xref: /openbmc/qemu/target/arm/cpu.h (revision 5e140196)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "qemu-common.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #define EXCP_UDEF            1   /* undefined instruction */
33 #define EXCP_SWI             2   /* software interrupt */
34 #define EXCP_PREFETCH_ABORT  3
35 #define EXCP_DATA_ABORT      4
36 #define EXCP_IRQ             5
37 #define EXCP_FIQ             6
38 #define EXCP_BKPT            7
39 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
40 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
41 #define EXCP_HVC            11   /* HyperVisor Call */
42 #define EXCP_HYP_TRAP       12
43 #define EXCP_SMC            13   /* Secure Monitor Call */
44 #define EXCP_VIRQ           14
45 #define EXCP_VFIQ           15
46 #define EXCP_SEMIHOST       16   /* semihosting call */
47 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
48 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
49 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
50 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
51 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
52 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
53 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
54 
55 #define ARMV7M_EXCP_RESET   1
56 #define ARMV7M_EXCP_NMI     2
57 #define ARMV7M_EXCP_HARD    3
58 #define ARMV7M_EXCP_MEM     4
59 #define ARMV7M_EXCP_BUS     5
60 #define ARMV7M_EXCP_USAGE   6
61 #define ARMV7M_EXCP_SECURE  7
62 #define ARMV7M_EXCP_SVC     11
63 #define ARMV7M_EXCP_DEBUG   12
64 #define ARMV7M_EXCP_PENDSV  14
65 #define ARMV7M_EXCP_SYSTICK 15
66 
67 /* For M profile, some registers are banked secure vs non-secure;
68  * these are represented as a 2-element array where the first element
69  * is the non-secure copy and the second is the secure copy.
70  * When the CPU does not have implement the security extension then
71  * only the first element is used.
72  * This means that the copy for the current security state can be
73  * accessed via env->registerfield[env->v7m.secure] (whether the security
74  * extension is implemented or not).
75  */
76 enum {
77     M_REG_NS = 0,
78     M_REG_S = 1,
79     M_REG_NUM_BANKS = 2,
80 };
81 
82 /* ARM-specific interrupt pending bits.  */
83 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
84 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
85 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
86 
87 /* The usual mapping for an AArch64 system register to its AArch32
88  * counterpart is for the 32 bit world to have access to the lower
89  * half only (with writes leaving the upper half untouched). It's
90  * therefore useful to be able to pass TCG the offset of the least
91  * significant half of a uint64_t struct member.
92  */
93 #ifdef HOST_WORDS_BIGENDIAN
94 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
95 #define offsetofhigh32(S, M) offsetof(S, M)
96 #else
97 #define offsetoflow32(S, M) offsetof(S, M)
98 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #endif
100 
101 /* Meanings of the ARMCPU object's four inbound GPIO lines */
102 #define ARM_CPU_IRQ 0
103 #define ARM_CPU_FIQ 1
104 #define ARM_CPU_VIRQ 2
105 #define ARM_CPU_VFIQ 3
106 
107 /* ARM-specific extra insn start words:
108  * 1: Conditional execution bits
109  * 2: Partial exception syndrome for data aborts
110  */
111 #define TARGET_INSN_START_EXTRA_WORDS 2
112 
113 /* The 2nd extra word holding syndrome info for data aborts does not use
114  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
115  * help the sleb128 encoder do a better job.
116  * When restoring the CPU state, we shift it back up.
117  */
118 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
119 #define ARM_INSN_START_WORD2_SHIFT 14
120 
121 /* We currently assume float and double are IEEE single and double
122    precision respectively.
123    Doing runtime conversions is tricky because VFP registers may contain
124    integer values (eg. as the result of a FTOSI instruction).
125    s<2n> maps to the least significant half of d<n>
126    s<2n+1> maps to the most significant half of d<n>
127  */
128 
129 /**
130  * DynamicGDBXMLInfo:
131  * @desc: Contains the XML descriptions.
132  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
133  * @cpregs_keys: Array that contains the corresponding Key of
134  * a given cpreg with the same order of the cpreg in the XML description.
135  */
136 typedef struct DynamicGDBXMLInfo {
137     char *desc;
138     int num_cpregs;
139     uint32_t *cpregs_keys;
140 } DynamicGDBXMLInfo;
141 
142 /* CPU state for each instance of a generic timer (in cp15 c14) */
143 typedef struct ARMGenericTimer {
144     uint64_t cval; /* Timer CompareValue register */
145     uint64_t ctl; /* Timer Control register */
146 } ARMGenericTimer;
147 
148 #define GTIMER_PHYS 0
149 #define GTIMER_VIRT 1
150 #define GTIMER_HYP  2
151 #define GTIMER_SEC  3
152 #define NUM_GTIMERS 4
153 
154 typedef struct {
155     uint64_t raw_tcr;
156     uint32_t mask;
157     uint32_t base_mask;
158 } TCR;
159 
160 /* Define a maximum sized vector register.
161  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162  * For 64-bit, this is a 2048-bit SVE register.
163  *
164  * Note that the mapping between S, D, and Q views of the register bank
165  * differs between AArch64 and AArch32.
166  * In AArch32:
167  *  Qn = regs[n].d[1]:regs[n].d[0]
168  *  Dn = regs[n / 2].d[n & 1]
169  *  Sn = regs[n / 4].d[n % 4 / 2],
170  *       bits 31..0 for even n, and bits 63..32 for odd n
171  *       (and regs[16] to regs[31] are inaccessible)
172  * In AArch64:
173  *  Zn = regs[n].d[*]
174  *  Qn = regs[n].d[1]:regs[n].d[0]
175  *  Dn = regs[n].d[0]
176  *  Sn = regs[n].d[0] bits 31..0
177  *  Hn = regs[n].d[0] bits 15..0
178  *
179  * This corresponds to the architecturally defined mapping between
180  * the two execution states, and means we do not need to explicitly
181  * map these registers when changing states.
182  *
183  * Align the data for use with TCG host vector operations.
184  */
185 
186 #ifdef TARGET_AARCH64
187 # define ARM_MAX_VQ    16
188 #else
189 # define ARM_MAX_VQ    1
190 #endif
191 
192 typedef struct ARMVectorReg {
193     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
194 } ARMVectorReg;
195 
196 #ifdef TARGET_AARCH64
197 /* In AArch32 mode, predicate registers do not exist at all.  */
198 typedef struct ARMPredicateReg {
199     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
200 } ARMPredicateReg;
201 
202 /* In AArch32 mode, PAC keys do not exist at all.  */
203 typedef struct ARMPACKey {
204     uint64_t lo, hi;
205 } ARMPACKey;
206 #endif
207 
208 
209 typedef struct CPUARMState {
210     /* Regs for current mode.  */
211     uint32_t regs[16];
212 
213     /* 32/64 switch only happens when taking and returning from
214      * exceptions so the overlap semantics are taken care of then
215      * instead of having a complicated union.
216      */
217     /* Regs for A64 mode.  */
218     uint64_t xregs[32];
219     uint64_t pc;
220     /* PSTATE isn't an architectural register for ARMv8. However, it is
221      * convenient for us to assemble the underlying state into a 32 bit format
222      * identical to the architectural format used for the SPSR. (This is also
223      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
224      * 'pstate' register are.) Of the PSTATE bits:
225      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
226      *    semantics as for AArch32, as described in the comments on each field)
227      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
228      *  DAIF (exception masks) are kept in env->daif
229      *  BTYPE is kept in env->btype
230      *  all other bits are stored in their correct places in env->pstate
231      */
232     uint32_t pstate;
233     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
234 
235     /* Frequently accessed CPSR bits are stored separately for efficiency.
236        This contains all the other bits.  Use cpsr_{read,write} to access
237        the whole CPSR.  */
238     uint32_t uncached_cpsr;
239     uint32_t spsr;
240 
241     /* Banked registers.  */
242     uint64_t banked_spsr[8];
243     uint32_t banked_r13[8];
244     uint32_t banked_r14[8];
245 
246     /* These hold r8-r12.  */
247     uint32_t usr_regs[5];
248     uint32_t fiq_regs[5];
249 
250     /* cpsr flag cache for faster execution */
251     uint32_t CF; /* 0 or 1 */
252     uint32_t VF; /* V is the bit 31. All other bits are undefined */
253     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
254     uint32_t ZF; /* Z set if zero.  */
255     uint32_t QF; /* 0 or 1 */
256     uint32_t GE; /* cpsr[19:16] */
257     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
258     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261 
262     uint64_t elr_el[4]; /* AArch64 exception link regs  */
263     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
264 
265     /* System control coprocessor (cp15) */
266     struct {
267         uint32_t c0_cpuid;
268         union { /* Cache size selection */
269             struct {
270                 uint64_t _unused_csselr0;
271                 uint64_t csselr_ns;
272                 uint64_t _unused_csselr1;
273                 uint64_t csselr_s;
274             };
275             uint64_t csselr_el[4];
276         };
277         union { /* System control register. */
278             struct {
279                 uint64_t _unused_sctlr;
280                 uint64_t sctlr_ns;
281                 uint64_t hsctlr;
282                 uint64_t sctlr_s;
283             };
284             uint64_t sctlr_el[4];
285         };
286         uint64_t cpacr_el1; /* Architectural feature access control register */
287         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
288         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
289         uint64_t sder; /* Secure debug enable register. */
290         uint32_t nsacr; /* Non-secure access control register. */
291         union { /* MMU translation table base 0. */
292             struct {
293                 uint64_t _unused_ttbr0_0;
294                 uint64_t ttbr0_ns;
295                 uint64_t _unused_ttbr0_1;
296                 uint64_t ttbr0_s;
297             };
298             uint64_t ttbr0_el[4];
299         };
300         union { /* MMU translation table base 1. */
301             struct {
302                 uint64_t _unused_ttbr1_0;
303                 uint64_t ttbr1_ns;
304                 uint64_t _unused_ttbr1_1;
305                 uint64_t ttbr1_s;
306             };
307             uint64_t ttbr1_el[4];
308         };
309         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
310         /* MMU translation table base control. */
311         TCR tcr_el[4];
312         TCR vtcr_el2; /* Virtualization Translation Control.  */
313         uint32_t c2_data; /* MPU data cacheable bits.  */
314         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
315         union { /* MMU domain access control register
316                  * MPU write buffer control.
317                  */
318             struct {
319                 uint64_t dacr_ns;
320                 uint64_t dacr_s;
321             };
322             struct {
323                 uint64_t dacr32_el2;
324             };
325         };
326         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
328         uint64_t hcr_el2; /* Hypervisor configuration register */
329         uint64_t scr_el3; /* Secure configuration register.  */
330         union { /* Fault status registers.  */
331             struct {
332                 uint64_t ifsr_ns;
333                 uint64_t ifsr_s;
334             };
335             struct {
336                 uint64_t ifsr32_el2;
337             };
338         };
339         union {
340             struct {
341                 uint64_t _unused_dfsr;
342                 uint64_t dfsr_ns;
343                 uint64_t hsr;
344                 uint64_t dfsr_s;
345             };
346             uint64_t esr_el[4];
347         };
348         uint32_t c6_region[8]; /* MPU base/size registers.  */
349         union { /* Fault address registers. */
350             struct {
351                 uint64_t _unused_far0;
352 #ifdef HOST_WORDS_BIGENDIAN
353                 uint32_t ifar_ns;
354                 uint32_t dfar_ns;
355                 uint32_t ifar_s;
356                 uint32_t dfar_s;
357 #else
358                 uint32_t dfar_ns;
359                 uint32_t ifar_ns;
360                 uint32_t dfar_s;
361                 uint32_t ifar_s;
362 #endif
363                 uint64_t _unused_far3;
364             };
365             uint64_t far_el[4];
366         };
367         uint64_t hpfar_el2;
368         uint64_t hstr_el2;
369         union { /* Translation result. */
370             struct {
371                 uint64_t _unused_par_0;
372                 uint64_t par_ns;
373                 uint64_t _unused_par_1;
374                 uint64_t par_s;
375             };
376             uint64_t par_el[4];
377         };
378 
379         uint32_t c9_insn; /* Cache lockdown registers.  */
380         uint32_t c9_data;
381         uint64_t c9_pmcr; /* performance monitor control register */
382         uint64_t c9_pmcnten; /* perf monitor counter enables */
383         uint64_t c9_pmovsr; /* perf monitor overflow status */
384         uint64_t c9_pmuserenr; /* perf monitor user enable */
385         uint64_t c9_pmselr; /* perf monitor counter selection register */
386         uint64_t c9_pminten; /* perf monitor interrupt enables */
387         union { /* Memory attribute redirection */
388             struct {
389 #ifdef HOST_WORDS_BIGENDIAN
390                 uint64_t _unused_mair_0;
391                 uint32_t mair1_ns;
392                 uint32_t mair0_ns;
393                 uint64_t _unused_mair_1;
394                 uint32_t mair1_s;
395                 uint32_t mair0_s;
396 #else
397                 uint64_t _unused_mair_0;
398                 uint32_t mair0_ns;
399                 uint32_t mair1_ns;
400                 uint64_t _unused_mair_1;
401                 uint32_t mair0_s;
402                 uint32_t mair1_s;
403 #endif
404             };
405             uint64_t mair_el[4];
406         };
407         union { /* vector base address register */
408             struct {
409                 uint64_t _unused_vbar;
410                 uint64_t vbar_ns;
411                 uint64_t hvbar;
412                 uint64_t vbar_s;
413             };
414             uint64_t vbar_el[4];
415         };
416         uint32_t mvbar; /* (monitor) vector base address register */
417         struct { /* FCSE PID. */
418             uint32_t fcseidr_ns;
419             uint32_t fcseidr_s;
420         };
421         union { /* Context ID. */
422             struct {
423                 uint64_t _unused_contextidr_0;
424                 uint64_t contextidr_ns;
425                 uint64_t _unused_contextidr_1;
426                 uint64_t contextidr_s;
427             };
428             uint64_t contextidr_el[4];
429         };
430         union { /* User RW Thread register. */
431             struct {
432                 uint64_t tpidrurw_ns;
433                 uint64_t tpidrprw_ns;
434                 uint64_t htpidr;
435                 uint64_t _tpidr_el3;
436             };
437             uint64_t tpidr_el[4];
438         };
439         /* The secure banks of these registers don't map anywhere */
440         uint64_t tpidrurw_s;
441         uint64_t tpidrprw_s;
442         uint64_t tpidruro_s;
443 
444         union { /* User RO Thread register. */
445             uint64_t tpidruro_ns;
446             uint64_t tpidrro_el[1];
447         };
448         uint64_t c14_cntfrq; /* Counter Frequency register */
449         uint64_t c14_cntkctl; /* Timer Control register */
450         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
451         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
452         ARMGenericTimer c14_timer[NUM_GTIMERS];
453         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
454         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
455         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
456         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
457         uint32_t c15_threadid; /* TI debugger thread-ID.  */
458         uint32_t c15_config_base_address; /* SCU base address.  */
459         uint32_t c15_diagnostic; /* diagnostic register */
460         uint32_t c15_power_diagnostic;
461         uint32_t c15_power_control; /* power control */
462         uint64_t dbgbvr[16]; /* breakpoint value registers */
463         uint64_t dbgbcr[16]; /* breakpoint control registers */
464         uint64_t dbgwvr[16]; /* watchpoint value registers */
465         uint64_t dbgwcr[16]; /* watchpoint control registers */
466         uint64_t mdscr_el1;
467         uint64_t oslsr_el1; /* OS Lock Status */
468         uint64_t mdcr_el2;
469         uint64_t mdcr_el3;
470         /* Stores the architectural value of the counter *the last time it was
471          * updated* by pmccntr_op_start. Accesses should always be surrounded
472          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
473          * architecturally-correct value is being read/set.
474          */
475         uint64_t c15_ccnt;
476         /* Stores the delta between the architectural value and the underlying
477          * cycle count during normal operation. It is used to update c15_ccnt
478          * to be the correct architectural value before accesses. During
479          * accesses, c15_ccnt_delta contains the underlying count being used
480          * for the access, after which it reverts to the delta value in
481          * pmccntr_op_finish.
482          */
483         uint64_t c15_ccnt_delta;
484         uint64_t c14_pmevcntr[31];
485         uint64_t c14_pmevcntr_delta[31];
486         uint64_t c14_pmevtyper[31];
487         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
488         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
489         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
490     } cp15;
491 
492     struct {
493         /* M profile has up to 4 stack pointers:
494          * a Main Stack Pointer and a Process Stack Pointer for each
495          * of the Secure and Non-Secure states. (If the CPU doesn't support
496          * the security extension then it has only two SPs.)
497          * In QEMU we always store the currently active SP in regs[13],
498          * and the non-active SP for the current security state in
499          * v7m.other_sp. The stack pointers for the inactive security state
500          * are stored in other_ss_msp and other_ss_psp.
501          * switch_v7m_security_state() is responsible for rearranging them
502          * when we change security state.
503          */
504         uint32_t other_sp;
505         uint32_t other_ss_msp;
506         uint32_t other_ss_psp;
507         uint32_t vecbase[M_REG_NUM_BANKS];
508         uint32_t basepri[M_REG_NUM_BANKS];
509         uint32_t control[M_REG_NUM_BANKS];
510         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
511         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
512         uint32_t hfsr; /* HardFault Status */
513         uint32_t dfsr; /* Debug Fault Status Register */
514         uint32_t sfsr; /* Secure Fault Status Register */
515         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
516         uint32_t bfar; /* BusFault Address */
517         uint32_t sfar; /* Secure Fault Address Register */
518         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
519         int exception;
520         uint32_t primask[M_REG_NUM_BANKS];
521         uint32_t faultmask[M_REG_NUM_BANKS];
522         uint32_t aircr; /* only holds r/w state if security extn implemented */
523         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
524         uint32_t csselr[M_REG_NUM_BANKS];
525         uint32_t scr[M_REG_NUM_BANKS];
526         uint32_t msplim[M_REG_NUM_BANKS];
527         uint32_t psplim[M_REG_NUM_BANKS];
528         uint32_t fpcar[M_REG_NUM_BANKS];
529         uint32_t fpccr[M_REG_NUM_BANKS];
530         uint32_t fpdscr[M_REG_NUM_BANKS];
531         uint32_t cpacr[M_REG_NUM_BANKS];
532         uint32_t nsacr;
533     } v7m;
534 
535     /* Information associated with an exception about to be taken:
536      * code which raises an exception must set cs->exception_index and
537      * the relevant parts of this structure; the cpu_do_interrupt function
538      * will then set the guest-visible registers as part of the exception
539      * entry process.
540      */
541     struct {
542         uint32_t syndrome; /* AArch64 format syndrome register */
543         uint32_t fsr; /* AArch32 format fault status register info */
544         uint64_t vaddress; /* virtual addr associated with exception, if any */
545         uint32_t target_el; /* EL the exception should be targeted for */
546         /* If we implement EL2 we will also need to store information
547          * about the intermediate physical address for stage 2 faults.
548          */
549     } exception;
550 
551     /* Information associated with an SError */
552     struct {
553         uint8_t pending;
554         uint8_t has_esr;
555         uint64_t esr;
556     } serror;
557 
558     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
559     uint32_t irq_line_state;
560 
561     /* Thumb-2 EE state.  */
562     uint32_t teecr;
563     uint32_t teehbr;
564 
565     /* VFP coprocessor state.  */
566     struct {
567         ARMVectorReg zregs[32];
568 
569 #ifdef TARGET_AARCH64
570         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
571 #define FFR_PRED_NUM 16
572         ARMPredicateReg pregs[17];
573         /* Scratch space for aa64 sve predicate temporary.  */
574         ARMPredicateReg preg_tmp;
575 #endif
576 
577         /* We store these fpcsr fields separately for convenience.  */
578         uint32_t qc[4] QEMU_ALIGNED(16);
579         int vec_len;
580         int vec_stride;
581 
582         uint32_t xregs[16];
583 
584         /* Scratch space for aa32 neon expansion.  */
585         uint32_t scratch[8];
586 
587         /* There are a number of distinct float control structures:
588          *
589          *  fp_status: is the "normal" fp status.
590          *  fp_status_fp16: used for half-precision calculations
591          *  standard_fp_status : the ARM "Standard FPSCR Value"
592          *
593          * Half-precision operations are governed by a separate
594          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
595          * status structure to control this.
596          *
597          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
598          * round-to-nearest and is used by any operations (generally
599          * Neon) which the architecture defines as controlled by the
600          * standard FPSCR value rather than the FPSCR.
601          *
602          * To avoid having to transfer exception bits around, we simply
603          * say that the FPSCR cumulative exception flags are the logical
604          * OR of the flags in the three fp statuses. This relies on the
605          * only thing which needs to read the exception flags being
606          * an explicit FPSCR read.
607          */
608         float_status fp_status;
609         float_status fp_status_f16;
610         float_status standard_fp_status;
611 
612         /* ZCR_EL[1-3] */
613         uint64_t zcr_el[4];
614     } vfp;
615     uint64_t exclusive_addr;
616     uint64_t exclusive_val;
617     uint64_t exclusive_high;
618 
619     /* iwMMXt coprocessor state.  */
620     struct {
621         uint64_t regs[16];
622         uint64_t val;
623 
624         uint32_t cregs[16];
625     } iwmmxt;
626 
627 #ifdef TARGET_AARCH64
628     struct {
629         ARMPACKey apia;
630         ARMPACKey apib;
631         ARMPACKey apda;
632         ARMPACKey apdb;
633         ARMPACKey apga;
634     } keys;
635 #endif
636 
637 #if defined(CONFIG_USER_ONLY)
638     /* For usermode syscall translation.  */
639     int eabi;
640 #endif
641 
642     struct CPUBreakpoint *cpu_breakpoint[16];
643     struct CPUWatchpoint *cpu_watchpoint[16];
644 
645     /* Fields up to this point are cleared by a CPU reset */
646     struct {} end_reset_fields;
647 
648     CPU_COMMON
649 
650     /* Fields after CPU_COMMON are preserved across CPU reset. */
651 
652     /* Internal CPU feature flags.  */
653     uint64_t features;
654 
655     /* PMSAv7 MPU */
656     struct {
657         uint32_t *drbar;
658         uint32_t *drsr;
659         uint32_t *dracr;
660         uint32_t rnr[M_REG_NUM_BANKS];
661     } pmsav7;
662 
663     /* PMSAv8 MPU */
664     struct {
665         /* The PMSAv8 implementation also shares some PMSAv7 config
666          * and state:
667          *  pmsav7.rnr (region number register)
668          *  pmsav7_dregion (number of configured regions)
669          */
670         uint32_t *rbar[M_REG_NUM_BANKS];
671         uint32_t *rlar[M_REG_NUM_BANKS];
672         uint32_t mair0[M_REG_NUM_BANKS];
673         uint32_t mair1[M_REG_NUM_BANKS];
674     } pmsav8;
675 
676     /* v8M SAU */
677     struct {
678         uint32_t *rbar;
679         uint32_t *rlar;
680         uint32_t rnr;
681         uint32_t ctrl;
682     } sau;
683 
684     void *nvic;
685     const struct arm_boot_info *boot_info;
686     /* Store GICv3CPUState to access from this struct */
687     void *gicv3state;
688 } CPUARMState;
689 
690 /**
691  * ARMELChangeHookFn:
692  * type of a function which can be registered via arm_register_el_change_hook()
693  * to get callbacks when the CPU changes its exception level or mode.
694  */
695 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
696 typedef struct ARMELChangeHook ARMELChangeHook;
697 struct ARMELChangeHook {
698     ARMELChangeHookFn *hook;
699     void *opaque;
700     QLIST_ENTRY(ARMELChangeHook) node;
701 };
702 
703 /* These values map onto the return values for
704  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
705 typedef enum ARMPSCIState {
706     PSCI_ON = 0,
707     PSCI_OFF = 1,
708     PSCI_ON_PENDING = 2
709 } ARMPSCIState;
710 
711 typedef struct ARMISARegisters ARMISARegisters;
712 
713 /**
714  * ARMCPU:
715  * @env: #CPUARMState
716  *
717  * An ARM CPU core.
718  */
719 struct ARMCPU {
720     /*< private >*/
721     CPUState parent_obj;
722     /*< public >*/
723 
724     CPUNegativeOffsetState neg;
725     CPUARMState env;
726 
727     /* Coprocessor information */
728     GHashTable *cp_regs;
729     /* For marshalling (mostly coprocessor) register state between the
730      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
731      * we use these arrays.
732      */
733     /* List of register indexes managed via these arrays; (full KVM style
734      * 64 bit indexes, not CPRegInfo 32 bit indexes)
735      */
736     uint64_t *cpreg_indexes;
737     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
738     uint64_t *cpreg_values;
739     /* Length of the indexes, values, reset_values arrays */
740     int32_t cpreg_array_len;
741     /* These are used only for migration: incoming data arrives in
742      * these fields and is sanity checked in post_load before copying
743      * to the working data structures above.
744      */
745     uint64_t *cpreg_vmstate_indexes;
746     uint64_t *cpreg_vmstate_values;
747     int32_t cpreg_vmstate_array_len;
748 
749     DynamicGDBXMLInfo dyn_xml;
750 
751     /* Timers used by the generic (architected) timer */
752     QEMUTimer *gt_timer[NUM_GTIMERS];
753     /*
754      * Timer used by the PMU. Its state is restored after migration by
755      * pmu_op_finish() - it does not need other handling during migration
756      */
757     QEMUTimer *pmu_timer;
758     /* GPIO outputs for generic timer */
759     qemu_irq gt_timer_outputs[NUM_GTIMERS];
760     /* GPIO output for GICv3 maintenance interrupt signal */
761     qemu_irq gicv3_maintenance_interrupt;
762     /* GPIO output for the PMU interrupt */
763     qemu_irq pmu_interrupt;
764 
765     /* MemoryRegion to use for secure physical accesses */
766     MemoryRegion *secure_memory;
767 
768     /* For v8M, pointer to the IDAU interface provided by board/SoC */
769     Object *idau;
770 
771     /* 'compatible' string for this CPU for Linux device trees */
772     const char *dtb_compatible;
773 
774     /* PSCI version for this CPU
775      * Bits[31:16] = Major Version
776      * Bits[15:0] = Minor Version
777      */
778     uint32_t psci_version;
779 
780     /* Should CPU start in PSCI powered-off state? */
781     bool start_powered_off;
782 
783     /* Current power state, access guarded by BQL */
784     ARMPSCIState power_state;
785 
786     /* CPU has virtualization extension */
787     bool has_el2;
788     /* CPU has security extension */
789     bool has_el3;
790     /* CPU has PMU (Performance Monitor Unit) */
791     bool has_pmu;
792 
793     /* CPU has memory protection unit */
794     bool has_mpu;
795     /* PMSAv7 MPU number of supported regions */
796     uint32_t pmsav7_dregion;
797     /* v8M SAU number of supported regions */
798     uint32_t sau_sregion;
799 
800     /* PSCI conduit used to invoke PSCI methods
801      * 0 - disabled, 1 - smc, 2 - hvc
802      */
803     uint32_t psci_conduit;
804 
805     /* For v8M, initial value of the Secure VTOR */
806     uint32_t init_svtor;
807 
808     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
809      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
810      */
811     uint32_t kvm_target;
812 
813     /* KVM init features for this CPU */
814     uint32_t kvm_init_features[7];
815 
816     /* Uniprocessor system with MP extensions */
817     bool mp_is_up;
818 
819     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
820      * and the probe failed (so we need to report the error in realize)
821      */
822     bool host_cpu_probe_failed;
823 
824     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
825      * register.
826      */
827     int32_t core_count;
828 
829     /* The instance init functions for implementation-specific subclasses
830      * set these fields to specify the implementation-dependent values of
831      * various constant registers and reset values of non-constant
832      * registers.
833      * Some of these might become QOM properties eventually.
834      * Field names match the official register names as defined in the
835      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
836      * is used for reset values of non-constant registers; no reset_
837      * prefix means a constant register.
838      * Some of these registers are split out into a substructure that
839      * is shared with the translators to control the ISA.
840      */
841     struct ARMISARegisters {
842         uint32_t id_isar0;
843         uint32_t id_isar1;
844         uint32_t id_isar2;
845         uint32_t id_isar3;
846         uint32_t id_isar4;
847         uint32_t id_isar5;
848         uint32_t id_isar6;
849         uint32_t mvfr0;
850         uint32_t mvfr1;
851         uint32_t mvfr2;
852         uint64_t id_aa64isar0;
853         uint64_t id_aa64isar1;
854         uint64_t id_aa64pfr0;
855         uint64_t id_aa64pfr1;
856         uint64_t id_aa64mmfr0;
857         uint64_t id_aa64mmfr1;
858     } isar;
859     uint32_t midr;
860     uint32_t revidr;
861     uint32_t reset_fpsid;
862     uint32_t ctr;
863     uint32_t reset_sctlr;
864     uint32_t id_pfr0;
865     uint32_t id_pfr1;
866     uint32_t id_dfr0;
867     uint64_t pmceid0;
868     uint64_t pmceid1;
869     uint32_t id_afr0;
870     uint32_t id_mmfr0;
871     uint32_t id_mmfr1;
872     uint32_t id_mmfr2;
873     uint32_t id_mmfr3;
874     uint32_t id_mmfr4;
875     uint64_t id_aa64dfr0;
876     uint64_t id_aa64dfr1;
877     uint64_t id_aa64afr0;
878     uint64_t id_aa64afr1;
879     uint32_t dbgdidr;
880     uint32_t clidr;
881     uint64_t mp_affinity; /* MP ID without feature bits */
882     /* The elements of this array are the CCSIDR values for each cache,
883      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
884      */
885     uint32_t ccsidr[16];
886     uint64_t reset_cbar;
887     uint32_t reset_auxcr;
888     bool reset_hivecs;
889     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
890     uint32_t dcz_blocksize;
891     uint64_t rvbar;
892 
893     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
894     int gic_num_lrs; /* number of list registers */
895     int gic_vpribits; /* number of virtual priority bits */
896     int gic_vprebits; /* number of virtual preemption bits */
897 
898     /* Whether the cfgend input is high (i.e. this CPU should reset into
899      * big-endian mode).  This setting isn't used directly: instead it modifies
900      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
901      * architecture version.
902      */
903     bool cfgend;
904 
905     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
906     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
907 
908     int32_t node_id; /* NUMA node this CPU belongs to */
909 
910     /* Used to synchronize KVM and QEMU in-kernel device levels */
911     uint8_t device_irq_level;
912 
913     /* Used to set the maximum vector length the cpu will support.  */
914     uint32_t sve_max_vq;
915 };
916 
917 void arm_cpu_post_init(Object *obj);
918 
919 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
920 
921 #ifndef CONFIG_USER_ONLY
922 extern const struct VMStateDescription vmstate_arm_cpu;
923 #endif
924 
925 void arm_cpu_do_interrupt(CPUState *cpu);
926 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
927 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
928 
929 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
930 
931 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
932                                          MemTxAttrs *attrs);
933 
934 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
935 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
936 
937 /* Dynamically generates for gdb stub an XML description of the sysregs from
938  * the cp_regs hashtable. Returns the registered sysregs number.
939  */
940 int arm_gen_dynamic_xml(CPUState *cpu);
941 
942 /* Returns the dynamically generated XML for the gdb stub.
943  * Returns a pointer to the XML contents for the specified XML file or NULL
944  * if the XML name doesn't match the predefined one.
945  */
946 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
947 
948 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
949                              int cpuid, void *opaque);
950 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
951                              int cpuid, void *opaque);
952 
953 #ifdef TARGET_AARCH64
954 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
955 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
956 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
957 void aarch64_sve_change_el(CPUARMState *env, int old_el,
958                            int new_el, bool el0_a64);
959 #else
960 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
961 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
962                                          int n, bool a)
963 { }
964 #endif
965 
966 target_ulong do_arm_semihosting(CPUARMState *env);
967 void aarch64_sync_32_to_64(CPUARMState *env);
968 void aarch64_sync_64_to_32(CPUARMState *env);
969 
970 int fp_exception_el(CPUARMState *env, int cur_el);
971 int sve_exception_el(CPUARMState *env, int cur_el);
972 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
973 
974 static inline bool is_a64(CPUARMState *env)
975 {
976     return env->aarch64;
977 }
978 
979 /* you can call this signal handler from your SIGBUS and SIGSEGV
980    signal handlers to inform the virtual CPU of exceptions. non zero
981    is returned if the signal was handled by the virtual CPU.  */
982 int cpu_arm_signal_handler(int host_signum, void *pinfo,
983                            void *puc);
984 
985 /**
986  * pmu_op_start/finish
987  * @env: CPUARMState
988  *
989  * Convert all PMU counters between their delta form (the typical mode when
990  * they are enabled) and the guest-visible values. These two calls must
991  * surround any action which might affect the counters.
992  */
993 void pmu_op_start(CPUARMState *env);
994 void pmu_op_finish(CPUARMState *env);
995 
996 /*
997  * Called when a PMU counter is due to overflow
998  */
999 void arm_pmu_timer_cb(void *opaque);
1000 
1001 /**
1002  * Functions to register as EL change hooks for PMU mode filtering
1003  */
1004 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1005 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1006 
1007 /*
1008  * pmu_init
1009  * @cpu: ARMCPU
1010  *
1011  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1012  * for the current configuration
1013  */
1014 void pmu_init(ARMCPU *cpu);
1015 
1016 /* SCTLR bit meanings. Several bits have been reused in newer
1017  * versions of the architecture; in that case we define constants
1018  * for both old and new bit meanings. Code which tests against those
1019  * bits should probably check or otherwise arrange that the CPU
1020  * is the architectural version it expects.
1021  */
1022 #define SCTLR_M       (1U << 0)
1023 #define SCTLR_A       (1U << 1)
1024 #define SCTLR_C       (1U << 2)
1025 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1026 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1027 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1028 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1029 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1030 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1031 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1032 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1033 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1034 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1035 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1036 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1037 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1038 #define SCTLR_SED     (1U << 8) /* v8 onward */
1039 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1040 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1041 #define SCTLR_F       (1U << 10) /* up to v6 */
1042 #define SCTLR_SW      (1U << 10) /* v7 */
1043 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1044 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1045 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1046 #define SCTLR_I       (1U << 12)
1047 #define SCTLR_V       (1U << 13) /* AArch32 only */
1048 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1049 #define SCTLR_RR      (1U << 14) /* up to v7 */
1050 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1051 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1052 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1053 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1054 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1055 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1056 #define SCTLR_BR      (1U << 17) /* PMSA only */
1057 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1058 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1059 #define SCTLR_WXN     (1U << 19)
1060 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1061 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1062 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1063 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1064 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1065 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1066 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1067 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1068 #define SCTLR_VE      (1U << 24) /* up to v7 */
1069 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1070 #define SCTLR_EE      (1U << 25)
1071 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1072 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1073 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1074 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1075 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1076 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1077 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1078 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1079 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1080 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1081 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1082 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1083 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1084 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1085 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1086 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1087 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1088 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1089 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1090 
1091 #define CPTR_TCPAC    (1U << 31)
1092 #define CPTR_TTA      (1U << 20)
1093 #define CPTR_TFP      (1U << 10)
1094 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1095 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1096 
1097 #define MDCR_EPMAD    (1U << 21)
1098 #define MDCR_EDAD     (1U << 20)
1099 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1100 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1101 #define MDCR_SDD      (1U << 16)
1102 #define MDCR_SPD      (3U << 14)
1103 #define MDCR_TDRA     (1U << 11)
1104 #define MDCR_TDOSA    (1U << 10)
1105 #define MDCR_TDA      (1U << 9)
1106 #define MDCR_TDE      (1U << 8)
1107 #define MDCR_HPME     (1U << 7)
1108 #define MDCR_TPM      (1U << 6)
1109 #define MDCR_TPMCR    (1U << 5)
1110 #define MDCR_HPMN     (0x1fU)
1111 
1112 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1113 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1114 
1115 #define CPSR_M (0x1fU)
1116 #define CPSR_T (1U << 5)
1117 #define CPSR_F (1U << 6)
1118 #define CPSR_I (1U << 7)
1119 #define CPSR_A (1U << 8)
1120 #define CPSR_E (1U << 9)
1121 #define CPSR_IT_2_7 (0xfc00U)
1122 #define CPSR_GE (0xfU << 16)
1123 #define CPSR_IL (1U << 20)
1124 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1125  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1126  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1127  * where it is live state but not accessible to the AArch32 code.
1128  */
1129 #define CPSR_RESERVED (0x7U << 21)
1130 #define CPSR_J (1U << 24)
1131 #define CPSR_IT_0_1 (3U << 25)
1132 #define CPSR_Q (1U << 27)
1133 #define CPSR_V (1U << 28)
1134 #define CPSR_C (1U << 29)
1135 #define CPSR_Z (1U << 30)
1136 #define CPSR_N (1U << 31)
1137 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1138 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1139 
1140 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1141 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1142     | CPSR_NZCV)
1143 /* Bits writable in user mode.  */
1144 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1145 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1146 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1147 /* Mask of bits which may be set by exception return copying them from SPSR */
1148 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1149 
1150 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1151 #define XPSR_EXCP 0x1ffU
1152 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1153 #define XPSR_IT_2_7 CPSR_IT_2_7
1154 #define XPSR_GE CPSR_GE
1155 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1156 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1157 #define XPSR_IT_0_1 CPSR_IT_0_1
1158 #define XPSR_Q CPSR_Q
1159 #define XPSR_V CPSR_V
1160 #define XPSR_C CPSR_C
1161 #define XPSR_Z CPSR_Z
1162 #define XPSR_N CPSR_N
1163 #define XPSR_NZCV CPSR_NZCV
1164 #define XPSR_IT CPSR_IT
1165 
1166 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1167 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1168 #define TTBCR_PD0    (1U << 4)
1169 #define TTBCR_PD1    (1U << 5)
1170 #define TTBCR_EPD0   (1U << 7)
1171 #define TTBCR_IRGN0  (3U << 8)
1172 #define TTBCR_ORGN0  (3U << 10)
1173 #define TTBCR_SH0    (3U << 12)
1174 #define TTBCR_T1SZ   (3U << 16)
1175 #define TTBCR_A1     (1U << 22)
1176 #define TTBCR_EPD1   (1U << 23)
1177 #define TTBCR_IRGN1  (3U << 24)
1178 #define TTBCR_ORGN1  (3U << 26)
1179 #define TTBCR_SH1    (1U << 28)
1180 #define TTBCR_EAE    (1U << 31)
1181 
1182 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1183  * Only these are valid when in AArch64 mode; in
1184  * AArch32 mode SPSRs are basically CPSR-format.
1185  */
1186 #define PSTATE_SP (1U)
1187 #define PSTATE_M (0xFU)
1188 #define PSTATE_nRW (1U << 4)
1189 #define PSTATE_F (1U << 6)
1190 #define PSTATE_I (1U << 7)
1191 #define PSTATE_A (1U << 8)
1192 #define PSTATE_D (1U << 9)
1193 #define PSTATE_BTYPE (3U << 10)
1194 #define PSTATE_IL (1U << 20)
1195 #define PSTATE_SS (1U << 21)
1196 #define PSTATE_V (1U << 28)
1197 #define PSTATE_C (1U << 29)
1198 #define PSTATE_Z (1U << 30)
1199 #define PSTATE_N (1U << 31)
1200 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1201 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1202 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1203 /* Mode values for AArch64 */
1204 #define PSTATE_MODE_EL3h 13
1205 #define PSTATE_MODE_EL3t 12
1206 #define PSTATE_MODE_EL2h 9
1207 #define PSTATE_MODE_EL2t 8
1208 #define PSTATE_MODE_EL1h 5
1209 #define PSTATE_MODE_EL1t 4
1210 #define PSTATE_MODE_EL0t 0
1211 
1212 /* Write a new value to v7m.exception, thus transitioning into or out
1213  * of Handler mode; this may result in a change of active stack pointer.
1214  */
1215 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1216 
1217 /* Map EL and handler into a PSTATE_MODE.  */
1218 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1219 {
1220     return (el << 2) | handler;
1221 }
1222 
1223 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1224  * interprocessing, so we don't attempt to sync with the cpsr state used by
1225  * the 32 bit decoder.
1226  */
1227 static inline uint32_t pstate_read(CPUARMState *env)
1228 {
1229     int ZF;
1230 
1231     ZF = (env->ZF == 0);
1232     return (env->NF & 0x80000000) | (ZF << 30)
1233         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1234         | env->pstate | env->daif | (env->btype << 10);
1235 }
1236 
1237 static inline void pstate_write(CPUARMState *env, uint32_t val)
1238 {
1239     env->ZF = (~val) & PSTATE_Z;
1240     env->NF = val;
1241     env->CF = (val >> 29) & 1;
1242     env->VF = (val << 3) & 0x80000000;
1243     env->daif = val & PSTATE_DAIF;
1244     env->btype = (val >> 10) & 3;
1245     env->pstate = val & ~CACHED_PSTATE_BITS;
1246 }
1247 
1248 /* Return the current CPSR value.  */
1249 uint32_t cpsr_read(CPUARMState *env);
1250 
1251 typedef enum CPSRWriteType {
1252     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1253     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1254     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1255     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1256 } CPSRWriteType;
1257 
1258 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1259 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1260                 CPSRWriteType write_type);
1261 
1262 /* Return the current xPSR value.  */
1263 static inline uint32_t xpsr_read(CPUARMState *env)
1264 {
1265     int ZF;
1266     ZF = (env->ZF == 0);
1267     return (env->NF & 0x80000000) | (ZF << 30)
1268         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1269         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1270         | ((env->condexec_bits & 0xfc) << 8)
1271         | (env->GE << 16)
1272         | env->v7m.exception;
1273 }
1274 
1275 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1276 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1277 {
1278     if (mask & XPSR_NZCV) {
1279         env->ZF = (~val) & XPSR_Z;
1280         env->NF = val;
1281         env->CF = (val >> 29) & 1;
1282         env->VF = (val << 3) & 0x80000000;
1283     }
1284     if (mask & XPSR_Q) {
1285         env->QF = ((val & XPSR_Q) != 0);
1286     }
1287     if (mask & XPSR_GE) {
1288         env->GE = (val & XPSR_GE) >> 16;
1289     }
1290     if (mask & XPSR_T) {
1291         env->thumb = ((val & XPSR_T) != 0);
1292     }
1293     if (mask & XPSR_IT_0_1) {
1294         env->condexec_bits &= ~3;
1295         env->condexec_bits |= (val >> 25) & 3;
1296     }
1297     if (mask & XPSR_IT_2_7) {
1298         env->condexec_bits &= 3;
1299         env->condexec_bits |= (val >> 8) & 0xfc;
1300     }
1301     if (mask & XPSR_EXCP) {
1302         /* Note that this only happens on exception exit */
1303         write_v7m_exception(env, val & XPSR_EXCP);
1304     }
1305 }
1306 
1307 #define HCR_VM        (1ULL << 0)
1308 #define HCR_SWIO      (1ULL << 1)
1309 #define HCR_PTW       (1ULL << 2)
1310 #define HCR_FMO       (1ULL << 3)
1311 #define HCR_IMO       (1ULL << 4)
1312 #define HCR_AMO       (1ULL << 5)
1313 #define HCR_VF        (1ULL << 6)
1314 #define HCR_VI        (1ULL << 7)
1315 #define HCR_VSE       (1ULL << 8)
1316 #define HCR_FB        (1ULL << 9)
1317 #define HCR_BSU_MASK  (3ULL << 10)
1318 #define HCR_DC        (1ULL << 12)
1319 #define HCR_TWI       (1ULL << 13)
1320 #define HCR_TWE       (1ULL << 14)
1321 #define HCR_TID0      (1ULL << 15)
1322 #define HCR_TID1      (1ULL << 16)
1323 #define HCR_TID2      (1ULL << 17)
1324 #define HCR_TID3      (1ULL << 18)
1325 #define HCR_TSC       (1ULL << 19)
1326 #define HCR_TIDCP     (1ULL << 20)
1327 #define HCR_TACR      (1ULL << 21)
1328 #define HCR_TSW       (1ULL << 22)
1329 #define HCR_TPCP      (1ULL << 23)
1330 #define HCR_TPU       (1ULL << 24)
1331 #define HCR_TTLB      (1ULL << 25)
1332 #define HCR_TVM       (1ULL << 26)
1333 #define HCR_TGE       (1ULL << 27)
1334 #define HCR_TDZ       (1ULL << 28)
1335 #define HCR_HCD       (1ULL << 29)
1336 #define HCR_TRVM      (1ULL << 30)
1337 #define HCR_RW        (1ULL << 31)
1338 #define HCR_CD        (1ULL << 32)
1339 #define HCR_ID        (1ULL << 33)
1340 #define HCR_E2H       (1ULL << 34)
1341 #define HCR_TLOR      (1ULL << 35)
1342 #define HCR_TERR      (1ULL << 36)
1343 #define HCR_TEA       (1ULL << 37)
1344 #define HCR_MIOCNCE   (1ULL << 38)
1345 #define HCR_APK       (1ULL << 40)
1346 #define HCR_API       (1ULL << 41)
1347 #define HCR_NV        (1ULL << 42)
1348 #define HCR_NV1       (1ULL << 43)
1349 #define HCR_AT        (1ULL << 44)
1350 #define HCR_NV2       (1ULL << 45)
1351 #define HCR_FWB       (1ULL << 46)
1352 #define HCR_FIEN      (1ULL << 47)
1353 #define HCR_TID4      (1ULL << 49)
1354 #define HCR_TICAB     (1ULL << 50)
1355 #define HCR_TOCU      (1ULL << 52)
1356 #define HCR_TTLBIS    (1ULL << 54)
1357 #define HCR_TTLBOS    (1ULL << 55)
1358 #define HCR_ATA       (1ULL << 56)
1359 #define HCR_DCT       (1ULL << 57)
1360 
1361 /*
1362  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1363  * HCR_MASK and then clear it again if the feature bit is not set in
1364  * hcr_write().
1365  */
1366 #define HCR_MASK      ((1ULL << 34) - 1)
1367 
1368 #define SCR_NS                (1U << 0)
1369 #define SCR_IRQ               (1U << 1)
1370 #define SCR_FIQ               (1U << 2)
1371 #define SCR_EA                (1U << 3)
1372 #define SCR_FW                (1U << 4)
1373 #define SCR_AW                (1U << 5)
1374 #define SCR_NET               (1U << 6)
1375 #define SCR_SMD               (1U << 7)
1376 #define SCR_HCE               (1U << 8)
1377 #define SCR_SIF               (1U << 9)
1378 #define SCR_RW                (1U << 10)
1379 #define SCR_ST                (1U << 11)
1380 #define SCR_TWI               (1U << 12)
1381 #define SCR_TWE               (1U << 13)
1382 #define SCR_TLOR              (1U << 14)
1383 #define SCR_TERR              (1U << 15)
1384 #define SCR_APK               (1U << 16)
1385 #define SCR_API               (1U << 17)
1386 #define SCR_EEL2              (1U << 18)
1387 #define SCR_EASE              (1U << 19)
1388 #define SCR_NMEA              (1U << 20)
1389 #define SCR_FIEN              (1U << 21)
1390 #define SCR_ENSCXT            (1U << 25)
1391 #define SCR_ATA               (1U << 26)
1392 
1393 /* Return the current FPSCR value.  */
1394 uint32_t vfp_get_fpscr(CPUARMState *env);
1395 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1396 
1397 /* FPCR, Floating Point Control Register
1398  * FPSR, Floating Poiht Status Register
1399  *
1400  * For A64 the FPSCR is split into two logically distinct registers,
1401  * FPCR and FPSR. However since they still use non-overlapping bits
1402  * we store the underlying state in fpscr and just mask on read/write.
1403  */
1404 #define FPSR_MASK 0xf800009f
1405 #define FPCR_MASK 0x07ff9f00
1406 
1407 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1408 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1409 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1410 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1411 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1412 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1413 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1414 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1415 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1416 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1417 
1418 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1419 {
1420     return vfp_get_fpscr(env) & FPSR_MASK;
1421 }
1422 
1423 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1424 {
1425     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1426     vfp_set_fpscr(env, new_fpscr);
1427 }
1428 
1429 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1430 {
1431     return vfp_get_fpscr(env) & FPCR_MASK;
1432 }
1433 
1434 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1435 {
1436     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1437     vfp_set_fpscr(env, new_fpscr);
1438 }
1439 
1440 enum arm_cpu_mode {
1441   ARM_CPU_MODE_USR = 0x10,
1442   ARM_CPU_MODE_FIQ = 0x11,
1443   ARM_CPU_MODE_IRQ = 0x12,
1444   ARM_CPU_MODE_SVC = 0x13,
1445   ARM_CPU_MODE_MON = 0x16,
1446   ARM_CPU_MODE_ABT = 0x17,
1447   ARM_CPU_MODE_HYP = 0x1a,
1448   ARM_CPU_MODE_UND = 0x1b,
1449   ARM_CPU_MODE_SYS = 0x1f
1450 };
1451 
1452 /* VFP system registers.  */
1453 #define ARM_VFP_FPSID   0
1454 #define ARM_VFP_FPSCR   1
1455 #define ARM_VFP_MVFR2   5
1456 #define ARM_VFP_MVFR1   6
1457 #define ARM_VFP_MVFR0   7
1458 #define ARM_VFP_FPEXC   8
1459 #define ARM_VFP_FPINST  9
1460 #define ARM_VFP_FPINST2 10
1461 
1462 /* iwMMXt coprocessor control registers.  */
1463 #define ARM_IWMMXT_wCID  0
1464 #define ARM_IWMMXT_wCon  1
1465 #define ARM_IWMMXT_wCSSF 2
1466 #define ARM_IWMMXT_wCASF 3
1467 #define ARM_IWMMXT_wCGR0 8
1468 #define ARM_IWMMXT_wCGR1 9
1469 #define ARM_IWMMXT_wCGR2 10
1470 #define ARM_IWMMXT_wCGR3 11
1471 
1472 /* V7M CCR bits */
1473 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1474 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1475 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1476 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1477 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1478 FIELD(V7M_CCR, STKALIGN, 9, 1)
1479 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1480 FIELD(V7M_CCR, DC, 16, 1)
1481 FIELD(V7M_CCR, IC, 17, 1)
1482 FIELD(V7M_CCR, BP, 18, 1)
1483 
1484 /* V7M SCR bits */
1485 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1486 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1487 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1488 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1489 
1490 /* V7M AIRCR bits */
1491 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1492 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1493 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1494 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1495 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1496 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1497 FIELD(V7M_AIRCR, PRIS, 14, 1)
1498 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1499 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1500 
1501 /* V7M CFSR bits for MMFSR */
1502 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1503 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1504 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1505 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1506 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1507 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1508 
1509 /* V7M CFSR bits for BFSR */
1510 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1511 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1512 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1513 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1514 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1515 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1516 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1517 
1518 /* V7M CFSR bits for UFSR */
1519 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1520 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1521 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1522 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1523 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1524 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1525 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1526 
1527 /* V7M CFSR bit masks covering all of the subregister bits */
1528 FIELD(V7M_CFSR, MMFSR, 0, 8)
1529 FIELD(V7M_CFSR, BFSR, 8, 8)
1530 FIELD(V7M_CFSR, UFSR, 16, 16)
1531 
1532 /* V7M HFSR bits */
1533 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1534 FIELD(V7M_HFSR, FORCED, 30, 1)
1535 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1536 
1537 /* V7M DFSR bits */
1538 FIELD(V7M_DFSR, HALTED, 0, 1)
1539 FIELD(V7M_DFSR, BKPT, 1, 1)
1540 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1541 FIELD(V7M_DFSR, VCATCH, 3, 1)
1542 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1543 
1544 /* V7M SFSR bits */
1545 FIELD(V7M_SFSR, INVEP, 0, 1)
1546 FIELD(V7M_SFSR, INVIS, 1, 1)
1547 FIELD(V7M_SFSR, INVER, 2, 1)
1548 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1549 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1550 FIELD(V7M_SFSR, LSPERR, 5, 1)
1551 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1552 FIELD(V7M_SFSR, LSERR, 7, 1)
1553 
1554 /* v7M MPU_CTRL bits */
1555 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1556 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1557 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1558 
1559 /* v7M CLIDR bits */
1560 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1561 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1562 FIELD(V7M_CLIDR, LOC, 24, 3)
1563 FIELD(V7M_CLIDR, LOUU, 27, 3)
1564 FIELD(V7M_CLIDR, ICB, 30, 2)
1565 
1566 FIELD(V7M_CSSELR, IND, 0, 1)
1567 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1568 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1569  * define a mask for this and check that it doesn't permit running off
1570  * the end of the array.
1571  */
1572 FIELD(V7M_CSSELR, INDEX, 0, 4)
1573 
1574 /* v7M FPCCR bits */
1575 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1576 FIELD(V7M_FPCCR, USER, 1, 1)
1577 FIELD(V7M_FPCCR, S, 2, 1)
1578 FIELD(V7M_FPCCR, THREAD, 3, 1)
1579 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1580 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1581 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1582 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1583 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1584 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1585 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1586 FIELD(V7M_FPCCR, RES0, 11, 15)
1587 FIELD(V7M_FPCCR, TS, 26, 1)
1588 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1589 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1590 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1591 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1592 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1593 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1594 #define R_V7M_FPCCR_BANKED_MASK                 \
1595     (R_V7M_FPCCR_LSPACT_MASK |                  \
1596      R_V7M_FPCCR_USER_MASK |                    \
1597      R_V7M_FPCCR_THREAD_MASK |                  \
1598      R_V7M_FPCCR_MMRDY_MASK |                   \
1599      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1600      R_V7M_FPCCR_UFRDY_MASK |                   \
1601      R_V7M_FPCCR_ASPEN_MASK)
1602 
1603 /*
1604  * System register ID fields.
1605  */
1606 FIELD(ID_ISAR0, SWAP, 0, 4)
1607 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1608 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1609 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1610 FIELD(ID_ISAR0, COPROC, 16, 4)
1611 FIELD(ID_ISAR0, DEBUG, 20, 4)
1612 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1613 
1614 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1615 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1616 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1617 FIELD(ID_ISAR1, EXTEND, 12, 4)
1618 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1619 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1620 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1621 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1622 
1623 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1624 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1625 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1626 FIELD(ID_ISAR2, MULT, 12, 4)
1627 FIELD(ID_ISAR2, MULTS, 16, 4)
1628 FIELD(ID_ISAR2, MULTU, 20, 4)
1629 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1630 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1631 
1632 FIELD(ID_ISAR3, SATURATE, 0, 4)
1633 FIELD(ID_ISAR3, SIMD, 4, 4)
1634 FIELD(ID_ISAR3, SVC, 8, 4)
1635 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1636 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1637 FIELD(ID_ISAR3, T32COPY, 20, 4)
1638 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1639 FIELD(ID_ISAR3, T32EE, 28, 4)
1640 
1641 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1642 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1643 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1644 FIELD(ID_ISAR4, SMC, 12, 4)
1645 FIELD(ID_ISAR4, BARRIER, 16, 4)
1646 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1647 FIELD(ID_ISAR4, PSR_M, 24, 4)
1648 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1649 
1650 FIELD(ID_ISAR5, SEVL, 0, 4)
1651 FIELD(ID_ISAR5, AES, 4, 4)
1652 FIELD(ID_ISAR5, SHA1, 8, 4)
1653 FIELD(ID_ISAR5, SHA2, 12, 4)
1654 FIELD(ID_ISAR5, CRC32, 16, 4)
1655 FIELD(ID_ISAR5, RDM, 24, 4)
1656 FIELD(ID_ISAR5, VCMA, 28, 4)
1657 
1658 FIELD(ID_ISAR6, JSCVT, 0, 4)
1659 FIELD(ID_ISAR6, DP, 4, 4)
1660 FIELD(ID_ISAR6, FHM, 8, 4)
1661 FIELD(ID_ISAR6, SB, 12, 4)
1662 FIELD(ID_ISAR6, SPECRES, 16, 4)
1663 
1664 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1665 FIELD(ID_MMFR4, AC2, 4, 4)
1666 FIELD(ID_MMFR4, XNX, 8, 4)
1667 FIELD(ID_MMFR4, CNP, 12, 4)
1668 FIELD(ID_MMFR4, HPDS, 16, 4)
1669 FIELD(ID_MMFR4, LSM, 20, 4)
1670 FIELD(ID_MMFR4, CCIDX, 24, 4)
1671 FIELD(ID_MMFR4, EVT, 28, 4)
1672 
1673 FIELD(ID_AA64ISAR0, AES, 4, 4)
1674 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1675 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1676 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1677 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1678 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1679 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1680 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1681 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1682 FIELD(ID_AA64ISAR0, DP, 44, 4)
1683 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1684 FIELD(ID_AA64ISAR0, TS, 52, 4)
1685 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1686 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1687 
1688 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1689 FIELD(ID_AA64ISAR1, APA, 4, 4)
1690 FIELD(ID_AA64ISAR1, API, 8, 4)
1691 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1692 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1693 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1694 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1695 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1696 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1697 FIELD(ID_AA64ISAR1, SB, 36, 4)
1698 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1699 
1700 FIELD(ID_AA64PFR0, EL0, 0, 4)
1701 FIELD(ID_AA64PFR0, EL1, 4, 4)
1702 FIELD(ID_AA64PFR0, EL2, 8, 4)
1703 FIELD(ID_AA64PFR0, EL3, 12, 4)
1704 FIELD(ID_AA64PFR0, FP, 16, 4)
1705 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1706 FIELD(ID_AA64PFR0, GIC, 24, 4)
1707 FIELD(ID_AA64PFR0, RAS, 28, 4)
1708 FIELD(ID_AA64PFR0, SVE, 32, 4)
1709 
1710 FIELD(ID_AA64PFR1, BT, 0, 4)
1711 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1712 FIELD(ID_AA64PFR1, MTE, 8, 4)
1713 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1714 
1715 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1716 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1717 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1718 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1719 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1720 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1721 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1722 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1723 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1724 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1725 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1726 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1727 
1728 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1729 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1730 FIELD(ID_AA64MMFR1, VH, 8, 4)
1731 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1732 FIELD(ID_AA64MMFR1, LO, 16, 4)
1733 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1734 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1735 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1736 
1737 FIELD(ID_DFR0, COPDBG, 0, 4)
1738 FIELD(ID_DFR0, COPSDBG, 4, 4)
1739 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1740 FIELD(ID_DFR0, COPTRC, 12, 4)
1741 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1742 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1743 FIELD(ID_DFR0, PERFMON, 24, 4)
1744 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1745 
1746 FIELD(MVFR0, SIMDREG, 0, 4)
1747 FIELD(MVFR0, FPSP, 4, 4)
1748 FIELD(MVFR0, FPDP, 8, 4)
1749 FIELD(MVFR0, FPTRAP, 12, 4)
1750 FIELD(MVFR0, FPDIVIDE, 16, 4)
1751 FIELD(MVFR0, FPSQRT, 20, 4)
1752 FIELD(MVFR0, FPSHVEC, 24, 4)
1753 FIELD(MVFR0, FPROUND, 28, 4)
1754 
1755 FIELD(MVFR1, FPFTZ, 0, 4)
1756 FIELD(MVFR1, FPDNAN, 4, 4)
1757 FIELD(MVFR1, SIMDLS, 8, 4)
1758 FIELD(MVFR1, SIMDINT, 12, 4)
1759 FIELD(MVFR1, SIMDSP, 16, 4)
1760 FIELD(MVFR1, SIMDHP, 20, 4)
1761 FIELD(MVFR1, FPHP, 24, 4)
1762 FIELD(MVFR1, SIMDFMAC, 28, 4)
1763 
1764 FIELD(MVFR2, SIMDMISC, 0, 4)
1765 FIELD(MVFR2, FPMISC, 4, 4)
1766 
1767 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1768 
1769 /* If adding a feature bit which corresponds to a Linux ELF
1770  * HWCAP bit, remember to update the feature-bit-to-hwcap
1771  * mapping in linux-user/elfload.c:get_elf_hwcap().
1772  */
1773 enum arm_features {
1774     ARM_FEATURE_VFP,
1775     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1776     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1777     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1778     ARM_FEATURE_V6,
1779     ARM_FEATURE_V6K,
1780     ARM_FEATURE_V7,
1781     ARM_FEATURE_THUMB2,
1782     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1783     ARM_FEATURE_VFP3,
1784     ARM_FEATURE_NEON,
1785     ARM_FEATURE_M, /* Microcontroller profile.  */
1786     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1787     ARM_FEATURE_THUMB2EE,
1788     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1789     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1790     ARM_FEATURE_V4T,
1791     ARM_FEATURE_V5,
1792     ARM_FEATURE_STRONGARM,
1793     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1794     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1795     ARM_FEATURE_GENERIC_TIMER,
1796     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1797     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1798     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1799     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1800     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1801     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1802     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1803     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1804     ARM_FEATURE_V8,
1805     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1806     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1807     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1808     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1809     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1810     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1811     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1812     ARM_FEATURE_PMU, /* has PMU support */
1813     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1814     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1815     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1816 };
1817 
1818 static inline int arm_feature(CPUARMState *env, int feature)
1819 {
1820     return (env->features & (1ULL << feature)) != 0;
1821 }
1822 
1823 #if !defined(CONFIG_USER_ONLY)
1824 /* Return true if exception levels below EL3 are in secure state,
1825  * or would be following an exception return to that level.
1826  * Unlike arm_is_secure() (which is always a question about the
1827  * _current_ state of the CPU) this doesn't care about the current
1828  * EL or mode.
1829  */
1830 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1831 {
1832     if (arm_feature(env, ARM_FEATURE_EL3)) {
1833         return !(env->cp15.scr_el3 & SCR_NS);
1834     } else {
1835         /* If EL3 is not supported then the secure state is implementation
1836          * defined, in which case QEMU defaults to non-secure.
1837          */
1838         return false;
1839     }
1840 }
1841 
1842 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1843 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1844 {
1845     if (arm_feature(env, ARM_FEATURE_EL3)) {
1846         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1847             /* CPU currently in AArch64 state and EL3 */
1848             return true;
1849         } else if (!is_a64(env) &&
1850                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1851             /* CPU currently in AArch32 state and monitor mode */
1852             return true;
1853         }
1854     }
1855     return false;
1856 }
1857 
1858 /* Return true if the processor is in secure state */
1859 static inline bool arm_is_secure(CPUARMState *env)
1860 {
1861     if (arm_is_el3_or_mon(env)) {
1862         return true;
1863     }
1864     return arm_is_secure_below_el3(env);
1865 }
1866 
1867 #else
1868 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1869 {
1870     return false;
1871 }
1872 
1873 static inline bool arm_is_secure(CPUARMState *env)
1874 {
1875     return false;
1876 }
1877 #endif
1878 
1879 /**
1880  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1881  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1882  * "for all purposes other than a direct read or write access of HCR_EL2."
1883  * Not included here is HCR_RW.
1884  */
1885 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1886 
1887 /* Return true if the specified exception level is running in AArch64 state. */
1888 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1889 {
1890     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1891      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1892      */
1893     assert(el >= 1 && el <= 3);
1894     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1895 
1896     /* The highest exception level is always at the maximum supported
1897      * register width, and then lower levels have a register width controlled
1898      * by bits in the SCR or HCR registers.
1899      */
1900     if (el == 3) {
1901         return aa64;
1902     }
1903 
1904     if (arm_feature(env, ARM_FEATURE_EL3)) {
1905         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1906     }
1907 
1908     if (el == 2) {
1909         return aa64;
1910     }
1911 
1912     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1913         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1914     }
1915 
1916     return aa64;
1917 }
1918 
1919 /* Function for determing whether guest cp register reads and writes should
1920  * access the secure or non-secure bank of a cp register.  When EL3 is
1921  * operating in AArch32 state, the NS-bit determines whether the secure
1922  * instance of a cp register should be used. When EL3 is AArch64 (or if
1923  * it doesn't exist at all) then there is no register banking, and all
1924  * accesses are to the non-secure version.
1925  */
1926 static inline bool access_secure_reg(CPUARMState *env)
1927 {
1928     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1929                 !arm_el_is_aa64(env, 3) &&
1930                 !(env->cp15.scr_el3 & SCR_NS));
1931 
1932     return ret;
1933 }
1934 
1935 /* Macros for accessing a specified CP register bank */
1936 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1937     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1938 
1939 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1940     do {                                                \
1941         if (_secure) {                                   \
1942             (_env)->cp15._regname##_s = (_val);            \
1943         } else {                                        \
1944             (_env)->cp15._regname##_ns = (_val);           \
1945         }                                               \
1946     } while (0)
1947 
1948 /* Macros for automatically accessing a specific CP register bank depending on
1949  * the current secure state of the system.  These macros are not intended for
1950  * supporting instruction translation reads/writes as these are dependent
1951  * solely on the SCR.NS bit and not the mode.
1952  */
1953 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1954     A32_BANKED_REG_GET((_env), _regname,                \
1955                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1956 
1957 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1958     A32_BANKED_REG_SET((_env), _regname,                                    \
1959                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1960                        (_val))
1961 
1962 void arm_cpu_list(void);
1963 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1964                                  uint32_t cur_el, bool secure);
1965 
1966 /* Interface between CPU and Interrupt controller.  */
1967 #ifndef CONFIG_USER_ONLY
1968 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1969 #else
1970 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1971 {
1972     return true;
1973 }
1974 #endif
1975 /**
1976  * armv7m_nvic_set_pending: mark the specified exception as pending
1977  * @opaque: the NVIC
1978  * @irq: the exception number to mark pending
1979  * @secure: false for non-banked exceptions or for the nonsecure
1980  * version of a banked exception, true for the secure version of a banked
1981  * exception.
1982  *
1983  * Marks the specified exception as pending. Note that we will assert()
1984  * if @secure is true and @irq does not specify one of the fixed set
1985  * of architecturally banked exceptions.
1986  */
1987 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1988 /**
1989  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1990  * @opaque: the NVIC
1991  * @irq: the exception number to mark pending
1992  * @secure: false for non-banked exceptions or for the nonsecure
1993  * version of a banked exception, true for the secure version of a banked
1994  * exception.
1995  *
1996  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1997  * exceptions (exceptions generated in the course of trying to take
1998  * a different exception).
1999  */
2000 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2001 /**
2002  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2003  * @opaque: the NVIC
2004  * @irq: the exception number to mark pending
2005  * @secure: false for non-banked exceptions or for the nonsecure
2006  * version of a banked exception, true for the secure version of a banked
2007  * exception.
2008  *
2009  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2010  * generated in the course of lazy stacking of FP registers.
2011  */
2012 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2013 /**
2014  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2015  *    exception, and whether it targets Secure state
2016  * @opaque: the NVIC
2017  * @pirq: set to pending exception number
2018  * @ptargets_secure: set to whether pending exception targets Secure
2019  *
2020  * This function writes the number of the highest priority pending
2021  * exception (the one which would be made active by
2022  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2023  * to true if the current highest priority pending exception should
2024  * be taken to Secure state, false for NS.
2025  */
2026 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2027                                       bool *ptargets_secure);
2028 /**
2029  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2030  * @opaque: the NVIC
2031  *
2032  * Move the current highest priority pending exception from the pending
2033  * state to the active state, and update v7m.exception to indicate that
2034  * it is the exception currently being handled.
2035  */
2036 void armv7m_nvic_acknowledge_irq(void *opaque);
2037 /**
2038  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2039  * @opaque: the NVIC
2040  * @irq: the exception number to complete
2041  * @secure: true if this exception was secure
2042  *
2043  * Returns: -1 if the irq was not active
2044  *           1 if completing this irq brought us back to base (no active irqs)
2045  *           0 if there is still an irq active after this one was completed
2046  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2047  */
2048 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2049 /**
2050  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2051  * @opaque: the NVIC
2052  * @irq: the exception number to mark pending
2053  * @secure: false for non-banked exceptions or for the nonsecure
2054  * version of a banked exception, true for the secure version of a banked
2055  * exception.
2056  *
2057  * Return whether an exception is "ready", i.e. whether the exception is
2058  * enabled and is configured at a priority which would allow it to
2059  * interrupt the current execution priority. This controls whether the
2060  * RDY bit for it in the FPCCR is set.
2061  */
2062 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2063 /**
2064  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2065  * @opaque: the NVIC
2066  *
2067  * Returns: the raw execution priority as defined by the v8M architecture.
2068  * This is the execution priority minus the effects of AIRCR.PRIS,
2069  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2070  * (v8M ARM ARM I_PKLD.)
2071  */
2072 int armv7m_nvic_raw_execution_priority(void *opaque);
2073 /**
2074  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2075  * priority is negative for the specified security state.
2076  * @opaque: the NVIC
2077  * @secure: the security state to test
2078  * This corresponds to the pseudocode IsReqExecPriNeg().
2079  */
2080 #ifndef CONFIG_USER_ONLY
2081 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2082 #else
2083 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2084 {
2085     return false;
2086 }
2087 #endif
2088 
2089 /* Interface for defining coprocessor registers.
2090  * Registers are defined in tables of arm_cp_reginfo structs
2091  * which are passed to define_arm_cp_regs().
2092  */
2093 
2094 /* When looking up a coprocessor register we look for it
2095  * via an integer which encodes all of:
2096  *  coprocessor number
2097  *  Crn, Crm, opc1, opc2 fields
2098  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2099  *    or via MRRC/MCRR?)
2100  *  non-secure/secure bank (AArch32 only)
2101  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2102  * (In this case crn and opc2 should be zero.)
2103  * For AArch64, there is no 32/64 bit size distinction;
2104  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2105  * and 4 bit CRn and CRm. The encoding patterns are chosen
2106  * to be easy to convert to and from the KVM encodings, and also
2107  * so that the hashtable can contain both AArch32 and AArch64
2108  * registers (to allow for interprocessing where we might run
2109  * 32 bit code on a 64 bit core).
2110  */
2111 /* This bit is private to our hashtable cpreg; in KVM register
2112  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2113  * in the upper bits of the 64 bit ID.
2114  */
2115 #define CP_REG_AA64_SHIFT 28
2116 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2117 
2118 /* To enable banking of coprocessor registers depending on ns-bit we
2119  * add a bit to distinguish between secure and non-secure cpregs in the
2120  * hashtable.
2121  */
2122 #define CP_REG_NS_SHIFT 29
2123 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2124 
2125 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2126     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2127      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2128 
2129 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2130     (CP_REG_AA64_MASK |                                 \
2131      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2132      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2133      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2134      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2135      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2136      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2137 
2138 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2139  * version used as a key for the coprocessor register hashtable
2140  */
2141 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2142 {
2143     uint32_t cpregid = kvmid;
2144     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2145         cpregid |= CP_REG_AA64_MASK;
2146     } else {
2147         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2148             cpregid |= (1 << 15);
2149         }
2150 
2151         /* KVM is always non-secure so add the NS flag on AArch32 register
2152          * entries.
2153          */
2154          cpregid |= 1 << CP_REG_NS_SHIFT;
2155     }
2156     return cpregid;
2157 }
2158 
2159 /* Convert a truncated 32 bit hashtable key into the full
2160  * 64 bit KVM register ID.
2161  */
2162 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2163 {
2164     uint64_t kvmid;
2165 
2166     if (cpregid & CP_REG_AA64_MASK) {
2167         kvmid = cpregid & ~CP_REG_AA64_MASK;
2168         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2169     } else {
2170         kvmid = cpregid & ~(1 << 15);
2171         if (cpregid & (1 << 15)) {
2172             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2173         } else {
2174             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2175         }
2176     }
2177     return kvmid;
2178 }
2179 
2180 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2181  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2182  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2183  * TCG can assume the value to be constant (ie load at translate time)
2184  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2185  * indicates that the TB should not be ended after a write to this register
2186  * (the default is that the TB ends after cp writes). OVERRIDE permits
2187  * a register definition to override a previous definition for the
2188  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2189  * old must have the OVERRIDE bit set.
2190  * ALIAS indicates that this register is an alias view of some underlying
2191  * state which is also visible via another register, and that the other
2192  * register is handling migration and reset; registers marked ALIAS will not be
2193  * migrated but may have their state set by syncing of register state from KVM.
2194  * NO_RAW indicates that this register has no underlying state and does not
2195  * support raw access for state saving/loading; it will not be used for either
2196  * migration or KVM state synchronization. (Typically this is for "registers"
2197  * which are actually used as instructions for cache maintenance and so on.)
2198  * IO indicates that this register does I/O and therefore its accesses
2199  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2200  * registers which implement clocks or timers require this.
2201  */
2202 #define ARM_CP_SPECIAL           0x0001
2203 #define ARM_CP_CONST             0x0002
2204 #define ARM_CP_64BIT             0x0004
2205 #define ARM_CP_SUPPRESS_TB_END   0x0008
2206 #define ARM_CP_OVERRIDE          0x0010
2207 #define ARM_CP_ALIAS             0x0020
2208 #define ARM_CP_IO                0x0040
2209 #define ARM_CP_NO_RAW            0x0080
2210 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2211 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2212 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2213 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2214 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2215 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2216 #define ARM_CP_FPU               0x1000
2217 #define ARM_CP_SVE               0x2000
2218 #define ARM_CP_NO_GDB            0x4000
2219 /* Used only as a terminator for ARMCPRegInfo lists */
2220 #define ARM_CP_SENTINEL          0xffff
2221 /* Mask of only the flag bits in a type field */
2222 #define ARM_CP_FLAG_MASK         0x70ff
2223 
2224 /* Valid values for ARMCPRegInfo state field, indicating which of
2225  * the AArch32 and AArch64 execution states this register is visible in.
2226  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2227  * If the reginfo is declared to be visible in both states then a second
2228  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2229  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2230  * Note that we rely on the values of these enums as we iterate through
2231  * the various states in some places.
2232  */
2233 enum {
2234     ARM_CP_STATE_AA32 = 0,
2235     ARM_CP_STATE_AA64 = 1,
2236     ARM_CP_STATE_BOTH = 2,
2237 };
2238 
2239 /* ARM CP register secure state flags.  These flags identify security state
2240  * attributes for a given CP register entry.
2241  * The existence of both or neither secure and non-secure flags indicates that
2242  * the register has both a secure and non-secure hash entry.  A single one of
2243  * these flags causes the register to only be hashed for the specified
2244  * security state.
2245  * Although definitions may have any combination of the S/NS bits, each
2246  * registered entry will only have one to identify whether the entry is secure
2247  * or non-secure.
2248  */
2249 enum {
2250     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2251     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2252 };
2253 
2254 /* Return true if cptype is a valid type field. This is used to try to
2255  * catch errors where the sentinel has been accidentally left off the end
2256  * of a list of registers.
2257  */
2258 static inline bool cptype_valid(int cptype)
2259 {
2260     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2261         || ((cptype & ARM_CP_SPECIAL) &&
2262             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2263 }
2264 
2265 /* Access rights:
2266  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2267  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2268  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2269  * (ie any of the privileged modes in Secure state, or Monitor mode).
2270  * If a register is accessible in one privilege level it's always accessible
2271  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2272  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2273  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2274  * terminology a little and call this PL3.
2275  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2276  * with the ELx exception levels.
2277  *
2278  * If access permissions for a register are more complex than can be
2279  * described with these bits, then use a laxer set of restrictions, and
2280  * do the more restrictive/complex check inside a helper function.
2281  */
2282 #define PL3_R 0x80
2283 #define PL3_W 0x40
2284 #define PL2_R (0x20 | PL3_R)
2285 #define PL2_W (0x10 | PL3_W)
2286 #define PL1_R (0x08 | PL2_R)
2287 #define PL1_W (0x04 | PL2_W)
2288 #define PL0_R (0x02 | PL1_R)
2289 #define PL0_W (0x01 | PL1_W)
2290 
2291 /*
2292  * For user-mode some registers are accessible to EL0 via a kernel
2293  * trap-and-emulate ABI. In this case we define the read permissions
2294  * as actually being PL0_R. However some bits of any given register
2295  * may still be masked.
2296  */
2297 #ifdef CONFIG_USER_ONLY
2298 #define PL0U_R PL0_R
2299 #else
2300 #define PL0U_R PL1_R
2301 #endif
2302 
2303 #define PL3_RW (PL3_R | PL3_W)
2304 #define PL2_RW (PL2_R | PL2_W)
2305 #define PL1_RW (PL1_R | PL1_W)
2306 #define PL0_RW (PL0_R | PL0_W)
2307 
2308 /* Return the highest implemented Exception Level */
2309 static inline int arm_highest_el(CPUARMState *env)
2310 {
2311     if (arm_feature(env, ARM_FEATURE_EL3)) {
2312         return 3;
2313     }
2314     if (arm_feature(env, ARM_FEATURE_EL2)) {
2315         return 2;
2316     }
2317     return 1;
2318 }
2319 
2320 /* Return true if a v7M CPU is in Handler mode */
2321 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2322 {
2323     return env->v7m.exception != 0;
2324 }
2325 
2326 /* Return the current Exception Level (as per ARMv8; note that this differs
2327  * from the ARMv7 Privilege Level).
2328  */
2329 static inline int arm_current_el(CPUARMState *env)
2330 {
2331     if (arm_feature(env, ARM_FEATURE_M)) {
2332         return arm_v7m_is_handler_mode(env) ||
2333             !(env->v7m.control[env->v7m.secure] & 1);
2334     }
2335 
2336     if (is_a64(env)) {
2337         return extract32(env->pstate, 2, 2);
2338     }
2339 
2340     switch (env->uncached_cpsr & 0x1f) {
2341     case ARM_CPU_MODE_USR:
2342         return 0;
2343     case ARM_CPU_MODE_HYP:
2344         return 2;
2345     case ARM_CPU_MODE_MON:
2346         return 3;
2347     default:
2348         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2349             /* If EL3 is 32-bit then all secure privileged modes run in
2350              * EL3
2351              */
2352             return 3;
2353         }
2354 
2355         return 1;
2356     }
2357 }
2358 
2359 typedef struct ARMCPRegInfo ARMCPRegInfo;
2360 
2361 typedef enum CPAccessResult {
2362     /* Access is permitted */
2363     CP_ACCESS_OK = 0,
2364     /* Access fails due to a configurable trap or enable which would
2365      * result in a categorized exception syndrome giving information about
2366      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2367      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2368      * PL1 if in EL0, otherwise to the current EL).
2369      */
2370     CP_ACCESS_TRAP = 1,
2371     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2372      * Note that this is not a catch-all case -- the set of cases which may
2373      * result in this failure is specifically defined by the architecture.
2374      */
2375     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2376     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2377     CP_ACCESS_TRAP_EL2 = 3,
2378     CP_ACCESS_TRAP_EL3 = 4,
2379     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2380     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2381     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2382     /* Access fails and results in an exception syndrome for an FP access,
2383      * trapped directly to EL2 or EL3
2384      */
2385     CP_ACCESS_TRAP_FP_EL2 = 7,
2386     CP_ACCESS_TRAP_FP_EL3 = 8,
2387 } CPAccessResult;
2388 
2389 /* Access functions for coprocessor registers. These cannot fail and
2390  * may not raise exceptions.
2391  */
2392 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2393 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2394                        uint64_t value);
2395 /* Access permission check functions for coprocessor registers. */
2396 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2397                                   const ARMCPRegInfo *opaque,
2398                                   bool isread);
2399 /* Hook function for register reset */
2400 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2401 
2402 #define CP_ANY 0xff
2403 
2404 /* Definition of an ARM coprocessor register */
2405 struct ARMCPRegInfo {
2406     /* Name of register (useful mainly for debugging, need not be unique) */
2407     const char *name;
2408     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2409      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2410      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2411      * will be decoded to this register. The register read and write
2412      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2413      * used by the program, so it is possible to register a wildcard and
2414      * then behave differently on read/write if necessary.
2415      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2416      * must both be zero.
2417      * For AArch64-visible registers, opc0 is also used.
2418      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2419      * way to distinguish (for KVM's benefit) guest-visible system registers
2420      * from demuxed ones provided to preserve the "no side effects on
2421      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2422      * visible (to match KVM's encoding); cp==0 will be converted to
2423      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2424      */
2425     uint8_t cp;
2426     uint8_t crn;
2427     uint8_t crm;
2428     uint8_t opc0;
2429     uint8_t opc1;
2430     uint8_t opc2;
2431     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2432     int state;
2433     /* Register type: ARM_CP_* bits/values */
2434     int type;
2435     /* Access rights: PL*_[RW] */
2436     int access;
2437     /* Security state: ARM_CP_SECSTATE_* bits/values */
2438     int secure;
2439     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2440      * this register was defined: can be used to hand data through to the
2441      * register read/write functions, since they are passed the ARMCPRegInfo*.
2442      */
2443     void *opaque;
2444     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2445      * fieldoffset is non-zero, the reset value of the register.
2446      */
2447     uint64_t resetvalue;
2448     /* Offset of the field in CPUARMState for this register.
2449      *
2450      * This is not needed if either:
2451      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2452      *  2. both readfn and writefn are specified
2453      */
2454     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2455 
2456     /* Offsets of the secure and non-secure fields in CPUARMState for the
2457      * register if it is banked.  These fields are only used during the static
2458      * registration of a register.  During hashing the bank associated
2459      * with a given security state is copied to fieldoffset which is used from
2460      * there on out.
2461      *
2462      * It is expected that register definitions use either fieldoffset or
2463      * bank_fieldoffsets in the definition but not both.  It is also expected
2464      * that both bank offsets are set when defining a banked register.  This
2465      * use indicates that a register is banked.
2466      */
2467     ptrdiff_t bank_fieldoffsets[2];
2468 
2469     /* Function for making any access checks for this register in addition to
2470      * those specified by the 'access' permissions bits. If NULL, no extra
2471      * checks required. The access check is performed at runtime, not at
2472      * translate time.
2473      */
2474     CPAccessFn *accessfn;
2475     /* Function for handling reads of this register. If NULL, then reads
2476      * will be done by loading from the offset into CPUARMState specified
2477      * by fieldoffset.
2478      */
2479     CPReadFn *readfn;
2480     /* Function for handling writes of this register. If NULL, then writes
2481      * will be done by writing to the offset into CPUARMState specified
2482      * by fieldoffset.
2483      */
2484     CPWriteFn *writefn;
2485     /* Function for doing a "raw" read; used when we need to copy
2486      * coprocessor state to the kernel for KVM or out for
2487      * migration. This only needs to be provided if there is also a
2488      * readfn and it has side effects (for instance clear-on-read bits).
2489      */
2490     CPReadFn *raw_readfn;
2491     /* Function for doing a "raw" write; used when we need to copy KVM
2492      * kernel coprocessor state into userspace, or for inbound
2493      * migration. This only needs to be provided if there is also a
2494      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2495      * or similar behaviour.
2496      */
2497     CPWriteFn *raw_writefn;
2498     /* Function for resetting the register. If NULL, then reset will be done
2499      * by writing resetvalue to the field specified in fieldoffset. If
2500      * fieldoffset is 0 then no reset will be done.
2501      */
2502     CPResetFn *resetfn;
2503 };
2504 
2505 /* Macros which are lvalues for the field in CPUARMState for the
2506  * ARMCPRegInfo *ri.
2507  */
2508 #define CPREG_FIELD32(env, ri) \
2509     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2510 #define CPREG_FIELD64(env, ri) \
2511     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2512 
2513 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2514 
2515 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2516                                     const ARMCPRegInfo *regs, void *opaque);
2517 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2518                                        const ARMCPRegInfo *regs, void *opaque);
2519 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2520 {
2521     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2522 }
2523 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2524 {
2525     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2526 }
2527 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2528 
2529 /*
2530  * Definition of an ARM co-processor register as viewed from
2531  * userspace. This is used for presenting sanitised versions of
2532  * registers to userspace when emulating the Linux AArch64 CPU
2533  * ID/feature ABI (advertised as HWCAP_CPUID).
2534  */
2535 typedef struct ARMCPRegUserSpaceInfo {
2536     /* Name of register */
2537     const char *name;
2538 
2539     /* Is the name actually a glob pattern */
2540     bool is_glob;
2541 
2542     /* Only some bits are exported to user space */
2543     uint64_t exported_bits;
2544 
2545     /* Fixed bits are applied after the mask */
2546     uint64_t fixed_bits;
2547 } ARMCPRegUserSpaceInfo;
2548 
2549 #define REGUSERINFO_SENTINEL { .name = NULL }
2550 
2551 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2552 
2553 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2554 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2555                          uint64_t value);
2556 /* CPReadFn that can be used for read-as-zero behaviour */
2557 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2558 
2559 /* CPResetFn that does nothing, for use if no reset is required even
2560  * if fieldoffset is non zero.
2561  */
2562 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2563 
2564 /* Return true if this reginfo struct's field in the cpu state struct
2565  * is 64 bits wide.
2566  */
2567 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2568 {
2569     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2570 }
2571 
2572 static inline bool cp_access_ok(int current_el,
2573                                 const ARMCPRegInfo *ri, int isread)
2574 {
2575     return (ri->access >> ((current_el * 2) + isread)) & 1;
2576 }
2577 
2578 /* Raw read of a coprocessor register (as needed for migration, etc) */
2579 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2580 
2581 /**
2582  * write_list_to_cpustate
2583  * @cpu: ARMCPU
2584  *
2585  * For each register listed in the ARMCPU cpreg_indexes list, write
2586  * its value from the cpreg_values list into the ARMCPUState structure.
2587  * This updates TCG's working data structures from KVM data or
2588  * from incoming migration state.
2589  *
2590  * Returns: true if all register values were updated correctly,
2591  * false if some register was unknown or could not be written.
2592  * Note that we do not stop early on failure -- we will attempt
2593  * writing all registers in the list.
2594  */
2595 bool write_list_to_cpustate(ARMCPU *cpu);
2596 
2597 /**
2598  * write_cpustate_to_list:
2599  * @cpu: ARMCPU
2600  * @kvm_sync: true if this is for syncing back to KVM
2601  *
2602  * For each register listed in the ARMCPU cpreg_indexes list, write
2603  * its value from the ARMCPUState structure into the cpreg_values list.
2604  * This is used to copy info from TCG's working data structures into
2605  * KVM or for outbound migration.
2606  *
2607  * @kvm_sync is true if we are doing this in order to sync the
2608  * register state back to KVM. In this case we will only update
2609  * values in the list if the previous list->cpustate sync actually
2610  * successfully wrote the CPU state. Otherwise we will keep the value
2611  * that is in the list.
2612  *
2613  * Returns: true if all register values were read correctly,
2614  * false if some register was unknown or could not be read.
2615  * Note that we do not stop early on failure -- we will attempt
2616  * reading all registers in the list.
2617  */
2618 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2619 
2620 #define ARM_CPUID_TI915T      0x54029152
2621 #define ARM_CPUID_TI925T      0x54029252
2622 
2623 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2624                                      unsigned int target_el)
2625 {
2626     CPUARMState *env = cs->env_ptr;
2627     unsigned int cur_el = arm_current_el(env);
2628     bool secure = arm_is_secure(env);
2629     bool pstate_unmasked;
2630     int8_t unmasked = 0;
2631     uint64_t hcr_el2;
2632 
2633     /* Don't take exceptions if they target a lower EL.
2634      * This check should catch any exceptions that would not be taken but left
2635      * pending.
2636      */
2637     if (cur_el > target_el) {
2638         return false;
2639     }
2640 
2641     hcr_el2 = arm_hcr_el2_eff(env);
2642 
2643     switch (excp_idx) {
2644     case EXCP_FIQ:
2645         pstate_unmasked = !(env->daif & PSTATE_F);
2646         break;
2647 
2648     case EXCP_IRQ:
2649         pstate_unmasked = !(env->daif & PSTATE_I);
2650         break;
2651 
2652     case EXCP_VFIQ:
2653         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2654             /* VFIQs are only taken when hypervized and non-secure.  */
2655             return false;
2656         }
2657         return !(env->daif & PSTATE_F);
2658     case EXCP_VIRQ:
2659         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2660             /* VIRQs are only taken when hypervized and non-secure.  */
2661             return false;
2662         }
2663         return !(env->daif & PSTATE_I);
2664     default:
2665         g_assert_not_reached();
2666     }
2667 
2668     /* Use the target EL, current execution state and SCR/HCR settings to
2669      * determine whether the corresponding CPSR bit is used to mask the
2670      * interrupt.
2671      */
2672     if ((target_el > cur_el) && (target_el != 1)) {
2673         /* Exceptions targeting a higher EL may not be maskable */
2674         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2675             /* 64-bit masking rules are simple: exceptions to EL3
2676              * can't be masked, and exceptions to EL2 can only be
2677              * masked from Secure state. The HCR and SCR settings
2678              * don't affect the masking logic, only the interrupt routing.
2679              */
2680             if (target_el == 3 || !secure) {
2681                 unmasked = 1;
2682             }
2683         } else {
2684             /* The old 32-bit-only environment has a more complicated
2685              * masking setup. HCR and SCR bits not only affect interrupt
2686              * routing but also change the behaviour of masking.
2687              */
2688             bool hcr, scr;
2689 
2690             switch (excp_idx) {
2691             case EXCP_FIQ:
2692                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2693                  * we override the CPSR.F in determining if the exception is
2694                  * masked or not. If neither of these are set then we fall back
2695                  * to the CPSR.F setting otherwise we further assess the state
2696                  * below.
2697                  */
2698                 hcr = hcr_el2 & HCR_FMO;
2699                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2700 
2701                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2702                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2703                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2704                  * when non-secure but only when FIQs are only routed to EL3.
2705                  */
2706                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2707                 break;
2708             case EXCP_IRQ:
2709                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2710                  * we may override the CPSR.I masking when in non-secure state.
2711                  * The SCR.IRQ setting has already been taken into consideration
2712                  * when setting the target EL, so it does not have a further
2713                  * affect here.
2714                  */
2715                 hcr = hcr_el2 & HCR_IMO;
2716                 scr = false;
2717                 break;
2718             default:
2719                 g_assert_not_reached();
2720             }
2721 
2722             if ((scr || hcr) && !secure) {
2723                 unmasked = 1;
2724             }
2725         }
2726     }
2727 
2728     /* The PSTATE bits only mask the interrupt if we have not overriden the
2729      * ability above.
2730      */
2731     return unmasked || pstate_unmasked;
2732 }
2733 
2734 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2735 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2736 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2737 
2738 #define cpu_signal_handler cpu_arm_signal_handler
2739 #define cpu_list arm_cpu_list
2740 
2741 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2742  *
2743  * If EL3 is 64-bit:
2744  *  + NonSecure EL1 & 0 stage 1
2745  *  + NonSecure EL1 & 0 stage 2
2746  *  + NonSecure EL2
2747  *  + Secure EL1 & EL0
2748  *  + Secure EL3
2749  * If EL3 is 32-bit:
2750  *  + NonSecure PL1 & 0 stage 1
2751  *  + NonSecure PL1 & 0 stage 2
2752  *  + NonSecure PL2
2753  *  + Secure PL0 & PL1
2754  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2755  *
2756  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2757  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2758  *     may differ in access permissions even if the VA->PA map is the same
2759  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2760  *     translation, which means that we have one mmu_idx that deals with two
2761  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2762  *     architecturally permitted]
2763  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2764  *     handling via the TLB. The only way to do a stage 1 translation without
2765  *     the immediate stage 2 translation is via the ATS or AT system insns,
2766  *     which can be slow-pathed and always do a page table walk.
2767  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2768  *     translation regimes, because they map reasonably well to each other
2769  *     and they can't both be active at the same time.
2770  * This gives us the following list of mmu_idx values:
2771  *
2772  * NS EL0 (aka NS PL0) stage 1+2
2773  * NS EL1 (aka NS PL1) stage 1+2
2774  * NS EL2 (aka NS PL2)
2775  * S EL3 (aka S PL1)
2776  * S EL0 (aka S PL0)
2777  * S EL1 (not used if EL3 is 32 bit)
2778  * NS EL0+1 stage 2
2779  *
2780  * (The last of these is an mmu_idx because we want to be able to use the TLB
2781  * for the accesses done as part of a stage 1 page table walk, rather than
2782  * having to walk the stage 2 page table over and over.)
2783  *
2784  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2785  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2786  * NS EL2 if we ever model a Cortex-R52).
2787  *
2788  * M profile CPUs are rather different as they do not have a true MMU.
2789  * They have the following different MMU indexes:
2790  *  User
2791  *  Privileged
2792  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2793  *  Privileged, execution priority negative (ditto)
2794  * If the CPU supports the v8M Security Extension then there are also:
2795  *  Secure User
2796  *  Secure Privileged
2797  *  Secure User, execution priority negative
2798  *  Secure Privileged, execution priority negative
2799  *
2800  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2801  * are not quite the same -- different CPU types (most notably M profile
2802  * vs A/R profile) would like to use MMU indexes with different semantics,
2803  * but since we don't ever need to use all of those in a single CPU we
2804  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2805  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2806  * the same for any particular CPU.
2807  * Variables of type ARMMUIdx are always full values, and the core
2808  * index values are in variables of type 'int'.
2809  *
2810  * Our enumeration includes at the end some entries which are not "true"
2811  * mmu_idx values in that they don't have corresponding TLBs and are only
2812  * valid for doing slow path page table walks.
2813  *
2814  * The constant names here are patterned after the general style of the names
2815  * of the AT/ATS operations.
2816  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2817  * For M profile we arrange them to have a bit for priv, a bit for negpri
2818  * and a bit for secure.
2819  */
2820 #define ARM_MMU_IDX_A 0x10 /* A profile */
2821 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2822 #define ARM_MMU_IDX_M 0x40 /* M profile */
2823 
2824 /* meanings of the bits for M profile mmu idx values */
2825 #define ARM_MMU_IDX_M_PRIV 0x1
2826 #define ARM_MMU_IDX_M_NEGPRI 0x2
2827 #define ARM_MMU_IDX_M_S 0x4
2828 
2829 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2830 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2831 
2832 typedef enum ARMMMUIdx {
2833     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2834     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2835     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2836     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2837     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2838     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2839     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2840     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2841     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2842     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2843     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2844     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2845     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2846     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2847     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2848     /* Indexes below here don't have TLBs and are used only for AT system
2849      * instructions or for the first stage of an S12 page table walk.
2850      */
2851     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2852     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2853 } ARMMMUIdx;
2854 
2855 /* Bit macros for the core-mmu-index values for each index,
2856  * for use when calling tlb_flush_by_mmuidx() and friends.
2857  */
2858 typedef enum ARMMMUIdxBit {
2859     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2860     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2861     ARMMMUIdxBit_S1E2 = 1 << 2,
2862     ARMMMUIdxBit_S1E3 = 1 << 3,
2863     ARMMMUIdxBit_S1SE0 = 1 << 4,
2864     ARMMMUIdxBit_S1SE1 = 1 << 5,
2865     ARMMMUIdxBit_S2NS = 1 << 6,
2866     ARMMMUIdxBit_MUser = 1 << 0,
2867     ARMMMUIdxBit_MPriv = 1 << 1,
2868     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2869     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2870     ARMMMUIdxBit_MSUser = 1 << 4,
2871     ARMMMUIdxBit_MSPriv = 1 << 5,
2872     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2873     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2874 } ARMMMUIdxBit;
2875 
2876 #define MMU_USER_IDX 0
2877 
2878 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2879 {
2880     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2881 }
2882 
2883 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2884 {
2885     if (arm_feature(env, ARM_FEATURE_M)) {
2886         return mmu_idx | ARM_MMU_IDX_M;
2887     } else {
2888         return mmu_idx | ARM_MMU_IDX_A;
2889     }
2890 }
2891 
2892 /* Return the exception level we're running at if this is our mmu_idx */
2893 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2894 {
2895     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2896     case ARM_MMU_IDX_A:
2897         return mmu_idx & 3;
2898     case ARM_MMU_IDX_M:
2899         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2900     default:
2901         g_assert_not_reached();
2902     }
2903 }
2904 
2905 /*
2906  * Return the MMU index for a v7M CPU with all relevant information
2907  * manually specified.
2908  */
2909 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2910                               bool secstate, bool priv, bool negpri);
2911 
2912 /* Return the MMU index for a v7M CPU in the specified security and
2913  * privilege state.
2914  */
2915 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2916                                                 bool secstate, bool priv);
2917 
2918 /* Return the MMU index for a v7M CPU in the specified security state */
2919 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2920 
2921 /**
2922  * cpu_mmu_index:
2923  * @env: The cpu environment
2924  * @ifetch: True for code access, false for data access.
2925  *
2926  * Return the core mmu index for the current translation regime.
2927  * This function is used by generic TCG code paths.
2928  */
2929 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2930 
2931 /* Indexes used when registering address spaces with cpu_address_space_init */
2932 typedef enum ARMASIdx {
2933     ARMASIdx_NS = 0,
2934     ARMASIdx_S = 1,
2935 } ARMASIdx;
2936 
2937 /* Return the Exception Level targeted by debug exceptions. */
2938 static inline int arm_debug_target_el(CPUARMState *env)
2939 {
2940     bool secure = arm_is_secure(env);
2941     bool route_to_el2 = false;
2942 
2943     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2944         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2945                        env->cp15.mdcr_el2 & MDCR_TDE;
2946     }
2947 
2948     if (route_to_el2) {
2949         return 2;
2950     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2951                !arm_el_is_aa64(env, 3) && secure) {
2952         return 3;
2953     } else {
2954         return 1;
2955     }
2956 }
2957 
2958 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2959 {
2960     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2961      * CSSELR is RAZ/WI.
2962      */
2963     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2964 }
2965 
2966 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2967 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2968 {
2969     int cur_el = arm_current_el(env);
2970     int debug_el;
2971 
2972     if (cur_el == 3) {
2973         return false;
2974     }
2975 
2976     /* MDCR_EL3.SDD disables debug events from Secure state */
2977     if (arm_is_secure_below_el3(env)
2978         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2979         return false;
2980     }
2981 
2982     /*
2983      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2984      * while not masking the (D)ebug bit in DAIF.
2985      */
2986     debug_el = arm_debug_target_el(env);
2987 
2988     if (cur_el == debug_el) {
2989         return extract32(env->cp15.mdscr_el1, 13, 1)
2990             && !(env->daif & PSTATE_D);
2991     }
2992 
2993     /* Otherwise the debug target needs to be a higher EL */
2994     return debug_el > cur_el;
2995 }
2996 
2997 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2998 {
2999     int el = arm_current_el(env);
3000 
3001     if (el == 0 && arm_el_is_aa64(env, 1)) {
3002         return aa64_generate_debug_exceptions(env);
3003     }
3004 
3005     if (arm_is_secure(env)) {
3006         int spd;
3007 
3008         if (el == 0 && (env->cp15.sder & 1)) {
3009             /* SDER.SUIDEN means debug exceptions from Secure EL0
3010              * are always enabled. Otherwise they are controlled by
3011              * SDCR.SPD like those from other Secure ELs.
3012              */
3013             return true;
3014         }
3015 
3016         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3017         switch (spd) {
3018         case 1:
3019             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3020         case 0:
3021             /* For 0b00 we return true if external secure invasive debug
3022              * is enabled. On real hardware this is controlled by external
3023              * signals to the core. QEMU always permits debug, and behaves
3024              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3025              */
3026             return true;
3027         case 2:
3028             return false;
3029         case 3:
3030             return true;
3031         }
3032     }
3033 
3034     return el != 2;
3035 }
3036 
3037 /* Return true if debugging exceptions are currently enabled.
3038  * This corresponds to what in ARM ARM pseudocode would be
3039  *    if UsingAArch32() then
3040  *        return AArch32.GenerateDebugExceptions()
3041  *    else
3042  *        return AArch64.GenerateDebugExceptions()
3043  * We choose to push the if() down into this function for clarity,
3044  * since the pseudocode has it at all callsites except for the one in
3045  * CheckSoftwareStep(), where it is elided because both branches would
3046  * always return the same value.
3047  */
3048 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3049 {
3050     if (env->aarch64) {
3051         return aa64_generate_debug_exceptions(env);
3052     } else {
3053         return aa32_generate_debug_exceptions(env);
3054     }
3055 }
3056 
3057 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3058  * implicitly means this always returns false in pre-v8 CPUs.)
3059  */
3060 static inline bool arm_singlestep_active(CPUARMState *env)
3061 {
3062     return extract32(env->cp15.mdscr_el1, 0, 1)
3063         && arm_el_is_aa64(env, arm_debug_target_el(env))
3064         && arm_generate_debug_exceptions(env);
3065 }
3066 
3067 static inline bool arm_sctlr_b(CPUARMState *env)
3068 {
3069     return
3070         /* We need not implement SCTLR.ITD in user-mode emulation, so
3071          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3072          * This lets people run BE32 binaries with "-cpu any".
3073          */
3074 #ifndef CONFIG_USER_ONLY
3075         !arm_feature(env, ARM_FEATURE_V7) &&
3076 #endif
3077         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3078 }
3079 
3080 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3081 {
3082     if (el == 0) {
3083         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3084         return env->cp15.sctlr_el[1];
3085     } else {
3086         return env->cp15.sctlr_el[el];
3087     }
3088 }
3089 
3090 
3091 /* Return true if the processor is in big-endian mode. */
3092 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3093 {
3094     /* In 32bit endianness is determined by looking at CPSR's E bit */
3095     if (!is_a64(env)) {
3096         return
3097 #ifdef CONFIG_USER_ONLY
3098             /* In system mode, BE32 is modelled in line with the
3099              * architecture (as word-invariant big-endianness), where loads
3100              * and stores are done little endian but from addresses which
3101              * are adjusted by XORing with the appropriate constant. So the
3102              * endianness to use for the raw data access is not affected by
3103              * SCTLR.B.
3104              * In user mode, however, we model BE32 as byte-invariant
3105              * big-endianness (because user-only code cannot tell the
3106              * difference), and so we need to use a data access endianness
3107              * that depends on SCTLR.B.
3108              */
3109             arm_sctlr_b(env) ||
3110 #endif
3111                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3112     } else {
3113         int cur_el = arm_current_el(env);
3114         uint64_t sctlr = arm_sctlr(env, cur_el);
3115 
3116         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3117     }
3118 }
3119 
3120 typedef CPUARMState CPUArchState;
3121 typedef ARMCPU ArchCPU;
3122 
3123 #include "exec/cpu-all.h"
3124 
3125 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3126  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3127  * We put flags which are shared between 32 and 64 bit mode at the top
3128  * of the word, and flags which apply to only one mode at the bottom.
3129  */
3130 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3131 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3132 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3133 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3134 /* Target EL if we take a floating-point-disabled exception */
3135 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3136 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3137 
3138 /* Bit usage when in AArch32 state: */
3139 FIELD(TBFLAG_A32, THUMB, 0, 1)
3140 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3141 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3142 /*
3143  * We store the bottom two bits of the CPAR as TB flags and handle
3144  * checks on the other bits at runtime. This shares the same bits as
3145  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3146  */
3147 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3148 /*
3149  * Indicates whether cp register reads and writes by guest code should access
3150  * the secure or nonsecure bank of banked registers; note that this is not
3151  * the same thing as the current security state of the processor!
3152  */
3153 FIELD(TBFLAG_A32, NS, 6, 1)
3154 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3155 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3156 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3157 /* For M profile only, set if FPCCR.LSPACT is set */
3158 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3159 /* For M profile only, set if we must create a new FP context */
3160 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3161 /* For M profile only, set if FPCCR.S does not match current security state */
3162 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3163 /* For M profile only, Handler (ie not Thread) mode */
3164 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3165 /* For M profile only, whether we should generate stack-limit checks */
3166 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3167 
3168 /* Bit usage when in AArch64 state */
3169 FIELD(TBFLAG_A64, TBII, 0, 2)
3170 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3171 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3172 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3173 FIELD(TBFLAG_A64, BT, 9, 1)
3174 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3175 FIELD(TBFLAG_A64, TBID, 12, 2)
3176 
3177 static inline bool bswap_code(bool sctlr_b)
3178 {
3179 #ifdef CONFIG_USER_ONLY
3180     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3181      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3182      * would also end up as a mixed-endian mode with BE code, LE data.
3183      */
3184     return
3185 #ifdef TARGET_WORDS_BIGENDIAN
3186         1 ^
3187 #endif
3188         sctlr_b;
3189 #else
3190     /* All code access in ARM is little endian, and there are no loaders
3191      * doing swaps that need to be reversed
3192      */
3193     return 0;
3194 #endif
3195 }
3196 
3197 #ifdef CONFIG_USER_ONLY
3198 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3199 {
3200     return
3201 #ifdef TARGET_WORDS_BIGENDIAN
3202        1 ^
3203 #endif
3204        arm_cpu_data_is_big_endian(env);
3205 }
3206 #endif
3207 
3208 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3209                           target_ulong *cs_base, uint32_t *flags);
3210 
3211 enum {
3212     QEMU_PSCI_CONDUIT_DISABLED = 0,
3213     QEMU_PSCI_CONDUIT_SMC = 1,
3214     QEMU_PSCI_CONDUIT_HVC = 2,
3215 };
3216 
3217 #ifndef CONFIG_USER_ONLY
3218 /* Return the address space index to use for a memory access */
3219 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3220 {
3221     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3222 }
3223 
3224 /* Return the AddressSpace to use for a memory access
3225  * (which depends on whether the access is S or NS, and whether
3226  * the board gave us a separate AddressSpace for S accesses).
3227  */
3228 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3229 {
3230     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3231 }
3232 #endif
3233 
3234 /**
3235  * arm_register_pre_el_change_hook:
3236  * Register a hook function which will be called immediately before this
3237  * CPU changes exception level or mode. The hook function will be
3238  * passed a pointer to the ARMCPU and the opaque data pointer passed
3239  * to this function when the hook was registered.
3240  *
3241  * Note that if a pre-change hook is called, any registered post-change hooks
3242  * are guaranteed to subsequently be called.
3243  */
3244 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3245                                  void *opaque);
3246 /**
3247  * arm_register_el_change_hook:
3248  * Register a hook function which will be called immediately after this
3249  * CPU changes exception level or mode. The hook function will be
3250  * passed a pointer to the ARMCPU and the opaque data pointer passed
3251  * to this function when the hook was registered.
3252  *
3253  * Note that any registered hooks registered here are guaranteed to be called
3254  * if pre-change hooks have been.
3255  */
3256 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3257         *opaque);
3258 
3259 /**
3260  * aa32_vfp_dreg:
3261  * Return a pointer to the Dn register within env in 32-bit mode.
3262  */
3263 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3264 {
3265     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3266 }
3267 
3268 /**
3269  * aa32_vfp_qreg:
3270  * Return a pointer to the Qn register within env in 32-bit mode.
3271  */
3272 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3273 {
3274     return &env->vfp.zregs[regno].d[0];
3275 }
3276 
3277 /**
3278  * aa64_vfp_qreg:
3279  * Return a pointer to the Qn register within env in 64-bit mode.
3280  */
3281 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3282 {
3283     return &env->vfp.zregs[regno].d[0];
3284 }
3285 
3286 /* Shared between translate-sve.c and sve_helper.c.  */
3287 extern const uint64_t pred_esz_masks[4];
3288 
3289 /*
3290  * 32-bit feature tests via id registers.
3291  */
3292 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3293 {
3294     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3295 }
3296 
3297 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3298 {
3299     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3300 }
3301 
3302 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3303 {
3304     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3305 }
3306 
3307 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3308 {
3309     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3310 }
3311 
3312 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3313 {
3314     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3315 }
3316 
3317 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3318 {
3319     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3320 }
3321 
3322 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3323 {
3324     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3325 }
3326 
3327 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3328 {
3329     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3330 }
3331 
3332 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3333 {
3334     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3335 }
3336 
3337 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3338 {
3339     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3340 }
3341 
3342 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3343 {
3344     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3345 }
3346 
3347 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3348 {
3349     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3350 }
3351 
3352 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3353 {
3354     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3355 }
3356 
3357 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3358 {
3359     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3360 }
3361 
3362 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3363 {
3364     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3365 }
3366 
3367 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3368 {
3369     /*
3370      * This is a placeholder for use by VCMA until the rest of
3371      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3372      * At which point we can properly set and check MVFR1.FPHP.
3373      */
3374     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3375 }
3376 
3377 /*
3378  * We always set the FP and SIMD FP16 fields to indicate identical
3379  * levels of support (assuming SIMD is implemented at all), so
3380  * we only need one set of accessors.
3381  */
3382 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3383 {
3384     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3385 }
3386 
3387 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3388 {
3389     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3390 }
3391 
3392 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3393 {
3394     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3395 }
3396 
3397 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3398 {
3399     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3400 }
3401 
3402 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3403 {
3404     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3405 }
3406 
3407 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3408 {
3409     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3410 }
3411 
3412 /*
3413  * 64-bit feature tests via id registers.
3414  */
3415 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3416 {
3417     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3418 }
3419 
3420 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3421 {
3422     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3423 }
3424 
3425 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3426 {
3427     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3428 }
3429 
3430 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3431 {
3432     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3433 }
3434 
3435 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3436 {
3437     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3438 }
3439 
3440 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3441 {
3442     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3443 }
3444 
3445 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3446 {
3447     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3448 }
3449 
3450 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3451 {
3452     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3453 }
3454 
3455 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3456 {
3457     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3458 }
3459 
3460 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3461 {
3462     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3463 }
3464 
3465 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3466 {
3467     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3468 }
3469 
3470 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3471 {
3472     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3473 }
3474 
3475 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3476 {
3477     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3478 }
3479 
3480 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3481 {
3482     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3483 }
3484 
3485 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3486 {
3487     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3488 }
3489 
3490 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3491 {
3492     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3493 }
3494 
3495 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3496 {
3497     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3498 }
3499 
3500 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3501 {
3502     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3503 }
3504 
3505 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3506 {
3507     /*
3508      * Note that while QEMU will only implement the architected algorithm
3509      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3510      * defined algorithms, and thus API+GPI, and this predicate controls
3511      * migration of the 128-bit keys.
3512      */
3513     return (id->id_aa64isar1 &
3514             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3515              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3516              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3517              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3518 }
3519 
3520 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3521 {
3522     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3523 }
3524 
3525 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3526 {
3527     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3528 }
3529 
3530 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3531 {
3532     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3533 }
3534 
3535 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3536 {
3537     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3538     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3539 }
3540 
3541 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3542 {
3543     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3544 }
3545 
3546 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3547 {
3548     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3549 }
3550 
3551 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3552 {
3553     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3554 }
3555 
3556 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3557 {
3558     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3559 }
3560 
3561 /*
3562  * Forward to the above feature tests given an ARMCPU pointer.
3563  */
3564 #define cpu_isar_feature(name, cpu) \
3565     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3566 
3567 #endif
3568