* HardFault Status */ 517 uint32_t dfsr; /* Debug Fault Status Register */ 518 uint32_t sfsr; /* Secure Fault Status Register */ 519 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 520 uint32_t bfar; /* BusFault Address */ 521 uint32_t sfar; /* Secure Fault Address Register */ 522 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 523 int exception; 524 uint32_t primask[M_REG_NUM_BANKS]; 525 uint32_t faultmask[M_REG_NUM_BANKS]; 526 uint32_t aircr; /* only holds r/w state if security extn implemented */ 527 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 528 uint32_t csselr[M_REG_NUM_BANKS]; 529 uint32_t scr[M_REG_NUM_BANKS]; 530 uint32_t msplim[M_REG_NUM_BANKS]; 531 uint32_t psplim[M_REG_NUM_BANKS]; 532 uint32_t fpcar[M_REG_NUM_BANKS]; 533 uint32_t fpccr[M_REG_NUM_BANKS]; 534 uint32_t fpdscr[M_REG_NUM_BANKS]; 535 uint32_t cpacr[M_REG_NUM_BANKS]; 536 uint32_t nsacr; 537 } v7m; 538 539 /* Information associated with an exception about to be taken: 540 * code which raises an exception must set cs->exception_index and 541 * the relevant parts of this structure; the cpu_do_interrupt function 542 * will then set the guest-visible registers as part of the exception 543 * entry process. 544 */ 545 struct { 546 uint32_t syndrome; /* AArch64 format syndrome register */ 547 uint32_t fsr; /* AArch32 format fault status register info */ 548 uint64_t vaddress; /* virtual addr associated with exception, if any */ 549 uint32_t target_el; /* EL the exception should be targeted for */ 550 /* If we implement EL2 we will also need to store information 551 * about the intermediate physical address for stage 2 faults. 552 */ 553 } exception; 554 555 /* Information associated with an SError */ 556 struct { 557 uint8_t pending; 558 uint8_t has_esr; 559 uint64_t esr; 560 } serror; 561 562 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 563 uint32_t irq_line_state; 564 565 /* Thumb-2 EE state. */ 566 uint32_t teecr; 567 uint32_t teehbr; 568 569 /* VFP coprocessor state. */ 570 struct { 571 ARMVectorReg zregs[32]; 572 573 #ifdef TARGET_AARCH64 574 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 575 #define FFR_PRED_NUM 16 576 ARMPredicateReg pregs[17]; 577 /* Scratch space for aa64 sve predicate temporary. */ 578 ARMPredicateReg preg_tmp; 579 #endif 580 581 /* We store these fpcsr fields separately for convenience. */ 582 uint32_t qc[4] QEMU_ALIGNED(16); 583 int vec_len; 584 int vec_stride; 585 586 uint32_t xregs[16]; 587 588 /* Scratch space for aa32 neon expansion. */ 589 uint32_t scratch[8]; 590 591 /* There are a number of distinct float control structures: 592 * 593 * fp_status: is the "normal" fp status. 594 * fp_status_fp16: used for half-precision calculations 595 * standard_fp_status : the ARM "Standard FPSCR Value" 596 * 597 * Half-precision operations are governed by a separate 598 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 599 * status structure to control this. 600 * 601 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 602 * round-to-nearest and is used by any operations (generally 603 * Neon) which the architecture defines as controlled by the 604 * standard FPSCR value rather than the FPSCR. 605 * 606 * To avoid having to transfer exception bits around, we simply 607 * say that the FPSCR cumulative exception flags are the logical 608 * OR of the flags in the three fp statuses. This relies on the 609 * only thing which needs to read the exception flags being 610 * an explicit FPSCR read. 611 */ 612 float_status fp_status; 613 float_status fp_status_f16; 614 float_status standard_fp_status; 615 616 /* ZCR_EL[1-3] */ 617 uint64_t zcr_el[4]; 618 } vfp; 619 uint64_t exclusive_addr; 620 uint64_t exclusive_val; 621 uint64_t exclusive_high; 622 623 /* iwMMXt coprocessor state. */ 624 struct { 625 uint64_t regs[16]; 626 uint64_t val; 627 628 uint32_t cregs[16]; 629 } iwmmxt; 630 631 #ifdef TARGET_AARCH64 632 struct { 633 ARMPACKey apia; 634 ARMPACKey apib; 635 ARMPACKey apda; 636 ARMPACKey apdb; 637 ARMPACKey apga; 638 } keys; 639 #endif 640 641 #if defined(CONFIG_USER_ONLY) 642 /* For usermode syscall translation. */ 643 int eabi; 644 #endif 645 646 struct CPUBreakpoint *cpu_breakpoint[16]; 647 struct CPUWatchpoint *cpu_watchpoint[16]; 648 649 /* Fields up to this point are cleared by a CPU reset */ 650 struct {} end_reset_fields; 651 652 /* Fields after this point are preserved across CPU reset. */ 653 654 /* Internal CPU feature flags. */ 655 uint64_t features; 656 657 /* PMSAv7 MPU */ 658 struct { 659 uint32_t *drbar; 660 uint32_t *drsr; 661 uint32_t *dracr; 662 uint32_t rnr[M_REG_NUM_BANKS]; 663 } pmsav7; 664 665 /* PMSAv8 MPU */ 666 struct { 667 /* The PMSAv8 implementation also shares some PMSAv7 config 668 * and state: 669 * pmsav7.rnr (region number register) 670 * pmsav7_dregion (number of configured regions) 671 */ 672 uint32_t *rbar[M_REG_NUM_BANKS]; 673 uint32_t *rlar[M_REG_NUM_BANKS]; 674 uint32_t mair0[M_REG_NUM_BANKS]; 675 uint32_t mair1[M_REG_NUM_BANKS]; 676 } pmsav8; 677 678 /* v8M SAU */ 679 struct { 680 uint32_t *rbar; 681 uint32_t *rlar; 682 uint32_t rnr; 683 uint32_t ctrl; 684 } sau; 685 686 void *nvic; 687 const struct arm_boot_info *boot_info; 688 /* Store GICv3CPUState to access from this struct */ 689 void *gicv3state; 690 } CPUARMState; 691 692 /** 693 * ARMELChangeHookFn: 694 * type of a function which can be registered via arm_register_el_change_hook() 695 * to get callbacks when the CPU changes its exception level or mode. 696 */ 697 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 698 typedef struct ARMELChangeHook ARMELChangeHook; 699 struct ARMELChangeHook { 700 ARMELChangeHookFn *hook; 701 void *opaque; 702 QLIST_ENTRY(ARMELChangeHook) node; 703 }; 704 705 /* These values map onto the return values for 706 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 707 typedef enum ARMPSCIState { 708 PSCI_ON = 0, 709 PSCI_OFF = 1, 710 PSCI_ON_PENDING = 2 711 } ARMPSCIState; 712 713 typedef struct ARMISARegisters ARMISARegisters; 714 715 /** 716 * ARMCPU: 717 * @env: #CPUARMState 718 * 719 * An ARM CPU core. 720 */ 721 struct ARMCPU { 722 /*< private >*/ 723 CPUState parent_obj; 724 /*< public >*/ 725 726 CPUNegativeOffsetState neg; 727 CPUARMState env; 728 729 /* Coprocessor information */ 730 GHashTable *cp_regs; 731 /* For marshalling (mostly coprocessor) register state between the 732 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 733 * we use these arrays. 734 */ 735 /* List of register indexes managed via these arrays; (full KVM style 736 * 64 bit indexes, not CPRegInfo 32 bit indexes) 737 */ 738 uint64_t *cpreg_indexes; 739 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 740 uint64_t *cpreg_values; 741 /* Length of the indexes, values, reset_values arrays */ 742 int32_t cpreg_array_len; 743 /* These are used only for migration: incoming data arrives in 744 * these fields and is sanity checked in post_load before copying 745 * to the working data structures above. 746 */ 747 uint64_t *cpreg_vmstate_indexes; 748 uint64_t *cpreg_vmstate_values; 749 int32_t cpreg_vmstate_array_len; 750 751 DynamicGDBXMLInfo dyn_xml; 752 753 /* Timers used by the generic (architected) timer */ 754 QEMUTimer *gt_timer[NUM_GTIMERS]; 755 /* 756 * Timer used by the PMU. Its state is restored after migration by 757 * pmu_op_finish() - it does not need other handling during migration 758 */ 759 QEMUTimer *pmu_timer; 760 /* GPIO outputs for generic timer */ 761 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 762 /* GPIO output for GICv3 maintenance interrupt signal */ 763 qemu_irq gicv3_maintenance_interrupt; 764 /* GPIO output for the PMU interrupt */ 765 qemu_irq pmu_interrupt; 766 767 /* MemoryRegion to use for secure physical accesses */ 768 MemoryRegion *secure_memory; 769 770 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 771 Object *idau; 772 773 /* 'compatible' string for this CPU for Linux device trees */ 774 const char *dtb_compatible; 775 776 /* PSCI version for this CPU 777 * Bits[31:16] = Major Version 778 * Bits[15:0] = Minor Version 779 */ 780 uint32_t psci_version; 781 782 /* Should CPU start in PSCI powered-off state? */ 783 bool start_powered_off; 784 785 /* Current power state, access guarded by BQL */ 786 ARMPSCIState power_state; 787 788 /* CPU has virtualization extension */ 789 bool has_el2; 790 /* CPU has security extension */ 791 bool has_el3; 792 /* CPU has PMU (Performance Monitor Unit) */ 793 bool has_pmu; 794 /* CPU has VFP */ 795 bool has_vfp; 796 /* CPU has Neon */ 797 bool has_neon; 798 /* CPU has M-profile DSP extension */ 799 bool has_dsp; 800 801 /* CPU has memory protection unit */ 802 bool has_mpu; 803 /* PMSAv7 MPU number of supported regions */ 804 uint32_t pmsav7_dregion; 805 /* v8M SAU number of supported regions */ 806 uint32_t sau_sregion; 807 808 /* PSCI conduit used to invoke PSCI methods 809 * 0 - disabled, 1 - smc, 2 - hvc 810 */ 811 uint32_t psci_conduit; 812 813 /* For v8M, initial value of the Secure VTOR */ 814 uint32_t init_svtor; 815 816 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 817 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 818 */ 819 uint32_t kvm_target; 820 821 /* KVM init features for this CPU */ 822 uint32_t kvm_init_features[7]; 823 824 /* Uniprocessor system with MP extensions */ 825 bool mp_is_up; 826 827 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 828 * and the probe failed (so we need to report the error in realize) 829 */ 830 bool host_cpu_probe_failed; 831 832 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 833 * register. 834 */ 835 int32_t core_count; 836 837 /* The instance init functions for implementation-specific subclasses 838 * set these fields to specify the implementation-dependent values of 839 * various constant registers and reset values of non-constant 840 * registers. 841 * Some of these might become QOM properties eventually. 842 * Field names match the official register names as defined in the 843 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 844 * is used for reset values of non-constant registers; no reset_ 845 * prefix means a constant register. 846 * Some of these registers are split out into a substructure that 847 * is shared with the translators to control the ISA. 848 */ 849 struct ARMISARegisters { 850 uint32_t id_isar0; 851 uint32_t id_isar1; 852 uint32_t id_isar2; 853 uint32_t id_isar3; 854 uint32_t id_isar4; 855 uint32_t id_isar5; 856 uint32_t id_isar6; 857 uint32_t mvfr0; 858 uint32_t mvfr1; 859 uint32_t mvfr2; 860 uint64_t id_aa64isar0; 861 uint64_t id_aa64isar1; 862 uint64_t id_aa64pfr0; 863 uint64_t id_aa64pfr1; 864 uint64_t id_aa64mmfr0; 865 uint64_t id_aa64mmfr1; 866 } isar; 867 uint32_t midr; 868 uint32_t revidr; 869 uint32_t reset_fpsid; 870 uint32_t ctr; 871 uint32_t reset_sctlr; 872 uint32_t id_pfr0; 873 uint32_t id_pfr1; 874 uint32_t id_dfr0; 875 uint64_t pmceid0; 876 uint64_t pmceid1; 877 uint32_t id_afr0; 878 uint32_t id_mmfr0; 879 uint32_t id_mmfr1; 880 uint32_t id_mmfr2; 881 uint32_t id_mmfr3; 882 uint32_t id_mmfr4; 883 uint64_t id_aa64dfr0; 884 uint64_t id_aa64dfr1; 885 uint64_t id_aa64afr0; 886 uint64_t id_aa64afr1; 887 uint32_t dbgdidr; 888 uint32_t clidr; 889 uint64_t mp_affinity; /* MP ID without feature bits */ 890 /* The elements of this array are the CCSIDR values for each cache, 891 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 892 */ 893 uint32_t ccsidr[16]; 894 uint64_t reset_cbar; 895 uint32_t reset_auxcr; 896 bool reset_hivecs; 897 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 898 uint32_t dcz_blocksize; 899 uint64_t rvbar; 900 901 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 902 int gic_num_lrs; /* number of list registers */ 903 int gic_vpribits; /* number of virtual priority bits */ 904 int gic_vprebits; /* number of virtual preemption bits */ 905 906 /* Whether the cfgend input is high (i.e. this CPU should reset into 907 * big-endian mode). This setting isn't used directly: instead it modifies 908 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 909 * architecture version. 910 */ 911 bool cfgend; 912 913 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 914 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 915 916 int32_t node_id; /* NUMA node this CPU belongs to */ 917 918 /* Used to synchronize KVM and QEMU in-kernel device levels */ 919 uint8_t device_irq_level; 920 921 /* Used to set the maximum vector length the cpu will support. */ 922 uint32_t sve_max_vq; 923 924 /* 925 * In sve_vq_map each set bit is a supported vector length of 926 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 927 * length in quadwords. 928 * 929 * While processing properties during initialization, corresponding 930 * sve_vq_init bits are set for bits in sve_vq_map that have been 931 * set by properties. 932 */ 933 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 934 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 935 936 /* Generic timer counter frequency, in Hz */ 937 uint64_t gt_cntfrq_hz; 938 }; 939 940 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 941 942 void arm_cpu_post_init(Object *obj); 943 944 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 945 946 #ifndef CONFIG_USER_ONLY 947 extern const VMStateDescription vmstate_arm_cpu; 948 #endif 949 950 void arm_cpu_do_interrupt(CPUState *cpu); 951 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 952 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 953 954 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 955 MemTxAttrs *attrs); 956 957 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 958 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 959 960 /* Dynamically generates for gdb stub an XML description of the sysregs from 961 * the cp_regs hashtable. Returns the registered sysregs number. 962 */ 963 int arm_gen_dynamic_xml(CPUState *cpu); 964 965 /* Returns the dynamically generated XML for the gdb stub. 966 * Returns a pointer to the XML contents for the specified XML file or NULL 967 * if the XML name doesn't match the predefined one. 968 */ 969 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 970 971 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 972 int cpuid, void *opaque); 973 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 974 int cpuid, void *opaque); 975 976 #ifdef TARGET_AARCH64 977 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 978 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 979 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 980 void aarch64_sve_change_el(CPUARMState *env, int old_el, 981 int new_el, bool el0_a64); 982 void aarch64_add_sve_properties(Object *obj); 983 984 /* 985 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 986 * The byte at offset i from the start of the in-memory representation contains 987 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 988 * lowest offsets are stored in the lowest memory addresses, then that nearly 989 * matches QEMU's representation, which is to use an array of host-endian 990 * uint64_t's, where the lower offsets are at the lower indices. To complete 991 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 992 */ 993 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 994 { 995 #ifdef HOST_WORDS_BIGENDIAN 996 int i; 997 998 for (i = 0; i < nr; ++i) { 999 dst[i] = bswap64(src[i]); 1000 } 1001 1002 return dst; 1003 #else 1004 return src; 1005 #endif 1006 } 1007 1008 #else 1009 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1010 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1011 int n, bool a) 1012 { } 1013 static inline void aarch64_add_sve_properties(Object *obj) { } 1014 #endif 1015 1016 #if !defined(CONFIG_TCG) 1017 static inline target_ulong do_arm_semihosting(CPUARMState *env) 1018 { 1019 g_assert_not_reached(); 1020 } 1021 #else 1022 target_ulong do_arm_semihosting(CPUARMState *env); 1023 #endif 1024 void aarch64_sync_32_to_64(CPUARMState *env); 1025 void aarch64_sync_64_to_32(CPUARMState *env); 1026 1027 int fp_exception_el(CPUARMState *env, int cur_el); 1028 int sve_exception_el(CPUARMState *env, int cur_el); 1029 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1030 1031 static inline bool is_a64(CPUARMState *env) 1032 { 1033 return env->aarch64; 1034 } 1035 1036 /* you can call this signal handler from your SIGBUS and SIGSEGV 1037 signal handlers to inform the virtual CPU of exceptions. non zero 1038 is returned if the signal was handled by the virtual CPU. */ 1039 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1040 void *puc); 1041 1042 /** 1043 * pmu_op_start/finish 1044 * @env: CPUARMState 1045 * 1046 * Convert all PMU counters between their delta form (the typical mode when 1047 * they are enabled) and the guest-visible values. These two calls must 1048 * surround any action which might affect the counters. 1049 */ 1050 void pmu_op_start(CPUARMState *env); 1051 void pmu_op_finish(CPUARMState *env); 1052 1053 /* 1054 * Called when a PMU counter is due to overflow 1055 */ 1056 void arm_pmu_timer_cb(void *opaque); 1057 1058 /** 1059 * Functions to register as EL change hooks for PMU mode filtering 1060 */ 1061 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1062 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1063 1064 /* 1065 * pmu_init 1066 * @cpu: ARMCPU 1067 * 1068 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1069 * for the current configuration 1070 */ 1071 void pmu_init(ARMCPU *cpu); 1072 1073 /* SCTLR bit meanings. Several bits have been reused in newer 1074 * versions of the architecture; in that case we define constants 1075 * for both old and new bit meanings. Code which tests against those 1076 * bits should probably check or otherwise arrange that the CPU 1077 * is the architectural version it expects. 1078 */ 1079 #define SCTLR_M (1U << 0) 1080 #define SCTLR_A (1U << 1) 1081 #define SCTLR_C (1U << 2) 1082 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1083 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1084 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1085 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1086 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1087 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1088 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1089 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1090 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1091 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1092 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1093 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1094 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1095 #define SCTLR_SED (1U << 8) /* v8 onward */ 1096 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1097 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1098 #define SCTLR_F (1U << 10) /* up to v6 */ 1099 #define SCTLR_SW (1U << 10) /* v7 */ 1100 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1101 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1102 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1103 #define SCTLR_I (1U << 12) 1104 #define SCTLR_V (1U << 13) /* AArch32 only */ 1105 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1106 #define SCTLR_RR (1U << 14) /* up to v7 */ 1107 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1108 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1109 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1110 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1111 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1112 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1113 #define SCTLR_BR (1U << 17) /* PMSA only */ 1114 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1115 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1116 #define SCTLR_WXN (1U << 19) 1117 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1118 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1119 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1120 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1121 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1122 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1123 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1124 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1125 #define SCTLR_VE (1U << 24) /* up to v7 */ 1126 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1127 #define SCTLR_EE (1U << 25) 1128 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1129 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1130 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1131 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1132 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1133 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1134 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1135 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1136 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1137 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1138 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1139 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1140 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1141 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1142 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1143 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1144 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1145 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1146 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1147 1148 #define CPTR_TCPAC (1U << 31) 1149 #define CPTR_TTA (1U << 20) 1150 #define CPTR_TFP (1U << 10) 1151 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1152 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1153 1154 #define MDCR_EPMAD (1U << 21) 1155 #define MDCR_EDAD (1U << 20) 1156 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1157 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1158 #define MDCR_SDD (1U << 16) 1159 #define MDCR_SPD (3U << 14) 1160 #define MDCR_TDRA (1U << 11) 1161 #define MDCR_TDOSA (1U << 10) 1162 #define MDCR_TDA (1U << 9) 1163 #define MDCR_TDE (1U << 8) 1164 #define MDCR_HPME (1U << 7) 1165 #define MDCR_TPM (1U << 6) 1166 #define MDCR_TPMCR (1U << 5) 1167 #define MDCR_HPMN (0x1fU) 1168 1169 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1170 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1171 1172 #define CPSR_M (0x1fU) 1173 #define CPSR_T (1U << 5) 1174 #define CPSR_F (1U << 6) 1175 #define CPSR_I (1U << 7) 1176 #define CPSR_A (1U << 8) 1177 #define CPSR_E (1U << 9) 1178 #define CPSR_IT_2_7 (0xfc00U) 1179 #define CPSR_GE (0xfU << 16) 1180 #define CPSR_IL (1U << 20) 1181 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 1182 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 1183 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 1184 * where it is live state but not accessible to the AArch32 code. 1185 */ 1186 #define CPSR_RESERVED (0x7U << 21) 1187 #define CPSR_J (1U << 24) 1188 #define CPSR_IT_0_1 (3U << 25) 1189 #define CPSR_Q (1U << 27) 1190 #define CPSR_V (1U << 28) 1191 #define CPSR_C (1U << 29) 1192 #define CPSR_Z (1U << 30) 1193 #define CPSR_N (1U << 31) 1194 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1195 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1196 1197 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1198 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1199 | CPSR_NZCV) 1200 /* Bits writable in user mode. */ 1201 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 1202 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1203 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1204 /* Mask of bits which may be set by exception return copying them from SPSR */ 1205 #define CPSR_ERET_MASK (~CPSR_RESERVED) 1206 1207 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1208 #define XPSR_EXCP 0x1ffU 1209 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1210 #define XPSR_IT_2_7 CPSR_IT_2_7 1211 #define XPSR_GE CPSR_GE 1212 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1213 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1214 #define XPSR_IT_0_1 CPSR_IT_0_1 1215 #define XPSR_Q CPSR_Q 1216 #define XPSR_V CPSR_V 1217 #define XPSR_C CPSR_C 1218 #define XPSR_Z CPSR_Z 1219 #define XPSR_N CPSR_N 1220 #define XPSR_NZCV CPSR_NZCV 1221 #define XPSR_IT CPSR_IT 1222 1223 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1224 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1225 #define TTBCR_PD0 (1U << 4) 1226 #define TTBCR_PD1 (1U << 5) 1227 #define TTBCR_EPD0 (1U << 7) 1228 #define TTBCR_IRGN0 (3U << 8) 1229 #define TTBCR_ORGN0 (3U << 10) 1230 #define TTBCR_SH0 (3U << 12) 1231 #define TTBCR_T1SZ (3U << 16) 1232 #define TTBCR_A1 (1U << 22) 1233 #define TTBCR_EPD1 (1U << 23) 1234 #define TTBCR_IRGN1 (3U << 24) 1235 #define TTBCR_ORGN1 (3U << 26) 1236 #define TTBCR_SH1 (1U << 28) 1237 #define TTBCR_EAE (1U << 31) 1238 1239 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1240 * Only these are valid when in AArch64 mode; in 1241 * AArch32 mode SPSRs are basically CPSR-format. 1242 */ 1243 #define PSTATE_SP (1U) 1244 #define PSTATE_M (0xFU) 1245 #define PSTATE_nRW (1U << 4) 1246 #define PSTATE_F (1U << 6) 1247 #define PSTATE_I (1U << 7) 1248 #define PSTATE_A (1U << 8) 1249 #define PSTATE_D (1U << 9) 1250 #define PSTATE_BTYPE (3U << 10) 1251 #define PSTATE_IL (1U << 20) 1252 #define PSTATE_SS (1U << 21) 1253 #define PSTATE_V (1U << 28) 1254 #define PSTATE_C (1U << 29) 1255 #define PSTATE_Z (1U << 30) 1256 #define PSTATE_N (1U << 31) 1257 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1258 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1259 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1260 /* Mode values for AArch64 */ 1261 #define PSTATE_MODE_EL3h 13 1262 #define PSTATE_MODE_EL3t 12 1263 #define PSTATE_MODE_EL2h 9 1264 #define PSTATE_MODE_EL2t 8 1265 #define PSTATE_MODE_EL1h 5 1266 #define PSTATE_MODE_EL1t 4 1267 #define PSTATE_MODE_EL0t 0 1268 1269 /* Write a new value to v7m.exception, thus transitioning into or out 1270 * of Handler mode; this may result in a change of active stack pointer. 1271 */ 1272 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1273 1274 /* Map EL and handler into a PSTATE_MODE. */ 1275 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1276 { 1277 return (el << 2) | handler; 1278 } 1279 1280 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1281 * interprocessing, so we don't attempt to sync with the cpsr state used by 1282 * the 32 bit decoder. 1283 */ 1284 static inline uint32_t pstate_read(CPUARMState *env) 1285 { 1286 int ZF; 1287 1288 ZF = (env->ZF == 0); 1289 return (env->NF & 0x80000000) | (ZF << 30) 1290 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1291 | env->pstate | env->daif | (env->btype << 10); 1292 } 1293 1294 static inline void pstate_write(CPUARMState *env, uint32_t val) 1295 { 1296 env->ZF = (~val) & PSTATE_Z; 1297 env->NF = val; 1298 env->CF = (val >> 29) & 1; 1299 env->VF = (val << 3) & 0x80000000; 1300 env->daif = val & PSTATE_DAIF; 1301 env->btype = (val >> 10) & 3; 1302 env->pstate = val & ~CACHED_PSTATE_BITS; 1303 } 1304 1305 /* Return the current CPSR value. */ 1306 uint32_t cpsr_read(CPUARMState *env); 1307 1308 typedef enum CPSRWriteType { 1309 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1310 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1311 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1312 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1313 } CPSRWriteType; 1314 1315 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1316 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1317 CPSRWriteType write_type); 1318 1319 /* Return the current xPSR value. */ 1320 static inline uint32_t xpsr_read(CPUARMState *env) 1321 { 1322 int ZF; 1323 ZF = (env->ZF == 0); 1324 return (env->NF & 0x80000000) | (ZF << 30) 1325 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1326 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1327 | ((env->condexec_bits & 0xfc) << 8) 1328 | (env->GE << 16) 1329 | env->v7m.exception; 1330 } 1331 1332 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1333 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1334 { 1335 if (mask & XPSR_NZCV) { 1336 env->ZF = (~val) & XPSR_Z; 1337 env->NF = val; 1338 env->CF = (val >> 29) & 1; 1339 env->VF = (val << 3) & 0x80000000; 1340 } 1341 if (mask & XPSR_Q) { 1342 env->QF = ((val & XPSR_Q) != 0); 1343 } 1344 if (mask & XPSR_GE) { 1345 env->GE = (val & XPSR_GE) >> 16; 1346 } 1347 #ifndef CONFIG_USER_ONLY 1348 if (mask & XPSR_T) { 1349 env->thumb = ((val & XPSR_T) != 0); 1350 } 1351 if (mask & XPSR_IT_0_1) { 1352 env->condexec_bits &= ~3; 1353 env->condexec_bits |= (val >> 25) & 3; 1354 } 1355 if (mask & XPSR_IT_2_7) { 1356 env->condexec_bits &= 3; 1357 env->condexec_bits |= (val >> 8) & 0xfc; 1358 } 1359 if (mask & XPSR_EXCP) { 1360 /* Note that this only happens on exception exit */ 1361 write_v7m_exception(env, val & XPSR_EXCP); 1362 } 1363 #endif 1364 } 1365 1366 #define HCR_VM (1ULL << 0) 1367 #define HCR_SWIO (1ULL << 1) 1368 #define HCR_PTW (1ULL << 2) 1369 #define HCR_FMO (1ULL << 3) 1370 #define HCR_IMO (1ULL << 4) 1371 #define HCR_AMO (1ULL << 5) 1372 #define HCR_VF (1ULL << 6) 1373 #define HCR_VI (1ULL << 7) 1374 #define HCR_VSE (1ULL << 8) 1375 #define HCR_FB (1ULL << 9) 1376 #define HCR_BSU_MASK (3ULL << 10) 1377 #define HCR_DC (1ULL << 12) 1378 #define HCR_TWI (1ULL << 13) 1379 #define HCR_TWE (1ULL << 14) 1380 #define HCR_TID0 (1ULL << 15) 1381 #define HCR_TID1 (1ULL << 16) 1382 #define HCR_TID2 (1ULL << 17) 1383 #define HCR_TID3 (1ULL << 18) 1384 #define HCR_TSC (1ULL << 19) 1385 #define HCR_TIDCP (1ULL << 20) 1386 #define HCR_TACR (1ULL << 21) 1387 #define HCR_TSW (1ULL << 22) 1388 #define HCR_TPCP (1ULL << 23) 1389 #define HCR_TPU (1ULL << 24) 1390 #define HCR_TTLB (1ULL << 25) 1391 #define HCR_TVM (1ULL << 26) 1392 #define HCR_TGE (1ULL << 27) 1393 #define HCR_TDZ (1ULL << 28) 1394 #define HCR_HCD (1ULL << 29) 1395 #define HCR_TRVM (1ULL << 30) 1396 #define HCR_RW (1ULL << 31) 1397 #define HCR_CD (1ULL << 32) 1398 #define HCR_ID (1ULL << 33) 1399 #define HCR_E2H (1ULL << 34) 1400 #define HCR_TLOR (1ULL << 35) 1401 #define HCR_TERR (1ULL << 36) 1402 #define HCR_TEA (1ULL << 37) 1403 #define HCR_MIOCNCE (1ULL << 38) 1404 #define HCR_APK (1ULL << 40) 1405 #define HCR_API (1ULL << 41) 1406 #define HCR_NV (1ULL << 42) 1407 #define HCR_NV1 (1ULL << 43) 1408 #define HCR_AT (1ULL << 44) 1409 #define HCR_NV2 (1ULL << 45) 1410 #define HCR_FWB (1ULL << 46) 1411 #define HCR_FIEN (1ULL << 47) 1412 #define HCR_TID4 (1ULL << 49) 1413 #define HCR_TICAB (1ULL << 50) 1414 #define HCR_TOCU (1ULL << 52) 1415 #define HCR_TTLBIS (1ULL << 54) 1416 #define HCR_TTLBOS (1ULL << 55) 1417 #define HCR_ATA (1ULL << 56) 1418 #define HCR_DCT (1ULL << 57) 1419 1420 /* 1421 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to 1422 * HCR_MASK and then clear it again if the feature bit is not set in 1423 * hcr_write(). 1424 */ 1425 #define HCR_MASK ((1ULL << 34) - 1) 1426 1427 #define SCR_NS (1U << 0) 1428 #define SCR_IRQ (1U << 1) 1429 #define SCR_FIQ (1U << 2) 1430 #define SCR_EA (1U << 3) 1431 #define SCR_FW (1U << 4) 1432 #define SCR_AW (1U << 5) 1433 #define SCR_NET (1U << 6) 1434 #define SCR_SMD (1U << 7) 1435 #define SCR_HCE (1U << 8) 1436 #define SCR_SIF (1U << 9) 1437 #define SCR_RW (1U << 10) 1438 #define SCR_ST (1U << 11) 1439 #define SCR_TWI (1U << 12) 1440 #define SCR_TWE (1U << 13) 1441 #define SCR_TLOR (1U << 14) 1442 #define SCR_TERR (1U << 15) 1443 #define SCR_APK (1U << 16) 1444 #define SCR_API (1U << 17) 1445 #define SCR_EEL2 (1U << 18) 1446 #define SCR_EASE (1U << 19) 1447 #define SCR_NMEA (1U << 20) 1448 #define SCR_FIEN (1U << 21) 1449 #define SCR_ENSCXT (1U << 25) 1450 #define SCR_ATA (1U << 26) 1451 1452 /* Return the current FPSCR value. */ 1453 uint32_t vfp_get_fpscr(CPUARMState *env); 1454 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1455 1456 /* FPCR, Floating Point Control Register 1457 * FPSR, Floating Poiht Status Register 1458 * 1459 * For A64 the FPSCR is split into two logically distinct registers, 1460 * FPCR and FPSR. However since they still use non-overlapping bits 1461 * we store the underlying state in fpscr and just mask on read/write. 1462 */ 1463 #define FPSR_MASK 0xf800009f 1464 #define FPCR_MASK 0x07ff9f00 1465 1466 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1467 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1468 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1469 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1470 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1471 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1472 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1473 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1474 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1475 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1476 1477 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1478 { 1479 return vfp_get_fpscr(env) & FPSR_MASK; 1480 } 1481 1482 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1483 { 1484 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1485 vfp_set_fpscr(env, new_fpscr); 1486 } 1487 1488 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1489 { 1490 return vfp_get_fpscr(env) & FPCR_MASK; 1491 } 1492 1493 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1494 { 1495 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1496 vfp_set_fpscr(env, new_fpscr); 1497 } 1498 1499 enum arm_cpu_mode { 1500 ARM_CPU_MODE_USR = 0x10, 1501 ARM_CPU_MODE_FIQ = 0x11, 1502 ARM_CPU_MODE_IRQ = 0x12, 1503 ARM_CPU_MODE_SVC = 0x13, 1504 ARM_CPU_MODE_MON = 0x16, 1505 ARM_CPU_MODE_ABT = 0x17, 1506 ARM_CPU_MODE_HYP = 0x1a, 1507 ARM_CPU_MODE_UND = 0x1b, 1508 ARM_CPU_MODE_SYS = 0x1f 1509 }; 1510 1511 /* VFP system registers. */ 1512 #define ARM_VFP_FPSID 0 1513 #define ARM_VFP_FPSCR 1 1514 #define ARM_VFP_MVFR2 5 1515 #define ARM_VFP_MVFR1 6 1516 #define ARM_VFP_MVFR0 7 1517 #define ARM_VFP_FPEXC 8 1518 #define ARM_VFP_FPINST 9 1519 #define ARM_VFP_FPINST2 10 1520 1521 /* iwMMXt coprocessor control registers. */ 1522 #define ARM_IWMMXT_wCID 0 1523 #define ARM_IWMMXT_wCon 1 1524 #define ARM_IWMMXT_wCSSF 2 1525 #define ARM_IWMMXT_wCASF 3 1526 #define ARM_IWMMXT_wCGR0 8 1527 #define ARM_IWMMXT_wCGR1 9 1528 #define ARM_IWMMXT_wCGR2 10 1529 #define ARM_IWMMXT_wCGR3 11 1530 1531 /* V7M CCR bits */ 1532 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1533 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1534 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1535 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1536 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1537 FIELD(V7M_CCR, STKALIGN, 9, 1) 1538 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1539 FIELD(V7M_CCR, DC, 16, 1) 1540 FIELD(V7M_CCR, IC, 17, 1) 1541 FIELD(V7M_CCR, BP, 18, 1) 1542 1543 /* V7M SCR bits */ 1544 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1545 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1546 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1547 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1548 1549 /* V7M AIRCR bits */ 1550 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1551 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1552 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1553 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1554 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1555 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1556 FIELD(V7M_AIRCR, PRIS, 14, 1) 1557 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1558 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1559 1560 /* V7M CFSR bits for MMFSR */ 1561 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1562 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1563 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1564 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1565 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1566 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1567 1568 /* V7M CFSR bits for BFSR */ 1569 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1570 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1571 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1572 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1573 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1574 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1575 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1576 1577 /* V7M CFSR bits for UFSR */ 1578 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1579 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1580 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1581 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1582 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1583 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1584 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1585 1586 /* V7M CFSR bit masks covering all of the subregister bits */ 1587 FIELD(V7M_CFSR, MMFSR, 0, 8) 1588 FIELD(V7M_CFSR, BFSR, 8, 8) 1589 FIELD(V7M_CFSR, UFSR, 16, 16) 1590 1591 /* V7M HFSR bits */ 1592 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1593 FIELD(V7M_HFSR, FORCED, 30, 1) 1594 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1595 1596 /* V7M DFSR bits */ 1597 FIELD(V7M_DFSR, HALTED, 0, 1) 1598 FIELD(V7M_DFSR, BKPT, 1, 1) 1599 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1600 FIELD(V7M_DFSR, VCATCH, 3, 1) 1601 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1602 1603 /* V7M SFSR bits */ 1604 FIELD(V7M_SFSR, INVEP, 0, 1) 1605 FIELD(V7M_SFSR, INVIS, 1, 1) 1606 FIELD(V7M_SFSR, INVER, 2, 1) 1607 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1608 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1609 FIELD(V7M_SFSR, LSPERR, 5, 1) 1610 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1611 FIELD(V7M_SFSR, LSERR, 7, 1) 1612 1613 /* v7M MPU_CTRL bits */ 1614 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1615 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1616 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1617 1618 /* v7M CLIDR bits */ 1619 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1620 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1621 FIELD(V7M_CLIDR, LOC, 24, 3) 1622 FIELD(V7M_CLIDR, LOUU, 27, 3) 1623 FIELD(V7M_CLIDR, ICB, 30, 2) 1624 1625 FIELD(V7M_CSSELR, IND, 0, 1) 1626 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1627 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1628 * define a mask for this and check that it doesn't permit running off 1629 * the end of the array. 1630 */ 1631 FIELD(V7M_CSSELR, INDEX, 0, 4) 1632 1633 /* v7M FPCCR bits */ 1634 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1635 FIELD(V7M_FPCCR, USER, 1, 1) 1636 FIELD(V7M_FPCCR, S, 2, 1) 1637 FIELD(V7M_FPCCR, THREAD, 3, 1) 1638 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1639 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1640 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1641 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1642 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1643 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1644 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1645 FIELD(V7M_FPCCR, RES0, 11, 15) 1646 FIELD(V7M_FPCCR, TS, 26, 1) 1647 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1648 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1649 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1650 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1651 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1652 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1653 #define R_V7M_FPCCR_BANKED_MASK \ 1654 (R_V7M_FPCCR_LSPACT_MASK | \ 1655 R_V7M_FPCCR_USER_MASK | \ 1656 R_V7M_FPCCR_THREAD_MASK | \ 1657 R_V7M_FPCCR_MMRDY_MASK | \ 1658 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1659 R_V7M_FPCCR_UFRDY_MASK | \ 1660 R_V7M_FPCCR_ASPEN_MASK) 1661 1662 /* 1663 * System register ID fields. 1664 */ 1665 FIELD(MIDR_EL1, REVISION, 0, 4) 1666 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1667 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1668 FIELD(MIDR_EL1, VARIANT, 20, 4) 1669 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1670 1671 FIELD(ID_ISAR0, SWAP, 0, 4) 1672 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1673 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1674 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1675 FIELD(ID_ISAR0, COPROC, 16, 4) 1676 FIELD(ID_ISAR0, DEBUG, 20, 4) 1677 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1678 1679 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1680 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1681 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1682 FIELD(ID_ISAR1, EXTEND, 12, 4) 1683 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1684 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1685 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1686 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1687 1688 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1689 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1690 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1691 FIELD(ID_ISAR2, MULT, 12, 4) 1692 FIELD(ID_ISAR2, MULTS, 16, 4) 1693 FIELD(ID_ISAR2, MULTU, 20, 4) 1694 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1695 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1696 1697 FIELD(ID_ISAR3, SATURATE, 0, 4) 1698 FIELD(ID_ISAR3, SIMD, 4, 4) 1699 FIELD(ID_ISAR3, SVC, 8, 4) 1700 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1701 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1702 FIELD(ID_ISAR3, T32COPY, 20, 4) 1703 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1704 FIELD(ID_ISAR3, T32EE, 28, 4) 1705 1706 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1707 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1708 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1709 FIELD(ID_ISAR4, SMC, 12, 4) 1710 FIELD(ID_ISAR4, BARRIER, 16, 4) 1711 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1712 FIELD(ID_ISAR4, PSR_M, 24, 4) 1713 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1714 1715 FIELD(ID_ISAR5, SEVL, 0, 4) 1716 FIELD(ID_ISAR5, AES, 4, 4) 1717 FIELD(ID_ISAR5, SHA1, 8, 4) 1718 FIELD(ID_ISAR5, SHA2, 12, 4) 1719 FIELD(ID_ISAR5, CRC32, 16, 4) 1720 FIELD(ID_ISAR5, RDM, 24, 4) 1721 FIELD(ID_ISAR5, VCMA, 28, 4) 1722 1723 FIELD(ID_ISAR6, JSCVT, 0, 4) 1724 FIELD(ID_ISAR6, DP, 4, 4) 1725 FIELD(ID_ISAR6, FHM, 8, 4) 1726 FIELD(ID_ISAR6, SB, 12, 4) 1727 FIELD(ID_ISAR6, SPECRES, 16, 4) 1728 1729 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1730 FIELD(ID_MMFR4, AC2, 4, 4) 1731 FIELD(ID_MMFR4, XNX, 8, 4) 1732 FIELD(ID_MMFR4, CNP, 12, 4) 1733 FIELD(ID_MMFR4, HPDS, 16, 4) 1734 FIELD(ID_MMFR4, LSM, 20, 4) 1735 FIELD(ID_MMFR4, CCIDX, 24, 4) 1736 FIELD(ID_MMFR4, EVT, 28, 4) 1737 1738 FIELD(ID_AA64ISAR0, AES, 4, 4) 1739 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1740 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1741 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1742 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1743 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1744 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1745 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1746 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1747 FIELD(ID_AA64ISAR0, DP, 44, 4) 1748 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1749 FIELD(ID_AA64ISAR0, TS, 52, 4) 1750 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1751 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1752 1753 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1754 FIELD(ID_AA64ISAR1, APA, 4, 4) 1755 FIELD(ID_AA64ISAR1, API, 8, 4) 1756 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1757 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1758 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1759 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1760 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1761 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1762 FIELD(ID_AA64ISAR1, SB, 36, 4) 1763 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1764 1765 FIELD(ID_AA64PFR0, EL0, 0, 4) 1766 FIELD(ID_AA64PFR0, EL1, 4, 4) 1767 FIELD(ID_AA64PFR0, EL2, 8, 4) 1768 FIELD(ID_AA64PFR0, EL3, 12, 4) 1769 FIELD(ID_AA64PFR0, FP, 16, 4) 1770 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1771 FIELD(ID_AA64PFR0, GIC, 24, 4) 1772 FIELD(ID_AA64PFR0, RAS, 28, 4) 1773 FIELD(ID_AA64PFR0, SVE, 32, 4) 1774 1775 FIELD(ID_AA64PFR1, BT, 0, 4) 1776 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1777 FIELD(ID_AA64PFR1, MTE, 8, 4) 1778 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1779 1780 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1781 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1782 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1783 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1784 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1785 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1786 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1787 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1788 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1789 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1790 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1791 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1792 1793 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1794 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1795 FIELD(ID_AA64MMFR1, VH, 8, 4) 1796 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1797 FIELD(ID_AA64MMFR1, LO, 16, 4) 1798 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1799 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1800 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1801 1802 FIELD(ID_DFR0, COPDBG, 0, 4) 1803 FIELD(ID_DFR0, COPSDBG, 4, 4) 1804 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1805 FIELD(ID_DFR0, COPTRC, 12, 4) 1806 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1807 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1808 FIELD(ID_DFR0, PERFMON, 24, 4) 1809 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1810 1811 FIELD(MVFR0, SIMDREG, 0, 4) 1812 FIELD(MVFR0, FPSP, 4, 4) 1813 FIELD(MVFR0, FPDP, 8, 4) 1814 FIELD(MVFR0, FPTRAP, 12, 4) 1815 FIELD(MVFR0, FPDIVIDE, 16, 4) 1816 FIELD(MVFR0, FPSQRT, 20, 4) 1817 FIELD(MVFR0, FPSHVEC, 24, 4) 1818 FIELD(MVFR0, FPROUND, 28, 4) 1819 1820 FIELD(MVFR1, FPFTZ, 0, 4) 1821 FIELD(MVFR1, FPDNAN, 4, 4) 1822 FIELD(MVFR1, SIMDLS, 8, 4) 1823 FIELD(MVFR1, SIMDINT, 12, 4) 1824 FIELD(MVFR1, SIMDSP, 16, 4) 1825 FIELD(MVFR1, SIMDHP, 20, 4) 1826 FIELD(MVFR1, FPHP, 24, 4) 1827 FIELD(MVFR1, SIMDFMAC, 28, 4) 1828 1829 FIELD(MVFR2, SIMDMISC, 0, 4) 1830 FIELD(MVFR2, FPMISC, 4, 4) 1831 1832 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1833 1834 /* If adding a feature bit which corresponds to a Linux ELF 1835 * HWCAP bit, remember to update the feature-bit-to-hwcap 1836 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1837 */ 1838 enum arm_features { 1839 ARM_FEATURE_VFP, 1840 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1841 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1842 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1843 ARM_FEATURE_V6, 1844 ARM_FEATURE_V6K, 1845 ARM_FEATURE_V7, 1846 ARM_FEATURE_THUMB2, 1847 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1848 ARM_FEATURE_VFP3, 1849 ARM_FEATURE_NEON, 1850 ARM_FEATURE_M, /* Microcontroller profile. */ 1851 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1852 ARM_FEATURE_THUMB2EE, 1853 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1854 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1855 ARM_FEATURE_V4T, 1856 ARM_FEATURE_V5, 1857 ARM_FEATURE_STRONGARM, 1858 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1859 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1860 ARM_FEATURE_GENERIC_TIMER, 1861 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1862 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1863 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1864 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1865 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1866 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1867 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1868 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1869 ARM_FEATURE_V8, 1870 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1871 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1872 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1873 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1874 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1875 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1876 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1877 ARM_FEATURE_PMU, /* has PMU support */ 1878 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1879 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1880 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1881 }; 1882 1883 static inline int arm_feature(CPUARMState *env, int feature) 1884 { 1885 return (env->features & (1ULL << feature)) != 0; 1886 } 1887 1888 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 1889 1890 #if !defined(CONFIG_USER_ONLY) 1891 /* Return true if exception levels below EL3 are in secure state, 1892 * or would be following an exception return to that level. 1893 * Unlike arm_is_secure() (which is always a question about the 1894 * _current_ state of the CPU) this doesn't care about the current 1895 * EL or mode. 1896 */ 1897 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1898 { 1899 if (arm_feature(env, ARM_FEATURE_EL3)) { 1900 return !(env->cp15.scr_el3 & SCR_NS); 1901 } else { 1902 /* If EL3 is not supported then the secure state is implementation 1903 * defined, in which case QEMU defaults to non-secure. 1904 */ 1905 return false; 1906 } 1907 } 1908 1909 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1910 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1911 { 1912 if (arm_feature(env, ARM_FEATURE_EL3)) { 1913 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1914 /* CPU currently in AArch64 state and EL3 */ 1915 return true; 1916 } else if (!is_a64(env) && 1917 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1918 /* CPU currently in AArch32 state and monitor mode */ 1919 return true; 1920 } 1921 } 1922 return false; 1923 } 1924 1925 /* Return true if the processor is in secure state */ 1926 static inline bool arm_is_secure(CPUARMState *env) 1927 { 1928 if (arm_is_el3_or_mon(env)) { 1929 return true; 1930 } 1931 return arm_is_secure_below_el3(env); 1932 } 1933 1934 #else 1935 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1936 { 1937 return false; 1938 } 1939 1940 static inline bool arm_is_secure(CPUARMState *env) 1941 { 1942 return false; 1943 } 1944 #endif 1945 1946 /** 1947 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 1948 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 1949 * "for all purposes other than a direct read or write access of HCR_EL2." 1950 * Not included here is HCR_RW. 1951 */ 1952 uint64_t arm_hcr_el2_eff(CPUARMState *env); 1953 1954 /* Return true if the specified exception level is running in AArch64 state. */ 1955 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1956 { 1957 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1958 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1959 */ 1960 assert(el >= 1 && el <= 3); 1961 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1962 1963 /* The highest exception level is always at the maximum supported 1964 * register width, and then lower levels have a register width controlled 1965 * by bits in the SCR or HCR registers. 1966 */ 1967 if (el == 3) { 1968 return aa64; 1969 } 1970 1971 if (arm_feature(env, ARM_FEATURE_EL3)) { 1972 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1973 } 1974 1975 if (el == 2) { 1976 return aa64; 1977 } 1978 1979 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1980 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1981 } 1982 1983 return aa64; 1984 } 1985 1986 /* Function for determing whether guest cp register reads and writes should 1987 * access the secure or non-secure bank of a cp register. When EL3 is 1988 * operating in AArch32 state, the NS-bit determines whether the secure 1989 * instance of a cp register should be used. When EL3 is AArch64 (or if 1990 * it doesn't exist at all) then there is no register banking, and all 1991 * accesses are to the non-secure version. 1992 */ 1993 static inline bool access_secure_reg(CPUARMState *env) 1994 { 1995 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1996 !arm_el_is_aa64(env, 3) && 1997 !(env->cp15.scr_el3 & SCR_NS)); 1998 1999 return ret; 2000 } 2001 2002 /* Macros for accessing a specified CP register bank */ 2003 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2004 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2005 2006 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2007 do { \ 2008 if (_secure) { \ 2009 (_env)->cp15._regname##_s = (_val); \ 2010 } else { \ 2011 (_env)->cp15._regname##_ns = (_val); \ 2012 } \ 2013 } while (0) 2014 2015 /* Macros for automatically accessing a specific CP register bank depending on 2016 * the current secure state of the system. These macros are not intended for 2017 * supporting instruction translation reads/writes as these are dependent 2018 * solely on the SCR.NS bit and not the mode. 2019 */ 2020 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2021 A32_BANKED_REG_GET((_env), _regname, \ 2022 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2023 2024 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2025 A32_BANKED_REG_SET((_env), _regname, \ 2026 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2027 (_val)) 2028 2029 void arm_cpu_list(void); 2030 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2031 uint32_t cur_el, bool secure); 2032 2033 /* Interface between CPU and Interrupt controller. */ 2034 #ifndef CONFIG_USER_ONLY 2035 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2036 #else 2037 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2038 { 2039 return true; 2040 } 2041 #endif 2042 /** 2043 * armv7m_nvic_set_pending: mark the specified exception as pending 2044 * @opaque: the NVIC 2045 * @irq: the exception number to mark pending 2046 * @secure: false for non-banked exceptions or for the nonsecure 2047 * version of a banked exception, true for the secure version of a banked 2048 * exception. 2049 * 2050 * Marks the specified exception as pending. Note that we will assert() 2051 * if @secure is true and @irq does not specify one of the fixed set 2052 * of architecturally banked exceptions. 2053 */ 2054 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2055 /** 2056 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2057 * @opaque: the NVIC 2058 * @irq: the exception number to mark pending 2059 * @secure: false for non-banked exceptions or for the nonsecure 2060 * version of a banked exception, true for the secure version of a banked 2061 * exception. 2062 * 2063 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2064 * exceptions (exceptions generated in the course of trying to take 2065 * a different exception). 2066 */ 2067 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2068 /** 2069 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2070 * @opaque: the NVIC 2071 * @irq: the exception number to mark pending 2072 * @secure: false for non-banked exceptions or for the nonsecure 2073 * version of a banked exception, true for the secure version of a banked 2074 * exception. 2075 * 2076 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2077 * generated in the course of lazy stacking of FP registers. 2078 */ 2079 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2080 /** 2081 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2082 * exception, and whether it targets Secure state 2083 * @opaque: the NVIC 2084 * @pirq: set to pending exception number 2085 * @ptargets_secure: set to whether pending exception targets Secure 2086 * 2087 * This function writes the number of the highest priority pending 2088 * exception (the one which would be made active by 2089 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2090 * to true if the current highest priority pending exception should 2091 * be taken to Secure state, false for NS. 2092 */ 2093 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2094 bool *ptargets_secure); 2095 /** 2096 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2097 * @opaque: the NVIC 2098 * 2099 * Move the current highest priority pending exception from the pending 2100 * state to the active state, and update v7m.exception to indicate that 2101 * it is the exception currently being handled. 2102 */ 2103 void armv7m_nvic_acknowledge_irq(void *opaque); 2104 /** 2105 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2106 * @opaque: the NVIC 2107 * @irq: the exception number to complete 2108 * @secure: true if this exception was secure 2109 * 2110 * Returns: -1 if the irq was not active 2111 * 1 if completing this irq brought us back to base (no active irqs) 2112 * 0 if there is still an irq active after this one was completed 2113 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2114 */ 2115 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2116 /** 2117 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2118 * @opaque: the NVIC 2119 * @irq: the exception number to mark pending 2120 * @secure: false for non-banked exceptions or for the nonsecure 2121 * version of a banked exception, true for the secure version of a banked 2122 * exception. 2123 * 2124 * Return whether an exception is "ready", i.e. whether the exception is 2125 * enabled and is configured at a priority which would allow it to 2126 * interrupt the current execution priority. This controls whether the 2127 * RDY bit for it in the FPCCR is set. 2128 */ 2129 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2130 /** 2131 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2132 * @opaque: the NVIC 2133 * 2134 * Returns: the raw execution priority as defined by the v8M architecture. 2135 * This is the execution priority minus the effects of AIRCR.PRIS, 2136 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2137 * (v8M ARM ARM I_PKLD.) 2138 */ 2139 int armv7m_nvic_raw_execution_priority(void *opaque); 2140 /** 2141 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2142 * priority is negative for the specified security state. 2143 * @opaque: the NVIC 2144 * @secure: the security state to test 2145 * This corresponds to the pseudocode IsReqExecPriNeg(). 2146 */ 2147 #ifndef CONFIG_USER_ONLY 2148 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2149 #else 2150 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2151 { 2152 return false; 2153 } 2154 #endif 2155 2156 /* Interface for defining coprocessor registers. 2157 * Registers are defined in tables of arm_cp_reginfo structs 2158 * which are passed to define_arm_cp_regs(). 2159 */ 2160 2161 /* When looking up a coprocessor register we look for it 2162 * via an integer which encodes all of: 2163 * coprocessor number 2164 * Crn, Crm, opc1, opc2 fields 2165 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2166 * or via MRRC/MCRR?) 2167 * non-secure/secure bank (AArch32 only) 2168 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2169 * (In this case crn and opc2 should be zero.) 2170 * For AArch64, there is no 32/64 bit size distinction; 2171 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2172 * and 4 bit CRn and CRm. The encoding patterns are chosen 2173 * to be easy to convert to and from the KVM encodings, and also 2174 * so that the hashtable can contain both AArch32 and AArch64 2175 * registers (to allow for interprocessing where we might run 2176 * 32 bit code on a 64 bit core). 2177 */ 2178 /* This bit is private to our hashtable cpreg; in KVM register 2179 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2180 * in the upper bits of the 64 bit ID. 2181 */ 2182 #define CP_REG_AA64_SHIFT 28 2183 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2184 2185 /* To enable banking of coprocessor registers depending on ns-bit we 2186 * add a bit to distinguish between secure and non-secure cpregs in the 2187 * hashtable. 2188 */ 2189 #define CP_REG_NS_SHIFT 29 2190 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2191 2192 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2193 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2194 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2195 2196 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2197 (CP_REG_AA64_MASK | \ 2198 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2199 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2200 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2201 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2202 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2203 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2204 2205 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2206 * version used as a key for the coprocessor register hashtable 2207 */ 2208 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2209 { 2210 uint32_t cpregid = kvmid; 2211 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2212 cpregid |= CP_REG_AA64_MASK; 2213 } else { 2214 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2215 cpregid |= (1 << 15); 2216 } 2217 2218 /* KVM is always non-secure so add the NS flag on AArch32 register 2219 * entries. 2220 */ 2221 cpregid |= 1 << CP_REG_NS_SHIFT; 2222 } 2223 return cpregid; 2224 } 2225 2226 /* Convert a truncated 32 bit hashtable key into the full 2227 * 64 bit KVM register ID. 2228 */ 2229 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2230 { 2231 uint64_t kvmid; 2232 2233 if (cpregid & CP_REG_AA64_MASK) { 2234 kvmid = cpregid & ~CP_REG_AA64_MASK; 2235 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2236 } else { 2237 kvmid = cpregid & ~(1 << 15); 2238 if (cpregid & (1 << 15)) { 2239 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2240 } else { 2241 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2242 } 2243 } 2244 return kvmid; 2245 } 2246 2247 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2248 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2249 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2250 * TCG can assume the value to be constant (ie load at translate time) 2251 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2252 * indicates that the TB should not be ended after a write to this register 2253 * (the default is that the TB ends after cp writes). OVERRIDE permits 2254 * a register definition to override a previous definition for the 2255 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2256 * old must have the OVERRIDE bit set. 2257 * ALIAS indicates that this register is an alias view of some underlying 2258 * state which is also visible via another register, and that the other 2259 * register is handling migration and reset; registers marked ALIAS will not be 2260 * migrated but may have their state set by syncing of register state from KVM. 2261 * NO_RAW indicates that this register has no underlying state and does not 2262 * support raw access for state saving/loading; it will not be used for either 2263 * migration or KVM state synchronization. (Typically this is for "registers" 2264 * which are actually used as instructions for cache maintenance and so on.) 2265 * IO indicates that this register does I/O and therefore its accesses 2266 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 2267 * registers which implement clocks or timers require this. 2268 * RAISES_EXC is for when the read or write hook might raise an exception; 2269 * the generated code will synchronize the CPU state before calling the hook 2270 * so that it is safe for the hook to call raise_exception(). 2271 * NEWEL is for writes to registers that might change the exception 2272 * level - typically on older ARM chips. For those cases we need to 2273 * re-read the new el when recomputing the translation flags. 2274 */ 2275 #define ARM_CP_SPECIAL 0x0001 2276 #define ARM_CP_CONST 0x0002 2277 #define ARM_CP_64BIT 0x0004 2278 #define ARM_CP_SUPPRESS_TB_END 0x0008 2279 #define ARM_CP_OVERRIDE 0x0010 2280 #define ARM_CP_ALIAS 0x0020 2281 #define ARM_CP_IO 0x0040 2282 #define ARM_CP_NO_RAW 0x0080 2283 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2284 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2285 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2286 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2287 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2288 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 2289 #define ARM_CP_FPU 0x1000 2290 #define ARM_CP_SVE 0x2000 2291 #define ARM_CP_NO_GDB 0x4000 2292 #define ARM_CP_RAISES_EXC 0x8000 2293 #define ARM_CP_NEWEL 0x10000 2294 /* Used only as a terminator for ARMCPRegInfo lists */ 2295 #define ARM_CP_SENTINEL 0xfffff 2296 /* Mask of only the flag bits in a type field */ 2297 #define ARM_CP_FLAG_MASK 0x1f0ff 2298 2299 /* Valid values for ARMCPRegInfo state field, indicating which of 2300 * the AArch32 and AArch64 execution states this register is visible in. 2301 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2302 * If the reginfo is declared to be visible in both states then a second 2303 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2304 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2305 * Note that we rely on the values of these enums as we iterate through 2306 * the various states in some places. 2307 */ 2308 enum { 2309 ARM_CP_STATE_AA32 = 0, 2310 ARM_CP_STATE_AA64 = 1, 2311 ARM_CP_STATE_BOTH = 2, 2312 }; 2313 2314 /* ARM CP register secure state flags. These flags identify security state 2315 * attributes for a given CP register entry. 2316 * The existence of both or neither secure and non-secure flags indicates that 2317 * the register has both a secure and non-secure hash entry. A single one of 2318 * these flags causes the register to only be hashed for the specified 2319 * security state. 2320 * Although definitions may have any combination of the S/NS bits, each 2321 * registered entry will only have one to identify whether the entry is secure 2322 * or non-secure. 2323 */ 2324 enum { 2325 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2326 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2327 }; 2328 2329 /* Return true if cptype is a valid type field. This is used to try to 2330 * catch errors where the sentinel has been accidentally left off the end 2331 * of a list of registers. 2332 */ 2333 static inline bool cptype_valid(int cptype) 2334 { 2335 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2336 || ((cptype & ARM_CP_SPECIAL) && 2337 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2338 } 2339 2340 /* Access rights: 2341 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2342 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2343 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2344 * (ie any of the privileged modes in Secure state, or Monitor mode). 2345 * If a register is accessible in one privilege level it's always accessible 2346 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2347 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2348 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2349 * terminology a little and call this PL3. 2350 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2351 * with the ELx exception levels. 2352 * 2353 * If access permissions for a register are more complex than can be 2354 * described with these bits, then use a laxer set of restrictions, and 2355 * do the more restrictive/complex check inside a helper function. 2356 */ 2357 #define PL3_R 0x80 2358 #define PL3_W 0x40 2359 #define PL2_R (0x20 | PL3_R) 2360 #define PL2_W (0x10 | PL3_W) 2361 #define PL1_R (0x08 | PL2_R) 2362 #define PL1_W (0x04 | PL2_W) 2363 #define PL0_R (0x02 | PL1_R) 2364 #define PL0_W (0x01 | PL1_W) 2365 2366 /* 2367 * For user-mode some registers are accessible to EL0 via a kernel 2368 * trap-and-emulate ABI. In this case we define the read permissions 2369 * as actually being PL0_R. However some bits of any given register 2370 * may still be masked. 2371 */ 2372 #ifdef CONFIG_USER_ONLY 2373 #define PL0U_R PL0_R 2374 #else 2375 #define PL0U_R PL1_R 2376 #endif 2377 2378 #define PL3_RW (PL3_R | PL3_W) 2379 #define PL2_RW (PL2_R | PL2_W) 2380 #define PL1_RW (PL1_R | PL1_W) 2381 #define PL0_RW (PL0_R | PL0_W) 2382 2383 /* Return the highest implemented Exception Level */ 2384 static inline int arm_highest_el(CPUARMState *env) 2385 { 2386 if (arm_feature(env, ARM_FEATURE_EL3)) { 2387 return 3; 2388 } 2389 if (arm_feature(env, ARM_FEATURE_EL2)) { 2390 return 2; 2391 } 2392 return 1; 2393 } 2394 2395 /* Return true if a v7M CPU is in Handler mode */ 2396 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2397 { 2398 return env->v7m.exception != 0; 2399 } 2400 2401 /* Return the current Exception Level (as per ARMv8; note that this differs 2402 * from the ARMv7 Privilege Level). 2403 */ 2404 static inline int arm_current_el(CPUARMState *env) 2405 { 2406 if (arm_feature(env, ARM_FEATURE_M)) { 2407 return arm_v7m_is_handler_mode(env) || 2408 !(env->v7m.control[env->v7m.secure] & 1); 2409 } 2410 2411 if (is_a64(env)) { 2412 return extract32(env->pstate, 2, 2); 2413 } 2414 2415 switch (env->uncached_cpsr & 0x1f) { 2416 case ARM_CPU_MODE_USR: 2417 return 0; 2418 case ARM_CPU_MODE_HYP: 2419 return 2; 2420 case ARM_CPU_MODE_MON: 2421 return 3; 2422 default: 2423 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2424 /* If EL3 is 32-bit then all secure privileged modes run in 2425 * EL3 2426 */ 2427 return 3; 2428 } 2429 2430 return 1; 2431 } 2432 } 2433 2434 typedef struct ARMCPRegInfo ARMCPRegInfo; 2435 2436 typedef enum CPAccessResult { 2437 /* Access is permitted */ 2438 CP_ACCESS_OK = 0, 2439 /* Access fails due to a configurable trap or enable which would 2440 * result in a categorized exception syndrome giving information about 2441 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2442 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2443 * PL1 if in EL0, otherwise to the current EL). 2444 */ 2445 CP_ACCESS_TRAP = 1, 2446 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2447 * Note that this is not a catch-all case -- the set of cases which may 2448 * result in this failure is specifically defined by the architecture. 2449 */ 2450 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2451 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2452 CP_ACCESS_TRAP_EL2 = 3, 2453 CP_ACCESS_TRAP_EL3 = 4, 2454 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2455 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2456 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2457 /* Access fails and results in an exception syndrome for an FP access, 2458 * trapped directly to EL2 or EL3 2459 */ 2460 CP_ACCESS_TRAP_FP_EL2 = 7, 2461 CP_ACCESS_TRAP_FP_EL3 = 8, 2462 } CPAccessResult; 2463 2464 /* Access functions for coprocessor registers. These cannot fail and 2465 * may not raise exceptions. 2466 */ 2467 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2468 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2469 uint64_t value); 2470 /* Access permission check functions for coprocessor registers. */ 2471 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2472 const ARMCPRegInfo *opaque, 2473 bool isread); 2474 /* Hook function for register reset */ 2475 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2476 2477 #define CP_ANY 0xff 2478 2479 /* Definition of an ARM coprocessor register */ 2480 struct ARMCPRegInfo { 2481 /* Name of register (useful mainly for debugging, need not be unique) */ 2482 const char *name; 2483 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2484 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2485 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2486 * will be decoded to this register. The register read and write 2487 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2488 * used by the program, so it is possible to register a wildcard and 2489 * then behave differently on read/write if necessary. 2490 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2491 * must both be zero. 2492 * For AArch64-visible registers, opc0 is also used. 2493 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2494 * way to distinguish (for KVM's benefit) guest-visible system registers 2495 * from demuxed ones provided to preserve the "no side effects on 2496 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2497 * visible (to match KVM's encoding); cp==0 will be converted to 2498 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2499 */ 2500 uint8_t cp; 2501 uint8_t crn; 2502 uint8_t crm; 2503 uint8_t opc0; 2504 uint8_t opc1; 2505 uint8_t opc2; 2506 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2507 int state; 2508 /* Register type: ARM_CP_* bits/values */ 2509 int type; 2510 /* Access rights: PL*_[RW] */ 2511 int access; 2512 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2513 int secure; 2514 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2515 * this register was defined: can be used to hand data through to the 2516 * register read/write functions, since they are passed the ARMCPRegInfo*. 2517 */ 2518 void *opaque; 2519 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2520 * fieldoffset is non-zero, the reset value of the register. 2521 */ 2522 uint64_t resetvalue; 2523 /* Offset of the field in CPUARMState for this register. 2524 * 2525 * This is not needed if either: 2526 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2527 * 2. both readfn and writefn are specified 2528 */ 2529 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2530 2531 /* Offsets of the secure and non-secure fields in CPUARMState for the 2532 * register if it is banked. These fields are only used during the static 2533 * registration of a register. During hashing the bank associated 2534 * with a given security state is copied to fieldoffset which is used from 2535 * there on out. 2536 * 2537 * It is expected that register definitions use either fieldoffset or 2538 * bank_fieldoffsets in the definition but not both. It is also expected 2539 * that both bank offsets are set when defining a banked register. This 2540 * use indicates that a register is banked. 2541 */ 2542 ptrdiff_t bank_fieldoffsets[2]; 2543 2544 /* Function for making any access checks for this register in addition to 2545 * those specified by the 'access' permissions bits. If NULL, no extra 2546 * checks required. The access check is performed at runtime, not at 2547 * translate time. 2548 */ 2549 CPAccessFn *accessfn; 2550 /* Function for handling reads of this register. If NULL, then reads 2551 * will be done by loading from the offset into CPUARMState specified 2552 * by fieldoffset. 2553 */ 2554 CPReadFn *readfn; 2555 /* Function for handling writes of this register. If NULL, then writes 2556 * will be done by writing to the offset into CPUARMState specified 2557 * by fieldoffset. 2558 */ 2559 CPWriteFn *writefn; 2560 /* Function for doing a "raw" read; used when we need to copy 2561 * coprocessor state to the kernel for KVM or out for 2562 * migration. This only needs to be provided if there is also a 2563 * readfn and it has side effects (for instance clear-on-read bits). 2564 */ 2565 CPReadFn *raw_readfn; 2566 /* Function for doing a "raw" write; used when we need to copy KVM 2567 * kernel coprocessor state into userspace, or for inbound 2568 * migration. This only needs to be provided if there is also a 2569 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2570 * or similar behaviour. 2571 */ 2572 CPWriteFn *raw_writefn; 2573 /* Function for resetting the register. If NULL, then reset will be done 2574 * by writing resetvalue to the field specified in fieldoffset. If 2575 * fieldoffset is 0 then no reset will be done. 2576 */ 2577 CPResetFn *resetfn; 2578 }; 2579 2580 /* Macros which are lvalues for the field in CPUARMState for the 2581 * ARMCPRegInfo *ri. 2582 */ 2583 #define CPREG_FIELD32(env, ri) \ 2584 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2585 #define CPREG_FIELD64(env, ri) \ 2586 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2587 2588 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2589 2590 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2591 const ARMCPRegInfo *regs, void *opaque); 2592 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2593 const ARMCPRegInfo *regs, void *opaque); 2594 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2595 { 2596 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2597 } 2598 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2599 { 2600 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2601 } 2602 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2603 2604 /* 2605 * Definition of an ARM co-processor register as viewed from 2606 * userspace. This is used for presenting sanitised versions of 2607 * registers to userspace when emulating the Linux AArch64 CPU 2608 * ID/feature ABI (advertised as HWCAP_CPUID). 2609 */ 2610 typedef struct ARMCPRegUserSpaceInfo { 2611 /* Name of register */ 2612 const char *name; 2613 2614 /* Is the name actually a glob pattern */ 2615 bool is_glob; 2616 2617 /* Only some bits are exported to user space */ 2618 uint64_t exported_bits; 2619 2620 /* Fixed bits are applied after the mask */ 2621 uint64_t fixed_bits; 2622 } ARMCPRegUserSpaceInfo; 2623 2624 #define REGUSERINFO_SENTINEL { .name = NULL } 2625 2626 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2627 2628 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2629 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2630 uint64_t value); 2631 /* CPReadFn that can be used for read-as-zero behaviour */ 2632 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2633 2634 /* CPResetFn that does nothing, for use if no reset is required even 2635 * if fieldoffset is non zero. 2636 */ 2637 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2638 2639 /* Return true if this reginfo struct's field in the cpu state struct 2640 * is 64 bits wide. 2641 */ 2642 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2643 { 2644 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2645 } 2646 2647 static inline bool cp_access_ok(int current_el, 2648 const ARMCPRegInfo *ri, int isread) 2649 { 2650 return (ri->access >> ((current_el * 2) + isread)) & 1; 2651 } 2652 2653 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2654 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2655 2656 /** 2657 * write_list_to_cpustate 2658 * @cpu: ARMCPU 2659 * 2660 * For each register listed in the ARMCPU cpreg_indexes list, write 2661 * its value from the cpreg_values list into the ARMCPUState structure. 2662 * This updates TCG's working data structures from KVM data or 2663 * from incoming migration state. 2664 * 2665 * Returns: true if all register values were updated correctly, 2666 * false if some register was unknown or could not be written. 2667 * Note that we do not stop early on failure -- we will attempt 2668 * writing all registers in the list. 2669 */ 2670 bool write_list_to_cpustate(ARMCPU *cpu); 2671 2672 /** 2673 * write_cpustate_to_list: 2674 * @cpu: ARMCPU 2675 * @kvm_sync: true if this is for syncing back to KVM 2676 * 2677 * For each register listed in the ARMCPU cpreg_indexes list, write 2678 * its value from the ARMCPUState structure into the cpreg_values list. 2679 * This is used to copy info from TCG's working data structures into 2680 * KVM or for outbound migration. 2681 * 2682 * @kvm_sync is true if we are doing this in order to sync the 2683 * register state back to KVM. In this case we will only update 2684 * values in the list if the previous list->cpustate sync actually 2685 * successfully wrote the CPU state. Otherwise we will keep the value 2686 * that is in the list. 2687 * 2688 * Returns: true if all register values were read correctly, 2689 * false if some register was unknown or could not be read. 2690 * Note that we do not stop early on failure -- we will attempt 2691 * reading all registers in the list. 2692 */ 2693 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2694 2695 #define ARM_CPUID_TI915T 0x54029152 2696 #define ARM_CPUID_TI925T 0x54029252 2697 2698 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 2699 unsigned int target_el) 2700 { 2701 CPUARMState *env = cs->env_ptr; 2702 unsigned int cur_el = arm_current_el(env); 2703 bool secure = arm_is_secure(env); 2704 bool pstate_unmasked; 2705 int8_t unmasked = 0; 2706 uint64_t hcr_el2; 2707 2708 /* Don't take exceptions if they target a lower EL. 2709 * This check should catch any exceptions that would not be taken but left 2710 * pending. 2711 */ 2712 if (cur_el > target_el) { 2713 return false; 2714 } 2715 2716 hcr_el2 = arm_hcr_el2_eff(env); 2717 2718 switch (excp_idx) { 2719 case EXCP_FIQ: 2720 pstate_unmasked = !(env->daif & PSTATE_F); 2721 break; 2722 2723 case EXCP_IRQ: 2724 pstate_unmasked = !(env->daif & PSTATE_I); 2725 break; 2726 2727 case EXCP_VFIQ: 2728 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 2729 /* VFIQs are only taken when hypervized and non-secure. */ 2730 return false; 2731 } 2732 return !(env->daif & PSTATE_F); 2733 case EXCP_VIRQ: 2734 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 2735 /* VIRQs are only taken when hypervized and non-secure. */ 2736 return false; 2737 } 2738 return !(env->daif & PSTATE_I); 2739 default: 2740 g_assert_not_reached(); 2741 } 2742 2743 /* Use the target EL, current execution state and SCR/HCR settings to 2744 * determine whether the corresponding CPSR bit is used to mask the 2745 * interrupt. 2746 */ 2747 if ((target_el > cur_el) && (target_el != 1)) { 2748 /* Exceptions targeting a higher EL may not be maskable */ 2749 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 2750 /* 64-bit masking rules are simple: exceptions to EL3 2751 * can't be masked, and exceptions to EL2 can only be 2752 * masked from Secure state. The HCR and SCR settings 2753 * don't affect the masking logic, only the interrupt routing. 2754 */ 2755 if (target_el == 3 || !secure) { 2756 unmasked = 1; 2757 } 2758 } else { 2759 /* The old 32-bit-only environment has a more complicated 2760 * masking setup. HCR and SCR bits not only affect interrupt 2761 * routing but also change the behaviour of masking. 2762 */ 2763 bool hcr, scr; 2764 2765 switch (excp_idx) { 2766 case EXCP_FIQ: 2767 /* If FIQs are routed to EL3 or EL2 then there are cases where 2768 * we override the CPSR.F in determining if the exception is 2769 * masked or not. If neither of these are set then we fall back 2770 * to the CPSR.F setting otherwise we further assess the state 2771 * below. 2772 */ 2773 hcr = hcr_el2 & HCR_FMO; 2774 scr = (env->cp15.scr_el3 & SCR_FIQ); 2775 2776 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 2777 * CPSR.F bit masks FIQ interrupts when taken in non-secure 2778 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 2779 * when non-secure but only when FIQs are only routed to EL3. 2780 */ 2781 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 2782 break; 2783 case EXCP_IRQ: 2784 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 2785 * we may override the CPSR.I masking when in non-secure state. 2786 * The SCR.IRQ setting has already been taken into consideration 2787 * when setting the target EL, so it does not have a further 2788 * affect here. 2789 */ 2790 hcr = hcr_el2 & HCR_IMO; 2791 scr = false; 2792 break; 2793 default: 2794 g_assert_not_reached(); 2795 } 2796 2797 if ((scr || hcr) && !secure) { 2798 unmasked = 1; 2799 } 2800 } 2801 } 2802 2803 /* The PSTATE bits only mask the interrupt if we have not overriden the 2804 * ability above. 2805 */ 2806 return unmasked || pstate_unmasked; 2807 } 2808 2809 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2810 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2811 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2812 2813 #define cpu_signal_handler cpu_arm_signal_handler 2814 #define cpu_list arm_cpu_list 2815 2816 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2817 * 2818 * If EL3 is 64-bit: 2819 * + NonSecure EL1 & 0 stage 1 2820 * + NonSecure EL1 & 0 stage 2 2821 * + NonSecure EL2 2822 * + Secure EL1 & EL0 2823 * + Secure EL3 2824 * If EL3 is 32-bit: 2825 * + NonSecure PL1 & 0 stage 1 2826 * + NonSecure PL1 & 0 stage 2 2827 * + NonSecure PL2 2828 * + Secure PL0 & PL1 2829 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2830 * 2831 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2832 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2833 * may differ in access permissions even if the VA->PA map is the same 2834 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2835 * translation, which means that we have one mmu_idx that deals with two 2836 * concatenated translation regimes [this sort of combined s1+2 TLB is 2837 * architecturally permitted] 2838 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2839 * handling via the TLB. The only way to do a stage 1 translation without 2840 * the immediate stage 2 translation is via the ATS or AT system insns, 2841 * which can be slow-pathed and always do a page table walk. 2842 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2843 * translation regimes, because they map reasonably well to each other 2844 * and they can't both be active at the same time. 2845 * This gives us the following list of mmu_idx values: 2846 * 2847 * NS EL0 (aka NS PL0) stage 1+2 2848 * NS EL1 (aka NS PL1) stage 1+2 2849 * NS EL2 (aka NS PL2) 2850 * S EL3 (aka S PL1) 2851 * S EL0 (aka S PL0) 2852 * S EL1 (not used if EL3 is 32 bit) 2853 * NS EL0+1 stage 2 2854 * 2855 * (The last of these is an mmu_idx because we want to be able to use the TLB 2856 * for the accesses done as part of a stage 1 page table walk, rather than 2857 * having to walk the stage 2 page table over and over.) 2858 * 2859 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2860 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2861 * NS EL2 if we ever model a Cortex-R52). 2862 * 2863 * M profile CPUs are rather different as they do not have a true MMU. 2864 * They have the following different MMU indexes: 2865 * User 2866 * Privileged 2867 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2868 * Privileged, execution priority negative (ditto) 2869 * If the CPU supports the v8M Security Extension then there are also: 2870 * Secure User 2871 * Secure Privileged 2872 * Secure User, execution priority negative 2873 * Secure Privileged, execution priority negative 2874 * 2875 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2876 * are not quite the same -- different CPU types (most notably M profile 2877 * vs A/R profile) would like to use MMU indexes with different semantics, 2878 * but since we don't ever need to use all of those in a single CPU we 2879 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2880 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2881 * the same for any particular CPU. 2882 * Variables of type ARMMUIdx are always full values, and the core 2883 * index values are in variables of type 'int'. 2884 * 2885 * Our enumeration includes at the end some entries which are not "true" 2886 * mmu_idx values in that they don't have corresponding TLBs and are only 2887 * valid for doing slow path page table walks. 2888 * 2889 * The constant names here are patterned after the general style of the names 2890 * of the AT/ATS operations. 2891 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2892 * For M profile we arrange them to have a bit for priv, a bit for negpri 2893 * and a bit for secure. 2894 */ 2895 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2896 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2897 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2898 2899 /* meanings of the bits for M profile mmu idx values */ 2900 #define ARM_MMU_IDX_M_PRIV 0x1 2901 #define ARM_MMU_IDX_M_NEGPRI 0x2 2902 #define ARM_MMU_IDX_M_S 0x4 2903 2904 #define ARM_MMU_IDX_TYPE_MASK (~0x7) 2905 #define ARM_MMU_IDX_COREIDX_MASK 0x7 2906 2907 typedef enum ARMMMUIdx { 2908 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, 2909 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, 2910 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, 2911 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, 2912 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, 2913 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, 2914 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, 2915 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, 2916 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, 2917 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M, 2918 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M, 2919 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M, 2920 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M, 2921 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M, 2922 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M, 2923 /* Indexes below here don't have TLBs and are used only for AT system 2924 * instructions or for the first stage of an S12 page table walk. 2925 */ 2926 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, 2927 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, 2928 } ARMMMUIdx; 2929 2930 /* Bit macros for the core-mmu-index values for each index, 2931 * for use when calling tlb_flush_by_mmuidx() and friends. 2932 */ 2933 typedef enum ARMMMUIdxBit { 2934 ARMMMUIdxBit_S12NSE0 = 1 << 0, 2935 ARMMMUIdxBit_S12NSE1 = 1 << 1, 2936 ARMMMUIdxBit_S1E2 = 1 << 2, 2937 ARMMMUIdxBit_S1E3 = 1 << 3, 2938 ARMMMUIdxBit_S1SE0 = 1 << 4, 2939 ARMMMUIdxBit_S1SE1 = 1 << 5, 2940 ARMMMUIdxBit_S2NS = 1 << 6, 2941 ARMMMUIdxBit_MUser = 1 << 0, 2942 ARMMMUIdxBit_MPriv = 1 << 1, 2943 ARMMMUIdxBit_MUserNegPri = 1 << 2, 2944 ARMMMUIdxBit_MPrivNegPri = 1 << 3, 2945 ARMMMUIdxBit_MSUser = 1 << 4, 2946 ARMMMUIdxBit_MSPriv = 1 << 5, 2947 ARMMMUIdxBit_MSUserNegPri = 1 << 6, 2948 ARMMMUIdxBit_MSPrivNegPri = 1 << 7, 2949 } ARMMMUIdxBit; 2950 2951 #define MMU_USER_IDX 0 2952 2953 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 2954 { 2955 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 2956 } 2957 2958 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 2959 { 2960 if (arm_feature(env, ARM_FEATURE_M)) { 2961 return mmu_idx | ARM_MMU_IDX_M; 2962 } else { 2963 return mmu_idx | ARM_MMU_IDX_A; 2964 } 2965 } 2966 2967 /* Return the exception level we're running at if this is our mmu_idx */ 2968 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2969 { 2970 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { 2971 case ARM_MMU_IDX_A: 2972 return mmu_idx & 3; 2973 case ARM_MMU_IDX_M: 2974 return mmu_idx & ARM_MMU_IDX_M_PRIV; 2975 default: 2976 g_assert_not_reached(); 2977 } 2978 } 2979 2980 /* 2981 * Return the MMU index for a v7M CPU with all relevant information 2982 * manually specified. 2983 */ 2984 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 2985 bool secstate, bool priv, bool negpri); 2986 2987 /* Return the MMU index for a v7M CPU in the specified security and 2988 * privilege state. 2989 */ 2990 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 2991 bool secstate, bool priv); 2992 2993 /* Return the MMU index for a v7M CPU in the specified security state */ 2994 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 2995 2996 /** 2997 * cpu_mmu_index: 2998 * @env: The cpu environment 2999 * @ifetch: True for code access, false for data access. 3000 * 3001 * Return the core mmu index for the current translation regime. 3002 * This function is used by generic TCG code paths. 3003 */ 3004 int cpu_mmu_index(CPUARMState *env, bool ifetch); 3005 3006 /* Indexes used when registering address spaces with cpu_address_space_init */ 3007 typedef enum ARMASIdx { 3008 ARMASIdx_NS = 0, 3009 ARMASIdx_S = 1, 3010 } ARMASIdx; 3011 3012 /* Return the Exception Level targeted by debug exceptions. */ 3013 static inline int arm_debug_target_el(CPUARMState *env) 3014 { 3015 bool secure = arm_is_secure(env); 3016 bool route_to_el2 = false; 3017 3018 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 3019 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 3020 env->cp15.mdcr_el2 & MDCR_TDE; 3021 } 3022 3023 if (route_to_el2) { 3024 return 2; 3025 } else if (arm_feature(env, ARM_FEATURE_EL3) && 3026 !arm_el_is_aa64(env, 3) && secure) { 3027 return 3; 3028 } else { 3029 return 1; 3030 } 3031 } 3032 3033 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3034 { 3035 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3036 * CSSELR is RAZ/WI. 3037 */ 3038 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3039 } 3040 3041 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 3042 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 3043 { 3044 int cur_el = arm_current_el(env); 3045 int debug_el; 3046 3047 if (cur_el == 3) { 3048 return false; 3049 } 3050 3051 /* MDCR_EL3.SDD disables debug events from Secure state */ 3052 if (arm_is_secure_below_el3(env) 3053 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3054 return false; 3055 } 3056 3057 /* 3058 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3059 * while not masking the (D)ebug bit in DAIF. 3060 */ 3061 debug_el = arm_debug_target_el(env); 3062 3063 if (cur_el == debug_el) { 3064 return extract32(env->cp15.mdscr_el1, 13, 1) 3065 && !(env->daif & PSTATE_D); 3066 } 3067 3068 /* Otherwise the debug target needs to be a higher EL */ 3069 return debug_el > cur_el; 3070 } 3071 3072 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3073 { 3074 int el = arm_current_el(env); 3075 3076 if (el == 0 && arm_el_is_aa64(env, 1)) { 3077 return aa64_generate_debug_exceptions(env); 3078 } 3079 3080 if (arm_is_secure(env)) { 3081 int spd; 3082 3083 if (el == 0 && (env->cp15.sder & 1)) { 3084 /* SDER.SUIDEN means debug exceptions from Secure EL0 3085 * are always enabled. Otherwise they are controlled by 3086 * SDCR.SPD like those from other Secure ELs. 3087 */ 3088 return true; 3089 } 3090 3091 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3092 switch (spd) { 3093 case 1: 3094 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3095 case 0: 3096 /* For 0b00 we return true if external secure invasive debug 3097 * is enabled. On real hardware this is controlled by external 3098 * signals to the core. QEMU always permits debug, and behaves 3099 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3100 */ 3101 return true; 3102 case 2: 3103 return false; 3104 case 3: 3105 return true; 3106 } 3107 } 3108 3109 return el != 2; 3110 } 3111 3112 /* Return true if debugging exceptions are currently enabled. 3113 * This corresponds to what in ARM ARM pseudocode would be 3114 * if UsingAArch32() then 3115 * return AArch32.GenerateDebugExceptions() 3116 * else 3117 * return AArch64.GenerateDebugExceptions() 3118 * We choose to push the if() down into this function for clarity, 3119 * since the pseudocode has it at all callsites except for the one in 3120 * CheckSoftwareStep(), where it is elided because both branches would 3121 * always return the same value. 3122 */ 3123 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3124 { 3125 if (env->aarch64) { 3126 return aa64_generate_debug_exceptions(env); 3127 } else { 3128 return aa32_generate_debug_exceptions(env); 3129 } 3130 } 3131 3132 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3133 * implicitly means this always returns false in pre-v8 CPUs.) 3134 */ 3135 static inline bool arm_singlestep_active(CPUARMState *env) 3136 { 3137 return extract32(env->cp15.mdscr_el1, 0, 1) 3138 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3139 && arm_generate_debug_exceptions(env); 3140 } 3141 3142 static inline bool arm_sctlr_b(CPUARMState *env) 3143 { 3144 return 3145 /* We need not implement SCTLR.ITD in user-mode emulation, so 3146 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3147 * This lets people run BE32 binaries with "-cpu any". 3148 */ 3149 #ifndef CONFIG_USER_ONLY 3150 !arm_feature(env, ARM_FEATURE_V7) && 3151 #endif 3152 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3153 } 3154 3155 static inline uint64_t arm_sctlr(CPUARMState *env, int el) 3156 { 3157 if (el == 0) { 3158 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 3159 return env->cp15.sctlr_el[1]; 3160 } else { 3161 return env->cp15.sctlr_el[el]; 3162 } 3163 } 3164 3165 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3166 bool sctlr_b) 3167 { 3168 #ifdef CONFIG_USER_ONLY 3169 /* 3170 * In system mode, BE32 is modelled in line with the 3171 * architecture (as word-invariant big-endianness), where loads 3172 * and stores are done little endian but from addresses which 3173 * are adjusted by XORing with the appropriate constant. So the 3174 * endianness to use for the raw data access is not affected by 3175 * SCTLR.B. 3176 * In user mode, however, we model BE32 as byte-invariant 3177 * big-endianness (because user-only code cannot tell the 3178 * difference), and so we need to use a data access endianness 3179 * that depends on SCTLR.B. 3180 */ 3181 if (sctlr_b) { 3182 return true; 3183 } 3184 #endif 3185 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3186 return env->uncached_cpsr & CPSR_E; 3187 } 3188 3189 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3190 { 3191 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3192 } 3193 3194 /* Return true if the processor is in big-endian mode. */ 3195 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3196 { 3197 if (!is_a64(env)) { 3198 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3199 } else { 3200 int cur_el = arm_current_el(env); 3201 uint64_t sctlr = arm_sctlr(env, cur_el); 3202 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3203 } 3204 } 3205 3206 typedef CPUARMState CPUArchState; 3207 typedef ARMCPU ArchCPU; 3208 3209 #include "exec/cpu-all.h" 3210 3211 /* 3212 * Bit usage in the TB flags field: bit 31 indicates whether we are 3213 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3214 * We put flags which are shared between 32 and 64 bit mode at the top 3215 * of the word, and flags which apply to only one mode at the bottom. 3216 * 3217 * Unless otherwise noted, these bits are cached in env->hflags. 3218 */ 3219 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3220 FIELD(TBFLAG_ANY, MMUIDX, 28, 3) 3221 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1) 3222 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) /* Not cached. */ 3223 /* Target EL if we take a floating-point-disabled exception */ 3224 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2) 3225 FIELD(TBFLAG_ANY, BE_DATA, 23, 1) 3226 /* 3227 * For A-profile only, target EL for debug exceptions. 3228 * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits. 3229 */ 3230 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2) 3231 3232 /* Bit usage when in AArch32 state: */ 3233 FIELD(TBFLAG_A32, THUMB, 0, 1) /* Not cached. */ 3234 FIELD(TBFLAG_A32, VECLEN, 1, 3) /* Not cached. */ 3235 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) /* Not cached. */ 3236 /* 3237 * We store the bottom two bits of the CPAR as TB flags and handle 3238 * checks on the other bits at runtime. This shares the same bits as 3239 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3240 * Not cached, because VECLEN+VECSTRIDE are not cached. 3241 */ 3242 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2) 3243 /* 3244 * Indicates whether cp register reads and writes by guest code should access 3245 * the secure or nonsecure bank of banked registers; note that this is not 3246 * the same thing as the current security state of the processor! 3247 */ 3248 FIELD(TBFLAG_A32, NS, 6, 1) 3249 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 3250 FIELD(TBFLAG_A32, CONDEXEC, 8, 8) /* Not cached. */ 3251 FIELD(TBFLAG_A32, SCTLR_B, 16, 1) 3252 FIELD(TBFLAG_A32, HSTR_ACTIVE, 17, 1) 3253 3254 /* For M profile only, set if FPCCR.LSPACT is set */ 3255 FIELD(TBFLAG_A32, LSPACT, 18, 1) /* Not cached. */ 3256 /* For M profile only, set if we must create a new FP context */ 3257 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */ 3258 /* For M profile only, set if FPCCR.S does not match current security state */ 3259 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */ 3260 /* For M profile only, Handler (ie not Thread) mode */ 3261 FIELD(TBFLAG_A32, HANDLER, 21, 1) 3262 /* For M profile only, whether we should generate stack-limit checks */ 3263 FIELD(TBFLAG_A32, STACKCHECK, 22, 1) 3264 3265 /* Bit usage when in AArch64 state */ 3266 FIELD(TBFLAG_A64, TBII, 0, 2) 3267 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3268 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3269 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3270 FIELD(TBFLAG_A64, BT, 9, 1) 3271 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3272 FIELD(TBFLAG_A64, TBID, 12, 2) 3273 3274 static inline bool bswap_code(bool sctlr_b) 3275 { 3276 #ifdef CONFIG_USER_ONLY 3277 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3278 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3279 * would also end up as a mixed-endian mode with BE code, LE data. 3280 */ 3281 return 3282 #ifdef TARGET_WORDS_BIGENDIAN 3283 1 ^ 3284 #endif 3285 sctlr_b; 3286 #else 3287 /* All code access in ARM is little endian, and there are no loaders 3288 * doing swaps that need to be reversed 3289 */ 3290 return 0; 3291 #endif 3292 } 3293 3294 #ifdef CONFIG_USER_ONLY 3295 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3296 { 3297 return 3298 #ifdef TARGET_WORDS_BIGENDIAN 3299 1 ^ 3300 #endif 3301 arm_cpu_data_is_big_endian(env); 3302 } 3303 #endif 3304 3305 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3306 target_ulong *cs_base, uint32_t *flags); 3307 3308 enum { 3309 QEMU_PSCI_CONDUIT_DISABLED = 0, 3310 QEMU_PSCI_CONDUIT_SMC = 1, 3311 QEMU_PSCI_CONDUIT_HVC = 2, 3312 }; 3313 3314 #ifndef CONFIG_USER_ONLY 3315 /* Return the address space index to use for a memory access */ 3316 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3317 { 3318 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3319 } 3320 3321 /* Return the AddressSpace to use for a memory access 3322 * (which depends on whether the access is S or NS, and whether 3323 * the board gave us a separate AddressSpace for S accesses). 3324 */ 3325 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3326 { 3327 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3328 } 3329 #endif 3330 3331 /** 3332 * arm_register_pre_el_change_hook: 3333 * Register a hook function which will be called immediately before this 3334 * CPU changes exception level or mode. The hook function will be 3335 * passed a pointer to the ARMCPU and the opaque data pointer passed 3336 * to this function when the hook was registered. 3337 * 3338 * Note that if a pre-change hook is called, any registered post-change hooks 3339 * are guaranteed to subsequently be called. 3340 */ 3341 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3342 void *opaque); 3343 /** 3344 * arm_register_el_change_hook: 3345 * Register a hook function which will be called immediately after this 3346 * CPU changes exception level or mode. The hook function will be 3347 * passed a pointer to the ARMCPU and the opaque data pointer passed 3348 * to this function when the hook was registered. 3349 * 3350 * Note that any registered hooks registered here are guaranteed to be called 3351 * if pre-change hooks have been. 3352 */ 3353 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3354 *opaque); 3355 3356 /** 3357 * arm_rebuild_hflags: 3358 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3359 */ 3360 void arm_rebuild_hflags(CPUARMState *env); 3361 3362 /** 3363 * aa32_vfp_dreg: 3364 * Return a pointer to the Dn register within env in 32-bit mode. 3365 */ 3366 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3367 { 3368 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3369 } 3370 3371 /** 3372 * aa32_vfp_qreg: 3373 * Return a pointer to the Qn register within env in 32-bit mode. 3374 */ 3375 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3376 { 3377 return &env->vfp.zregs[regno].d[0]; 3378 } 3379 3380 /** 3381 * aa64_vfp_qreg: 3382 * Return a pointer to the Qn register within env in 64-bit mode. 3383 */ 3384 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3385 { 3386 return &env->vfp.zregs[regno].d[0]; 3387 } 3388 3389 /* Shared between translate-sve.c and sve_helper.c. */ 3390 extern const uint64_t pred_esz_masks[4]; 3391 3392 /* 3393 * 32-bit feature tests via id registers. 3394 */ 3395 static inline bool isar_feature_thumb_div(const ARMISARegisters *id) 3396 { 3397 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3398 } 3399 3400 static inline bool isar_feature_arm_div(const ARMISARegisters *id) 3401 { 3402 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3403 } 3404 3405 static inline bool isar_feature_jazelle(const ARMISARegisters *id) 3406 { 3407 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3408 } 3409 3410 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3411 { 3412 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3413 } 3414 3415 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3416 { 3417 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3418 } 3419 3420 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3421 { 3422 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3423 } 3424 3425 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3426 { 3427 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3428 } 3429 3430 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3431 { 3432 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3433 } 3434 3435 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3436 { 3437 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3438 } 3439 3440 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3441 { 3442 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3443 } 3444 3445 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3446 { 3447 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3448 } 3449 3450 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3451 { 3452 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3453 } 3454 3455 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3456 { 3457 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3458 } 3459 3460 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3461 { 3462 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3463 } 3464 3465 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3466 { 3467 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3468 } 3469 3470 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3471 { 3472 /* 3473 * This is a placeholder for use by VCMA until the rest of 3474 * the ARMv8.2-FP16 extension is implemented for aa32 mode. 3475 * At which point we can properly set and check MVFR1.FPHP. 3476 */ 3477 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3478 } 3479 3480 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id) 3481 { 3482 /* Return true if D16-D31 are implemented */ 3483 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2; 3484 } 3485 3486 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3487 { 3488 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0; 3489 } 3490 3491 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id) 3492 { 3493 /* Return true if CPU supports double precision floating point */ 3494 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0; 3495 } 3496 3497 /* 3498 * We always set the FP and SIMD FP16 fields to indicate identical 3499 * levels of support (assuming SIMD is implemented at all), so 3500 * we only need one set of accessors. 3501 */ 3502 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3503 { 3504 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0; 3505 } 3506 3507 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3508 { 3509 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1; 3510 } 3511 3512 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3513 { 3514 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1; 3515 } 3516 3517 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3518 { 3519 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2; 3520 } 3521 3522 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3523 { 3524 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3; 3525 } 3526 3527 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3528 { 3529 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4; 3530 } 3531 3532 /* 3533 * 64-bit feature tests via id registers. 3534 */ 3535 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3536 { 3537 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3538 } 3539 3540 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3541 { 3542 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3543 } 3544 3545 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3546 { 3547 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3548 } 3549 3550 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3551 { 3552 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3553 } 3554 3555 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3556 { 3557 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3558 } 3559 3560 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3561 { 3562 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3563 } 3564 3565 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3566 { 3567 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3568 } 3569 3570 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3571 { 3572 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3573 } 3574 3575 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3576 { 3577 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3578 } 3579 3580 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3581 { 3582 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3583 } 3584 3585 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3586 { 3587 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3588 } 3589 3590 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3591 { 3592 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3593 } 3594 3595 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3596 { 3597 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3598 } 3599 3600 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3601 { 3602 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3603 } 3604 3605 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3606 { 3607 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3608 } 3609 3610 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3611 { 3612 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3613 } 3614 3615 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3616 { 3617 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3618 } 3619 3620 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3621 { 3622 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3623 } 3624 3625 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3626 { 3627 /* 3628 * Note that while QEMU will only implement the architected algorithm 3629 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3630 * defined algorithms, and thus API+GPI, and this predicate controls 3631 * migration of the 128-bit keys. 3632 */ 3633 return (id->id_aa64isar1 & 3634 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3635 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3636 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3637 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3638 } 3639 3640 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3641 { 3642 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3643 } 3644 3645 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3646 { 3647 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3648 } 3649 3650 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3651 { 3652 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3653 } 3654 3655 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3656 { 3657 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3658 } 3659 3660 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3661 { 3662 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3663 } 3664 3665 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3666 { 3667 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3668 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3669 } 3670 3671 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3672 { 3673 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3674 } 3675 3676 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3677 { 3678 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3679 } 3680 3681 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3682 { 3683 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3684 } 3685 3686 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3687 { 3688 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3689 } 3690 3691 /* 3692 * Forward to the above feature tests given an ARMCPU pointer. 3693 */ 3694 #define cpu_isar_feature(name, cpu) \ 3695 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3696 3697 #endif 3698