xref: /openbmc/qemu/target/arm/cpu.h (revision 5e6f3db2)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SECURE  7
70 #define ARMV7M_EXCP_SVC     11
71 #define ARMV7M_EXCP_DEBUG   12
72 #define ARMV7M_EXCP_PENDSV  14
73 #define ARMV7M_EXCP_SYSTICK 15
74 
75 /* For M profile, some registers are banked secure vs non-secure;
76  * these are represented as a 2-element array where the first element
77  * is the non-secure copy and the second is the secure copy.
78  * When the CPU does not have implement the security extension then
79  * only the first element is used.
80  * This means that the copy for the current security state can be
81  * accessed via env->registerfield[env->v7m.secure] (whether the security
82  * extension is implemented or not).
83  */
84 enum {
85     M_REG_NS = 0,
86     M_REG_S = 1,
87     M_REG_NUM_BANKS = 2,
88 };
89 
90 /* ARM-specific interrupt pending bits.  */
91 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
94 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
95 
96 /* The usual mapping for an AArch64 system register to its AArch32
97  * counterpart is for the 32 bit world to have access to the lower
98  * half only (with writes leaving the upper half untouched). It's
99  * therefore useful to be able to pass TCG the offset of the least
100  * significant half of a uint64_t struct member.
101  */
102 #if HOST_BIG_ENDIAN
103 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #define offsetofhigh32(S, M) offsetof(S, M)
105 #else
106 #define offsetoflow32(S, M) offsetof(S, M)
107 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
108 #endif
109 
110 /* Meanings of the ARMCPU object's four inbound GPIO lines */
111 #define ARM_CPU_IRQ 0
112 #define ARM_CPU_FIQ 1
113 #define ARM_CPU_VIRQ 2
114 #define ARM_CPU_VFIQ 3
115 
116 /* ARM-specific extra insn start words:
117  * 1: Conditional execution bits
118  * 2: Partial exception syndrome for data aborts
119  */
120 #define TARGET_INSN_START_EXTRA_WORDS 2
121 
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124  * help the sleb128 encoder do a better job.
125  * When restoring the CPU state, we shift it back up.
126  */
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
129 
130 /* We currently assume float and double are IEEE single and double
131    precision respectively.
132    Doing runtime conversions is tricky because VFP registers may contain
133    integer values (eg. as the result of a FTOSI instruction).
134    s<2n> maps to the least significant half of d<n>
135    s<2n+1> maps to the most significant half of d<n>
136  */
137 
138 /**
139  * DynamicGDBXMLInfo:
140  * @desc: Contains the XML descriptions.
141  * @num: Number of the registers in this XML seen by GDB.
142  * @data: A union with data specific to the set of registers
143  *    @cpregs_keys: Array that contains the corresponding Key of
144  *                  a given cpreg with the same order of the cpreg
145  *                  in the XML description.
146  */
147 typedef struct DynamicGDBXMLInfo {
148     char *desc;
149     int num;
150     union {
151         struct {
152             uint32_t *keys;
153         } cpregs;
154     } data;
155 } DynamicGDBXMLInfo;
156 
157 /* CPU state for each instance of a generic timer (in cp15 c14) */
158 typedef struct ARMGenericTimer {
159     uint64_t cval; /* Timer CompareValue register */
160     uint64_t ctl; /* Timer Control register */
161 } ARMGenericTimer;
162 
163 #define GTIMER_PHYS     0
164 #define GTIMER_VIRT     1
165 #define GTIMER_HYP      2
166 #define GTIMER_SEC      3
167 #define GTIMER_HYPVIRT  4
168 #define NUM_GTIMERS     5
169 
170 #define VTCR_NSW (1u << 29)
171 #define VTCR_NSA (1u << 30)
172 #define VSTCR_SW VTCR_NSW
173 #define VSTCR_SA VTCR_NSA
174 
175 /* Define a maximum sized vector register.
176  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177  * For 64-bit, this is a 2048-bit SVE register.
178  *
179  * Note that the mapping between S, D, and Q views of the register bank
180  * differs between AArch64 and AArch32.
181  * In AArch32:
182  *  Qn = regs[n].d[1]:regs[n].d[0]
183  *  Dn = regs[n / 2].d[n & 1]
184  *  Sn = regs[n / 4].d[n % 4 / 2],
185  *       bits 31..0 for even n, and bits 63..32 for odd n
186  *       (and regs[16] to regs[31] are inaccessible)
187  * In AArch64:
188  *  Zn = regs[n].d[*]
189  *  Qn = regs[n].d[1]:regs[n].d[0]
190  *  Dn = regs[n].d[0]
191  *  Sn = regs[n].d[0] bits 31..0
192  *  Hn = regs[n].d[0] bits 15..0
193  *
194  * This corresponds to the architecturally defined mapping between
195  * the two execution states, and means we do not need to explicitly
196  * map these registers when changing states.
197  *
198  * Align the data for use with TCG host vector operations.
199  */
200 
201 #ifdef TARGET_AARCH64
202 # define ARM_MAX_VQ    16
203 #else
204 # define ARM_MAX_VQ    1
205 #endif
206 
207 typedef struct ARMVectorReg {
208     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209 } ARMVectorReg;
210 
211 #ifdef TARGET_AARCH64
212 /* In AArch32 mode, predicate registers do not exist at all.  */
213 typedef struct ARMPredicateReg {
214     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
215 } ARMPredicateReg;
216 
217 /* In AArch32 mode, PAC keys do not exist at all.  */
218 typedef struct ARMPACKey {
219     uint64_t lo, hi;
220 } ARMPACKey;
221 #endif
222 
223 /* See the commentary above the TBFLAG field definitions.  */
224 typedef struct CPUARMTBFlags {
225     uint32_t flags;
226     target_ulong flags2;
227 } CPUARMTBFlags;
228 
229 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230 
231 typedef struct NVICState NVICState;
232 
233 typedef struct CPUArchState {
234     /* Regs for current mode.  */
235     uint32_t regs[16];
236 
237     /* 32/64 switch only happens when taking and returning from
238      * exceptions so the overlap semantics are taken care of then
239      * instead of having a complicated union.
240      */
241     /* Regs for A64 mode.  */
242     uint64_t xregs[32];
243     uint64_t pc;
244     /* PSTATE isn't an architectural register for ARMv8. However, it is
245      * convenient for us to assemble the underlying state into a 32 bit format
246      * identical to the architectural format used for the SPSR. (This is also
247      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248      * 'pstate' register are.) Of the PSTATE bits:
249      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250      *    semantics as for AArch32, as described in the comments on each field)
251      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
252      *  DAIF (exception masks) are kept in env->daif
253      *  BTYPE is kept in env->btype
254      *  SM and ZA are kept in env->svcr
255      *  all other bits are stored in their correct places in env->pstate
256      */
257     uint32_t pstate;
258     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
259     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
260 
261     /* Cached TBFLAGS state.  See below for which bits are included.  */
262     CPUARMTBFlags hflags;
263 
264     /* Frequently accessed CPSR bits are stored separately for efficiency.
265        This contains all the other bits.  Use cpsr_{read,write} to access
266        the whole CPSR.  */
267     uint32_t uncached_cpsr;
268     uint32_t spsr;
269 
270     /* Banked registers.  */
271     uint64_t banked_spsr[8];
272     uint32_t banked_r13[8];
273     uint32_t banked_r14[8];
274 
275     /* These hold r8-r12.  */
276     uint32_t usr_regs[5];
277     uint32_t fiq_regs[5];
278 
279     /* cpsr flag cache for faster execution */
280     uint32_t CF; /* 0 or 1 */
281     uint32_t VF; /* V is the bit 31. All other bits are undefined */
282     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
283     uint32_t ZF; /* Z set if zero.  */
284     uint32_t QF; /* 0 or 1 */
285     uint32_t GE; /* cpsr[19:16] */
286     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
287     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
288     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
289     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
290 
291     uint64_t elr_el[4]; /* AArch64 exception link regs  */
292     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
293 
294     /* System control coprocessor (cp15) */
295     struct {
296         uint32_t c0_cpuid;
297         union { /* Cache size selection */
298             struct {
299                 uint64_t _unused_csselr0;
300                 uint64_t csselr_ns;
301                 uint64_t _unused_csselr1;
302                 uint64_t csselr_s;
303             };
304             uint64_t csselr_el[4];
305         };
306         union { /* System control register. */
307             struct {
308                 uint64_t _unused_sctlr;
309                 uint64_t sctlr_ns;
310                 uint64_t hsctlr;
311                 uint64_t sctlr_s;
312             };
313             uint64_t sctlr_el[4];
314         };
315         uint64_t vsctlr; /* Virtualization System control register. */
316         uint64_t cpacr_el1; /* Architectural feature access control register */
317         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
318         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
319         uint64_t sder; /* Secure debug enable register. */
320         uint32_t nsacr; /* Non-secure access control register. */
321         union { /* MMU translation table base 0. */
322             struct {
323                 uint64_t _unused_ttbr0_0;
324                 uint64_t ttbr0_ns;
325                 uint64_t _unused_ttbr0_1;
326                 uint64_t ttbr0_s;
327             };
328             uint64_t ttbr0_el[4];
329         };
330         union { /* MMU translation table base 1. */
331             struct {
332                 uint64_t _unused_ttbr1_0;
333                 uint64_t ttbr1_ns;
334                 uint64_t _unused_ttbr1_1;
335                 uint64_t ttbr1_s;
336             };
337             uint64_t ttbr1_el[4];
338         };
339         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
340         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
341         /* MMU translation table base control. */
342         uint64_t tcr_el[4];
343         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
344         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
345         uint32_t c2_data; /* MPU data cacheable bits.  */
346         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
347         union { /* MMU domain access control register
348                  * MPU write buffer control.
349                  */
350             struct {
351                 uint64_t dacr_ns;
352                 uint64_t dacr_s;
353             };
354             struct {
355                 uint64_t dacr32_el2;
356             };
357         };
358         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
360         uint64_t hcr_el2; /* Hypervisor configuration register */
361         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
362         uint64_t scr_el3; /* Secure configuration register.  */
363         union { /* Fault status registers.  */
364             struct {
365                 uint64_t ifsr_ns;
366                 uint64_t ifsr_s;
367             };
368             struct {
369                 uint64_t ifsr32_el2;
370             };
371         };
372         union {
373             struct {
374                 uint64_t _unused_dfsr;
375                 uint64_t dfsr_ns;
376                 uint64_t hsr;
377                 uint64_t dfsr_s;
378             };
379             uint64_t esr_el[4];
380         };
381         uint32_t c6_region[8]; /* MPU base/size registers.  */
382         union { /* Fault address registers. */
383             struct {
384                 uint64_t _unused_far0;
385 #if HOST_BIG_ENDIAN
386                 uint32_t ifar_ns;
387                 uint32_t dfar_ns;
388                 uint32_t ifar_s;
389                 uint32_t dfar_s;
390 #else
391                 uint32_t dfar_ns;
392                 uint32_t ifar_ns;
393                 uint32_t dfar_s;
394                 uint32_t ifar_s;
395 #endif
396                 uint64_t _unused_far3;
397             };
398             uint64_t far_el[4];
399         };
400         uint64_t hpfar_el2;
401         uint64_t hstr_el2;
402         union { /* Translation result. */
403             struct {
404                 uint64_t _unused_par_0;
405                 uint64_t par_ns;
406                 uint64_t _unused_par_1;
407                 uint64_t par_s;
408             };
409             uint64_t par_el[4];
410         };
411 
412         uint32_t c9_insn; /* Cache lockdown registers.  */
413         uint32_t c9_data;
414         uint64_t c9_pmcr; /* performance monitor control register */
415         uint64_t c9_pmcnten; /* perf monitor counter enables */
416         uint64_t c9_pmovsr; /* perf monitor overflow status */
417         uint64_t c9_pmuserenr; /* perf monitor user enable */
418         uint64_t c9_pmselr; /* perf monitor counter selection register */
419         uint64_t c9_pminten; /* perf monitor interrupt enables */
420         union { /* Memory attribute redirection */
421             struct {
422 #if HOST_BIG_ENDIAN
423                 uint64_t _unused_mair_0;
424                 uint32_t mair1_ns;
425                 uint32_t mair0_ns;
426                 uint64_t _unused_mair_1;
427                 uint32_t mair1_s;
428                 uint32_t mair0_s;
429 #else
430                 uint64_t _unused_mair_0;
431                 uint32_t mair0_ns;
432                 uint32_t mair1_ns;
433                 uint64_t _unused_mair_1;
434                 uint32_t mair0_s;
435                 uint32_t mair1_s;
436 #endif
437             };
438             uint64_t mair_el[4];
439         };
440         union { /* vector base address register */
441             struct {
442                 uint64_t _unused_vbar;
443                 uint64_t vbar_ns;
444                 uint64_t hvbar;
445                 uint64_t vbar_s;
446             };
447             uint64_t vbar_el[4];
448         };
449         uint32_t mvbar; /* (monitor) vector base address register */
450         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
451         struct { /* FCSE PID. */
452             uint32_t fcseidr_ns;
453             uint32_t fcseidr_s;
454         };
455         union { /* Context ID. */
456             struct {
457                 uint64_t _unused_contextidr_0;
458                 uint64_t contextidr_ns;
459                 uint64_t _unused_contextidr_1;
460                 uint64_t contextidr_s;
461             };
462             uint64_t contextidr_el[4];
463         };
464         union { /* User RW Thread register. */
465             struct {
466                 uint64_t tpidrurw_ns;
467                 uint64_t tpidrprw_ns;
468                 uint64_t htpidr;
469                 uint64_t _tpidr_el3;
470             };
471             uint64_t tpidr_el[4];
472         };
473         uint64_t tpidr2_el0;
474         /* The secure banks of these registers don't map anywhere */
475         uint64_t tpidrurw_s;
476         uint64_t tpidrprw_s;
477         uint64_t tpidruro_s;
478 
479         union { /* User RO Thread register. */
480             uint64_t tpidruro_ns;
481             uint64_t tpidrro_el[1];
482         };
483         uint64_t c14_cntfrq; /* Counter Frequency register */
484         uint64_t c14_cntkctl; /* Timer Control register */
485         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
486         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
487         ARMGenericTimer c14_timer[NUM_GTIMERS];
488         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
489         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
490         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
491         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
492         uint32_t c15_threadid; /* TI debugger thread-ID.  */
493         uint32_t c15_config_base_address; /* SCU base address.  */
494         uint32_t c15_diagnostic; /* diagnostic register */
495         uint32_t c15_power_diagnostic;
496         uint32_t c15_power_control; /* power control */
497         uint64_t dbgbvr[16]; /* breakpoint value registers */
498         uint64_t dbgbcr[16]; /* breakpoint control registers */
499         uint64_t dbgwvr[16]; /* watchpoint value registers */
500         uint64_t dbgwcr[16]; /* watchpoint control registers */
501         uint64_t dbgclaim;   /* DBGCLAIM bits */
502         uint64_t mdscr_el1;
503         uint64_t oslsr_el1; /* OS Lock Status */
504         uint64_t osdlr_el1; /* OS DoubleLock status */
505         uint64_t mdcr_el2;
506         uint64_t mdcr_el3;
507         /* Stores the architectural value of the counter *the last time it was
508          * updated* by pmccntr_op_start. Accesses should always be surrounded
509          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510          * architecturally-correct value is being read/set.
511          */
512         uint64_t c15_ccnt;
513         /* Stores the delta between the architectural value and the underlying
514          * cycle count during normal operation. It is used to update c15_ccnt
515          * to be the correct architectural value before accesses. During
516          * accesses, c15_ccnt_delta contains the underlying count being used
517          * for the access, after which it reverts to the delta value in
518          * pmccntr_op_finish.
519          */
520         uint64_t c15_ccnt_delta;
521         uint64_t c14_pmevcntr[31];
522         uint64_t c14_pmevcntr_delta[31];
523         uint64_t c14_pmevtyper[31];
524         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
525         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
526         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
527         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
528         uint64_t gcr_el1;
529         uint64_t rgsr_el1;
530 
531         /* Minimal RAS registers */
532         uint64_t disr_el1;
533         uint64_t vdisr_el2;
534         uint64_t vsesr_el2;
535 
536         /*
537          * Fine-Grained Trap registers. We store these as arrays so the
538          * access checking code doesn't have to manually select
539          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540          * FEAT_FGT2 will add more elements to these arrays.
541          */
542         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544         uint64_t fgt_exec[1]; /* HFGITR */
545 
546         /* RME registers */
547         uint64_t gpccr_el3;
548         uint64_t gptbr_el3;
549         uint64_t mfar_el3;
550     } cp15;
551 
552     struct {
553         /* M profile has up to 4 stack pointers:
554          * a Main Stack Pointer and a Process Stack Pointer for each
555          * of the Secure and Non-Secure states. (If the CPU doesn't support
556          * the security extension then it has only two SPs.)
557          * In QEMU we always store the currently active SP in regs[13],
558          * and the non-active SP for the current security state in
559          * v7m.other_sp. The stack pointers for the inactive security state
560          * are stored in other_ss_msp and other_ss_psp.
561          * switch_v7m_security_state() is responsible for rearranging them
562          * when we change security state.
563          */
564         uint32_t other_sp;
565         uint32_t other_ss_msp;
566         uint32_t other_ss_psp;
567         uint32_t vecbase[M_REG_NUM_BANKS];
568         uint32_t basepri[M_REG_NUM_BANKS];
569         uint32_t control[M_REG_NUM_BANKS];
570         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
572         uint32_t hfsr; /* HardFault Status */
573         uint32_t dfsr; /* Debug Fault Status Register */
574         uint32_t sfsr; /* Secure Fault Status Register */
575         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
576         uint32_t bfar; /* BusFault Address */
577         uint32_t sfar; /* Secure Fault Address Register */
578         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
579         int exception;
580         uint32_t primask[M_REG_NUM_BANKS];
581         uint32_t faultmask[M_REG_NUM_BANKS];
582         uint32_t aircr; /* only holds r/w state if security extn implemented */
583         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
584         uint32_t csselr[M_REG_NUM_BANKS];
585         uint32_t scr[M_REG_NUM_BANKS];
586         uint32_t msplim[M_REG_NUM_BANKS];
587         uint32_t psplim[M_REG_NUM_BANKS];
588         uint32_t fpcar[M_REG_NUM_BANKS];
589         uint32_t fpccr[M_REG_NUM_BANKS];
590         uint32_t fpdscr[M_REG_NUM_BANKS];
591         uint32_t cpacr[M_REG_NUM_BANKS];
592         uint32_t nsacr;
593         uint32_t ltpsize;
594         uint32_t vpr;
595     } v7m;
596 
597     /* Information associated with an exception about to be taken:
598      * code which raises an exception must set cs->exception_index and
599      * the relevant parts of this structure; the cpu_do_interrupt function
600      * will then set the guest-visible registers as part of the exception
601      * entry process.
602      */
603     struct {
604         uint32_t syndrome; /* AArch64 format syndrome register */
605         uint32_t fsr; /* AArch32 format fault status register info */
606         uint64_t vaddress; /* virtual addr associated with exception, if any */
607         uint32_t target_el; /* EL the exception should be targeted for */
608         /* If we implement EL2 we will also need to store information
609          * about the intermediate physical address for stage 2 faults.
610          */
611     } exception;
612 
613     /* Information associated with an SError */
614     struct {
615         uint8_t pending;
616         uint8_t has_esr;
617         uint64_t esr;
618     } serror;
619 
620     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621 
622     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623     uint32_t irq_line_state;
624 
625     /* Thumb-2 EE state.  */
626     uint32_t teecr;
627     uint32_t teehbr;
628 
629     /* VFP coprocessor state.  */
630     struct {
631         ARMVectorReg zregs[32];
632 
633 #ifdef TARGET_AARCH64
634         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
635 #define FFR_PRED_NUM 16
636         ARMPredicateReg pregs[17];
637         /* Scratch space for aa64 sve predicate temporary.  */
638         ARMPredicateReg preg_tmp;
639 #endif
640 
641         /* We store these fpcsr fields separately for convenience.  */
642         uint32_t qc[4] QEMU_ALIGNED(16);
643         int vec_len;
644         int vec_stride;
645 
646         uint32_t xregs[16];
647 
648         /* Scratch space for aa32 neon expansion.  */
649         uint32_t scratch[8];
650 
651         /* There are a number of distinct float control structures:
652          *
653          *  fp_status: is the "normal" fp status.
654          *  fp_status_fp16: used for half-precision calculations
655          *  standard_fp_status : the ARM "Standard FPSCR Value"
656          *  standard_fp_status_fp16 : used for half-precision
657          *       calculations with the ARM "Standard FPSCR Value"
658          *
659          * Half-precision operations are governed by a separate
660          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661          * status structure to control this.
662          *
663          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664          * round-to-nearest and is used by any operations (generally
665          * Neon) which the architecture defines as controlled by the
666          * standard FPSCR value rather than the FPSCR.
667          *
668          * The "standard FPSCR but for fp16 ops" is needed because
669          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670          * using a fixed value for it.
671          *
672          * To avoid having to transfer exception bits around, we simply
673          * say that the FPSCR cumulative exception flags are the logical
674          * OR of the flags in the four fp statuses. This relies on the
675          * only thing which needs to read the exception flags being
676          * an explicit FPSCR read.
677          */
678         float_status fp_status;
679         float_status fp_status_f16;
680         float_status standard_fp_status;
681         float_status standard_fp_status_f16;
682 
683         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
684         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
685     } vfp;
686 
687     uint64_t exclusive_addr;
688     uint64_t exclusive_val;
689     /*
690      * Contains the 'val' for the second 64-bit register of LDXP, which comes
691      * from the higher address, not the high part of a complete 128-bit value.
692      * In some ways it might be more convenient to record the exclusive value
693      * as the low and high halves of a 128 bit data value, but the current
694      * semantics of these fields are baked into the migration format.
695      */
696     uint64_t exclusive_high;
697 
698     /* iwMMXt coprocessor state.  */
699     struct {
700         uint64_t regs[16];
701         uint64_t val;
702 
703         uint32_t cregs[16];
704     } iwmmxt;
705 
706 #ifdef TARGET_AARCH64
707     struct {
708         ARMPACKey apia;
709         ARMPACKey apib;
710         ARMPACKey apda;
711         ARMPACKey apdb;
712         ARMPACKey apga;
713     } keys;
714 
715     uint64_t scxtnum_el[4];
716 
717     /*
718      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
720      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721      * When SVL is less than the architectural maximum, the accessible
722      * storage is restricted, such that if the SVL is X bytes the guest can
723      * see only the bottom X elements of zarray[], and only the least
724      * significant X bytes of each element of the array. (In other words,
725      * the observable part is always square.)
726      *
727      * The ZA storage can also be considered as a set of square tiles of
728      * elements of different sizes. The mapping from tiles to the ZA array
729      * is architecturally defined, such that for tiles of elements of esz
730      * bytes, the Nth row (or "horizontal slice") of tile T is in
731      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732      * in the ZA storage, because its rows are striped through the ZA array.
733      *
734      * Because this is so large, keep this toward the end of the reset area,
735      * to keep the offsets into the rest of the structure smaller.
736      */
737     ARMVectorReg zarray[ARM_MAX_VQ * 16];
738 #endif
739 
740     struct CPUBreakpoint *cpu_breakpoint[16];
741     struct CPUWatchpoint *cpu_watchpoint[16];
742 
743     /* Optional fault info across tlb lookup. */
744     ARMMMUFaultInfo *tlb_fi;
745 
746     /* Fields up to this point are cleared by a CPU reset */
747     struct {} end_reset_fields;
748 
749     /* Fields after this point are preserved across CPU reset. */
750 
751     /* Internal CPU feature flags.  */
752     uint64_t features;
753 
754     /* PMSAv7 MPU */
755     struct {
756         uint32_t *drbar;
757         uint32_t *drsr;
758         uint32_t *dracr;
759         uint32_t rnr[M_REG_NUM_BANKS];
760     } pmsav7;
761 
762     /* PMSAv8 MPU */
763     struct {
764         /* The PMSAv8 implementation also shares some PMSAv7 config
765          * and state:
766          *  pmsav7.rnr (region number register)
767          *  pmsav7_dregion (number of configured regions)
768          */
769         uint32_t *rbar[M_REG_NUM_BANKS];
770         uint32_t *rlar[M_REG_NUM_BANKS];
771         uint32_t *hprbar;
772         uint32_t *hprlar;
773         uint32_t mair0[M_REG_NUM_BANKS];
774         uint32_t mair1[M_REG_NUM_BANKS];
775         uint32_t hprselr;
776     } pmsav8;
777 
778     /* v8M SAU */
779     struct {
780         uint32_t *rbar;
781         uint32_t *rlar;
782         uint32_t rnr;
783         uint32_t ctrl;
784     } sau;
785 
786 #if !defined(CONFIG_USER_ONLY)
787     NVICState *nvic;
788     const struct arm_boot_info *boot_info;
789     /* Store GICv3CPUState to access from this struct */
790     void *gicv3state;
791 #else /* CONFIG_USER_ONLY */
792     /* For usermode syscall translation.  */
793     bool eabi;
794 #endif /* CONFIG_USER_ONLY */
795 
796 #ifdef TARGET_TAGGED_ADDRESSES
797     /* Linux syscall tagged address support */
798     bool tagged_addr_enable;
799 #endif
800 } CPUARMState;
801 
802 static inline void set_feature(CPUARMState *env, int feature)
803 {
804     env->features |= 1ULL << feature;
805 }
806 
807 static inline void unset_feature(CPUARMState *env, int feature)
808 {
809     env->features &= ~(1ULL << feature);
810 }
811 
812 /**
813  * ARMELChangeHookFn:
814  * type of a function which can be registered via arm_register_el_change_hook()
815  * to get callbacks when the CPU changes its exception level or mode.
816  */
817 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818 typedef struct ARMELChangeHook ARMELChangeHook;
819 struct ARMELChangeHook {
820     ARMELChangeHookFn *hook;
821     void *opaque;
822     QLIST_ENTRY(ARMELChangeHook) node;
823 };
824 
825 /* These values map onto the return values for
826  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827 typedef enum ARMPSCIState {
828     PSCI_ON = 0,
829     PSCI_OFF = 1,
830     PSCI_ON_PENDING = 2
831 } ARMPSCIState;
832 
833 typedef struct ARMISARegisters ARMISARegisters;
834 
835 /*
836  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838  *
839  * While processing properties during initialization, corresponding init bits
840  * are set for bits in sve_vq_map that have been set by properties.
841  *
842  * Bits set in supported represent valid vector lengths for the CPU type.
843  */
844 typedef struct {
845     uint32_t map, init, supported;
846 } ARMVQMap;
847 
848 /**
849  * ARMCPU:
850  * @env: #CPUARMState
851  *
852  * An ARM CPU core.
853  */
854 struct ArchCPU {
855     /*< private >*/
856     CPUState parent_obj;
857     /*< public >*/
858 
859     CPUNegativeOffsetState neg;
860     CPUARMState env;
861 
862     /* Coprocessor information */
863     GHashTable *cp_regs;
864     /* For marshalling (mostly coprocessor) register state between the
865      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
866      * we use these arrays.
867      */
868     /* List of register indexes managed via these arrays; (full KVM style
869      * 64 bit indexes, not CPRegInfo 32 bit indexes)
870      */
871     uint64_t *cpreg_indexes;
872     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
873     uint64_t *cpreg_values;
874     /* Length of the indexes, values, reset_values arrays */
875     int32_t cpreg_array_len;
876     /* These are used only for migration: incoming data arrives in
877      * these fields and is sanity checked in post_load before copying
878      * to the working data structures above.
879      */
880     uint64_t *cpreg_vmstate_indexes;
881     uint64_t *cpreg_vmstate_values;
882     int32_t cpreg_vmstate_array_len;
883 
884     DynamicGDBXMLInfo dyn_sysreg_xml;
885     DynamicGDBXMLInfo dyn_svereg_xml;
886     DynamicGDBXMLInfo dyn_m_systemreg_xml;
887     DynamicGDBXMLInfo dyn_m_secextreg_xml;
888 
889     /* Timers used by the generic (architected) timer */
890     QEMUTimer *gt_timer[NUM_GTIMERS];
891     /*
892      * Timer used by the PMU. Its state is restored after migration by
893      * pmu_op_finish() - it does not need other handling during migration
894      */
895     QEMUTimer *pmu_timer;
896     /* GPIO outputs for generic timer */
897     qemu_irq gt_timer_outputs[NUM_GTIMERS];
898     /* GPIO output for GICv3 maintenance interrupt signal */
899     qemu_irq gicv3_maintenance_interrupt;
900     /* GPIO output for the PMU interrupt */
901     qemu_irq pmu_interrupt;
902 
903     /* MemoryRegion to use for secure physical accesses */
904     MemoryRegion *secure_memory;
905 
906     /* MemoryRegion to use for allocation tag accesses */
907     MemoryRegion *tag_memory;
908     MemoryRegion *secure_tag_memory;
909 
910     /* For v8M, pointer to the IDAU interface provided by board/SoC */
911     Object *idau;
912 
913     /* 'compatible' string for this CPU for Linux device trees */
914     const char *dtb_compatible;
915 
916     /* PSCI version for this CPU
917      * Bits[31:16] = Major Version
918      * Bits[15:0] = Minor Version
919      */
920     uint32_t psci_version;
921 
922     /* Current power state, access guarded by BQL */
923     ARMPSCIState power_state;
924 
925     /* CPU has virtualization extension */
926     bool has_el2;
927     /* CPU has security extension */
928     bool has_el3;
929     /* CPU has PMU (Performance Monitor Unit) */
930     bool has_pmu;
931     /* CPU has VFP */
932     bool has_vfp;
933     /* CPU has 32 VFP registers */
934     bool has_vfp_d32;
935     /* CPU has Neon */
936     bool has_neon;
937     /* CPU has M-profile DSP extension */
938     bool has_dsp;
939 
940     /* CPU has memory protection unit */
941     bool has_mpu;
942     /* PMSAv7 MPU number of supported regions */
943     uint32_t pmsav7_dregion;
944     /* PMSAv8 MPU number of supported hyp regions */
945     uint32_t pmsav8r_hdregion;
946     /* v8M SAU number of supported regions */
947     uint32_t sau_sregion;
948 
949     /* PSCI conduit used to invoke PSCI methods
950      * 0 - disabled, 1 - smc, 2 - hvc
951      */
952     uint32_t psci_conduit;
953 
954     /* For v8M, initial value of the Secure VTOR */
955     uint32_t init_svtor;
956     /* For v8M, initial value of the Non-secure VTOR */
957     uint32_t init_nsvtor;
958 
959     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
960      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
961      */
962     uint32_t kvm_target;
963 
964 #ifdef CONFIG_KVM
965     /* KVM init features for this CPU */
966     uint32_t kvm_init_features[7];
967 
968     /* KVM CPU state */
969 
970     /* KVM virtual time adjustment */
971     bool kvm_adjvtime;
972     bool kvm_vtime_dirty;
973     uint64_t kvm_vtime;
974 
975     /* KVM steal time */
976     OnOffAuto kvm_steal_time;
977 #endif /* CONFIG_KVM */
978 
979     /* Uniprocessor system with MP extensions */
980     bool mp_is_up;
981 
982     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
983      * and the probe failed (so we need to report the error in realize)
984      */
985     bool host_cpu_probe_failed;
986 
987     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
988      * register.
989      */
990     int32_t core_count;
991 
992     /* The instance init functions for implementation-specific subclasses
993      * set these fields to specify the implementation-dependent values of
994      * various constant registers and reset values of non-constant
995      * registers.
996      * Some of these might become QOM properties eventually.
997      * Field names match the official register names as defined in the
998      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
999      * is used for reset values of non-constant registers; no reset_
1000      * prefix means a constant register.
1001      * Some of these registers are split out into a substructure that
1002      * is shared with the translators to control the ISA.
1003      *
1004      * Note that if you add an ID register to the ARMISARegisters struct
1005      * you need to also update the 32-bit and 64-bit versions of the
1006      * kvm_arm_get_host_cpu_features() function to correctly populate the
1007      * field by reading the value from the KVM vCPU.
1008      */
1009     struct ARMISARegisters {
1010         uint32_t id_isar0;
1011         uint32_t id_isar1;
1012         uint32_t id_isar2;
1013         uint32_t id_isar3;
1014         uint32_t id_isar4;
1015         uint32_t id_isar5;
1016         uint32_t id_isar6;
1017         uint32_t id_mmfr0;
1018         uint32_t id_mmfr1;
1019         uint32_t id_mmfr2;
1020         uint32_t id_mmfr3;
1021         uint32_t id_mmfr4;
1022         uint32_t id_mmfr5;
1023         uint32_t id_pfr0;
1024         uint32_t id_pfr1;
1025         uint32_t id_pfr2;
1026         uint32_t mvfr0;
1027         uint32_t mvfr1;
1028         uint32_t mvfr2;
1029         uint32_t id_dfr0;
1030         uint32_t id_dfr1;
1031         uint32_t dbgdidr;
1032         uint32_t dbgdevid;
1033         uint32_t dbgdevid1;
1034         uint64_t id_aa64isar0;
1035         uint64_t id_aa64isar1;
1036         uint64_t id_aa64isar2;
1037         uint64_t id_aa64pfr0;
1038         uint64_t id_aa64pfr1;
1039         uint64_t id_aa64mmfr0;
1040         uint64_t id_aa64mmfr1;
1041         uint64_t id_aa64mmfr2;
1042         uint64_t id_aa64dfr0;
1043         uint64_t id_aa64dfr1;
1044         uint64_t id_aa64zfr0;
1045         uint64_t id_aa64smfr0;
1046         uint64_t reset_pmcr_el0;
1047     } isar;
1048     uint64_t midr;
1049     uint32_t revidr;
1050     uint32_t reset_fpsid;
1051     uint64_t ctr;
1052     uint32_t reset_sctlr;
1053     uint64_t pmceid0;
1054     uint64_t pmceid1;
1055     uint32_t id_afr0;
1056     uint64_t id_aa64afr0;
1057     uint64_t id_aa64afr1;
1058     uint64_t clidr;
1059     uint64_t mp_affinity; /* MP ID without feature bits */
1060     /* The elements of this array are the CCSIDR values for each cache,
1061      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1062      */
1063     uint64_t ccsidr[16];
1064     uint64_t reset_cbar;
1065     uint32_t reset_auxcr;
1066     bool reset_hivecs;
1067     uint8_t reset_l0gptsz;
1068 
1069     /*
1070      * Intermediate values used during property parsing.
1071      * Once finalized, the values should be read from ID_AA64*.
1072      */
1073     bool prop_pauth;
1074     bool prop_pauth_impdef;
1075     bool prop_pauth_qarma3;
1076     bool prop_lpa2;
1077 
1078     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1079     uint8_t dcz_blocksize;
1080     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1081     uint8_t gm_blocksize;
1082 
1083     uint64_t rvbar_prop; /* Property/input signals.  */
1084 
1085     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1086     int gic_num_lrs; /* number of list registers */
1087     int gic_vpribits; /* number of virtual priority bits */
1088     int gic_vprebits; /* number of virtual preemption bits */
1089     int gic_pribits; /* number of physical priority bits */
1090 
1091     /* Whether the cfgend input is high (i.e. this CPU should reset into
1092      * big-endian mode).  This setting isn't used directly: instead it modifies
1093      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1094      * architecture version.
1095      */
1096     bool cfgend;
1097 
1098     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1099     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1100 
1101     int32_t node_id; /* NUMA node this CPU belongs to */
1102 
1103     /* Used to synchronize KVM and QEMU in-kernel device levels */
1104     uint8_t device_irq_level;
1105 
1106     /* Used to set the maximum vector length the cpu will support.  */
1107     uint32_t sve_max_vq;
1108 
1109 #ifdef CONFIG_USER_ONLY
1110     /* Used to set the default vector length at process start. */
1111     uint32_t sve_default_vq;
1112     uint32_t sme_default_vq;
1113 #endif
1114 
1115     ARMVQMap sve_vq;
1116     ARMVQMap sme_vq;
1117 
1118     /* Generic timer counter frequency, in Hz */
1119     uint64_t gt_cntfrq_hz;
1120 };
1121 
1122 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1123 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1124 
1125 void arm_cpu_post_init(Object *obj);
1126 
1127 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1128 
1129 #ifndef CONFIG_USER_ONLY
1130 extern const VMStateDescription vmstate_arm_cpu;
1131 
1132 void arm_cpu_do_interrupt(CPUState *cpu);
1133 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1134 
1135 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1136                                          MemTxAttrs *attrs);
1137 #endif /* !CONFIG_USER_ONLY */
1138 
1139 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1140 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1141 
1142 /* Returns the dynamically generated XML for the gdb stub.
1143  * Returns a pointer to the XML contents for the specified XML file or NULL
1144  * if the XML name doesn't match the predefined one.
1145  */
1146 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1147 
1148 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1149                              int cpuid, DumpState *s);
1150 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1151                              int cpuid, DumpState *s);
1152 
1153 #ifdef TARGET_AARCH64
1154 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1155 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1156 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1157 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1158                            int new_el, bool el0_a64);
1159 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1160 
1161 /*
1162  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1163  * The byte at offset i from the start of the in-memory representation contains
1164  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1165  * lowest offsets are stored in the lowest memory addresses, then that nearly
1166  * matches QEMU's representation, which is to use an array of host-endian
1167  * uint64_t's, where the lower offsets are at the lower indices. To complete
1168  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1169  */
1170 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1171 {
1172 #if HOST_BIG_ENDIAN
1173     int i;
1174 
1175     for (i = 0; i < nr; ++i) {
1176         dst[i] = bswap64(src[i]);
1177     }
1178 
1179     return dst;
1180 #else
1181     return src;
1182 #endif
1183 }
1184 
1185 #else
1186 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1187 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1188                                          int n, bool a)
1189 { }
1190 #endif
1191 
1192 void aarch64_sync_32_to_64(CPUARMState *env);
1193 void aarch64_sync_64_to_32(CPUARMState *env);
1194 
1195 int fp_exception_el(CPUARMState *env, int cur_el);
1196 int sve_exception_el(CPUARMState *env, int cur_el);
1197 int sme_exception_el(CPUARMState *env, int cur_el);
1198 
1199 /**
1200  * sve_vqm1_for_el_sm:
1201  * @env: CPUARMState
1202  * @el: exception level
1203  * @sm: streaming mode
1204  *
1205  * Compute the current vector length for @el & @sm, in units of
1206  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1207  * If @sm, compute for SVL, otherwise NVL.
1208  */
1209 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1210 
1211 /* Likewise, but using @sm = PSTATE.SM. */
1212 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1213 
1214 static inline bool is_a64(CPUARMState *env)
1215 {
1216     return env->aarch64;
1217 }
1218 
1219 /**
1220  * pmu_op_start/finish
1221  * @env: CPUARMState
1222  *
1223  * Convert all PMU counters between their delta form (the typical mode when
1224  * they are enabled) and the guest-visible values. These two calls must
1225  * surround any action which might affect the counters.
1226  */
1227 void pmu_op_start(CPUARMState *env);
1228 void pmu_op_finish(CPUARMState *env);
1229 
1230 /*
1231  * Called when a PMU counter is due to overflow
1232  */
1233 void arm_pmu_timer_cb(void *opaque);
1234 
1235 /**
1236  * Functions to register as EL change hooks for PMU mode filtering
1237  */
1238 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1239 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1240 
1241 /*
1242  * pmu_init
1243  * @cpu: ARMCPU
1244  *
1245  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1246  * for the current configuration
1247  */
1248 void pmu_init(ARMCPU *cpu);
1249 
1250 /* SCTLR bit meanings. Several bits have been reused in newer
1251  * versions of the architecture; in that case we define constants
1252  * for both old and new bit meanings. Code which tests against those
1253  * bits should probably check or otherwise arrange that the CPU
1254  * is the architectural version it expects.
1255  */
1256 #define SCTLR_M       (1U << 0)
1257 #define SCTLR_A       (1U << 1)
1258 #define SCTLR_C       (1U << 2)
1259 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1260 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1261 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1262 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1263 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1264 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1265 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1266 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1267 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1268 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1269 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1270 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1271 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1272 #define SCTLR_SED     (1U << 8) /* v8 onward */
1273 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1274 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1275 #define SCTLR_F       (1U << 10) /* up to v6 */
1276 #define SCTLR_SW      (1U << 10) /* v7 */
1277 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1278 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1279 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1280 #define SCTLR_I       (1U << 12)
1281 #define SCTLR_V       (1U << 13) /* AArch32 only */
1282 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1283 #define SCTLR_RR      (1U << 14) /* up to v7 */
1284 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1285 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1286 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1287 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1288 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1289 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1290 #define SCTLR_BR      (1U << 17) /* PMSA only */
1291 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1292 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1293 #define SCTLR_WXN     (1U << 19)
1294 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1295 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1296 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1297 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1298 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1299 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1300 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1301 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1302 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1303 #define SCTLR_VE      (1U << 24) /* up to v7 */
1304 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1305 #define SCTLR_EE      (1U << 25)
1306 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1307 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1308 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1309 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1310 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1311 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1312 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1313 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1314 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1315 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1316 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1317 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1318 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1319 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1320 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1321 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1322 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1323 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1324 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1325 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1326 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1327 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1328 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1329 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1330 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1331 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1332 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1333 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1334 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1335 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1336 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1337 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1338 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1339 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1340 
1341 /* Bit definitions for CPACR (AArch32 only) */
1342 FIELD(CPACR, CP10, 20, 2)
1343 FIELD(CPACR, CP11, 22, 2)
1344 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1345 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1346 FIELD(CPACR, ASEDIS, 31, 1)
1347 
1348 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1349 FIELD(CPACR_EL1, ZEN, 16, 2)
1350 FIELD(CPACR_EL1, FPEN, 20, 2)
1351 FIELD(CPACR_EL1, SMEN, 24, 2)
1352 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1353 
1354 /* Bit definitions for HCPTR (AArch32 only) */
1355 FIELD(HCPTR, TCP10, 10, 1)
1356 FIELD(HCPTR, TCP11, 11, 1)
1357 FIELD(HCPTR, TASE, 15, 1)
1358 FIELD(HCPTR, TTA, 20, 1)
1359 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1360 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1361 
1362 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1363 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1364 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1365 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1366 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1367 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1368 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1369 FIELD(CPTR_EL2, TTA, 28, 1)
1370 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1371 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1372 
1373 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1374 FIELD(CPTR_EL3, EZ, 8, 1)
1375 FIELD(CPTR_EL3, TFP, 10, 1)
1376 FIELD(CPTR_EL3, ESM, 12, 1)
1377 FIELD(CPTR_EL3, TTA, 20, 1)
1378 FIELD(CPTR_EL3, TAM, 30, 1)
1379 FIELD(CPTR_EL3, TCPAC, 31, 1)
1380 
1381 #define MDCR_MTPME    (1U << 28)
1382 #define MDCR_TDCC     (1U << 27)
1383 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1384 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1385 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1386 #define MDCR_EPMAD    (1U << 21)
1387 #define MDCR_EDAD     (1U << 20)
1388 #define MDCR_TTRF     (1U << 19)
1389 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1390 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1391 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1392 #define MDCR_SDD      (1U << 16)
1393 #define MDCR_SPD      (3U << 14)
1394 #define MDCR_TDRA     (1U << 11)
1395 #define MDCR_TDOSA    (1U << 10)
1396 #define MDCR_TDA      (1U << 9)
1397 #define MDCR_TDE      (1U << 8)
1398 #define MDCR_HPME     (1U << 7)
1399 #define MDCR_TPM      (1U << 6)
1400 #define MDCR_TPMCR    (1U << 5)
1401 #define MDCR_HPMN     (0x1fU)
1402 
1403 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1404 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1405                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1406                          MDCR_STE | MDCR_SPME | MDCR_SPD)
1407 
1408 #define CPSR_M (0x1fU)
1409 #define CPSR_T (1U << 5)
1410 #define CPSR_F (1U << 6)
1411 #define CPSR_I (1U << 7)
1412 #define CPSR_A (1U << 8)
1413 #define CPSR_E (1U << 9)
1414 #define CPSR_IT_2_7 (0xfc00U)
1415 #define CPSR_GE (0xfU << 16)
1416 #define CPSR_IL (1U << 20)
1417 #define CPSR_DIT (1U << 21)
1418 #define CPSR_PAN (1U << 22)
1419 #define CPSR_SSBS (1U << 23)
1420 #define CPSR_J (1U << 24)
1421 #define CPSR_IT_0_1 (3U << 25)
1422 #define CPSR_Q (1U << 27)
1423 #define CPSR_V (1U << 28)
1424 #define CPSR_C (1U << 29)
1425 #define CPSR_Z (1U << 30)
1426 #define CPSR_N (1U << 31)
1427 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1428 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1429 
1430 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1431 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1432     | CPSR_NZCV)
1433 /* Bits writable in user mode.  */
1434 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1435 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1436 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1437 
1438 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1439 #define XPSR_EXCP 0x1ffU
1440 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1441 #define XPSR_IT_2_7 CPSR_IT_2_7
1442 #define XPSR_GE CPSR_GE
1443 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1444 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1445 #define XPSR_IT_0_1 CPSR_IT_0_1
1446 #define XPSR_Q CPSR_Q
1447 #define XPSR_V CPSR_V
1448 #define XPSR_C CPSR_C
1449 #define XPSR_Z CPSR_Z
1450 #define XPSR_N CPSR_N
1451 #define XPSR_NZCV CPSR_NZCV
1452 #define XPSR_IT CPSR_IT
1453 
1454 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1455 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1456 #define TTBCR_PD0    (1U << 4)
1457 #define TTBCR_PD1    (1U << 5)
1458 #define TTBCR_EPD0   (1U << 7)
1459 #define TTBCR_IRGN0  (3U << 8)
1460 #define TTBCR_ORGN0  (3U << 10)
1461 #define TTBCR_SH0    (3U << 12)
1462 #define TTBCR_T1SZ   (3U << 16)
1463 #define TTBCR_A1     (1U << 22)
1464 #define TTBCR_EPD1   (1U << 23)
1465 #define TTBCR_IRGN1  (3U << 24)
1466 #define TTBCR_ORGN1  (3U << 26)
1467 #define TTBCR_SH1    (1U << 28)
1468 #define TTBCR_EAE    (1U << 31)
1469 
1470 FIELD(VTCR, T0SZ, 0, 6)
1471 FIELD(VTCR, SL0, 6, 2)
1472 FIELD(VTCR, IRGN0, 8, 2)
1473 FIELD(VTCR, ORGN0, 10, 2)
1474 FIELD(VTCR, SH0, 12, 2)
1475 FIELD(VTCR, TG0, 14, 2)
1476 FIELD(VTCR, PS, 16, 3)
1477 FIELD(VTCR, VS, 19, 1)
1478 FIELD(VTCR, HA, 21, 1)
1479 FIELD(VTCR, HD, 22, 1)
1480 FIELD(VTCR, HWU59, 25, 1)
1481 FIELD(VTCR, HWU60, 26, 1)
1482 FIELD(VTCR, HWU61, 27, 1)
1483 FIELD(VTCR, HWU62, 28, 1)
1484 FIELD(VTCR, NSW, 29, 1)
1485 FIELD(VTCR, NSA, 30, 1)
1486 FIELD(VTCR, DS, 32, 1)
1487 FIELD(VTCR, SL2, 33, 1)
1488 
1489 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1490  * Only these are valid when in AArch64 mode; in
1491  * AArch32 mode SPSRs are basically CPSR-format.
1492  */
1493 #define PSTATE_SP (1U)
1494 #define PSTATE_M (0xFU)
1495 #define PSTATE_nRW (1U << 4)
1496 #define PSTATE_F (1U << 6)
1497 #define PSTATE_I (1U << 7)
1498 #define PSTATE_A (1U << 8)
1499 #define PSTATE_D (1U << 9)
1500 #define PSTATE_BTYPE (3U << 10)
1501 #define PSTATE_SSBS (1U << 12)
1502 #define PSTATE_IL (1U << 20)
1503 #define PSTATE_SS (1U << 21)
1504 #define PSTATE_PAN (1U << 22)
1505 #define PSTATE_UAO (1U << 23)
1506 #define PSTATE_DIT (1U << 24)
1507 #define PSTATE_TCO (1U << 25)
1508 #define PSTATE_V (1U << 28)
1509 #define PSTATE_C (1U << 29)
1510 #define PSTATE_Z (1U << 30)
1511 #define PSTATE_N (1U << 31)
1512 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1513 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1514 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1515 /* Mode values for AArch64 */
1516 #define PSTATE_MODE_EL3h 13
1517 #define PSTATE_MODE_EL3t 12
1518 #define PSTATE_MODE_EL2h 9
1519 #define PSTATE_MODE_EL2t 8
1520 #define PSTATE_MODE_EL1h 5
1521 #define PSTATE_MODE_EL1t 4
1522 #define PSTATE_MODE_EL0t 0
1523 
1524 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1525 FIELD(SVCR, SM, 0, 1)
1526 FIELD(SVCR, ZA, 1, 1)
1527 
1528 /* Fields for SMCR_ELx. */
1529 FIELD(SMCR, LEN, 0, 4)
1530 FIELD(SMCR, FA64, 31, 1)
1531 
1532 /* Write a new value to v7m.exception, thus transitioning into or out
1533  * of Handler mode; this may result in a change of active stack pointer.
1534  */
1535 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1536 
1537 /* Map EL and handler into a PSTATE_MODE.  */
1538 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1539 {
1540     return (el << 2) | handler;
1541 }
1542 
1543 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1544  * interprocessing, so we don't attempt to sync with the cpsr state used by
1545  * the 32 bit decoder.
1546  */
1547 static inline uint32_t pstate_read(CPUARMState *env)
1548 {
1549     int ZF;
1550 
1551     ZF = (env->ZF == 0);
1552     return (env->NF & 0x80000000) | (ZF << 30)
1553         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1554         | env->pstate | env->daif | (env->btype << 10);
1555 }
1556 
1557 static inline void pstate_write(CPUARMState *env, uint32_t val)
1558 {
1559     env->ZF = (~val) & PSTATE_Z;
1560     env->NF = val;
1561     env->CF = (val >> 29) & 1;
1562     env->VF = (val << 3) & 0x80000000;
1563     env->daif = val & PSTATE_DAIF;
1564     env->btype = (val >> 10) & 3;
1565     env->pstate = val & ~CACHED_PSTATE_BITS;
1566 }
1567 
1568 /* Return the current CPSR value.  */
1569 uint32_t cpsr_read(CPUARMState *env);
1570 
1571 typedef enum CPSRWriteType {
1572     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1573     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1574     CPSRWriteRaw = 2,
1575         /* trust values, no reg bank switch, no hflags rebuild */
1576     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1577 } CPSRWriteType;
1578 
1579 /*
1580  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1581  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1582  * correspond to TB flags bits cached in the hflags, unless @write_type
1583  * is CPSRWriteRaw.
1584  */
1585 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1586                 CPSRWriteType write_type);
1587 
1588 /* Return the current xPSR value.  */
1589 static inline uint32_t xpsr_read(CPUARMState *env)
1590 {
1591     int ZF;
1592     ZF = (env->ZF == 0);
1593     return (env->NF & 0x80000000) | (ZF << 30)
1594         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1595         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1596         | ((env->condexec_bits & 0xfc) << 8)
1597         | (env->GE << 16)
1598         | env->v7m.exception;
1599 }
1600 
1601 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1602 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1603 {
1604     if (mask & XPSR_NZCV) {
1605         env->ZF = (~val) & XPSR_Z;
1606         env->NF = val;
1607         env->CF = (val >> 29) & 1;
1608         env->VF = (val << 3) & 0x80000000;
1609     }
1610     if (mask & XPSR_Q) {
1611         env->QF = ((val & XPSR_Q) != 0);
1612     }
1613     if (mask & XPSR_GE) {
1614         env->GE = (val & XPSR_GE) >> 16;
1615     }
1616 #ifndef CONFIG_USER_ONLY
1617     if (mask & XPSR_T) {
1618         env->thumb = ((val & XPSR_T) != 0);
1619     }
1620     if (mask & XPSR_IT_0_1) {
1621         env->condexec_bits &= ~3;
1622         env->condexec_bits |= (val >> 25) & 3;
1623     }
1624     if (mask & XPSR_IT_2_7) {
1625         env->condexec_bits &= 3;
1626         env->condexec_bits |= (val >> 8) & 0xfc;
1627     }
1628     if (mask & XPSR_EXCP) {
1629         /* Note that this only happens on exception exit */
1630         write_v7m_exception(env, val & XPSR_EXCP);
1631     }
1632 #endif
1633 }
1634 
1635 #define HCR_VM        (1ULL << 0)
1636 #define HCR_SWIO      (1ULL << 1)
1637 #define HCR_PTW       (1ULL << 2)
1638 #define HCR_FMO       (1ULL << 3)
1639 #define HCR_IMO       (1ULL << 4)
1640 #define HCR_AMO       (1ULL << 5)
1641 #define HCR_VF        (1ULL << 6)
1642 #define HCR_VI        (1ULL << 7)
1643 #define HCR_VSE       (1ULL << 8)
1644 #define HCR_FB        (1ULL << 9)
1645 #define HCR_BSU_MASK  (3ULL << 10)
1646 #define HCR_DC        (1ULL << 12)
1647 #define HCR_TWI       (1ULL << 13)
1648 #define HCR_TWE       (1ULL << 14)
1649 #define HCR_TID0      (1ULL << 15)
1650 #define HCR_TID1      (1ULL << 16)
1651 #define HCR_TID2      (1ULL << 17)
1652 #define HCR_TID3      (1ULL << 18)
1653 #define HCR_TSC       (1ULL << 19)
1654 #define HCR_TIDCP     (1ULL << 20)
1655 #define HCR_TACR      (1ULL << 21)
1656 #define HCR_TSW       (1ULL << 22)
1657 #define HCR_TPCP      (1ULL << 23)
1658 #define HCR_TPU       (1ULL << 24)
1659 #define HCR_TTLB      (1ULL << 25)
1660 #define HCR_TVM       (1ULL << 26)
1661 #define HCR_TGE       (1ULL << 27)
1662 #define HCR_TDZ       (1ULL << 28)
1663 #define HCR_HCD       (1ULL << 29)
1664 #define HCR_TRVM      (1ULL << 30)
1665 #define HCR_RW        (1ULL << 31)
1666 #define HCR_CD        (1ULL << 32)
1667 #define HCR_ID        (1ULL << 33)
1668 #define HCR_E2H       (1ULL << 34)
1669 #define HCR_TLOR      (1ULL << 35)
1670 #define HCR_TERR      (1ULL << 36)
1671 #define HCR_TEA       (1ULL << 37)
1672 #define HCR_MIOCNCE   (1ULL << 38)
1673 #define HCR_TME       (1ULL << 39)
1674 #define HCR_APK       (1ULL << 40)
1675 #define HCR_API       (1ULL << 41)
1676 #define HCR_NV        (1ULL << 42)
1677 #define HCR_NV1       (1ULL << 43)
1678 #define HCR_AT        (1ULL << 44)
1679 #define HCR_NV2       (1ULL << 45)
1680 #define HCR_FWB       (1ULL << 46)
1681 #define HCR_FIEN      (1ULL << 47)
1682 #define HCR_GPF       (1ULL << 48)
1683 #define HCR_TID4      (1ULL << 49)
1684 #define HCR_TICAB     (1ULL << 50)
1685 #define HCR_AMVOFFEN  (1ULL << 51)
1686 #define HCR_TOCU      (1ULL << 52)
1687 #define HCR_ENSCXT    (1ULL << 53)
1688 #define HCR_TTLBIS    (1ULL << 54)
1689 #define HCR_TTLBOS    (1ULL << 55)
1690 #define HCR_ATA       (1ULL << 56)
1691 #define HCR_DCT       (1ULL << 57)
1692 #define HCR_TID5      (1ULL << 58)
1693 #define HCR_TWEDEN    (1ULL << 59)
1694 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1695 
1696 #define HCRX_ENAS0    (1ULL << 0)
1697 #define HCRX_ENALS    (1ULL << 1)
1698 #define HCRX_ENASR    (1ULL << 2)
1699 #define HCRX_FNXS     (1ULL << 3)
1700 #define HCRX_FGTNXS   (1ULL << 4)
1701 #define HCRX_SMPME    (1ULL << 5)
1702 #define HCRX_TALLINT  (1ULL << 6)
1703 #define HCRX_VINMI    (1ULL << 7)
1704 #define HCRX_VFNMI    (1ULL << 8)
1705 #define HCRX_CMOW     (1ULL << 9)
1706 #define HCRX_MCE2     (1ULL << 10)
1707 #define HCRX_MSCEN    (1ULL << 11)
1708 
1709 #define HPFAR_NS      (1ULL << 63)
1710 
1711 #define SCR_NS                (1ULL << 0)
1712 #define SCR_IRQ               (1ULL << 1)
1713 #define SCR_FIQ               (1ULL << 2)
1714 #define SCR_EA                (1ULL << 3)
1715 #define SCR_FW                (1ULL << 4)
1716 #define SCR_AW                (1ULL << 5)
1717 #define SCR_NET               (1ULL << 6)
1718 #define SCR_SMD               (1ULL << 7)
1719 #define SCR_HCE               (1ULL << 8)
1720 #define SCR_SIF               (1ULL << 9)
1721 #define SCR_RW                (1ULL << 10)
1722 #define SCR_ST                (1ULL << 11)
1723 #define SCR_TWI               (1ULL << 12)
1724 #define SCR_TWE               (1ULL << 13)
1725 #define SCR_TLOR              (1ULL << 14)
1726 #define SCR_TERR              (1ULL << 15)
1727 #define SCR_APK               (1ULL << 16)
1728 #define SCR_API               (1ULL << 17)
1729 #define SCR_EEL2              (1ULL << 18)
1730 #define SCR_EASE              (1ULL << 19)
1731 #define SCR_NMEA              (1ULL << 20)
1732 #define SCR_FIEN              (1ULL << 21)
1733 #define SCR_ENSCXT            (1ULL << 25)
1734 #define SCR_ATA               (1ULL << 26)
1735 #define SCR_FGTEN             (1ULL << 27)
1736 #define SCR_ECVEN             (1ULL << 28)
1737 #define SCR_TWEDEN            (1ULL << 29)
1738 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1739 #define SCR_TME               (1ULL << 34)
1740 #define SCR_AMVOFFEN          (1ULL << 35)
1741 #define SCR_ENAS0             (1ULL << 36)
1742 #define SCR_ADEN              (1ULL << 37)
1743 #define SCR_HXEN              (1ULL << 38)
1744 #define SCR_TRNDR             (1ULL << 40)
1745 #define SCR_ENTP2             (1ULL << 41)
1746 #define SCR_GPF               (1ULL << 48)
1747 #define SCR_NSE               (1ULL << 62)
1748 
1749 #define HSTR_TTEE (1 << 16)
1750 #define HSTR_TJDBX (1 << 17)
1751 
1752 #define CNTHCTL_CNTVMASK      (1 << 18)
1753 #define CNTHCTL_CNTPMASK      (1 << 19)
1754 
1755 /* Return the current FPSCR value.  */
1756 uint32_t vfp_get_fpscr(CPUARMState *env);
1757 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1758 
1759 /* FPCR, Floating Point Control Register
1760  * FPSR, Floating Poiht Status Register
1761  *
1762  * For A64 the FPSCR is split into two logically distinct registers,
1763  * FPCR and FPSR. However since they still use non-overlapping bits
1764  * we store the underlying state in fpscr and just mask on read/write.
1765  */
1766 #define FPSR_MASK 0xf800009f
1767 #define FPCR_MASK 0x07ff9f00
1768 
1769 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1770 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1771 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1772 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1773 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1774 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1775 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1776 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1777 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1778 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1779 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1780 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1781 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1782 #define FPCR_C      (1 << 29)   /* FP carry flag */
1783 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1784 #define FPCR_N      (1 << 31)   /* FP negative flag */
1785 
1786 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1787 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1788 #define FPCR_LTPSIZE_LENGTH 3
1789 
1790 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1791 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1792 
1793 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1794 {
1795     return vfp_get_fpscr(env) & FPSR_MASK;
1796 }
1797 
1798 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1799 {
1800     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1801     vfp_set_fpscr(env, new_fpscr);
1802 }
1803 
1804 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1805 {
1806     return vfp_get_fpscr(env) & FPCR_MASK;
1807 }
1808 
1809 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1810 {
1811     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1812     vfp_set_fpscr(env, new_fpscr);
1813 }
1814 
1815 enum arm_cpu_mode {
1816   ARM_CPU_MODE_USR = 0x10,
1817   ARM_CPU_MODE_FIQ = 0x11,
1818   ARM_CPU_MODE_IRQ = 0x12,
1819   ARM_CPU_MODE_SVC = 0x13,
1820   ARM_CPU_MODE_MON = 0x16,
1821   ARM_CPU_MODE_ABT = 0x17,
1822   ARM_CPU_MODE_HYP = 0x1a,
1823   ARM_CPU_MODE_UND = 0x1b,
1824   ARM_CPU_MODE_SYS = 0x1f
1825 };
1826 
1827 /* VFP system registers.  */
1828 #define ARM_VFP_FPSID   0
1829 #define ARM_VFP_FPSCR   1
1830 #define ARM_VFP_MVFR2   5
1831 #define ARM_VFP_MVFR1   6
1832 #define ARM_VFP_MVFR0   7
1833 #define ARM_VFP_FPEXC   8
1834 #define ARM_VFP_FPINST  9
1835 #define ARM_VFP_FPINST2 10
1836 /* These ones are M-profile only */
1837 #define ARM_VFP_FPSCR_NZCVQC 2
1838 #define ARM_VFP_VPR 12
1839 #define ARM_VFP_P0 13
1840 #define ARM_VFP_FPCXT_NS 14
1841 #define ARM_VFP_FPCXT_S 15
1842 
1843 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1844 #define QEMU_VFP_FPSCR_NZCV 0xffff
1845 
1846 /* iwMMXt coprocessor control registers.  */
1847 #define ARM_IWMMXT_wCID  0
1848 #define ARM_IWMMXT_wCon  1
1849 #define ARM_IWMMXT_wCSSF 2
1850 #define ARM_IWMMXT_wCASF 3
1851 #define ARM_IWMMXT_wCGR0 8
1852 #define ARM_IWMMXT_wCGR1 9
1853 #define ARM_IWMMXT_wCGR2 10
1854 #define ARM_IWMMXT_wCGR3 11
1855 
1856 /* V7M CCR bits */
1857 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1858 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1859 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1860 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1861 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1862 FIELD(V7M_CCR, STKALIGN, 9, 1)
1863 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1864 FIELD(V7M_CCR, DC, 16, 1)
1865 FIELD(V7M_CCR, IC, 17, 1)
1866 FIELD(V7M_CCR, BP, 18, 1)
1867 FIELD(V7M_CCR, LOB, 19, 1)
1868 FIELD(V7M_CCR, TRD, 20, 1)
1869 
1870 /* V7M SCR bits */
1871 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1872 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1873 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1874 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1875 
1876 /* V7M AIRCR bits */
1877 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1878 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1879 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1880 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1881 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1882 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1883 FIELD(V7M_AIRCR, PRIS, 14, 1)
1884 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1885 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1886 
1887 /* V7M CFSR bits for MMFSR */
1888 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1889 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1890 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1891 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1892 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1893 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1894 
1895 /* V7M CFSR bits for BFSR */
1896 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1897 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1898 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1899 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1900 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1901 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1902 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1903 
1904 /* V7M CFSR bits for UFSR */
1905 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1906 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1907 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1908 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1909 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1910 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1911 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1912 
1913 /* V7M CFSR bit masks covering all of the subregister bits */
1914 FIELD(V7M_CFSR, MMFSR, 0, 8)
1915 FIELD(V7M_CFSR, BFSR, 8, 8)
1916 FIELD(V7M_CFSR, UFSR, 16, 16)
1917 
1918 /* V7M HFSR bits */
1919 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1920 FIELD(V7M_HFSR, FORCED, 30, 1)
1921 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1922 
1923 /* V7M DFSR bits */
1924 FIELD(V7M_DFSR, HALTED, 0, 1)
1925 FIELD(V7M_DFSR, BKPT, 1, 1)
1926 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1927 FIELD(V7M_DFSR, VCATCH, 3, 1)
1928 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1929 
1930 /* V7M SFSR bits */
1931 FIELD(V7M_SFSR, INVEP, 0, 1)
1932 FIELD(V7M_SFSR, INVIS, 1, 1)
1933 FIELD(V7M_SFSR, INVER, 2, 1)
1934 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1935 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1936 FIELD(V7M_SFSR, LSPERR, 5, 1)
1937 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1938 FIELD(V7M_SFSR, LSERR, 7, 1)
1939 
1940 /* v7M MPU_CTRL bits */
1941 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1942 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1943 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1944 
1945 /* v7M CLIDR bits */
1946 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1947 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1948 FIELD(V7M_CLIDR, LOC, 24, 3)
1949 FIELD(V7M_CLIDR, LOUU, 27, 3)
1950 FIELD(V7M_CLIDR, ICB, 30, 2)
1951 
1952 FIELD(V7M_CSSELR, IND, 0, 1)
1953 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1954 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1955  * define a mask for this and check that it doesn't permit running off
1956  * the end of the array.
1957  */
1958 FIELD(V7M_CSSELR, INDEX, 0, 4)
1959 
1960 /* v7M FPCCR bits */
1961 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1962 FIELD(V7M_FPCCR, USER, 1, 1)
1963 FIELD(V7M_FPCCR, S, 2, 1)
1964 FIELD(V7M_FPCCR, THREAD, 3, 1)
1965 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1966 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1967 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1968 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1969 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1970 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1971 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1972 FIELD(V7M_FPCCR, RES0, 11, 15)
1973 FIELD(V7M_FPCCR, TS, 26, 1)
1974 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1975 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1976 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1977 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1978 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1979 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1980 #define R_V7M_FPCCR_BANKED_MASK                 \
1981     (R_V7M_FPCCR_LSPACT_MASK |                  \
1982      R_V7M_FPCCR_USER_MASK |                    \
1983      R_V7M_FPCCR_THREAD_MASK |                  \
1984      R_V7M_FPCCR_MMRDY_MASK |                   \
1985      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1986      R_V7M_FPCCR_UFRDY_MASK |                   \
1987      R_V7M_FPCCR_ASPEN_MASK)
1988 
1989 /* v7M VPR bits */
1990 FIELD(V7M_VPR, P0, 0, 16)
1991 FIELD(V7M_VPR, MASK01, 16, 4)
1992 FIELD(V7M_VPR, MASK23, 20, 4)
1993 
1994 /*
1995  * System register ID fields.
1996  */
1997 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1998 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1999 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2000 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2001 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2002 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2003 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2004 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2005 FIELD(CLIDR_EL1, LOC, 24, 3)
2006 FIELD(CLIDR_EL1, LOUU, 27, 3)
2007 FIELD(CLIDR_EL1, ICB, 30, 3)
2008 
2009 /* When FEAT_CCIDX is implemented */
2010 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2011 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2012 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2013 
2014 /* When FEAT_CCIDX is not implemented */
2015 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2016 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2017 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2018 
2019 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2020 FIELD(CTR_EL0,  L1IP, 14, 2)
2021 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2022 FIELD(CTR_EL0,  ERG, 20, 4)
2023 FIELD(CTR_EL0,  CWG, 24, 4)
2024 FIELD(CTR_EL0,  IDC, 28, 1)
2025 FIELD(CTR_EL0,  DIC, 29, 1)
2026 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2027 
2028 FIELD(MIDR_EL1, REVISION, 0, 4)
2029 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2030 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2031 FIELD(MIDR_EL1, VARIANT, 20, 4)
2032 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2033 
2034 FIELD(ID_ISAR0, SWAP, 0, 4)
2035 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2036 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2037 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2038 FIELD(ID_ISAR0, COPROC, 16, 4)
2039 FIELD(ID_ISAR0, DEBUG, 20, 4)
2040 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2041 
2042 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2043 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2044 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2045 FIELD(ID_ISAR1, EXTEND, 12, 4)
2046 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2047 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2048 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2049 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2050 
2051 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2052 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2053 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2054 FIELD(ID_ISAR2, MULT, 12, 4)
2055 FIELD(ID_ISAR2, MULTS, 16, 4)
2056 FIELD(ID_ISAR2, MULTU, 20, 4)
2057 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2058 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2059 
2060 FIELD(ID_ISAR3, SATURATE, 0, 4)
2061 FIELD(ID_ISAR3, SIMD, 4, 4)
2062 FIELD(ID_ISAR3, SVC, 8, 4)
2063 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2064 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2065 FIELD(ID_ISAR3, T32COPY, 20, 4)
2066 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2067 FIELD(ID_ISAR3, T32EE, 28, 4)
2068 
2069 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2070 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2071 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2072 FIELD(ID_ISAR4, SMC, 12, 4)
2073 FIELD(ID_ISAR4, BARRIER, 16, 4)
2074 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2075 FIELD(ID_ISAR4, PSR_M, 24, 4)
2076 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2077 
2078 FIELD(ID_ISAR5, SEVL, 0, 4)
2079 FIELD(ID_ISAR5, AES, 4, 4)
2080 FIELD(ID_ISAR5, SHA1, 8, 4)
2081 FIELD(ID_ISAR5, SHA2, 12, 4)
2082 FIELD(ID_ISAR5, CRC32, 16, 4)
2083 FIELD(ID_ISAR5, RDM, 24, 4)
2084 FIELD(ID_ISAR5, VCMA, 28, 4)
2085 
2086 FIELD(ID_ISAR6, JSCVT, 0, 4)
2087 FIELD(ID_ISAR6, DP, 4, 4)
2088 FIELD(ID_ISAR6, FHM, 8, 4)
2089 FIELD(ID_ISAR6, SB, 12, 4)
2090 FIELD(ID_ISAR6, SPECRES, 16, 4)
2091 FIELD(ID_ISAR6, BF16, 20, 4)
2092 FIELD(ID_ISAR6, I8MM, 24, 4)
2093 
2094 FIELD(ID_MMFR0, VMSA, 0, 4)
2095 FIELD(ID_MMFR0, PMSA, 4, 4)
2096 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2097 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2098 FIELD(ID_MMFR0, TCM, 16, 4)
2099 FIELD(ID_MMFR0, AUXREG, 20, 4)
2100 FIELD(ID_MMFR0, FCSE, 24, 4)
2101 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2102 
2103 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2104 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2105 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2106 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2107 FIELD(ID_MMFR1, L1HVD, 16, 4)
2108 FIELD(ID_MMFR1, L1UNI, 20, 4)
2109 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2110 FIELD(ID_MMFR1, BPRED, 28, 4)
2111 
2112 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2113 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2114 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2115 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2116 FIELD(ID_MMFR2, UNITLB, 16, 4)
2117 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2118 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2119 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2120 
2121 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2122 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2123 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2124 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2125 FIELD(ID_MMFR3, PAN, 16, 4)
2126 FIELD(ID_MMFR3, COHWALK, 20, 4)
2127 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2128 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2129 
2130 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2131 FIELD(ID_MMFR4, AC2, 4, 4)
2132 FIELD(ID_MMFR4, XNX, 8, 4)
2133 FIELD(ID_MMFR4, CNP, 12, 4)
2134 FIELD(ID_MMFR4, HPDS, 16, 4)
2135 FIELD(ID_MMFR4, LSM, 20, 4)
2136 FIELD(ID_MMFR4, CCIDX, 24, 4)
2137 FIELD(ID_MMFR4, EVT, 28, 4)
2138 
2139 FIELD(ID_MMFR5, ETS, 0, 4)
2140 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2141 
2142 FIELD(ID_PFR0, STATE0, 0, 4)
2143 FIELD(ID_PFR0, STATE1, 4, 4)
2144 FIELD(ID_PFR0, STATE2, 8, 4)
2145 FIELD(ID_PFR0, STATE3, 12, 4)
2146 FIELD(ID_PFR0, CSV2, 16, 4)
2147 FIELD(ID_PFR0, AMU, 20, 4)
2148 FIELD(ID_PFR0, DIT, 24, 4)
2149 FIELD(ID_PFR0, RAS, 28, 4)
2150 
2151 FIELD(ID_PFR1, PROGMOD, 0, 4)
2152 FIELD(ID_PFR1, SECURITY, 4, 4)
2153 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2154 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2155 FIELD(ID_PFR1, GENTIMER, 16, 4)
2156 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2157 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2158 FIELD(ID_PFR1, GIC, 28, 4)
2159 
2160 FIELD(ID_PFR2, CSV3, 0, 4)
2161 FIELD(ID_PFR2, SSBS, 4, 4)
2162 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2163 
2164 FIELD(ID_AA64ISAR0, AES, 4, 4)
2165 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2166 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2167 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2168 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2169 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2170 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2171 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2172 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2173 FIELD(ID_AA64ISAR0, DP, 44, 4)
2174 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2175 FIELD(ID_AA64ISAR0, TS, 52, 4)
2176 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2177 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2178 
2179 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2180 FIELD(ID_AA64ISAR1, APA, 4, 4)
2181 FIELD(ID_AA64ISAR1, API, 8, 4)
2182 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2183 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2184 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2185 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2186 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2187 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2188 FIELD(ID_AA64ISAR1, SB, 36, 4)
2189 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2190 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2191 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2192 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2193 FIELD(ID_AA64ISAR1, XS, 56, 4)
2194 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2195 
2196 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2197 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2198 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2199 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2200 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2201 FIELD(ID_AA64ISAR2, BC, 20, 4)
2202 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2203 
2204 FIELD(ID_AA64PFR0, EL0, 0, 4)
2205 FIELD(ID_AA64PFR0, EL1, 4, 4)
2206 FIELD(ID_AA64PFR0, EL2, 8, 4)
2207 FIELD(ID_AA64PFR0, EL3, 12, 4)
2208 FIELD(ID_AA64PFR0, FP, 16, 4)
2209 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2210 FIELD(ID_AA64PFR0, GIC, 24, 4)
2211 FIELD(ID_AA64PFR0, RAS, 28, 4)
2212 FIELD(ID_AA64PFR0, SVE, 32, 4)
2213 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2214 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2215 FIELD(ID_AA64PFR0, AMU, 44, 4)
2216 FIELD(ID_AA64PFR0, DIT, 48, 4)
2217 FIELD(ID_AA64PFR0, RME, 52, 4)
2218 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2219 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2220 
2221 FIELD(ID_AA64PFR1, BT, 0, 4)
2222 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2223 FIELD(ID_AA64PFR1, MTE, 8, 4)
2224 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2225 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2226 FIELD(ID_AA64PFR1, SME, 24, 4)
2227 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2228 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2229 FIELD(ID_AA64PFR1, NMI, 36, 4)
2230 
2231 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2232 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2233 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2234 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2235 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2236 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2237 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2238 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2239 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2240 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2241 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2242 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2243 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2244 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2245 
2246 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2247 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2248 FIELD(ID_AA64MMFR1, VH, 8, 4)
2249 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2250 FIELD(ID_AA64MMFR1, LO, 16, 4)
2251 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2252 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2253 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2254 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2255 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2256 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2257 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2258 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2259 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2260 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2261 
2262 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2263 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2264 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2265 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2266 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2267 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2268 FIELD(ID_AA64MMFR2, NV, 24, 4)
2269 FIELD(ID_AA64MMFR2, ST, 28, 4)
2270 FIELD(ID_AA64MMFR2, AT, 32, 4)
2271 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2272 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2273 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2274 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2275 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2276 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2277 
2278 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2279 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2280 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2281 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2282 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2283 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2284 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2285 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2286 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2287 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2288 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2289 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2290 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2291 
2292 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2293 FIELD(ID_AA64ZFR0, AES, 4, 4)
2294 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2295 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2296 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2297 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2298 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2299 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2300 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2301 
2302 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2303 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2304 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2305 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2306 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2307 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2308 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2309 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2310 
2311 FIELD(ID_DFR0, COPDBG, 0, 4)
2312 FIELD(ID_DFR0, COPSDBG, 4, 4)
2313 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2314 FIELD(ID_DFR0, COPTRC, 12, 4)
2315 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2316 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2317 FIELD(ID_DFR0, PERFMON, 24, 4)
2318 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2319 
2320 FIELD(ID_DFR1, MTPMU, 0, 4)
2321 FIELD(ID_DFR1, HPMN0, 4, 4)
2322 
2323 FIELD(DBGDIDR, SE_IMP, 12, 1)
2324 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2325 FIELD(DBGDIDR, VERSION, 16, 4)
2326 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2327 FIELD(DBGDIDR, BRPS, 24, 4)
2328 FIELD(DBGDIDR, WRPS, 28, 4)
2329 
2330 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2331 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2332 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2333 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2334 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2335 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2336 FIELD(DBGDEVID, AUXREGS, 24, 4)
2337 FIELD(DBGDEVID, CIDMASK, 28, 4)
2338 
2339 FIELD(MVFR0, SIMDREG, 0, 4)
2340 FIELD(MVFR0, FPSP, 4, 4)
2341 FIELD(MVFR0, FPDP, 8, 4)
2342 FIELD(MVFR0, FPTRAP, 12, 4)
2343 FIELD(MVFR0, FPDIVIDE, 16, 4)
2344 FIELD(MVFR0, FPSQRT, 20, 4)
2345 FIELD(MVFR0, FPSHVEC, 24, 4)
2346 FIELD(MVFR0, FPROUND, 28, 4)
2347 
2348 FIELD(MVFR1, FPFTZ, 0, 4)
2349 FIELD(MVFR1, FPDNAN, 4, 4)
2350 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2351 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2352 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2353 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2354 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2355 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2356 FIELD(MVFR1, FPHP, 24, 4)
2357 FIELD(MVFR1, SIMDFMAC, 28, 4)
2358 
2359 FIELD(MVFR2, SIMDMISC, 0, 4)
2360 FIELD(MVFR2, FPMISC, 4, 4)
2361 
2362 FIELD(GPCCR, PPS, 0, 3)
2363 FIELD(GPCCR, IRGN, 8, 2)
2364 FIELD(GPCCR, ORGN, 10, 2)
2365 FIELD(GPCCR, SH, 12, 2)
2366 FIELD(GPCCR, PGS, 14, 2)
2367 FIELD(GPCCR, GPC, 16, 1)
2368 FIELD(GPCCR, GPCP, 17, 1)
2369 FIELD(GPCCR, L0GPTSZ, 20, 4)
2370 
2371 FIELD(MFAR, FPA, 12, 40)
2372 FIELD(MFAR, NSE, 62, 1)
2373 FIELD(MFAR, NS, 63, 1)
2374 
2375 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2376 
2377 /* If adding a feature bit which corresponds to a Linux ELF
2378  * HWCAP bit, remember to update the feature-bit-to-hwcap
2379  * mapping in linux-user/elfload.c:get_elf_hwcap().
2380  */
2381 enum arm_features {
2382     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2383     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2384     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2385     ARM_FEATURE_V6,
2386     ARM_FEATURE_V6K,
2387     ARM_FEATURE_V7,
2388     ARM_FEATURE_THUMB2,
2389     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2390     ARM_FEATURE_NEON,
2391     ARM_FEATURE_M, /* Microcontroller profile.  */
2392     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2393     ARM_FEATURE_THUMB2EE,
2394     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2395     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2396     ARM_FEATURE_V4T,
2397     ARM_FEATURE_V5,
2398     ARM_FEATURE_STRONGARM,
2399     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2400     ARM_FEATURE_GENERIC_TIMER,
2401     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2402     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2403     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2404     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2405     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2406     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2407     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2408     ARM_FEATURE_V8,
2409     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2410     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2411     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2412     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2413     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2414     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2415     ARM_FEATURE_PMU, /* has PMU support */
2416     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2417     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2418     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2419     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2420 };
2421 
2422 static inline int arm_feature(CPUARMState *env, int feature)
2423 {
2424     return (env->features & (1ULL << feature)) != 0;
2425 }
2426 
2427 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2428 
2429 /*
2430  * ARM v9 security states.
2431  * The ordering of the enumeration corresponds to the low 2 bits
2432  * of the GPI value, and (except for Root) the concat of NSE:NS.
2433  */
2434 
2435 typedef enum ARMSecuritySpace {
2436     ARMSS_Secure     = 0,
2437     ARMSS_NonSecure  = 1,
2438     ARMSS_Root       = 2,
2439     ARMSS_Realm      = 3,
2440 } ARMSecuritySpace;
2441 
2442 /* Return true if @space is secure, in the pre-v9 sense. */
2443 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2444 {
2445     return space == ARMSS_Secure || space == ARMSS_Root;
2446 }
2447 
2448 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2449 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2450 {
2451     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2452 }
2453 
2454 #if !defined(CONFIG_USER_ONLY)
2455 /**
2456  * arm_security_space_below_el3:
2457  * @env: cpu context
2458  *
2459  * Return the security space of exception levels below EL3, following
2460  * an exception return to those levels.  Unlike arm_security_space,
2461  * this doesn't care about the current EL.
2462  */
2463 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2464 
2465 /**
2466  * arm_is_secure_below_el3:
2467  * @env: cpu context
2468  *
2469  * Return true if exception levels below EL3 are in secure state,
2470  * or would be following an exception return to those levels.
2471  */
2472 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2473 {
2474     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2475     return ss == ARMSS_Secure;
2476 }
2477 
2478 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2479 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2480 {
2481     assert(!arm_feature(env, ARM_FEATURE_M));
2482     if (arm_feature(env, ARM_FEATURE_EL3)) {
2483         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2484             /* CPU currently in AArch64 state and EL3 */
2485             return true;
2486         } else if (!is_a64(env) &&
2487                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2488             /* CPU currently in AArch32 state and monitor mode */
2489             return true;
2490         }
2491     }
2492     return false;
2493 }
2494 
2495 /**
2496  * arm_security_space:
2497  * @env: cpu context
2498  *
2499  * Return the current security space of the cpu.
2500  */
2501 ARMSecuritySpace arm_security_space(CPUARMState *env);
2502 
2503 /**
2504  * arm_is_secure:
2505  * @env: cpu context
2506  *
2507  * Return true if the processor is in secure state.
2508  */
2509 static inline bool arm_is_secure(CPUARMState *env)
2510 {
2511     return arm_space_is_secure(arm_security_space(env));
2512 }
2513 
2514 /*
2515  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2516  * This corresponds to the pseudocode EL2Enabled().
2517  */
2518 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2519                                                ARMSecuritySpace space)
2520 {
2521     assert(space != ARMSS_Root);
2522     return arm_feature(env, ARM_FEATURE_EL2)
2523            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2524 }
2525 
2526 static inline bool arm_is_el2_enabled(CPUARMState *env)
2527 {
2528     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2529 }
2530 
2531 #else
2532 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2533 {
2534     return ARMSS_NonSecure;
2535 }
2536 
2537 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2538 {
2539     return false;
2540 }
2541 
2542 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2543 {
2544     return ARMSS_NonSecure;
2545 }
2546 
2547 static inline bool arm_is_secure(CPUARMState *env)
2548 {
2549     return false;
2550 }
2551 
2552 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2553                                                ARMSecuritySpace space)
2554 {
2555     return false;
2556 }
2557 
2558 static inline bool arm_is_el2_enabled(CPUARMState *env)
2559 {
2560     return false;
2561 }
2562 #endif
2563 
2564 /**
2565  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2566  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2567  * "for all purposes other than a direct read or write access of HCR_EL2."
2568  * Not included here is HCR_RW.
2569  */
2570 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2571 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2572 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2573 
2574 /* Return true if the specified exception level is running in AArch64 state. */
2575 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2576 {
2577     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2578      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2579      */
2580     assert(el >= 1 && el <= 3);
2581     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2582 
2583     /* The highest exception level is always at the maximum supported
2584      * register width, and then lower levels have a register width controlled
2585      * by bits in the SCR or HCR registers.
2586      */
2587     if (el == 3) {
2588         return aa64;
2589     }
2590 
2591     if (arm_feature(env, ARM_FEATURE_EL3) &&
2592         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2593         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2594     }
2595 
2596     if (el == 2) {
2597         return aa64;
2598     }
2599 
2600     if (arm_is_el2_enabled(env)) {
2601         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2602     }
2603 
2604     return aa64;
2605 }
2606 
2607 /* Function for determining whether guest cp register reads and writes should
2608  * access the secure or non-secure bank of a cp register.  When EL3 is
2609  * operating in AArch32 state, the NS-bit determines whether the secure
2610  * instance of a cp register should be used. When EL3 is AArch64 (or if
2611  * it doesn't exist at all) then there is no register banking, and all
2612  * accesses are to the non-secure version.
2613  */
2614 static inline bool access_secure_reg(CPUARMState *env)
2615 {
2616     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2617                 !arm_el_is_aa64(env, 3) &&
2618                 !(env->cp15.scr_el3 & SCR_NS));
2619 
2620     return ret;
2621 }
2622 
2623 /* Macros for accessing a specified CP register bank */
2624 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2625     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2626 
2627 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2628     do {                                                \
2629         if (_secure) {                                   \
2630             (_env)->cp15._regname##_s = (_val);            \
2631         } else {                                        \
2632             (_env)->cp15._regname##_ns = (_val);           \
2633         }                                               \
2634     } while (0)
2635 
2636 /* Macros for automatically accessing a specific CP register bank depending on
2637  * the current secure state of the system.  These macros are not intended for
2638  * supporting instruction translation reads/writes as these are dependent
2639  * solely on the SCR.NS bit and not the mode.
2640  */
2641 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2642     A32_BANKED_REG_GET((_env), _regname,                \
2643                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2644 
2645 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2646     A32_BANKED_REG_SET((_env), _regname,                                    \
2647                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2648                        (_val))
2649 
2650 void arm_cpu_list(void);
2651 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2652                                  uint32_t cur_el, bool secure);
2653 
2654 /* Return the highest implemented Exception Level */
2655 static inline int arm_highest_el(CPUARMState *env)
2656 {
2657     if (arm_feature(env, ARM_FEATURE_EL3)) {
2658         return 3;
2659     }
2660     if (arm_feature(env, ARM_FEATURE_EL2)) {
2661         return 2;
2662     }
2663     return 1;
2664 }
2665 
2666 /* Return true if a v7M CPU is in Handler mode */
2667 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2668 {
2669     return env->v7m.exception != 0;
2670 }
2671 
2672 /* Return the current Exception Level (as per ARMv8; note that this differs
2673  * from the ARMv7 Privilege Level).
2674  */
2675 static inline int arm_current_el(CPUARMState *env)
2676 {
2677     if (arm_feature(env, ARM_FEATURE_M)) {
2678         return arm_v7m_is_handler_mode(env) ||
2679             !(env->v7m.control[env->v7m.secure] & 1);
2680     }
2681 
2682     if (is_a64(env)) {
2683         return extract32(env->pstate, 2, 2);
2684     }
2685 
2686     switch (env->uncached_cpsr & 0x1f) {
2687     case ARM_CPU_MODE_USR:
2688         return 0;
2689     case ARM_CPU_MODE_HYP:
2690         return 2;
2691     case ARM_CPU_MODE_MON:
2692         return 3;
2693     default:
2694         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2695             /* If EL3 is 32-bit then all secure privileged modes run in
2696              * EL3
2697              */
2698             return 3;
2699         }
2700 
2701         return 1;
2702     }
2703 }
2704 
2705 /**
2706  * write_list_to_cpustate
2707  * @cpu: ARMCPU
2708  *
2709  * For each register listed in the ARMCPU cpreg_indexes list, write
2710  * its value from the cpreg_values list into the ARMCPUState structure.
2711  * This updates TCG's working data structures from KVM data or
2712  * from incoming migration state.
2713  *
2714  * Returns: true if all register values were updated correctly,
2715  * false if some register was unknown or could not be written.
2716  * Note that we do not stop early on failure -- we will attempt
2717  * writing all registers in the list.
2718  */
2719 bool write_list_to_cpustate(ARMCPU *cpu);
2720 
2721 /**
2722  * write_cpustate_to_list:
2723  * @cpu: ARMCPU
2724  * @kvm_sync: true if this is for syncing back to KVM
2725  *
2726  * For each register listed in the ARMCPU cpreg_indexes list, write
2727  * its value from the ARMCPUState structure into the cpreg_values list.
2728  * This is used to copy info from TCG's working data structures into
2729  * KVM or for outbound migration.
2730  *
2731  * @kvm_sync is true if we are doing this in order to sync the
2732  * register state back to KVM. In this case we will only update
2733  * values in the list if the previous list->cpustate sync actually
2734  * successfully wrote the CPU state. Otherwise we will keep the value
2735  * that is in the list.
2736  *
2737  * Returns: true if all register values were read correctly,
2738  * false if some register was unknown or could not be read.
2739  * Note that we do not stop early on failure -- we will attempt
2740  * reading all registers in the list.
2741  */
2742 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2743 
2744 #define ARM_CPUID_TI915T      0x54029152
2745 #define ARM_CPUID_TI925T      0x54029252
2746 
2747 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2748 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2749 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2750 
2751 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2752 
2753 #define cpu_list arm_cpu_list
2754 
2755 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2756  *
2757  * If EL3 is 64-bit:
2758  *  + NonSecure EL1 & 0 stage 1
2759  *  + NonSecure EL1 & 0 stage 2
2760  *  + NonSecure EL2
2761  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2762  *  + Secure EL1 & 0
2763  *  + Secure EL3
2764  * If EL3 is 32-bit:
2765  *  + NonSecure PL1 & 0 stage 1
2766  *  + NonSecure PL1 & 0 stage 2
2767  *  + NonSecure PL2
2768  *  + Secure PL0
2769  *  + Secure PL1
2770  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2771  *
2772  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2773  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2774  *     because they may differ in access permissions even if the VA->PA map is
2775  *     the same
2776  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2777  *     translation, which means that we have one mmu_idx that deals with two
2778  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2779  *     architecturally permitted]
2780  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2781  *     handling via the TLB. The only way to do a stage 1 translation without
2782  *     the immediate stage 2 translation is via the ATS or AT system insns,
2783  *     which can be slow-pathed and always do a page table walk.
2784  *     The only use of stage 2 translations is either as part of an s1+2
2785  *     lookup or when loading the descriptors during a stage 1 page table walk,
2786  *     and in both those cases we don't use the TLB.
2787  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2788  *     translation regimes, because they map reasonably well to each other
2789  *     and they can't both be active at the same time.
2790  *  5. we want to be able to use the TLB for accesses done as part of a
2791  *     stage1 page table walk, rather than having to walk the stage2 page
2792  *     table over and over.
2793  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2794  *     Never (PAN) bit within PSTATE.
2795  *  7. we fold together the secure and non-secure regimes for A-profile,
2796  *     because there are no banked system registers for aarch64, so the
2797  *     process of switching between secure and non-secure is
2798  *     already heavyweight.
2799  *
2800  * This gives us the following list of cases:
2801  *
2802  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2803  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2804  * EL1 EL1&0 stage 1+2 +PAN
2805  * EL0 EL2&0
2806  * EL2 EL2&0
2807  * EL2 EL2&0 +PAN
2808  * EL2 (aka NS PL2)
2809  * EL3 (aka S PL1)
2810  * Physical (NS & S)
2811  * Stage2 (NS & S)
2812  *
2813  * for a total of 12 different mmu_idx.
2814  *
2815  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2816  * as A profile. They only need to distinguish EL0 and EL1 (and
2817  * EL2 if we ever model a Cortex-R52).
2818  *
2819  * M profile CPUs are rather different as they do not have a true MMU.
2820  * They have the following different MMU indexes:
2821  *  User
2822  *  Privileged
2823  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2824  *  Privileged, execution priority negative (ditto)
2825  * If the CPU supports the v8M Security Extension then there are also:
2826  *  Secure User
2827  *  Secure Privileged
2828  *  Secure User, execution priority negative
2829  *  Secure Privileged, execution priority negative
2830  *
2831  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2832  * are not quite the same -- different CPU types (most notably M profile
2833  * vs A/R profile) would like to use MMU indexes with different semantics,
2834  * but since we don't ever need to use all of those in a single CPU we
2835  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2836  * modes + total number of M profile MMU modes". The lower bits of
2837  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2838  * the same for any particular CPU.
2839  * Variables of type ARMMUIdx are always full values, and the core
2840  * index values are in variables of type 'int'.
2841  *
2842  * Our enumeration includes at the end some entries which are not "true"
2843  * mmu_idx values in that they don't have corresponding TLBs and are only
2844  * valid for doing slow path page table walks.
2845  *
2846  * The constant names here are patterned after the general style of the names
2847  * of the AT/ATS operations.
2848  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2849  * For M profile we arrange them to have a bit for priv, a bit for negpri
2850  * and a bit for secure.
2851  */
2852 #define ARM_MMU_IDX_A     0x10  /* A profile */
2853 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2854 #define ARM_MMU_IDX_M     0x40  /* M profile */
2855 
2856 /* Meanings of the bits for M profile mmu idx values */
2857 #define ARM_MMU_IDX_M_PRIV   0x1
2858 #define ARM_MMU_IDX_M_NEGPRI 0x2
2859 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2860 
2861 #define ARM_MMU_IDX_TYPE_MASK \
2862     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2863 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2864 
2865 typedef enum ARMMMUIdx {
2866     /*
2867      * A-profile.
2868      */
2869     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2870     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2871     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2872     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2873     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2874     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2875     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2876     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2877 
2878     /*
2879      * Used for second stage of an S12 page table walk, or for descriptor
2880      * loads during first stage of an S1 page table walk.  Note that both
2881      * are in use simultaneously for SecureEL2: the security state for
2882      * the S2 ptw is selected by the NS bit from the S1 ptw.
2883      */
2884     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2885     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2886 
2887     /* TLBs with 1-1 mapping to the physical address spaces. */
2888     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2889     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2890     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2891     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2892 
2893     /*
2894      * These are not allocated TLBs and are used only for AT system
2895      * instructions or for the first stage of an S12 page table walk.
2896      */
2897     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2898     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2899     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2900 
2901     /*
2902      * M-profile.
2903      */
2904     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2905     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2906     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2907     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2908     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2909     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2910     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2911     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2912 } ARMMMUIdx;
2913 
2914 /*
2915  * Bit macros for the core-mmu-index values for each index,
2916  * for use when calling tlb_flush_by_mmuidx() and friends.
2917  */
2918 #define TO_CORE_BIT(NAME) \
2919     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2920 
2921 typedef enum ARMMMUIdxBit {
2922     TO_CORE_BIT(E10_0),
2923     TO_CORE_BIT(E20_0),
2924     TO_CORE_BIT(E10_1),
2925     TO_CORE_BIT(E10_1_PAN),
2926     TO_CORE_BIT(E2),
2927     TO_CORE_BIT(E20_2),
2928     TO_CORE_BIT(E20_2_PAN),
2929     TO_CORE_BIT(E3),
2930     TO_CORE_BIT(Stage2),
2931     TO_CORE_BIT(Stage2_S),
2932 
2933     TO_CORE_BIT(MUser),
2934     TO_CORE_BIT(MPriv),
2935     TO_CORE_BIT(MUserNegPri),
2936     TO_CORE_BIT(MPrivNegPri),
2937     TO_CORE_BIT(MSUser),
2938     TO_CORE_BIT(MSPriv),
2939     TO_CORE_BIT(MSUserNegPri),
2940     TO_CORE_BIT(MSPrivNegPri),
2941 } ARMMMUIdxBit;
2942 
2943 #undef TO_CORE_BIT
2944 
2945 #define MMU_USER_IDX 0
2946 
2947 /* Indexes used when registering address spaces with cpu_address_space_init */
2948 typedef enum ARMASIdx {
2949     ARMASIdx_NS = 0,
2950     ARMASIdx_S = 1,
2951     ARMASIdx_TagNS = 2,
2952     ARMASIdx_TagS = 3,
2953 } ARMASIdx;
2954 
2955 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2956 {
2957     /* Assert the relative order of the physical mmu indexes. */
2958     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2959     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2960     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2961     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2962 
2963     return ARMMMUIdx_Phys_S + space;
2964 }
2965 
2966 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2967 {
2968     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2969     return idx - ARMMMUIdx_Phys_S;
2970 }
2971 
2972 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2973 {
2974     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2975      * CSSELR is RAZ/WI.
2976      */
2977     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2978 }
2979 
2980 static inline bool arm_sctlr_b(CPUARMState *env)
2981 {
2982     return
2983         /* We need not implement SCTLR.ITD in user-mode emulation, so
2984          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2985          * This lets people run BE32 binaries with "-cpu any".
2986          */
2987 #ifndef CONFIG_USER_ONLY
2988         !arm_feature(env, ARM_FEATURE_V7) &&
2989 #endif
2990         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2991 }
2992 
2993 uint64_t arm_sctlr(CPUARMState *env, int el);
2994 
2995 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2996                                                   bool sctlr_b)
2997 {
2998 #ifdef CONFIG_USER_ONLY
2999     /*
3000      * In system mode, BE32 is modelled in line with the
3001      * architecture (as word-invariant big-endianness), where loads
3002      * and stores are done little endian but from addresses which
3003      * are adjusted by XORing with the appropriate constant. So the
3004      * endianness to use for the raw data access is not affected by
3005      * SCTLR.B.
3006      * In user mode, however, we model BE32 as byte-invariant
3007      * big-endianness (because user-only code cannot tell the
3008      * difference), and so we need to use a data access endianness
3009      * that depends on SCTLR.B.
3010      */
3011     if (sctlr_b) {
3012         return true;
3013     }
3014 #endif
3015     /* In 32bit endianness is determined by looking at CPSR's E bit */
3016     return env->uncached_cpsr & CPSR_E;
3017 }
3018 
3019 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3020 {
3021     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3022 }
3023 
3024 /* Return true if the processor is in big-endian mode. */
3025 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3026 {
3027     if (!is_a64(env)) {
3028         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3029     } else {
3030         int cur_el = arm_current_el(env);
3031         uint64_t sctlr = arm_sctlr(env, cur_el);
3032         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3033     }
3034 }
3035 
3036 #include "exec/cpu-all.h"
3037 
3038 /*
3039  * We have more than 32-bits worth of state per TB, so we split the data
3040  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3041  * We collect these two parts in CPUARMTBFlags where they are named
3042  * flags and flags2 respectively.
3043  *
3044  * The flags that are shared between all execution modes, TBFLAG_ANY,
3045  * are stored in flags.  The flags that are specific to a given mode
3046  * are stores in flags2.  Since cs_base is sized on the configured
3047  * address size, flags2 always has 64-bits for A64, and a minimum of
3048  * 32-bits for A32 and M32.
3049  *
3050  * The bits for 32-bit A-profile and M-profile partially overlap:
3051  *
3052  *  31         23         11 10             0
3053  * +-------------+----------+----------------+
3054  * |             |          |   TBFLAG_A32   |
3055  * | TBFLAG_AM32 |          +-----+----------+
3056  * |             |                |TBFLAG_M32|
3057  * +-------------+----------------+----------+
3058  *  31         23                6 5        0
3059  *
3060  * Unless otherwise noted, these bits are cached in env->hflags.
3061  */
3062 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3063 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3064 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3065 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3066 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3067 /* Target EL if we take a floating-point-disabled exception */
3068 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3069 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3070 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3071 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3072 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3073 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3074 
3075 /*
3076  * Bit usage when in AArch32 state, both A- and M-profile.
3077  */
3078 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3079 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3080 
3081 /*
3082  * Bit usage when in AArch32 state, for A-profile only.
3083  */
3084 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3085 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3086 /*
3087  * We store the bottom two bits of the CPAR as TB flags and handle
3088  * checks on the other bits at runtime. This shares the same bits as
3089  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3090  * Not cached, because VECLEN+VECSTRIDE are not cached.
3091  */
3092 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3093 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3094 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3095 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3096 /*
3097  * Indicates whether cp register reads and writes by guest code should access
3098  * the secure or nonsecure bank of banked registers; note that this is not
3099  * the same thing as the current security state of the processor!
3100  */
3101 FIELD(TBFLAG_A32, NS, 10, 1)
3102 /*
3103  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3104  * This requires an SME trap from AArch32 mode when using NEON.
3105  */
3106 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3107 
3108 /*
3109  * Bit usage when in AArch32 state, for M-profile only.
3110  */
3111 /* Handler (ie not Thread) mode */
3112 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3113 /* Whether we should generate stack-limit checks */
3114 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3115 /* Set if FPCCR.LSPACT is set */
3116 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3117 /* Set if we must create a new FP context */
3118 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3119 /* Set if FPCCR.S does not match current security state */
3120 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3121 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3122 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3123 /* Set if in secure mode */
3124 FIELD(TBFLAG_M32, SECURE, 6, 1)
3125 
3126 /*
3127  * Bit usage when in AArch64 state
3128  */
3129 FIELD(TBFLAG_A64, TBII, 0, 2)
3130 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3131 /* The current vector length, either NVL or SVL. */
3132 FIELD(TBFLAG_A64, VL, 4, 4)
3133 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3134 FIELD(TBFLAG_A64, BT, 9, 1)
3135 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3136 FIELD(TBFLAG_A64, TBID, 12, 2)
3137 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3138 FIELD(TBFLAG_A64, ATA, 15, 1)
3139 FIELD(TBFLAG_A64, TCMA, 16, 2)
3140 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3141 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3142 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3143 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3144 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3145 FIELD(TBFLAG_A64, SVL, 24, 4)
3146 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3147 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3148 FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3149 FIELD(TBFLAG_A64, NAA, 30, 1)
3150 
3151 /*
3152  * Helpers for using the above.
3153  */
3154 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3155     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3156 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3157     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3158 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3159     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3160 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3161     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3162 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3163     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3164 
3165 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3166 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3167 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3168 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3169 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3170 
3171 /**
3172  * cpu_mmu_index:
3173  * @env: The cpu environment
3174  * @ifetch: True for code access, false for data access.
3175  *
3176  * Return the core mmu index for the current translation regime.
3177  * This function is used by generic TCG code paths.
3178  */
3179 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3180 {
3181     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3182 }
3183 
3184 /**
3185  * sve_vq
3186  * @env: the cpu context
3187  *
3188  * Return the VL cached within env->hflags, in units of quadwords.
3189  */
3190 static inline int sve_vq(CPUARMState *env)
3191 {
3192     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3193 }
3194 
3195 /**
3196  * sme_vq
3197  * @env: the cpu context
3198  *
3199  * Return the SVL cached within env->hflags, in units of quadwords.
3200  */
3201 static inline int sme_vq(CPUARMState *env)
3202 {
3203     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3204 }
3205 
3206 static inline bool bswap_code(bool sctlr_b)
3207 {
3208 #ifdef CONFIG_USER_ONLY
3209     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3210      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3211      * would also end up as a mixed-endian mode with BE code, LE data.
3212      */
3213     return TARGET_BIG_ENDIAN ^ sctlr_b;
3214 #else
3215     /* All code access in ARM is little endian, and there are no loaders
3216      * doing swaps that need to be reversed
3217      */
3218     return 0;
3219 #endif
3220 }
3221 
3222 #ifdef CONFIG_USER_ONLY
3223 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3224 {
3225     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3226 }
3227 #endif
3228 
3229 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3230                           uint64_t *cs_base, uint32_t *flags);
3231 
3232 enum {
3233     QEMU_PSCI_CONDUIT_DISABLED = 0,
3234     QEMU_PSCI_CONDUIT_SMC = 1,
3235     QEMU_PSCI_CONDUIT_HVC = 2,
3236 };
3237 
3238 #ifndef CONFIG_USER_ONLY
3239 /* Return the address space index to use for a memory access */
3240 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3241 {
3242     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3243 }
3244 
3245 /* Return the AddressSpace to use for a memory access
3246  * (which depends on whether the access is S or NS, and whether
3247  * the board gave us a separate AddressSpace for S accesses).
3248  */
3249 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3250 {
3251     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3252 }
3253 #endif
3254 
3255 /**
3256  * arm_register_pre_el_change_hook:
3257  * Register a hook function which will be called immediately before this
3258  * CPU changes exception level or mode. The hook function will be
3259  * passed a pointer to the ARMCPU and the opaque data pointer passed
3260  * to this function when the hook was registered.
3261  *
3262  * Note that if a pre-change hook is called, any registered post-change hooks
3263  * are guaranteed to subsequently be called.
3264  */
3265 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3266                                  void *opaque);
3267 /**
3268  * arm_register_el_change_hook:
3269  * Register a hook function which will be called immediately after this
3270  * CPU changes exception level or mode. The hook function will be
3271  * passed a pointer to the ARMCPU and the opaque data pointer passed
3272  * to this function when the hook was registered.
3273  *
3274  * Note that any registered hooks registered here are guaranteed to be called
3275  * if pre-change hooks have been.
3276  */
3277 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3278         *opaque);
3279 
3280 /**
3281  * arm_rebuild_hflags:
3282  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3283  */
3284 void arm_rebuild_hflags(CPUARMState *env);
3285 
3286 /**
3287  * aa32_vfp_dreg:
3288  * Return a pointer to the Dn register within env in 32-bit mode.
3289  */
3290 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3291 {
3292     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3293 }
3294 
3295 /**
3296  * aa32_vfp_qreg:
3297  * Return a pointer to the Qn register within env in 32-bit mode.
3298  */
3299 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3300 {
3301     return &env->vfp.zregs[regno].d[0];
3302 }
3303 
3304 /**
3305  * aa64_vfp_qreg:
3306  * Return a pointer to the Qn register within env in 64-bit mode.
3307  */
3308 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3309 {
3310     return &env->vfp.zregs[regno].d[0];
3311 }
3312 
3313 /* Shared between translate-sve.c and sve_helper.c.  */
3314 extern const uint64_t pred_esz_masks[5];
3315 
3316 /*
3317  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3318  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3319  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3320  */
3321 #define PAGE_BTI            PAGE_TARGET_1
3322 #define PAGE_MTE            PAGE_TARGET_2
3323 #define PAGE_TARGET_STICKY  PAGE_MTE
3324 
3325 /* We associate one allocation tag per 16 bytes, the minimum.  */
3326 #define LOG2_TAG_GRANULE 4
3327 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3328 
3329 #ifdef CONFIG_USER_ONLY
3330 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3331 #endif
3332 
3333 #ifdef TARGET_TAGGED_ADDRESSES
3334 /**
3335  * cpu_untagged_addr:
3336  * @cs: CPU context
3337  * @x: tagged address
3338  *
3339  * Remove any address tag from @x.  This is explicitly related to the
3340  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3341  *
3342  * There should be a better place to put this, but we need this in
3343  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3344  */
3345 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3346 {
3347     ARMCPU *cpu = ARM_CPU(cs);
3348     if (cpu->env.tagged_addr_enable) {
3349         /*
3350          * TBI is enabled for userspace but not kernelspace addresses.
3351          * Only clear the tag if bit 55 is clear.
3352          */
3353         x &= sextract64(x, 0, 56);
3354     }
3355     return x;
3356 }
3357 #endif
3358 
3359 /*
3360  * Naming convention for isar_feature functions:
3361  * Functions which test 32-bit ID registers should have _aa32_ in
3362  * their name. Functions which test 64-bit ID registers should have
3363  * _aa64_ in their name. These must only be used in code where we
3364  * know for certain that the CPU has AArch32 or AArch64 respectively
3365  * or where the correct answer for a CPU which doesn't implement that
3366  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3367  * system registers that are specific to that CPU state, for "should
3368  * we let this system register bit be set" tests where the 32-bit
3369  * flavour of the register doesn't have the bit, and so on).
3370  * Functions which simply ask "does this feature exist at all" have
3371  * _any_ in their name, and always return the logical OR of the _aa64_
3372  * and the _aa32_ function.
3373  */
3374 
3375 /*
3376  * 32-bit feature tests via id registers.
3377  */
3378 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3379 {
3380     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3381 }
3382 
3383 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3384 {
3385     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3386 }
3387 
3388 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3389 {
3390     /* (M-profile) low-overhead loops and branch future */
3391     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3392 }
3393 
3394 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3395 {
3396     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3397 }
3398 
3399 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3400 {
3401     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3402 }
3403 
3404 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3405 {
3406     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3407 }
3408 
3409 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3410 {
3411     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3412 }
3413 
3414 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3415 {
3416     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3417 }
3418 
3419 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3420 {
3421     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3422 }
3423 
3424 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3425 {
3426     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3427 }
3428 
3429 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3430 {
3431     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3432 }
3433 
3434 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3435 {
3436     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3437 }
3438 
3439 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3440 {
3441     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3442 }
3443 
3444 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3445 {
3446     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3447 }
3448 
3449 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3450 {
3451     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3452 }
3453 
3454 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3455 {
3456     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3457 }
3458 
3459 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3460 {
3461     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3462 }
3463 
3464 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3465 {
3466     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3467 }
3468 
3469 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3470 {
3471     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3472 }
3473 
3474 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3475 {
3476     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3477 }
3478 
3479 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3480 {
3481     /*
3482      * Return true if M-profile state handling insns
3483      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3484      */
3485     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3486 }
3487 
3488 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3489 {
3490     /* Sadly this is encoded differently for A-profile and M-profile */
3491     if (isar_feature_aa32_mprofile(id)) {
3492         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3493     } else {
3494         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3495     }
3496 }
3497 
3498 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3499 {
3500     /*
3501      * Return true if MVE is supported (either integer or floating point).
3502      * We must check for M-profile as the MVFR1 field means something
3503      * else for A-profile.
3504      */
3505     return isar_feature_aa32_mprofile(id) &&
3506         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3507 }
3508 
3509 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3510 {
3511     /*
3512      * Return true if MVE is supported (either integer or floating point).
3513      * We must check for M-profile as the MVFR1 field means something
3514      * else for A-profile.
3515      */
3516     return isar_feature_aa32_mprofile(id) &&
3517         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3518 }
3519 
3520 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3521 {
3522     /*
3523      * Return true if either VFP or SIMD is implemented.
3524      * In this case, a minimum of VFP w/ D0-D15.
3525      */
3526     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3527 }
3528 
3529 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3530 {
3531     /* Return true if D16-D31 are implemented */
3532     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3533 }
3534 
3535 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3536 {
3537     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3538 }
3539 
3540 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3541 {
3542     /* Return true if CPU supports single precision floating point, VFPv2 */
3543     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3544 }
3545 
3546 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3547 {
3548     /* Return true if CPU supports single precision floating point, VFPv3 */
3549     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3550 }
3551 
3552 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3553 {
3554     /* Return true if CPU supports double precision floating point, VFPv2 */
3555     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3556 }
3557 
3558 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3559 {
3560     /* Return true if CPU supports double precision floating point, VFPv3 */
3561     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3562 }
3563 
3564 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3565 {
3566     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3567 }
3568 
3569 /*
3570  * We always set the FP and SIMD FP16 fields to indicate identical
3571  * levels of support (assuming SIMD is implemented at all), so
3572  * we only need one set of accessors.
3573  */
3574 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3575 {
3576     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3577 }
3578 
3579 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3580 {
3581     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3582 }
3583 
3584 /*
3585  * Note that this ID register field covers both VFP and Neon FMAC,
3586  * so should usually be tested in combination with some other
3587  * check that confirms the presence of whichever of VFP or Neon is
3588  * relevant, to avoid accidentally enabling a Neon feature on
3589  * a VFP-no-Neon core or vice-versa.
3590  */
3591 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3592 {
3593     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3594 }
3595 
3596 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3597 {
3598     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3599 }
3600 
3601 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3602 {
3603     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3604 }
3605 
3606 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3607 {
3608     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3609 }
3610 
3611 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3612 {
3613     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3614 }
3615 
3616 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3617 {
3618     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3619 }
3620 
3621 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3622 {
3623     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3624 }
3625 
3626 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3627 {
3628     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3629 }
3630 
3631 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3632 {
3633     /* 0xf means "non-standard IMPDEF PMU" */
3634     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3635         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3636 }
3637 
3638 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3639 {
3640     /* 0xf means "non-standard IMPDEF PMU" */
3641     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3642         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3643 }
3644 
3645 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3646 {
3647     /* 0xf means "non-standard IMPDEF PMU" */
3648     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3649         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3650 }
3651 
3652 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3653 {
3654     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3655 }
3656 
3657 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3658 {
3659     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3660 }
3661 
3662 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3663 {
3664     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3665 }
3666 
3667 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3668 {
3669     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3670 }
3671 
3672 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3673 {
3674     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3675 }
3676 
3677 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3678 {
3679     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3680 }
3681 
3682 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3683 {
3684     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3685 }
3686 
3687 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3688 {
3689     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3690 }
3691 
3692 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3693 {
3694     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3695 }
3696 
3697 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3698 {
3699     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3700 }
3701 
3702 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3703 {
3704     return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3705 }
3706 
3707 /*
3708  * 64-bit feature tests via id registers.
3709  */
3710 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3711 {
3712     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3713 }
3714 
3715 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3716 {
3717     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3718 }
3719 
3720 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3721 {
3722     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3723 }
3724 
3725 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3726 {
3727     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3728 }
3729 
3730 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3731 {
3732     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3733 }
3734 
3735 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3736 {
3737     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3738 }
3739 
3740 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3741 {
3742     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3743 }
3744 
3745 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3746 {
3747     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3748 }
3749 
3750 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3751 {
3752     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3753 }
3754 
3755 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3756 {
3757     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3758 }
3759 
3760 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3761 {
3762     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3763 }
3764 
3765 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3766 {
3767     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3768 }
3769 
3770 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3771 {
3772     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3773 }
3774 
3775 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3778 }
3779 
3780 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3783 }
3784 
3785 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3786 {
3787     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3788 }
3789 
3790 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3791 {
3792     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3793 }
3794 
3795 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3796 {
3797     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3798 }
3799 
3800 /*
3801  * These are the values from APA/API/APA3.
3802  * In general these must be compared '>=', per the normal Arm ARM
3803  * treatment of fields in ID registers.
3804  */
3805 typedef enum {
3806     PauthFeat_None         = 0,
3807     PauthFeat_1            = 1,
3808     PauthFeat_EPAC         = 2,
3809     PauthFeat_2            = 3,
3810     PauthFeat_FPAC         = 4,
3811     PauthFeat_FPACCOMBINED = 5,
3812 } ARMPauthFeature;
3813 
3814 static inline ARMPauthFeature
3815 isar_feature_pauth_feature(const ARMISARegisters *id)
3816 {
3817     /*
3818      * Architecturally, only one of {APA,API,APA3} may be active (non-zero)
3819      * and the other two must be zero.  Thus we may avoid conditionals.
3820      */
3821     return (FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) |
3822             FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, API) |
3823             FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, APA3));
3824 }
3825 
3826 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3827 {
3828     /*
3829      * Return true if any form of pauth is enabled, as this
3830      * predicate controls migration of the 128-bit keys.
3831      */
3832     return isar_feature_pauth_feature(id) != PauthFeat_None;
3833 }
3834 
3835 static inline bool isar_feature_aa64_pauth_qarma5(const ARMISARegisters *id)
3836 {
3837     /*
3838      * Return true if pauth is enabled with the architected QARMA5 algorithm.
3839      * QEMU will always enable or disable both APA and GPA.
3840      */
3841     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3842 }
3843 
3844 static inline bool isar_feature_aa64_pauth_qarma3(const ARMISARegisters *id)
3845 {
3846     /*
3847      * Return true if pauth is enabled with the architected QARMA3 algorithm.
3848      * QEMU will always enable or disable both APA3 and GPA3.
3849      */
3850     return FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, APA3) != 0;
3851 }
3852 
3853 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3854 {
3855     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3856 }
3857 
3858 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3859 {
3860     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3861 }
3862 
3863 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3864 {
3865     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3866 }
3867 
3868 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3869 {
3870     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3871 }
3872 
3873 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3874 {
3875     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3876 }
3877 
3878 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3879 {
3880     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3881 }
3882 
3883 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3884 {
3885     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3886 }
3887 
3888 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3889 {
3890     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3891 }
3892 
3893 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3894 {
3895     /* We always set the AdvSIMD and FP fields identically.  */
3896     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3897 }
3898 
3899 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3900 {
3901     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3902     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3903 }
3904 
3905 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3906 {
3907     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3908 }
3909 
3910 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3911 {
3912     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3913 }
3914 
3915 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3916 {
3917     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3918 }
3919 
3920 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3921 {
3922     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3923 }
3924 
3925 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3926 {
3927     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3928 }
3929 
3930 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3931 {
3932     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3933 }
3934 
3935 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3936 {
3937     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3938 }
3939 
3940 static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3941 {
3942     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3943 }
3944 
3945 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3946 {
3947     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3948 }
3949 
3950 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3951 {
3952     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3953 }
3954 
3955 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3956 {
3957     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3958 }
3959 
3960 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3961 {
3962     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3963 }
3964 
3965 static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3966 {
3967     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3968 }
3969 
3970 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3971 {
3972     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3973 }
3974 
3975 static inline bool isar_feature_aa64_tidcp1(const ARMISARegisters *id)
3976 {
3977     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR1, TIDCP1) != 0;
3978 }
3979 
3980 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3981 {
3982     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3983 }
3984 
3985 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3986 {
3987     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3988 }
3989 
3990 static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3991 {
3992     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3993 }
3994 
3995 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3996 {
3997     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3998 }
3999 
4000 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4001 {
4002     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4003 }
4004 
4005 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
4006 {
4007     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
4008 }
4009 
4010 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
4011 {
4012     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
4013 }
4014 
4015 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4016 {
4017     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4018 }
4019 
4020 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4021 {
4022     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4023 }
4024 
4025 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4026 {
4027     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4028 }
4029 
4030 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4031 {
4032     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4033 }
4034 
4035 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
4036 {
4037     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4038         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4039 }
4040 
4041 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
4042 {
4043     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4044         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4045 }
4046 
4047 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4048 {
4049     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4050         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4051 }
4052 
4053 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4054 {
4055     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4056 }
4057 
4058 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4059 {
4060     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4061 }
4062 
4063 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4064 {
4065     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4066 }
4067 
4068 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4069 {
4070     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4071 }
4072 
4073 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4074 {
4075     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4076     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4077 }
4078 
4079 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4080 {
4081     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4082 }
4083 
4084 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4085 {
4086     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4087     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4088 }
4089 
4090 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4091 {
4092     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4093 }
4094 
4095 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4096 {
4097     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4098 }
4099 
4100 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4101 {
4102     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4103 }
4104 
4105 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4106 {
4107     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4108     return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4109 }
4110 
4111 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4112 {
4113     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4114     return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4115 }
4116 
4117 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4118 {
4119     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4120     return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4121 }
4122 
4123 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4124 {
4125     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4126 }
4127 
4128 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4129 {
4130     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4131 }
4132 
4133 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4134 {
4135     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4136 }
4137 
4138 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4139 {
4140     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4141 }
4142 
4143 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4144 {
4145     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4146 }
4147 
4148 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4149 {
4150     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4151 }
4152 
4153 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4154 {
4155     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4156 }
4157 
4158 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4159 {
4160     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4161 }
4162 
4163 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4164 {
4165     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4166     if (key >= 2) {
4167         return true;      /* FEAT_CSV2_2 */
4168     }
4169     if (key == 1) {
4170         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4171         return key >= 2;  /* FEAT_CSV2_1p2 */
4172     }
4173     return false;
4174 }
4175 
4176 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4177 {
4178     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4179 }
4180 
4181 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4182 {
4183     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4184 }
4185 
4186 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4187 {
4188     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4189 }
4190 
4191 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4192 {
4193     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4194 }
4195 
4196 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4197 {
4198     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4199 }
4200 
4201 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4202 {
4203     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4204 }
4205 
4206 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4207 {
4208     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4209 }
4210 
4211 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4212 {
4213     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4214 }
4215 
4216 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4217 {
4218     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4219 }
4220 
4221 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4222 {
4223     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4224 }
4225 
4226 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4227 {
4228     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4229 }
4230 
4231 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4232 {
4233     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4234 }
4235 
4236 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4237 {
4238     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4239 }
4240 
4241 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4242 {
4243     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4244 }
4245 
4246 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4247 {
4248     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4249 }
4250 
4251 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4252 {
4253     return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4254 }
4255 
4256 /*
4257  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4258  */
4259 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4260 {
4261     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4262 }
4263 
4264 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4265 {
4266     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4267 }
4268 
4269 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4270 {
4271     return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4272 }
4273 
4274 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4275 {
4276     return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4277 }
4278 
4279 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4280 {
4281     return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4282 }
4283 
4284 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4285 {
4286     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4287 }
4288 
4289 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4290 {
4291     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4292 }
4293 
4294 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4295 {
4296     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4297 }
4298 
4299 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4300 {
4301     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4302 }
4303 
4304 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4305 {
4306     return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4307 }
4308 
4309 static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4310 {
4311     return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4312 }
4313 
4314 /*
4315  * Forward to the above feature tests given an ARMCPU pointer.
4316  */
4317 #define cpu_isar_feature(name, cpu) \
4318     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4319 
4320 #endif
4321