xref: /openbmc/qemu/target/arm/cpu.h (revision 64c9a921)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_HVC            11   /* HyperVisor Call */
46 #define EXCP_HYP_TRAP       12
47 #define EXCP_SMC            13   /* Secure Monitor Call */
48 #define EXCP_VIRQ           14
49 #define EXCP_VFIQ           15
50 #define EXCP_SEMIHOST       16   /* semihosting call */
51 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
58 
59 #define ARMV7M_EXCP_RESET   1
60 #define ARMV7M_EXCP_NMI     2
61 #define ARMV7M_EXCP_HARD    3
62 #define ARMV7M_EXCP_MEM     4
63 #define ARMV7M_EXCP_BUS     5
64 #define ARMV7M_EXCP_USAGE   6
65 #define ARMV7M_EXCP_SECURE  7
66 #define ARMV7M_EXCP_SVC     11
67 #define ARMV7M_EXCP_DEBUG   12
68 #define ARMV7M_EXCP_PENDSV  14
69 #define ARMV7M_EXCP_SYSTICK 15
70 
71 /* For M profile, some registers are banked secure vs non-secure;
72  * these are represented as a 2-element array where the first element
73  * is the non-secure copy and the second is the secure copy.
74  * When the CPU does not have implement the security extension then
75  * only the first element is used.
76  * This means that the copy for the current security state can be
77  * accessed via env->registerfield[env->v7m.secure] (whether the security
78  * extension is implemented or not).
79  */
80 enum {
81     M_REG_NS = 0,
82     M_REG_S = 1,
83     M_REG_NUM_BANKS = 2,
84 };
85 
86 /* ARM-specific interrupt pending bits.  */
87 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
88 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
89 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
90 
91 /* The usual mapping for an AArch64 system register to its AArch32
92  * counterpart is for the 32 bit world to have access to the lower
93  * half only (with writes leaving the upper half untouched). It's
94  * therefore useful to be able to pass TCG the offset of the least
95  * significant half of a uint64_t struct member.
96  */
97 #ifdef HOST_WORDS_BIGENDIAN
98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #define offsetofhigh32(S, M) offsetof(S, M)
100 #else
101 #define offsetoflow32(S, M) offsetof(S, M)
102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #endif
104 
105 /* Meanings of the ARMCPU object's four inbound GPIO lines */
106 #define ARM_CPU_IRQ 0
107 #define ARM_CPU_FIQ 1
108 #define ARM_CPU_VIRQ 2
109 #define ARM_CPU_VFIQ 3
110 
111 /* ARM-specific extra insn start words:
112  * 1: Conditional execution bits
113  * 2: Partial exception syndrome for data aborts
114  */
115 #define TARGET_INSN_START_EXTRA_WORDS 2
116 
117 /* The 2nd extra word holding syndrome info for data aborts does not use
118  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119  * help the sleb128 encoder do a better job.
120  * When restoring the CPU state, we shift it back up.
121  */
122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123 #define ARM_INSN_START_WORD2_SHIFT 14
124 
125 /* We currently assume float and double are IEEE single and double
126    precision respectively.
127    Doing runtime conversions is tricky because VFP registers may contain
128    integer values (eg. as the result of a FTOSI instruction).
129    s<2n> maps to the least significant half of d<n>
130    s<2n+1> maps to the most significant half of d<n>
131  */
132 
133 /**
134  * DynamicGDBXMLInfo:
135  * @desc: Contains the XML descriptions.
136  * @num: Number of the registers in this XML seen by GDB.
137  * @data: A union with data specific to the set of registers
138  *    @cpregs_keys: Array that contains the corresponding Key of
139  *                  a given cpreg with the same order of the cpreg
140  *                  in the XML description.
141  */
142 typedef struct DynamicGDBXMLInfo {
143     char *desc;
144     int num;
145     union {
146         struct {
147             uint32_t *keys;
148         } cpregs;
149     } data;
150 } DynamicGDBXMLInfo;
151 
152 /* CPU state for each instance of a generic timer (in cp15 c14) */
153 typedef struct ARMGenericTimer {
154     uint64_t cval; /* Timer CompareValue register */
155     uint64_t ctl; /* Timer Control register */
156 } ARMGenericTimer;
157 
158 #define GTIMER_PHYS     0
159 #define GTIMER_VIRT     1
160 #define GTIMER_HYP      2
161 #define GTIMER_SEC      3
162 #define GTIMER_HYPVIRT  4
163 #define NUM_GTIMERS     5
164 
165 typedef struct {
166     uint64_t raw_tcr;
167     uint32_t mask;
168     uint32_t base_mask;
169 } TCR;
170 
171 #define VTCR_NSW (1u << 29)
172 #define VTCR_NSA (1u << 30)
173 #define VSTCR_SW VTCR_NSW
174 #define VSTCR_SA VTCR_NSA
175 
176 /* Define a maximum sized vector register.
177  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
178  * For 64-bit, this is a 2048-bit SVE register.
179  *
180  * Note that the mapping between S, D, and Q views of the register bank
181  * differs between AArch64 and AArch32.
182  * In AArch32:
183  *  Qn = regs[n].d[1]:regs[n].d[0]
184  *  Dn = regs[n / 2].d[n & 1]
185  *  Sn = regs[n / 4].d[n % 4 / 2],
186  *       bits 31..0 for even n, and bits 63..32 for odd n
187  *       (and regs[16] to regs[31] are inaccessible)
188  * In AArch64:
189  *  Zn = regs[n].d[*]
190  *  Qn = regs[n].d[1]:regs[n].d[0]
191  *  Dn = regs[n].d[0]
192  *  Sn = regs[n].d[0] bits 31..0
193  *  Hn = regs[n].d[0] bits 15..0
194  *
195  * This corresponds to the architecturally defined mapping between
196  * the two execution states, and means we do not need to explicitly
197  * map these registers when changing states.
198  *
199  * Align the data for use with TCG host vector operations.
200  */
201 
202 #ifdef TARGET_AARCH64
203 # define ARM_MAX_VQ    16
204 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
205 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
206 #else
207 # define ARM_MAX_VQ    1
208 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
209 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
210 #endif
211 
212 typedef struct ARMVectorReg {
213     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214 } ARMVectorReg;
215 
216 #ifdef TARGET_AARCH64
217 /* In AArch32 mode, predicate registers do not exist at all.  */
218 typedef struct ARMPredicateReg {
219     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
220 } ARMPredicateReg;
221 
222 /* In AArch32 mode, PAC keys do not exist at all.  */
223 typedef struct ARMPACKey {
224     uint64_t lo, hi;
225 } ARMPACKey;
226 #endif
227 
228 
229 typedef struct CPUARMState {
230     /* Regs for current mode.  */
231     uint32_t regs[16];
232 
233     /* 32/64 switch only happens when taking and returning from
234      * exceptions so the overlap semantics are taken care of then
235      * instead of having a complicated union.
236      */
237     /* Regs for A64 mode.  */
238     uint64_t xregs[32];
239     uint64_t pc;
240     /* PSTATE isn't an architectural register for ARMv8. However, it is
241      * convenient for us to assemble the underlying state into a 32 bit format
242      * identical to the architectural format used for the SPSR. (This is also
243      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
244      * 'pstate' register are.) Of the PSTATE bits:
245      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
246      *    semantics as for AArch32, as described in the comments on each field)
247      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
248      *  DAIF (exception masks) are kept in env->daif
249      *  BTYPE is kept in env->btype
250      *  all other bits are stored in their correct places in env->pstate
251      */
252     uint32_t pstate;
253     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
254 
255     /* Cached TBFLAGS state.  See below for which bits are included.  */
256     uint32_t hflags;
257 
258     /* Frequently accessed CPSR bits are stored separately for efficiency.
259        This contains all the other bits.  Use cpsr_{read,write} to access
260        the whole CPSR.  */
261     uint32_t uncached_cpsr;
262     uint32_t spsr;
263 
264     /* Banked registers.  */
265     uint64_t banked_spsr[8];
266     uint32_t banked_r13[8];
267     uint32_t banked_r14[8];
268 
269     /* These hold r8-r12.  */
270     uint32_t usr_regs[5];
271     uint32_t fiq_regs[5];
272 
273     /* cpsr flag cache for faster execution */
274     uint32_t CF; /* 0 or 1 */
275     uint32_t VF; /* V is the bit 31. All other bits are undefined */
276     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
277     uint32_t ZF; /* Z set if zero.  */
278     uint32_t QF; /* 0 or 1 */
279     uint32_t GE; /* cpsr[19:16] */
280     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
281     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
282     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
283     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
284 
285     uint64_t elr_el[4]; /* AArch64 exception link regs  */
286     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
287 
288     /* System control coprocessor (cp15) */
289     struct {
290         uint32_t c0_cpuid;
291         union { /* Cache size selection */
292             struct {
293                 uint64_t _unused_csselr0;
294                 uint64_t csselr_ns;
295                 uint64_t _unused_csselr1;
296                 uint64_t csselr_s;
297             };
298             uint64_t csselr_el[4];
299         };
300         union { /* System control register. */
301             struct {
302                 uint64_t _unused_sctlr;
303                 uint64_t sctlr_ns;
304                 uint64_t hsctlr;
305                 uint64_t sctlr_s;
306             };
307             uint64_t sctlr_el[4];
308         };
309         uint64_t cpacr_el1; /* Architectural feature access control register */
310         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
311         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
312         uint64_t sder; /* Secure debug enable register. */
313         uint32_t nsacr; /* Non-secure access control register. */
314         union { /* MMU translation table base 0. */
315             struct {
316                 uint64_t _unused_ttbr0_0;
317                 uint64_t ttbr0_ns;
318                 uint64_t _unused_ttbr0_1;
319                 uint64_t ttbr0_s;
320             };
321             uint64_t ttbr0_el[4];
322         };
323         union { /* MMU translation table base 1. */
324             struct {
325                 uint64_t _unused_ttbr1_0;
326                 uint64_t ttbr1_ns;
327                 uint64_t _unused_ttbr1_1;
328                 uint64_t ttbr1_s;
329             };
330             uint64_t ttbr1_el[4];
331         };
332         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
333         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
334         /* MMU translation table base control. */
335         TCR tcr_el[4];
336         TCR vtcr_el2; /* Virtualization Translation Control.  */
337         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
338         uint32_t c2_data; /* MPU data cacheable bits.  */
339         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
340         union { /* MMU domain access control register
341                  * MPU write buffer control.
342                  */
343             struct {
344                 uint64_t dacr_ns;
345                 uint64_t dacr_s;
346             };
347             struct {
348                 uint64_t dacr32_el2;
349             };
350         };
351         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
352         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
353         uint64_t hcr_el2; /* Hypervisor configuration register */
354         uint64_t scr_el3; /* Secure configuration register.  */
355         union { /* Fault status registers.  */
356             struct {
357                 uint64_t ifsr_ns;
358                 uint64_t ifsr_s;
359             };
360             struct {
361                 uint64_t ifsr32_el2;
362             };
363         };
364         union {
365             struct {
366                 uint64_t _unused_dfsr;
367                 uint64_t dfsr_ns;
368                 uint64_t hsr;
369                 uint64_t dfsr_s;
370             };
371             uint64_t esr_el[4];
372         };
373         uint32_t c6_region[8]; /* MPU base/size registers.  */
374         union { /* Fault address registers. */
375             struct {
376                 uint64_t _unused_far0;
377 #ifdef HOST_WORDS_BIGENDIAN
378                 uint32_t ifar_ns;
379                 uint32_t dfar_ns;
380                 uint32_t ifar_s;
381                 uint32_t dfar_s;
382 #else
383                 uint32_t dfar_ns;
384                 uint32_t ifar_ns;
385                 uint32_t dfar_s;
386                 uint32_t ifar_s;
387 #endif
388                 uint64_t _unused_far3;
389             };
390             uint64_t far_el[4];
391         };
392         uint64_t hpfar_el2;
393         uint64_t hstr_el2;
394         union { /* Translation result. */
395             struct {
396                 uint64_t _unused_par_0;
397                 uint64_t par_ns;
398                 uint64_t _unused_par_1;
399                 uint64_t par_s;
400             };
401             uint64_t par_el[4];
402         };
403 
404         uint32_t c9_insn; /* Cache lockdown registers.  */
405         uint32_t c9_data;
406         uint64_t c9_pmcr; /* performance monitor control register */
407         uint64_t c9_pmcnten; /* perf monitor counter enables */
408         uint64_t c9_pmovsr; /* perf monitor overflow status */
409         uint64_t c9_pmuserenr; /* perf monitor user enable */
410         uint64_t c9_pmselr; /* perf monitor counter selection register */
411         uint64_t c9_pminten; /* perf monitor interrupt enables */
412         union { /* Memory attribute redirection */
413             struct {
414 #ifdef HOST_WORDS_BIGENDIAN
415                 uint64_t _unused_mair_0;
416                 uint32_t mair1_ns;
417                 uint32_t mair0_ns;
418                 uint64_t _unused_mair_1;
419                 uint32_t mair1_s;
420                 uint32_t mair0_s;
421 #else
422                 uint64_t _unused_mair_0;
423                 uint32_t mair0_ns;
424                 uint32_t mair1_ns;
425                 uint64_t _unused_mair_1;
426                 uint32_t mair0_s;
427                 uint32_t mair1_s;
428 #endif
429             };
430             uint64_t mair_el[4];
431         };
432         union { /* vector base address register */
433             struct {
434                 uint64_t _unused_vbar;
435                 uint64_t vbar_ns;
436                 uint64_t hvbar;
437                 uint64_t vbar_s;
438             };
439             uint64_t vbar_el[4];
440         };
441         uint32_t mvbar; /* (monitor) vector base address register */
442         struct { /* FCSE PID. */
443             uint32_t fcseidr_ns;
444             uint32_t fcseidr_s;
445         };
446         union { /* Context ID. */
447             struct {
448                 uint64_t _unused_contextidr_0;
449                 uint64_t contextidr_ns;
450                 uint64_t _unused_contextidr_1;
451                 uint64_t contextidr_s;
452             };
453             uint64_t contextidr_el[4];
454         };
455         union { /* User RW Thread register. */
456             struct {
457                 uint64_t tpidrurw_ns;
458                 uint64_t tpidrprw_ns;
459                 uint64_t htpidr;
460                 uint64_t _tpidr_el3;
461             };
462             uint64_t tpidr_el[4];
463         };
464         /* The secure banks of these registers don't map anywhere */
465         uint64_t tpidrurw_s;
466         uint64_t tpidrprw_s;
467         uint64_t tpidruro_s;
468 
469         union { /* User RO Thread register. */
470             uint64_t tpidruro_ns;
471             uint64_t tpidrro_el[1];
472         };
473         uint64_t c14_cntfrq; /* Counter Frequency register */
474         uint64_t c14_cntkctl; /* Timer Control register */
475         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
476         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
477         ARMGenericTimer c14_timer[NUM_GTIMERS];
478         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
479         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
480         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
481         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
482         uint32_t c15_threadid; /* TI debugger thread-ID.  */
483         uint32_t c15_config_base_address; /* SCU base address.  */
484         uint32_t c15_diagnostic; /* diagnostic register */
485         uint32_t c15_power_diagnostic;
486         uint32_t c15_power_control; /* power control */
487         uint64_t dbgbvr[16]; /* breakpoint value registers */
488         uint64_t dbgbcr[16]; /* breakpoint control registers */
489         uint64_t dbgwvr[16]; /* watchpoint value registers */
490         uint64_t dbgwcr[16]; /* watchpoint control registers */
491         uint64_t mdscr_el1;
492         uint64_t oslsr_el1; /* OS Lock Status */
493         uint64_t mdcr_el2;
494         uint64_t mdcr_el3;
495         /* Stores the architectural value of the counter *the last time it was
496          * updated* by pmccntr_op_start. Accesses should always be surrounded
497          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
498          * architecturally-correct value is being read/set.
499          */
500         uint64_t c15_ccnt;
501         /* Stores the delta between the architectural value and the underlying
502          * cycle count during normal operation. It is used to update c15_ccnt
503          * to be the correct architectural value before accesses. During
504          * accesses, c15_ccnt_delta contains the underlying count being used
505          * for the access, after which it reverts to the delta value in
506          * pmccntr_op_finish.
507          */
508         uint64_t c15_ccnt_delta;
509         uint64_t c14_pmevcntr[31];
510         uint64_t c14_pmevcntr_delta[31];
511         uint64_t c14_pmevtyper[31];
512         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
513         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
514         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
515         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
516         uint64_t gcr_el1;
517         uint64_t rgsr_el1;
518     } cp15;
519 
520     struct {
521         /* M profile has up to 4 stack pointers:
522          * a Main Stack Pointer and a Process Stack Pointer for each
523          * of the Secure and Non-Secure states. (If the CPU doesn't support
524          * the security extension then it has only two SPs.)
525          * In QEMU we always store the currently active SP in regs[13],
526          * and the non-active SP for the current security state in
527          * v7m.other_sp. The stack pointers for the inactive security state
528          * are stored in other_ss_msp and other_ss_psp.
529          * switch_v7m_security_state() is responsible for rearranging them
530          * when we change security state.
531          */
532         uint32_t other_sp;
533         uint32_t other_ss_msp;
534         uint32_t other_ss_psp;
535         uint32_t vecbase[M_REG_NUM_BANKS];
536         uint32_t basepri[M_REG_NUM_BANKS];
537         uint32_t control[M_REG_NUM_BANKS];
538         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
539         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
540         uint32_t hfsr; /* HardFault Status */
541         uint32_t dfsr; /* Debug Fault Status Register */
542         uint32_t sfsr; /* Secure Fault Status Register */
543         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
544         uint32_t bfar; /* BusFault Address */
545         uint32_t sfar; /* Secure Fault Address Register */
546         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
547         int exception;
548         uint32_t primask[M_REG_NUM_BANKS];
549         uint32_t faultmask[M_REG_NUM_BANKS];
550         uint32_t aircr; /* only holds r/w state if security extn implemented */
551         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
552         uint32_t csselr[M_REG_NUM_BANKS];
553         uint32_t scr[M_REG_NUM_BANKS];
554         uint32_t msplim[M_REG_NUM_BANKS];
555         uint32_t psplim[M_REG_NUM_BANKS];
556         uint32_t fpcar[M_REG_NUM_BANKS];
557         uint32_t fpccr[M_REG_NUM_BANKS];
558         uint32_t fpdscr[M_REG_NUM_BANKS];
559         uint32_t cpacr[M_REG_NUM_BANKS];
560         uint32_t nsacr;
561         int ltpsize;
562     } v7m;
563 
564     /* Information associated with an exception about to be taken:
565      * code which raises an exception must set cs->exception_index and
566      * the relevant parts of this structure; the cpu_do_interrupt function
567      * will then set the guest-visible registers as part of the exception
568      * entry process.
569      */
570     struct {
571         uint32_t syndrome; /* AArch64 format syndrome register */
572         uint32_t fsr; /* AArch32 format fault status register info */
573         uint64_t vaddress; /* virtual addr associated with exception, if any */
574         uint32_t target_el; /* EL the exception should be targeted for */
575         /* If we implement EL2 we will also need to store information
576          * about the intermediate physical address for stage 2 faults.
577          */
578     } exception;
579 
580     /* Information associated with an SError */
581     struct {
582         uint8_t pending;
583         uint8_t has_esr;
584         uint64_t esr;
585     } serror;
586 
587     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
588 
589     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
590     uint32_t irq_line_state;
591 
592     /* Thumb-2 EE state.  */
593     uint32_t teecr;
594     uint32_t teehbr;
595 
596     /* VFP coprocessor state.  */
597     struct {
598         ARMVectorReg zregs[32];
599 
600 #ifdef TARGET_AARCH64
601         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
602 #define FFR_PRED_NUM 16
603         ARMPredicateReg pregs[17];
604         /* Scratch space for aa64 sve predicate temporary.  */
605         ARMPredicateReg preg_tmp;
606 #endif
607 
608         /* We store these fpcsr fields separately for convenience.  */
609         uint32_t qc[4] QEMU_ALIGNED(16);
610         int vec_len;
611         int vec_stride;
612 
613         uint32_t xregs[16];
614 
615         /* Scratch space for aa32 neon expansion.  */
616         uint32_t scratch[8];
617 
618         /* There are a number of distinct float control structures:
619          *
620          *  fp_status: is the "normal" fp status.
621          *  fp_status_fp16: used for half-precision calculations
622          *  standard_fp_status : the ARM "Standard FPSCR Value"
623          *  standard_fp_status_fp16 : used for half-precision
624          *       calculations with the ARM "Standard FPSCR Value"
625          *
626          * Half-precision operations are governed by a separate
627          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
628          * status structure to control this.
629          *
630          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
631          * round-to-nearest and is used by any operations (generally
632          * Neon) which the architecture defines as controlled by the
633          * standard FPSCR value rather than the FPSCR.
634          *
635          * The "standard FPSCR but for fp16 ops" is needed because
636          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
637          * using a fixed value for it.
638          *
639          * To avoid having to transfer exception bits around, we simply
640          * say that the FPSCR cumulative exception flags are the logical
641          * OR of the flags in the four fp statuses. This relies on the
642          * only thing which needs to read the exception flags being
643          * an explicit FPSCR read.
644          */
645         float_status fp_status;
646         float_status fp_status_f16;
647         float_status standard_fp_status;
648         float_status standard_fp_status_f16;
649 
650         /* ZCR_EL[1-3] */
651         uint64_t zcr_el[4];
652     } vfp;
653     uint64_t exclusive_addr;
654     uint64_t exclusive_val;
655     uint64_t exclusive_high;
656 
657     /* iwMMXt coprocessor state.  */
658     struct {
659         uint64_t regs[16];
660         uint64_t val;
661 
662         uint32_t cregs[16];
663     } iwmmxt;
664 
665 #ifdef TARGET_AARCH64
666     struct {
667         ARMPACKey apia;
668         ARMPACKey apib;
669         ARMPACKey apda;
670         ARMPACKey apdb;
671         ARMPACKey apga;
672     } keys;
673 #endif
674 
675 #if defined(CONFIG_USER_ONLY)
676     /* For usermode syscall translation.  */
677     int eabi;
678 #endif
679 
680     struct CPUBreakpoint *cpu_breakpoint[16];
681     struct CPUWatchpoint *cpu_watchpoint[16];
682 
683     /* Fields up to this point are cleared by a CPU reset */
684     struct {} end_reset_fields;
685 
686     /* Fields after this point are preserved across CPU reset. */
687 
688     /* Internal CPU feature flags.  */
689     uint64_t features;
690 
691     /* PMSAv7 MPU */
692     struct {
693         uint32_t *drbar;
694         uint32_t *drsr;
695         uint32_t *dracr;
696         uint32_t rnr[M_REG_NUM_BANKS];
697     } pmsav7;
698 
699     /* PMSAv8 MPU */
700     struct {
701         /* The PMSAv8 implementation also shares some PMSAv7 config
702          * and state:
703          *  pmsav7.rnr (region number register)
704          *  pmsav7_dregion (number of configured regions)
705          */
706         uint32_t *rbar[M_REG_NUM_BANKS];
707         uint32_t *rlar[M_REG_NUM_BANKS];
708         uint32_t mair0[M_REG_NUM_BANKS];
709         uint32_t mair1[M_REG_NUM_BANKS];
710     } pmsav8;
711 
712     /* v8M SAU */
713     struct {
714         uint32_t *rbar;
715         uint32_t *rlar;
716         uint32_t rnr;
717         uint32_t ctrl;
718     } sau;
719 
720     void *nvic;
721     const struct arm_boot_info *boot_info;
722     /* Store GICv3CPUState to access from this struct */
723     void *gicv3state;
724 } CPUARMState;
725 
726 static inline void set_feature(CPUARMState *env, int feature)
727 {
728     env->features |= 1ULL << feature;
729 }
730 
731 static inline void unset_feature(CPUARMState *env, int feature)
732 {
733     env->features &= ~(1ULL << feature);
734 }
735 
736 /**
737  * ARMELChangeHookFn:
738  * type of a function which can be registered via arm_register_el_change_hook()
739  * to get callbacks when the CPU changes its exception level or mode.
740  */
741 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
742 typedef struct ARMELChangeHook ARMELChangeHook;
743 struct ARMELChangeHook {
744     ARMELChangeHookFn *hook;
745     void *opaque;
746     QLIST_ENTRY(ARMELChangeHook) node;
747 };
748 
749 /* These values map onto the return values for
750  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
751 typedef enum ARMPSCIState {
752     PSCI_ON = 0,
753     PSCI_OFF = 1,
754     PSCI_ON_PENDING = 2
755 } ARMPSCIState;
756 
757 typedef struct ARMISARegisters ARMISARegisters;
758 
759 /**
760  * ARMCPU:
761  * @env: #CPUARMState
762  *
763  * An ARM CPU core.
764  */
765 struct ARMCPU {
766     /*< private >*/
767     CPUState parent_obj;
768     /*< public >*/
769 
770     CPUNegativeOffsetState neg;
771     CPUARMState env;
772 
773     /* Coprocessor information */
774     GHashTable *cp_regs;
775     /* For marshalling (mostly coprocessor) register state between the
776      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
777      * we use these arrays.
778      */
779     /* List of register indexes managed via these arrays; (full KVM style
780      * 64 bit indexes, not CPRegInfo 32 bit indexes)
781      */
782     uint64_t *cpreg_indexes;
783     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
784     uint64_t *cpreg_values;
785     /* Length of the indexes, values, reset_values arrays */
786     int32_t cpreg_array_len;
787     /* These are used only for migration: incoming data arrives in
788      * these fields and is sanity checked in post_load before copying
789      * to the working data structures above.
790      */
791     uint64_t *cpreg_vmstate_indexes;
792     uint64_t *cpreg_vmstate_values;
793     int32_t cpreg_vmstate_array_len;
794 
795     DynamicGDBXMLInfo dyn_sysreg_xml;
796     DynamicGDBXMLInfo dyn_svereg_xml;
797 
798     /* Timers used by the generic (architected) timer */
799     QEMUTimer *gt_timer[NUM_GTIMERS];
800     /*
801      * Timer used by the PMU. Its state is restored after migration by
802      * pmu_op_finish() - it does not need other handling during migration
803      */
804     QEMUTimer *pmu_timer;
805     /* GPIO outputs for generic timer */
806     qemu_irq gt_timer_outputs[NUM_GTIMERS];
807     /* GPIO output for GICv3 maintenance interrupt signal */
808     qemu_irq gicv3_maintenance_interrupt;
809     /* GPIO output for the PMU interrupt */
810     qemu_irq pmu_interrupt;
811 
812     /* MemoryRegion to use for secure physical accesses */
813     MemoryRegion *secure_memory;
814 
815     /* MemoryRegion to use for allocation tag accesses */
816     MemoryRegion *tag_memory;
817     MemoryRegion *secure_tag_memory;
818 
819     /* For v8M, pointer to the IDAU interface provided by board/SoC */
820     Object *idau;
821 
822     /* 'compatible' string for this CPU for Linux device trees */
823     const char *dtb_compatible;
824 
825     /* PSCI version for this CPU
826      * Bits[31:16] = Major Version
827      * Bits[15:0] = Minor Version
828      */
829     uint32_t psci_version;
830 
831     /* Current power state, access guarded by BQL */
832     ARMPSCIState power_state;
833 
834     /* CPU has virtualization extension */
835     bool has_el2;
836     /* CPU has security extension */
837     bool has_el3;
838     /* CPU has PMU (Performance Monitor Unit) */
839     bool has_pmu;
840     /* CPU has VFP */
841     bool has_vfp;
842     /* CPU has Neon */
843     bool has_neon;
844     /* CPU has M-profile DSP extension */
845     bool has_dsp;
846 
847     /* CPU has memory protection unit */
848     bool has_mpu;
849     /* PMSAv7 MPU number of supported regions */
850     uint32_t pmsav7_dregion;
851     /* v8M SAU number of supported regions */
852     uint32_t sau_sregion;
853 
854     /* PSCI conduit used to invoke PSCI methods
855      * 0 - disabled, 1 - smc, 2 - hvc
856      */
857     uint32_t psci_conduit;
858 
859     /* For v8M, initial value of the Secure VTOR */
860     uint32_t init_svtor;
861 
862     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
863      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
864      */
865     uint32_t kvm_target;
866 
867     /* KVM init features for this CPU */
868     uint32_t kvm_init_features[7];
869 
870     /* KVM CPU state */
871 
872     /* KVM virtual time adjustment */
873     bool kvm_adjvtime;
874     bool kvm_vtime_dirty;
875     uint64_t kvm_vtime;
876 
877     /* KVM steal time */
878     OnOffAuto kvm_steal_time;
879 
880     /* Uniprocessor system with MP extensions */
881     bool mp_is_up;
882 
883     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
884      * and the probe failed (so we need to report the error in realize)
885      */
886     bool host_cpu_probe_failed;
887 
888     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
889      * register.
890      */
891     int32_t core_count;
892 
893     /* The instance init functions for implementation-specific subclasses
894      * set these fields to specify the implementation-dependent values of
895      * various constant registers and reset values of non-constant
896      * registers.
897      * Some of these might become QOM properties eventually.
898      * Field names match the official register names as defined in the
899      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
900      * is used for reset values of non-constant registers; no reset_
901      * prefix means a constant register.
902      * Some of these registers are split out into a substructure that
903      * is shared with the translators to control the ISA.
904      *
905      * Note that if you add an ID register to the ARMISARegisters struct
906      * you need to also update the 32-bit and 64-bit versions of the
907      * kvm_arm_get_host_cpu_features() function to correctly populate the
908      * field by reading the value from the KVM vCPU.
909      */
910     struct ARMISARegisters {
911         uint32_t id_isar0;
912         uint32_t id_isar1;
913         uint32_t id_isar2;
914         uint32_t id_isar3;
915         uint32_t id_isar4;
916         uint32_t id_isar5;
917         uint32_t id_isar6;
918         uint32_t id_mmfr0;
919         uint32_t id_mmfr1;
920         uint32_t id_mmfr2;
921         uint32_t id_mmfr3;
922         uint32_t id_mmfr4;
923         uint32_t id_pfr0;
924         uint32_t id_pfr1;
925         uint32_t id_pfr2;
926         uint32_t mvfr0;
927         uint32_t mvfr1;
928         uint32_t mvfr2;
929         uint32_t id_dfr0;
930         uint32_t dbgdidr;
931         uint64_t id_aa64isar0;
932         uint64_t id_aa64isar1;
933         uint64_t id_aa64pfr0;
934         uint64_t id_aa64pfr1;
935         uint64_t id_aa64mmfr0;
936         uint64_t id_aa64mmfr1;
937         uint64_t id_aa64mmfr2;
938         uint64_t id_aa64dfr0;
939         uint64_t id_aa64dfr1;
940     } isar;
941     uint64_t midr;
942     uint32_t revidr;
943     uint32_t reset_fpsid;
944     uint64_t ctr;
945     uint32_t reset_sctlr;
946     uint64_t pmceid0;
947     uint64_t pmceid1;
948     uint32_t id_afr0;
949     uint64_t id_aa64afr0;
950     uint64_t id_aa64afr1;
951     uint64_t clidr;
952     uint64_t mp_affinity; /* MP ID without feature bits */
953     /* The elements of this array are the CCSIDR values for each cache,
954      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
955      */
956     uint64_t ccsidr[16];
957     uint64_t reset_cbar;
958     uint32_t reset_auxcr;
959     bool reset_hivecs;
960 
961     /*
962      * Intermediate values used during property parsing.
963      * Once finalized, the values should be read from ID_AA64ISAR1.
964      */
965     bool prop_pauth;
966     bool prop_pauth_impdef;
967 
968     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
969     uint32_t dcz_blocksize;
970     uint64_t rvbar;
971 
972     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
973     int gic_num_lrs; /* number of list registers */
974     int gic_vpribits; /* number of virtual priority bits */
975     int gic_vprebits; /* number of virtual preemption bits */
976 
977     /* Whether the cfgend input is high (i.e. this CPU should reset into
978      * big-endian mode).  This setting isn't used directly: instead it modifies
979      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
980      * architecture version.
981      */
982     bool cfgend;
983 
984     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
985     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
986 
987     int32_t node_id; /* NUMA node this CPU belongs to */
988 
989     /* Used to synchronize KVM and QEMU in-kernel device levels */
990     uint8_t device_irq_level;
991 
992     /* Used to set the maximum vector length the cpu will support.  */
993     uint32_t sve_max_vq;
994 
995     /*
996      * In sve_vq_map each set bit is a supported vector length of
997      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
998      * length in quadwords.
999      *
1000      * While processing properties during initialization, corresponding
1001      * sve_vq_init bits are set for bits in sve_vq_map that have been
1002      * set by properties.
1003      */
1004     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1005     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1006 
1007     /* Generic timer counter frequency, in Hz */
1008     uint64_t gt_cntfrq_hz;
1009 };
1010 
1011 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1012 
1013 void arm_cpu_post_init(Object *obj);
1014 
1015 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1016 
1017 #ifndef CONFIG_USER_ONLY
1018 extern const VMStateDescription vmstate_arm_cpu;
1019 #endif
1020 
1021 void arm_cpu_do_interrupt(CPUState *cpu);
1022 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1023 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1024 
1025 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1026                                          MemTxAttrs *attrs);
1027 
1028 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1029 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1030 
1031 /*
1032  * Helpers to dynamically generates XML descriptions of the sysregs
1033  * and SVE registers. Returns the number of registers in each set.
1034  */
1035 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1036 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1037 
1038 /* Returns the dynamically generated XML for the gdb stub.
1039  * Returns a pointer to the XML contents for the specified XML file or NULL
1040  * if the XML name doesn't match the predefined one.
1041  */
1042 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1043 
1044 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1045                              int cpuid, void *opaque);
1046 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1047                              int cpuid, void *opaque);
1048 
1049 #ifdef TARGET_AARCH64
1050 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1051 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1052 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1053 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1054                            int new_el, bool el0_a64);
1055 void aarch64_add_sve_properties(Object *obj);
1056 
1057 /*
1058  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1059  * The byte at offset i from the start of the in-memory representation contains
1060  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1061  * lowest offsets are stored in the lowest memory addresses, then that nearly
1062  * matches QEMU's representation, which is to use an array of host-endian
1063  * uint64_t's, where the lower offsets are at the lower indices. To complete
1064  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1065  */
1066 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1067 {
1068 #ifdef HOST_WORDS_BIGENDIAN
1069     int i;
1070 
1071     for (i = 0; i < nr; ++i) {
1072         dst[i] = bswap64(src[i]);
1073     }
1074 
1075     return dst;
1076 #else
1077     return src;
1078 #endif
1079 }
1080 
1081 #else
1082 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1083 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1084                                          int n, bool a)
1085 { }
1086 static inline void aarch64_add_sve_properties(Object *obj) { }
1087 #endif
1088 
1089 void aarch64_sync_32_to_64(CPUARMState *env);
1090 void aarch64_sync_64_to_32(CPUARMState *env);
1091 
1092 int fp_exception_el(CPUARMState *env, int cur_el);
1093 int sve_exception_el(CPUARMState *env, int cur_el);
1094 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1095 
1096 static inline bool is_a64(CPUARMState *env)
1097 {
1098     return env->aarch64;
1099 }
1100 
1101 /* you can call this signal handler from your SIGBUS and SIGSEGV
1102    signal handlers to inform the virtual CPU of exceptions. non zero
1103    is returned if the signal was handled by the virtual CPU.  */
1104 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1105                            void *puc);
1106 
1107 /**
1108  * pmu_op_start/finish
1109  * @env: CPUARMState
1110  *
1111  * Convert all PMU counters between their delta form (the typical mode when
1112  * they are enabled) and the guest-visible values. These two calls must
1113  * surround any action which might affect the counters.
1114  */
1115 void pmu_op_start(CPUARMState *env);
1116 void pmu_op_finish(CPUARMState *env);
1117 
1118 /*
1119  * Called when a PMU counter is due to overflow
1120  */
1121 void arm_pmu_timer_cb(void *opaque);
1122 
1123 /**
1124  * Functions to register as EL change hooks for PMU mode filtering
1125  */
1126 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1127 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1128 
1129 /*
1130  * pmu_init
1131  * @cpu: ARMCPU
1132  *
1133  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1134  * for the current configuration
1135  */
1136 void pmu_init(ARMCPU *cpu);
1137 
1138 /* SCTLR bit meanings. Several bits have been reused in newer
1139  * versions of the architecture; in that case we define constants
1140  * for both old and new bit meanings. Code which tests against those
1141  * bits should probably check or otherwise arrange that the CPU
1142  * is the architectural version it expects.
1143  */
1144 #define SCTLR_M       (1U << 0)
1145 #define SCTLR_A       (1U << 1)
1146 #define SCTLR_C       (1U << 2)
1147 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1148 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1149 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1150 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1151 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1152 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1153 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1154 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1155 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1156 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1157 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1158 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1159 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1160 #define SCTLR_SED     (1U << 8) /* v8 onward */
1161 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1162 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1163 #define SCTLR_F       (1U << 10) /* up to v6 */
1164 #define SCTLR_SW      (1U << 10) /* v7 */
1165 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1166 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1167 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1168 #define SCTLR_I       (1U << 12)
1169 #define SCTLR_V       (1U << 13) /* AArch32 only */
1170 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1171 #define SCTLR_RR      (1U << 14) /* up to v7 */
1172 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1173 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1174 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1175 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1176 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1177 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1178 #define SCTLR_BR      (1U << 17) /* PMSA only */
1179 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1180 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1181 #define SCTLR_WXN     (1U << 19)
1182 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1183 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1184 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1185 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1186 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1187 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1188 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1189 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1190 #define SCTLR_VE      (1U << 24) /* up to v7 */
1191 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1192 #define SCTLR_EE      (1U << 25)
1193 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1194 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1195 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1196 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1197 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1198 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1199 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1200 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1201 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1202 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1203 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1204 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1205 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1206 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1207 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1208 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1209 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1210 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1211 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1212 
1213 #define CPTR_TCPAC    (1U << 31)
1214 #define CPTR_TTA      (1U << 20)
1215 #define CPTR_TFP      (1U << 10)
1216 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1217 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1218 
1219 #define MDCR_EPMAD    (1U << 21)
1220 #define MDCR_EDAD     (1U << 20)
1221 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1222 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1223 #define MDCR_SDD      (1U << 16)
1224 #define MDCR_SPD      (3U << 14)
1225 #define MDCR_TDRA     (1U << 11)
1226 #define MDCR_TDOSA    (1U << 10)
1227 #define MDCR_TDA      (1U << 9)
1228 #define MDCR_TDE      (1U << 8)
1229 #define MDCR_HPME     (1U << 7)
1230 #define MDCR_TPM      (1U << 6)
1231 #define MDCR_TPMCR    (1U << 5)
1232 #define MDCR_HPMN     (0x1fU)
1233 
1234 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1235 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1236 
1237 #define CPSR_M (0x1fU)
1238 #define CPSR_T (1U << 5)
1239 #define CPSR_F (1U << 6)
1240 #define CPSR_I (1U << 7)
1241 #define CPSR_A (1U << 8)
1242 #define CPSR_E (1U << 9)
1243 #define CPSR_IT_2_7 (0xfc00U)
1244 #define CPSR_GE (0xfU << 16)
1245 #define CPSR_IL (1U << 20)
1246 #define CPSR_PAN (1U << 22)
1247 #define CPSR_J (1U << 24)
1248 #define CPSR_IT_0_1 (3U << 25)
1249 #define CPSR_Q (1U << 27)
1250 #define CPSR_V (1U << 28)
1251 #define CPSR_C (1U << 29)
1252 #define CPSR_Z (1U << 30)
1253 #define CPSR_N (1U << 31)
1254 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1255 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1256 
1257 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1258 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1259     | CPSR_NZCV)
1260 /* Bits writable in user mode.  */
1261 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1262 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1263 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1264 
1265 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1266 #define XPSR_EXCP 0x1ffU
1267 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1268 #define XPSR_IT_2_7 CPSR_IT_2_7
1269 #define XPSR_GE CPSR_GE
1270 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1271 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1272 #define XPSR_IT_0_1 CPSR_IT_0_1
1273 #define XPSR_Q CPSR_Q
1274 #define XPSR_V CPSR_V
1275 #define XPSR_C CPSR_C
1276 #define XPSR_Z CPSR_Z
1277 #define XPSR_N CPSR_N
1278 #define XPSR_NZCV CPSR_NZCV
1279 #define XPSR_IT CPSR_IT
1280 
1281 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1282 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1283 #define TTBCR_PD0    (1U << 4)
1284 #define TTBCR_PD1    (1U << 5)
1285 #define TTBCR_EPD0   (1U << 7)
1286 #define TTBCR_IRGN0  (3U << 8)
1287 #define TTBCR_ORGN0  (3U << 10)
1288 #define TTBCR_SH0    (3U << 12)
1289 #define TTBCR_T1SZ   (3U << 16)
1290 #define TTBCR_A1     (1U << 22)
1291 #define TTBCR_EPD1   (1U << 23)
1292 #define TTBCR_IRGN1  (3U << 24)
1293 #define TTBCR_ORGN1  (3U << 26)
1294 #define TTBCR_SH1    (1U << 28)
1295 #define TTBCR_EAE    (1U << 31)
1296 
1297 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1298  * Only these are valid when in AArch64 mode; in
1299  * AArch32 mode SPSRs are basically CPSR-format.
1300  */
1301 #define PSTATE_SP (1U)
1302 #define PSTATE_M (0xFU)
1303 #define PSTATE_nRW (1U << 4)
1304 #define PSTATE_F (1U << 6)
1305 #define PSTATE_I (1U << 7)
1306 #define PSTATE_A (1U << 8)
1307 #define PSTATE_D (1U << 9)
1308 #define PSTATE_BTYPE (3U << 10)
1309 #define PSTATE_IL (1U << 20)
1310 #define PSTATE_SS (1U << 21)
1311 #define PSTATE_PAN (1U << 22)
1312 #define PSTATE_UAO (1U << 23)
1313 #define PSTATE_TCO (1U << 25)
1314 #define PSTATE_V (1U << 28)
1315 #define PSTATE_C (1U << 29)
1316 #define PSTATE_Z (1U << 30)
1317 #define PSTATE_N (1U << 31)
1318 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1319 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1320 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1321 /* Mode values for AArch64 */
1322 #define PSTATE_MODE_EL3h 13
1323 #define PSTATE_MODE_EL3t 12
1324 #define PSTATE_MODE_EL2h 9
1325 #define PSTATE_MODE_EL2t 8
1326 #define PSTATE_MODE_EL1h 5
1327 #define PSTATE_MODE_EL1t 4
1328 #define PSTATE_MODE_EL0t 0
1329 
1330 /* Write a new value to v7m.exception, thus transitioning into or out
1331  * of Handler mode; this may result in a change of active stack pointer.
1332  */
1333 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1334 
1335 /* Map EL and handler into a PSTATE_MODE.  */
1336 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1337 {
1338     return (el << 2) | handler;
1339 }
1340 
1341 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1342  * interprocessing, so we don't attempt to sync with the cpsr state used by
1343  * the 32 bit decoder.
1344  */
1345 static inline uint32_t pstate_read(CPUARMState *env)
1346 {
1347     int ZF;
1348 
1349     ZF = (env->ZF == 0);
1350     return (env->NF & 0x80000000) | (ZF << 30)
1351         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1352         | env->pstate | env->daif | (env->btype << 10);
1353 }
1354 
1355 static inline void pstate_write(CPUARMState *env, uint32_t val)
1356 {
1357     env->ZF = (~val) & PSTATE_Z;
1358     env->NF = val;
1359     env->CF = (val >> 29) & 1;
1360     env->VF = (val << 3) & 0x80000000;
1361     env->daif = val & PSTATE_DAIF;
1362     env->btype = (val >> 10) & 3;
1363     env->pstate = val & ~CACHED_PSTATE_BITS;
1364 }
1365 
1366 /* Return the current CPSR value.  */
1367 uint32_t cpsr_read(CPUARMState *env);
1368 
1369 typedef enum CPSRWriteType {
1370     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1371     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1372     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1373     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1374 } CPSRWriteType;
1375 
1376 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1377 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1378                 CPSRWriteType write_type);
1379 
1380 /* Return the current xPSR value.  */
1381 static inline uint32_t xpsr_read(CPUARMState *env)
1382 {
1383     int ZF;
1384     ZF = (env->ZF == 0);
1385     return (env->NF & 0x80000000) | (ZF << 30)
1386         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1387         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1388         | ((env->condexec_bits & 0xfc) << 8)
1389         | (env->GE << 16)
1390         | env->v7m.exception;
1391 }
1392 
1393 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1394 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1395 {
1396     if (mask & XPSR_NZCV) {
1397         env->ZF = (~val) & XPSR_Z;
1398         env->NF = val;
1399         env->CF = (val >> 29) & 1;
1400         env->VF = (val << 3) & 0x80000000;
1401     }
1402     if (mask & XPSR_Q) {
1403         env->QF = ((val & XPSR_Q) != 0);
1404     }
1405     if (mask & XPSR_GE) {
1406         env->GE = (val & XPSR_GE) >> 16;
1407     }
1408 #ifndef CONFIG_USER_ONLY
1409     if (mask & XPSR_T) {
1410         env->thumb = ((val & XPSR_T) != 0);
1411     }
1412     if (mask & XPSR_IT_0_1) {
1413         env->condexec_bits &= ~3;
1414         env->condexec_bits |= (val >> 25) & 3;
1415     }
1416     if (mask & XPSR_IT_2_7) {
1417         env->condexec_bits &= 3;
1418         env->condexec_bits |= (val >> 8) & 0xfc;
1419     }
1420     if (mask & XPSR_EXCP) {
1421         /* Note that this only happens on exception exit */
1422         write_v7m_exception(env, val & XPSR_EXCP);
1423     }
1424 #endif
1425 }
1426 
1427 #define HCR_VM        (1ULL << 0)
1428 #define HCR_SWIO      (1ULL << 1)
1429 #define HCR_PTW       (1ULL << 2)
1430 #define HCR_FMO       (1ULL << 3)
1431 #define HCR_IMO       (1ULL << 4)
1432 #define HCR_AMO       (1ULL << 5)
1433 #define HCR_VF        (1ULL << 6)
1434 #define HCR_VI        (1ULL << 7)
1435 #define HCR_VSE       (1ULL << 8)
1436 #define HCR_FB        (1ULL << 9)
1437 #define HCR_BSU_MASK  (3ULL << 10)
1438 #define HCR_DC        (1ULL << 12)
1439 #define HCR_TWI       (1ULL << 13)
1440 #define HCR_TWE       (1ULL << 14)
1441 #define HCR_TID0      (1ULL << 15)
1442 #define HCR_TID1      (1ULL << 16)
1443 #define HCR_TID2      (1ULL << 17)
1444 #define HCR_TID3      (1ULL << 18)
1445 #define HCR_TSC       (1ULL << 19)
1446 #define HCR_TIDCP     (1ULL << 20)
1447 #define HCR_TACR      (1ULL << 21)
1448 #define HCR_TSW       (1ULL << 22)
1449 #define HCR_TPCP      (1ULL << 23)
1450 #define HCR_TPU       (1ULL << 24)
1451 #define HCR_TTLB      (1ULL << 25)
1452 #define HCR_TVM       (1ULL << 26)
1453 #define HCR_TGE       (1ULL << 27)
1454 #define HCR_TDZ       (1ULL << 28)
1455 #define HCR_HCD       (1ULL << 29)
1456 #define HCR_TRVM      (1ULL << 30)
1457 #define HCR_RW        (1ULL << 31)
1458 #define HCR_CD        (1ULL << 32)
1459 #define HCR_ID        (1ULL << 33)
1460 #define HCR_E2H       (1ULL << 34)
1461 #define HCR_TLOR      (1ULL << 35)
1462 #define HCR_TERR      (1ULL << 36)
1463 #define HCR_TEA       (1ULL << 37)
1464 #define HCR_MIOCNCE   (1ULL << 38)
1465 /* RES0 bit 39 */
1466 #define HCR_APK       (1ULL << 40)
1467 #define HCR_API       (1ULL << 41)
1468 #define HCR_NV        (1ULL << 42)
1469 #define HCR_NV1       (1ULL << 43)
1470 #define HCR_AT        (1ULL << 44)
1471 #define HCR_NV2       (1ULL << 45)
1472 #define HCR_FWB       (1ULL << 46)
1473 #define HCR_FIEN      (1ULL << 47)
1474 /* RES0 bit 48 */
1475 #define HCR_TID4      (1ULL << 49)
1476 #define HCR_TICAB     (1ULL << 50)
1477 #define HCR_AMVOFFEN  (1ULL << 51)
1478 #define HCR_TOCU      (1ULL << 52)
1479 #define HCR_ENSCXT    (1ULL << 53)
1480 #define HCR_TTLBIS    (1ULL << 54)
1481 #define HCR_TTLBOS    (1ULL << 55)
1482 #define HCR_ATA       (1ULL << 56)
1483 #define HCR_DCT       (1ULL << 57)
1484 #define HCR_TID5      (1ULL << 58)
1485 #define HCR_TWEDEN    (1ULL << 59)
1486 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1487 
1488 #define HPFAR_NS      (1ULL << 63)
1489 
1490 #define SCR_NS                (1U << 0)
1491 #define SCR_IRQ               (1U << 1)
1492 #define SCR_FIQ               (1U << 2)
1493 #define SCR_EA                (1U << 3)
1494 #define SCR_FW                (1U << 4)
1495 #define SCR_AW                (1U << 5)
1496 #define SCR_NET               (1U << 6)
1497 #define SCR_SMD               (1U << 7)
1498 #define SCR_HCE               (1U << 8)
1499 #define SCR_SIF               (1U << 9)
1500 #define SCR_RW                (1U << 10)
1501 #define SCR_ST                (1U << 11)
1502 #define SCR_TWI               (1U << 12)
1503 #define SCR_TWE               (1U << 13)
1504 #define SCR_TLOR              (1U << 14)
1505 #define SCR_TERR              (1U << 15)
1506 #define SCR_APK               (1U << 16)
1507 #define SCR_API               (1U << 17)
1508 #define SCR_EEL2              (1U << 18)
1509 #define SCR_EASE              (1U << 19)
1510 #define SCR_NMEA              (1U << 20)
1511 #define SCR_FIEN              (1U << 21)
1512 #define SCR_ENSCXT            (1U << 25)
1513 #define SCR_ATA               (1U << 26)
1514 
1515 /* Return the current FPSCR value.  */
1516 uint32_t vfp_get_fpscr(CPUARMState *env);
1517 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1518 
1519 /* FPCR, Floating Point Control Register
1520  * FPSR, Floating Poiht Status Register
1521  *
1522  * For A64 the FPSCR is split into two logically distinct registers,
1523  * FPCR and FPSR. However since they still use non-overlapping bits
1524  * we store the underlying state in fpscr and just mask on read/write.
1525  */
1526 #define FPSR_MASK 0xf800009f
1527 #define FPCR_MASK 0x07ff9f00
1528 
1529 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1530 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1531 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1532 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1533 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1534 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1535 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1536 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1537 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1538 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1539 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1540 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1541 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1542 #define FPCR_C      (1 << 29)   /* FP carry flag */
1543 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1544 #define FPCR_N      (1 << 31)   /* FP negative flag */
1545 
1546 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1547 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1548 
1549 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1550 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1551 
1552 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1553 {
1554     return vfp_get_fpscr(env) & FPSR_MASK;
1555 }
1556 
1557 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1558 {
1559     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1560     vfp_set_fpscr(env, new_fpscr);
1561 }
1562 
1563 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1564 {
1565     return vfp_get_fpscr(env) & FPCR_MASK;
1566 }
1567 
1568 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1569 {
1570     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1571     vfp_set_fpscr(env, new_fpscr);
1572 }
1573 
1574 enum arm_cpu_mode {
1575   ARM_CPU_MODE_USR = 0x10,
1576   ARM_CPU_MODE_FIQ = 0x11,
1577   ARM_CPU_MODE_IRQ = 0x12,
1578   ARM_CPU_MODE_SVC = 0x13,
1579   ARM_CPU_MODE_MON = 0x16,
1580   ARM_CPU_MODE_ABT = 0x17,
1581   ARM_CPU_MODE_HYP = 0x1a,
1582   ARM_CPU_MODE_UND = 0x1b,
1583   ARM_CPU_MODE_SYS = 0x1f
1584 };
1585 
1586 /* VFP system registers.  */
1587 #define ARM_VFP_FPSID   0
1588 #define ARM_VFP_FPSCR   1
1589 #define ARM_VFP_MVFR2   5
1590 #define ARM_VFP_MVFR1   6
1591 #define ARM_VFP_MVFR0   7
1592 #define ARM_VFP_FPEXC   8
1593 #define ARM_VFP_FPINST  9
1594 #define ARM_VFP_FPINST2 10
1595 /* These ones are M-profile only */
1596 #define ARM_VFP_FPSCR_NZCVQC 2
1597 #define ARM_VFP_VPR 12
1598 #define ARM_VFP_P0 13
1599 #define ARM_VFP_FPCXT_NS 14
1600 #define ARM_VFP_FPCXT_S 15
1601 
1602 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1603 #define QEMU_VFP_FPSCR_NZCV 0xffff
1604 
1605 /* iwMMXt coprocessor control registers.  */
1606 #define ARM_IWMMXT_wCID  0
1607 #define ARM_IWMMXT_wCon  1
1608 #define ARM_IWMMXT_wCSSF 2
1609 #define ARM_IWMMXT_wCASF 3
1610 #define ARM_IWMMXT_wCGR0 8
1611 #define ARM_IWMMXT_wCGR1 9
1612 #define ARM_IWMMXT_wCGR2 10
1613 #define ARM_IWMMXT_wCGR3 11
1614 
1615 /* V7M CCR bits */
1616 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1617 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1618 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1619 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1620 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1621 FIELD(V7M_CCR, STKALIGN, 9, 1)
1622 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1623 FIELD(V7M_CCR, DC, 16, 1)
1624 FIELD(V7M_CCR, IC, 17, 1)
1625 FIELD(V7M_CCR, BP, 18, 1)
1626 FIELD(V7M_CCR, LOB, 19, 1)
1627 FIELD(V7M_CCR, TRD, 20, 1)
1628 
1629 /* V7M SCR bits */
1630 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1631 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1632 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1633 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1634 
1635 /* V7M AIRCR bits */
1636 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1637 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1638 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1639 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1640 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1641 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1642 FIELD(V7M_AIRCR, PRIS, 14, 1)
1643 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1644 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1645 
1646 /* V7M CFSR bits for MMFSR */
1647 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1648 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1649 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1650 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1651 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1652 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1653 
1654 /* V7M CFSR bits for BFSR */
1655 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1656 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1657 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1658 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1659 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1660 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1661 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1662 
1663 /* V7M CFSR bits for UFSR */
1664 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1665 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1666 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1667 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1668 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1669 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1670 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1671 
1672 /* V7M CFSR bit masks covering all of the subregister bits */
1673 FIELD(V7M_CFSR, MMFSR, 0, 8)
1674 FIELD(V7M_CFSR, BFSR, 8, 8)
1675 FIELD(V7M_CFSR, UFSR, 16, 16)
1676 
1677 /* V7M HFSR bits */
1678 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1679 FIELD(V7M_HFSR, FORCED, 30, 1)
1680 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1681 
1682 /* V7M DFSR bits */
1683 FIELD(V7M_DFSR, HALTED, 0, 1)
1684 FIELD(V7M_DFSR, BKPT, 1, 1)
1685 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1686 FIELD(V7M_DFSR, VCATCH, 3, 1)
1687 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1688 
1689 /* V7M SFSR bits */
1690 FIELD(V7M_SFSR, INVEP, 0, 1)
1691 FIELD(V7M_SFSR, INVIS, 1, 1)
1692 FIELD(V7M_SFSR, INVER, 2, 1)
1693 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1694 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1695 FIELD(V7M_SFSR, LSPERR, 5, 1)
1696 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1697 FIELD(V7M_SFSR, LSERR, 7, 1)
1698 
1699 /* v7M MPU_CTRL bits */
1700 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1701 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1702 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1703 
1704 /* v7M CLIDR bits */
1705 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1706 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1707 FIELD(V7M_CLIDR, LOC, 24, 3)
1708 FIELD(V7M_CLIDR, LOUU, 27, 3)
1709 FIELD(V7M_CLIDR, ICB, 30, 2)
1710 
1711 FIELD(V7M_CSSELR, IND, 0, 1)
1712 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1713 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1714  * define a mask for this and check that it doesn't permit running off
1715  * the end of the array.
1716  */
1717 FIELD(V7M_CSSELR, INDEX, 0, 4)
1718 
1719 /* v7M FPCCR bits */
1720 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1721 FIELD(V7M_FPCCR, USER, 1, 1)
1722 FIELD(V7M_FPCCR, S, 2, 1)
1723 FIELD(V7M_FPCCR, THREAD, 3, 1)
1724 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1725 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1726 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1727 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1728 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1729 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1730 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1731 FIELD(V7M_FPCCR, RES0, 11, 15)
1732 FIELD(V7M_FPCCR, TS, 26, 1)
1733 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1734 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1735 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1736 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1737 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1738 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1739 #define R_V7M_FPCCR_BANKED_MASK                 \
1740     (R_V7M_FPCCR_LSPACT_MASK |                  \
1741      R_V7M_FPCCR_USER_MASK |                    \
1742      R_V7M_FPCCR_THREAD_MASK |                  \
1743      R_V7M_FPCCR_MMRDY_MASK |                   \
1744      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1745      R_V7M_FPCCR_UFRDY_MASK |                   \
1746      R_V7M_FPCCR_ASPEN_MASK)
1747 
1748 /*
1749  * System register ID fields.
1750  */
1751 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1752 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1753 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1754 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1755 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1756 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1757 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1758 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1759 FIELD(CLIDR_EL1, LOC, 24, 3)
1760 FIELD(CLIDR_EL1, LOUU, 27, 3)
1761 FIELD(CLIDR_EL1, ICB, 30, 3)
1762 
1763 /* When FEAT_CCIDX is implemented */
1764 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1765 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1766 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1767 
1768 /* When FEAT_CCIDX is not implemented */
1769 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1770 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1771 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1772 
1773 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1774 FIELD(CTR_EL0,  L1IP, 14, 2)
1775 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1776 FIELD(CTR_EL0,  ERG, 20, 4)
1777 FIELD(CTR_EL0,  CWG, 24, 4)
1778 FIELD(CTR_EL0,  IDC, 28, 1)
1779 FIELD(CTR_EL0,  DIC, 29, 1)
1780 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1781 
1782 FIELD(MIDR_EL1, REVISION, 0, 4)
1783 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1784 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1785 FIELD(MIDR_EL1, VARIANT, 20, 4)
1786 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1787 
1788 FIELD(ID_ISAR0, SWAP, 0, 4)
1789 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1790 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1791 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1792 FIELD(ID_ISAR0, COPROC, 16, 4)
1793 FIELD(ID_ISAR0, DEBUG, 20, 4)
1794 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1795 
1796 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1797 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1798 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1799 FIELD(ID_ISAR1, EXTEND, 12, 4)
1800 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1801 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1802 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1803 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1804 
1805 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1806 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1807 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1808 FIELD(ID_ISAR2, MULT, 12, 4)
1809 FIELD(ID_ISAR2, MULTS, 16, 4)
1810 FIELD(ID_ISAR2, MULTU, 20, 4)
1811 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1812 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1813 
1814 FIELD(ID_ISAR3, SATURATE, 0, 4)
1815 FIELD(ID_ISAR3, SIMD, 4, 4)
1816 FIELD(ID_ISAR3, SVC, 8, 4)
1817 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1818 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1819 FIELD(ID_ISAR3, T32COPY, 20, 4)
1820 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1821 FIELD(ID_ISAR3, T32EE, 28, 4)
1822 
1823 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1824 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1825 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1826 FIELD(ID_ISAR4, SMC, 12, 4)
1827 FIELD(ID_ISAR4, BARRIER, 16, 4)
1828 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1829 FIELD(ID_ISAR4, PSR_M, 24, 4)
1830 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1831 
1832 FIELD(ID_ISAR5, SEVL, 0, 4)
1833 FIELD(ID_ISAR5, AES, 4, 4)
1834 FIELD(ID_ISAR5, SHA1, 8, 4)
1835 FIELD(ID_ISAR5, SHA2, 12, 4)
1836 FIELD(ID_ISAR5, CRC32, 16, 4)
1837 FIELD(ID_ISAR5, RDM, 24, 4)
1838 FIELD(ID_ISAR5, VCMA, 28, 4)
1839 
1840 FIELD(ID_ISAR6, JSCVT, 0, 4)
1841 FIELD(ID_ISAR6, DP, 4, 4)
1842 FIELD(ID_ISAR6, FHM, 8, 4)
1843 FIELD(ID_ISAR6, SB, 12, 4)
1844 FIELD(ID_ISAR6, SPECRES, 16, 4)
1845 FIELD(ID_ISAR6, BF16, 20, 4)
1846 FIELD(ID_ISAR6, I8MM, 24, 4)
1847 
1848 FIELD(ID_MMFR0, VMSA, 0, 4)
1849 FIELD(ID_MMFR0, PMSA, 4, 4)
1850 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1851 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1852 FIELD(ID_MMFR0, TCM, 16, 4)
1853 FIELD(ID_MMFR0, AUXREG, 20, 4)
1854 FIELD(ID_MMFR0, FCSE, 24, 4)
1855 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1856 
1857 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1858 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1859 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1860 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1861 FIELD(ID_MMFR1, L1HVD, 16, 4)
1862 FIELD(ID_MMFR1, L1UNI, 20, 4)
1863 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1864 FIELD(ID_MMFR1, BPRED, 28, 4)
1865 
1866 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1867 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1868 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1869 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1870 FIELD(ID_MMFR2, UNITLB, 16, 4)
1871 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1872 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1873 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1874 
1875 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1876 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1877 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1878 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1879 FIELD(ID_MMFR3, PAN, 16, 4)
1880 FIELD(ID_MMFR3, COHWALK, 20, 4)
1881 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1882 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1883 
1884 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1885 FIELD(ID_MMFR4, AC2, 4, 4)
1886 FIELD(ID_MMFR4, XNX, 8, 4)
1887 FIELD(ID_MMFR4, CNP, 12, 4)
1888 FIELD(ID_MMFR4, HPDS, 16, 4)
1889 FIELD(ID_MMFR4, LSM, 20, 4)
1890 FIELD(ID_MMFR4, CCIDX, 24, 4)
1891 FIELD(ID_MMFR4, EVT, 28, 4)
1892 
1893 FIELD(ID_MMFR5, ETS, 0, 4)
1894 
1895 FIELD(ID_PFR0, STATE0, 0, 4)
1896 FIELD(ID_PFR0, STATE1, 4, 4)
1897 FIELD(ID_PFR0, STATE2, 8, 4)
1898 FIELD(ID_PFR0, STATE3, 12, 4)
1899 FIELD(ID_PFR0, CSV2, 16, 4)
1900 FIELD(ID_PFR0, AMU, 20, 4)
1901 FIELD(ID_PFR0, DIT, 24, 4)
1902 FIELD(ID_PFR0, RAS, 28, 4)
1903 
1904 FIELD(ID_PFR1, PROGMOD, 0, 4)
1905 FIELD(ID_PFR1, SECURITY, 4, 4)
1906 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1907 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1908 FIELD(ID_PFR1, GENTIMER, 16, 4)
1909 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1910 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1911 FIELD(ID_PFR1, GIC, 28, 4)
1912 
1913 FIELD(ID_PFR2, CSV3, 0, 4)
1914 FIELD(ID_PFR2, SSBS, 4, 4)
1915 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1916 
1917 FIELD(ID_AA64ISAR0, AES, 4, 4)
1918 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1919 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1920 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1921 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1922 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1923 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1924 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1925 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1926 FIELD(ID_AA64ISAR0, DP, 44, 4)
1927 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1928 FIELD(ID_AA64ISAR0, TS, 52, 4)
1929 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1930 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1931 
1932 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1933 FIELD(ID_AA64ISAR1, APA, 4, 4)
1934 FIELD(ID_AA64ISAR1, API, 8, 4)
1935 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1936 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1937 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1938 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1939 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1940 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1941 FIELD(ID_AA64ISAR1, SB, 36, 4)
1942 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1943 FIELD(ID_AA64ISAR1, BF16, 44, 4)
1944 FIELD(ID_AA64ISAR1, DGH, 48, 4)
1945 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1946 
1947 FIELD(ID_AA64PFR0, EL0, 0, 4)
1948 FIELD(ID_AA64PFR0, EL1, 4, 4)
1949 FIELD(ID_AA64PFR0, EL2, 8, 4)
1950 FIELD(ID_AA64PFR0, EL3, 12, 4)
1951 FIELD(ID_AA64PFR0, FP, 16, 4)
1952 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1953 FIELD(ID_AA64PFR0, GIC, 24, 4)
1954 FIELD(ID_AA64PFR0, RAS, 28, 4)
1955 FIELD(ID_AA64PFR0, SVE, 32, 4)
1956 FIELD(ID_AA64PFR0, SEL2, 36, 4)
1957 FIELD(ID_AA64PFR0, MPAM, 40, 4)
1958 FIELD(ID_AA64PFR0, AMU, 44, 4)
1959 FIELD(ID_AA64PFR0, DIT, 48, 4)
1960 FIELD(ID_AA64PFR0, CSV2, 56, 4)
1961 FIELD(ID_AA64PFR0, CSV3, 60, 4)
1962 
1963 FIELD(ID_AA64PFR1, BT, 0, 4)
1964 FIELD(ID_AA64PFR1, SSBS, 4, 4)
1965 FIELD(ID_AA64PFR1, MTE, 8, 4)
1966 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1967 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1968 
1969 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1970 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1971 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1972 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1973 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1974 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1975 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1976 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1977 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1978 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1979 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1980 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1981 FIELD(ID_AA64MMFR0, FGT, 56, 4)
1982 FIELD(ID_AA64MMFR0, ECV, 60, 4)
1983 
1984 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1985 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1986 FIELD(ID_AA64MMFR1, VH, 8, 4)
1987 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1988 FIELD(ID_AA64MMFR1, LO, 16, 4)
1989 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1990 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1991 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1992 FIELD(ID_AA64MMFR1, TWED, 32, 4)
1993 FIELD(ID_AA64MMFR1, ETS, 36, 4)
1994 
1995 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1996 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1997 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1998 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1999 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2000 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2001 FIELD(ID_AA64MMFR2, NV, 24, 4)
2002 FIELD(ID_AA64MMFR2, ST, 28, 4)
2003 FIELD(ID_AA64MMFR2, AT, 32, 4)
2004 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2005 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2006 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2007 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2008 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2009 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2010 
2011 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2012 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2013 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2014 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2015 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2016 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2017 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2018 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2019 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2020 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2021 
2022 FIELD(ID_DFR0, COPDBG, 0, 4)
2023 FIELD(ID_DFR0, COPSDBG, 4, 4)
2024 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2025 FIELD(ID_DFR0, COPTRC, 12, 4)
2026 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2027 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2028 FIELD(ID_DFR0, PERFMON, 24, 4)
2029 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2030 
2031 FIELD(ID_DFR1, MTPMU, 0, 4)
2032 
2033 FIELD(DBGDIDR, SE_IMP, 12, 1)
2034 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2035 FIELD(DBGDIDR, VERSION, 16, 4)
2036 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2037 FIELD(DBGDIDR, BRPS, 24, 4)
2038 FIELD(DBGDIDR, WRPS, 28, 4)
2039 
2040 FIELD(MVFR0, SIMDREG, 0, 4)
2041 FIELD(MVFR0, FPSP, 4, 4)
2042 FIELD(MVFR0, FPDP, 8, 4)
2043 FIELD(MVFR0, FPTRAP, 12, 4)
2044 FIELD(MVFR0, FPDIVIDE, 16, 4)
2045 FIELD(MVFR0, FPSQRT, 20, 4)
2046 FIELD(MVFR0, FPSHVEC, 24, 4)
2047 FIELD(MVFR0, FPROUND, 28, 4)
2048 
2049 FIELD(MVFR1, FPFTZ, 0, 4)
2050 FIELD(MVFR1, FPDNAN, 4, 4)
2051 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2052 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2053 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2054 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2055 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2056 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2057 FIELD(MVFR1, FPHP, 24, 4)
2058 FIELD(MVFR1, SIMDFMAC, 28, 4)
2059 
2060 FIELD(MVFR2, SIMDMISC, 0, 4)
2061 FIELD(MVFR2, FPMISC, 4, 4)
2062 
2063 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2064 
2065 /* If adding a feature bit which corresponds to a Linux ELF
2066  * HWCAP bit, remember to update the feature-bit-to-hwcap
2067  * mapping in linux-user/elfload.c:get_elf_hwcap().
2068  */
2069 enum arm_features {
2070     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2071     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2072     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2073     ARM_FEATURE_V6,
2074     ARM_FEATURE_V6K,
2075     ARM_FEATURE_V7,
2076     ARM_FEATURE_THUMB2,
2077     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2078     ARM_FEATURE_NEON,
2079     ARM_FEATURE_M, /* Microcontroller profile.  */
2080     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2081     ARM_FEATURE_THUMB2EE,
2082     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2083     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2084     ARM_FEATURE_V4T,
2085     ARM_FEATURE_V5,
2086     ARM_FEATURE_STRONGARM,
2087     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2088     ARM_FEATURE_GENERIC_TIMER,
2089     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2090     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2091     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2092     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2093     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2094     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2095     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2096     ARM_FEATURE_V8,
2097     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2098     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2099     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2100     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2101     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2102     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2103     ARM_FEATURE_PMU, /* has PMU support */
2104     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2105     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2106     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2107     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2108 };
2109 
2110 static inline int arm_feature(CPUARMState *env, int feature)
2111 {
2112     return (env->features & (1ULL << feature)) != 0;
2113 }
2114 
2115 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2116 
2117 #if !defined(CONFIG_USER_ONLY)
2118 /* Return true if exception levels below EL3 are in secure state,
2119  * or would be following an exception return to that level.
2120  * Unlike arm_is_secure() (which is always a question about the
2121  * _current_ state of the CPU) this doesn't care about the current
2122  * EL or mode.
2123  */
2124 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2125 {
2126     if (arm_feature(env, ARM_FEATURE_EL3)) {
2127         return !(env->cp15.scr_el3 & SCR_NS);
2128     } else {
2129         /* If EL3 is not supported then the secure state is implementation
2130          * defined, in which case QEMU defaults to non-secure.
2131          */
2132         return false;
2133     }
2134 }
2135 
2136 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2137 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2138 {
2139     if (arm_feature(env, ARM_FEATURE_EL3)) {
2140         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2141             /* CPU currently in AArch64 state and EL3 */
2142             return true;
2143         } else if (!is_a64(env) &&
2144                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2145             /* CPU currently in AArch32 state and monitor mode */
2146             return true;
2147         }
2148     }
2149     return false;
2150 }
2151 
2152 /* Return true if the processor is in secure state */
2153 static inline bool arm_is_secure(CPUARMState *env)
2154 {
2155     if (arm_is_el3_or_mon(env)) {
2156         return true;
2157     }
2158     return arm_is_secure_below_el3(env);
2159 }
2160 
2161 /*
2162  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2163  * This corresponds to the pseudocode EL2Enabled()
2164  */
2165 static inline bool arm_is_el2_enabled(CPUARMState *env)
2166 {
2167     if (arm_feature(env, ARM_FEATURE_EL2)) {
2168         if (arm_is_secure_below_el3(env)) {
2169             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2170         }
2171         return true;
2172     }
2173     return false;
2174 }
2175 
2176 #else
2177 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2178 {
2179     return false;
2180 }
2181 
2182 static inline bool arm_is_secure(CPUARMState *env)
2183 {
2184     return false;
2185 }
2186 
2187 static inline bool arm_is_el2_enabled(CPUARMState *env)
2188 {
2189     return false;
2190 }
2191 #endif
2192 
2193 /**
2194  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2195  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2196  * "for all purposes other than a direct read or write access of HCR_EL2."
2197  * Not included here is HCR_RW.
2198  */
2199 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2200 
2201 /* Return true if the specified exception level is running in AArch64 state. */
2202 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2203 {
2204     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2205      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2206      */
2207     assert(el >= 1 && el <= 3);
2208     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2209 
2210     /* The highest exception level is always at the maximum supported
2211      * register width, and then lower levels have a register width controlled
2212      * by bits in the SCR or HCR registers.
2213      */
2214     if (el == 3) {
2215         return aa64;
2216     }
2217 
2218     if (arm_feature(env, ARM_FEATURE_EL3) &&
2219         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2220         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2221     }
2222 
2223     if (el == 2) {
2224         return aa64;
2225     }
2226 
2227     if (arm_is_el2_enabled(env)) {
2228         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2229     }
2230 
2231     return aa64;
2232 }
2233 
2234 /* Function for determing whether guest cp register reads and writes should
2235  * access the secure or non-secure bank of a cp register.  When EL3 is
2236  * operating in AArch32 state, the NS-bit determines whether the secure
2237  * instance of a cp register should be used. When EL3 is AArch64 (or if
2238  * it doesn't exist at all) then there is no register banking, and all
2239  * accesses are to the non-secure version.
2240  */
2241 static inline bool access_secure_reg(CPUARMState *env)
2242 {
2243     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2244                 !arm_el_is_aa64(env, 3) &&
2245                 !(env->cp15.scr_el3 & SCR_NS));
2246 
2247     return ret;
2248 }
2249 
2250 /* Macros for accessing a specified CP register bank */
2251 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2252     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2253 
2254 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2255     do {                                                \
2256         if (_secure) {                                   \
2257             (_env)->cp15._regname##_s = (_val);            \
2258         } else {                                        \
2259             (_env)->cp15._regname##_ns = (_val);           \
2260         }                                               \
2261     } while (0)
2262 
2263 /* Macros for automatically accessing a specific CP register bank depending on
2264  * the current secure state of the system.  These macros are not intended for
2265  * supporting instruction translation reads/writes as these are dependent
2266  * solely on the SCR.NS bit and not the mode.
2267  */
2268 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2269     A32_BANKED_REG_GET((_env), _regname,                \
2270                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2271 
2272 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2273     A32_BANKED_REG_SET((_env), _regname,                                    \
2274                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2275                        (_val))
2276 
2277 void arm_cpu_list(void);
2278 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2279                                  uint32_t cur_el, bool secure);
2280 
2281 /* Interface between CPU and Interrupt controller.  */
2282 #ifndef CONFIG_USER_ONLY
2283 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2284 #else
2285 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2286 {
2287     return true;
2288 }
2289 #endif
2290 /**
2291  * armv7m_nvic_set_pending: mark the specified exception as pending
2292  * @opaque: the NVIC
2293  * @irq: the exception number to mark pending
2294  * @secure: false for non-banked exceptions or for the nonsecure
2295  * version of a banked exception, true for the secure version of a banked
2296  * exception.
2297  *
2298  * Marks the specified exception as pending. Note that we will assert()
2299  * if @secure is true and @irq does not specify one of the fixed set
2300  * of architecturally banked exceptions.
2301  */
2302 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2303 /**
2304  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2305  * @opaque: the NVIC
2306  * @irq: the exception number to mark pending
2307  * @secure: false for non-banked exceptions or for the nonsecure
2308  * version of a banked exception, true for the secure version of a banked
2309  * exception.
2310  *
2311  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2312  * exceptions (exceptions generated in the course of trying to take
2313  * a different exception).
2314  */
2315 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2316 /**
2317  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2318  * @opaque: the NVIC
2319  * @irq: the exception number to mark pending
2320  * @secure: false for non-banked exceptions or for the nonsecure
2321  * version of a banked exception, true for the secure version of a banked
2322  * exception.
2323  *
2324  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2325  * generated in the course of lazy stacking of FP registers.
2326  */
2327 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2328 /**
2329  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2330  *    exception, and whether it targets Secure state
2331  * @opaque: the NVIC
2332  * @pirq: set to pending exception number
2333  * @ptargets_secure: set to whether pending exception targets Secure
2334  *
2335  * This function writes the number of the highest priority pending
2336  * exception (the one which would be made active by
2337  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2338  * to true if the current highest priority pending exception should
2339  * be taken to Secure state, false for NS.
2340  */
2341 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2342                                       bool *ptargets_secure);
2343 /**
2344  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2345  * @opaque: the NVIC
2346  *
2347  * Move the current highest priority pending exception from the pending
2348  * state to the active state, and update v7m.exception to indicate that
2349  * it is the exception currently being handled.
2350  */
2351 void armv7m_nvic_acknowledge_irq(void *opaque);
2352 /**
2353  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2354  * @opaque: the NVIC
2355  * @irq: the exception number to complete
2356  * @secure: true if this exception was secure
2357  *
2358  * Returns: -1 if the irq was not active
2359  *           1 if completing this irq brought us back to base (no active irqs)
2360  *           0 if there is still an irq active after this one was completed
2361  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2362  */
2363 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2364 /**
2365  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2366  * @opaque: the NVIC
2367  * @irq: the exception number to mark pending
2368  * @secure: false for non-banked exceptions or for the nonsecure
2369  * version of a banked exception, true for the secure version of a banked
2370  * exception.
2371  *
2372  * Return whether an exception is "ready", i.e. whether the exception is
2373  * enabled and is configured at a priority which would allow it to
2374  * interrupt the current execution priority. This controls whether the
2375  * RDY bit for it in the FPCCR is set.
2376  */
2377 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2378 /**
2379  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2380  * @opaque: the NVIC
2381  *
2382  * Returns: the raw execution priority as defined by the v8M architecture.
2383  * This is the execution priority minus the effects of AIRCR.PRIS,
2384  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2385  * (v8M ARM ARM I_PKLD.)
2386  */
2387 int armv7m_nvic_raw_execution_priority(void *opaque);
2388 /**
2389  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2390  * priority is negative for the specified security state.
2391  * @opaque: the NVIC
2392  * @secure: the security state to test
2393  * This corresponds to the pseudocode IsReqExecPriNeg().
2394  */
2395 #ifndef CONFIG_USER_ONLY
2396 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2397 #else
2398 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2399 {
2400     return false;
2401 }
2402 #endif
2403 
2404 /* Interface for defining coprocessor registers.
2405  * Registers are defined in tables of arm_cp_reginfo structs
2406  * which are passed to define_arm_cp_regs().
2407  */
2408 
2409 /* When looking up a coprocessor register we look for it
2410  * via an integer which encodes all of:
2411  *  coprocessor number
2412  *  Crn, Crm, opc1, opc2 fields
2413  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2414  *    or via MRRC/MCRR?)
2415  *  non-secure/secure bank (AArch32 only)
2416  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2417  * (In this case crn and opc2 should be zero.)
2418  * For AArch64, there is no 32/64 bit size distinction;
2419  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2420  * and 4 bit CRn and CRm. The encoding patterns are chosen
2421  * to be easy to convert to and from the KVM encodings, and also
2422  * so that the hashtable can contain both AArch32 and AArch64
2423  * registers (to allow for interprocessing where we might run
2424  * 32 bit code on a 64 bit core).
2425  */
2426 /* This bit is private to our hashtable cpreg; in KVM register
2427  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2428  * in the upper bits of the 64 bit ID.
2429  */
2430 #define CP_REG_AA64_SHIFT 28
2431 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2432 
2433 /* To enable banking of coprocessor registers depending on ns-bit we
2434  * add a bit to distinguish between secure and non-secure cpregs in the
2435  * hashtable.
2436  */
2437 #define CP_REG_NS_SHIFT 29
2438 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2439 
2440 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2441     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2442      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2443 
2444 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2445     (CP_REG_AA64_MASK |                                 \
2446      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2447      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2448      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2449      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2450      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2451      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2452 
2453 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2454  * version used as a key for the coprocessor register hashtable
2455  */
2456 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2457 {
2458     uint32_t cpregid = kvmid;
2459     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2460         cpregid |= CP_REG_AA64_MASK;
2461     } else {
2462         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2463             cpregid |= (1 << 15);
2464         }
2465 
2466         /* KVM is always non-secure so add the NS flag on AArch32 register
2467          * entries.
2468          */
2469          cpregid |= 1 << CP_REG_NS_SHIFT;
2470     }
2471     return cpregid;
2472 }
2473 
2474 /* Convert a truncated 32 bit hashtable key into the full
2475  * 64 bit KVM register ID.
2476  */
2477 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2478 {
2479     uint64_t kvmid;
2480 
2481     if (cpregid & CP_REG_AA64_MASK) {
2482         kvmid = cpregid & ~CP_REG_AA64_MASK;
2483         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2484     } else {
2485         kvmid = cpregid & ~(1 << 15);
2486         if (cpregid & (1 << 15)) {
2487             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2488         } else {
2489             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2490         }
2491     }
2492     return kvmid;
2493 }
2494 
2495 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2496  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2497  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2498  * TCG can assume the value to be constant (ie load at translate time)
2499  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2500  * indicates that the TB should not be ended after a write to this register
2501  * (the default is that the TB ends after cp writes). OVERRIDE permits
2502  * a register definition to override a previous definition for the
2503  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2504  * old must have the OVERRIDE bit set.
2505  * ALIAS indicates that this register is an alias view of some underlying
2506  * state which is also visible via another register, and that the other
2507  * register is handling migration and reset; registers marked ALIAS will not be
2508  * migrated but may have their state set by syncing of register state from KVM.
2509  * NO_RAW indicates that this register has no underlying state and does not
2510  * support raw access for state saving/loading; it will not be used for either
2511  * migration or KVM state synchronization. (Typically this is for "registers"
2512  * which are actually used as instructions for cache maintenance and so on.)
2513  * IO indicates that this register does I/O and therefore its accesses
2514  * need to be marked with gen_io_start() and also end the TB. In particular,
2515  * registers which implement clocks or timers require this.
2516  * RAISES_EXC is for when the read or write hook might raise an exception;
2517  * the generated code will synchronize the CPU state before calling the hook
2518  * so that it is safe for the hook to call raise_exception().
2519  * NEWEL is for writes to registers that might change the exception
2520  * level - typically on older ARM chips. For those cases we need to
2521  * re-read the new el when recomputing the translation flags.
2522  */
2523 #define ARM_CP_SPECIAL           0x0001
2524 #define ARM_CP_CONST             0x0002
2525 #define ARM_CP_64BIT             0x0004
2526 #define ARM_CP_SUPPRESS_TB_END   0x0008
2527 #define ARM_CP_OVERRIDE          0x0010
2528 #define ARM_CP_ALIAS             0x0020
2529 #define ARM_CP_IO                0x0040
2530 #define ARM_CP_NO_RAW            0x0080
2531 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2532 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2533 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2534 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2535 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2536 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2537 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2538 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2539 #define ARM_CP_FPU               0x1000
2540 #define ARM_CP_SVE               0x2000
2541 #define ARM_CP_NO_GDB            0x4000
2542 #define ARM_CP_RAISES_EXC        0x8000
2543 #define ARM_CP_NEWEL             0x10000
2544 /* Used only as a terminator for ARMCPRegInfo lists */
2545 #define ARM_CP_SENTINEL          0xfffff
2546 /* Mask of only the flag bits in a type field */
2547 #define ARM_CP_FLAG_MASK         0x1f0ff
2548 
2549 /* Valid values for ARMCPRegInfo state field, indicating which of
2550  * the AArch32 and AArch64 execution states this register is visible in.
2551  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2552  * If the reginfo is declared to be visible in both states then a second
2553  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2554  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2555  * Note that we rely on the values of these enums as we iterate through
2556  * the various states in some places.
2557  */
2558 enum {
2559     ARM_CP_STATE_AA32 = 0,
2560     ARM_CP_STATE_AA64 = 1,
2561     ARM_CP_STATE_BOTH = 2,
2562 };
2563 
2564 /* ARM CP register secure state flags.  These flags identify security state
2565  * attributes for a given CP register entry.
2566  * The existence of both or neither secure and non-secure flags indicates that
2567  * the register has both a secure and non-secure hash entry.  A single one of
2568  * these flags causes the register to only be hashed for the specified
2569  * security state.
2570  * Although definitions may have any combination of the S/NS bits, each
2571  * registered entry will only have one to identify whether the entry is secure
2572  * or non-secure.
2573  */
2574 enum {
2575     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2576     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2577 };
2578 
2579 /* Return true if cptype is a valid type field. This is used to try to
2580  * catch errors where the sentinel has been accidentally left off the end
2581  * of a list of registers.
2582  */
2583 static inline bool cptype_valid(int cptype)
2584 {
2585     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2586         || ((cptype & ARM_CP_SPECIAL) &&
2587             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2588 }
2589 
2590 /* Access rights:
2591  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2592  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2593  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2594  * (ie any of the privileged modes in Secure state, or Monitor mode).
2595  * If a register is accessible in one privilege level it's always accessible
2596  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2597  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2598  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2599  * terminology a little and call this PL3.
2600  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2601  * with the ELx exception levels.
2602  *
2603  * If access permissions for a register are more complex than can be
2604  * described with these bits, then use a laxer set of restrictions, and
2605  * do the more restrictive/complex check inside a helper function.
2606  */
2607 #define PL3_R 0x80
2608 #define PL3_W 0x40
2609 #define PL2_R (0x20 | PL3_R)
2610 #define PL2_W (0x10 | PL3_W)
2611 #define PL1_R (0x08 | PL2_R)
2612 #define PL1_W (0x04 | PL2_W)
2613 #define PL0_R (0x02 | PL1_R)
2614 #define PL0_W (0x01 | PL1_W)
2615 
2616 /*
2617  * For user-mode some registers are accessible to EL0 via a kernel
2618  * trap-and-emulate ABI. In this case we define the read permissions
2619  * as actually being PL0_R. However some bits of any given register
2620  * may still be masked.
2621  */
2622 #ifdef CONFIG_USER_ONLY
2623 #define PL0U_R PL0_R
2624 #else
2625 #define PL0U_R PL1_R
2626 #endif
2627 
2628 #define PL3_RW (PL3_R | PL3_W)
2629 #define PL2_RW (PL2_R | PL2_W)
2630 #define PL1_RW (PL1_R | PL1_W)
2631 #define PL0_RW (PL0_R | PL0_W)
2632 
2633 /* Return the highest implemented Exception Level */
2634 static inline int arm_highest_el(CPUARMState *env)
2635 {
2636     if (arm_feature(env, ARM_FEATURE_EL3)) {
2637         return 3;
2638     }
2639     if (arm_feature(env, ARM_FEATURE_EL2)) {
2640         return 2;
2641     }
2642     return 1;
2643 }
2644 
2645 /* Return true if a v7M CPU is in Handler mode */
2646 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2647 {
2648     return env->v7m.exception != 0;
2649 }
2650 
2651 /* Return the current Exception Level (as per ARMv8; note that this differs
2652  * from the ARMv7 Privilege Level).
2653  */
2654 static inline int arm_current_el(CPUARMState *env)
2655 {
2656     if (arm_feature(env, ARM_FEATURE_M)) {
2657         return arm_v7m_is_handler_mode(env) ||
2658             !(env->v7m.control[env->v7m.secure] & 1);
2659     }
2660 
2661     if (is_a64(env)) {
2662         return extract32(env->pstate, 2, 2);
2663     }
2664 
2665     switch (env->uncached_cpsr & 0x1f) {
2666     case ARM_CPU_MODE_USR:
2667         return 0;
2668     case ARM_CPU_MODE_HYP:
2669         return 2;
2670     case ARM_CPU_MODE_MON:
2671         return 3;
2672     default:
2673         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2674             /* If EL3 is 32-bit then all secure privileged modes run in
2675              * EL3
2676              */
2677             return 3;
2678         }
2679 
2680         return 1;
2681     }
2682 }
2683 
2684 typedef struct ARMCPRegInfo ARMCPRegInfo;
2685 
2686 typedef enum CPAccessResult {
2687     /* Access is permitted */
2688     CP_ACCESS_OK = 0,
2689     /* Access fails due to a configurable trap or enable which would
2690      * result in a categorized exception syndrome giving information about
2691      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2692      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2693      * PL1 if in EL0, otherwise to the current EL).
2694      */
2695     CP_ACCESS_TRAP = 1,
2696     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2697      * Note that this is not a catch-all case -- the set of cases which may
2698      * result in this failure is specifically defined by the architecture.
2699      */
2700     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2701     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2702     CP_ACCESS_TRAP_EL2 = 3,
2703     CP_ACCESS_TRAP_EL3 = 4,
2704     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2705     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2706     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2707     /* Access fails and results in an exception syndrome for an FP access,
2708      * trapped directly to EL2 or EL3
2709      */
2710     CP_ACCESS_TRAP_FP_EL2 = 7,
2711     CP_ACCESS_TRAP_FP_EL3 = 8,
2712 } CPAccessResult;
2713 
2714 /* Access functions for coprocessor registers. These cannot fail and
2715  * may not raise exceptions.
2716  */
2717 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2718 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2719                        uint64_t value);
2720 /* Access permission check functions for coprocessor registers. */
2721 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2722                                   const ARMCPRegInfo *opaque,
2723                                   bool isread);
2724 /* Hook function for register reset */
2725 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2726 
2727 #define CP_ANY 0xff
2728 
2729 /* Definition of an ARM coprocessor register */
2730 struct ARMCPRegInfo {
2731     /* Name of register (useful mainly for debugging, need not be unique) */
2732     const char *name;
2733     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2734      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2735      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2736      * will be decoded to this register. The register read and write
2737      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2738      * used by the program, so it is possible to register a wildcard and
2739      * then behave differently on read/write if necessary.
2740      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2741      * must both be zero.
2742      * For AArch64-visible registers, opc0 is also used.
2743      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2744      * way to distinguish (for KVM's benefit) guest-visible system registers
2745      * from demuxed ones provided to preserve the "no side effects on
2746      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2747      * visible (to match KVM's encoding); cp==0 will be converted to
2748      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2749      */
2750     uint8_t cp;
2751     uint8_t crn;
2752     uint8_t crm;
2753     uint8_t opc0;
2754     uint8_t opc1;
2755     uint8_t opc2;
2756     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2757     int state;
2758     /* Register type: ARM_CP_* bits/values */
2759     int type;
2760     /* Access rights: PL*_[RW] */
2761     int access;
2762     /* Security state: ARM_CP_SECSTATE_* bits/values */
2763     int secure;
2764     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2765      * this register was defined: can be used to hand data through to the
2766      * register read/write functions, since they are passed the ARMCPRegInfo*.
2767      */
2768     void *opaque;
2769     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2770      * fieldoffset is non-zero, the reset value of the register.
2771      */
2772     uint64_t resetvalue;
2773     /* Offset of the field in CPUARMState for this register.
2774      *
2775      * This is not needed if either:
2776      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2777      *  2. both readfn and writefn are specified
2778      */
2779     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2780 
2781     /* Offsets of the secure and non-secure fields in CPUARMState for the
2782      * register if it is banked.  These fields are only used during the static
2783      * registration of a register.  During hashing the bank associated
2784      * with a given security state is copied to fieldoffset which is used from
2785      * there on out.
2786      *
2787      * It is expected that register definitions use either fieldoffset or
2788      * bank_fieldoffsets in the definition but not both.  It is also expected
2789      * that both bank offsets are set when defining a banked register.  This
2790      * use indicates that a register is banked.
2791      */
2792     ptrdiff_t bank_fieldoffsets[2];
2793 
2794     /* Function for making any access checks for this register in addition to
2795      * those specified by the 'access' permissions bits. If NULL, no extra
2796      * checks required. The access check is performed at runtime, not at
2797      * translate time.
2798      */
2799     CPAccessFn *accessfn;
2800     /* Function for handling reads of this register. If NULL, then reads
2801      * will be done by loading from the offset into CPUARMState specified
2802      * by fieldoffset.
2803      */
2804     CPReadFn *readfn;
2805     /* Function for handling writes of this register. If NULL, then writes
2806      * will be done by writing to the offset into CPUARMState specified
2807      * by fieldoffset.
2808      */
2809     CPWriteFn *writefn;
2810     /* Function for doing a "raw" read; used when we need to copy
2811      * coprocessor state to the kernel for KVM or out for
2812      * migration. This only needs to be provided if there is also a
2813      * readfn and it has side effects (for instance clear-on-read bits).
2814      */
2815     CPReadFn *raw_readfn;
2816     /* Function for doing a "raw" write; used when we need to copy KVM
2817      * kernel coprocessor state into userspace, or for inbound
2818      * migration. This only needs to be provided if there is also a
2819      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2820      * or similar behaviour.
2821      */
2822     CPWriteFn *raw_writefn;
2823     /* Function for resetting the register. If NULL, then reset will be done
2824      * by writing resetvalue to the field specified in fieldoffset. If
2825      * fieldoffset is 0 then no reset will be done.
2826      */
2827     CPResetFn *resetfn;
2828 
2829     /*
2830      * "Original" writefn and readfn.
2831      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2832      * accessor functions of various EL1/EL0 to perform the runtime
2833      * check for which sysreg should actually be modified, and then
2834      * forwards the operation.  Before overwriting the accessors,
2835      * the original function is copied here, so that accesses that
2836      * really do go to the EL1/EL0 version proceed normally.
2837      * (The corresponding EL2 register is linked via opaque.)
2838      */
2839     CPReadFn *orig_readfn;
2840     CPWriteFn *orig_writefn;
2841 };
2842 
2843 /* Macros which are lvalues for the field in CPUARMState for the
2844  * ARMCPRegInfo *ri.
2845  */
2846 #define CPREG_FIELD32(env, ri) \
2847     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2848 #define CPREG_FIELD64(env, ri) \
2849     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2850 
2851 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2852 
2853 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2854                                     const ARMCPRegInfo *regs, void *opaque);
2855 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2856                                        const ARMCPRegInfo *regs, void *opaque);
2857 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2858 {
2859     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2860 }
2861 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2862 {
2863     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2864 }
2865 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2866 
2867 /*
2868  * Definition of an ARM co-processor register as viewed from
2869  * userspace. This is used for presenting sanitised versions of
2870  * registers to userspace when emulating the Linux AArch64 CPU
2871  * ID/feature ABI (advertised as HWCAP_CPUID).
2872  */
2873 typedef struct ARMCPRegUserSpaceInfo {
2874     /* Name of register */
2875     const char *name;
2876 
2877     /* Is the name actually a glob pattern */
2878     bool is_glob;
2879 
2880     /* Only some bits are exported to user space */
2881     uint64_t exported_bits;
2882 
2883     /* Fixed bits are applied after the mask */
2884     uint64_t fixed_bits;
2885 } ARMCPRegUserSpaceInfo;
2886 
2887 #define REGUSERINFO_SENTINEL { .name = NULL }
2888 
2889 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2890 
2891 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2892 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2893                          uint64_t value);
2894 /* CPReadFn that can be used for read-as-zero behaviour */
2895 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2896 
2897 /* CPResetFn that does nothing, for use if no reset is required even
2898  * if fieldoffset is non zero.
2899  */
2900 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2901 
2902 /* Return true if this reginfo struct's field in the cpu state struct
2903  * is 64 bits wide.
2904  */
2905 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2906 {
2907     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2908 }
2909 
2910 static inline bool cp_access_ok(int current_el,
2911                                 const ARMCPRegInfo *ri, int isread)
2912 {
2913     return (ri->access >> ((current_el * 2) + isread)) & 1;
2914 }
2915 
2916 /* Raw read of a coprocessor register (as needed for migration, etc) */
2917 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2918 
2919 /**
2920  * write_list_to_cpustate
2921  * @cpu: ARMCPU
2922  *
2923  * For each register listed in the ARMCPU cpreg_indexes list, write
2924  * its value from the cpreg_values list into the ARMCPUState structure.
2925  * This updates TCG's working data structures from KVM data or
2926  * from incoming migration state.
2927  *
2928  * Returns: true if all register values were updated correctly,
2929  * false if some register was unknown or could not be written.
2930  * Note that we do not stop early on failure -- we will attempt
2931  * writing all registers in the list.
2932  */
2933 bool write_list_to_cpustate(ARMCPU *cpu);
2934 
2935 /**
2936  * write_cpustate_to_list:
2937  * @cpu: ARMCPU
2938  * @kvm_sync: true if this is for syncing back to KVM
2939  *
2940  * For each register listed in the ARMCPU cpreg_indexes list, write
2941  * its value from the ARMCPUState structure into the cpreg_values list.
2942  * This is used to copy info from TCG's working data structures into
2943  * KVM or for outbound migration.
2944  *
2945  * @kvm_sync is true if we are doing this in order to sync the
2946  * register state back to KVM. In this case we will only update
2947  * values in the list if the previous list->cpustate sync actually
2948  * successfully wrote the CPU state. Otherwise we will keep the value
2949  * that is in the list.
2950  *
2951  * Returns: true if all register values were read correctly,
2952  * false if some register was unknown or could not be read.
2953  * Note that we do not stop early on failure -- we will attempt
2954  * reading all registers in the list.
2955  */
2956 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2957 
2958 #define ARM_CPUID_TI915T      0x54029152
2959 #define ARM_CPUID_TI925T      0x54029252
2960 
2961 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2962 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2963 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2964 
2965 #define cpu_signal_handler cpu_arm_signal_handler
2966 #define cpu_list arm_cpu_list
2967 
2968 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2969  *
2970  * If EL3 is 64-bit:
2971  *  + NonSecure EL1 & 0 stage 1
2972  *  + NonSecure EL1 & 0 stage 2
2973  *  + NonSecure EL2
2974  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2975  *  + Secure EL1 & 0
2976  *  + Secure EL3
2977  * If EL3 is 32-bit:
2978  *  + NonSecure PL1 & 0 stage 1
2979  *  + NonSecure PL1 & 0 stage 2
2980  *  + NonSecure PL2
2981  *  + Secure PL0
2982  *  + Secure PL1
2983  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2984  *
2985  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2986  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2987  *     because they may differ in access permissions even if the VA->PA map is
2988  *     the same
2989  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2990  *     translation, which means that we have one mmu_idx that deals with two
2991  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2992  *     architecturally permitted]
2993  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2994  *     handling via the TLB. The only way to do a stage 1 translation without
2995  *     the immediate stage 2 translation is via the ATS or AT system insns,
2996  *     which can be slow-pathed and always do a page table walk.
2997  *     The only use of stage 2 translations is either as part of an s1+2
2998  *     lookup or when loading the descriptors during a stage 1 page table walk,
2999  *     and in both those cases we don't use the TLB.
3000  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3001  *     translation regimes, because they map reasonably well to each other
3002  *     and they can't both be active at the same time.
3003  *  5. we want to be able to use the TLB for accesses done as part of a
3004  *     stage1 page table walk, rather than having to walk the stage2 page
3005  *     table over and over.
3006  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3007  *     Never (PAN) bit within PSTATE.
3008  *
3009  * This gives us the following list of cases:
3010  *
3011  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3012  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3013  * NS EL1 EL1&0 stage 1+2 +PAN
3014  * NS EL0 EL2&0
3015  * NS EL2 EL2&0
3016  * NS EL2 EL2&0 +PAN
3017  * NS EL2 (aka NS PL2)
3018  * S EL0 EL1&0 (aka S PL0)
3019  * S EL1 EL1&0 (not used if EL3 is 32 bit)
3020  * S EL1 EL1&0 +PAN
3021  * S EL3 (aka S PL1)
3022  *
3023  * for a total of 11 different mmu_idx.
3024  *
3025  * R profile CPUs have an MPU, but can use the same set of MMU indexes
3026  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3027  * NS EL2 if we ever model a Cortex-R52).
3028  *
3029  * M profile CPUs are rather different as they do not have a true MMU.
3030  * They have the following different MMU indexes:
3031  *  User
3032  *  Privileged
3033  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3034  *  Privileged, execution priority negative (ditto)
3035  * If the CPU supports the v8M Security Extension then there are also:
3036  *  Secure User
3037  *  Secure Privileged
3038  *  Secure User, execution priority negative
3039  *  Secure Privileged, execution priority negative
3040  *
3041  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3042  * are not quite the same -- different CPU types (most notably M profile
3043  * vs A/R profile) would like to use MMU indexes with different semantics,
3044  * but since we don't ever need to use all of those in a single CPU we
3045  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3046  * modes + total number of M profile MMU modes". The lower bits of
3047  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3048  * the same for any particular CPU.
3049  * Variables of type ARMMUIdx are always full values, and the core
3050  * index values are in variables of type 'int'.
3051  *
3052  * Our enumeration includes at the end some entries which are not "true"
3053  * mmu_idx values in that they don't have corresponding TLBs and are only
3054  * valid for doing slow path page table walks.
3055  *
3056  * The constant names here are patterned after the general style of the names
3057  * of the AT/ATS operations.
3058  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3059  * For M profile we arrange them to have a bit for priv, a bit for negpri
3060  * and a bit for secure.
3061  */
3062 #define ARM_MMU_IDX_A     0x10  /* A profile */
3063 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3064 #define ARM_MMU_IDX_M     0x40  /* M profile */
3065 
3066 /* Meanings of the bits for A profile mmu idx values */
3067 #define ARM_MMU_IDX_A_NS     0x8
3068 
3069 /* Meanings of the bits for M profile mmu idx values */
3070 #define ARM_MMU_IDX_M_PRIV   0x1
3071 #define ARM_MMU_IDX_M_NEGPRI 0x2
3072 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3073 
3074 #define ARM_MMU_IDX_TYPE_MASK \
3075     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3076 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3077 
3078 typedef enum ARMMMUIdx {
3079     /*
3080      * A-profile.
3081      */
3082     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3083     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3084     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3085     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3086     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3087     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3088     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3089     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3090 
3091     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3092     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3093     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3094     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3095     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3096     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3097     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3098 
3099     /*
3100      * These are not allocated TLBs and are used only for AT system
3101      * instructions or for the first stage of an S12 page table walk.
3102      */
3103     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3104     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3105     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3106     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3107     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3108     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3109     /*
3110      * Not allocated a TLB: used only for second stage of an S12 page
3111      * table walk, or for descriptor loads during first stage of an S1
3112      * page table walk. Note that if we ever want to have a TLB for this
3113      * then various TLB flush insns which currently are no-ops or flush
3114      * only stage 1 MMU indexes will need to change to flush stage 2.
3115      */
3116     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3117     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3118 
3119     /*
3120      * M-profile.
3121      */
3122     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3123     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3124     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3125     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3126     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3127     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3128     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3129     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3130 } ARMMMUIdx;
3131 
3132 /*
3133  * Bit macros for the core-mmu-index values for each index,
3134  * for use when calling tlb_flush_by_mmuidx() and friends.
3135  */
3136 #define TO_CORE_BIT(NAME) \
3137     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3138 
3139 typedef enum ARMMMUIdxBit {
3140     TO_CORE_BIT(E10_0),
3141     TO_CORE_BIT(E20_0),
3142     TO_CORE_BIT(E10_1),
3143     TO_CORE_BIT(E10_1_PAN),
3144     TO_CORE_BIT(E2),
3145     TO_CORE_BIT(E20_2),
3146     TO_CORE_BIT(E20_2_PAN),
3147     TO_CORE_BIT(SE10_0),
3148     TO_CORE_BIT(SE20_0),
3149     TO_CORE_BIT(SE10_1),
3150     TO_CORE_BIT(SE20_2),
3151     TO_CORE_BIT(SE10_1_PAN),
3152     TO_CORE_BIT(SE20_2_PAN),
3153     TO_CORE_BIT(SE2),
3154     TO_CORE_BIT(SE3),
3155 
3156     TO_CORE_BIT(MUser),
3157     TO_CORE_BIT(MPriv),
3158     TO_CORE_BIT(MUserNegPri),
3159     TO_CORE_BIT(MPrivNegPri),
3160     TO_CORE_BIT(MSUser),
3161     TO_CORE_BIT(MSPriv),
3162     TO_CORE_BIT(MSUserNegPri),
3163     TO_CORE_BIT(MSPrivNegPri),
3164 } ARMMMUIdxBit;
3165 
3166 #undef TO_CORE_BIT
3167 
3168 #define MMU_USER_IDX 0
3169 
3170 /* Indexes used when registering address spaces with cpu_address_space_init */
3171 typedef enum ARMASIdx {
3172     ARMASIdx_NS = 0,
3173     ARMASIdx_S = 1,
3174     ARMASIdx_TagNS = 2,
3175     ARMASIdx_TagS = 3,
3176 } ARMASIdx;
3177 
3178 /* Return the Exception Level targeted by debug exceptions. */
3179 static inline int arm_debug_target_el(CPUARMState *env)
3180 {
3181     bool secure = arm_is_secure(env);
3182     bool route_to_el2 = false;
3183 
3184     if (arm_is_el2_enabled(env)) {
3185         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3186                        env->cp15.mdcr_el2 & MDCR_TDE;
3187     }
3188 
3189     if (route_to_el2) {
3190         return 2;
3191     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3192                !arm_el_is_aa64(env, 3) && secure) {
3193         return 3;
3194     } else {
3195         return 1;
3196     }
3197 }
3198 
3199 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3200 {
3201     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3202      * CSSELR is RAZ/WI.
3203      */
3204     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3205 }
3206 
3207 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3208 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3209 {
3210     int cur_el = arm_current_el(env);
3211     int debug_el;
3212 
3213     if (cur_el == 3) {
3214         return false;
3215     }
3216 
3217     /* MDCR_EL3.SDD disables debug events from Secure state */
3218     if (arm_is_secure_below_el3(env)
3219         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3220         return false;
3221     }
3222 
3223     /*
3224      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3225      * while not masking the (D)ebug bit in DAIF.
3226      */
3227     debug_el = arm_debug_target_el(env);
3228 
3229     if (cur_el == debug_el) {
3230         return extract32(env->cp15.mdscr_el1, 13, 1)
3231             && !(env->daif & PSTATE_D);
3232     }
3233 
3234     /* Otherwise the debug target needs to be a higher EL */
3235     return debug_el > cur_el;
3236 }
3237 
3238 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3239 {
3240     int el = arm_current_el(env);
3241 
3242     if (el == 0 && arm_el_is_aa64(env, 1)) {
3243         return aa64_generate_debug_exceptions(env);
3244     }
3245 
3246     if (arm_is_secure(env)) {
3247         int spd;
3248 
3249         if (el == 0 && (env->cp15.sder & 1)) {
3250             /* SDER.SUIDEN means debug exceptions from Secure EL0
3251              * are always enabled. Otherwise they are controlled by
3252              * SDCR.SPD like those from other Secure ELs.
3253              */
3254             return true;
3255         }
3256 
3257         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3258         switch (spd) {
3259         case 1:
3260             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3261         case 0:
3262             /* For 0b00 we return true if external secure invasive debug
3263              * is enabled. On real hardware this is controlled by external
3264              * signals to the core. QEMU always permits debug, and behaves
3265              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3266              */
3267             return true;
3268         case 2:
3269             return false;
3270         case 3:
3271             return true;
3272         }
3273     }
3274 
3275     return el != 2;
3276 }
3277 
3278 /* Return true if debugging exceptions are currently enabled.
3279  * This corresponds to what in ARM ARM pseudocode would be
3280  *    if UsingAArch32() then
3281  *        return AArch32.GenerateDebugExceptions()
3282  *    else
3283  *        return AArch64.GenerateDebugExceptions()
3284  * We choose to push the if() down into this function for clarity,
3285  * since the pseudocode has it at all callsites except for the one in
3286  * CheckSoftwareStep(), where it is elided because both branches would
3287  * always return the same value.
3288  */
3289 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3290 {
3291     if (env->aarch64) {
3292         return aa64_generate_debug_exceptions(env);
3293     } else {
3294         return aa32_generate_debug_exceptions(env);
3295     }
3296 }
3297 
3298 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3299  * implicitly means this always returns false in pre-v8 CPUs.)
3300  */
3301 static inline bool arm_singlestep_active(CPUARMState *env)
3302 {
3303     return extract32(env->cp15.mdscr_el1, 0, 1)
3304         && arm_el_is_aa64(env, arm_debug_target_el(env))
3305         && arm_generate_debug_exceptions(env);
3306 }
3307 
3308 static inline bool arm_sctlr_b(CPUARMState *env)
3309 {
3310     return
3311         /* We need not implement SCTLR.ITD in user-mode emulation, so
3312          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3313          * This lets people run BE32 binaries with "-cpu any".
3314          */
3315 #ifndef CONFIG_USER_ONLY
3316         !arm_feature(env, ARM_FEATURE_V7) &&
3317 #endif
3318         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3319 }
3320 
3321 uint64_t arm_sctlr(CPUARMState *env, int el);
3322 
3323 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3324                                                   bool sctlr_b)
3325 {
3326 #ifdef CONFIG_USER_ONLY
3327     /*
3328      * In system mode, BE32 is modelled in line with the
3329      * architecture (as word-invariant big-endianness), where loads
3330      * and stores are done little endian but from addresses which
3331      * are adjusted by XORing with the appropriate constant. So the
3332      * endianness to use for the raw data access is not affected by
3333      * SCTLR.B.
3334      * In user mode, however, we model BE32 as byte-invariant
3335      * big-endianness (because user-only code cannot tell the
3336      * difference), and so we need to use a data access endianness
3337      * that depends on SCTLR.B.
3338      */
3339     if (sctlr_b) {
3340         return true;
3341     }
3342 #endif
3343     /* In 32bit endianness is determined by looking at CPSR's E bit */
3344     return env->uncached_cpsr & CPSR_E;
3345 }
3346 
3347 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3348 {
3349     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3350 }
3351 
3352 /* Return true if the processor is in big-endian mode. */
3353 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3354 {
3355     if (!is_a64(env)) {
3356         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3357     } else {
3358         int cur_el = arm_current_el(env);
3359         uint64_t sctlr = arm_sctlr(env, cur_el);
3360         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3361     }
3362 }
3363 
3364 typedef CPUARMState CPUArchState;
3365 typedef ARMCPU ArchCPU;
3366 
3367 #include "exec/cpu-all.h"
3368 
3369 /*
3370  * Bit usage in the TB flags field: bit 31 indicates whether we are
3371  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3372  * We put flags which are shared between 32 and 64 bit mode at the top
3373  * of the word, and flags which apply to only one mode at the bottom.
3374  *
3375  *  31          20    18    14          9              0
3376  * +--------------+-----+-----+----------+--------------+
3377  * |              |     |   TBFLAG_A32   |              |
3378  * |              |     +-----+----------+  TBFLAG_AM32 |
3379  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3380  * |              +-----------+----------+--------------|
3381  * |              |            TBFLAG_A64               |
3382  * +--------------+-------------------------------------+
3383  *  31          20                                     0
3384  *
3385  * Unless otherwise noted, these bits are cached in env->hflags.
3386  */
3387 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3388 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3389 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3390 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3391 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3392 /* Target EL if we take a floating-point-disabled exception */
3393 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3394 /* For A-profile only, target EL for debug exceptions.  */
3395 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3396 
3397 /*
3398  * Bit usage when in AArch32 state, both A- and M-profile.
3399  */
3400 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3401 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3402 
3403 /*
3404  * Bit usage when in AArch32 state, for A-profile only.
3405  */
3406 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3407 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3408 /*
3409  * We store the bottom two bits of the CPAR as TB flags and handle
3410  * checks on the other bits at runtime. This shares the same bits as
3411  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3412  * Not cached, because VECLEN+VECSTRIDE are not cached.
3413  */
3414 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3415 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3416 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3417 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3418 /*
3419  * Indicates whether cp register reads and writes by guest code should access
3420  * the secure or nonsecure bank of banked registers; note that this is not
3421  * the same thing as the current security state of the processor!
3422  */
3423 FIELD(TBFLAG_A32, NS, 17, 1)
3424 
3425 /*
3426  * Bit usage when in AArch32 state, for M-profile only.
3427  */
3428 /* Handler (ie not Thread) mode */
3429 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3430 /* Whether we should generate stack-limit checks */
3431 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3432 /* Set if FPCCR.LSPACT is set */
3433 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3434 /* Set if we must create a new FP context */
3435 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3436 /* Set if FPCCR.S does not match current security state */
3437 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3438 
3439 /*
3440  * Bit usage when in AArch64 state
3441  */
3442 FIELD(TBFLAG_A64, TBII, 0, 2)
3443 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3444 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3445 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3446 FIELD(TBFLAG_A64, BT, 9, 1)
3447 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3448 FIELD(TBFLAG_A64, TBID, 12, 2)
3449 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3450 FIELD(TBFLAG_A64, ATA, 15, 1)
3451 FIELD(TBFLAG_A64, TCMA, 16, 2)
3452 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3453 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3454 
3455 /**
3456  * cpu_mmu_index:
3457  * @env: The cpu environment
3458  * @ifetch: True for code access, false for data access.
3459  *
3460  * Return the core mmu index for the current translation regime.
3461  * This function is used by generic TCG code paths.
3462  */
3463 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3464 {
3465     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3466 }
3467 
3468 static inline bool bswap_code(bool sctlr_b)
3469 {
3470 #ifdef CONFIG_USER_ONLY
3471     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3472      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3473      * would also end up as a mixed-endian mode with BE code, LE data.
3474      */
3475     return
3476 #ifdef TARGET_WORDS_BIGENDIAN
3477         1 ^
3478 #endif
3479         sctlr_b;
3480 #else
3481     /* All code access in ARM is little endian, and there are no loaders
3482      * doing swaps that need to be reversed
3483      */
3484     return 0;
3485 #endif
3486 }
3487 
3488 #ifdef CONFIG_USER_ONLY
3489 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3490 {
3491     return
3492 #ifdef TARGET_WORDS_BIGENDIAN
3493        1 ^
3494 #endif
3495        arm_cpu_data_is_big_endian(env);
3496 }
3497 #endif
3498 
3499 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3500                           target_ulong *cs_base, uint32_t *flags);
3501 
3502 enum {
3503     QEMU_PSCI_CONDUIT_DISABLED = 0,
3504     QEMU_PSCI_CONDUIT_SMC = 1,
3505     QEMU_PSCI_CONDUIT_HVC = 2,
3506 };
3507 
3508 #ifndef CONFIG_USER_ONLY
3509 /* Return the address space index to use for a memory access */
3510 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3511 {
3512     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3513 }
3514 
3515 /* Return the AddressSpace to use for a memory access
3516  * (which depends on whether the access is S or NS, and whether
3517  * the board gave us a separate AddressSpace for S accesses).
3518  */
3519 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3520 {
3521     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3522 }
3523 #endif
3524 
3525 /**
3526  * arm_register_pre_el_change_hook:
3527  * Register a hook function which will be called immediately before this
3528  * CPU changes exception level or mode. The hook function will be
3529  * passed a pointer to the ARMCPU and the opaque data pointer passed
3530  * to this function when the hook was registered.
3531  *
3532  * Note that if a pre-change hook is called, any registered post-change hooks
3533  * are guaranteed to subsequently be called.
3534  */
3535 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3536                                  void *opaque);
3537 /**
3538  * arm_register_el_change_hook:
3539  * Register a hook function which will be called immediately after this
3540  * CPU changes exception level or mode. The hook function will be
3541  * passed a pointer to the ARMCPU and the opaque data pointer passed
3542  * to this function when the hook was registered.
3543  *
3544  * Note that any registered hooks registered here are guaranteed to be called
3545  * if pre-change hooks have been.
3546  */
3547 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3548         *opaque);
3549 
3550 /**
3551  * arm_rebuild_hflags:
3552  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3553  */
3554 void arm_rebuild_hflags(CPUARMState *env);
3555 
3556 /**
3557  * aa32_vfp_dreg:
3558  * Return a pointer to the Dn register within env in 32-bit mode.
3559  */
3560 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3561 {
3562     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3563 }
3564 
3565 /**
3566  * aa32_vfp_qreg:
3567  * Return a pointer to the Qn register within env in 32-bit mode.
3568  */
3569 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3570 {
3571     return &env->vfp.zregs[regno].d[0];
3572 }
3573 
3574 /**
3575  * aa64_vfp_qreg:
3576  * Return a pointer to the Qn register within env in 64-bit mode.
3577  */
3578 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3579 {
3580     return &env->vfp.zregs[regno].d[0];
3581 }
3582 
3583 /* Shared between translate-sve.c and sve_helper.c.  */
3584 extern const uint64_t pred_esz_masks[4];
3585 
3586 /* Helper for the macros below, validating the argument type. */
3587 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3588 {
3589     return x;
3590 }
3591 
3592 /*
3593  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3594  * Using these should be a bit more self-documenting than using the
3595  * generic target bits directly.
3596  */
3597 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3598 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3599 
3600 /*
3601  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3602  */
3603 #define PAGE_BTI  PAGE_TARGET_1
3604 
3605 /*
3606  * Naming convention for isar_feature functions:
3607  * Functions which test 32-bit ID registers should have _aa32_ in
3608  * their name. Functions which test 64-bit ID registers should have
3609  * _aa64_ in their name. These must only be used in code where we
3610  * know for certain that the CPU has AArch32 or AArch64 respectively
3611  * or where the correct answer for a CPU which doesn't implement that
3612  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3613  * system registers that are specific to that CPU state, for "should
3614  * we let this system register bit be set" tests where the 32-bit
3615  * flavour of the register doesn't have the bit, and so on).
3616  * Functions which simply ask "does this feature exist at all" have
3617  * _any_ in their name, and always return the logical OR of the _aa64_
3618  * and the _aa32_ function.
3619  */
3620 
3621 /*
3622  * 32-bit feature tests via id registers.
3623  */
3624 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3625 {
3626     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3627 }
3628 
3629 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3630 {
3631     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3632 }
3633 
3634 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3635 {
3636     /* (M-profile) low-overhead loops and branch future */
3637     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3638 }
3639 
3640 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3641 {
3642     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3643 }
3644 
3645 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3646 {
3647     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3648 }
3649 
3650 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3651 {
3652     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3653 }
3654 
3655 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3656 {
3657     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3658 }
3659 
3660 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3661 {
3662     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3663 }
3664 
3665 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3666 {
3667     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3668 }
3669 
3670 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3671 {
3672     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3673 }
3674 
3675 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3676 {
3677     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3678 }
3679 
3680 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3681 {
3682     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3683 }
3684 
3685 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3686 {
3687     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3688 }
3689 
3690 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3691 {
3692     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3693 }
3694 
3695 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3696 {
3697     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3698 }
3699 
3700 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3701 {
3702     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3703 }
3704 
3705 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3706 {
3707     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3708 }
3709 
3710 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3711 {
3712     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3713 }
3714 
3715 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3716 {
3717     /*
3718      * Return true if M-profile state handling insns
3719      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3720      */
3721     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3722 }
3723 
3724 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3725 {
3726     /* Sadly this is encoded differently for A-profile and M-profile */
3727     if (isar_feature_aa32_mprofile(id)) {
3728         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3729     } else {
3730         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3731     }
3732 }
3733 
3734 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3735 {
3736     /*
3737      * Return true if either VFP or SIMD is implemented.
3738      * In this case, a minimum of VFP w/ D0-D15.
3739      */
3740     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3741 }
3742 
3743 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3744 {
3745     /* Return true if D16-D31 are implemented */
3746     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3747 }
3748 
3749 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3750 {
3751     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3752 }
3753 
3754 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3755 {
3756     /* Return true if CPU supports single precision floating point, VFPv2 */
3757     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3758 }
3759 
3760 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3761 {
3762     /* Return true if CPU supports single precision floating point, VFPv3 */
3763     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3764 }
3765 
3766 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3767 {
3768     /* Return true if CPU supports double precision floating point, VFPv2 */
3769     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3770 }
3771 
3772 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3773 {
3774     /* Return true if CPU supports double precision floating point, VFPv3 */
3775     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3776 }
3777 
3778 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3779 {
3780     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3781 }
3782 
3783 /*
3784  * We always set the FP and SIMD FP16 fields to indicate identical
3785  * levels of support (assuming SIMD is implemented at all), so
3786  * we only need one set of accessors.
3787  */
3788 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3789 {
3790     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3791 }
3792 
3793 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3794 {
3795     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3796 }
3797 
3798 /*
3799  * Note that this ID register field covers both VFP and Neon FMAC,
3800  * so should usually be tested in combination with some other
3801  * check that confirms the presence of whichever of VFP or Neon is
3802  * relevant, to avoid accidentally enabling a Neon feature on
3803  * a VFP-no-Neon core or vice-versa.
3804  */
3805 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3806 {
3807     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3808 }
3809 
3810 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3811 {
3812     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3813 }
3814 
3815 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3816 {
3817     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3818 }
3819 
3820 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3821 {
3822     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3823 }
3824 
3825 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3826 {
3827     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3828 }
3829 
3830 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3831 {
3832     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3833 }
3834 
3835 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3836 {
3837     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3838 }
3839 
3840 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3841 {
3842     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3843 }
3844 
3845 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3846 {
3847     /* 0xf means "non-standard IMPDEF PMU" */
3848     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3849         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3850 }
3851 
3852 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3853 {
3854     /* 0xf means "non-standard IMPDEF PMU" */
3855     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3856         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3857 }
3858 
3859 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3860 {
3861     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3862 }
3863 
3864 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3865 {
3866     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3867 }
3868 
3869 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3870 {
3871     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3872 }
3873 
3874 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3875 {
3876     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3877 }
3878 
3879 /*
3880  * 64-bit feature tests via id registers.
3881  */
3882 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3883 {
3884     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3885 }
3886 
3887 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3888 {
3889     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3890 }
3891 
3892 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3893 {
3894     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3895 }
3896 
3897 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3898 {
3899     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3900 }
3901 
3902 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3903 {
3904     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3905 }
3906 
3907 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3908 {
3909     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3910 }
3911 
3912 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3913 {
3914     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3915 }
3916 
3917 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3918 {
3919     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3920 }
3921 
3922 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3923 {
3924     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3925 }
3926 
3927 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3928 {
3929     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3930 }
3931 
3932 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3933 {
3934     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3935 }
3936 
3937 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3938 {
3939     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3940 }
3941 
3942 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3943 {
3944     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3945 }
3946 
3947 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3948 {
3949     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3950 }
3951 
3952 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3953 {
3954     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3955 }
3956 
3957 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3958 {
3959     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3960 }
3961 
3962 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3963 {
3964     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3965 }
3966 
3967 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3968 {
3969     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3970 }
3971 
3972 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3973 {
3974     /*
3975      * Return true if any form of pauth is enabled, as this
3976      * predicate controls migration of the 128-bit keys.
3977      */
3978     return (id->id_aa64isar1 &
3979             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3980              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3981              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3982              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3983 }
3984 
3985 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3986 {
3987     /*
3988      * Return true if pauth is enabled with the architected QARMA algorithm.
3989      * QEMU will always set APA+GPA to the same value.
3990      */
3991     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3992 }
3993 
3994 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3995 {
3996     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3997 }
3998 
3999 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4000 {
4001     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4002 }
4003 
4004 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4005 {
4006     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4007 }
4008 
4009 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4010 {
4011     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4012 }
4013 
4014 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4015 {
4016     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4017 }
4018 
4019 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4020 {
4021     /* We always set the AdvSIMD and FP fields identically.  */
4022     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4023 }
4024 
4025 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4026 {
4027     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4028     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4029 }
4030 
4031 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4032 {
4033     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4034 }
4035 
4036 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4037 {
4038     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4039 }
4040 
4041 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4042 {
4043     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4044 }
4045 
4046 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4047 {
4048     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4049 }
4050 
4051 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4052 {
4053     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4054 }
4055 
4056 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4057 {
4058     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4059 }
4060 
4061 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4062 {
4063     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4064 }
4065 
4066 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4067 {
4068     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4069 }
4070 
4071 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4072 {
4073     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4074 }
4075 
4076 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4077 {
4078     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4079 }
4080 
4081 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4082 {
4083     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4084 }
4085 
4086 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4087 {
4088     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4089 }
4090 
4091 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4092 {
4093     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4094         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4095 }
4096 
4097 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4098 {
4099     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4100         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4101 }
4102 
4103 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4104 {
4105     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4106 }
4107 
4108 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4109 {
4110     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4111 }
4112 
4113 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4114 {
4115     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4116 }
4117 
4118 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4119 {
4120     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4121 }
4122 
4123 /*
4124  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4125  */
4126 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4127 {
4128     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4129 }
4130 
4131 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4132 {
4133     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4134 }
4135 
4136 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4137 {
4138     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4139 }
4140 
4141 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4142 {
4143     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4144 }
4145 
4146 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4147 {
4148     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4149 }
4150 
4151 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4152 {
4153     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4154 }
4155 
4156 /*
4157  * Forward to the above feature tests given an ARMCPU pointer.
4158  */
4159 #define cpu_isar_feature(name, cpu) \
4160     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4161 
4162 #endif
4163