xref: /openbmc/qemu/target/arm/cpu.h (revision 663163f0)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "qapi/qapi-types-common.h"
30 #include "target/arm/multiprocessing.h"
31 #include "target/arm/gtimer.h"
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
61 #define EXCP_NMI            26
62 #define EXCP_VINMI          27
63 #define EXCP_VFNMI          28
64 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
65 
66 #define ARMV7M_EXCP_RESET   1
67 #define ARMV7M_EXCP_NMI     2
68 #define ARMV7M_EXCP_HARD    3
69 #define ARMV7M_EXCP_MEM     4
70 #define ARMV7M_EXCP_BUS     5
71 #define ARMV7M_EXCP_USAGE   6
72 #define ARMV7M_EXCP_SECURE  7
73 #define ARMV7M_EXCP_SVC     11
74 #define ARMV7M_EXCP_DEBUG   12
75 #define ARMV7M_EXCP_PENDSV  14
76 #define ARMV7M_EXCP_SYSTICK 15
77 
78 /* ARM-specific interrupt pending bits.  */
79 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
80 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
81 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
82 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
83 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
84 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
85 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
86 
87 /* The usual mapping for an AArch64 system register to its AArch32
88  * counterpart is for the 32 bit world to have access to the lower
89  * half only (with writes leaving the upper half untouched). It's
90  * therefore useful to be able to pass TCG the offset of the least
91  * significant half of a uint64_t struct member.
92  */
93 #if HOST_BIG_ENDIAN
94 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
95 #define offsetofhigh32(S, M) offsetof(S, M)
96 #else
97 #define offsetoflow32(S, M) offsetof(S, M)
98 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #endif
100 
101 /* ARM-specific extra insn start words:
102  * 1: Conditional execution bits
103  * 2: Partial exception syndrome for data aborts
104  */
105 #define TARGET_INSN_START_EXTRA_WORDS 2
106 
107 /* The 2nd extra word holding syndrome info for data aborts does not use
108  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
109  * help the sleb128 encoder do a better job.
110  * When restoring the CPU state, we shift it back up.
111  */
112 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
113 #define ARM_INSN_START_WORD2_SHIFT 13
114 
115 /* We currently assume float and double are IEEE single and double
116    precision respectively.
117    Doing runtime conversions is tricky because VFP registers may contain
118    integer values (eg. as the result of a FTOSI instruction).
119    s<2n> maps to the least significant half of d<n>
120    s<2n+1> maps to the most significant half of d<n>
121  */
122 
123 /**
124  * DynamicGDBFeatureInfo:
125  * @desc: Contains the feature descriptions.
126  * @data: A union with data specific to the set of registers
127  *    @cpregs_keys: Array that contains the corresponding Key of
128  *                  a given cpreg with the same order of the cpreg
129  *                  in the XML description.
130  */
131 typedef struct DynamicGDBFeatureInfo {
132     GDBFeature desc;
133     union {
134         struct {
135             uint32_t *keys;
136         } cpregs;
137     } data;
138 } DynamicGDBFeatureInfo;
139 
140 /* CPU state for each instance of a generic timer (in cp15 c14) */
141 typedef struct ARMGenericTimer {
142     uint64_t cval; /* Timer CompareValue register */
143     uint64_t ctl; /* Timer Control register */
144 } ARMGenericTimer;
145 
146 /* Define a maximum sized vector register.
147  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
148  * For 64-bit, this is a 2048-bit SVE register.
149  *
150  * Note that the mapping between S, D, and Q views of the register bank
151  * differs between AArch64 and AArch32.
152  * In AArch32:
153  *  Qn = regs[n].d[1]:regs[n].d[0]
154  *  Dn = regs[n / 2].d[n & 1]
155  *  Sn = regs[n / 4].d[n % 4 / 2],
156  *       bits 31..0 for even n, and bits 63..32 for odd n
157  *       (and regs[16] to regs[31] are inaccessible)
158  * In AArch64:
159  *  Zn = regs[n].d[*]
160  *  Qn = regs[n].d[1]:regs[n].d[0]
161  *  Dn = regs[n].d[0]
162  *  Sn = regs[n].d[0] bits 31..0
163  *  Hn = regs[n].d[0] bits 15..0
164  *
165  * This corresponds to the architecturally defined mapping between
166  * the two execution states, and means we do not need to explicitly
167  * map these registers when changing states.
168  *
169  * Align the data for use with TCG host vector operations.
170  */
171 
172 #ifdef TARGET_AARCH64
173 # define ARM_MAX_VQ    16
174 #else
175 # define ARM_MAX_VQ    1
176 #endif
177 
178 typedef struct ARMVectorReg {
179     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
180 } ARMVectorReg;
181 
182 #ifdef TARGET_AARCH64
183 /* In AArch32 mode, predicate registers do not exist at all.  */
184 typedef struct ARMPredicateReg {
185     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
186 } ARMPredicateReg;
187 
188 /* In AArch32 mode, PAC keys do not exist at all.  */
189 typedef struct ARMPACKey {
190     uint64_t lo, hi;
191 } ARMPACKey;
192 #endif
193 
194 /* See the commentary above the TBFLAG field definitions.  */
195 typedef struct CPUARMTBFlags {
196     uint32_t flags;
197     target_ulong flags2;
198 } CPUARMTBFlags;
199 
200 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
201 
202 typedef struct NVICState NVICState;
203 
204 typedef struct CPUArchState {
205     /* Regs for current mode.  */
206     uint32_t regs[16];
207 
208     /* 32/64 switch only happens when taking and returning from
209      * exceptions so the overlap semantics are taken care of then
210      * instead of having a complicated union.
211      */
212     /* Regs for A64 mode.  */
213     uint64_t xregs[32];
214     uint64_t pc;
215     /* PSTATE isn't an architectural register for ARMv8. However, it is
216      * convenient for us to assemble the underlying state into a 32 bit format
217      * identical to the architectural format used for the SPSR. (This is also
218      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
219      * 'pstate' register are.) Of the PSTATE bits:
220      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
221      *    semantics as for AArch32, as described in the comments on each field)
222      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
223      *  DAIF (exception masks) are kept in env->daif
224      *  BTYPE is kept in env->btype
225      *  SM and ZA are kept in env->svcr
226      *  all other bits are stored in their correct places in env->pstate
227      */
228     uint32_t pstate;
229     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
230     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
231 
232     /* Cached TBFLAGS state.  See below for which bits are included.  */
233     CPUARMTBFlags hflags;
234 
235     /* Frequently accessed CPSR bits are stored separately for efficiency.
236        This contains all the other bits.  Use cpsr_{read,write} to access
237        the whole CPSR.  */
238     uint32_t uncached_cpsr;
239     uint32_t spsr;
240 
241     /* Banked registers.  */
242     uint64_t banked_spsr[8];
243     uint32_t banked_r13[8];
244     uint32_t banked_r14[8];
245 
246     /* These hold r8-r12.  */
247     uint32_t usr_regs[5];
248     uint32_t fiq_regs[5];
249 
250     /* cpsr flag cache for faster execution */
251     uint32_t CF; /* 0 or 1 */
252     uint32_t VF; /* V is the bit 31. All other bits are undefined */
253     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
254     uint32_t ZF; /* Z set if zero.  */
255     uint32_t QF; /* 0 or 1 */
256     uint32_t GE; /* cpsr[19:16] */
257     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
258     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
259     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
260     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
261 
262     uint64_t elr_el[4]; /* AArch64 exception link regs  */
263     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
264 
265     /* System control coprocessor (cp15) */
266     struct {
267         uint32_t c0_cpuid;
268         union { /* Cache size selection */
269             struct {
270                 uint64_t _unused_csselr0;
271                 uint64_t csselr_ns;
272                 uint64_t _unused_csselr1;
273                 uint64_t csselr_s;
274             };
275             uint64_t csselr_el[4];
276         };
277         union { /* System control register. */
278             struct {
279                 uint64_t _unused_sctlr;
280                 uint64_t sctlr_ns;
281                 uint64_t hsctlr;
282                 uint64_t sctlr_s;
283             };
284             uint64_t sctlr_el[4];
285         };
286         uint64_t vsctlr; /* Virtualization System control register. */
287         uint64_t cpacr_el1; /* Architectural feature access control register */
288         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
289         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
290         uint64_t sder; /* Secure debug enable register. */
291         uint32_t nsacr; /* Non-secure access control register. */
292         union { /* MMU translation table base 0. */
293             struct {
294                 uint64_t _unused_ttbr0_0;
295                 uint64_t ttbr0_ns;
296                 uint64_t _unused_ttbr0_1;
297                 uint64_t ttbr0_s;
298             };
299             uint64_t ttbr0_el[4];
300         };
301         union { /* MMU translation table base 1. */
302             struct {
303                 uint64_t _unused_ttbr1_0;
304                 uint64_t ttbr1_ns;
305                 uint64_t _unused_ttbr1_1;
306                 uint64_t ttbr1_s;
307             };
308             uint64_t ttbr1_el[4];
309         };
310         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
311         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
312         /* MMU translation table base control. */
313         uint64_t tcr_el[4];
314         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
315         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
316         uint32_t c2_data; /* MPU data cacheable bits.  */
317         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
318         union { /* MMU domain access control register
319                  * MPU write buffer control.
320                  */
321             struct {
322                 uint64_t dacr_ns;
323                 uint64_t dacr_s;
324             };
325             struct {
326                 uint64_t dacr32_el2;
327             };
328         };
329         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
330         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
331         uint64_t hcr_el2; /* Hypervisor configuration register */
332         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
333         uint64_t scr_el3; /* Secure configuration register.  */
334         union { /* Fault status registers.  */
335             struct {
336                 uint64_t ifsr_ns;
337                 uint64_t ifsr_s;
338             };
339             struct {
340                 uint64_t ifsr32_el2;
341             };
342         };
343         union {
344             struct {
345                 uint64_t _unused_dfsr;
346                 uint64_t dfsr_ns;
347                 uint64_t hsr;
348                 uint64_t dfsr_s;
349             };
350             uint64_t esr_el[4];
351         };
352         uint32_t c6_region[8]; /* MPU base/size registers.  */
353         union { /* Fault address registers. */
354             struct {
355                 uint64_t _unused_far0;
356 #if HOST_BIG_ENDIAN
357                 uint32_t ifar_ns;
358                 uint32_t dfar_ns;
359                 uint32_t ifar_s;
360                 uint32_t dfar_s;
361 #else
362                 uint32_t dfar_ns;
363                 uint32_t ifar_ns;
364                 uint32_t dfar_s;
365                 uint32_t ifar_s;
366 #endif
367                 uint64_t _unused_far3;
368             };
369             uint64_t far_el[4];
370         };
371         uint64_t hpfar_el2;
372         uint64_t hstr_el2;
373         union { /* Translation result. */
374             struct {
375                 uint64_t _unused_par_0;
376                 uint64_t par_ns;
377                 uint64_t _unused_par_1;
378                 uint64_t par_s;
379             };
380             uint64_t par_el[4];
381         };
382 
383         uint32_t c9_insn; /* Cache lockdown registers.  */
384         uint32_t c9_data;
385         uint64_t c9_pmcr; /* performance monitor control register */
386         uint64_t c9_pmcnten; /* perf monitor counter enables */
387         uint64_t c9_pmovsr; /* perf monitor overflow status */
388         uint64_t c9_pmuserenr; /* perf monitor user enable */
389         uint64_t c9_pmselr; /* perf monitor counter selection register */
390         uint64_t c9_pminten; /* perf monitor interrupt enables */
391         union { /* Memory attribute redirection */
392             struct {
393 #if HOST_BIG_ENDIAN
394                 uint64_t _unused_mair_0;
395                 uint32_t mair1_ns;
396                 uint32_t mair0_ns;
397                 uint64_t _unused_mair_1;
398                 uint32_t mair1_s;
399                 uint32_t mair0_s;
400 #else
401                 uint64_t _unused_mair_0;
402                 uint32_t mair0_ns;
403                 uint32_t mair1_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair0_s;
406                 uint32_t mair1_s;
407 #endif
408             };
409             uint64_t mair_el[4];
410         };
411         union { /* vector base address register */
412             struct {
413                 uint64_t _unused_vbar;
414                 uint64_t vbar_ns;
415                 uint64_t hvbar;
416                 uint64_t vbar_s;
417             };
418             uint64_t vbar_el[4];
419         };
420         uint32_t mvbar; /* (monitor) vector base address register */
421         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
422         struct { /* FCSE PID. */
423             uint32_t fcseidr_ns;
424             uint32_t fcseidr_s;
425         };
426         union { /* Context ID. */
427             struct {
428                 uint64_t _unused_contextidr_0;
429                 uint64_t contextidr_ns;
430                 uint64_t _unused_contextidr_1;
431                 uint64_t contextidr_s;
432             };
433             uint64_t contextidr_el[4];
434         };
435         union { /* User RW Thread register. */
436             struct {
437                 uint64_t tpidrurw_ns;
438                 uint64_t tpidrprw_ns;
439                 uint64_t htpidr;
440                 uint64_t _tpidr_el3;
441             };
442             uint64_t tpidr_el[4];
443         };
444         uint64_t tpidr2_el0;
445         /* The secure banks of these registers don't map anywhere */
446         uint64_t tpidrurw_s;
447         uint64_t tpidrprw_s;
448         uint64_t tpidruro_s;
449 
450         union { /* User RO Thread register. */
451             uint64_t tpidruro_ns;
452             uint64_t tpidrro_el[1];
453         };
454         uint64_t c14_cntfrq; /* Counter Frequency register */
455         uint64_t c14_cntkctl; /* Timer Control register */
456         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
457         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
458         uint64_t cntpoff_el2; /* Counter Physical Offset register */
459         ARMGenericTimer c14_timer[NUM_GTIMERS];
460         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
461         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
462         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
463         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
464         uint32_t c15_threadid; /* TI debugger thread-ID.  */
465         uint32_t c15_config_base_address; /* SCU base address.  */
466         uint32_t c15_diagnostic; /* diagnostic register */
467         uint32_t c15_power_diagnostic;
468         uint32_t c15_power_control; /* power control */
469         uint64_t dbgbvr[16]; /* breakpoint value registers */
470         uint64_t dbgbcr[16]; /* breakpoint control registers */
471         uint64_t dbgwvr[16]; /* watchpoint value registers */
472         uint64_t dbgwcr[16]; /* watchpoint control registers */
473         uint64_t dbgclaim;   /* DBGCLAIM bits */
474         uint64_t mdscr_el1;
475         uint64_t oslsr_el1; /* OS Lock Status */
476         uint64_t osdlr_el1; /* OS DoubleLock status */
477         uint64_t mdcr_el2;
478         uint64_t mdcr_el3;
479         /* Stores the architectural value of the counter *the last time it was
480          * updated* by pmccntr_op_start. Accesses should always be surrounded
481          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
482          * architecturally-correct value is being read/set.
483          */
484         uint64_t c15_ccnt;
485         /* Stores the delta between the architectural value and the underlying
486          * cycle count during normal operation. It is used to update c15_ccnt
487          * to be the correct architectural value before accesses. During
488          * accesses, c15_ccnt_delta contains the underlying count being used
489          * for the access, after which it reverts to the delta value in
490          * pmccntr_op_finish.
491          */
492         uint64_t c15_ccnt_delta;
493         uint64_t c14_pmevcntr[31];
494         uint64_t c14_pmevcntr_delta[31];
495         uint64_t c14_pmevtyper[31];
496         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
497         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
498         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
499         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
500         uint64_t gcr_el1;
501         uint64_t rgsr_el1;
502 
503         /* Minimal RAS registers */
504         uint64_t disr_el1;
505         uint64_t vdisr_el2;
506         uint64_t vsesr_el2;
507 
508         /*
509          * Fine-Grained Trap registers. We store these as arrays so the
510          * access checking code doesn't have to manually select
511          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
512          * FEAT_FGT2 will add more elements to these arrays.
513          */
514         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
515         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
516         uint64_t fgt_exec[1]; /* HFGITR */
517 
518         /* RME registers */
519         uint64_t gpccr_el3;
520         uint64_t gptbr_el3;
521         uint64_t mfar_el3;
522 
523         /* NV2 register */
524         uint64_t vncr_el2;
525     } cp15;
526 
527     struct {
528         /* M profile has up to 4 stack pointers:
529          * a Main Stack Pointer and a Process Stack Pointer for each
530          * of the Secure and Non-Secure states. (If the CPU doesn't support
531          * the security extension then it has only two SPs.)
532          * In QEMU we always store the currently active SP in regs[13],
533          * and the non-active SP for the current security state in
534          * v7m.other_sp. The stack pointers for the inactive security state
535          * are stored in other_ss_msp and other_ss_psp.
536          * switch_v7m_security_state() is responsible for rearranging them
537          * when we change security state.
538          */
539         uint32_t other_sp;
540         uint32_t other_ss_msp;
541         uint32_t other_ss_psp;
542         uint32_t vecbase[M_REG_NUM_BANKS];
543         uint32_t basepri[M_REG_NUM_BANKS];
544         uint32_t control[M_REG_NUM_BANKS];
545         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
546         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
547         uint32_t hfsr; /* HardFault Status */
548         uint32_t dfsr; /* Debug Fault Status Register */
549         uint32_t sfsr; /* Secure Fault Status Register */
550         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
551         uint32_t bfar; /* BusFault Address */
552         uint32_t sfar; /* Secure Fault Address Register */
553         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
554         int exception;
555         uint32_t primask[M_REG_NUM_BANKS];
556         uint32_t faultmask[M_REG_NUM_BANKS];
557         uint32_t aircr; /* only holds r/w state if security extn implemented */
558         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
559         uint32_t csselr[M_REG_NUM_BANKS];
560         uint32_t scr[M_REG_NUM_BANKS];
561         uint32_t msplim[M_REG_NUM_BANKS];
562         uint32_t psplim[M_REG_NUM_BANKS];
563         uint32_t fpcar[M_REG_NUM_BANKS];
564         uint32_t fpccr[M_REG_NUM_BANKS];
565         uint32_t fpdscr[M_REG_NUM_BANKS];
566         uint32_t cpacr[M_REG_NUM_BANKS];
567         uint32_t nsacr;
568         uint32_t ltpsize;
569         uint32_t vpr;
570     } v7m;
571 
572     /* Information associated with an exception about to be taken:
573      * code which raises an exception must set cs->exception_index and
574      * the relevant parts of this structure; the cpu_do_interrupt function
575      * will then set the guest-visible registers as part of the exception
576      * entry process.
577      */
578     struct {
579         uint32_t syndrome; /* AArch64 format syndrome register */
580         uint32_t fsr; /* AArch32 format fault status register info */
581         uint64_t vaddress; /* virtual addr associated with exception, if any */
582         uint32_t target_el; /* EL the exception should be targeted for */
583         /* If we implement EL2 we will also need to store information
584          * about the intermediate physical address for stage 2 faults.
585          */
586     } exception;
587 
588     /* Information associated with an SError */
589     struct {
590         uint8_t pending;
591         uint8_t has_esr;
592         uint64_t esr;
593     } serror;
594 
595     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
596 
597     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
598     uint32_t irq_line_state;
599 
600     /* Thumb-2 EE state.  */
601     uint32_t teecr;
602     uint32_t teehbr;
603 
604     /* VFP coprocessor state.  */
605     struct {
606         ARMVectorReg zregs[32];
607 
608 #ifdef TARGET_AARCH64
609         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
610 #define FFR_PRED_NUM 16
611         ARMPredicateReg pregs[17];
612         /* Scratch space for aa64 sve predicate temporary.  */
613         ARMPredicateReg preg_tmp;
614 #endif
615 
616         /* We store these fpcsr fields separately for convenience.  */
617         uint32_t qc[4] QEMU_ALIGNED(16);
618         int vec_len;
619         int vec_stride;
620 
621         uint32_t xregs[16];
622 
623         /* Scratch space for aa32 neon expansion.  */
624         uint32_t scratch[8];
625 
626         /* There are a number of distinct float control structures:
627          *
628          *  fp_status: is the "normal" fp status.
629          *  fp_status_fp16: used for half-precision calculations
630          *  standard_fp_status : the ARM "Standard FPSCR Value"
631          *  standard_fp_status_fp16 : used for half-precision
632          *       calculations with the ARM "Standard FPSCR Value"
633          *
634          * Half-precision operations are governed by a separate
635          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
636          * status structure to control this.
637          *
638          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
639          * round-to-nearest and is used by any operations (generally
640          * Neon) which the architecture defines as controlled by the
641          * standard FPSCR value rather than the FPSCR.
642          *
643          * The "standard FPSCR but for fp16 ops" is needed because
644          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
645          * using a fixed value for it.
646          *
647          * To avoid having to transfer exception bits around, we simply
648          * say that the FPSCR cumulative exception flags are the logical
649          * OR of the flags in the four fp statuses. This relies on the
650          * only thing which needs to read the exception flags being
651          * an explicit FPSCR read.
652          */
653         float_status fp_status;
654         float_status fp_status_f16;
655         float_status standard_fp_status;
656         float_status standard_fp_status_f16;
657 
658         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
659         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
660     } vfp;
661 
662     uint64_t exclusive_addr;
663     uint64_t exclusive_val;
664     /*
665      * Contains the 'val' for the second 64-bit register of LDXP, which comes
666      * from the higher address, not the high part of a complete 128-bit value.
667      * In some ways it might be more convenient to record the exclusive value
668      * as the low and high halves of a 128 bit data value, but the current
669      * semantics of these fields are baked into the migration format.
670      */
671     uint64_t exclusive_high;
672 
673     /* iwMMXt coprocessor state.  */
674     struct {
675         uint64_t regs[16];
676         uint64_t val;
677 
678         uint32_t cregs[16];
679     } iwmmxt;
680 
681 #ifdef TARGET_AARCH64
682     struct {
683         ARMPACKey apia;
684         ARMPACKey apib;
685         ARMPACKey apda;
686         ARMPACKey apdb;
687         ARMPACKey apga;
688     } keys;
689 
690     uint64_t scxtnum_el[4];
691 
692     /*
693      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
694      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
695      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
696      * When SVL is less than the architectural maximum, the accessible
697      * storage is restricted, such that if the SVL is X bytes the guest can
698      * see only the bottom X elements of zarray[], and only the least
699      * significant X bytes of each element of the array. (In other words,
700      * the observable part is always square.)
701      *
702      * The ZA storage can also be considered as a set of square tiles of
703      * elements of different sizes. The mapping from tiles to the ZA array
704      * is architecturally defined, such that for tiles of elements of esz
705      * bytes, the Nth row (or "horizontal slice") of tile T is in
706      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
707      * in the ZA storage, because its rows are striped through the ZA array.
708      *
709      * Because this is so large, keep this toward the end of the reset area,
710      * to keep the offsets into the rest of the structure smaller.
711      */
712     ARMVectorReg zarray[ARM_MAX_VQ * 16];
713 #endif
714 
715     struct CPUBreakpoint *cpu_breakpoint[16];
716     struct CPUWatchpoint *cpu_watchpoint[16];
717 
718     /* Optional fault info across tlb lookup. */
719     ARMMMUFaultInfo *tlb_fi;
720 
721     /* Fields up to this point are cleared by a CPU reset */
722     struct {} end_reset_fields;
723 
724     /* Fields after this point are preserved across CPU reset. */
725 
726     /* Internal CPU feature flags.  */
727     uint64_t features;
728 
729     /* PMSAv7 MPU */
730     struct {
731         uint32_t *drbar;
732         uint32_t *drsr;
733         uint32_t *dracr;
734         uint32_t rnr[M_REG_NUM_BANKS];
735     } pmsav7;
736 
737     /* PMSAv8 MPU */
738     struct {
739         /* The PMSAv8 implementation also shares some PMSAv7 config
740          * and state:
741          *  pmsav7.rnr (region number register)
742          *  pmsav7_dregion (number of configured regions)
743          */
744         uint32_t *rbar[M_REG_NUM_BANKS];
745         uint32_t *rlar[M_REG_NUM_BANKS];
746         uint32_t *hprbar;
747         uint32_t *hprlar;
748         uint32_t mair0[M_REG_NUM_BANKS];
749         uint32_t mair1[M_REG_NUM_BANKS];
750         uint32_t hprselr;
751     } pmsav8;
752 
753     /* v8M SAU */
754     struct {
755         uint32_t *rbar;
756         uint32_t *rlar;
757         uint32_t rnr;
758         uint32_t ctrl;
759     } sau;
760 
761 #if !defined(CONFIG_USER_ONLY)
762     NVICState *nvic;
763     const struct arm_boot_info *boot_info;
764     /* Store GICv3CPUState to access from this struct */
765     void *gicv3state;
766 #else /* CONFIG_USER_ONLY */
767     /* For usermode syscall translation.  */
768     bool eabi;
769 #endif /* CONFIG_USER_ONLY */
770 
771 #ifdef TARGET_TAGGED_ADDRESSES
772     /* Linux syscall tagged address support */
773     bool tagged_addr_enable;
774 #endif
775 } CPUARMState;
776 
777 static inline void set_feature(CPUARMState *env, int feature)
778 {
779     env->features |= 1ULL << feature;
780 }
781 
782 static inline void unset_feature(CPUARMState *env, int feature)
783 {
784     env->features &= ~(1ULL << feature);
785 }
786 
787 /**
788  * ARMELChangeHookFn:
789  * type of a function which can be registered via arm_register_el_change_hook()
790  * to get callbacks when the CPU changes its exception level or mode.
791  */
792 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
793 typedef struct ARMELChangeHook ARMELChangeHook;
794 struct ARMELChangeHook {
795     ARMELChangeHookFn *hook;
796     void *opaque;
797     QLIST_ENTRY(ARMELChangeHook) node;
798 };
799 
800 /* These values map onto the return values for
801  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
802 typedef enum ARMPSCIState {
803     PSCI_ON = 0,
804     PSCI_OFF = 1,
805     PSCI_ON_PENDING = 2
806 } ARMPSCIState;
807 
808 typedef struct ARMISARegisters ARMISARegisters;
809 
810 /*
811  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
812  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
813  *
814  * While processing properties during initialization, corresponding init bits
815  * are set for bits in sve_vq_map that have been set by properties.
816  *
817  * Bits set in supported represent valid vector lengths for the CPU type.
818  */
819 typedef struct {
820     uint32_t map, init, supported;
821 } ARMVQMap;
822 
823 /**
824  * ARMCPU:
825  * @env: #CPUARMState
826  *
827  * An ARM CPU core.
828  */
829 struct ArchCPU {
830     CPUState parent_obj;
831 
832     CPUARMState env;
833 
834     /* Coprocessor information */
835     GHashTable *cp_regs;
836     /* For marshalling (mostly coprocessor) register state between the
837      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
838      * we use these arrays.
839      */
840     /* List of register indexes managed via these arrays; (full KVM style
841      * 64 bit indexes, not CPRegInfo 32 bit indexes)
842      */
843     uint64_t *cpreg_indexes;
844     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
845     uint64_t *cpreg_values;
846     /* Length of the indexes, values, reset_values arrays */
847     int32_t cpreg_array_len;
848     /* These are used only for migration: incoming data arrives in
849      * these fields and is sanity checked in post_load before copying
850      * to the working data structures above.
851      */
852     uint64_t *cpreg_vmstate_indexes;
853     uint64_t *cpreg_vmstate_values;
854     int32_t cpreg_vmstate_array_len;
855 
856     DynamicGDBFeatureInfo dyn_sysreg_feature;
857     DynamicGDBFeatureInfo dyn_svereg_feature;
858     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
859     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
860 
861     /* Timers used by the generic (architected) timer */
862     QEMUTimer *gt_timer[NUM_GTIMERS];
863     /*
864      * Timer used by the PMU. Its state is restored after migration by
865      * pmu_op_finish() - it does not need other handling during migration
866      */
867     QEMUTimer *pmu_timer;
868     /* GPIO outputs for generic timer */
869     qemu_irq gt_timer_outputs[NUM_GTIMERS];
870     /* GPIO output for GICv3 maintenance interrupt signal */
871     qemu_irq gicv3_maintenance_interrupt;
872     /* GPIO output for the PMU interrupt */
873     qemu_irq pmu_interrupt;
874 
875     /* MemoryRegion to use for secure physical accesses */
876     MemoryRegion *secure_memory;
877 
878     /* MemoryRegion to use for allocation tag accesses */
879     MemoryRegion *tag_memory;
880     MemoryRegion *secure_tag_memory;
881 
882     /* For v8M, pointer to the IDAU interface provided by board/SoC */
883     Object *idau;
884 
885     /* 'compatible' string for this CPU for Linux device trees */
886     const char *dtb_compatible;
887 
888     /* PSCI version for this CPU
889      * Bits[31:16] = Major Version
890      * Bits[15:0] = Minor Version
891      */
892     uint32_t psci_version;
893 
894     /* Current power state, access guarded by BQL */
895     ARMPSCIState power_state;
896 
897     /* CPU has virtualization extension */
898     bool has_el2;
899     /* CPU has security extension */
900     bool has_el3;
901     /* CPU has PMU (Performance Monitor Unit) */
902     bool has_pmu;
903     /* CPU has VFP */
904     bool has_vfp;
905     /* CPU has 32 VFP registers */
906     bool has_vfp_d32;
907     /* CPU has Neon */
908     bool has_neon;
909     /* CPU has M-profile DSP extension */
910     bool has_dsp;
911 
912     /* CPU has memory protection unit */
913     bool has_mpu;
914     /* PMSAv7 MPU number of supported regions */
915     uint32_t pmsav7_dregion;
916     /* PMSAv8 MPU number of supported hyp regions */
917     uint32_t pmsav8r_hdregion;
918     /* v8M SAU number of supported regions */
919     uint32_t sau_sregion;
920 
921     /* PSCI conduit used to invoke PSCI methods
922      * 0 - disabled, 1 - smc, 2 - hvc
923      */
924     uint32_t psci_conduit;
925 
926     /* For v8M, initial value of the Secure VTOR */
927     uint32_t init_svtor;
928     /* For v8M, initial value of the Non-secure VTOR */
929     uint32_t init_nsvtor;
930 
931     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
932      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
933      */
934     uint32_t kvm_target;
935 
936 #ifdef CONFIG_KVM
937     /* KVM init features for this CPU */
938     uint32_t kvm_init_features[7];
939 
940     /* KVM CPU state */
941 
942     /* KVM virtual time adjustment */
943     bool kvm_adjvtime;
944     bool kvm_vtime_dirty;
945     uint64_t kvm_vtime;
946 
947     /* KVM steal time */
948     OnOffAuto kvm_steal_time;
949 #endif /* CONFIG_KVM */
950 
951     /* Uniprocessor system with MP extensions */
952     bool mp_is_up;
953 
954     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
955      * and the probe failed (so we need to report the error in realize)
956      */
957     bool host_cpu_probe_failed;
958 
959     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
960      * register.
961      */
962     int32_t core_count;
963 
964     /* The instance init functions for implementation-specific subclasses
965      * set these fields to specify the implementation-dependent values of
966      * various constant registers and reset values of non-constant
967      * registers.
968      * Some of these might become QOM properties eventually.
969      * Field names match the official register names as defined in the
970      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
971      * is used for reset values of non-constant registers; no reset_
972      * prefix means a constant register.
973      * Some of these registers are split out into a substructure that
974      * is shared with the translators to control the ISA.
975      *
976      * Note that if you add an ID register to the ARMISARegisters struct
977      * you need to also update the 32-bit and 64-bit versions of the
978      * kvm_arm_get_host_cpu_features() function to correctly populate the
979      * field by reading the value from the KVM vCPU.
980      */
981     struct ARMISARegisters {
982         uint32_t id_isar0;
983         uint32_t id_isar1;
984         uint32_t id_isar2;
985         uint32_t id_isar3;
986         uint32_t id_isar4;
987         uint32_t id_isar5;
988         uint32_t id_isar6;
989         uint32_t id_mmfr0;
990         uint32_t id_mmfr1;
991         uint32_t id_mmfr2;
992         uint32_t id_mmfr3;
993         uint32_t id_mmfr4;
994         uint32_t id_mmfr5;
995         uint32_t id_pfr0;
996         uint32_t id_pfr1;
997         uint32_t id_pfr2;
998         uint32_t mvfr0;
999         uint32_t mvfr1;
1000         uint32_t mvfr2;
1001         uint32_t id_dfr0;
1002         uint32_t id_dfr1;
1003         uint32_t dbgdidr;
1004         uint32_t dbgdevid;
1005         uint32_t dbgdevid1;
1006         uint64_t id_aa64isar0;
1007         uint64_t id_aa64isar1;
1008         uint64_t id_aa64isar2;
1009         uint64_t id_aa64pfr0;
1010         uint64_t id_aa64pfr1;
1011         uint64_t id_aa64mmfr0;
1012         uint64_t id_aa64mmfr1;
1013         uint64_t id_aa64mmfr2;
1014         uint64_t id_aa64mmfr3;
1015         uint64_t id_aa64dfr0;
1016         uint64_t id_aa64dfr1;
1017         uint64_t id_aa64zfr0;
1018         uint64_t id_aa64smfr0;
1019         uint64_t reset_pmcr_el0;
1020     } isar;
1021     uint64_t midr;
1022     uint32_t revidr;
1023     uint32_t reset_fpsid;
1024     uint64_t ctr;
1025     uint32_t reset_sctlr;
1026     uint64_t pmceid0;
1027     uint64_t pmceid1;
1028     uint32_t id_afr0;
1029     uint64_t id_aa64afr0;
1030     uint64_t id_aa64afr1;
1031     uint64_t clidr;
1032     uint64_t mp_affinity; /* MP ID without feature bits */
1033     /* The elements of this array are the CCSIDR values for each cache,
1034      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1035      */
1036     uint64_t ccsidr[16];
1037     uint64_t reset_cbar;
1038     uint32_t reset_auxcr;
1039     bool reset_hivecs;
1040     uint8_t reset_l0gptsz;
1041 
1042     /*
1043      * Intermediate values used during property parsing.
1044      * Once finalized, the values should be read from ID_AA64*.
1045      */
1046     bool prop_pauth;
1047     bool prop_pauth_impdef;
1048     bool prop_pauth_qarma3;
1049     bool prop_lpa2;
1050 
1051     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1052     uint8_t dcz_blocksize;
1053     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1054     uint8_t gm_blocksize;
1055 
1056     uint64_t rvbar_prop; /* Property/input signals.  */
1057 
1058     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1059     int gic_num_lrs; /* number of list registers */
1060     int gic_vpribits; /* number of virtual priority bits */
1061     int gic_vprebits; /* number of virtual preemption bits */
1062     int gic_pribits; /* number of physical priority bits */
1063 
1064     /* Whether the cfgend input is high (i.e. this CPU should reset into
1065      * big-endian mode).  This setting isn't used directly: instead it modifies
1066      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1067      * architecture version.
1068      */
1069     bool cfgend;
1070 
1071     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1072     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1073 
1074     int32_t node_id; /* NUMA node this CPU belongs to */
1075 
1076     /* Used to synchronize KVM and QEMU in-kernel device levels */
1077     uint8_t device_irq_level;
1078 
1079     /* Used to set the maximum vector length the cpu will support.  */
1080     uint32_t sve_max_vq;
1081 
1082 #ifdef CONFIG_USER_ONLY
1083     /* Used to set the default vector length at process start. */
1084     uint32_t sve_default_vq;
1085     uint32_t sme_default_vq;
1086 #endif
1087 
1088     ARMVQMap sve_vq;
1089     ARMVQMap sme_vq;
1090 
1091     /* Generic timer counter frequency, in Hz */
1092     uint64_t gt_cntfrq_hz;
1093 };
1094 
1095 typedef struct ARMCPUInfo {
1096     const char *name;
1097     void (*initfn)(Object *obj);
1098     void (*class_init)(ObjectClass *oc, void *data);
1099 } ARMCPUInfo;
1100 
1101 /**
1102  * ARMCPUClass:
1103  * @parent_realize: The parent class' realize handler.
1104  * @parent_phases: The parent class' reset phase handlers.
1105  *
1106  * An ARM CPU model.
1107  */
1108 struct ARMCPUClass {
1109     CPUClass parent_class;
1110 
1111     const ARMCPUInfo *info;
1112     DeviceRealize parent_realize;
1113     ResettablePhases parent_phases;
1114 };
1115 
1116 struct AArch64CPUClass {
1117     ARMCPUClass parent_class;
1118 };
1119 
1120 /* Callback functions for the generic timer's timers. */
1121 void arm_gt_ptimer_cb(void *opaque);
1122 void arm_gt_vtimer_cb(void *opaque);
1123 void arm_gt_htimer_cb(void *opaque);
1124 void arm_gt_stimer_cb(void *opaque);
1125 void arm_gt_hvtimer_cb(void *opaque);
1126 
1127 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1128 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1129 
1130 void arm_cpu_post_init(Object *obj);
1131 
1132 #define ARM_AFF0_SHIFT 0
1133 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1134 #define ARM_AFF1_SHIFT 8
1135 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1136 #define ARM_AFF2_SHIFT 16
1137 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1138 #define ARM_AFF3_SHIFT 32
1139 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1140 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1141 
1142 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1143 #define ARM64_AFFINITY_MASK \
1144     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1145 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1146 
1147 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1148 
1149 #ifndef CONFIG_USER_ONLY
1150 extern const VMStateDescription vmstate_arm_cpu;
1151 
1152 void arm_cpu_do_interrupt(CPUState *cpu);
1153 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1154 
1155 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1156                                          MemTxAttrs *attrs);
1157 #endif /* !CONFIG_USER_ONLY */
1158 
1159 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1160 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1161 
1162 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1163                              int cpuid, DumpState *s);
1164 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1165                              int cpuid, DumpState *s);
1166 
1167 /**
1168  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1169  * @cpu: CPU (which must have been freshly reset)
1170  * @target_el: exception level to put the CPU into
1171  * @secure: whether to put the CPU in secure state
1172  *
1173  * When QEMU is directly running a guest kernel at a lower level than
1174  * EL3 it implicitly emulates some aspects of the guest firmware.
1175  * This includes that on reset we need to configure the parts of the
1176  * CPU corresponding to EL3 so that the real guest code can run at its
1177  * lower exception level. This function does that post-reset CPU setup,
1178  * for when we do direct boot of a guest kernel, and for when we
1179  * emulate PSCI and similar firmware interfaces starting a CPU at a
1180  * lower exception level.
1181  *
1182  * @target_el must be an EL implemented by the CPU between 1 and 3.
1183  * We do not support dropping into a Secure EL other than 3.
1184  *
1185  * It is the responsibility of the caller to call arm_rebuild_hflags().
1186  */
1187 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1188 
1189 #ifdef TARGET_AARCH64
1190 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1191 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1192 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1193 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1194                            int new_el, bool el0_a64);
1195 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1196 
1197 /*
1198  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1199  * The byte at offset i from the start of the in-memory representation contains
1200  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1201  * lowest offsets are stored in the lowest memory addresses, then that nearly
1202  * matches QEMU's representation, which is to use an array of host-endian
1203  * uint64_t's, where the lower offsets are at the lower indices. To complete
1204  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1205  */
1206 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1207 {
1208 #if HOST_BIG_ENDIAN
1209     int i;
1210 
1211     for (i = 0; i < nr; ++i) {
1212         dst[i] = bswap64(src[i]);
1213     }
1214 
1215     return dst;
1216 #else
1217     return src;
1218 #endif
1219 }
1220 
1221 #else
1222 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1223 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1224                                          int n, bool a)
1225 { }
1226 #endif
1227 
1228 void aarch64_sync_32_to_64(CPUARMState *env);
1229 void aarch64_sync_64_to_32(CPUARMState *env);
1230 
1231 int fp_exception_el(CPUARMState *env, int cur_el);
1232 int sve_exception_el(CPUARMState *env, int cur_el);
1233 int sme_exception_el(CPUARMState *env, int cur_el);
1234 
1235 /**
1236  * sve_vqm1_for_el_sm:
1237  * @env: CPUARMState
1238  * @el: exception level
1239  * @sm: streaming mode
1240  *
1241  * Compute the current vector length for @el & @sm, in units of
1242  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1243  * If @sm, compute for SVL, otherwise NVL.
1244  */
1245 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1246 
1247 /* Likewise, but using @sm = PSTATE.SM. */
1248 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1249 
1250 static inline bool is_a64(CPUARMState *env)
1251 {
1252     return env->aarch64;
1253 }
1254 
1255 /**
1256  * pmu_op_start/finish
1257  * @env: CPUARMState
1258  *
1259  * Convert all PMU counters between their delta form (the typical mode when
1260  * they are enabled) and the guest-visible values. These two calls must
1261  * surround any action which might affect the counters.
1262  */
1263 void pmu_op_start(CPUARMState *env);
1264 void pmu_op_finish(CPUARMState *env);
1265 
1266 /*
1267  * Called when a PMU counter is due to overflow
1268  */
1269 void arm_pmu_timer_cb(void *opaque);
1270 
1271 /**
1272  * Functions to register as EL change hooks for PMU mode filtering
1273  */
1274 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1275 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1276 
1277 /*
1278  * pmu_init
1279  * @cpu: ARMCPU
1280  *
1281  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1282  * for the current configuration
1283  */
1284 void pmu_init(ARMCPU *cpu);
1285 
1286 /* SCTLR bit meanings. Several bits have been reused in newer
1287  * versions of the architecture; in that case we define constants
1288  * for both old and new bit meanings. Code which tests against those
1289  * bits should probably check or otherwise arrange that the CPU
1290  * is the architectural version it expects.
1291  */
1292 #define SCTLR_M       (1U << 0)
1293 #define SCTLR_A       (1U << 1)
1294 #define SCTLR_C       (1U << 2)
1295 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1296 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1297 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1298 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1299 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1300 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1301 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1302 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1303 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1304 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1305 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1306 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1307 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1308 #define SCTLR_SED     (1U << 8) /* v8 onward */
1309 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1310 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1311 #define SCTLR_F       (1U << 10) /* up to v6 */
1312 #define SCTLR_SW      (1U << 10) /* v7 */
1313 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1314 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1315 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1316 #define SCTLR_I       (1U << 12)
1317 #define SCTLR_V       (1U << 13) /* AArch32 only */
1318 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1319 #define SCTLR_RR      (1U << 14) /* up to v7 */
1320 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1321 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1322 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1323 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1324 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1325 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1326 #define SCTLR_BR      (1U << 17) /* PMSA only */
1327 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1328 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1329 #define SCTLR_WXN     (1U << 19)
1330 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1331 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1332 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1333 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1334 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1335 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1336 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1337 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1338 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1339 #define SCTLR_VE      (1U << 24) /* up to v7 */
1340 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1341 #define SCTLR_EE      (1U << 25)
1342 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1343 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1344 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1345 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1346 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1347 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1348 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1349 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1350 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1351 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1352 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1353 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1354 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1355 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1356 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1357 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1358 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1359 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1360 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1361 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1362 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1363 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1364 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1365 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1366 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1367 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1368 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1369 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1370 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1371 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1372 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1373 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1374 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1375 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1376 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1377 
1378 #define CPSR_M (0x1fU)
1379 #define CPSR_T (1U << 5)
1380 #define CPSR_F (1U << 6)
1381 #define CPSR_I (1U << 7)
1382 #define CPSR_A (1U << 8)
1383 #define CPSR_E (1U << 9)
1384 #define CPSR_IT_2_7 (0xfc00U)
1385 #define CPSR_GE (0xfU << 16)
1386 #define CPSR_IL (1U << 20)
1387 #define CPSR_DIT (1U << 21)
1388 #define CPSR_PAN (1U << 22)
1389 #define CPSR_SSBS (1U << 23)
1390 #define CPSR_J (1U << 24)
1391 #define CPSR_IT_0_1 (3U << 25)
1392 #define CPSR_Q (1U << 27)
1393 #define CPSR_V (1U << 28)
1394 #define CPSR_C (1U << 29)
1395 #define CPSR_Z (1U << 30)
1396 #define CPSR_N (1U << 31)
1397 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1398 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1399 #define ISR_FS (1U << 9)
1400 #define ISR_IS (1U << 10)
1401 
1402 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1403 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1404     | CPSR_NZCV)
1405 /* Bits writable in user mode.  */
1406 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1407 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1408 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1409 
1410 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1411 #define XPSR_EXCP 0x1ffU
1412 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1413 #define XPSR_IT_2_7 CPSR_IT_2_7
1414 #define XPSR_GE CPSR_GE
1415 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1416 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1417 #define XPSR_IT_0_1 CPSR_IT_0_1
1418 #define XPSR_Q CPSR_Q
1419 #define XPSR_V CPSR_V
1420 #define XPSR_C CPSR_C
1421 #define XPSR_Z CPSR_Z
1422 #define XPSR_N CPSR_N
1423 #define XPSR_NZCV CPSR_NZCV
1424 #define XPSR_IT CPSR_IT
1425 
1426 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1427  * Only these are valid when in AArch64 mode; in
1428  * AArch32 mode SPSRs are basically CPSR-format.
1429  */
1430 #define PSTATE_SP (1U)
1431 #define PSTATE_M (0xFU)
1432 #define PSTATE_nRW (1U << 4)
1433 #define PSTATE_F (1U << 6)
1434 #define PSTATE_I (1U << 7)
1435 #define PSTATE_A (1U << 8)
1436 #define PSTATE_D (1U << 9)
1437 #define PSTATE_BTYPE (3U << 10)
1438 #define PSTATE_SSBS (1U << 12)
1439 #define PSTATE_ALLINT (1U << 13)
1440 #define PSTATE_IL (1U << 20)
1441 #define PSTATE_SS (1U << 21)
1442 #define PSTATE_PAN (1U << 22)
1443 #define PSTATE_UAO (1U << 23)
1444 #define PSTATE_DIT (1U << 24)
1445 #define PSTATE_TCO (1U << 25)
1446 #define PSTATE_V (1U << 28)
1447 #define PSTATE_C (1U << 29)
1448 #define PSTATE_Z (1U << 30)
1449 #define PSTATE_N (1U << 31)
1450 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1451 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1452 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1453 /* Mode values for AArch64 */
1454 #define PSTATE_MODE_EL3h 13
1455 #define PSTATE_MODE_EL3t 12
1456 #define PSTATE_MODE_EL2h 9
1457 #define PSTATE_MODE_EL2t 8
1458 #define PSTATE_MODE_EL1h 5
1459 #define PSTATE_MODE_EL1t 4
1460 #define PSTATE_MODE_EL0t 0
1461 
1462 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1463 FIELD(SVCR, SM, 0, 1)
1464 FIELD(SVCR, ZA, 1, 1)
1465 
1466 /* Fields for SMCR_ELx. */
1467 FIELD(SMCR, LEN, 0, 4)
1468 FIELD(SMCR, FA64, 31, 1)
1469 
1470 /* Write a new value to v7m.exception, thus transitioning into or out
1471  * of Handler mode; this may result in a change of active stack pointer.
1472  */
1473 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1474 
1475 /* Map EL and handler into a PSTATE_MODE.  */
1476 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1477 {
1478     return (el << 2) | handler;
1479 }
1480 
1481 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1482  * interprocessing, so we don't attempt to sync with the cpsr state used by
1483  * the 32 bit decoder.
1484  */
1485 static inline uint32_t pstate_read(CPUARMState *env)
1486 {
1487     int ZF;
1488 
1489     ZF = (env->ZF == 0);
1490     return (env->NF & 0x80000000) | (ZF << 30)
1491         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1492         | env->pstate | env->daif | (env->btype << 10);
1493 }
1494 
1495 static inline void pstate_write(CPUARMState *env, uint32_t val)
1496 {
1497     env->ZF = (~val) & PSTATE_Z;
1498     env->NF = val;
1499     env->CF = (val >> 29) & 1;
1500     env->VF = (val << 3) & 0x80000000;
1501     env->daif = val & PSTATE_DAIF;
1502     env->btype = (val >> 10) & 3;
1503     env->pstate = val & ~CACHED_PSTATE_BITS;
1504 }
1505 
1506 /* Return the current CPSR value.  */
1507 uint32_t cpsr_read(CPUARMState *env);
1508 
1509 typedef enum CPSRWriteType {
1510     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1511     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1512     CPSRWriteRaw = 2,
1513         /* trust values, no reg bank switch, no hflags rebuild */
1514     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1515 } CPSRWriteType;
1516 
1517 /*
1518  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1519  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1520  * correspond to TB flags bits cached in the hflags, unless @write_type
1521  * is CPSRWriteRaw.
1522  */
1523 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1524                 CPSRWriteType write_type);
1525 
1526 /* Return the current xPSR value.  */
1527 static inline uint32_t xpsr_read(CPUARMState *env)
1528 {
1529     int ZF;
1530     ZF = (env->ZF == 0);
1531     return (env->NF & 0x80000000) | (ZF << 30)
1532         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1533         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1534         | ((env->condexec_bits & 0xfc) << 8)
1535         | (env->GE << 16)
1536         | env->v7m.exception;
1537 }
1538 
1539 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1540 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1541 {
1542     if (mask & XPSR_NZCV) {
1543         env->ZF = (~val) & XPSR_Z;
1544         env->NF = val;
1545         env->CF = (val >> 29) & 1;
1546         env->VF = (val << 3) & 0x80000000;
1547     }
1548     if (mask & XPSR_Q) {
1549         env->QF = ((val & XPSR_Q) != 0);
1550     }
1551     if (mask & XPSR_GE) {
1552         env->GE = (val & XPSR_GE) >> 16;
1553     }
1554 #ifndef CONFIG_USER_ONLY
1555     if (mask & XPSR_T) {
1556         env->thumb = ((val & XPSR_T) != 0);
1557     }
1558     if (mask & XPSR_IT_0_1) {
1559         env->condexec_bits &= ~3;
1560         env->condexec_bits |= (val >> 25) & 3;
1561     }
1562     if (mask & XPSR_IT_2_7) {
1563         env->condexec_bits &= 3;
1564         env->condexec_bits |= (val >> 8) & 0xfc;
1565     }
1566     if (mask & XPSR_EXCP) {
1567         /* Note that this only happens on exception exit */
1568         write_v7m_exception(env, val & XPSR_EXCP);
1569     }
1570 #endif
1571 }
1572 
1573 #define HCR_VM        (1ULL << 0)
1574 #define HCR_SWIO      (1ULL << 1)
1575 #define HCR_PTW       (1ULL << 2)
1576 #define HCR_FMO       (1ULL << 3)
1577 #define HCR_IMO       (1ULL << 4)
1578 #define HCR_AMO       (1ULL << 5)
1579 #define HCR_VF        (1ULL << 6)
1580 #define HCR_VI        (1ULL << 7)
1581 #define HCR_VSE       (1ULL << 8)
1582 #define HCR_FB        (1ULL << 9)
1583 #define HCR_BSU_MASK  (3ULL << 10)
1584 #define HCR_DC        (1ULL << 12)
1585 #define HCR_TWI       (1ULL << 13)
1586 #define HCR_TWE       (1ULL << 14)
1587 #define HCR_TID0      (1ULL << 15)
1588 #define HCR_TID1      (1ULL << 16)
1589 #define HCR_TID2      (1ULL << 17)
1590 #define HCR_TID3      (1ULL << 18)
1591 #define HCR_TSC       (1ULL << 19)
1592 #define HCR_TIDCP     (1ULL << 20)
1593 #define HCR_TACR      (1ULL << 21)
1594 #define HCR_TSW       (1ULL << 22)
1595 #define HCR_TPCP      (1ULL << 23)
1596 #define HCR_TPU       (1ULL << 24)
1597 #define HCR_TTLB      (1ULL << 25)
1598 #define HCR_TVM       (1ULL << 26)
1599 #define HCR_TGE       (1ULL << 27)
1600 #define HCR_TDZ       (1ULL << 28)
1601 #define HCR_HCD       (1ULL << 29)
1602 #define HCR_TRVM      (1ULL << 30)
1603 #define HCR_RW        (1ULL << 31)
1604 #define HCR_CD        (1ULL << 32)
1605 #define HCR_ID        (1ULL << 33)
1606 #define HCR_E2H       (1ULL << 34)
1607 #define HCR_TLOR      (1ULL << 35)
1608 #define HCR_TERR      (1ULL << 36)
1609 #define HCR_TEA       (1ULL << 37)
1610 #define HCR_MIOCNCE   (1ULL << 38)
1611 #define HCR_TME       (1ULL << 39)
1612 #define HCR_APK       (1ULL << 40)
1613 #define HCR_API       (1ULL << 41)
1614 #define HCR_NV        (1ULL << 42)
1615 #define HCR_NV1       (1ULL << 43)
1616 #define HCR_AT        (1ULL << 44)
1617 #define HCR_NV2       (1ULL << 45)
1618 #define HCR_FWB       (1ULL << 46)
1619 #define HCR_FIEN      (1ULL << 47)
1620 #define HCR_GPF       (1ULL << 48)
1621 #define HCR_TID4      (1ULL << 49)
1622 #define HCR_TICAB     (1ULL << 50)
1623 #define HCR_AMVOFFEN  (1ULL << 51)
1624 #define HCR_TOCU      (1ULL << 52)
1625 #define HCR_ENSCXT    (1ULL << 53)
1626 #define HCR_TTLBIS    (1ULL << 54)
1627 #define HCR_TTLBOS    (1ULL << 55)
1628 #define HCR_ATA       (1ULL << 56)
1629 #define HCR_DCT       (1ULL << 57)
1630 #define HCR_TID5      (1ULL << 58)
1631 #define HCR_TWEDEN    (1ULL << 59)
1632 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1633 
1634 #define SCR_NS                (1ULL << 0)
1635 #define SCR_IRQ               (1ULL << 1)
1636 #define SCR_FIQ               (1ULL << 2)
1637 #define SCR_EA                (1ULL << 3)
1638 #define SCR_FW                (1ULL << 4)
1639 #define SCR_AW                (1ULL << 5)
1640 #define SCR_NET               (1ULL << 6)
1641 #define SCR_SMD               (1ULL << 7)
1642 #define SCR_HCE               (1ULL << 8)
1643 #define SCR_SIF               (1ULL << 9)
1644 #define SCR_RW                (1ULL << 10)
1645 #define SCR_ST                (1ULL << 11)
1646 #define SCR_TWI               (1ULL << 12)
1647 #define SCR_TWE               (1ULL << 13)
1648 #define SCR_TLOR              (1ULL << 14)
1649 #define SCR_TERR              (1ULL << 15)
1650 #define SCR_APK               (1ULL << 16)
1651 #define SCR_API               (1ULL << 17)
1652 #define SCR_EEL2              (1ULL << 18)
1653 #define SCR_EASE              (1ULL << 19)
1654 #define SCR_NMEA              (1ULL << 20)
1655 #define SCR_FIEN              (1ULL << 21)
1656 #define SCR_ENSCXT            (1ULL << 25)
1657 #define SCR_ATA               (1ULL << 26)
1658 #define SCR_FGTEN             (1ULL << 27)
1659 #define SCR_ECVEN             (1ULL << 28)
1660 #define SCR_TWEDEN            (1ULL << 29)
1661 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1662 #define SCR_TME               (1ULL << 34)
1663 #define SCR_AMVOFFEN          (1ULL << 35)
1664 #define SCR_ENAS0             (1ULL << 36)
1665 #define SCR_ADEN              (1ULL << 37)
1666 #define SCR_HXEN              (1ULL << 38)
1667 #define SCR_TRNDR             (1ULL << 40)
1668 #define SCR_ENTP2             (1ULL << 41)
1669 #define SCR_GPF               (1ULL << 48)
1670 #define SCR_NSE               (1ULL << 62)
1671 
1672 /* Return the current FPSCR value.  */
1673 uint32_t vfp_get_fpscr(CPUARMState *env);
1674 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1675 
1676 /* FPCR, Floating Point Control Register
1677  * FPSR, Floating Poiht Status Register
1678  *
1679  * For A64 the FPSCR is split into two logically distinct registers,
1680  * FPCR and FPSR. However since they still use non-overlapping bits
1681  * we store the underlying state in fpscr and just mask on read/write.
1682  */
1683 #define FPSR_MASK 0xf800009f
1684 #define FPCR_MASK 0x07ff9f00
1685 
1686 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1687 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1688 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1689 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1690 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1691 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1692 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1693 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1694 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1695 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1696 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1697 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1698 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1699 #define FPCR_C      (1 << 29)   /* FP carry flag */
1700 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1701 #define FPCR_N      (1 << 31)   /* FP negative flag */
1702 
1703 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1704 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1705 #define FPCR_LTPSIZE_LENGTH 3
1706 
1707 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1708 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1709 
1710 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1711 {
1712     return vfp_get_fpscr(env) & FPSR_MASK;
1713 }
1714 
1715 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1716 {
1717     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1718     vfp_set_fpscr(env, new_fpscr);
1719 }
1720 
1721 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1722 {
1723     return vfp_get_fpscr(env) & FPCR_MASK;
1724 }
1725 
1726 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1727 {
1728     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1729     vfp_set_fpscr(env, new_fpscr);
1730 }
1731 
1732 enum arm_cpu_mode {
1733   ARM_CPU_MODE_USR = 0x10,
1734   ARM_CPU_MODE_FIQ = 0x11,
1735   ARM_CPU_MODE_IRQ = 0x12,
1736   ARM_CPU_MODE_SVC = 0x13,
1737   ARM_CPU_MODE_MON = 0x16,
1738   ARM_CPU_MODE_ABT = 0x17,
1739   ARM_CPU_MODE_HYP = 0x1a,
1740   ARM_CPU_MODE_UND = 0x1b,
1741   ARM_CPU_MODE_SYS = 0x1f
1742 };
1743 
1744 /* VFP system registers.  */
1745 #define ARM_VFP_FPSID   0
1746 #define ARM_VFP_FPSCR   1
1747 #define ARM_VFP_MVFR2   5
1748 #define ARM_VFP_MVFR1   6
1749 #define ARM_VFP_MVFR0   7
1750 #define ARM_VFP_FPEXC   8
1751 #define ARM_VFP_FPINST  9
1752 #define ARM_VFP_FPINST2 10
1753 /* These ones are M-profile only */
1754 #define ARM_VFP_FPSCR_NZCVQC 2
1755 #define ARM_VFP_VPR 12
1756 #define ARM_VFP_P0 13
1757 #define ARM_VFP_FPCXT_NS 14
1758 #define ARM_VFP_FPCXT_S 15
1759 
1760 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1761 #define QEMU_VFP_FPSCR_NZCV 0xffff
1762 
1763 /* iwMMXt coprocessor control registers.  */
1764 #define ARM_IWMMXT_wCID  0
1765 #define ARM_IWMMXT_wCon  1
1766 #define ARM_IWMMXT_wCSSF 2
1767 #define ARM_IWMMXT_wCASF 3
1768 #define ARM_IWMMXT_wCGR0 8
1769 #define ARM_IWMMXT_wCGR1 9
1770 #define ARM_IWMMXT_wCGR2 10
1771 #define ARM_IWMMXT_wCGR3 11
1772 
1773 /* V7M CCR bits */
1774 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1775 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1776 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1777 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1778 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1779 FIELD(V7M_CCR, STKALIGN, 9, 1)
1780 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1781 FIELD(V7M_CCR, DC, 16, 1)
1782 FIELD(V7M_CCR, IC, 17, 1)
1783 FIELD(V7M_CCR, BP, 18, 1)
1784 FIELD(V7M_CCR, LOB, 19, 1)
1785 FIELD(V7M_CCR, TRD, 20, 1)
1786 
1787 /* V7M SCR bits */
1788 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1789 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1790 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1791 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1792 
1793 /* V7M AIRCR bits */
1794 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1795 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1796 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1797 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1798 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1799 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1800 FIELD(V7M_AIRCR, PRIS, 14, 1)
1801 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1802 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1803 
1804 /* V7M CFSR bits for MMFSR */
1805 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1806 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1807 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1808 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1809 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1810 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1811 
1812 /* V7M CFSR bits for BFSR */
1813 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1814 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1815 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1816 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1817 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1818 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1819 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1820 
1821 /* V7M CFSR bits for UFSR */
1822 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1823 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1824 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1825 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1826 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1827 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1828 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1829 
1830 /* V7M CFSR bit masks covering all of the subregister bits */
1831 FIELD(V7M_CFSR, MMFSR, 0, 8)
1832 FIELD(V7M_CFSR, BFSR, 8, 8)
1833 FIELD(V7M_CFSR, UFSR, 16, 16)
1834 
1835 /* V7M HFSR bits */
1836 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1837 FIELD(V7M_HFSR, FORCED, 30, 1)
1838 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1839 
1840 /* V7M DFSR bits */
1841 FIELD(V7M_DFSR, HALTED, 0, 1)
1842 FIELD(V7M_DFSR, BKPT, 1, 1)
1843 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1844 FIELD(V7M_DFSR, VCATCH, 3, 1)
1845 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1846 
1847 /* V7M SFSR bits */
1848 FIELD(V7M_SFSR, INVEP, 0, 1)
1849 FIELD(V7M_SFSR, INVIS, 1, 1)
1850 FIELD(V7M_SFSR, INVER, 2, 1)
1851 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1852 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1853 FIELD(V7M_SFSR, LSPERR, 5, 1)
1854 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1855 FIELD(V7M_SFSR, LSERR, 7, 1)
1856 
1857 /* v7M MPU_CTRL bits */
1858 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1859 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1860 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1861 
1862 /* v7M CLIDR bits */
1863 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1864 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1865 FIELD(V7M_CLIDR, LOC, 24, 3)
1866 FIELD(V7M_CLIDR, LOUU, 27, 3)
1867 FIELD(V7M_CLIDR, ICB, 30, 2)
1868 
1869 FIELD(V7M_CSSELR, IND, 0, 1)
1870 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1871 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1872  * define a mask for this and check that it doesn't permit running off
1873  * the end of the array.
1874  */
1875 FIELD(V7M_CSSELR, INDEX, 0, 4)
1876 
1877 /* v7M FPCCR bits */
1878 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1879 FIELD(V7M_FPCCR, USER, 1, 1)
1880 FIELD(V7M_FPCCR, S, 2, 1)
1881 FIELD(V7M_FPCCR, THREAD, 3, 1)
1882 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1883 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1884 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1885 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1886 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1887 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1888 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1889 FIELD(V7M_FPCCR, RES0, 11, 15)
1890 FIELD(V7M_FPCCR, TS, 26, 1)
1891 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1892 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1893 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1894 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1895 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1896 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1897 #define R_V7M_FPCCR_BANKED_MASK                 \
1898     (R_V7M_FPCCR_LSPACT_MASK |                  \
1899      R_V7M_FPCCR_USER_MASK |                    \
1900      R_V7M_FPCCR_THREAD_MASK |                  \
1901      R_V7M_FPCCR_MMRDY_MASK |                   \
1902      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1903      R_V7M_FPCCR_UFRDY_MASK |                   \
1904      R_V7M_FPCCR_ASPEN_MASK)
1905 
1906 /* v7M VPR bits */
1907 FIELD(V7M_VPR, P0, 0, 16)
1908 FIELD(V7M_VPR, MASK01, 16, 4)
1909 FIELD(V7M_VPR, MASK23, 20, 4)
1910 
1911 /*
1912  * System register ID fields.
1913  */
1914 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1915 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1916 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1917 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1918 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1919 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1920 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1921 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1922 FIELD(CLIDR_EL1, LOC, 24, 3)
1923 FIELD(CLIDR_EL1, LOUU, 27, 3)
1924 FIELD(CLIDR_EL1, ICB, 30, 3)
1925 
1926 /* When FEAT_CCIDX is implemented */
1927 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1928 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1929 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1930 
1931 /* When FEAT_CCIDX is not implemented */
1932 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1933 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1934 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1935 
1936 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1937 FIELD(CTR_EL0,  L1IP, 14, 2)
1938 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1939 FIELD(CTR_EL0,  ERG, 20, 4)
1940 FIELD(CTR_EL0,  CWG, 24, 4)
1941 FIELD(CTR_EL0,  IDC, 28, 1)
1942 FIELD(CTR_EL0,  DIC, 29, 1)
1943 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1944 
1945 FIELD(MIDR_EL1, REVISION, 0, 4)
1946 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1947 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1948 FIELD(MIDR_EL1, VARIANT, 20, 4)
1949 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1950 
1951 FIELD(ID_ISAR0, SWAP, 0, 4)
1952 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1953 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1954 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1955 FIELD(ID_ISAR0, COPROC, 16, 4)
1956 FIELD(ID_ISAR0, DEBUG, 20, 4)
1957 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1958 
1959 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1960 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1961 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1962 FIELD(ID_ISAR1, EXTEND, 12, 4)
1963 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1964 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1965 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1966 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1967 
1968 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1969 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1970 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1971 FIELD(ID_ISAR2, MULT, 12, 4)
1972 FIELD(ID_ISAR2, MULTS, 16, 4)
1973 FIELD(ID_ISAR2, MULTU, 20, 4)
1974 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1975 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1976 
1977 FIELD(ID_ISAR3, SATURATE, 0, 4)
1978 FIELD(ID_ISAR3, SIMD, 4, 4)
1979 FIELD(ID_ISAR3, SVC, 8, 4)
1980 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1981 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1982 FIELD(ID_ISAR3, T32COPY, 20, 4)
1983 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1984 FIELD(ID_ISAR3, T32EE, 28, 4)
1985 
1986 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1987 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1988 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1989 FIELD(ID_ISAR4, SMC, 12, 4)
1990 FIELD(ID_ISAR4, BARRIER, 16, 4)
1991 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1992 FIELD(ID_ISAR4, PSR_M, 24, 4)
1993 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1994 
1995 FIELD(ID_ISAR5, SEVL, 0, 4)
1996 FIELD(ID_ISAR5, AES, 4, 4)
1997 FIELD(ID_ISAR5, SHA1, 8, 4)
1998 FIELD(ID_ISAR5, SHA2, 12, 4)
1999 FIELD(ID_ISAR5, CRC32, 16, 4)
2000 FIELD(ID_ISAR5, RDM, 24, 4)
2001 FIELD(ID_ISAR5, VCMA, 28, 4)
2002 
2003 FIELD(ID_ISAR6, JSCVT, 0, 4)
2004 FIELD(ID_ISAR6, DP, 4, 4)
2005 FIELD(ID_ISAR6, FHM, 8, 4)
2006 FIELD(ID_ISAR6, SB, 12, 4)
2007 FIELD(ID_ISAR6, SPECRES, 16, 4)
2008 FIELD(ID_ISAR6, BF16, 20, 4)
2009 FIELD(ID_ISAR6, I8MM, 24, 4)
2010 
2011 FIELD(ID_MMFR0, VMSA, 0, 4)
2012 FIELD(ID_MMFR0, PMSA, 4, 4)
2013 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2014 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2015 FIELD(ID_MMFR0, TCM, 16, 4)
2016 FIELD(ID_MMFR0, AUXREG, 20, 4)
2017 FIELD(ID_MMFR0, FCSE, 24, 4)
2018 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2019 
2020 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2021 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2022 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2023 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2024 FIELD(ID_MMFR1, L1HVD, 16, 4)
2025 FIELD(ID_MMFR1, L1UNI, 20, 4)
2026 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2027 FIELD(ID_MMFR1, BPRED, 28, 4)
2028 
2029 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2030 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2031 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2032 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2033 FIELD(ID_MMFR2, UNITLB, 16, 4)
2034 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2035 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2036 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2037 
2038 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2039 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2040 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2041 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2042 FIELD(ID_MMFR3, PAN, 16, 4)
2043 FIELD(ID_MMFR3, COHWALK, 20, 4)
2044 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2045 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2046 
2047 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2048 FIELD(ID_MMFR4, AC2, 4, 4)
2049 FIELD(ID_MMFR4, XNX, 8, 4)
2050 FIELD(ID_MMFR4, CNP, 12, 4)
2051 FIELD(ID_MMFR4, HPDS, 16, 4)
2052 FIELD(ID_MMFR4, LSM, 20, 4)
2053 FIELD(ID_MMFR4, CCIDX, 24, 4)
2054 FIELD(ID_MMFR4, EVT, 28, 4)
2055 
2056 FIELD(ID_MMFR5, ETS, 0, 4)
2057 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2058 
2059 FIELD(ID_PFR0, STATE0, 0, 4)
2060 FIELD(ID_PFR0, STATE1, 4, 4)
2061 FIELD(ID_PFR0, STATE2, 8, 4)
2062 FIELD(ID_PFR0, STATE3, 12, 4)
2063 FIELD(ID_PFR0, CSV2, 16, 4)
2064 FIELD(ID_PFR0, AMU, 20, 4)
2065 FIELD(ID_PFR0, DIT, 24, 4)
2066 FIELD(ID_PFR0, RAS, 28, 4)
2067 
2068 FIELD(ID_PFR1, PROGMOD, 0, 4)
2069 FIELD(ID_PFR1, SECURITY, 4, 4)
2070 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2071 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2072 FIELD(ID_PFR1, GENTIMER, 16, 4)
2073 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2074 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2075 FIELD(ID_PFR1, GIC, 28, 4)
2076 
2077 FIELD(ID_PFR2, CSV3, 0, 4)
2078 FIELD(ID_PFR2, SSBS, 4, 4)
2079 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2080 
2081 FIELD(ID_AA64ISAR0, AES, 4, 4)
2082 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2083 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2084 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2085 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2086 FIELD(ID_AA64ISAR0, TME, 24, 4)
2087 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2088 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2089 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2090 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2091 FIELD(ID_AA64ISAR0, DP, 44, 4)
2092 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2093 FIELD(ID_AA64ISAR0, TS, 52, 4)
2094 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2095 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2096 
2097 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2098 FIELD(ID_AA64ISAR1, APA, 4, 4)
2099 FIELD(ID_AA64ISAR1, API, 8, 4)
2100 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2101 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2102 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2103 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2104 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2105 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2106 FIELD(ID_AA64ISAR1, SB, 36, 4)
2107 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2108 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2109 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2110 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2111 FIELD(ID_AA64ISAR1, XS, 56, 4)
2112 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2113 
2114 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2115 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2116 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2117 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2118 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2119 FIELD(ID_AA64ISAR2, BC, 20, 4)
2120 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2121 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2122 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2123 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2124 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2125 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2126 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2127 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2128 
2129 FIELD(ID_AA64PFR0, EL0, 0, 4)
2130 FIELD(ID_AA64PFR0, EL1, 4, 4)
2131 FIELD(ID_AA64PFR0, EL2, 8, 4)
2132 FIELD(ID_AA64PFR0, EL3, 12, 4)
2133 FIELD(ID_AA64PFR0, FP, 16, 4)
2134 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2135 FIELD(ID_AA64PFR0, GIC, 24, 4)
2136 FIELD(ID_AA64PFR0, RAS, 28, 4)
2137 FIELD(ID_AA64PFR0, SVE, 32, 4)
2138 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2139 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2140 FIELD(ID_AA64PFR0, AMU, 44, 4)
2141 FIELD(ID_AA64PFR0, DIT, 48, 4)
2142 FIELD(ID_AA64PFR0, RME, 52, 4)
2143 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2144 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2145 
2146 FIELD(ID_AA64PFR1, BT, 0, 4)
2147 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2148 FIELD(ID_AA64PFR1, MTE, 8, 4)
2149 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2150 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2151 FIELD(ID_AA64PFR1, SME, 24, 4)
2152 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2153 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2154 FIELD(ID_AA64PFR1, NMI, 36, 4)
2155 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2156 FIELD(ID_AA64PFR1, GCS, 44, 4)
2157 FIELD(ID_AA64PFR1, THE, 48, 4)
2158 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2159 FIELD(ID_AA64PFR1, DF2, 56, 4)
2160 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2161 
2162 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2163 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2164 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2165 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2166 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2167 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2168 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2169 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2170 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2171 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2172 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2173 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2174 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2175 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2176 
2177 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2178 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2179 FIELD(ID_AA64MMFR1, VH, 8, 4)
2180 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2181 FIELD(ID_AA64MMFR1, LO, 16, 4)
2182 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2183 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2184 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2185 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2186 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2187 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2188 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2189 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2190 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2191 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2192 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2193 
2194 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2195 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2196 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2197 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2198 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2199 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2200 FIELD(ID_AA64MMFR2, NV, 24, 4)
2201 FIELD(ID_AA64MMFR2, ST, 28, 4)
2202 FIELD(ID_AA64MMFR2, AT, 32, 4)
2203 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2204 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2205 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2206 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2207 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2208 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2209 
2210 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2211 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2212 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2213 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2214 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2215 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2216 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2217 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2218 FIELD(ID_AA64MMFR3, D128, 32, 4)
2219 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2220 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2221 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2222 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2223 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2224 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2225 
2226 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2227 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2228 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2229 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2230 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2231 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2232 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2233 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2234 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2235 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2236 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2237 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2238 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2239 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2240 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2241 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2242 
2243 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2244 FIELD(ID_AA64ZFR0, AES, 4, 4)
2245 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2246 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2247 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2248 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2249 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2250 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2251 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2252 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2253 
2254 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2255 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2256 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2257 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2258 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2259 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2260 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2261 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2262 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2263 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2264 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2265 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2266 
2267 FIELD(ID_DFR0, COPDBG, 0, 4)
2268 FIELD(ID_DFR0, COPSDBG, 4, 4)
2269 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2270 FIELD(ID_DFR0, COPTRC, 12, 4)
2271 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2272 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2273 FIELD(ID_DFR0, PERFMON, 24, 4)
2274 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2275 
2276 FIELD(ID_DFR1, MTPMU, 0, 4)
2277 FIELD(ID_DFR1, HPMN0, 4, 4)
2278 
2279 FIELD(DBGDIDR, SE_IMP, 12, 1)
2280 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2281 FIELD(DBGDIDR, VERSION, 16, 4)
2282 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2283 FIELD(DBGDIDR, BRPS, 24, 4)
2284 FIELD(DBGDIDR, WRPS, 28, 4)
2285 
2286 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2287 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2288 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2289 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2290 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2291 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2292 FIELD(DBGDEVID, AUXREGS, 24, 4)
2293 FIELD(DBGDEVID, CIDMASK, 28, 4)
2294 
2295 FIELD(MVFR0, SIMDREG, 0, 4)
2296 FIELD(MVFR0, FPSP, 4, 4)
2297 FIELD(MVFR0, FPDP, 8, 4)
2298 FIELD(MVFR0, FPTRAP, 12, 4)
2299 FIELD(MVFR0, FPDIVIDE, 16, 4)
2300 FIELD(MVFR0, FPSQRT, 20, 4)
2301 FIELD(MVFR0, FPSHVEC, 24, 4)
2302 FIELD(MVFR0, FPROUND, 28, 4)
2303 
2304 FIELD(MVFR1, FPFTZ, 0, 4)
2305 FIELD(MVFR1, FPDNAN, 4, 4)
2306 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2307 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2308 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2309 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2310 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2311 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2312 FIELD(MVFR1, FPHP, 24, 4)
2313 FIELD(MVFR1, SIMDFMAC, 28, 4)
2314 
2315 FIELD(MVFR2, SIMDMISC, 0, 4)
2316 FIELD(MVFR2, FPMISC, 4, 4)
2317 
2318 FIELD(GPCCR, PPS, 0, 3)
2319 FIELD(GPCCR, IRGN, 8, 2)
2320 FIELD(GPCCR, ORGN, 10, 2)
2321 FIELD(GPCCR, SH, 12, 2)
2322 FIELD(GPCCR, PGS, 14, 2)
2323 FIELD(GPCCR, GPC, 16, 1)
2324 FIELD(GPCCR, GPCP, 17, 1)
2325 FIELD(GPCCR, L0GPTSZ, 20, 4)
2326 
2327 FIELD(MFAR, FPA, 12, 40)
2328 FIELD(MFAR, NSE, 62, 1)
2329 FIELD(MFAR, NS, 63, 1)
2330 
2331 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2332 
2333 /* If adding a feature bit which corresponds to a Linux ELF
2334  * HWCAP bit, remember to update the feature-bit-to-hwcap
2335  * mapping in linux-user/elfload.c:get_elf_hwcap().
2336  */
2337 enum arm_features {
2338     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2339     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2340     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2341     ARM_FEATURE_V6,
2342     ARM_FEATURE_V6K,
2343     ARM_FEATURE_V7,
2344     ARM_FEATURE_THUMB2,
2345     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2346     ARM_FEATURE_NEON,
2347     ARM_FEATURE_M, /* Microcontroller profile.  */
2348     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2349     ARM_FEATURE_THUMB2EE,
2350     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2351     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2352     ARM_FEATURE_V4T,
2353     ARM_FEATURE_V5,
2354     ARM_FEATURE_STRONGARM,
2355     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2356     ARM_FEATURE_GENERIC_TIMER,
2357     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2358     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2359     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2360     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2361     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2362     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2363     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2364     ARM_FEATURE_V8,
2365     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2366     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2367     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2368     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2369     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2370     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2371     ARM_FEATURE_PMU, /* has PMU support */
2372     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2373     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2374     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2375     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2376 };
2377 
2378 static inline int arm_feature(CPUARMState *env, int feature)
2379 {
2380     return (env->features & (1ULL << feature)) != 0;
2381 }
2382 
2383 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2384 
2385 /*
2386  * ARM v9 security states.
2387  * The ordering of the enumeration corresponds to the low 2 bits
2388  * of the GPI value, and (except for Root) the concat of NSE:NS.
2389  */
2390 
2391 typedef enum ARMSecuritySpace {
2392     ARMSS_Secure     = 0,
2393     ARMSS_NonSecure  = 1,
2394     ARMSS_Root       = 2,
2395     ARMSS_Realm      = 3,
2396 } ARMSecuritySpace;
2397 
2398 /* Return true if @space is secure, in the pre-v9 sense. */
2399 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2400 {
2401     return space == ARMSS_Secure || space == ARMSS_Root;
2402 }
2403 
2404 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2405 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2406 {
2407     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2408 }
2409 
2410 #if !defined(CONFIG_USER_ONLY)
2411 /**
2412  * arm_security_space_below_el3:
2413  * @env: cpu context
2414  *
2415  * Return the security space of exception levels below EL3, following
2416  * an exception return to those levels.  Unlike arm_security_space,
2417  * this doesn't care about the current EL.
2418  */
2419 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2420 
2421 /**
2422  * arm_is_secure_below_el3:
2423  * @env: cpu context
2424  *
2425  * Return true if exception levels below EL3 are in secure state,
2426  * or would be following an exception return to those levels.
2427  */
2428 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2429 {
2430     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2431     return ss == ARMSS_Secure;
2432 }
2433 
2434 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2435 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2436 {
2437     assert(!arm_feature(env, ARM_FEATURE_M));
2438     if (arm_feature(env, ARM_FEATURE_EL3)) {
2439         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2440             /* CPU currently in AArch64 state and EL3 */
2441             return true;
2442         } else if (!is_a64(env) &&
2443                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2444             /* CPU currently in AArch32 state and monitor mode */
2445             return true;
2446         }
2447     }
2448     return false;
2449 }
2450 
2451 /**
2452  * arm_security_space:
2453  * @env: cpu context
2454  *
2455  * Return the current security space of the cpu.
2456  */
2457 ARMSecuritySpace arm_security_space(CPUARMState *env);
2458 
2459 /**
2460  * arm_is_secure:
2461  * @env: cpu context
2462  *
2463  * Return true if the processor is in secure state.
2464  */
2465 static inline bool arm_is_secure(CPUARMState *env)
2466 {
2467     return arm_space_is_secure(arm_security_space(env));
2468 }
2469 
2470 /*
2471  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2472  * This corresponds to the pseudocode EL2Enabled().
2473  */
2474 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2475                                                ARMSecuritySpace space)
2476 {
2477     assert(space != ARMSS_Root);
2478     return arm_feature(env, ARM_FEATURE_EL2)
2479            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2480 }
2481 
2482 static inline bool arm_is_el2_enabled(CPUARMState *env)
2483 {
2484     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2485 }
2486 
2487 #else
2488 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2489 {
2490     return ARMSS_NonSecure;
2491 }
2492 
2493 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2494 {
2495     return false;
2496 }
2497 
2498 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2499 {
2500     return ARMSS_NonSecure;
2501 }
2502 
2503 static inline bool arm_is_secure(CPUARMState *env)
2504 {
2505     return false;
2506 }
2507 
2508 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2509                                                ARMSecuritySpace space)
2510 {
2511     return false;
2512 }
2513 
2514 static inline bool arm_is_el2_enabled(CPUARMState *env)
2515 {
2516     return false;
2517 }
2518 #endif
2519 
2520 /**
2521  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2522  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2523  * "for all purposes other than a direct read or write access of HCR_EL2."
2524  * Not included here is HCR_RW.
2525  */
2526 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2527 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2528 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2529 
2530 /* Return true if the specified exception level is running in AArch64 state. */
2531 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2532 {
2533     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2534      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2535      */
2536     assert(el >= 1 && el <= 3);
2537     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2538 
2539     /* The highest exception level is always at the maximum supported
2540      * register width, and then lower levels have a register width controlled
2541      * by bits in the SCR or HCR registers.
2542      */
2543     if (el == 3) {
2544         return aa64;
2545     }
2546 
2547     if (arm_feature(env, ARM_FEATURE_EL3) &&
2548         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2549         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2550     }
2551 
2552     if (el == 2) {
2553         return aa64;
2554     }
2555 
2556     if (arm_is_el2_enabled(env)) {
2557         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2558     }
2559 
2560     return aa64;
2561 }
2562 
2563 /* Function for determining whether guest cp register reads and writes should
2564  * access the secure or non-secure bank of a cp register.  When EL3 is
2565  * operating in AArch32 state, the NS-bit determines whether the secure
2566  * instance of a cp register should be used. When EL3 is AArch64 (or if
2567  * it doesn't exist at all) then there is no register banking, and all
2568  * accesses are to the non-secure version.
2569  */
2570 static inline bool access_secure_reg(CPUARMState *env)
2571 {
2572     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2573                 !arm_el_is_aa64(env, 3) &&
2574                 !(env->cp15.scr_el3 & SCR_NS));
2575 
2576     return ret;
2577 }
2578 
2579 /* Macros for accessing a specified CP register bank */
2580 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2581     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2582 
2583 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2584     do {                                                \
2585         if (_secure) {                                   \
2586             (_env)->cp15._regname##_s = (_val);            \
2587         } else {                                        \
2588             (_env)->cp15._regname##_ns = (_val);           \
2589         }                                               \
2590     } while (0)
2591 
2592 /* Macros for automatically accessing a specific CP register bank depending on
2593  * the current secure state of the system.  These macros are not intended for
2594  * supporting instruction translation reads/writes as these are dependent
2595  * solely on the SCR.NS bit and not the mode.
2596  */
2597 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2598     A32_BANKED_REG_GET((_env), _regname,                \
2599                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2600 
2601 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2602     A32_BANKED_REG_SET((_env), _regname,                                    \
2603                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2604                        (_val))
2605 
2606 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2607                                  uint32_t cur_el, bool secure);
2608 
2609 /* Return the highest implemented Exception Level */
2610 static inline int arm_highest_el(CPUARMState *env)
2611 {
2612     if (arm_feature(env, ARM_FEATURE_EL3)) {
2613         return 3;
2614     }
2615     if (arm_feature(env, ARM_FEATURE_EL2)) {
2616         return 2;
2617     }
2618     return 1;
2619 }
2620 
2621 /* Return true if a v7M CPU is in Handler mode */
2622 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2623 {
2624     return env->v7m.exception != 0;
2625 }
2626 
2627 /* Return the current Exception Level (as per ARMv8; note that this differs
2628  * from the ARMv7 Privilege Level).
2629  */
2630 static inline int arm_current_el(CPUARMState *env)
2631 {
2632     if (arm_feature(env, ARM_FEATURE_M)) {
2633         return arm_v7m_is_handler_mode(env) ||
2634             !(env->v7m.control[env->v7m.secure] & 1);
2635     }
2636 
2637     if (is_a64(env)) {
2638         return extract32(env->pstate, 2, 2);
2639     }
2640 
2641     switch (env->uncached_cpsr & 0x1f) {
2642     case ARM_CPU_MODE_USR:
2643         return 0;
2644     case ARM_CPU_MODE_HYP:
2645         return 2;
2646     case ARM_CPU_MODE_MON:
2647         return 3;
2648     default:
2649         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2650             /* If EL3 is 32-bit then all secure privileged modes run in
2651              * EL3
2652              */
2653             return 3;
2654         }
2655 
2656         return 1;
2657     }
2658 }
2659 
2660 /**
2661  * write_list_to_cpustate
2662  * @cpu: ARMCPU
2663  *
2664  * For each register listed in the ARMCPU cpreg_indexes list, write
2665  * its value from the cpreg_values list into the ARMCPUState structure.
2666  * This updates TCG's working data structures from KVM data or
2667  * from incoming migration state.
2668  *
2669  * Returns: true if all register values were updated correctly,
2670  * false if some register was unknown or could not be written.
2671  * Note that we do not stop early on failure -- we will attempt
2672  * writing all registers in the list.
2673  */
2674 bool write_list_to_cpustate(ARMCPU *cpu);
2675 
2676 /**
2677  * write_cpustate_to_list:
2678  * @cpu: ARMCPU
2679  * @kvm_sync: true if this is for syncing back to KVM
2680  *
2681  * For each register listed in the ARMCPU cpreg_indexes list, write
2682  * its value from the ARMCPUState structure into the cpreg_values list.
2683  * This is used to copy info from TCG's working data structures into
2684  * KVM or for outbound migration.
2685  *
2686  * @kvm_sync is true if we are doing this in order to sync the
2687  * register state back to KVM. In this case we will only update
2688  * values in the list if the previous list->cpustate sync actually
2689  * successfully wrote the CPU state. Otherwise we will keep the value
2690  * that is in the list.
2691  *
2692  * Returns: true if all register values were read correctly,
2693  * false if some register was unknown or could not be read.
2694  * Note that we do not stop early on failure -- we will attempt
2695  * reading all registers in the list.
2696  */
2697 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2698 
2699 #define ARM_CPUID_TI915T      0x54029152
2700 #define ARM_CPUID_TI925T      0x54029252
2701 
2702 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2703 
2704 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2705 
2706 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2707  *
2708  * If EL3 is 64-bit:
2709  *  + NonSecure EL1 & 0 stage 1
2710  *  + NonSecure EL1 & 0 stage 2
2711  *  + NonSecure EL2
2712  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2713  *  + Secure EL1 & 0
2714  *  + Secure EL3
2715  * If EL3 is 32-bit:
2716  *  + NonSecure PL1 & 0 stage 1
2717  *  + NonSecure PL1 & 0 stage 2
2718  *  + NonSecure PL2
2719  *  + Secure PL0
2720  *  + Secure PL1
2721  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2722  *
2723  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2724  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2725  *     because they may differ in access permissions even if the VA->PA map is
2726  *     the same
2727  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2728  *     translation, which means that we have one mmu_idx that deals with two
2729  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2730  *     architecturally permitted]
2731  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2732  *     handling via the TLB. The only way to do a stage 1 translation without
2733  *     the immediate stage 2 translation is via the ATS or AT system insns,
2734  *     which can be slow-pathed and always do a page table walk.
2735  *     The only use of stage 2 translations is either as part of an s1+2
2736  *     lookup or when loading the descriptors during a stage 1 page table walk,
2737  *     and in both those cases we don't use the TLB.
2738  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2739  *     translation regimes, because they map reasonably well to each other
2740  *     and they can't both be active at the same time.
2741  *  5. we want to be able to use the TLB for accesses done as part of a
2742  *     stage1 page table walk, rather than having to walk the stage2 page
2743  *     table over and over.
2744  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2745  *     Never (PAN) bit within PSTATE.
2746  *  7. we fold together the secure and non-secure regimes for A-profile,
2747  *     because there are no banked system registers for aarch64, so the
2748  *     process of switching between secure and non-secure is
2749  *     already heavyweight.
2750  *
2751  * This gives us the following list of cases:
2752  *
2753  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2754  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2755  * EL1 EL1&0 stage 1+2 +PAN
2756  * EL0 EL2&0
2757  * EL2 EL2&0
2758  * EL2 EL2&0 +PAN
2759  * EL2 (aka NS PL2)
2760  * EL3 (aka S PL1)
2761  * Physical (NS & S)
2762  * Stage2 (NS & S)
2763  *
2764  * for a total of 12 different mmu_idx.
2765  *
2766  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2767  * as A profile. They only need to distinguish EL0 and EL1 (and
2768  * EL2 if we ever model a Cortex-R52).
2769  *
2770  * M profile CPUs are rather different as they do not have a true MMU.
2771  * They have the following different MMU indexes:
2772  *  User
2773  *  Privileged
2774  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2775  *  Privileged, execution priority negative (ditto)
2776  * If the CPU supports the v8M Security Extension then there are also:
2777  *  Secure User
2778  *  Secure Privileged
2779  *  Secure User, execution priority negative
2780  *  Secure Privileged, execution priority negative
2781  *
2782  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2783  * are not quite the same -- different CPU types (most notably M profile
2784  * vs A/R profile) would like to use MMU indexes with different semantics,
2785  * but since we don't ever need to use all of those in a single CPU we
2786  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2787  * modes + total number of M profile MMU modes". The lower bits of
2788  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2789  * the same for any particular CPU.
2790  * Variables of type ARMMUIdx are always full values, and the core
2791  * index values are in variables of type 'int'.
2792  *
2793  * Our enumeration includes at the end some entries which are not "true"
2794  * mmu_idx values in that they don't have corresponding TLBs and are only
2795  * valid for doing slow path page table walks.
2796  *
2797  * The constant names here are patterned after the general style of the names
2798  * of the AT/ATS operations.
2799  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2800  * For M profile we arrange them to have a bit for priv, a bit for negpri
2801  * and a bit for secure.
2802  */
2803 #define ARM_MMU_IDX_A     0x10  /* A profile */
2804 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2805 #define ARM_MMU_IDX_M     0x40  /* M profile */
2806 
2807 /* Meanings of the bits for M profile mmu idx values */
2808 #define ARM_MMU_IDX_M_PRIV   0x1
2809 #define ARM_MMU_IDX_M_NEGPRI 0x2
2810 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2811 
2812 #define ARM_MMU_IDX_TYPE_MASK \
2813     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2814 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2815 
2816 typedef enum ARMMMUIdx {
2817     /*
2818      * A-profile.
2819      */
2820     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2821     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2822     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2823     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2824     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2825     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2826     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2827     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2828 
2829     /*
2830      * Used for second stage of an S12 page table walk, or for descriptor
2831      * loads during first stage of an S1 page table walk.  Note that both
2832      * are in use simultaneously for SecureEL2: the security state for
2833      * the S2 ptw is selected by the NS bit from the S1 ptw.
2834      */
2835     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2836     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2837 
2838     /* TLBs with 1-1 mapping to the physical address spaces. */
2839     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2840     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2841     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2842     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2843 
2844     /*
2845      * These are not allocated TLBs and are used only for AT system
2846      * instructions or for the first stage of an S12 page table walk.
2847      */
2848     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2849     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2850     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2851 
2852     /*
2853      * M-profile.
2854      */
2855     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2856     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2857     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2858     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2859     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2860     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2861     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2862     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2863 } ARMMMUIdx;
2864 
2865 /*
2866  * Bit macros for the core-mmu-index values for each index,
2867  * for use when calling tlb_flush_by_mmuidx() and friends.
2868  */
2869 #define TO_CORE_BIT(NAME) \
2870     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2871 
2872 typedef enum ARMMMUIdxBit {
2873     TO_CORE_BIT(E10_0),
2874     TO_CORE_BIT(E20_0),
2875     TO_CORE_BIT(E10_1),
2876     TO_CORE_BIT(E10_1_PAN),
2877     TO_CORE_BIT(E2),
2878     TO_CORE_BIT(E20_2),
2879     TO_CORE_BIT(E20_2_PAN),
2880     TO_CORE_BIT(E3),
2881     TO_CORE_BIT(Stage2),
2882     TO_CORE_BIT(Stage2_S),
2883 
2884     TO_CORE_BIT(MUser),
2885     TO_CORE_BIT(MPriv),
2886     TO_CORE_BIT(MUserNegPri),
2887     TO_CORE_BIT(MPrivNegPri),
2888     TO_CORE_BIT(MSUser),
2889     TO_CORE_BIT(MSPriv),
2890     TO_CORE_BIT(MSUserNegPri),
2891     TO_CORE_BIT(MSPrivNegPri),
2892 } ARMMMUIdxBit;
2893 
2894 #undef TO_CORE_BIT
2895 
2896 #define MMU_USER_IDX 0
2897 
2898 /* Indexes used when registering address spaces with cpu_address_space_init */
2899 typedef enum ARMASIdx {
2900     ARMASIdx_NS = 0,
2901     ARMASIdx_S = 1,
2902     ARMASIdx_TagNS = 2,
2903     ARMASIdx_TagS = 3,
2904 } ARMASIdx;
2905 
2906 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2907 {
2908     /* Assert the relative order of the physical mmu indexes. */
2909     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2910     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2911     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2912     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2913 
2914     return ARMMMUIdx_Phys_S + space;
2915 }
2916 
2917 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2918 {
2919     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2920     return idx - ARMMMUIdx_Phys_S;
2921 }
2922 
2923 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2924 {
2925     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2926      * CSSELR is RAZ/WI.
2927      */
2928     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2929 }
2930 
2931 static inline bool arm_sctlr_b(CPUARMState *env)
2932 {
2933     return
2934         /* We need not implement SCTLR.ITD in user-mode emulation, so
2935          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2936          * This lets people run BE32 binaries with "-cpu any".
2937          */
2938 #ifndef CONFIG_USER_ONLY
2939         !arm_feature(env, ARM_FEATURE_V7) &&
2940 #endif
2941         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2942 }
2943 
2944 uint64_t arm_sctlr(CPUARMState *env, int el);
2945 
2946 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2947                                                   bool sctlr_b)
2948 {
2949 #ifdef CONFIG_USER_ONLY
2950     /*
2951      * In system mode, BE32 is modelled in line with the
2952      * architecture (as word-invariant big-endianness), where loads
2953      * and stores are done little endian but from addresses which
2954      * are adjusted by XORing with the appropriate constant. So the
2955      * endianness to use for the raw data access is not affected by
2956      * SCTLR.B.
2957      * In user mode, however, we model BE32 as byte-invariant
2958      * big-endianness (because user-only code cannot tell the
2959      * difference), and so we need to use a data access endianness
2960      * that depends on SCTLR.B.
2961      */
2962     if (sctlr_b) {
2963         return true;
2964     }
2965 #endif
2966     /* In 32bit endianness is determined by looking at CPSR's E bit */
2967     return env->uncached_cpsr & CPSR_E;
2968 }
2969 
2970 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2971 {
2972     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2973 }
2974 
2975 /* Return true if the processor is in big-endian mode. */
2976 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2977 {
2978     if (!is_a64(env)) {
2979         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2980     } else {
2981         int cur_el = arm_current_el(env);
2982         uint64_t sctlr = arm_sctlr(env, cur_el);
2983         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2984     }
2985 }
2986 
2987 #include "exec/cpu-all.h"
2988 
2989 /*
2990  * We have more than 32-bits worth of state per TB, so we split the data
2991  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2992  * We collect these two parts in CPUARMTBFlags where they are named
2993  * flags and flags2 respectively.
2994  *
2995  * The flags that are shared between all execution modes, TBFLAG_ANY,
2996  * are stored in flags.  The flags that are specific to a given mode
2997  * are stores in flags2.  Since cs_base is sized on the configured
2998  * address size, flags2 always has 64-bits for A64, and a minimum of
2999  * 32-bits for A32 and M32.
3000  *
3001  * The bits for 32-bit A-profile and M-profile partially overlap:
3002  *
3003  *  31         23         11 10             0
3004  * +-------------+----------+----------------+
3005  * |             |          |   TBFLAG_A32   |
3006  * | TBFLAG_AM32 |          +-----+----------+
3007  * |             |                |TBFLAG_M32|
3008  * +-------------+----------------+----------+
3009  *  31         23                6 5        0
3010  *
3011  * Unless otherwise noted, these bits are cached in env->hflags.
3012  */
3013 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3014 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3015 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3016 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3017 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3018 /* Target EL if we take a floating-point-disabled exception */
3019 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3020 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3021 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3022 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3023 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3024 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3025 
3026 /*
3027  * Bit usage when in AArch32 state, both A- and M-profile.
3028  */
3029 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3030 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3031 
3032 /*
3033  * Bit usage when in AArch32 state, for A-profile only.
3034  */
3035 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3036 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3037 /*
3038  * We store the bottom two bits of the CPAR as TB flags and handle
3039  * checks on the other bits at runtime. This shares the same bits as
3040  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3041  * Not cached, because VECLEN+VECSTRIDE are not cached.
3042  */
3043 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3044 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3045 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3046 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3047 /*
3048  * Indicates whether cp register reads and writes by guest code should access
3049  * the secure or nonsecure bank of banked registers; note that this is not
3050  * the same thing as the current security state of the processor!
3051  */
3052 FIELD(TBFLAG_A32, NS, 10, 1)
3053 /*
3054  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3055  * This requires an SME trap from AArch32 mode when using NEON.
3056  */
3057 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3058 
3059 /*
3060  * Bit usage when in AArch32 state, for M-profile only.
3061  */
3062 /* Handler (ie not Thread) mode */
3063 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3064 /* Whether we should generate stack-limit checks */
3065 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3066 /* Set if FPCCR.LSPACT is set */
3067 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3068 /* Set if we must create a new FP context */
3069 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3070 /* Set if FPCCR.S does not match current security state */
3071 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3072 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3073 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3074 /* Set if in secure mode */
3075 FIELD(TBFLAG_M32, SECURE, 6, 1)
3076 
3077 /*
3078  * Bit usage when in AArch64 state
3079  */
3080 FIELD(TBFLAG_A64, TBII, 0, 2)
3081 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3082 /* The current vector length, either NVL or SVL. */
3083 FIELD(TBFLAG_A64, VL, 4, 4)
3084 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3085 FIELD(TBFLAG_A64, BT, 9, 1)
3086 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3087 FIELD(TBFLAG_A64, TBID, 12, 2)
3088 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3089 FIELD(TBFLAG_A64, ATA, 15, 1)
3090 FIELD(TBFLAG_A64, TCMA, 16, 2)
3091 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3092 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3093 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3094 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3095 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3096 FIELD(TBFLAG_A64, SVL, 24, 4)
3097 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3098 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3099 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3100 FIELD(TBFLAG_A64, NAA, 30, 1)
3101 FIELD(TBFLAG_A64, ATA0, 31, 1)
3102 FIELD(TBFLAG_A64, NV, 32, 1)
3103 FIELD(TBFLAG_A64, NV1, 33, 1)
3104 FIELD(TBFLAG_A64, NV2, 34, 1)
3105 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3106 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3107 /* Set if FEAT_NV2 RAM accesses are big-endian */
3108 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3109 
3110 /*
3111  * Helpers for using the above. Note that only the A64 accessors use
3112  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3113  * word either is or might be 32 bits only.
3114  */
3115 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3116     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3117 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3118     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3119 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3120     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3121 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3122     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3123 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3124     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3125 
3126 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3127 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3128 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3129 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3130 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3131 
3132 /**
3133  * sve_vq
3134  * @env: the cpu context
3135  *
3136  * Return the VL cached within env->hflags, in units of quadwords.
3137  */
3138 static inline int sve_vq(CPUARMState *env)
3139 {
3140     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3141 }
3142 
3143 /**
3144  * sme_vq
3145  * @env: the cpu context
3146  *
3147  * Return the SVL cached within env->hflags, in units of quadwords.
3148  */
3149 static inline int sme_vq(CPUARMState *env)
3150 {
3151     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3152 }
3153 
3154 static inline bool bswap_code(bool sctlr_b)
3155 {
3156 #ifdef CONFIG_USER_ONLY
3157     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3158      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3159      * would also end up as a mixed-endian mode with BE code, LE data.
3160      */
3161     return TARGET_BIG_ENDIAN ^ sctlr_b;
3162 #else
3163     /* All code access in ARM is little endian, and there are no loaders
3164      * doing swaps that need to be reversed
3165      */
3166     return 0;
3167 #endif
3168 }
3169 
3170 #ifdef CONFIG_USER_ONLY
3171 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3172 {
3173     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3174 }
3175 #endif
3176 
3177 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3178                           uint64_t *cs_base, uint32_t *flags);
3179 
3180 enum {
3181     QEMU_PSCI_CONDUIT_DISABLED = 0,
3182     QEMU_PSCI_CONDUIT_SMC = 1,
3183     QEMU_PSCI_CONDUIT_HVC = 2,
3184 };
3185 
3186 #ifndef CONFIG_USER_ONLY
3187 /* Return the address space index to use for a memory access */
3188 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3189 {
3190     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3191 }
3192 
3193 /* Return the AddressSpace to use for a memory access
3194  * (which depends on whether the access is S or NS, and whether
3195  * the board gave us a separate AddressSpace for S accesses).
3196  */
3197 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3198 {
3199     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3200 }
3201 #endif
3202 
3203 /**
3204  * arm_register_pre_el_change_hook:
3205  * Register a hook function which will be called immediately before this
3206  * CPU changes exception level or mode. The hook function will be
3207  * passed a pointer to the ARMCPU and the opaque data pointer passed
3208  * to this function when the hook was registered.
3209  *
3210  * Note that if a pre-change hook is called, any registered post-change hooks
3211  * are guaranteed to subsequently be called.
3212  */
3213 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3214                                  void *opaque);
3215 /**
3216  * arm_register_el_change_hook:
3217  * Register a hook function which will be called immediately after this
3218  * CPU changes exception level or mode. The hook function will be
3219  * passed a pointer to the ARMCPU and the opaque data pointer passed
3220  * to this function when the hook was registered.
3221  *
3222  * Note that any registered hooks registered here are guaranteed to be called
3223  * if pre-change hooks have been.
3224  */
3225 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3226         *opaque);
3227 
3228 /**
3229  * arm_rebuild_hflags:
3230  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3231  */
3232 void arm_rebuild_hflags(CPUARMState *env);
3233 
3234 /**
3235  * aa32_vfp_dreg:
3236  * Return a pointer to the Dn register within env in 32-bit mode.
3237  */
3238 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3239 {
3240     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3241 }
3242 
3243 /**
3244  * aa32_vfp_qreg:
3245  * Return a pointer to the Qn register within env in 32-bit mode.
3246  */
3247 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3248 {
3249     return &env->vfp.zregs[regno].d[0];
3250 }
3251 
3252 /**
3253  * aa64_vfp_qreg:
3254  * Return a pointer to the Qn register within env in 64-bit mode.
3255  */
3256 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3257 {
3258     return &env->vfp.zregs[regno].d[0];
3259 }
3260 
3261 /* Shared between translate-sve.c and sve_helper.c.  */
3262 extern const uint64_t pred_esz_masks[5];
3263 
3264 /*
3265  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3266  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3267  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3268  */
3269 #define PAGE_BTI            PAGE_TARGET_1
3270 #define PAGE_MTE            PAGE_TARGET_2
3271 #define PAGE_TARGET_STICKY  PAGE_MTE
3272 
3273 /* We associate one allocation tag per 16 bytes, the minimum.  */
3274 #define LOG2_TAG_GRANULE 4
3275 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3276 
3277 #ifdef CONFIG_USER_ONLY
3278 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3279 #endif
3280 
3281 #ifdef TARGET_TAGGED_ADDRESSES
3282 /**
3283  * cpu_untagged_addr:
3284  * @cs: CPU context
3285  * @x: tagged address
3286  *
3287  * Remove any address tag from @x.  This is explicitly related to the
3288  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3289  *
3290  * There should be a better place to put this, but we need this in
3291  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3292  */
3293 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3294 {
3295     ARMCPU *cpu = ARM_CPU(cs);
3296     if (cpu->env.tagged_addr_enable) {
3297         /*
3298          * TBI is enabled for userspace but not kernelspace addresses.
3299          * Only clear the tag if bit 55 is clear.
3300          */
3301         x &= sextract64(x, 0, 56);
3302     }
3303     return x;
3304 }
3305 #endif
3306 
3307 #endif
3308