xref: /openbmc/qemu/target/arm/cpu.h (revision 5d83b9a1)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_HVC            11   /* HyperVisor Call */
46 #define EXCP_HYP_TRAP       12
47 #define EXCP_SMC            13   /* Secure Monitor Call */
48 #define EXCP_VIRQ           14
49 #define EXCP_VFIQ           15
50 #define EXCP_SEMIHOST       16   /* semihosting call */
51 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
58 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
59 
60 #define ARMV7M_EXCP_RESET   1
61 #define ARMV7M_EXCP_NMI     2
62 #define ARMV7M_EXCP_HARD    3
63 #define ARMV7M_EXCP_MEM     4
64 #define ARMV7M_EXCP_BUS     5
65 #define ARMV7M_EXCP_USAGE   6
66 #define ARMV7M_EXCP_SECURE  7
67 #define ARMV7M_EXCP_SVC     11
68 #define ARMV7M_EXCP_DEBUG   12
69 #define ARMV7M_EXCP_PENDSV  14
70 #define ARMV7M_EXCP_SYSTICK 15
71 
72 /* For M profile, some registers are banked secure vs non-secure;
73  * these are represented as a 2-element array where the first element
74  * is the non-secure copy and the second is the secure copy.
75  * When the CPU does not have implement the security extension then
76  * only the first element is used.
77  * This means that the copy for the current security state can be
78  * accessed via env->registerfield[env->v7m.secure] (whether the security
79  * extension is implemented or not).
80  */
81 enum {
82     M_REG_NS = 0,
83     M_REG_S = 1,
84     M_REG_NUM_BANKS = 2,
85 };
86 
87 /* ARM-specific interrupt pending bits.  */
88 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
89 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
90 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
91 
92 /* The usual mapping for an AArch64 system register to its AArch32
93  * counterpart is for the 32 bit world to have access to the lower
94  * half only (with writes leaving the upper half untouched). It's
95  * therefore useful to be able to pass TCG the offset of the least
96  * significant half of a uint64_t struct member.
97  */
98 #ifdef HOST_WORDS_BIGENDIAN
99 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #define offsetofhigh32(S, M) offsetof(S, M)
101 #else
102 #define offsetoflow32(S, M) offsetof(S, M)
103 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #endif
105 
106 /* Meanings of the ARMCPU object's four inbound GPIO lines */
107 #define ARM_CPU_IRQ 0
108 #define ARM_CPU_FIQ 1
109 #define ARM_CPU_VIRQ 2
110 #define ARM_CPU_VFIQ 3
111 
112 /* ARM-specific extra insn start words:
113  * 1: Conditional execution bits
114  * 2: Partial exception syndrome for data aborts
115  */
116 #define TARGET_INSN_START_EXTRA_WORDS 2
117 
118 /* The 2nd extra word holding syndrome info for data aborts does not use
119  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
120  * help the sleb128 encoder do a better job.
121  * When restoring the CPU state, we shift it back up.
122  */
123 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
124 #define ARM_INSN_START_WORD2_SHIFT 14
125 
126 /* We currently assume float and double are IEEE single and double
127    precision respectively.
128    Doing runtime conversions is tricky because VFP registers may contain
129    integer values (eg. as the result of a FTOSI instruction).
130    s<2n> maps to the least significant half of d<n>
131    s<2n+1> maps to the most significant half of d<n>
132  */
133 
134 /**
135  * DynamicGDBXMLInfo:
136  * @desc: Contains the XML descriptions.
137  * @num: Number of the registers in this XML seen by GDB.
138  * @data: A union with data specific to the set of registers
139  *    @cpregs_keys: Array that contains the corresponding Key of
140  *                  a given cpreg with the same order of the cpreg
141  *                  in the XML description.
142  */
143 typedef struct DynamicGDBXMLInfo {
144     char *desc;
145     int num;
146     union {
147         struct {
148             uint32_t *keys;
149         } cpregs;
150     } data;
151 } DynamicGDBXMLInfo;
152 
153 /* CPU state for each instance of a generic timer (in cp15 c14) */
154 typedef struct ARMGenericTimer {
155     uint64_t cval; /* Timer CompareValue register */
156     uint64_t ctl; /* Timer Control register */
157 } ARMGenericTimer;
158 
159 #define GTIMER_PHYS     0
160 #define GTIMER_VIRT     1
161 #define GTIMER_HYP      2
162 #define GTIMER_SEC      3
163 #define GTIMER_HYPVIRT  4
164 #define NUM_GTIMERS     5
165 
166 typedef struct {
167     uint64_t raw_tcr;
168     uint32_t mask;
169     uint32_t base_mask;
170 } TCR;
171 
172 #define VTCR_NSW (1u << 29)
173 #define VTCR_NSA (1u << 30)
174 #define VSTCR_SW VTCR_NSW
175 #define VSTCR_SA VTCR_NSA
176 
177 /* Define a maximum sized vector register.
178  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
179  * For 64-bit, this is a 2048-bit SVE register.
180  *
181  * Note that the mapping between S, D, and Q views of the register bank
182  * differs between AArch64 and AArch32.
183  * In AArch32:
184  *  Qn = regs[n].d[1]:regs[n].d[0]
185  *  Dn = regs[n / 2].d[n & 1]
186  *  Sn = regs[n / 4].d[n % 4 / 2],
187  *       bits 31..0 for even n, and bits 63..32 for odd n
188  *       (and regs[16] to regs[31] are inaccessible)
189  * In AArch64:
190  *  Zn = regs[n].d[*]
191  *  Qn = regs[n].d[1]:regs[n].d[0]
192  *  Dn = regs[n].d[0]
193  *  Sn = regs[n].d[0] bits 31..0
194  *  Hn = regs[n].d[0] bits 15..0
195  *
196  * This corresponds to the architecturally defined mapping between
197  * the two execution states, and means we do not need to explicitly
198  * map these registers when changing states.
199  *
200  * Align the data for use with TCG host vector operations.
201  */
202 
203 #ifdef TARGET_AARCH64
204 # define ARM_MAX_VQ    16
205 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
206 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
207 #else
208 # define ARM_MAX_VQ    1
209 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
210 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
211 #endif
212 
213 typedef struct ARMVectorReg {
214     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
215 } ARMVectorReg;
216 
217 #ifdef TARGET_AARCH64
218 /* In AArch32 mode, predicate registers do not exist at all.  */
219 typedef struct ARMPredicateReg {
220     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
221 } ARMPredicateReg;
222 
223 /* In AArch32 mode, PAC keys do not exist at all.  */
224 typedef struct ARMPACKey {
225     uint64_t lo, hi;
226 } ARMPACKey;
227 #endif
228 
229 /* See the commentary above the TBFLAG field definitions.  */
230 typedef struct CPUARMTBFlags {
231     uint32_t flags;
232     target_ulong flags2;
233 } CPUARMTBFlags;
234 
235 typedef struct CPUARMState {
236     /* Regs for current mode.  */
237     uint32_t regs[16];
238 
239     /* 32/64 switch only happens when taking and returning from
240      * exceptions so the overlap semantics are taken care of then
241      * instead of having a complicated union.
242      */
243     /* Regs for A64 mode.  */
244     uint64_t xregs[32];
245     uint64_t pc;
246     /* PSTATE isn't an architectural register for ARMv8. However, it is
247      * convenient for us to assemble the underlying state into a 32 bit format
248      * identical to the architectural format used for the SPSR. (This is also
249      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
250      * 'pstate' register are.) Of the PSTATE bits:
251      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
252      *    semantics as for AArch32, as described in the comments on each field)
253      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
254      *  DAIF (exception masks) are kept in env->daif
255      *  BTYPE is kept in env->btype
256      *  all other bits are stored in their correct places in env->pstate
257      */
258     uint32_t pstate;
259     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
260 
261     /* Cached TBFLAGS state.  See below for which bits are included.  */
262     CPUARMTBFlags hflags;
263 
264     /* Frequently accessed CPSR bits are stored separately for efficiency.
265        This contains all the other bits.  Use cpsr_{read,write} to access
266        the whole CPSR.  */
267     uint32_t uncached_cpsr;
268     uint32_t spsr;
269 
270     /* Banked registers.  */
271     uint64_t banked_spsr[8];
272     uint32_t banked_r13[8];
273     uint32_t banked_r14[8];
274 
275     /* These hold r8-r12.  */
276     uint32_t usr_regs[5];
277     uint32_t fiq_regs[5];
278 
279     /* cpsr flag cache for faster execution */
280     uint32_t CF; /* 0 or 1 */
281     uint32_t VF; /* V is the bit 31. All other bits are undefined */
282     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
283     uint32_t ZF; /* Z set if zero.  */
284     uint32_t QF; /* 0 or 1 */
285     uint32_t GE; /* cpsr[19:16] */
286     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
287     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
288     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
289     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
290 
291     uint64_t elr_el[4]; /* AArch64 exception link regs  */
292     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
293 
294     /* System control coprocessor (cp15) */
295     struct {
296         uint32_t c0_cpuid;
297         union { /* Cache size selection */
298             struct {
299                 uint64_t _unused_csselr0;
300                 uint64_t csselr_ns;
301                 uint64_t _unused_csselr1;
302                 uint64_t csselr_s;
303             };
304             uint64_t csselr_el[4];
305         };
306         union { /* System control register. */
307             struct {
308                 uint64_t _unused_sctlr;
309                 uint64_t sctlr_ns;
310                 uint64_t hsctlr;
311                 uint64_t sctlr_s;
312             };
313             uint64_t sctlr_el[4];
314         };
315         uint64_t cpacr_el1; /* Architectural feature access control register */
316         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
317         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
318         uint64_t sder; /* Secure debug enable register. */
319         uint32_t nsacr; /* Non-secure access control register. */
320         union { /* MMU translation table base 0. */
321             struct {
322                 uint64_t _unused_ttbr0_0;
323                 uint64_t ttbr0_ns;
324                 uint64_t _unused_ttbr0_1;
325                 uint64_t ttbr0_s;
326             };
327             uint64_t ttbr0_el[4];
328         };
329         union { /* MMU translation table base 1. */
330             struct {
331                 uint64_t _unused_ttbr1_0;
332                 uint64_t ttbr1_ns;
333                 uint64_t _unused_ttbr1_1;
334                 uint64_t ttbr1_s;
335             };
336             uint64_t ttbr1_el[4];
337         };
338         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
339         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
340         /* MMU translation table base control. */
341         TCR tcr_el[4];
342         TCR vtcr_el2; /* Virtualization Translation Control.  */
343         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
344         uint32_t c2_data; /* MPU data cacheable bits.  */
345         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
346         union { /* MMU domain access control register
347                  * MPU write buffer control.
348                  */
349             struct {
350                 uint64_t dacr_ns;
351                 uint64_t dacr_s;
352             };
353             struct {
354                 uint64_t dacr32_el2;
355             };
356         };
357         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
358         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
359         uint64_t hcr_el2; /* Hypervisor configuration register */
360         uint64_t scr_el3; /* Secure configuration register.  */
361         union { /* Fault status registers.  */
362             struct {
363                 uint64_t ifsr_ns;
364                 uint64_t ifsr_s;
365             };
366             struct {
367                 uint64_t ifsr32_el2;
368             };
369         };
370         union {
371             struct {
372                 uint64_t _unused_dfsr;
373                 uint64_t dfsr_ns;
374                 uint64_t hsr;
375                 uint64_t dfsr_s;
376             };
377             uint64_t esr_el[4];
378         };
379         uint32_t c6_region[8]; /* MPU base/size registers.  */
380         union { /* Fault address registers. */
381             struct {
382                 uint64_t _unused_far0;
383 #ifdef HOST_WORDS_BIGENDIAN
384                 uint32_t ifar_ns;
385                 uint32_t dfar_ns;
386                 uint32_t ifar_s;
387                 uint32_t dfar_s;
388 #else
389                 uint32_t dfar_ns;
390                 uint32_t ifar_ns;
391                 uint32_t dfar_s;
392                 uint32_t ifar_s;
393 #endif
394                 uint64_t _unused_far3;
395             };
396             uint64_t far_el[4];
397         };
398         uint64_t hpfar_el2;
399         uint64_t hstr_el2;
400         union { /* Translation result. */
401             struct {
402                 uint64_t _unused_par_0;
403                 uint64_t par_ns;
404                 uint64_t _unused_par_1;
405                 uint64_t par_s;
406             };
407             uint64_t par_el[4];
408         };
409 
410         uint32_t c9_insn; /* Cache lockdown registers.  */
411         uint32_t c9_data;
412         uint64_t c9_pmcr; /* performance monitor control register */
413         uint64_t c9_pmcnten; /* perf monitor counter enables */
414         uint64_t c9_pmovsr; /* perf monitor overflow status */
415         uint64_t c9_pmuserenr; /* perf monitor user enable */
416         uint64_t c9_pmselr; /* perf monitor counter selection register */
417         uint64_t c9_pminten; /* perf monitor interrupt enables */
418         union { /* Memory attribute redirection */
419             struct {
420 #ifdef HOST_WORDS_BIGENDIAN
421                 uint64_t _unused_mair_0;
422                 uint32_t mair1_ns;
423                 uint32_t mair0_ns;
424                 uint64_t _unused_mair_1;
425                 uint32_t mair1_s;
426                 uint32_t mair0_s;
427 #else
428                 uint64_t _unused_mair_0;
429                 uint32_t mair0_ns;
430                 uint32_t mair1_ns;
431                 uint64_t _unused_mair_1;
432                 uint32_t mair0_s;
433                 uint32_t mair1_s;
434 #endif
435             };
436             uint64_t mair_el[4];
437         };
438         union { /* vector base address register */
439             struct {
440                 uint64_t _unused_vbar;
441                 uint64_t vbar_ns;
442                 uint64_t hvbar;
443                 uint64_t vbar_s;
444             };
445             uint64_t vbar_el[4];
446         };
447         uint32_t mvbar; /* (monitor) vector base address register */
448         struct { /* FCSE PID. */
449             uint32_t fcseidr_ns;
450             uint32_t fcseidr_s;
451         };
452         union { /* Context ID. */
453             struct {
454                 uint64_t _unused_contextidr_0;
455                 uint64_t contextidr_ns;
456                 uint64_t _unused_contextidr_1;
457                 uint64_t contextidr_s;
458             };
459             uint64_t contextidr_el[4];
460         };
461         union { /* User RW Thread register. */
462             struct {
463                 uint64_t tpidrurw_ns;
464                 uint64_t tpidrprw_ns;
465                 uint64_t htpidr;
466                 uint64_t _tpidr_el3;
467             };
468             uint64_t tpidr_el[4];
469         };
470         /* The secure banks of these registers don't map anywhere */
471         uint64_t tpidrurw_s;
472         uint64_t tpidrprw_s;
473         uint64_t tpidruro_s;
474 
475         union { /* User RO Thread register. */
476             uint64_t tpidruro_ns;
477             uint64_t tpidrro_el[1];
478         };
479         uint64_t c14_cntfrq; /* Counter Frequency register */
480         uint64_t c14_cntkctl; /* Timer Control register */
481         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
482         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
483         ARMGenericTimer c14_timer[NUM_GTIMERS];
484         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
485         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
486         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
487         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
488         uint32_t c15_threadid; /* TI debugger thread-ID.  */
489         uint32_t c15_config_base_address; /* SCU base address.  */
490         uint32_t c15_diagnostic; /* diagnostic register */
491         uint32_t c15_power_diagnostic;
492         uint32_t c15_power_control; /* power control */
493         uint64_t dbgbvr[16]; /* breakpoint value registers */
494         uint64_t dbgbcr[16]; /* breakpoint control registers */
495         uint64_t dbgwvr[16]; /* watchpoint value registers */
496         uint64_t dbgwcr[16]; /* watchpoint control registers */
497         uint64_t mdscr_el1;
498         uint64_t oslsr_el1; /* OS Lock Status */
499         uint64_t mdcr_el2;
500         uint64_t mdcr_el3;
501         /* Stores the architectural value of the counter *the last time it was
502          * updated* by pmccntr_op_start. Accesses should always be surrounded
503          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
504          * architecturally-correct value is being read/set.
505          */
506         uint64_t c15_ccnt;
507         /* Stores the delta between the architectural value and the underlying
508          * cycle count during normal operation. It is used to update c15_ccnt
509          * to be the correct architectural value before accesses. During
510          * accesses, c15_ccnt_delta contains the underlying count being used
511          * for the access, after which it reverts to the delta value in
512          * pmccntr_op_finish.
513          */
514         uint64_t c15_ccnt_delta;
515         uint64_t c14_pmevcntr[31];
516         uint64_t c14_pmevcntr_delta[31];
517         uint64_t c14_pmevtyper[31];
518         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
519         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
520         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
521         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
522         uint64_t gcr_el1;
523         uint64_t rgsr_el1;
524     } cp15;
525 
526     struct {
527         /* M profile has up to 4 stack pointers:
528          * a Main Stack Pointer and a Process Stack Pointer for each
529          * of the Secure and Non-Secure states. (If the CPU doesn't support
530          * the security extension then it has only two SPs.)
531          * In QEMU we always store the currently active SP in regs[13],
532          * and the non-active SP for the current security state in
533          * v7m.other_sp. The stack pointers for the inactive security state
534          * are stored in other_ss_msp and other_ss_psp.
535          * switch_v7m_security_state() is responsible for rearranging them
536          * when we change security state.
537          */
538         uint32_t other_sp;
539         uint32_t other_ss_msp;
540         uint32_t other_ss_psp;
541         uint32_t vecbase[M_REG_NUM_BANKS];
542         uint32_t basepri[M_REG_NUM_BANKS];
543         uint32_t control[M_REG_NUM_BANKS];
544         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
545         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
546         uint32_t hfsr; /* HardFault Status */
547         uint32_t dfsr; /* Debug Fault Status Register */
548         uint32_t sfsr; /* Secure Fault Status Register */
549         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
550         uint32_t bfar; /* BusFault Address */
551         uint32_t sfar; /* Secure Fault Address Register */
552         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
553         int exception;
554         uint32_t primask[M_REG_NUM_BANKS];
555         uint32_t faultmask[M_REG_NUM_BANKS];
556         uint32_t aircr; /* only holds r/w state if security extn implemented */
557         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
558         uint32_t csselr[M_REG_NUM_BANKS];
559         uint32_t scr[M_REG_NUM_BANKS];
560         uint32_t msplim[M_REG_NUM_BANKS];
561         uint32_t psplim[M_REG_NUM_BANKS];
562         uint32_t fpcar[M_REG_NUM_BANKS];
563         uint32_t fpccr[M_REG_NUM_BANKS];
564         uint32_t fpdscr[M_REG_NUM_BANKS];
565         uint32_t cpacr[M_REG_NUM_BANKS];
566         uint32_t nsacr;
567         uint32_t ltpsize;
568         uint32_t vpr;
569     } v7m;
570 
571     /* Information associated with an exception about to be taken:
572      * code which raises an exception must set cs->exception_index and
573      * the relevant parts of this structure; the cpu_do_interrupt function
574      * will then set the guest-visible registers as part of the exception
575      * entry process.
576      */
577     struct {
578         uint32_t syndrome; /* AArch64 format syndrome register */
579         uint32_t fsr; /* AArch32 format fault status register info */
580         uint64_t vaddress; /* virtual addr associated with exception, if any */
581         uint32_t target_el; /* EL the exception should be targeted for */
582         /* If we implement EL2 we will also need to store information
583          * about the intermediate physical address for stage 2 faults.
584          */
585     } exception;
586 
587     /* Information associated with an SError */
588     struct {
589         uint8_t pending;
590         uint8_t has_esr;
591         uint64_t esr;
592     } serror;
593 
594     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
595 
596     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
597     uint32_t irq_line_state;
598 
599     /* Thumb-2 EE state.  */
600     uint32_t teecr;
601     uint32_t teehbr;
602 
603     /* VFP coprocessor state.  */
604     struct {
605         ARMVectorReg zregs[32];
606 
607 #ifdef TARGET_AARCH64
608         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
609 #define FFR_PRED_NUM 16
610         ARMPredicateReg pregs[17];
611         /* Scratch space for aa64 sve predicate temporary.  */
612         ARMPredicateReg preg_tmp;
613 #endif
614 
615         /* We store these fpcsr fields separately for convenience.  */
616         uint32_t qc[4] QEMU_ALIGNED(16);
617         int vec_len;
618         int vec_stride;
619 
620         uint32_t xregs[16];
621 
622         /* Scratch space for aa32 neon expansion.  */
623         uint32_t scratch[8];
624 
625         /* There are a number of distinct float control structures:
626          *
627          *  fp_status: is the "normal" fp status.
628          *  fp_status_fp16: used for half-precision calculations
629          *  standard_fp_status : the ARM "Standard FPSCR Value"
630          *  standard_fp_status_fp16 : used for half-precision
631          *       calculations with the ARM "Standard FPSCR Value"
632          *
633          * Half-precision operations are governed by a separate
634          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
635          * status structure to control this.
636          *
637          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
638          * round-to-nearest and is used by any operations (generally
639          * Neon) which the architecture defines as controlled by the
640          * standard FPSCR value rather than the FPSCR.
641          *
642          * The "standard FPSCR but for fp16 ops" is needed because
643          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
644          * using a fixed value for it.
645          *
646          * To avoid having to transfer exception bits around, we simply
647          * say that the FPSCR cumulative exception flags are the logical
648          * OR of the flags in the four fp statuses. This relies on the
649          * only thing which needs to read the exception flags being
650          * an explicit FPSCR read.
651          */
652         float_status fp_status;
653         float_status fp_status_f16;
654         float_status standard_fp_status;
655         float_status standard_fp_status_f16;
656 
657         /* ZCR_EL[1-3] */
658         uint64_t zcr_el[4];
659     } vfp;
660     uint64_t exclusive_addr;
661     uint64_t exclusive_val;
662     uint64_t exclusive_high;
663 
664     /* iwMMXt coprocessor state.  */
665     struct {
666         uint64_t regs[16];
667         uint64_t val;
668 
669         uint32_t cregs[16];
670     } iwmmxt;
671 
672 #ifdef TARGET_AARCH64
673     struct {
674         ARMPACKey apia;
675         ARMPACKey apib;
676         ARMPACKey apda;
677         ARMPACKey apdb;
678         ARMPACKey apga;
679     } keys;
680 #endif
681 
682 #if defined(CONFIG_USER_ONLY)
683     /* For usermode syscall translation.  */
684     int eabi;
685 #endif
686 
687     struct CPUBreakpoint *cpu_breakpoint[16];
688     struct CPUWatchpoint *cpu_watchpoint[16];
689 
690     /* Fields up to this point are cleared by a CPU reset */
691     struct {} end_reset_fields;
692 
693     /* Fields after this point are preserved across CPU reset. */
694 
695     /* Internal CPU feature flags.  */
696     uint64_t features;
697 
698     /* PMSAv7 MPU */
699     struct {
700         uint32_t *drbar;
701         uint32_t *drsr;
702         uint32_t *dracr;
703         uint32_t rnr[M_REG_NUM_BANKS];
704     } pmsav7;
705 
706     /* PMSAv8 MPU */
707     struct {
708         /* The PMSAv8 implementation also shares some PMSAv7 config
709          * and state:
710          *  pmsav7.rnr (region number register)
711          *  pmsav7_dregion (number of configured regions)
712          */
713         uint32_t *rbar[M_REG_NUM_BANKS];
714         uint32_t *rlar[M_REG_NUM_BANKS];
715         uint32_t mair0[M_REG_NUM_BANKS];
716         uint32_t mair1[M_REG_NUM_BANKS];
717     } pmsav8;
718 
719     /* v8M SAU */
720     struct {
721         uint32_t *rbar;
722         uint32_t *rlar;
723         uint32_t rnr;
724         uint32_t ctrl;
725     } sau;
726 
727     void *nvic;
728     const struct arm_boot_info *boot_info;
729     /* Store GICv3CPUState to access from this struct */
730     void *gicv3state;
731 
732 #ifdef TARGET_TAGGED_ADDRESSES
733     /* Linux syscall tagged address support */
734     bool tagged_addr_enable;
735 #endif
736 } CPUARMState;
737 
738 static inline void set_feature(CPUARMState *env, int feature)
739 {
740     env->features |= 1ULL << feature;
741 }
742 
743 static inline void unset_feature(CPUARMState *env, int feature)
744 {
745     env->features &= ~(1ULL << feature);
746 }
747 
748 /**
749  * ARMELChangeHookFn:
750  * type of a function which can be registered via arm_register_el_change_hook()
751  * to get callbacks when the CPU changes its exception level or mode.
752  */
753 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
754 typedef struct ARMELChangeHook ARMELChangeHook;
755 struct ARMELChangeHook {
756     ARMELChangeHookFn *hook;
757     void *opaque;
758     QLIST_ENTRY(ARMELChangeHook) node;
759 };
760 
761 /* These values map onto the return values for
762  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
763 typedef enum ARMPSCIState {
764     PSCI_ON = 0,
765     PSCI_OFF = 1,
766     PSCI_ON_PENDING = 2
767 } ARMPSCIState;
768 
769 typedef struct ARMISARegisters ARMISARegisters;
770 
771 /**
772  * ARMCPU:
773  * @env: #CPUARMState
774  *
775  * An ARM CPU core.
776  */
777 struct ARMCPU {
778     /*< private >*/
779     CPUState parent_obj;
780     /*< public >*/
781 
782     CPUNegativeOffsetState neg;
783     CPUARMState env;
784 
785     /* Coprocessor information */
786     GHashTable *cp_regs;
787     /* For marshalling (mostly coprocessor) register state between the
788      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
789      * we use these arrays.
790      */
791     /* List of register indexes managed via these arrays; (full KVM style
792      * 64 bit indexes, not CPRegInfo 32 bit indexes)
793      */
794     uint64_t *cpreg_indexes;
795     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
796     uint64_t *cpreg_values;
797     /* Length of the indexes, values, reset_values arrays */
798     int32_t cpreg_array_len;
799     /* These are used only for migration: incoming data arrives in
800      * these fields and is sanity checked in post_load before copying
801      * to the working data structures above.
802      */
803     uint64_t *cpreg_vmstate_indexes;
804     uint64_t *cpreg_vmstate_values;
805     int32_t cpreg_vmstate_array_len;
806 
807     DynamicGDBXMLInfo dyn_sysreg_xml;
808     DynamicGDBXMLInfo dyn_svereg_xml;
809 
810     /* Timers used by the generic (architected) timer */
811     QEMUTimer *gt_timer[NUM_GTIMERS];
812     /*
813      * Timer used by the PMU. Its state is restored after migration by
814      * pmu_op_finish() - it does not need other handling during migration
815      */
816     QEMUTimer *pmu_timer;
817     /* GPIO outputs for generic timer */
818     qemu_irq gt_timer_outputs[NUM_GTIMERS];
819     /* GPIO output for GICv3 maintenance interrupt signal */
820     qemu_irq gicv3_maintenance_interrupt;
821     /* GPIO output for the PMU interrupt */
822     qemu_irq pmu_interrupt;
823 
824     /* MemoryRegion to use for secure physical accesses */
825     MemoryRegion *secure_memory;
826 
827     /* MemoryRegion to use for allocation tag accesses */
828     MemoryRegion *tag_memory;
829     MemoryRegion *secure_tag_memory;
830 
831     /* For v8M, pointer to the IDAU interface provided by board/SoC */
832     Object *idau;
833 
834     /* 'compatible' string for this CPU for Linux device trees */
835     const char *dtb_compatible;
836 
837     /* PSCI version for this CPU
838      * Bits[31:16] = Major Version
839      * Bits[15:0] = Minor Version
840      */
841     uint32_t psci_version;
842 
843     /* Current power state, access guarded by BQL */
844     ARMPSCIState power_state;
845 
846     /* CPU has virtualization extension */
847     bool has_el2;
848     /* CPU has security extension */
849     bool has_el3;
850     /* CPU has PMU (Performance Monitor Unit) */
851     bool has_pmu;
852     /* CPU has VFP */
853     bool has_vfp;
854     /* CPU has Neon */
855     bool has_neon;
856     /* CPU has M-profile DSP extension */
857     bool has_dsp;
858 
859     /* CPU has memory protection unit */
860     bool has_mpu;
861     /* PMSAv7 MPU number of supported regions */
862     uint32_t pmsav7_dregion;
863     /* v8M SAU number of supported regions */
864     uint32_t sau_sregion;
865 
866     /* PSCI conduit used to invoke PSCI methods
867      * 0 - disabled, 1 - smc, 2 - hvc
868      */
869     uint32_t psci_conduit;
870 
871     /* For v8M, initial value of the Secure VTOR */
872     uint32_t init_svtor;
873     /* For v8M, initial value of the Non-secure VTOR */
874     uint32_t init_nsvtor;
875 
876     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
877      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
878      */
879     uint32_t kvm_target;
880 
881     /* KVM init features for this CPU */
882     uint32_t kvm_init_features[7];
883 
884     /* KVM CPU state */
885 
886     /* KVM virtual time adjustment */
887     bool kvm_adjvtime;
888     bool kvm_vtime_dirty;
889     uint64_t kvm_vtime;
890 
891     /* KVM steal time */
892     OnOffAuto kvm_steal_time;
893 
894     /* Uniprocessor system with MP extensions */
895     bool mp_is_up;
896 
897     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
898      * and the probe failed (so we need to report the error in realize)
899      */
900     bool host_cpu_probe_failed;
901 
902     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
903      * register.
904      */
905     int32_t core_count;
906 
907     /* The instance init functions for implementation-specific subclasses
908      * set these fields to specify the implementation-dependent values of
909      * various constant registers and reset values of non-constant
910      * registers.
911      * Some of these might become QOM properties eventually.
912      * Field names match the official register names as defined in the
913      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
914      * is used for reset values of non-constant registers; no reset_
915      * prefix means a constant register.
916      * Some of these registers are split out into a substructure that
917      * is shared with the translators to control the ISA.
918      *
919      * Note that if you add an ID register to the ARMISARegisters struct
920      * you need to also update the 32-bit and 64-bit versions of the
921      * kvm_arm_get_host_cpu_features() function to correctly populate the
922      * field by reading the value from the KVM vCPU.
923      */
924     struct ARMISARegisters {
925         uint32_t id_isar0;
926         uint32_t id_isar1;
927         uint32_t id_isar2;
928         uint32_t id_isar3;
929         uint32_t id_isar4;
930         uint32_t id_isar5;
931         uint32_t id_isar6;
932         uint32_t id_mmfr0;
933         uint32_t id_mmfr1;
934         uint32_t id_mmfr2;
935         uint32_t id_mmfr3;
936         uint32_t id_mmfr4;
937         uint32_t id_pfr0;
938         uint32_t id_pfr1;
939         uint32_t id_pfr2;
940         uint32_t mvfr0;
941         uint32_t mvfr1;
942         uint32_t mvfr2;
943         uint32_t id_dfr0;
944         uint32_t dbgdidr;
945         uint64_t id_aa64isar0;
946         uint64_t id_aa64isar1;
947         uint64_t id_aa64pfr0;
948         uint64_t id_aa64pfr1;
949         uint64_t id_aa64mmfr0;
950         uint64_t id_aa64mmfr1;
951         uint64_t id_aa64mmfr2;
952         uint64_t id_aa64dfr0;
953         uint64_t id_aa64dfr1;
954         uint64_t id_aa64zfr0;
955     } isar;
956     uint64_t midr;
957     uint32_t revidr;
958     uint32_t reset_fpsid;
959     uint64_t ctr;
960     uint32_t reset_sctlr;
961     uint64_t pmceid0;
962     uint64_t pmceid1;
963     uint32_t id_afr0;
964     uint64_t id_aa64afr0;
965     uint64_t id_aa64afr1;
966     uint64_t clidr;
967     uint64_t mp_affinity; /* MP ID without feature bits */
968     /* The elements of this array are the CCSIDR values for each cache,
969      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
970      */
971     uint64_t ccsidr[16];
972     uint64_t reset_cbar;
973     uint32_t reset_auxcr;
974     bool reset_hivecs;
975 
976     /*
977      * Intermediate values used during property parsing.
978      * Once finalized, the values should be read from ID_AA64ISAR1.
979      */
980     bool prop_pauth;
981     bool prop_pauth_impdef;
982 
983     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
984     uint32_t dcz_blocksize;
985     uint64_t rvbar;
986 
987     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
988     int gic_num_lrs; /* number of list registers */
989     int gic_vpribits; /* number of virtual priority bits */
990     int gic_vprebits; /* number of virtual preemption bits */
991 
992     /* Whether the cfgend input is high (i.e. this CPU should reset into
993      * big-endian mode).  This setting isn't used directly: instead it modifies
994      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
995      * architecture version.
996      */
997     bool cfgend;
998 
999     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1000     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1001 
1002     int32_t node_id; /* NUMA node this CPU belongs to */
1003 
1004     /* Used to synchronize KVM and QEMU in-kernel device levels */
1005     uint8_t device_irq_level;
1006 
1007     /* Used to set the maximum vector length the cpu will support.  */
1008     uint32_t sve_max_vq;
1009 
1010 #ifdef CONFIG_USER_ONLY
1011     /* Used to set the default vector length at process start. */
1012     uint32_t sve_default_vq;
1013 #endif
1014 
1015     /*
1016      * In sve_vq_map each set bit is a supported vector length of
1017      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1018      * length in quadwords.
1019      *
1020      * While processing properties during initialization, corresponding
1021      * sve_vq_init bits are set for bits in sve_vq_map that have been
1022      * set by properties.
1023      */
1024     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1025     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1026 
1027     /* Generic timer counter frequency, in Hz */
1028     uint64_t gt_cntfrq_hz;
1029 };
1030 
1031 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1032 
1033 void arm_cpu_post_init(Object *obj);
1034 
1035 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1036 
1037 #ifndef CONFIG_USER_ONLY
1038 extern const VMStateDescription vmstate_arm_cpu;
1039 #endif
1040 
1041 void arm_cpu_do_interrupt(CPUState *cpu);
1042 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1043 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1044 
1045 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1046                                          MemTxAttrs *attrs);
1047 
1048 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1049 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1050 
1051 /*
1052  * Helpers to dynamically generates XML descriptions of the sysregs
1053  * and SVE registers. Returns the number of registers in each set.
1054  */
1055 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1056 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1057 
1058 /* Returns the dynamically generated XML for the gdb stub.
1059  * Returns a pointer to the XML contents for the specified XML file or NULL
1060  * if the XML name doesn't match the predefined one.
1061  */
1062 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1063 
1064 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1065                              int cpuid, void *opaque);
1066 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1067                              int cpuid, void *opaque);
1068 
1069 #ifdef TARGET_AARCH64
1070 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1071 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1072 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1073 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1074                            int new_el, bool el0_a64);
1075 void aarch64_add_sve_properties(Object *obj);
1076 
1077 /*
1078  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1079  * The byte at offset i from the start of the in-memory representation contains
1080  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1081  * lowest offsets are stored in the lowest memory addresses, then that nearly
1082  * matches QEMU's representation, which is to use an array of host-endian
1083  * uint64_t's, where the lower offsets are at the lower indices. To complete
1084  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1085  */
1086 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1087 {
1088 #ifdef HOST_WORDS_BIGENDIAN
1089     int i;
1090 
1091     for (i = 0; i < nr; ++i) {
1092         dst[i] = bswap64(src[i]);
1093     }
1094 
1095     return dst;
1096 #else
1097     return src;
1098 #endif
1099 }
1100 
1101 #else
1102 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1103 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1104                                          int n, bool a)
1105 { }
1106 static inline void aarch64_add_sve_properties(Object *obj) { }
1107 #endif
1108 
1109 void aarch64_sync_32_to_64(CPUARMState *env);
1110 void aarch64_sync_64_to_32(CPUARMState *env);
1111 
1112 int fp_exception_el(CPUARMState *env, int cur_el);
1113 int sve_exception_el(CPUARMState *env, int cur_el);
1114 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1115 
1116 static inline bool is_a64(CPUARMState *env)
1117 {
1118     return env->aarch64;
1119 }
1120 
1121 /* you can call this signal handler from your SIGBUS and SIGSEGV
1122    signal handlers to inform the virtual CPU of exceptions. non zero
1123    is returned if the signal was handled by the virtual CPU.  */
1124 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1125                            void *puc);
1126 
1127 /**
1128  * pmu_op_start/finish
1129  * @env: CPUARMState
1130  *
1131  * Convert all PMU counters between their delta form (the typical mode when
1132  * they are enabled) and the guest-visible values. These two calls must
1133  * surround any action which might affect the counters.
1134  */
1135 void pmu_op_start(CPUARMState *env);
1136 void pmu_op_finish(CPUARMState *env);
1137 
1138 /*
1139  * Called when a PMU counter is due to overflow
1140  */
1141 void arm_pmu_timer_cb(void *opaque);
1142 
1143 /**
1144  * Functions to register as EL change hooks for PMU mode filtering
1145  */
1146 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1147 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1148 
1149 /*
1150  * pmu_init
1151  * @cpu: ARMCPU
1152  *
1153  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1154  * for the current configuration
1155  */
1156 void pmu_init(ARMCPU *cpu);
1157 
1158 /* SCTLR bit meanings. Several bits have been reused in newer
1159  * versions of the architecture; in that case we define constants
1160  * for both old and new bit meanings. Code which tests against those
1161  * bits should probably check or otherwise arrange that the CPU
1162  * is the architectural version it expects.
1163  */
1164 #define SCTLR_M       (1U << 0)
1165 #define SCTLR_A       (1U << 1)
1166 #define SCTLR_C       (1U << 2)
1167 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1168 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1169 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1170 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1171 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1172 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1173 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1174 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1175 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1176 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1177 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1178 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1179 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1180 #define SCTLR_SED     (1U << 8) /* v8 onward */
1181 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1182 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1183 #define SCTLR_F       (1U << 10) /* up to v6 */
1184 #define SCTLR_SW      (1U << 10) /* v7 */
1185 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1186 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1187 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1188 #define SCTLR_I       (1U << 12)
1189 #define SCTLR_V       (1U << 13) /* AArch32 only */
1190 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1191 #define SCTLR_RR      (1U << 14) /* up to v7 */
1192 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1193 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1194 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1195 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1196 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1197 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1198 #define SCTLR_BR      (1U << 17) /* PMSA only */
1199 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1200 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1201 #define SCTLR_WXN     (1U << 19)
1202 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1203 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1204 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1205 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1206 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1207 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1208 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1209 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1210 #define SCTLR_VE      (1U << 24) /* up to v7 */
1211 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1212 #define SCTLR_EE      (1U << 25)
1213 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1214 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1215 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1216 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1217 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1218 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1219 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1220 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1221 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1222 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1223 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1224 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1225 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1226 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1227 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1228 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1229 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1230 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1231 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1232 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1233 
1234 #define CPTR_TCPAC    (1U << 31)
1235 #define CPTR_TTA      (1U << 20)
1236 #define CPTR_TFP      (1U << 10)
1237 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1238 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1239 
1240 #define MDCR_EPMAD    (1U << 21)
1241 #define MDCR_EDAD     (1U << 20)
1242 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1243 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1244 #define MDCR_SDD      (1U << 16)
1245 #define MDCR_SPD      (3U << 14)
1246 #define MDCR_TDRA     (1U << 11)
1247 #define MDCR_TDOSA    (1U << 10)
1248 #define MDCR_TDA      (1U << 9)
1249 #define MDCR_TDE      (1U << 8)
1250 #define MDCR_HPME     (1U << 7)
1251 #define MDCR_TPM      (1U << 6)
1252 #define MDCR_TPMCR    (1U << 5)
1253 #define MDCR_HPMN     (0x1fU)
1254 
1255 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1256 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1257 
1258 #define CPSR_M (0x1fU)
1259 #define CPSR_T (1U << 5)
1260 #define CPSR_F (1U << 6)
1261 #define CPSR_I (1U << 7)
1262 #define CPSR_A (1U << 8)
1263 #define CPSR_E (1U << 9)
1264 #define CPSR_IT_2_7 (0xfc00U)
1265 #define CPSR_GE (0xfU << 16)
1266 #define CPSR_IL (1U << 20)
1267 #define CPSR_DIT (1U << 21)
1268 #define CPSR_PAN (1U << 22)
1269 #define CPSR_SSBS (1U << 23)
1270 #define CPSR_J (1U << 24)
1271 #define CPSR_IT_0_1 (3U << 25)
1272 #define CPSR_Q (1U << 27)
1273 #define CPSR_V (1U << 28)
1274 #define CPSR_C (1U << 29)
1275 #define CPSR_Z (1U << 30)
1276 #define CPSR_N (1U << 31)
1277 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1278 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1279 
1280 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1281 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1282     | CPSR_NZCV)
1283 /* Bits writable in user mode.  */
1284 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1285 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1286 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1287 
1288 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1289 #define XPSR_EXCP 0x1ffU
1290 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1291 #define XPSR_IT_2_7 CPSR_IT_2_7
1292 #define XPSR_GE CPSR_GE
1293 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1294 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1295 #define XPSR_IT_0_1 CPSR_IT_0_1
1296 #define XPSR_Q CPSR_Q
1297 #define XPSR_V CPSR_V
1298 #define XPSR_C CPSR_C
1299 #define XPSR_Z CPSR_Z
1300 #define XPSR_N CPSR_N
1301 #define XPSR_NZCV CPSR_NZCV
1302 #define XPSR_IT CPSR_IT
1303 
1304 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1305 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1306 #define TTBCR_PD0    (1U << 4)
1307 #define TTBCR_PD1    (1U << 5)
1308 #define TTBCR_EPD0   (1U << 7)
1309 #define TTBCR_IRGN0  (3U << 8)
1310 #define TTBCR_ORGN0  (3U << 10)
1311 #define TTBCR_SH0    (3U << 12)
1312 #define TTBCR_T1SZ   (3U << 16)
1313 #define TTBCR_A1     (1U << 22)
1314 #define TTBCR_EPD1   (1U << 23)
1315 #define TTBCR_IRGN1  (3U << 24)
1316 #define TTBCR_ORGN1  (3U << 26)
1317 #define TTBCR_SH1    (1U << 28)
1318 #define TTBCR_EAE    (1U << 31)
1319 
1320 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1321  * Only these are valid when in AArch64 mode; in
1322  * AArch32 mode SPSRs are basically CPSR-format.
1323  */
1324 #define PSTATE_SP (1U)
1325 #define PSTATE_M (0xFU)
1326 #define PSTATE_nRW (1U << 4)
1327 #define PSTATE_F (1U << 6)
1328 #define PSTATE_I (1U << 7)
1329 #define PSTATE_A (1U << 8)
1330 #define PSTATE_D (1U << 9)
1331 #define PSTATE_BTYPE (3U << 10)
1332 #define PSTATE_SSBS (1U << 12)
1333 #define PSTATE_IL (1U << 20)
1334 #define PSTATE_SS (1U << 21)
1335 #define PSTATE_PAN (1U << 22)
1336 #define PSTATE_UAO (1U << 23)
1337 #define PSTATE_DIT (1U << 24)
1338 #define PSTATE_TCO (1U << 25)
1339 #define PSTATE_V (1U << 28)
1340 #define PSTATE_C (1U << 29)
1341 #define PSTATE_Z (1U << 30)
1342 #define PSTATE_N (1U << 31)
1343 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1344 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1345 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1346 /* Mode values for AArch64 */
1347 #define PSTATE_MODE_EL3h 13
1348 #define PSTATE_MODE_EL3t 12
1349 #define PSTATE_MODE_EL2h 9
1350 #define PSTATE_MODE_EL2t 8
1351 #define PSTATE_MODE_EL1h 5
1352 #define PSTATE_MODE_EL1t 4
1353 #define PSTATE_MODE_EL0t 0
1354 
1355 /* Write a new value to v7m.exception, thus transitioning into or out
1356  * of Handler mode; this may result in a change of active stack pointer.
1357  */
1358 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1359 
1360 /* Map EL and handler into a PSTATE_MODE.  */
1361 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1362 {
1363     return (el << 2) | handler;
1364 }
1365 
1366 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1367  * interprocessing, so we don't attempt to sync with the cpsr state used by
1368  * the 32 bit decoder.
1369  */
1370 static inline uint32_t pstate_read(CPUARMState *env)
1371 {
1372     int ZF;
1373 
1374     ZF = (env->ZF == 0);
1375     return (env->NF & 0x80000000) | (ZF << 30)
1376         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1377         | env->pstate | env->daif | (env->btype << 10);
1378 }
1379 
1380 static inline void pstate_write(CPUARMState *env, uint32_t val)
1381 {
1382     env->ZF = (~val) & PSTATE_Z;
1383     env->NF = val;
1384     env->CF = (val >> 29) & 1;
1385     env->VF = (val << 3) & 0x80000000;
1386     env->daif = val & PSTATE_DAIF;
1387     env->btype = (val >> 10) & 3;
1388     env->pstate = val & ~CACHED_PSTATE_BITS;
1389 }
1390 
1391 /* Return the current CPSR value.  */
1392 uint32_t cpsr_read(CPUARMState *env);
1393 
1394 typedef enum CPSRWriteType {
1395     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1396     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1397     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1398     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1399 } CPSRWriteType;
1400 
1401 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1402 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1403                 CPSRWriteType write_type);
1404 
1405 /* Return the current xPSR value.  */
1406 static inline uint32_t xpsr_read(CPUARMState *env)
1407 {
1408     int ZF;
1409     ZF = (env->ZF == 0);
1410     return (env->NF & 0x80000000) | (ZF << 30)
1411         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1412         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1413         | ((env->condexec_bits & 0xfc) << 8)
1414         | (env->GE << 16)
1415         | env->v7m.exception;
1416 }
1417 
1418 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1419 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1420 {
1421     if (mask & XPSR_NZCV) {
1422         env->ZF = (~val) & XPSR_Z;
1423         env->NF = val;
1424         env->CF = (val >> 29) & 1;
1425         env->VF = (val << 3) & 0x80000000;
1426     }
1427     if (mask & XPSR_Q) {
1428         env->QF = ((val & XPSR_Q) != 0);
1429     }
1430     if (mask & XPSR_GE) {
1431         env->GE = (val & XPSR_GE) >> 16;
1432     }
1433 #ifndef CONFIG_USER_ONLY
1434     if (mask & XPSR_T) {
1435         env->thumb = ((val & XPSR_T) != 0);
1436     }
1437     if (mask & XPSR_IT_0_1) {
1438         env->condexec_bits &= ~3;
1439         env->condexec_bits |= (val >> 25) & 3;
1440     }
1441     if (mask & XPSR_IT_2_7) {
1442         env->condexec_bits &= 3;
1443         env->condexec_bits |= (val >> 8) & 0xfc;
1444     }
1445     if (mask & XPSR_EXCP) {
1446         /* Note that this only happens on exception exit */
1447         write_v7m_exception(env, val & XPSR_EXCP);
1448     }
1449 #endif
1450 }
1451 
1452 #define HCR_VM        (1ULL << 0)
1453 #define HCR_SWIO      (1ULL << 1)
1454 #define HCR_PTW       (1ULL << 2)
1455 #define HCR_FMO       (1ULL << 3)
1456 #define HCR_IMO       (1ULL << 4)
1457 #define HCR_AMO       (1ULL << 5)
1458 #define HCR_VF        (1ULL << 6)
1459 #define HCR_VI        (1ULL << 7)
1460 #define HCR_VSE       (1ULL << 8)
1461 #define HCR_FB        (1ULL << 9)
1462 #define HCR_BSU_MASK  (3ULL << 10)
1463 #define HCR_DC        (1ULL << 12)
1464 #define HCR_TWI       (1ULL << 13)
1465 #define HCR_TWE       (1ULL << 14)
1466 #define HCR_TID0      (1ULL << 15)
1467 #define HCR_TID1      (1ULL << 16)
1468 #define HCR_TID2      (1ULL << 17)
1469 #define HCR_TID3      (1ULL << 18)
1470 #define HCR_TSC       (1ULL << 19)
1471 #define HCR_TIDCP     (1ULL << 20)
1472 #define HCR_TACR      (1ULL << 21)
1473 #define HCR_TSW       (1ULL << 22)
1474 #define HCR_TPCP      (1ULL << 23)
1475 #define HCR_TPU       (1ULL << 24)
1476 #define HCR_TTLB      (1ULL << 25)
1477 #define HCR_TVM       (1ULL << 26)
1478 #define HCR_TGE       (1ULL << 27)
1479 #define HCR_TDZ       (1ULL << 28)
1480 #define HCR_HCD       (1ULL << 29)
1481 #define HCR_TRVM      (1ULL << 30)
1482 #define HCR_RW        (1ULL << 31)
1483 #define HCR_CD        (1ULL << 32)
1484 #define HCR_ID        (1ULL << 33)
1485 #define HCR_E2H       (1ULL << 34)
1486 #define HCR_TLOR      (1ULL << 35)
1487 #define HCR_TERR      (1ULL << 36)
1488 #define HCR_TEA       (1ULL << 37)
1489 #define HCR_MIOCNCE   (1ULL << 38)
1490 /* RES0 bit 39 */
1491 #define HCR_APK       (1ULL << 40)
1492 #define HCR_API       (1ULL << 41)
1493 #define HCR_NV        (1ULL << 42)
1494 #define HCR_NV1       (1ULL << 43)
1495 #define HCR_AT        (1ULL << 44)
1496 #define HCR_NV2       (1ULL << 45)
1497 #define HCR_FWB       (1ULL << 46)
1498 #define HCR_FIEN      (1ULL << 47)
1499 /* RES0 bit 48 */
1500 #define HCR_TID4      (1ULL << 49)
1501 #define HCR_TICAB     (1ULL << 50)
1502 #define HCR_AMVOFFEN  (1ULL << 51)
1503 #define HCR_TOCU      (1ULL << 52)
1504 #define HCR_ENSCXT    (1ULL << 53)
1505 #define HCR_TTLBIS    (1ULL << 54)
1506 #define HCR_TTLBOS    (1ULL << 55)
1507 #define HCR_ATA       (1ULL << 56)
1508 #define HCR_DCT       (1ULL << 57)
1509 #define HCR_TID5      (1ULL << 58)
1510 #define HCR_TWEDEN    (1ULL << 59)
1511 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1512 
1513 #define HPFAR_NS      (1ULL << 63)
1514 
1515 #define SCR_NS                (1U << 0)
1516 #define SCR_IRQ               (1U << 1)
1517 #define SCR_FIQ               (1U << 2)
1518 #define SCR_EA                (1U << 3)
1519 #define SCR_FW                (1U << 4)
1520 #define SCR_AW                (1U << 5)
1521 #define SCR_NET               (1U << 6)
1522 #define SCR_SMD               (1U << 7)
1523 #define SCR_HCE               (1U << 8)
1524 #define SCR_SIF               (1U << 9)
1525 #define SCR_RW                (1U << 10)
1526 #define SCR_ST                (1U << 11)
1527 #define SCR_TWI               (1U << 12)
1528 #define SCR_TWE               (1U << 13)
1529 #define SCR_TLOR              (1U << 14)
1530 #define SCR_TERR              (1U << 15)
1531 #define SCR_APK               (1U << 16)
1532 #define SCR_API               (1U << 17)
1533 #define SCR_EEL2              (1U << 18)
1534 #define SCR_EASE              (1U << 19)
1535 #define SCR_NMEA              (1U << 20)
1536 #define SCR_FIEN              (1U << 21)
1537 #define SCR_ENSCXT            (1U << 25)
1538 #define SCR_ATA               (1U << 26)
1539 
1540 /* Return the current FPSCR value.  */
1541 uint32_t vfp_get_fpscr(CPUARMState *env);
1542 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1543 
1544 /* FPCR, Floating Point Control Register
1545  * FPSR, Floating Poiht Status Register
1546  *
1547  * For A64 the FPSCR is split into two logically distinct registers,
1548  * FPCR and FPSR. However since they still use non-overlapping bits
1549  * we store the underlying state in fpscr and just mask on read/write.
1550  */
1551 #define FPSR_MASK 0xf800009f
1552 #define FPCR_MASK 0x07ff9f00
1553 
1554 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1555 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1556 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1557 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1558 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1559 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1560 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1561 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1562 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1563 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1564 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1565 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1566 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1567 #define FPCR_C      (1 << 29)   /* FP carry flag */
1568 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1569 #define FPCR_N      (1 << 31)   /* FP negative flag */
1570 
1571 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1572 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1573 #define FPCR_LTPSIZE_LENGTH 3
1574 
1575 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1576 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1577 
1578 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1579 {
1580     return vfp_get_fpscr(env) & FPSR_MASK;
1581 }
1582 
1583 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1584 {
1585     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1586     vfp_set_fpscr(env, new_fpscr);
1587 }
1588 
1589 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1590 {
1591     return vfp_get_fpscr(env) & FPCR_MASK;
1592 }
1593 
1594 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1595 {
1596     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1597     vfp_set_fpscr(env, new_fpscr);
1598 }
1599 
1600 enum arm_cpu_mode {
1601   ARM_CPU_MODE_USR = 0x10,
1602   ARM_CPU_MODE_FIQ = 0x11,
1603   ARM_CPU_MODE_IRQ = 0x12,
1604   ARM_CPU_MODE_SVC = 0x13,
1605   ARM_CPU_MODE_MON = 0x16,
1606   ARM_CPU_MODE_ABT = 0x17,
1607   ARM_CPU_MODE_HYP = 0x1a,
1608   ARM_CPU_MODE_UND = 0x1b,
1609   ARM_CPU_MODE_SYS = 0x1f
1610 };
1611 
1612 /* VFP system registers.  */
1613 #define ARM_VFP_FPSID   0
1614 #define ARM_VFP_FPSCR   1
1615 #define ARM_VFP_MVFR2   5
1616 #define ARM_VFP_MVFR1   6
1617 #define ARM_VFP_MVFR0   7
1618 #define ARM_VFP_FPEXC   8
1619 #define ARM_VFP_FPINST  9
1620 #define ARM_VFP_FPINST2 10
1621 /* These ones are M-profile only */
1622 #define ARM_VFP_FPSCR_NZCVQC 2
1623 #define ARM_VFP_VPR 12
1624 #define ARM_VFP_P0 13
1625 #define ARM_VFP_FPCXT_NS 14
1626 #define ARM_VFP_FPCXT_S 15
1627 
1628 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1629 #define QEMU_VFP_FPSCR_NZCV 0xffff
1630 
1631 /* iwMMXt coprocessor control registers.  */
1632 #define ARM_IWMMXT_wCID  0
1633 #define ARM_IWMMXT_wCon  1
1634 #define ARM_IWMMXT_wCSSF 2
1635 #define ARM_IWMMXT_wCASF 3
1636 #define ARM_IWMMXT_wCGR0 8
1637 #define ARM_IWMMXT_wCGR1 9
1638 #define ARM_IWMMXT_wCGR2 10
1639 #define ARM_IWMMXT_wCGR3 11
1640 
1641 /* V7M CCR bits */
1642 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1643 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1644 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1645 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1646 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1647 FIELD(V7M_CCR, STKALIGN, 9, 1)
1648 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1649 FIELD(V7M_CCR, DC, 16, 1)
1650 FIELD(V7M_CCR, IC, 17, 1)
1651 FIELD(V7M_CCR, BP, 18, 1)
1652 FIELD(V7M_CCR, LOB, 19, 1)
1653 FIELD(V7M_CCR, TRD, 20, 1)
1654 
1655 /* V7M SCR bits */
1656 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1657 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1658 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1659 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1660 
1661 /* V7M AIRCR bits */
1662 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1663 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1664 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1665 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1666 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1667 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1668 FIELD(V7M_AIRCR, PRIS, 14, 1)
1669 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1670 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1671 
1672 /* V7M CFSR bits for MMFSR */
1673 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1674 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1675 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1676 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1677 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1678 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1679 
1680 /* V7M CFSR bits for BFSR */
1681 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1682 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1683 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1684 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1685 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1686 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1687 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1688 
1689 /* V7M CFSR bits for UFSR */
1690 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1691 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1692 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1693 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1694 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1695 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1696 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1697 
1698 /* V7M CFSR bit masks covering all of the subregister bits */
1699 FIELD(V7M_CFSR, MMFSR, 0, 8)
1700 FIELD(V7M_CFSR, BFSR, 8, 8)
1701 FIELD(V7M_CFSR, UFSR, 16, 16)
1702 
1703 /* V7M HFSR bits */
1704 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1705 FIELD(V7M_HFSR, FORCED, 30, 1)
1706 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1707 
1708 /* V7M DFSR bits */
1709 FIELD(V7M_DFSR, HALTED, 0, 1)
1710 FIELD(V7M_DFSR, BKPT, 1, 1)
1711 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1712 FIELD(V7M_DFSR, VCATCH, 3, 1)
1713 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1714 
1715 /* V7M SFSR bits */
1716 FIELD(V7M_SFSR, INVEP, 0, 1)
1717 FIELD(V7M_SFSR, INVIS, 1, 1)
1718 FIELD(V7M_SFSR, INVER, 2, 1)
1719 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1720 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1721 FIELD(V7M_SFSR, LSPERR, 5, 1)
1722 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1723 FIELD(V7M_SFSR, LSERR, 7, 1)
1724 
1725 /* v7M MPU_CTRL bits */
1726 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1727 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1728 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1729 
1730 /* v7M CLIDR bits */
1731 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1732 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1733 FIELD(V7M_CLIDR, LOC, 24, 3)
1734 FIELD(V7M_CLIDR, LOUU, 27, 3)
1735 FIELD(V7M_CLIDR, ICB, 30, 2)
1736 
1737 FIELD(V7M_CSSELR, IND, 0, 1)
1738 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1739 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1740  * define a mask for this and check that it doesn't permit running off
1741  * the end of the array.
1742  */
1743 FIELD(V7M_CSSELR, INDEX, 0, 4)
1744 
1745 /* v7M FPCCR bits */
1746 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1747 FIELD(V7M_FPCCR, USER, 1, 1)
1748 FIELD(V7M_FPCCR, S, 2, 1)
1749 FIELD(V7M_FPCCR, THREAD, 3, 1)
1750 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1751 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1752 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1753 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1754 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1755 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1756 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1757 FIELD(V7M_FPCCR, RES0, 11, 15)
1758 FIELD(V7M_FPCCR, TS, 26, 1)
1759 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1760 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1761 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1762 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1763 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1764 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1765 #define R_V7M_FPCCR_BANKED_MASK                 \
1766     (R_V7M_FPCCR_LSPACT_MASK |                  \
1767      R_V7M_FPCCR_USER_MASK |                    \
1768      R_V7M_FPCCR_THREAD_MASK |                  \
1769      R_V7M_FPCCR_MMRDY_MASK |                   \
1770      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1771      R_V7M_FPCCR_UFRDY_MASK |                   \
1772      R_V7M_FPCCR_ASPEN_MASK)
1773 
1774 /* v7M VPR bits */
1775 FIELD(V7M_VPR, P0, 0, 16)
1776 FIELD(V7M_VPR, MASK01, 16, 4)
1777 FIELD(V7M_VPR, MASK23, 20, 4)
1778 
1779 /*
1780  * System register ID fields.
1781  */
1782 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1783 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1784 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1785 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1786 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1787 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1788 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1789 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1790 FIELD(CLIDR_EL1, LOC, 24, 3)
1791 FIELD(CLIDR_EL1, LOUU, 27, 3)
1792 FIELD(CLIDR_EL1, ICB, 30, 3)
1793 
1794 /* When FEAT_CCIDX is implemented */
1795 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1796 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1797 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1798 
1799 /* When FEAT_CCIDX is not implemented */
1800 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1801 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1802 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1803 
1804 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1805 FIELD(CTR_EL0,  L1IP, 14, 2)
1806 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1807 FIELD(CTR_EL0,  ERG, 20, 4)
1808 FIELD(CTR_EL0,  CWG, 24, 4)
1809 FIELD(CTR_EL0,  IDC, 28, 1)
1810 FIELD(CTR_EL0,  DIC, 29, 1)
1811 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1812 
1813 FIELD(MIDR_EL1, REVISION, 0, 4)
1814 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1815 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1816 FIELD(MIDR_EL1, VARIANT, 20, 4)
1817 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1818 
1819 FIELD(ID_ISAR0, SWAP, 0, 4)
1820 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1821 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1822 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1823 FIELD(ID_ISAR0, COPROC, 16, 4)
1824 FIELD(ID_ISAR0, DEBUG, 20, 4)
1825 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1826 
1827 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1828 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1829 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1830 FIELD(ID_ISAR1, EXTEND, 12, 4)
1831 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1832 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1833 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1834 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1835 
1836 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1837 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1838 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1839 FIELD(ID_ISAR2, MULT, 12, 4)
1840 FIELD(ID_ISAR2, MULTS, 16, 4)
1841 FIELD(ID_ISAR2, MULTU, 20, 4)
1842 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1843 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1844 
1845 FIELD(ID_ISAR3, SATURATE, 0, 4)
1846 FIELD(ID_ISAR3, SIMD, 4, 4)
1847 FIELD(ID_ISAR3, SVC, 8, 4)
1848 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1849 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1850 FIELD(ID_ISAR3, T32COPY, 20, 4)
1851 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1852 FIELD(ID_ISAR3, T32EE, 28, 4)
1853 
1854 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1855 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1856 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1857 FIELD(ID_ISAR4, SMC, 12, 4)
1858 FIELD(ID_ISAR4, BARRIER, 16, 4)
1859 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1860 FIELD(ID_ISAR4, PSR_M, 24, 4)
1861 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1862 
1863 FIELD(ID_ISAR5, SEVL, 0, 4)
1864 FIELD(ID_ISAR5, AES, 4, 4)
1865 FIELD(ID_ISAR5, SHA1, 8, 4)
1866 FIELD(ID_ISAR5, SHA2, 12, 4)
1867 FIELD(ID_ISAR5, CRC32, 16, 4)
1868 FIELD(ID_ISAR5, RDM, 24, 4)
1869 FIELD(ID_ISAR5, VCMA, 28, 4)
1870 
1871 FIELD(ID_ISAR6, JSCVT, 0, 4)
1872 FIELD(ID_ISAR6, DP, 4, 4)
1873 FIELD(ID_ISAR6, FHM, 8, 4)
1874 FIELD(ID_ISAR6, SB, 12, 4)
1875 FIELD(ID_ISAR6, SPECRES, 16, 4)
1876 FIELD(ID_ISAR6, BF16, 20, 4)
1877 FIELD(ID_ISAR6, I8MM, 24, 4)
1878 
1879 FIELD(ID_MMFR0, VMSA, 0, 4)
1880 FIELD(ID_MMFR0, PMSA, 4, 4)
1881 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1882 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1883 FIELD(ID_MMFR0, TCM, 16, 4)
1884 FIELD(ID_MMFR0, AUXREG, 20, 4)
1885 FIELD(ID_MMFR0, FCSE, 24, 4)
1886 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1887 
1888 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1889 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1890 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1891 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1892 FIELD(ID_MMFR1, L1HVD, 16, 4)
1893 FIELD(ID_MMFR1, L1UNI, 20, 4)
1894 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1895 FIELD(ID_MMFR1, BPRED, 28, 4)
1896 
1897 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1898 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1899 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1900 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1901 FIELD(ID_MMFR2, UNITLB, 16, 4)
1902 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1903 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1904 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1905 
1906 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1907 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1908 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1909 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1910 FIELD(ID_MMFR3, PAN, 16, 4)
1911 FIELD(ID_MMFR3, COHWALK, 20, 4)
1912 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1913 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1914 
1915 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1916 FIELD(ID_MMFR4, AC2, 4, 4)
1917 FIELD(ID_MMFR4, XNX, 8, 4)
1918 FIELD(ID_MMFR4, CNP, 12, 4)
1919 FIELD(ID_MMFR4, HPDS, 16, 4)
1920 FIELD(ID_MMFR4, LSM, 20, 4)
1921 FIELD(ID_MMFR4, CCIDX, 24, 4)
1922 FIELD(ID_MMFR4, EVT, 28, 4)
1923 
1924 FIELD(ID_MMFR5, ETS, 0, 4)
1925 
1926 FIELD(ID_PFR0, STATE0, 0, 4)
1927 FIELD(ID_PFR0, STATE1, 4, 4)
1928 FIELD(ID_PFR0, STATE2, 8, 4)
1929 FIELD(ID_PFR0, STATE3, 12, 4)
1930 FIELD(ID_PFR0, CSV2, 16, 4)
1931 FIELD(ID_PFR0, AMU, 20, 4)
1932 FIELD(ID_PFR0, DIT, 24, 4)
1933 FIELD(ID_PFR0, RAS, 28, 4)
1934 
1935 FIELD(ID_PFR1, PROGMOD, 0, 4)
1936 FIELD(ID_PFR1, SECURITY, 4, 4)
1937 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1938 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1939 FIELD(ID_PFR1, GENTIMER, 16, 4)
1940 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1941 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1942 FIELD(ID_PFR1, GIC, 28, 4)
1943 
1944 FIELD(ID_PFR2, CSV3, 0, 4)
1945 FIELD(ID_PFR2, SSBS, 4, 4)
1946 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1947 
1948 FIELD(ID_AA64ISAR0, AES, 4, 4)
1949 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1950 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1951 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1952 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1953 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1954 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1955 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1956 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1957 FIELD(ID_AA64ISAR0, DP, 44, 4)
1958 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1959 FIELD(ID_AA64ISAR0, TS, 52, 4)
1960 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1961 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1962 
1963 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1964 FIELD(ID_AA64ISAR1, APA, 4, 4)
1965 FIELD(ID_AA64ISAR1, API, 8, 4)
1966 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1967 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1968 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1969 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1970 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1971 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1972 FIELD(ID_AA64ISAR1, SB, 36, 4)
1973 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1974 FIELD(ID_AA64ISAR1, BF16, 44, 4)
1975 FIELD(ID_AA64ISAR1, DGH, 48, 4)
1976 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1977 
1978 FIELD(ID_AA64PFR0, EL0, 0, 4)
1979 FIELD(ID_AA64PFR0, EL1, 4, 4)
1980 FIELD(ID_AA64PFR0, EL2, 8, 4)
1981 FIELD(ID_AA64PFR0, EL3, 12, 4)
1982 FIELD(ID_AA64PFR0, FP, 16, 4)
1983 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1984 FIELD(ID_AA64PFR0, GIC, 24, 4)
1985 FIELD(ID_AA64PFR0, RAS, 28, 4)
1986 FIELD(ID_AA64PFR0, SVE, 32, 4)
1987 FIELD(ID_AA64PFR0, SEL2, 36, 4)
1988 FIELD(ID_AA64PFR0, MPAM, 40, 4)
1989 FIELD(ID_AA64PFR0, AMU, 44, 4)
1990 FIELD(ID_AA64PFR0, DIT, 48, 4)
1991 FIELD(ID_AA64PFR0, CSV2, 56, 4)
1992 FIELD(ID_AA64PFR0, CSV3, 60, 4)
1993 
1994 FIELD(ID_AA64PFR1, BT, 0, 4)
1995 FIELD(ID_AA64PFR1, SSBS, 4, 4)
1996 FIELD(ID_AA64PFR1, MTE, 8, 4)
1997 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1998 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1999 
2000 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2001 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2002 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2003 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2004 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2005 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2006 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2007 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2008 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2009 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2010 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2011 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2012 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2013 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2014 
2015 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2016 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2017 FIELD(ID_AA64MMFR1, VH, 8, 4)
2018 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2019 FIELD(ID_AA64MMFR1, LO, 16, 4)
2020 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2021 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2022 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2023 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2024 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2025 
2026 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2027 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2028 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2029 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2030 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2031 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2032 FIELD(ID_AA64MMFR2, NV, 24, 4)
2033 FIELD(ID_AA64MMFR2, ST, 28, 4)
2034 FIELD(ID_AA64MMFR2, AT, 32, 4)
2035 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2036 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2037 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2038 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2039 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2040 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2041 
2042 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2043 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2044 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2045 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2046 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2047 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2048 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2049 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2050 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2051 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2052 
2053 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2054 FIELD(ID_AA64ZFR0, AES, 4, 4)
2055 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2056 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2057 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2058 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2059 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2060 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2061 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2062 
2063 FIELD(ID_DFR0, COPDBG, 0, 4)
2064 FIELD(ID_DFR0, COPSDBG, 4, 4)
2065 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2066 FIELD(ID_DFR0, COPTRC, 12, 4)
2067 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2068 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2069 FIELD(ID_DFR0, PERFMON, 24, 4)
2070 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2071 
2072 FIELD(ID_DFR1, MTPMU, 0, 4)
2073 
2074 FIELD(DBGDIDR, SE_IMP, 12, 1)
2075 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2076 FIELD(DBGDIDR, VERSION, 16, 4)
2077 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2078 FIELD(DBGDIDR, BRPS, 24, 4)
2079 FIELD(DBGDIDR, WRPS, 28, 4)
2080 
2081 FIELD(MVFR0, SIMDREG, 0, 4)
2082 FIELD(MVFR0, FPSP, 4, 4)
2083 FIELD(MVFR0, FPDP, 8, 4)
2084 FIELD(MVFR0, FPTRAP, 12, 4)
2085 FIELD(MVFR0, FPDIVIDE, 16, 4)
2086 FIELD(MVFR0, FPSQRT, 20, 4)
2087 FIELD(MVFR0, FPSHVEC, 24, 4)
2088 FIELD(MVFR0, FPROUND, 28, 4)
2089 
2090 FIELD(MVFR1, FPFTZ, 0, 4)
2091 FIELD(MVFR1, FPDNAN, 4, 4)
2092 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2093 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2094 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2095 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2096 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2097 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2098 FIELD(MVFR1, FPHP, 24, 4)
2099 FIELD(MVFR1, SIMDFMAC, 28, 4)
2100 
2101 FIELD(MVFR2, SIMDMISC, 0, 4)
2102 FIELD(MVFR2, FPMISC, 4, 4)
2103 
2104 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2105 
2106 /* If adding a feature bit which corresponds to a Linux ELF
2107  * HWCAP bit, remember to update the feature-bit-to-hwcap
2108  * mapping in linux-user/elfload.c:get_elf_hwcap().
2109  */
2110 enum arm_features {
2111     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2112     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2113     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2114     ARM_FEATURE_V6,
2115     ARM_FEATURE_V6K,
2116     ARM_FEATURE_V7,
2117     ARM_FEATURE_THUMB2,
2118     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2119     ARM_FEATURE_NEON,
2120     ARM_FEATURE_M, /* Microcontroller profile.  */
2121     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2122     ARM_FEATURE_THUMB2EE,
2123     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2124     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2125     ARM_FEATURE_V4T,
2126     ARM_FEATURE_V5,
2127     ARM_FEATURE_STRONGARM,
2128     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2129     ARM_FEATURE_GENERIC_TIMER,
2130     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2131     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2132     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2133     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2134     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2135     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2136     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2137     ARM_FEATURE_V8,
2138     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2139     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2140     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2141     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2142     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2143     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2144     ARM_FEATURE_PMU, /* has PMU support */
2145     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2146     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2147     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2148     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2149 };
2150 
2151 static inline int arm_feature(CPUARMState *env, int feature)
2152 {
2153     return (env->features & (1ULL << feature)) != 0;
2154 }
2155 
2156 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2157 
2158 #if !defined(CONFIG_USER_ONLY)
2159 /* Return true if exception levels below EL3 are in secure state,
2160  * or would be following an exception return to that level.
2161  * Unlike arm_is_secure() (which is always a question about the
2162  * _current_ state of the CPU) this doesn't care about the current
2163  * EL or mode.
2164  */
2165 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2166 {
2167     if (arm_feature(env, ARM_FEATURE_EL3)) {
2168         return !(env->cp15.scr_el3 & SCR_NS);
2169     } else {
2170         /* If EL3 is not supported then the secure state is implementation
2171          * defined, in which case QEMU defaults to non-secure.
2172          */
2173         return false;
2174     }
2175 }
2176 
2177 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2178 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2179 {
2180     if (arm_feature(env, ARM_FEATURE_EL3)) {
2181         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2182             /* CPU currently in AArch64 state and EL3 */
2183             return true;
2184         } else if (!is_a64(env) &&
2185                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2186             /* CPU currently in AArch32 state and monitor mode */
2187             return true;
2188         }
2189     }
2190     return false;
2191 }
2192 
2193 /* Return true if the processor is in secure state */
2194 static inline bool arm_is_secure(CPUARMState *env)
2195 {
2196     if (arm_is_el3_or_mon(env)) {
2197         return true;
2198     }
2199     return arm_is_secure_below_el3(env);
2200 }
2201 
2202 /*
2203  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2204  * This corresponds to the pseudocode EL2Enabled()
2205  */
2206 static inline bool arm_is_el2_enabled(CPUARMState *env)
2207 {
2208     if (arm_feature(env, ARM_FEATURE_EL2)) {
2209         if (arm_is_secure_below_el3(env)) {
2210             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2211         }
2212         return true;
2213     }
2214     return false;
2215 }
2216 
2217 #else
2218 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2219 {
2220     return false;
2221 }
2222 
2223 static inline bool arm_is_secure(CPUARMState *env)
2224 {
2225     return false;
2226 }
2227 
2228 static inline bool arm_is_el2_enabled(CPUARMState *env)
2229 {
2230     return false;
2231 }
2232 #endif
2233 
2234 /**
2235  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2236  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2237  * "for all purposes other than a direct read or write access of HCR_EL2."
2238  * Not included here is HCR_RW.
2239  */
2240 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2241 
2242 /* Return true if the specified exception level is running in AArch64 state. */
2243 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2244 {
2245     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2246      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2247      */
2248     assert(el >= 1 && el <= 3);
2249     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2250 
2251     /* The highest exception level is always at the maximum supported
2252      * register width, and then lower levels have a register width controlled
2253      * by bits in the SCR or HCR registers.
2254      */
2255     if (el == 3) {
2256         return aa64;
2257     }
2258 
2259     if (arm_feature(env, ARM_FEATURE_EL3) &&
2260         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2261         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2262     }
2263 
2264     if (el == 2) {
2265         return aa64;
2266     }
2267 
2268     if (arm_is_el2_enabled(env)) {
2269         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2270     }
2271 
2272     return aa64;
2273 }
2274 
2275 /* Function for determing whether guest cp register reads and writes should
2276  * access the secure or non-secure bank of a cp register.  When EL3 is
2277  * operating in AArch32 state, the NS-bit determines whether the secure
2278  * instance of a cp register should be used. When EL3 is AArch64 (or if
2279  * it doesn't exist at all) then there is no register banking, and all
2280  * accesses are to the non-secure version.
2281  */
2282 static inline bool access_secure_reg(CPUARMState *env)
2283 {
2284     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2285                 !arm_el_is_aa64(env, 3) &&
2286                 !(env->cp15.scr_el3 & SCR_NS));
2287 
2288     return ret;
2289 }
2290 
2291 /* Macros for accessing a specified CP register bank */
2292 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2293     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2294 
2295 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2296     do {                                                \
2297         if (_secure) {                                   \
2298             (_env)->cp15._regname##_s = (_val);            \
2299         } else {                                        \
2300             (_env)->cp15._regname##_ns = (_val);           \
2301         }                                               \
2302     } while (0)
2303 
2304 /* Macros for automatically accessing a specific CP register bank depending on
2305  * the current secure state of the system.  These macros are not intended for
2306  * supporting instruction translation reads/writes as these are dependent
2307  * solely on the SCR.NS bit and not the mode.
2308  */
2309 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2310     A32_BANKED_REG_GET((_env), _regname,                \
2311                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2312 
2313 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2314     A32_BANKED_REG_SET((_env), _regname,                                    \
2315                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2316                        (_val))
2317 
2318 void arm_cpu_list(void);
2319 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2320                                  uint32_t cur_el, bool secure);
2321 
2322 /* Interface between CPU and Interrupt controller.  */
2323 #ifndef CONFIG_USER_ONLY
2324 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2325 #else
2326 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2327 {
2328     return true;
2329 }
2330 #endif
2331 /**
2332  * armv7m_nvic_set_pending: mark the specified exception as pending
2333  * @opaque: the NVIC
2334  * @irq: the exception number to mark pending
2335  * @secure: false for non-banked exceptions or for the nonsecure
2336  * version of a banked exception, true for the secure version of a banked
2337  * exception.
2338  *
2339  * Marks the specified exception as pending. Note that we will assert()
2340  * if @secure is true and @irq does not specify one of the fixed set
2341  * of architecturally banked exceptions.
2342  */
2343 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2344 /**
2345  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2346  * @opaque: the NVIC
2347  * @irq: the exception number to mark pending
2348  * @secure: false for non-banked exceptions or for the nonsecure
2349  * version of a banked exception, true for the secure version of a banked
2350  * exception.
2351  *
2352  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2353  * exceptions (exceptions generated in the course of trying to take
2354  * a different exception).
2355  */
2356 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2357 /**
2358  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2359  * @opaque: the NVIC
2360  * @irq: the exception number to mark pending
2361  * @secure: false for non-banked exceptions or for the nonsecure
2362  * version of a banked exception, true for the secure version of a banked
2363  * exception.
2364  *
2365  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2366  * generated in the course of lazy stacking of FP registers.
2367  */
2368 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2369 /**
2370  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2371  *    exception, and whether it targets Secure state
2372  * @opaque: the NVIC
2373  * @pirq: set to pending exception number
2374  * @ptargets_secure: set to whether pending exception targets Secure
2375  *
2376  * This function writes the number of the highest priority pending
2377  * exception (the one which would be made active by
2378  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2379  * to true if the current highest priority pending exception should
2380  * be taken to Secure state, false for NS.
2381  */
2382 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2383                                       bool *ptargets_secure);
2384 /**
2385  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2386  * @opaque: the NVIC
2387  *
2388  * Move the current highest priority pending exception from the pending
2389  * state to the active state, and update v7m.exception to indicate that
2390  * it is the exception currently being handled.
2391  */
2392 void armv7m_nvic_acknowledge_irq(void *opaque);
2393 /**
2394  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2395  * @opaque: the NVIC
2396  * @irq: the exception number to complete
2397  * @secure: true if this exception was secure
2398  *
2399  * Returns: -1 if the irq was not active
2400  *           1 if completing this irq brought us back to base (no active irqs)
2401  *           0 if there is still an irq active after this one was completed
2402  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2403  */
2404 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2405 /**
2406  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2407  * @opaque: the NVIC
2408  * @irq: the exception number to mark pending
2409  * @secure: false for non-banked exceptions or for the nonsecure
2410  * version of a banked exception, true for the secure version of a banked
2411  * exception.
2412  *
2413  * Return whether an exception is "ready", i.e. whether the exception is
2414  * enabled and is configured at a priority which would allow it to
2415  * interrupt the current execution priority. This controls whether the
2416  * RDY bit for it in the FPCCR is set.
2417  */
2418 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2419 /**
2420  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2421  * @opaque: the NVIC
2422  *
2423  * Returns: the raw execution priority as defined by the v8M architecture.
2424  * This is the execution priority minus the effects of AIRCR.PRIS,
2425  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2426  * (v8M ARM ARM I_PKLD.)
2427  */
2428 int armv7m_nvic_raw_execution_priority(void *opaque);
2429 /**
2430  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2431  * priority is negative for the specified security state.
2432  * @opaque: the NVIC
2433  * @secure: the security state to test
2434  * This corresponds to the pseudocode IsReqExecPriNeg().
2435  */
2436 #ifndef CONFIG_USER_ONLY
2437 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2438 #else
2439 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2440 {
2441     return false;
2442 }
2443 #endif
2444 
2445 /* Interface for defining coprocessor registers.
2446  * Registers are defined in tables of arm_cp_reginfo structs
2447  * which are passed to define_arm_cp_regs().
2448  */
2449 
2450 /* When looking up a coprocessor register we look for it
2451  * via an integer which encodes all of:
2452  *  coprocessor number
2453  *  Crn, Crm, opc1, opc2 fields
2454  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2455  *    or via MRRC/MCRR?)
2456  *  non-secure/secure bank (AArch32 only)
2457  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2458  * (In this case crn and opc2 should be zero.)
2459  * For AArch64, there is no 32/64 bit size distinction;
2460  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2461  * and 4 bit CRn and CRm. The encoding patterns are chosen
2462  * to be easy to convert to and from the KVM encodings, and also
2463  * so that the hashtable can contain both AArch32 and AArch64
2464  * registers (to allow for interprocessing where we might run
2465  * 32 bit code on a 64 bit core).
2466  */
2467 /* This bit is private to our hashtable cpreg; in KVM register
2468  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2469  * in the upper bits of the 64 bit ID.
2470  */
2471 #define CP_REG_AA64_SHIFT 28
2472 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2473 
2474 /* To enable banking of coprocessor registers depending on ns-bit we
2475  * add a bit to distinguish between secure and non-secure cpregs in the
2476  * hashtable.
2477  */
2478 #define CP_REG_NS_SHIFT 29
2479 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2480 
2481 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2482     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2483      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2484 
2485 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2486     (CP_REG_AA64_MASK |                                 \
2487      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2488      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2489      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2490      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2491      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2492      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2493 
2494 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2495  * version used as a key for the coprocessor register hashtable
2496  */
2497 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2498 {
2499     uint32_t cpregid = kvmid;
2500     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2501         cpregid |= CP_REG_AA64_MASK;
2502     } else {
2503         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2504             cpregid |= (1 << 15);
2505         }
2506 
2507         /* KVM is always non-secure so add the NS flag on AArch32 register
2508          * entries.
2509          */
2510          cpregid |= 1 << CP_REG_NS_SHIFT;
2511     }
2512     return cpregid;
2513 }
2514 
2515 /* Convert a truncated 32 bit hashtable key into the full
2516  * 64 bit KVM register ID.
2517  */
2518 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2519 {
2520     uint64_t kvmid;
2521 
2522     if (cpregid & CP_REG_AA64_MASK) {
2523         kvmid = cpregid & ~CP_REG_AA64_MASK;
2524         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2525     } else {
2526         kvmid = cpregid & ~(1 << 15);
2527         if (cpregid & (1 << 15)) {
2528             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2529         } else {
2530             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2531         }
2532     }
2533     return kvmid;
2534 }
2535 
2536 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2537  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2538  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2539  * TCG can assume the value to be constant (ie load at translate time)
2540  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2541  * indicates that the TB should not be ended after a write to this register
2542  * (the default is that the TB ends after cp writes). OVERRIDE permits
2543  * a register definition to override a previous definition for the
2544  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2545  * old must have the OVERRIDE bit set.
2546  * ALIAS indicates that this register is an alias view of some underlying
2547  * state which is also visible via another register, and that the other
2548  * register is handling migration and reset; registers marked ALIAS will not be
2549  * migrated but may have their state set by syncing of register state from KVM.
2550  * NO_RAW indicates that this register has no underlying state and does not
2551  * support raw access for state saving/loading; it will not be used for either
2552  * migration or KVM state synchronization. (Typically this is for "registers"
2553  * which are actually used as instructions for cache maintenance and so on.)
2554  * IO indicates that this register does I/O and therefore its accesses
2555  * need to be marked with gen_io_start() and also end the TB. In particular,
2556  * registers which implement clocks or timers require this.
2557  * RAISES_EXC is for when the read or write hook might raise an exception;
2558  * the generated code will synchronize the CPU state before calling the hook
2559  * so that it is safe for the hook to call raise_exception().
2560  * NEWEL is for writes to registers that might change the exception
2561  * level - typically on older ARM chips. For those cases we need to
2562  * re-read the new el when recomputing the translation flags.
2563  */
2564 #define ARM_CP_SPECIAL           0x0001
2565 #define ARM_CP_CONST             0x0002
2566 #define ARM_CP_64BIT             0x0004
2567 #define ARM_CP_SUPPRESS_TB_END   0x0008
2568 #define ARM_CP_OVERRIDE          0x0010
2569 #define ARM_CP_ALIAS             0x0020
2570 #define ARM_CP_IO                0x0040
2571 #define ARM_CP_NO_RAW            0x0080
2572 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2573 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2574 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2575 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2576 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2577 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2578 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2579 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2580 #define ARM_CP_FPU               0x1000
2581 #define ARM_CP_SVE               0x2000
2582 #define ARM_CP_NO_GDB            0x4000
2583 #define ARM_CP_RAISES_EXC        0x8000
2584 #define ARM_CP_NEWEL             0x10000
2585 /* Used only as a terminator for ARMCPRegInfo lists */
2586 #define ARM_CP_SENTINEL          0xfffff
2587 /* Mask of only the flag bits in a type field */
2588 #define ARM_CP_FLAG_MASK         0x1f0ff
2589 
2590 /* Valid values for ARMCPRegInfo state field, indicating which of
2591  * the AArch32 and AArch64 execution states this register is visible in.
2592  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2593  * If the reginfo is declared to be visible in both states then a second
2594  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2595  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2596  * Note that we rely on the values of these enums as we iterate through
2597  * the various states in some places.
2598  */
2599 enum {
2600     ARM_CP_STATE_AA32 = 0,
2601     ARM_CP_STATE_AA64 = 1,
2602     ARM_CP_STATE_BOTH = 2,
2603 };
2604 
2605 /* ARM CP register secure state flags.  These flags identify security state
2606  * attributes for a given CP register entry.
2607  * The existence of both or neither secure and non-secure flags indicates that
2608  * the register has both a secure and non-secure hash entry.  A single one of
2609  * these flags causes the register to only be hashed for the specified
2610  * security state.
2611  * Although definitions may have any combination of the S/NS bits, each
2612  * registered entry will only have one to identify whether the entry is secure
2613  * or non-secure.
2614  */
2615 enum {
2616     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2617     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2618 };
2619 
2620 /* Return true if cptype is a valid type field. This is used to try to
2621  * catch errors where the sentinel has been accidentally left off the end
2622  * of a list of registers.
2623  */
2624 static inline bool cptype_valid(int cptype)
2625 {
2626     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2627         || ((cptype & ARM_CP_SPECIAL) &&
2628             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2629 }
2630 
2631 /* Access rights:
2632  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2633  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2634  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2635  * (ie any of the privileged modes in Secure state, or Monitor mode).
2636  * If a register is accessible in one privilege level it's always accessible
2637  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2638  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2639  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2640  * terminology a little and call this PL3.
2641  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2642  * with the ELx exception levels.
2643  *
2644  * If access permissions for a register are more complex than can be
2645  * described with these bits, then use a laxer set of restrictions, and
2646  * do the more restrictive/complex check inside a helper function.
2647  */
2648 #define PL3_R 0x80
2649 #define PL3_W 0x40
2650 #define PL2_R (0x20 | PL3_R)
2651 #define PL2_W (0x10 | PL3_W)
2652 #define PL1_R (0x08 | PL2_R)
2653 #define PL1_W (0x04 | PL2_W)
2654 #define PL0_R (0x02 | PL1_R)
2655 #define PL0_W (0x01 | PL1_W)
2656 
2657 /*
2658  * For user-mode some registers are accessible to EL0 via a kernel
2659  * trap-and-emulate ABI. In this case we define the read permissions
2660  * as actually being PL0_R. However some bits of any given register
2661  * may still be masked.
2662  */
2663 #ifdef CONFIG_USER_ONLY
2664 #define PL0U_R PL0_R
2665 #else
2666 #define PL0U_R PL1_R
2667 #endif
2668 
2669 #define PL3_RW (PL3_R | PL3_W)
2670 #define PL2_RW (PL2_R | PL2_W)
2671 #define PL1_RW (PL1_R | PL1_W)
2672 #define PL0_RW (PL0_R | PL0_W)
2673 
2674 /* Return the highest implemented Exception Level */
2675 static inline int arm_highest_el(CPUARMState *env)
2676 {
2677     if (arm_feature(env, ARM_FEATURE_EL3)) {
2678         return 3;
2679     }
2680     if (arm_feature(env, ARM_FEATURE_EL2)) {
2681         return 2;
2682     }
2683     return 1;
2684 }
2685 
2686 /* Return true if a v7M CPU is in Handler mode */
2687 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2688 {
2689     return env->v7m.exception != 0;
2690 }
2691 
2692 /* Return the current Exception Level (as per ARMv8; note that this differs
2693  * from the ARMv7 Privilege Level).
2694  */
2695 static inline int arm_current_el(CPUARMState *env)
2696 {
2697     if (arm_feature(env, ARM_FEATURE_M)) {
2698         return arm_v7m_is_handler_mode(env) ||
2699             !(env->v7m.control[env->v7m.secure] & 1);
2700     }
2701 
2702     if (is_a64(env)) {
2703         return extract32(env->pstate, 2, 2);
2704     }
2705 
2706     switch (env->uncached_cpsr & 0x1f) {
2707     case ARM_CPU_MODE_USR:
2708         return 0;
2709     case ARM_CPU_MODE_HYP:
2710         return 2;
2711     case ARM_CPU_MODE_MON:
2712         return 3;
2713     default:
2714         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2715             /* If EL3 is 32-bit then all secure privileged modes run in
2716              * EL3
2717              */
2718             return 3;
2719         }
2720 
2721         return 1;
2722     }
2723 }
2724 
2725 typedef struct ARMCPRegInfo ARMCPRegInfo;
2726 
2727 typedef enum CPAccessResult {
2728     /* Access is permitted */
2729     CP_ACCESS_OK = 0,
2730     /* Access fails due to a configurable trap or enable which would
2731      * result in a categorized exception syndrome giving information about
2732      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2733      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2734      * PL1 if in EL0, otherwise to the current EL).
2735      */
2736     CP_ACCESS_TRAP = 1,
2737     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2738      * Note that this is not a catch-all case -- the set of cases which may
2739      * result in this failure is specifically defined by the architecture.
2740      */
2741     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2742     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2743     CP_ACCESS_TRAP_EL2 = 3,
2744     CP_ACCESS_TRAP_EL3 = 4,
2745     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2746     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2747     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2748     /* Access fails and results in an exception syndrome for an FP access,
2749      * trapped directly to EL2 or EL3
2750      */
2751     CP_ACCESS_TRAP_FP_EL2 = 7,
2752     CP_ACCESS_TRAP_FP_EL3 = 8,
2753 } CPAccessResult;
2754 
2755 /* Access functions for coprocessor registers. These cannot fail and
2756  * may not raise exceptions.
2757  */
2758 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2759 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2760                        uint64_t value);
2761 /* Access permission check functions for coprocessor registers. */
2762 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2763                                   const ARMCPRegInfo *opaque,
2764                                   bool isread);
2765 /* Hook function for register reset */
2766 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2767 
2768 #define CP_ANY 0xff
2769 
2770 /* Definition of an ARM coprocessor register */
2771 struct ARMCPRegInfo {
2772     /* Name of register (useful mainly for debugging, need not be unique) */
2773     const char *name;
2774     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2775      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2776      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2777      * will be decoded to this register. The register read and write
2778      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2779      * used by the program, so it is possible to register a wildcard and
2780      * then behave differently on read/write if necessary.
2781      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2782      * must both be zero.
2783      * For AArch64-visible registers, opc0 is also used.
2784      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2785      * way to distinguish (for KVM's benefit) guest-visible system registers
2786      * from demuxed ones provided to preserve the "no side effects on
2787      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2788      * visible (to match KVM's encoding); cp==0 will be converted to
2789      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2790      */
2791     uint8_t cp;
2792     uint8_t crn;
2793     uint8_t crm;
2794     uint8_t opc0;
2795     uint8_t opc1;
2796     uint8_t opc2;
2797     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2798     int state;
2799     /* Register type: ARM_CP_* bits/values */
2800     int type;
2801     /* Access rights: PL*_[RW] */
2802     int access;
2803     /* Security state: ARM_CP_SECSTATE_* bits/values */
2804     int secure;
2805     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2806      * this register was defined: can be used to hand data through to the
2807      * register read/write functions, since they are passed the ARMCPRegInfo*.
2808      */
2809     void *opaque;
2810     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2811      * fieldoffset is non-zero, the reset value of the register.
2812      */
2813     uint64_t resetvalue;
2814     /* Offset of the field in CPUARMState for this register.
2815      *
2816      * This is not needed if either:
2817      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2818      *  2. both readfn and writefn are specified
2819      */
2820     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2821 
2822     /* Offsets of the secure and non-secure fields in CPUARMState for the
2823      * register if it is banked.  These fields are only used during the static
2824      * registration of a register.  During hashing the bank associated
2825      * with a given security state is copied to fieldoffset which is used from
2826      * there on out.
2827      *
2828      * It is expected that register definitions use either fieldoffset or
2829      * bank_fieldoffsets in the definition but not both.  It is also expected
2830      * that both bank offsets are set when defining a banked register.  This
2831      * use indicates that a register is banked.
2832      */
2833     ptrdiff_t bank_fieldoffsets[2];
2834 
2835     /* Function for making any access checks for this register in addition to
2836      * those specified by the 'access' permissions bits. If NULL, no extra
2837      * checks required. The access check is performed at runtime, not at
2838      * translate time.
2839      */
2840     CPAccessFn *accessfn;
2841     /* Function for handling reads of this register. If NULL, then reads
2842      * will be done by loading from the offset into CPUARMState specified
2843      * by fieldoffset.
2844      */
2845     CPReadFn *readfn;
2846     /* Function for handling writes of this register. If NULL, then writes
2847      * will be done by writing to the offset into CPUARMState specified
2848      * by fieldoffset.
2849      */
2850     CPWriteFn *writefn;
2851     /* Function for doing a "raw" read; used when we need to copy
2852      * coprocessor state to the kernel for KVM or out for
2853      * migration. This only needs to be provided if there is also a
2854      * readfn and it has side effects (for instance clear-on-read bits).
2855      */
2856     CPReadFn *raw_readfn;
2857     /* Function for doing a "raw" write; used when we need to copy KVM
2858      * kernel coprocessor state into userspace, or for inbound
2859      * migration. This only needs to be provided if there is also a
2860      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2861      * or similar behaviour.
2862      */
2863     CPWriteFn *raw_writefn;
2864     /* Function for resetting the register. If NULL, then reset will be done
2865      * by writing resetvalue to the field specified in fieldoffset. If
2866      * fieldoffset is 0 then no reset will be done.
2867      */
2868     CPResetFn *resetfn;
2869 
2870     /*
2871      * "Original" writefn and readfn.
2872      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2873      * accessor functions of various EL1/EL0 to perform the runtime
2874      * check for which sysreg should actually be modified, and then
2875      * forwards the operation.  Before overwriting the accessors,
2876      * the original function is copied here, so that accesses that
2877      * really do go to the EL1/EL0 version proceed normally.
2878      * (The corresponding EL2 register is linked via opaque.)
2879      */
2880     CPReadFn *orig_readfn;
2881     CPWriteFn *orig_writefn;
2882 };
2883 
2884 /* Macros which are lvalues for the field in CPUARMState for the
2885  * ARMCPRegInfo *ri.
2886  */
2887 #define CPREG_FIELD32(env, ri) \
2888     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2889 #define CPREG_FIELD64(env, ri) \
2890     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2891 
2892 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2893 
2894 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2895                                     const ARMCPRegInfo *regs, void *opaque);
2896 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2897                                        const ARMCPRegInfo *regs, void *opaque);
2898 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2899 {
2900     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2901 }
2902 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2903 {
2904     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2905 }
2906 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2907 
2908 /*
2909  * Definition of an ARM co-processor register as viewed from
2910  * userspace. This is used for presenting sanitised versions of
2911  * registers to userspace when emulating the Linux AArch64 CPU
2912  * ID/feature ABI (advertised as HWCAP_CPUID).
2913  */
2914 typedef struct ARMCPRegUserSpaceInfo {
2915     /* Name of register */
2916     const char *name;
2917 
2918     /* Is the name actually a glob pattern */
2919     bool is_glob;
2920 
2921     /* Only some bits are exported to user space */
2922     uint64_t exported_bits;
2923 
2924     /* Fixed bits are applied after the mask */
2925     uint64_t fixed_bits;
2926 } ARMCPRegUserSpaceInfo;
2927 
2928 #define REGUSERINFO_SENTINEL { .name = NULL }
2929 
2930 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2931 
2932 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2933 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2934                          uint64_t value);
2935 /* CPReadFn that can be used for read-as-zero behaviour */
2936 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2937 
2938 /* CPResetFn that does nothing, for use if no reset is required even
2939  * if fieldoffset is non zero.
2940  */
2941 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2942 
2943 /* Return true if this reginfo struct's field in the cpu state struct
2944  * is 64 bits wide.
2945  */
2946 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2947 {
2948     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2949 }
2950 
2951 static inline bool cp_access_ok(int current_el,
2952                                 const ARMCPRegInfo *ri, int isread)
2953 {
2954     return (ri->access >> ((current_el * 2) + isread)) & 1;
2955 }
2956 
2957 /* Raw read of a coprocessor register (as needed for migration, etc) */
2958 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2959 
2960 /**
2961  * write_list_to_cpustate
2962  * @cpu: ARMCPU
2963  *
2964  * For each register listed in the ARMCPU cpreg_indexes list, write
2965  * its value from the cpreg_values list into the ARMCPUState structure.
2966  * This updates TCG's working data structures from KVM data or
2967  * from incoming migration state.
2968  *
2969  * Returns: true if all register values were updated correctly,
2970  * false if some register was unknown or could not be written.
2971  * Note that we do not stop early on failure -- we will attempt
2972  * writing all registers in the list.
2973  */
2974 bool write_list_to_cpustate(ARMCPU *cpu);
2975 
2976 /**
2977  * write_cpustate_to_list:
2978  * @cpu: ARMCPU
2979  * @kvm_sync: true if this is for syncing back to KVM
2980  *
2981  * For each register listed in the ARMCPU cpreg_indexes list, write
2982  * its value from the ARMCPUState structure into the cpreg_values list.
2983  * This is used to copy info from TCG's working data structures into
2984  * KVM or for outbound migration.
2985  *
2986  * @kvm_sync is true if we are doing this in order to sync the
2987  * register state back to KVM. In this case we will only update
2988  * values in the list if the previous list->cpustate sync actually
2989  * successfully wrote the CPU state. Otherwise we will keep the value
2990  * that is in the list.
2991  *
2992  * Returns: true if all register values were read correctly,
2993  * false if some register was unknown or could not be read.
2994  * Note that we do not stop early on failure -- we will attempt
2995  * reading all registers in the list.
2996  */
2997 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2998 
2999 #define ARM_CPUID_TI915T      0x54029152
3000 #define ARM_CPUID_TI925T      0x54029252
3001 
3002 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3003 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
3004 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
3005 
3006 #define cpu_signal_handler cpu_arm_signal_handler
3007 #define cpu_list arm_cpu_list
3008 
3009 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
3010  *
3011  * If EL3 is 64-bit:
3012  *  + NonSecure EL1 & 0 stage 1
3013  *  + NonSecure EL1 & 0 stage 2
3014  *  + NonSecure EL2
3015  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
3016  *  + Secure EL1 & 0
3017  *  + Secure EL3
3018  * If EL3 is 32-bit:
3019  *  + NonSecure PL1 & 0 stage 1
3020  *  + NonSecure PL1 & 0 stage 2
3021  *  + NonSecure PL2
3022  *  + Secure PL0
3023  *  + Secure PL1
3024  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3025  *
3026  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3027  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3028  *     because they may differ in access permissions even if the VA->PA map is
3029  *     the same
3030  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3031  *     translation, which means that we have one mmu_idx that deals with two
3032  *     concatenated translation regimes [this sort of combined s1+2 TLB is
3033  *     architecturally permitted]
3034  *  3. we don't need to allocate an mmu_idx to translations that we won't be
3035  *     handling via the TLB. The only way to do a stage 1 translation without
3036  *     the immediate stage 2 translation is via the ATS or AT system insns,
3037  *     which can be slow-pathed and always do a page table walk.
3038  *     The only use of stage 2 translations is either as part of an s1+2
3039  *     lookup or when loading the descriptors during a stage 1 page table walk,
3040  *     and in both those cases we don't use the TLB.
3041  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3042  *     translation regimes, because they map reasonably well to each other
3043  *     and they can't both be active at the same time.
3044  *  5. we want to be able to use the TLB for accesses done as part of a
3045  *     stage1 page table walk, rather than having to walk the stage2 page
3046  *     table over and over.
3047  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3048  *     Never (PAN) bit within PSTATE.
3049  *
3050  * This gives us the following list of cases:
3051  *
3052  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3053  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3054  * NS EL1 EL1&0 stage 1+2 +PAN
3055  * NS EL0 EL2&0
3056  * NS EL2 EL2&0
3057  * NS EL2 EL2&0 +PAN
3058  * NS EL2 (aka NS PL2)
3059  * S EL0 EL1&0 (aka S PL0)
3060  * S EL1 EL1&0 (not used if EL3 is 32 bit)
3061  * S EL1 EL1&0 +PAN
3062  * S EL3 (aka S PL1)
3063  *
3064  * for a total of 11 different mmu_idx.
3065  *
3066  * R profile CPUs have an MPU, but can use the same set of MMU indexes
3067  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3068  * NS EL2 if we ever model a Cortex-R52).
3069  *
3070  * M profile CPUs are rather different as they do not have a true MMU.
3071  * They have the following different MMU indexes:
3072  *  User
3073  *  Privileged
3074  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3075  *  Privileged, execution priority negative (ditto)
3076  * If the CPU supports the v8M Security Extension then there are also:
3077  *  Secure User
3078  *  Secure Privileged
3079  *  Secure User, execution priority negative
3080  *  Secure Privileged, execution priority negative
3081  *
3082  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3083  * are not quite the same -- different CPU types (most notably M profile
3084  * vs A/R profile) would like to use MMU indexes with different semantics,
3085  * but since we don't ever need to use all of those in a single CPU we
3086  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3087  * modes + total number of M profile MMU modes". The lower bits of
3088  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3089  * the same for any particular CPU.
3090  * Variables of type ARMMUIdx are always full values, and the core
3091  * index values are in variables of type 'int'.
3092  *
3093  * Our enumeration includes at the end some entries which are not "true"
3094  * mmu_idx values in that they don't have corresponding TLBs and are only
3095  * valid for doing slow path page table walks.
3096  *
3097  * The constant names here are patterned after the general style of the names
3098  * of the AT/ATS operations.
3099  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3100  * For M profile we arrange them to have a bit for priv, a bit for negpri
3101  * and a bit for secure.
3102  */
3103 #define ARM_MMU_IDX_A     0x10  /* A profile */
3104 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3105 #define ARM_MMU_IDX_M     0x40  /* M profile */
3106 
3107 /* Meanings of the bits for A profile mmu idx values */
3108 #define ARM_MMU_IDX_A_NS     0x8
3109 
3110 /* Meanings of the bits for M profile mmu idx values */
3111 #define ARM_MMU_IDX_M_PRIV   0x1
3112 #define ARM_MMU_IDX_M_NEGPRI 0x2
3113 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3114 
3115 #define ARM_MMU_IDX_TYPE_MASK \
3116     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3117 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3118 
3119 typedef enum ARMMMUIdx {
3120     /*
3121      * A-profile.
3122      */
3123     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3124     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3125     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3126     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3127     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3128     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3129     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3130     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3131 
3132     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3133     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3134     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3135     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3136     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3137     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3138     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3139 
3140     /*
3141      * These are not allocated TLBs and are used only for AT system
3142      * instructions or for the first stage of an S12 page table walk.
3143      */
3144     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3145     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3146     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3147     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3148     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3149     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3150     /*
3151      * Not allocated a TLB: used only for second stage of an S12 page
3152      * table walk, or for descriptor loads during first stage of an S1
3153      * page table walk. Note that if we ever want to have a TLB for this
3154      * then various TLB flush insns which currently are no-ops or flush
3155      * only stage 1 MMU indexes will need to change to flush stage 2.
3156      */
3157     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3158     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3159 
3160     /*
3161      * M-profile.
3162      */
3163     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3164     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3165     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3166     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3167     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3168     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3169     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3170     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3171 } ARMMMUIdx;
3172 
3173 /*
3174  * Bit macros for the core-mmu-index values for each index,
3175  * for use when calling tlb_flush_by_mmuidx() and friends.
3176  */
3177 #define TO_CORE_BIT(NAME) \
3178     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3179 
3180 typedef enum ARMMMUIdxBit {
3181     TO_CORE_BIT(E10_0),
3182     TO_CORE_BIT(E20_0),
3183     TO_CORE_BIT(E10_1),
3184     TO_CORE_BIT(E10_1_PAN),
3185     TO_CORE_BIT(E2),
3186     TO_CORE_BIT(E20_2),
3187     TO_CORE_BIT(E20_2_PAN),
3188     TO_CORE_BIT(SE10_0),
3189     TO_CORE_BIT(SE20_0),
3190     TO_CORE_BIT(SE10_1),
3191     TO_CORE_BIT(SE20_2),
3192     TO_CORE_BIT(SE10_1_PAN),
3193     TO_CORE_BIT(SE20_2_PAN),
3194     TO_CORE_BIT(SE2),
3195     TO_CORE_BIT(SE3),
3196 
3197     TO_CORE_BIT(MUser),
3198     TO_CORE_BIT(MPriv),
3199     TO_CORE_BIT(MUserNegPri),
3200     TO_CORE_BIT(MPrivNegPri),
3201     TO_CORE_BIT(MSUser),
3202     TO_CORE_BIT(MSPriv),
3203     TO_CORE_BIT(MSUserNegPri),
3204     TO_CORE_BIT(MSPrivNegPri),
3205 } ARMMMUIdxBit;
3206 
3207 #undef TO_CORE_BIT
3208 
3209 #define MMU_USER_IDX 0
3210 
3211 /* Indexes used when registering address spaces with cpu_address_space_init */
3212 typedef enum ARMASIdx {
3213     ARMASIdx_NS = 0,
3214     ARMASIdx_S = 1,
3215     ARMASIdx_TagNS = 2,
3216     ARMASIdx_TagS = 3,
3217 } ARMASIdx;
3218 
3219 /* Return the Exception Level targeted by debug exceptions. */
3220 static inline int arm_debug_target_el(CPUARMState *env)
3221 {
3222     bool secure = arm_is_secure(env);
3223     bool route_to_el2 = false;
3224 
3225     if (arm_is_el2_enabled(env)) {
3226         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3227                        env->cp15.mdcr_el2 & MDCR_TDE;
3228     }
3229 
3230     if (route_to_el2) {
3231         return 2;
3232     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3233                !arm_el_is_aa64(env, 3) && secure) {
3234         return 3;
3235     } else {
3236         return 1;
3237     }
3238 }
3239 
3240 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3241 {
3242     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3243      * CSSELR is RAZ/WI.
3244      */
3245     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3246 }
3247 
3248 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3249 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3250 {
3251     int cur_el = arm_current_el(env);
3252     int debug_el;
3253 
3254     if (cur_el == 3) {
3255         return false;
3256     }
3257 
3258     /* MDCR_EL3.SDD disables debug events from Secure state */
3259     if (arm_is_secure_below_el3(env)
3260         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3261         return false;
3262     }
3263 
3264     /*
3265      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3266      * while not masking the (D)ebug bit in DAIF.
3267      */
3268     debug_el = arm_debug_target_el(env);
3269 
3270     if (cur_el == debug_el) {
3271         return extract32(env->cp15.mdscr_el1, 13, 1)
3272             && !(env->daif & PSTATE_D);
3273     }
3274 
3275     /* Otherwise the debug target needs to be a higher EL */
3276     return debug_el > cur_el;
3277 }
3278 
3279 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3280 {
3281     int el = arm_current_el(env);
3282 
3283     if (el == 0 && arm_el_is_aa64(env, 1)) {
3284         return aa64_generate_debug_exceptions(env);
3285     }
3286 
3287     if (arm_is_secure(env)) {
3288         int spd;
3289 
3290         if (el == 0 && (env->cp15.sder & 1)) {
3291             /* SDER.SUIDEN means debug exceptions from Secure EL0
3292              * are always enabled. Otherwise they are controlled by
3293              * SDCR.SPD like those from other Secure ELs.
3294              */
3295             return true;
3296         }
3297 
3298         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3299         switch (spd) {
3300         case 1:
3301             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3302         case 0:
3303             /* For 0b00 we return true if external secure invasive debug
3304              * is enabled. On real hardware this is controlled by external
3305              * signals to the core. QEMU always permits debug, and behaves
3306              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3307              */
3308             return true;
3309         case 2:
3310             return false;
3311         case 3:
3312             return true;
3313         }
3314     }
3315 
3316     return el != 2;
3317 }
3318 
3319 /* Return true if debugging exceptions are currently enabled.
3320  * This corresponds to what in ARM ARM pseudocode would be
3321  *    if UsingAArch32() then
3322  *        return AArch32.GenerateDebugExceptions()
3323  *    else
3324  *        return AArch64.GenerateDebugExceptions()
3325  * We choose to push the if() down into this function for clarity,
3326  * since the pseudocode has it at all callsites except for the one in
3327  * CheckSoftwareStep(), where it is elided because both branches would
3328  * always return the same value.
3329  */
3330 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3331 {
3332     if (env->aarch64) {
3333         return aa64_generate_debug_exceptions(env);
3334     } else {
3335         return aa32_generate_debug_exceptions(env);
3336     }
3337 }
3338 
3339 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3340  * implicitly means this always returns false in pre-v8 CPUs.)
3341  */
3342 static inline bool arm_singlestep_active(CPUARMState *env)
3343 {
3344     return extract32(env->cp15.mdscr_el1, 0, 1)
3345         && arm_el_is_aa64(env, arm_debug_target_el(env))
3346         && arm_generate_debug_exceptions(env);
3347 }
3348 
3349 static inline bool arm_sctlr_b(CPUARMState *env)
3350 {
3351     return
3352         /* We need not implement SCTLR.ITD in user-mode emulation, so
3353          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3354          * This lets people run BE32 binaries with "-cpu any".
3355          */
3356 #ifndef CONFIG_USER_ONLY
3357         !arm_feature(env, ARM_FEATURE_V7) &&
3358 #endif
3359         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3360 }
3361 
3362 uint64_t arm_sctlr(CPUARMState *env, int el);
3363 
3364 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3365                                                   bool sctlr_b)
3366 {
3367 #ifdef CONFIG_USER_ONLY
3368     /*
3369      * In system mode, BE32 is modelled in line with the
3370      * architecture (as word-invariant big-endianness), where loads
3371      * and stores are done little endian but from addresses which
3372      * are adjusted by XORing with the appropriate constant. So the
3373      * endianness to use for the raw data access is not affected by
3374      * SCTLR.B.
3375      * In user mode, however, we model BE32 as byte-invariant
3376      * big-endianness (because user-only code cannot tell the
3377      * difference), and so we need to use a data access endianness
3378      * that depends on SCTLR.B.
3379      */
3380     if (sctlr_b) {
3381         return true;
3382     }
3383 #endif
3384     /* In 32bit endianness is determined by looking at CPSR's E bit */
3385     return env->uncached_cpsr & CPSR_E;
3386 }
3387 
3388 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3389 {
3390     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3391 }
3392 
3393 /* Return true if the processor is in big-endian mode. */
3394 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3395 {
3396     if (!is_a64(env)) {
3397         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3398     } else {
3399         int cur_el = arm_current_el(env);
3400         uint64_t sctlr = arm_sctlr(env, cur_el);
3401         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3402     }
3403 }
3404 
3405 typedef CPUARMState CPUArchState;
3406 typedef ARMCPU ArchCPU;
3407 
3408 #include "exec/cpu-all.h"
3409 
3410 /*
3411  * We have more than 32-bits worth of state per TB, so we split the data
3412  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3413  * We collect these two parts in CPUARMTBFlags where they are named
3414  * flags and flags2 respectively.
3415  *
3416  * The flags that are shared between all execution modes, TBFLAG_ANY,
3417  * are stored in flags.  The flags that are specific to a given mode
3418  * are stores in flags2.  Since cs_base is sized on the configured
3419  * address size, flags2 always has 64-bits for A64, and a minimum of
3420  * 32-bits for A32 and M32.
3421  *
3422  * The bits for 32-bit A-profile and M-profile partially overlap:
3423  *
3424  *  31         23         11 10             0
3425  * +-------------+----------+----------------+
3426  * |             |          |   TBFLAG_A32   |
3427  * | TBFLAG_AM32 |          +-----+----------+
3428  * |             |                |TBFLAG_M32|
3429  * +-------------+----------------+----------+
3430  *  31         23                5 4        0
3431  *
3432  * Unless otherwise noted, these bits are cached in env->hflags.
3433  */
3434 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3435 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3436 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3437 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3438 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3439 /* Target EL if we take a floating-point-disabled exception */
3440 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3441 /* For A-profile only, target EL for debug exceptions.  */
3442 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3443 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3444 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3445 
3446 /*
3447  * Bit usage when in AArch32 state, both A- and M-profile.
3448  */
3449 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3450 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3451 
3452 /*
3453  * Bit usage when in AArch32 state, for A-profile only.
3454  */
3455 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3456 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3457 /*
3458  * We store the bottom two bits of the CPAR as TB flags and handle
3459  * checks on the other bits at runtime. This shares the same bits as
3460  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3461  * Not cached, because VECLEN+VECSTRIDE are not cached.
3462  */
3463 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3464 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3465 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3466 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3467 /*
3468  * Indicates whether cp register reads and writes by guest code should access
3469  * the secure or nonsecure bank of banked registers; note that this is not
3470  * the same thing as the current security state of the processor!
3471  */
3472 FIELD(TBFLAG_A32, NS, 10, 1)
3473 
3474 /*
3475  * Bit usage when in AArch32 state, for M-profile only.
3476  */
3477 /* Handler (ie not Thread) mode */
3478 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3479 /* Whether we should generate stack-limit checks */
3480 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3481 /* Set if FPCCR.LSPACT is set */
3482 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3483 /* Set if we must create a new FP context */
3484 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3485 /* Set if FPCCR.S does not match current security state */
3486 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3487 
3488 /*
3489  * Bit usage when in AArch64 state
3490  */
3491 FIELD(TBFLAG_A64, TBII, 0, 2)
3492 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3493 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3494 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3495 FIELD(TBFLAG_A64, BT, 9, 1)
3496 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3497 FIELD(TBFLAG_A64, TBID, 12, 2)
3498 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3499 FIELD(TBFLAG_A64, ATA, 15, 1)
3500 FIELD(TBFLAG_A64, TCMA, 16, 2)
3501 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3502 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3503 
3504 /*
3505  * Helpers for using the above.
3506  */
3507 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3508     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3509 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3510     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3511 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3512     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3513 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3514     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3515 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3516     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3517 
3518 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3519 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3520 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3521 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3522 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3523 
3524 /**
3525  * cpu_mmu_index:
3526  * @env: The cpu environment
3527  * @ifetch: True for code access, false for data access.
3528  *
3529  * Return the core mmu index for the current translation regime.
3530  * This function is used by generic TCG code paths.
3531  */
3532 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3533 {
3534     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3535 }
3536 
3537 static inline bool bswap_code(bool sctlr_b)
3538 {
3539 #ifdef CONFIG_USER_ONLY
3540     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3541      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3542      * would also end up as a mixed-endian mode with BE code, LE data.
3543      */
3544     return
3545 #ifdef TARGET_WORDS_BIGENDIAN
3546         1 ^
3547 #endif
3548         sctlr_b;
3549 #else
3550     /* All code access in ARM is little endian, and there are no loaders
3551      * doing swaps that need to be reversed
3552      */
3553     return 0;
3554 #endif
3555 }
3556 
3557 #ifdef CONFIG_USER_ONLY
3558 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3559 {
3560     return
3561 #ifdef TARGET_WORDS_BIGENDIAN
3562        1 ^
3563 #endif
3564        arm_cpu_data_is_big_endian(env);
3565 }
3566 #endif
3567 
3568 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3569                           target_ulong *cs_base, uint32_t *flags);
3570 
3571 enum {
3572     QEMU_PSCI_CONDUIT_DISABLED = 0,
3573     QEMU_PSCI_CONDUIT_SMC = 1,
3574     QEMU_PSCI_CONDUIT_HVC = 2,
3575 };
3576 
3577 #ifndef CONFIG_USER_ONLY
3578 /* Return the address space index to use for a memory access */
3579 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3580 {
3581     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3582 }
3583 
3584 /* Return the AddressSpace to use for a memory access
3585  * (which depends on whether the access is S or NS, and whether
3586  * the board gave us a separate AddressSpace for S accesses).
3587  */
3588 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3589 {
3590     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3591 }
3592 #endif
3593 
3594 /**
3595  * arm_register_pre_el_change_hook:
3596  * Register a hook function which will be called immediately before this
3597  * CPU changes exception level or mode. The hook function will be
3598  * passed a pointer to the ARMCPU and the opaque data pointer passed
3599  * to this function when the hook was registered.
3600  *
3601  * Note that if a pre-change hook is called, any registered post-change hooks
3602  * are guaranteed to subsequently be called.
3603  */
3604 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3605                                  void *opaque);
3606 /**
3607  * arm_register_el_change_hook:
3608  * Register a hook function which will be called immediately after this
3609  * CPU changes exception level or mode. The hook function will be
3610  * passed a pointer to the ARMCPU and the opaque data pointer passed
3611  * to this function when the hook was registered.
3612  *
3613  * Note that any registered hooks registered here are guaranteed to be called
3614  * if pre-change hooks have been.
3615  */
3616 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3617         *opaque);
3618 
3619 /**
3620  * arm_rebuild_hflags:
3621  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3622  */
3623 void arm_rebuild_hflags(CPUARMState *env);
3624 
3625 /**
3626  * aa32_vfp_dreg:
3627  * Return a pointer to the Dn register within env in 32-bit mode.
3628  */
3629 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3630 {
3631     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3632 }
3633 
3634 /**
3635  * aa32_vfp_qreg:
3636  * Return a pointer to the Qn register within env in 32-bit mode.
3637  */
3638 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3639 {
3640     return &env->vfp.zregs[regno].d[0];
3641 }
3642 
3643 /**
3644  * aa64_vfp_qreg:
3645  * Return a pointer to the Qn register within env in 64-bit mode.
3646  */
3647 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3648 {
3649     return &env->vfp.zregs[regno].d[0];
3650 }
3651 
3652 /* Shared between translate-sve.c and sve_helper.c.  */
3653 extern const uint64_t pred_esz_masks[4];
3654 
3655 /* Helper for the macros below, validating the argument type. */
3656 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3657 {
3658     return x;
3659 }
3660 
3661 /*
3662  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3663  * Using these should be a bit more self-documenting than using the
3664  * generic target bits directly.
3665  */
3666 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3667 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3668 
3669 /*
3670  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3671  */
3672 #define PAGE_BTI  PAGE_TARGET_1
3673 #define PAGE_MTE  PAGE_TARGET_2
3674 
3675 #ifdef TARGET_TAGGED_ADDRESSES
3676 /**
3677  * cpu_untagged_addr:
3678  * @cs: CPU context
3679  * @x: tagged address
3680  *
3681  * Remove any address tag from @x.  This is explicitly related to the
3682  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3683  *
3684  * There should be a better place to put this, but we need this in
3685  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3686  */
3687 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3688 {
3689     ARMCPU *cpu = ARM_CPU(cs);
3690     if (cpu->env.tagged_addr_enable) {
3691         /*
3692          * TBI is enabled for userspace but not kernelspace addresses.
3693          * Only clear the tag if bit 55 is clear.
3694          */
3695         x &= sextract64(x, 0, 56);
3696     }
3697     return x;
3698 }
3699 #endif
3700 
3701 /*
3702  * Naming convention for isar_feature functions:
3703  * Functions which test 32-bit ID registers should have _aa32_ in
3704  * their name. Functions which test 64-bit ID registers should have
3705  * _aa64_ in their name. These must only be used in code where we
3706  * know for certain that the CPU has AArch32 or AArch64 respectively
3707  * or where the correct answer for a CPU which doesn't implement that
3708  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3709  * system registers that are specific to that CPU state, for "should
3710  * we let this system register bit be set" tests where the 32-bit
3711  * flavour of the register doesn't have the bit, and so on).
3712  * Functions which simply ask "does this feature exist at all" have
3713  * _any_ in their name, and always return the logical OR of the _aa64_
3714  * and the _aa32_ function.
3715  */
3716 
3717 /*
3718  * 32-bit feature tests via id registers.
3719  */
3720 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3721 {
3722     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3723 }
3724 
3725 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3726 {
3727     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3728 }
3729 
3730 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3731 {
3732     /* (M-profile) low-overhead loops and branch future */
3733     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3734 }
3735 
3736 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3737 {
3738     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3739 }
3740 
3741 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3742 {
3743     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3744 }
3745 
3746 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3747 {
3748     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3749 }
3750 
3751 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3752 {
3753     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3754 }
3755 
3756 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3757 {
3758     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3759 }
3760 
3761 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3762 {
3763     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3764 }
3765 
3766 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3767 {
3768     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3769 }
3770 
3771 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3772 {
3773     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3774 }
3775 
3776 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3777 {
3778     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3779 }
3780 
3781 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3782 {
3783     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3784 }
3785 
3786 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3787 {
3788     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3789 }
3790 
3791 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3792 {
3793     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3794 }
3795 
3796 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3797 {
3798     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3799 }
3800 
3801 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3802 {
3803     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3804 }
3805 
3806 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3807 {
3808     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3809 }
3810 
3811 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3812 {
3813     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3814 }
3815 
3816 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3817 {
3818     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3819 }
3820 
3821 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3822 {
3823     /*
3824      * Return true if M-profile state handling insns
3825      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3826      */
3827     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3828 }
3829 
3830 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3831 {
3832     /* Sadly this is encoded differently for A-profile and M-profile */
3833     if (isar_feature_aa32_mprofile(id)) {
3834         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3835     } else {
3836         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3837     }
3838 }
3839 
3840 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3841 {
3842     /*
3843      * Return true if MVE is supported (either integer or floating point).
3844      * We must check for M-profile as the MVFR1 field means something
3845      * else for A-profile.
3846      */
3847     return isar_feature_aa32_mprofile(id) &&
3848         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3849 }
3850 
3851 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3852 {
3853     /*
3854      * Return true if MVE is supported (either integer or floating point).
3855      * We must check for M-profile as the MVFR1 field means something
3856      * else for A-profile.
3857      */
3858     return isar_feature_aa32_mprofile(id) &&
3859         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3860 }
3861 
3862 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3863 {
3864     /*
3865      * Return true if either VFP or SIMD is implemented.
3866      * In this case, a minimum of VFP w/ D0-D15.
3867      */
3868     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3869 }
3870 
3871 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3872 {
3873     /* Return true if D16-D31 are implemented */
3874     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3875 }
3876 
3877 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3878 {
3879     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3880 }
3881 
3882 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3883 {
3884     /* Return true if CPU supports single precision floating point, VFPv2 */
3885     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3886 }
3887 
3888 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3889 {
3890     /* Return true if CPU supports single precision floating point, VFPv3 */
3891     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3892 }
3893 
3894 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3895 {
3896     /* Return true if CPU supports double precision floating point, VFPv2 */
3897     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3898 }
3899 
3900 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3901 {
3902     /* Return true if CPU supports double precision floating point, VFPv3 */
3903     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3904 }
3905 
3906 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3907 {
3908     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3909 }
3910 
3911 /*
3912  * We always set the FP and SIMD FP16 fields to indicate identical
3913  * levels of support (assuming SIMD is implemented at all), so
3914  * we only need one set of accessors.
3915  */
3916 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3917 {
3918     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3919 }
3920 
3921 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3922 {
3923     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3924 }
3925 
3926 /*
3927  * Note that this ID register field covers both VFP and Neon FMAC,
3928  * so should usually be tested in combination with some other
3929  * check that confirms the presence of whichever of VFP or Neon is
3930  * relevant, to avoid accidentally enabling a Neon feature on
3931  * a VFP-no-Neon core or vice-versa.
3932  */
3933 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3934 {
3935     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3936 }
3937 
3938 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3939 {
3940     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3941 }
3942 
3943 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3944 {
3945     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3946 }
3947 
3948 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3949 {
3950     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3951 }
3952 
3953 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3954 {
3955     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3956 }
3957 
3958 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3959 {
3960     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3961 }
3962 
3963 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3964 {
3965     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3966 }
3967 
3968 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3969 {
3970     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3971 }
3972 
3973 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3974 {
3975     /* 0xf means "non-standard IMPDEF PMU" */
3976     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3977         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3978 }
3979 
3980 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3981 {
3982     /* 0xf means "non-standard IMPDEF PMU" */
3983     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3984         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3985 }
3986 
3987 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3988 {
3989     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3990 }
3991 
3992 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3993 {
3994     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3995 }
3996 
3997 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3998 {
3999     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
4000 }
4001 
4002 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4003 {
4004     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4005 }
4006 
4007 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4008 {
4009     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4010 }
4011 
4012 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4013 {
4014     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4015 }
4016 
4017 /*
4018  * 64-bit feature tests via id registers.
4019  */
4020 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4021 {
4022     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4023 }
4024 
4025 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4026 {
4027     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4028 }
4029 
4030 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4031 {
4032     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4033 }
4034 
4035 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4036 {
4037     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4038 }
4039 
4040 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4041 {
4042     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4043 }
4044 
4045 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4046 {
4047     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4048 }
4049 
4050 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4051 {
4052     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4053 }
4054 
4055 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4056 {
4057     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4058 }
4059 
4060 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4061 {
4062     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4063 }
4064 
4065 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4066 {
4067     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4068 }
4069 
4070 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4071 {
4072     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4073 }
4074 
4075 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4076 {
4077     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4078 }
4079 
4080 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4081 {
4082     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4083 }
4084 
4085 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4086 {
4087     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4088 }
4089 
4090 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4091 {
4092     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4093 }
4094 
4095 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4096 {
4097     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4098 }
4099 
4100 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4101 {
4102     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4103 }
4104 
4105 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4106 {
4107     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4108 }
4109 
4110 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4111 {
4112     /*
4113      * Return true if any form of pauth is enabled, as this
4114      * predicate controls migration of the 128-bit keys.
4115      */
4116     return (id->id_aa64isar1 &
4117             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4118              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4119              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4120              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4121 }
4122 
4123 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4124 {
4125     /*
4126      * Return true if pauth is enabled with the architected QARMA algorithm.
4127      * QEMU will always set APA+GPA to the same value.
4128      */
4129     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4130 }
4131 
4132 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4133 {
4134     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4135 }
4136 
4137 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4138 {
4139     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4140 }
4141 
4142 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4143 {
4144     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4145 }
4146 
4147 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4148 {
4149     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4150 }
4151 
4152 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4153 {
4154     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4155 }
4156 
4157 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4158 {
4159     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4160 }
4161 
4162 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4163 {
4164     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4165 }
4166 
4167 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4168 {
4169     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4170 }
4171 
4172 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4173 {
4174     /* We always set the AdvSIMD and FP fields identically.  */
4175     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4176 }
4177 
4178 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4179 {
4180     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4181     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4182 }
4183 
4184 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4185 {
4186     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4187 }
4188 
4189 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4190 {
4191     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4192 }
4193 
4194 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4195 {
4196     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4197 }
4198 
4199 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4200 {
4201     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4202 }
4203 
4204 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4205 {
4206     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4207 }
4208 
4209 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4210 {
4211     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4212 }
4213 
4214 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4215 {
4216     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4217 }
4218 
4219 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4220 {
4221     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4222 }
4223 
4224 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4225 {
4226     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4227 }
4228 
4229 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4230 {
4231     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4232 }
4233 
4234 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4235 {
4236     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4237 }
4238 
4239 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4240 {
4241     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4242 }
4243 
4244 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4245 {
4246     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4247 }
4248 
4249 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4250 {
4251     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4252         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4253 }
4254 
4255 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4256 {
4257     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4258         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4259 }
4260 
4261 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4262 {
4263     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4264 }
4265 
4266 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4267 {
4268     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4269 }
4270 
4271 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4272 {
4273     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4274 }
4275 
4276 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4277 {
4278     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4279 }
4280 
4281 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4282 {
4283     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4284 }
4285 
4286 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4287 {
4288     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4289 }
4290 
4291 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4292 {
4293     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4294 }
4295 
4296 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4297 {
4298     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4299 }
4300 
4301 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4302 {
4303     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4304 }
4305 
4306 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4307 {
4308     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4309 }
4310 
4311 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4312 {
4313     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4314 }
4315 
4316 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4317 {
4318     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4319 }
4320 
4321 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4322 {
4323     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4324 }
4325 
4326 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4327 {
4328     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4329 }
4330 
4331 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4332 {
4333     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4334 }
4335 
4336 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4337 {
4338     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4339 }
4340 
4341 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4342 {
4343     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4344 }
4345 
4346 /*
4347  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4348  */
4349 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4350 {
4351     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4352 }
4353 
4354 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4355 {
4356     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4357 }
4358 
4359 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4360 {
4361     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4362 }
4363 
4364 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4365 {
4366     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4367 }
4368 
4369 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4370 {
4371     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4372 }
4373 
4374 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4375 {
4376     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4377 }
4378 
4379 /*
4380  * Forward to the above feature tests given an ARMCPU pointer.
4381  */
4382 #define cpu_isar_feature(name, cpu) \
4383     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4384 
4385 #endif
4386