1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 28 /* ARM processors have a weak memory model */ 29 #define TCG_GUEST_DEFAULT_MO (0) 30 31 #ifdef TARGET_AARCH64 32 #define KVM_HAVE_MCE_INJECTION 1 33 #endif 34 35 #define EXCP_UDEF 1 /* undefined instruction */ 36 #define EXCP_SWI 2 /* software interrupt */ 37 #define EXCP_PREFETCH_ABORT 3 38 #define EXCP_DATA_ABORT 4 39 #define EXCP_IRQ 5 40 #define EXCP_FIQ 6 41 #define EXCP_BKPT 7 42 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 43 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 44 #define EXCP_HVC 11 /* HyperVisor Call */ 45 #define EXCP_HYP_TRAP 12 46 #define EXCP_SMC 13 /* Secure Monitor Call */ 47 #define EXCP_VIRQ 14 48 #define EXCP_VFIQ 15 49 #define EXCP_SEMIHOST 16 /* semihosting call */ 50 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 51 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 52 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 53 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 54 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 55 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 56 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 57 58 #define ARMV7M_EXCP_RESET 1 59 #define ARMV7M_EXCP_NMI 2 60 #define ARMV7M_EXCP_HARD 3 61 #define ARMV7M_EXCP_MEM 4 62 #define ARMV7M_EXCP_BUS 5 63 #define ARMV7M_EXCP_USAGE 6 64 #define ARMV7M_EXCP_SECURE 7 65 #define ARMV7M_EXCP_SVC 11 66 #define ARMV7M_EXCP_DEBUG 12 67 #define ARMV7M_EXCP_PENDSV 14 68 #define ARMV7M_EXCP_SYSTICK 15 69 70 /* For M profile, some registers are banked secure vs non-secure; 71 * these are represented as a 2-element array where the first element 72 * is the non-secure copy and the second is the secure copy. 73 * When the CPU does not have implement the security extension then 74 * only the first element is used. 75 * This means that the copy for the current security state can be 76 * accessed via env->registerfield[env->v7m.secure] (whether the security 77 * extension is implemented or not). 78 */ 79 enum { 80 M_REG_NS = 0, 81 M_REG_S = 1, 82 M_REG_NUM_BANKS = 2, 83 }; 84 85 /* ARM-specific interrupt pending bits. */ 86 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 87 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 88 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 89 90 /* The usual mapping for an AArch64 system register to its AArch32 91 * counterpart is for the 32 bit world to have access to the lower 92 * half only (with writes leaving the upper half untouched). It's 93 * therefore useful to be able to pass TCG the offset of the least 94 * significant half of a uint64_t struct member. 95 */ 96 #ifdef HOST_WORDS_BIGENDIAN 97 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 98 #define offsetofhigh32(S, M) offsetof(S, M) 99 #else 100 #define offsetoflow32(S, M) offsetof(S, M) 101 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 102 #endif 103 104 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 105 #define ARM_CPU_IRQ 0 106 #define ARM_CPU_FIQ 1 107 #define ARM_CPU_VIRQ 2 108 #define ARM_CPU_VFIQ 3 109 110 /* ARM-specific extra insn start words: 111 * 1: Conditional execution bits 112 * 2: Partial exception syndrome for data aborts 113 */ 114 #define TARGET_INSN_START_EXTRA_WORDS 2 115 116 /* The 2nd extra word holding syndrome info for data aborts does not use 117 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 118 * help the sleb128 encoder do a better job. 119 * When restoring the CPU state, we shift it back up. 120 */ 121 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 122 #define ARM_INSN_START_WORD2_SHIFT 14 123 124 /* We currently assume float and double are IEEE single and double 125 precision respectively. 126 Doing runtime conversions is tricky because VFP registers may contain 127 integer values (eg. as the result of a FTOSI instruction). 128 s<2n> maps to the least significant half of d<n> 129 s<2n+1> maps to the most significant half of d<n> 130 */ 131 132 /** 133 * DynamicGDBXMLInfo: 134 * @desc: Contains the XML descriptions. 135 * @num: Number of the registers in this XML seen by GDB. 136 * @data: A union with data specific to the set of registers 137 * @cpregs_keys: Array that contains the corresponding Key of 138 * a given cpreg with the same order of the cpreg 139 * in the XML description. 140 */ 141 typedef struct DynamicGDBXMLInfo { 142 char *desc; 143 int num; 144 union { 145 struct { 146 uint32_t *keys; 147 } cpregs; 148 } data; 149 } DynamicGDBXMLInfo; 150 151 /* CPU state for each instance of a generic timer (in cp15 c14) */ 152 typedef struct ARMGenericTimer { 153 uint64_t cval; /* Timer CompareValue register */ 154 uint64_t ctl; /* Timer Control register */ 155 } ARMGenericTimer; 156 157 #define GTIMER_PHYS 0 158 #define GTIMER_VIRT 1 159 #define GTIMER_HYP 2 160 #define GTIMER_SEC 3 161 #define GTIMER_HYPVIRT 4 162 #define NUM_GTIMERS 5 163 164 typedef struct { 165 uint64_t raw_tcr; 166 uint32_t mask; 167 uint32_t base_mask; 168 } TCR; 169 170 /* Define a maximum sized vector register. 171 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 172 * For 64-bit, this is a 2048-bit SVE register. 173 * 174 * Note that the mapping between S, D, and Q views of the register bank 175 * differs between AArch64 and AArch32. 176 * In AArch32: 177 * Qn = regs[n].d[1]:regs[n].d[0] 178 * Dn = regs[n / 2].d[n & 1] 179 * Sn = regs[n / 4].d[n % 4 / 2], 180 * bits 31..0 for even n, and bits 63..32 for odd n 181 * (and regs[16] to regs[31] are inaccessible) 182 * In AArch64: 183 * Zn = regs[n].d[*] 184 * Qn = regs[n].d[1]:regs[n].d[0] 185 * Dn = regs[n].d[0] 186 * Sn = regs[n].d[0] bits 31..0 187 * Hn = regs[n].d[0] bits 15..0 188 * 189 * This corresponds to the architecturally defined mapping between 190 * the two execution states, and means we do not need to explicitly 191 * map these registers when changing states. 192 * 193 * Align the data for use with TCG host vector operations. 194 */ 195 196 #ifdef TARGET_AARCH64 197 # define ARM_MAX_VQ 16 198 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); 199 #else 200 # define ARM_MAX_VQ 1 201 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } 202 #endif 203 204 typedef struct ARMVectorReg { 205 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 206 } ARMVectorReg; 207 208 #ifdef TARGET_AARCH64 209 /* In AArch32 mode, predicate registers do not exist at all. */ 210 typedef struct ARMPredicateReg { 211 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 212 } ARMPredicateReg; 213 214 /* In AArch32 mode, PAC keys do not exist at all. */ 215 typedef struct ARMPACKey { 216 uint64_t lo, hi; 217 } ARMPACKey; 218 #endif 219 220 221 typedef struct CPUARMState { 222 /* Regs for current mode. */ 223 uint32_t regs[16]; 224 225 /* 32/64 switch only happens when taking and returning from 226 * exceptions so the overlap semantics are taken care of then 227 * instead of having a complicated union. 228 */ 229 /* Regs for A64 mode. */ 230 uint64_t xregs[32]; 231 uint64_t pc; 232 /* PSTATE isn't an architectural register for ARMv8. However, it is 233 * convenient for us to assemble the underlying state into a 32 bit format 234 * identical to the architectural format used for the SPSR. (This is also 235 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 236 * 'pstate' register are.) Of the PSTATE bits: 237 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 238 * semantics as for AArch32, as described in the comments on each field) 239 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 240 * DAIF (exception masks) are kept in env->daif 241 * BTYPE is kept in env->btype 242 * all other bits are stored in their correct places in env->pstate 243 */ 244 uint32_t pstate; 245 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 246 247 /* Cached TBFLAGS state. See below for which bits are included. */ 248 uint32_t hflags; 249 250 /* Frequently accessed CPSR bits are stored separately for efficiency. 251 This contains all the other bits. Use cpsr_{read,write} to access 252 the whole CPSR. */ 253 uint32_t uncached_cpsr; 254 uint32_t spsr; 255 256 /* Banked registers. */ 257 uint64_t banked_spsr[8]; 258 uint32_t banked_r13[8]; 259 uint32_t banked_r14[8]; 260 261 /* These hold r8-r12. */ 262 uint32_t usr_regs[5]; 263 uint32_t fiq_regs[5]; 264 265 /* cpsr flag cache for faster execution */ 266 uint32_t CF; /* 0 or 1 */ 267 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 268 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 269 uint32_t ZF; /* Z set if zero. */ 270 uint32_t QF; /* 0 or 1 */ 271 uint32_t GE; /* cpsr[19:16] */ 272 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 273 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 274 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 275 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 276 277 uint64_t elr_el[4]; /* AArch64 exception link regs */ 278 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 279 280 /* System control coprocessor (cp15) */ 281 struct { 282 uint32_t c0_cpuid; 283 union { /* Cache size selection */ 284 struct { 285 uint64_t _unused_csselr0; 286 uint64_t csselr_ns; 287 uint64_t _unused_csselr1; 288 uint64_t csselr_s; 289 }; 290 uint64_t csselr_el[4]; 291 }; 292 union { /* System control register. */ 293 struct { 294 uint64_t _unused_sctlr; 295 uint64_t sctlr_ns; 296 uint64_t hsctlr; 297 uint64_t sctlr_s; 298 }; 299 uint64_t sctlr_el[4]; 300 }; 301 uint64_t cpacr_el1; /* Architectural feature access control register */ 302 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 303 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 304 uint64_t sder; /* Secure debug enable register. */ 305 uint32_t nsacr; /* Non-secure access control register. */ 306 union { /* MMU translation table base 0. */ 307 struct { 308 uint64_t _unused_ttbr0_0; 309 uint64_t ttbr0_ns; 310 uint64_t _unused_ttbr0_1; 311 uint64_t ttbr0_s; 312 }; 313 uint64_t ttbr0_el[4]; 314 }; 315 union { /* MMU translation table base 1. */ 316 struct { 317 uint64_t _unused_ttbr1_0; 318 uint64_t ttbr1_ns; 319 uint64_t _unused_ttbr1_1; 320 uint64_t ttbr1_s; 321 }; 322 uint64_t ttbr1_el[4]; 323 }; 324 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 325 /* MMU translation table base control. */ 326 TCR tcr_el[4]; 327 TCR vtcr_el2; /* Virtualization Translation Control. */ 328 uint32_t c2_data; /* MPU data cacheable bits. */ 329 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 330 union { /* MMU domain access control register 331 * MPU write buffer control. 332 */ 333 struct { 334 uint64_t dacr_ns; 335 uint64_t dacr_s; 336 }; 337 struct { 338 uint64_t dacr32_el2; 339 }; 340 }; 341 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 342 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 343 uint64_t hcr_el2; /* Hypervisor configuration register */ 344 uint64_t scr_el3; /* Secure configuration register. */ 345 union { /* Fault status registers. */ 346 struct { 347 uint64_t ifsr_ns; 348 uint64_t ifsr_s; 349 }; 350 struct { 351 uint64_t ifsr32_el2; 352 }; 353 }; 354 union { 355 struct { 356 uint64_t _unused_dfsr; 357 uint64_t dfsr_ns; 358 uint64_t hsr; 359 uint64_t dfsr_s; 360 }; 361 uint64_t esr_el[4]; 362 }; 363 uint32_t c6_region[8]; /* MPU base/size registers. */ 364 union { /* Fault address registers. */ 365 struct { 366 uint64_t _unused_far0; 367 #ifdef HOST_WORDS_BIGENDIAN 368 uint32_t ifar_ns; 369 uint32_t dfar_ns; 370 uint32_t ifar_s; 371 uint32_t dfar_s; 372 #else 373 uint32_t dfar_ns; 374 uint32_t ifar_ns; 375 uint32_t dfar_s; 376 uint32_t ifar_s; 377 #endif 378 uint64_t _unused_far3; 379 }; 380 uint64_t far_el[4]; 381 }; 382 uint64_t hpfar_el2; 383 uint64_t hstr_el2; 384 union { /* Translation result. */ 385 struct { 386 uint64_t _unused_par_0; 387 uint64_t par_ns; 388 uint64_t _unused_par_1; 389 uint64_t par_s; 390 }; 391 uint64_t par_el[4]; 392 }; 393 394 uint32_t c9_insn; /* Cache lockdown registers. */ 395 uint32_t c9_data; 396 uint64_t c9_pmcr; /* performance monitor control register */ 397 uint64_t c9_pmcnten; /* perf monitor counter enables */ 398 uint64_t c9_pmovsr; /* perf monitor overflow status */ 399 uint64_t c9_pmuserenr; /* perf monitor user enable */ 400 uint64_t c9_pmselr; /* perf monitor counter selection register */ 401 uint64_t c9_pminten; /* perf monitor interrupt enables */ 402 union { /* Memory attribute redirection */ 403 struct { 404 #ifdef HOST_WORDS_BIGENDIAN 405 uint64_t _unused_mair_0; 406 uint32_t mair1_ns; 407 uint32_t mair0_ns; 408 uint64_t _unused_mair_1; 409 uint32_t mair1_s; 410 uint32_t mair0_s; 411 #else 412 uint64_t _unused_mair_0; 413 uint32_t mair0_ns; 414 uint32_t mair1_ns; 415 uint64_t _unused_mair_1; 416 uint32_t mair0_s; 417 uint32_t mair1_s; 418 #endif 419 }; 420 uint64_t mair_el[4]; 421 }; 422 union { /* vector base address register */ 423 struct { 424 uint64_t _unused_vbar; 425 uint64_t vbar_ns; 426 uint64_t hvbar; 427 uint64_t vbar_s; 428 }; 429 uint64_t vbar_el[4]; 430 }; 431 uint32_t mvbar; /* (monitor) vector base address register */ 432 struct { /* FCSE PID. */ 433 uint32_t fcseidr_ns; 434 uint32_t fcseidr_s; 435 }; 436 union { /* Context ID. */ 437 struct { 438 uint64_t _unused_contextidr_0; 439 uint64_t contextidr_ns; 440 uint64_t _unused_contextidr_1; 441 uint64_t contextidr_s; 442 }; 443 uint64_t contextidr_el[4]; 444 }; 445 union { /* User RW Thread register. */ 446 struct { 447 uint64_t tpidrurw_ns; 448 uint64_t tpidrprw_ns; 449 uint64_t htpidr; 450 uint64_t _tpidr_el3; 451 }; 452 uint64_t tpidr_el[4]; 453 }; 454 /* The secure banks of these registers don't map anywhere */ 455 uint64_t tpidrurw_s; 456 uint64_t tpidrprw_s; 457 uint64_t tpidruro_s; 458 459 union { /* User RO Thread register. */ 460 uint64_t tpidruro_ns; 461 uint64_t tpidrro_el[1]; 462 }; 463 uint64_t c14_cntfrq; /* Counter Frequency register */ 464 uint64_t c14_cntkctl; /* Timer Control register */ 465 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 466 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 467 ARMGenericTimer c14_timer[NUM_GTIMERS]; 468 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 469 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 470 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 471 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 472 uint32_t c15_threadid; /* TI debugger thread-ID. */ 473 uint32_t c15_config_base_address; /* SCU base address. */ 474 uint32_t c15_diagnostic; /* diagnostic register */ 475 uint32_t c15_power_diagnostic; 476 uint32_t c15_power_control; /* power control */ 477 uint64_t dbgbvr[16]; /* breakpoint value registers */ 478 uint64_t dbgbcr[16]; /* breakpoint control registers */ 479 uint64_t dbgwvr[16]; /* watchpoint value registers */ 480 uint64_t dbgwcr[16]; /* watchpoint control registers */ 481 uint64_t mdscr_el1; 482 uint64_t oslsr_el1; /* OS Lock Status */ 483 uint64_t mdcr_el2; 484 uint64_t mdcr_el3; 485 /* Stores the architectural value of the counter *the last time it was 486 * updated* by pmccntr_op_start. Accesses should always be surrounded 487 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 488 * architecturally-correct value is being read/set. 489 */ 490 uint64_t c15_ccnt; 491 /* Stores the delta between the architectural value and the underlying 492 * cycle count during normal operation. It is used to update c15_ccnt 493 * to be the correct architectural value before accesses. During 494 * accesses, c15_ccnt_delta contains the underlying count being used 495 * for the access, after which it reverts to the delta value in 496 * pmccntr_op_finish. 497 */ 498 uint64_t c15_ccnt_delta; 499 uint64_t c14_pmevcntr[31]; 500 uint64_t c14_pmevcntr_delta[31]; 501 uint64_t c14_pmevtyper[31]; 502 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 503 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 504 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 505 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 506 uint64_t gcr_el1; 507 uint64_t rgsr_el1; 508 } cp15; 509 510 struct { 511 /* M profile has up to 4 stack pointers: 512 * a Main Stack Pointer and a Process Stack Pointer for each 513 * of the Secure and Non-Secure states. (If the CPU doesn't support 514 * the security extension then it has only two SPs.) 515 * In QEMU we always store the currently active SP in regs[13], 516 * and the non-active SP for the current security state in 517 * v7m.other_sp. The stack pointers for the inactive security state 518 * are stored in other_ss_msp and other_ss_psp. 519 * switch_v7m_security_state() is responsible for rearranging them 520 * when we change security state. 521 */ 522 uint32_t other_sp; 523 uint32_t other_ss_msp; 524 uint32_t other_ss_psp; 525 uint32_t vecbase[M_REG_NUM_BANKS]; 526 uint32_t basepri[M_REG_NUM_BANKS]; 527 uint32_t control[M_REG_NUM_BANKS]; 528 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 529 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 530 uint32_t hfsr; /* HardFault Status */ 531 uint32_t dfsr; /* Debug Fault Status Register */ 532 uint32_t sfsr; /* Secure Fault Status Register */ 533 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 534 uint32_t bfar; /* BusFault Address */ 535 uint32_t sfar; /* Secure Fault Address Register */ 536 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 537 int exception; 538 uint32_t primask[M_REG_NUM_BANKS]; 539 uint32_t faultmask[M_REG_NUM_BANKS]; 540 uint32_t aircr; /* only holds r/w state if security extn implemented */ 541 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 542 uint32_t csselr[M_REG_NUM_BANKS]; 543 uint32_t scr[M_REG_NUM_BANKS]; 544 uint32_t msplim[M_REG_NUM_BANKS]; 545 uint32_t psplim[M_REG_NUM_BANKS]; 546 uint32_t fpcar[M_REG_NUM_BANKS]; 547 uint32_t fpccr[M_REG_NUM_BANKS]; 548 uint32_t fpdscr[M_REG_NUM_BANKS]; 549 uint32_t cpacr[M_REG_NUM_BANKS]; 550 uint32_t nsacr; 551 } v7m; 552 553 /* Information associated with an exception about to be taken: 554 * code which raises an exception must set cs->exception_index and 555 * the relevant parts of this structure; the cpu_do_interrupt function 556 * will then set the guest-visible registers as part of the exception 557 * entry process. 558 */ 559 struct { 560 uint32_t syndrome; /* AArch64 format syndrome register */ 561 uint32_t fsr; /* AArch32 format fault status register info */ 562 uint64_t vaddress; /* virtual addr associated with exception, if any */ 563 uint32_t target_el; /* EL the exception should be targeted for */ 564 /* If we implement EL2 we will also need to store information 565 * about the intermediate physical address for stage 2 faults. 566 */ 567 } exception; 568 569 /* Information associated with an SError */ 570 struct { 571 uint8_t pending; 572 uint8_t has_esr; 573 uint64_t esr; 574 } serror; 575 576 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 577 578 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 579 uint32_t irq_line_state; 580 581 /* Thumb-2 EE state. */ 582 uint32_t teecr; 583 uint32_t teehbr; 584 585 /* VFP coprocessor state. */ 586 struct { 587 ARMVectorReg zregs[32]; 588 589 #ifdef TARGET_AARCH64 590 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 591 #define FFR_PRED_NUM 16 592 ARMPredicateReg pregs[17]; 593 /* Scratch space for aa64 sve predicate temporary. */ 594 ARMPredicateReg preg_tmp; 595 #endif 596 597 /* We store these fpcsr fields separately for convenience. */ 598 uint32_t qc[4] QEMU_ALIGNED(16); 599 int vec_len; 600 int vec_stride; 601 602 uint32_t xregs[16]; 603 604 /* Scratch space for aa32 neon expansion. */ 605 uint32_t scratch[8]; 606 607 /* There are a number of distinct float control structures: 608 * 609 * fp_status: is the "normal" fp status. 610 * fp_status_fp16: used for half-precision calculations 611 * standard_fp_status : the ARM "Standard FPSCR Value" 612 * standard_fp_status_fp16 : used for half-precision 613 * calculations with the ARM "Standard FPSCR Value" 614 * 615 * Half-precision operations are governed by a separate 616 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 617 * status structure to control this. 618 * 619 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 620 * round-to-nearest and is used by any operations (generally 621 * Neon) which the architecture defines as controlled by the 622 * standard FPSCR value rather than the FPSCR. 623 * 624 * The "standard FPSCR but for fp16 ops" is needed because 625 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 626 * using a fixed value for it. 627 * 628 * To avoid having to transfer exception bits around, we simply 629 * say that the FPSCR cumulative exception flags are the logical 630 * OR of the flags in the four fp statuses. This relies on the 631 * only thing which needs to read the exception flags being 632 * an explicit FPSCR read. 633 */ 634 float_status fp_status; 635 float_status fp_status_f16; 636 float_status standard_fp_status; 637 float_status standard_fp_status_f16; 638 639 /* ZCR_EL[1-3] */ 640 uint64_t zcr_el[4]; 641 } vfp; 642 uint64_t exclusive_addr; 643 uint64_t exclusive_val; 644 uint64_t exclusive_high; 645 646 /* iwMMXt coprocessor state. */ 647 struct { 648 uint64_t regs[16]; 649 uint64_t val; 650 651 uint32_t cregs[16]; 652 } iwmmxt; 653 654 #ifdef TARGET_AARCH64 655 struct { 656 ARMPACKey apia; 657 ARMPACKey apib; 658 ARMPACKey apda; 659 ARMPACKey apdb; 660 ARMPACKey apga; 661 } keys; 662 #endif 663 664 #if defined(CONFIG_USER_ONLY) 665 /* For usermode syscall translation. */ 666 int eabi; 667 #endif 668 669 struct CPUBreakpoint *cpu_breakpoint[16]; 670 struct CPUWatchpoint *cpu_watchpoint[16]; 671 672 /* Fields up to this point are cleared by a CPU reset */ 673 struct {} end_reset_fields; 674 675 /* Fields after this point are preserved across CPU reset. */ 676 677 /* Internal CPU feature flags. */ 678 uint64_t features; 679 680 /* PMSAv7 MPU */ 681 struct { 682 uint32_t *drbar; 683 uint32_t *drsr; 684 uint32_t *dracr; 685 uint32_t rnr[M_REG_NUM_BANKS]; 686 } pmsav7; 687 688 /* PMSAv8 MPU */ 689 struct { 690 /* The PMSAv8 implementation also shares some PMSAv7 config 691 * and state: 692 * pmsav7.rnr (region number register) 693 * pmsav7_dregion (number of configured regions) 694 */ 695 uint32_t *rbar[M_REG_NUM_BANKS]; 696 uint32_t *rlar[M_REG_NUM_BANKS]; 697 uint32_t mair0[M_REG_NUM_BANKS]; 698 uint32_t mair1[M_REG_NUM_BANKS]; 699 } pmsav8; 700 701 /* v8M SAU */ 702 struct { 703 uint32_t *rbar; 704 uint32_t *rlar; 705 uint32_t rnr; 706 uint32_t ctrl; 707 } sau; 708 709 void *nvic; 710 const struct arm_boot_info *boot_info; 711 /* Store GICv3CPUState to access from this struct */ 712 void *gicv3state; 713 } CPUARMState; 714 715 static inline void set_feature(CPUARMState *env, int feature) 716 { 717 env->features |= 1ULL << feature; 718 } 719 720 static inline void unset_feature(CPUARMState *env, int feature) 721 { 722 env->features &= ~(1ULL << feature); 723 } 724 725 /** 726 * ARMELChangeHookFn: 727 * type of a function which can be registered via arm_register_el_change_hook() 728 * to get callbacks when the CPU changes its exception level or mode. 729 */ 730 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 731 typedef struct ARMELChangeHook ARMELChangeHook; 732 struct ARMELChangeHook { 733 ARMELChangeHookFn *hook; 734 void *opaque; 735 QLIST_ENTRY(ARMELChangeHook) node; 736 }; 737 738 /* These values map onto the return values for 739 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 740 typedef enum ARMPSCIState { 741 PSCI_ON = 0, 742 PSCI_OFF = 1, 743 PSCI_ON_PENDING = 2 744 } ARMPSCIState; 745 746 typedef struct ARMISARegisters ARMISARegisters; 747 748 /** 749 * ARMCPU: 750 * @env: #CPUARMState 751 * 752 * An ARM CPU core. 753 */ 754 struct ARMCPU { 755 /*< private >*/ 756 CPUState parent_obj; 757 /*< public >*/ 758 759 CPUNegativeOffsetState neg; 760 CPUARMState env; 761 762 /* Coprocessor information */ 763 GHashTable *cp_regs; 764 /* For marshalling (mostly coprocessor) register state between the 765 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 766 * we use these arrays. 767 */ 768 /* List of register indexes managed via these arrays; (full KVM style 769 * 64 bit indexes, not CPRegInfo 32 bit indexes) 770 */ 771 uint64_t *cpreg_indexes; 772 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 773 uint64_t *cpreg_values; 774 /* Length of the indexes, values, reset_values arrays */ 775 int32_t cpreg_array_len; 776 /* These are used only for migration: incoming data arrives in 777 * these fields and is sanity checked in post_load before copying 778 * to the working data structures above. 779 */ 780 uint64_t *cpreg_vmstate_indexes; 781 uint64_t *cpreg_vmstate_values; 782 int32_t cpreg_vmstate_array_len; 783 784 DynamicGDBXMLInfo dyn_sysreg_xml; 785 DynamicGDBXMLInfo dyn_svereg_xml; 786 787 /* Timers used by the generic (architected) timer */ 788 QEMUTimer *gt_timer[NUM_GTIMERS]; 789 /* 790 * Timer used by the PMU. Its state is restored after migration by 791 * pmu_op_finish() - it does not need other handling during migration 792 */ 793 QEMUTimer *pmu_timer; 794 /* GPIO outputs for generic timer */ 795 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 796 /* GPIO output for GICv3 maintenance interrupt signal */ 797 qemu_irq gicv3_maintenance_interrupt; 798 /* GPIO output for the PMU interrupt */ 799 qemu_irq pmu_interrupt; 800 801 /* MemoryRegion to use for secure physical accesses */ 802 MemoryRegion *secure_memory; 803 804 /* MemoryRegion to use for allocation tag accesses */ 805 MemoryRegion *tag_memory; 806 MemoryRegion *secure_tag_memory; 807 808 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 809 Object *idau; 810 811 /* 'compatible' string for this CPU for Linux device trees */ 812 const char *dtb_compatible; 813 814 /* PSCI version for this CPU 815 * Bits[31:16] = Major Version 816 * Bits[15:0] = Minor Version 817 */ 818 uint32_t psci_version; 819 820 /* Should CPU start in PSCI powered-off state? */ 821 bool start_powered_off; 822 823 /* Current power state, access guarded by BQL */ 824 ARMPSCIState power_state; 825 826 /* CPU has virtualization extension */ 827 bool has_el2; 828 /* CPU has security extension */ 829 bool has_el3; 830 /* CPU has PMU (Performance Monitor Unit) */ 831 bool has_pmu; 832 /* CPU has VFP */ 833 bool has_vfp; 834 /* CPU has Neon */ 835 bool has_neon; 836 /* CPU has M-profile DSP extension */ 837 bool has_dsp; 838 839 /* CPU has memory protection unit */ 840 bool has_mpu; 841 /* PMSAv7 MPU number of supported regions */ 842 uint32_t pmsav7_dregion; 843 /* v8M SAU number of supported regions */ 844 uint32_t sau_sregion; 845 846 /* PSCI conduit used to invoke PSCI methods 847 * 0 - disabled, 1 - smc, 2 - hvc 848 */ 849 uint32_t psci_conduit; 850 851 /* For v8M, initial value of the Secure VTOR */ 852 uint32_t init_svtor; 853 854 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 855 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 856 */ 857 uint32_t kvm_target; 858 859 /* KVM init features for this CPU */ 860 uint32_t kvm_init_features[7]; 861 862 /* KVM CPU state */ 863 864 /* KVM virtual time adjustment */ 865 bool kvm_adjvtime; 866 bool kvm_vtime_dirty; 867 uint64_t kvm_vtime; 868 869 /* Uniprocessor system with MP extensions */ 870 bool mp_is_up; 871 872 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 873 * and the probe failed (so we need to report the error in realize) 874 */ 875 bool host_cpu_probe_failed; 876 877 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 878 * register. 879 */ 880 int32_t core_count; 881 882 /* The instance init functions for implementation-specific subclasses 883 * set these fields to specify the implementation-dependent values of 884 * various constant registers and reset values of non-constant 885 * registers. 886 * Some of these might become QOM properties eventually. 887 * Field names match the official register names as defined in the 888 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 889 * is used for reset values of non-constant registers; no reset_ 890 * prefix means a constant register. 891 * Some of these registers are split out into a substructure that 892 * is shared with the translators to control the ISA. 893 * 894 * Note that if you add an ID register to the ARMISARegisters struct 895 * you need to also update the 32-bit and 64-bit versions of the 896 * kvm_arm_get_host_cpu_features() function to correctly populate the 897 * field by reading the value from the KVM vCPU. 898 */ 899 struct ARMISARegisters { 900 uint32_t id_isar0; 901 uint32_t id_isar1; 902 uint32_t id_isar2; 903 uint32_t id_isar3; 904 uint32_t id_isar4; 905 uint32_t id_isar5; 906 uint32_t id_isar6; 907 uint32_t id_mmfr0; 908 uint32_t id_mmfr1; 909 uint32_t id_mmfr2; 910 uint32_t id_mmfr3; 911 uint32_t id_mmfr4; 912 uint32_t mvfr0; 913 uint32_t mvfr1; 914 uint32_t mvfr2; 915 uint32_t id_dfr0; 916 uint32_t dbgdidr; 917 uint64_t id_aa64isar0; 918 uint64_t id_aa64isar1; 919 uint64_t id_aa64pfr0; 920 uint64_t id_aa64pfr1; 921 uint64_t id_aa64mmfr0; 922 uint64_t id_aa64mmfr1; 923 uint64_t id_aa64mmfr2; 924 uint64_t id_aa64dfr0; 925 uint64_t id_aa64dfr1; 926 } isar; 927 uint64_t midr; 928 uint32_t revidr; 929 uint32_t reset_fpsid; 930 uint32_t ctr; 931 uint32_t reset_sctlr; 932 uint32_t id_pfr0; 933 uint32_t id_pfr1; 934 uint64_t pmceid0; 935 uint64_t pmceid1; 936 uint32_t id_afr0; 937 uint64_t id_aa64afr0; 938 uint64_t id_aa64afr1; 939 uint32_t clidr; 940 uint64_t mp_affinity; /* MP ID without feature bits */ 941 /* The elements of this array are the CCSIDR values for each cache, 942 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 943 */ 944 uint64_t ccsidr[16]; 945 uint64_t reset_cbar; 946 uint32_t reset_auxcr; 947 bool reset_hivecs; 948 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 949 uint32_t dcz_blocksize; 950 uint64_t rvbar; 951 952 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 953 int gic_num_lrs; /* number of list registers */ 954 int gic_vpribits; /* number of virtual priority bits */ 955 int gic_vprebits; /* number of virtual preemption bits */ 956 957 /* Whether the cfgend input is high (i.e. this CPU should reset into 958 * big-endian mode). This setting isn't used directly: instead it modifies 959 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 960 * architecture version. 961 */ 962 bool cfgend; 963 964 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 965 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 966 967 int32_t node_id; /* NUMA node this CPU belongs to */ 968 969 /* Used to synchronize KVM and QEMU in-kernel device levels */ 970 uint8_t device_irq_level; 971 972 /* Used to set the maximum vector length the cpu will support. */ 973 uint32_t sve_max_vq; 974 975 /* 976 * In sve_vq_map each set bit is a supported vector length of 977 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector 978 * length in quadwords. 979 * 980 * While processing properties during initialization, corresponding 981 * sve_vq_init bits are set for bits in sve_vq_map that have been 982 * set by properties. 983 */ 984 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); 985 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); 986 987 /* Generic timer counter frequency, in Hz */ 988 uint64_t gt_cntfrq_hz; 989 }; 990 991 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 992 993 void arm_cpu_post_init(Object *obj); 994 995 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 996 997 #ifndef CONFIG_USER_ONLY 998 extern const VMStateDescription vmstate_arm_cpu; 999 #endif 1000 1001 void arm_cpu_do_interrupt(CPUState *cpu); 1002 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1003 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 1004 1005 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1006 MemTxAttrs *attrs); 1007 1008 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1009 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1010 1011 /* 1012 * Helpers to dynamically generates XML descriptions of the sysregs 1013 * and SVE registers. Returns the number of registers in each set. 1014 */ 1015 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1016 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1017 1018 /* Returns the dynamically generated XML for the gdb stub. 1019 * Returns a pointer to the XML contents for the specified XML file or NULL 1020 * if the XML name doesn't match the predefined one. 1021 */ 1022 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1023 1024 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1025 int cpuid, void *opaque); 1026 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1027 int cpuid, void *opaque); 1028 1029 #ifdef TARGET_AARCH64 1030 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1031 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1032 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1033 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1034 int new_el, bool el0_a64); 1035 void aarch64_add_sve_properties(Object *obj); 1036 1037 /* 1038 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1039 * The byte at offset i from the start of the in-memory representation contains 1040 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1041 * lowest offsets are stored in the lowest memory addresses, then that nearly 1042 * matches QEMU's representation, which is to use an array of host-endian 1043 * uint64_t's, where the lower offsets are at the lower indices. To complete 1044 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1045 */ 1046 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1047 { 1048 #ifdef HOST_WORDS_BIGENDIAN 1049 int i; 1050 1051 for (i = 0; i < nr; ++i) { 1052 dst[i] = bswap64(src[i]); 1053 } 1054 1055 return dst; 1056 #else 1057 return src; 1058 #endif 1059 } 1060 1061 #else 1062 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1063 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1064 int n, bool a) 1065 { } 1066 static inline void aarch64_add_sve_properties(Object *obj) { } 1067 #endif 1068 1069 #if !defined(CONFIG_TCG) 1070 static inline target_ulong do_arm_semihosting(CPUARMState *env) 1071 { 1072 g_assert_not_reached(); 1073 } 1074 #else 1075 target_ulong do_arm_semihosting(CPUARMState *env); 1076 #endif 1077 void aarch64_sync_32_to_64(CPUARMState *env); 1078 void aarch64_sync_64_to_32(CPUARMState *env); 1079 1080 int fp_exception_el(CPUARMState *env, int cur_el); 1081 int sve_exception_el(CPUARMState *env, int cur_el); 1082 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 1083 1084 static inline bool is_a64(CPUARMState *env) 1085 { 1086 return env->aarch64; 1087 } 1088 1089 /* you can call this signal handler from your SIGBUS and SIGSEGV 1090 signal handlers to inform the virtual CPU of exceptions. non zero 1091 is returned if the signal was handled by the virtual CPU. */ 1092 int cpu_arm_signal_handler(int host_signum, void *pinfo, 1093 void *puc); 1094 1095 /** 1096 * pmu_op_start/finish 1097 * @env: CPUARMState 1098 * 1099 * Convert all PMU counters between their delta form (the typical mode when 1100 * they are enabled) and the guest-visible values. These two calls must 1101 * surround any action which might affect the counters. 1102 */ 1103 void pmu_op_start(CPUARMState *env); 1104 void pmu_op_finish(CPUARMState *env); 1105 1106 /* 1107 * Called when a PMU counter is due to overflow 1108 */ 1109 void arm_pmu_timer_cb(void *opaque); 1110 1111 /** 1112 * Functions to register as EL change hooks for PMU mode filtering 1113 */ 1114 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1115 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1116 1117 /* 1118 * pmu_init 1119 * @cpu: ARMCPU 1120 * 1121 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1122 * for the current configuration 1123 */ 1124 void pmu_init(ARMCPU *cpu); 1125 1126 /* SCTLR bit meanings. Several bits have been reused in newer 1127 * versions of the architecture; in that case we define constants 1128 * for both old and new bit meanings. Code which tests against those 1129 * bits should probably check or otherwise arrange that the CPU 1130 * is the architectural version it expects. 1131 */ 1132 #define SCTLR_M (1U << 0) 1133 #define SCTLR_A (1U << 1) 1134 #define SCTLR_C (1U << 2) 1135 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1136 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1137 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1138 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1139 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1140 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1141 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1142 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1143 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1144 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1145 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1146 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1147 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1148 #define SCTLR_SED (1U << 8) /* v8 onward */ 1149 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1150 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1151 #define SCTLR_F (1U << 10) /* up to v6 */ 1152 #define SCTLR_SW (1U << 10) /* v7 */ 1153 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1154 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1155 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1156 #define SCTLR_I (1U << 12) 1157 #define SCTLR_V (1U << 13) /* AArch32 only */ 1158 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1159 #define SCTLR_RR (1U << 14) /* up to v7 */ 1160 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1161 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1162 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1163 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1164 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1165 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1166 #define SCTLR_BR (1U << 17) /* PMSA only */ 1167 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1168 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1169 #define SCTLR_WXN (1U << 19) 1170 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1171 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1172 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1173 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1174 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1175 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1176 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1177 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1178 #define SCTLR_VE (1U << 24) /* up to v7 */ 1179 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1180 #define SCTLR_EE (1U << 25) 1181 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1182 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1183 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1184 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1185 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1186 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1187 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1188 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1189 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1190 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1191 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1192 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1193 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1194 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1195 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1196 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1197 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1198 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1199 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1200 1201 #define CPTR_TCPAC (1U << 31) 1202 #define CPTR_TTA (1U << 20) 1203 #define CPTR_TFP (1U << 10) 1204 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1205 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1206 1207 #define MDCR_EPMAD (1U << 21) 1208 #define MDCR_EDAD (1U << 20) 1209 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1210 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1211 #define MDCR_SDD (1U << 16) 1212 #define MDCR_SPD (3U << 14) 1213 #define MDCR_TDRA (1U << 11) 1214 #define MDCR_TDOSA (1U << 10) 1215 #define MDCR_TDA (1U << 9) 1216 #define MDCR_TDE (1U << 8) 1217 #define MDCR_HPME (1U << 7) 1218 #define MDCR_TPM (1U << 6) 1219 #define MDCR_TPMCR (1U << 5) 1220 #define MDCR_HPMN (0x1fU) 1221 1222 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1223 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1224 1225 #define CPSR_M (0x1fU) 1226 #define CPSR_T (1U << 5) 1227 #define CPSR_F (1U << 6) 1228 #define CPSR_I (1U << 7) 1229 #define CPSR_A (1U << 8) 1230 #define CPSR_E (1U << 9) 1231 #define CPSR_IT_2_7 (0xfc00U) 1232 #define CPSR_GE (0xfU << 16) 1233 #define CPSR_IL (1U << 20) 1234 #define CPSR_PAN (1U << 22) 1235 #define CPSR_J (1U << 24) 1236 #define CPSR_IT_0_1 (3U << 25) 1237 #define CPSR_Q (1U << 27) 1238 #define CPSR_V (1U << 28) 1239 #define CPSR_C (1U << 29) 1240 #define CPSR_Z (1U << 30) 1241 #define CPSR_N (1U << 31) 1242 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1243 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1244 1245 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1246 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1247 | CPSR_NZCV) 1248 /* Bits writable in user mode. */ 1249 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1250 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1251 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1252 1253 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1254 #define XPSR_EXCP 0x1ffU 1255 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1256 #define XPSR_IT_2_7 CPSR_IT_2_7 1257 #define XPSR_GE CPSR_GE 1258 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1259 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1260 #define XPSR_IT_0_1 CPSR_IT_0_1 1261 #define XPSR_Q CPSR_Q 1262 #define XPSR_V CPSR_V 1263 #define XPSR_C CPSR_C 1264 #define XPSR_Z CPSR_Z 1265 #define XPSR_N CPSR_N 1266 #define XPSR_NZCV CPSR_NZCV 1267 #define XPSR_IT CPSR_IT 1268 1269 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1270 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1271 #define TTBCR_PD0 (1U << 4) 1272 #define TTBCR_PD1 (1U << 5) 1273 #define TTBCR_EPD0 (1U << 7) 1274 #define TTBCR_IRGN0 (3U << 8) 1275 #define TTBCR_ORGN0 (3U << 10) 1276 #define TTBCR_SH0 (3U << 12) 1277 #define TTBCR_T1SZ (3U << 16) 1278 #define TTBCR_A1 (1U << 22) 1279 #define TTBCR_EPD1 (1U << 23) 1280 #define TTBCR_IRGN1 (3U << 24) 1281 #define TTBCR_ORGN1 (3U << 26) 1282 #define TTBCR_SH1 (1U << 28) 1283 #define TTBCR_EAE (1U << 31) 1284 1285 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1286 * Only these are valid when in AArch64 mode; in 1287 * AArch32 mode SPSRs are basically CPSR-format. 1288 */ 1289 #define PSTATE_SP (1U) 1290 #define PSTATE_M (0xFU) 1291 #define PSTATE_nRW (1U << 4) 1292 #define PSTATE_F (1U << 6) 1293 #define PSTATE_I (1U << 7) 1294 #define PSTATE_A (1U << 8) 1295 #define PSTATE_D (1U << 9) 1296 #define PSTATE_BTYPE (3U << 10) 1297 #define PSTATE_IL (1U << 20) 1298 #define PSTATE_SS (1U << 21) 1299 #define PSTATE_PAN (1U << 22) 1300 #define PSTATE_UAO (1U << 23) 1301 #define PSTATE_TCO (1U << 25) 1302 #define PSTATE_V (1U << 28) 1303 #define PSTATE_C (1U << 29) 1304 #define PSTATE_Z (1U << 30) 1305 #define PSTATE_N (1U << 31) 1306 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1307 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1308 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1309 /* Mode values for AArch64 */ 1310 #define PSTATE_MODE_EL3h 13 1311 #define PSTATE_MODE_EL3t 12 1312 #define PSTATE_MODE_EL2h 9 1313 #define PSTATE_MODE_EL2t 8 1314 #define PSTATE_MODE_EL1h 5 1315 #define PSTATE_MODE_EL1t 4 1316 #define PSTATE_MODE_EL0t 0 1317 1318 /* Write a new value to v7m.exception, thus transitioning into or out 1319 * of Handler mode; this may result in a change of active stack pointer. 1320 */ 1321 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1322 1323 /* Map EL and handler into a PSTATE_MODE. */ 1324 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1325 { 1326 return (el << 2) | handler; 1327 } 1328 1329 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1330 * interprocessing, so we don't attempt to sync with the cpsr state used by 1331 * the 32 bit decoder. 1332 */ 1333 static inline uint32_t pstate_read(CPUARMState *env) 1334 { 1335 int ZF; 1336 1337 ZF = (env->ZF == 0); 1338 return (env->NF & 0x80000000) | (ZF << 30) 1339 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1340 | env->pstate | env->daif | (env->btype << 10); 1341 } 1342 1343 static inline void pstate_write(CPUARMState *env, uint32_t val) 1344 { 1345 env->ZF = (~val) & PSTATE_Z; 1346 env->NF = val; 1347 env->CF = (val >> 29) & 1; 1348 env->VF = (val << 3) & 0x80000000; 1349 env->daif = val & PSTATE_DAIF; 1350 env->btype = (val >> 10) & 3; 1351 env->pstate = val & ~CACHED_PSTATE_BITS; 1352 } 1353 1354 /* Return the current CPSR value. */ 1355 uint32_t cpsr_read(CPUARMState *env); 1356 1357 typedef enum CPSRWriteType { 1358 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1359 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1360 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1361 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1362 } CPSRWriteType; 1363 1364 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1365 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1366 CPSRWriteType write_type); 1367 1368 /* Return the current xPSR value. */ 1369 static inline uint32_t xpsr_read(CPUARMState *env) 1370 { 1371 int ZF; 1372 ZF = (env->ZF == 0); 1373 return (env->NF & 0x80000000) | (ZF << 30) 1374 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1375 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1376 | ((env->condexec_bits & 0xfc) << 8) 1377 | (env->GE << 16) 1378 | env->v7m.exception; 1379 } 1380 1381 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1382 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1383 { 1384 if (mask & XPSR_NZCV) { 1385 env->ZF = (~val) & XPSR_Z; 1386 env->NF = val; 1387 env->CF = (val >> 29) & 1; 1388 env->VF = (val << 3) & 0x80000000; 1389 } 1390 if (mask & XPSR_Q) { 1391 env->QF = ((val & XPSR_Q) != 0); 1392 } 1393 if (mask & XPSR_GE) { 1394 env->GE = (val & XPSR_GE) >> 16; 1395 } 1396 #ifndef CONFIG_USER_ONLY 1397 if (mask & XPSR_T) { 1398 env->thumb = ((val & XPSR_T) != 0); 1399 } 1400 if (mask & XPSR_IT_0_1) { 1401 env->condexec_bits &= ~3; 1402 env->condexec_bits |= (val >> 25) & 3; 1403 } 1404 if (mask & XPSR_IT_2_7) { 1405 env->condexec_bits &= 3; 1406 env->condexec_bits |= (val >> 8) & 0xfc; 1407 } 1408 if (mask & XPSR_EXCP) { 1409 /* Note that this only happens on exception exit */ 1410 write_v7m_exception(env, val & XPSR_EXCP); 1411 } 1412 #endif 1413 } 1414 1415 #define HCR_VM (1ULL << 0) 1416 #define HCR_SWIO (1ULL << 1) 1417 #define HCR_PTW (1ULL << 2) 1418 #define HCR_FMO (1ULL << 3) 1419 #define HCR_IMO (1ULL << 4) 1420 #define HCR_AMO (1ULL << 5) 1421 #define HCR_VF (1ULL << 6) 1422 #define HCR_VI (1ULL << 7) 1423 #define HCR_VSE (1ULL << 8) 1424 #define HCR_FB (1ULL << 9) 1425 #define HCR_BSU_MASK (3ULL << 10) 1426 #define HCR_DC (1ULL << 12) 1427 #define HCR_TWI (1ULL << 13) 1428 #define HCR_TWE (1ULL << 14) 1429 #define HCR_TID0 (1ULL << 15) 1430 #define HCR_TID1 (1ULL << 16) 1431 #define HCR_TID2 (1ULL << 17) 1432 #define HCR_TID3 (1ULL << 18) 1433 #define HCR_TSC (1ULL << 19) 1434 #define HCR_TIDCP (1ULL << 20) 1435 #define HCR_TACR (1ULL << 21) 1436 #define HCR_TSW (1ULL << 22) 1437 #define HCR_TPCP (1ULL << 23) 1438 #define HCR_TPU (1ULL << 24) 1439 #define HCR_TTLB (1ULL << 25) 1440 #define HCR_TVM (1ULL << 26) 1441 #define HCR_TGE (1ULL << 27) 1442 #define HCR_TDZ (1ULL << 28) 1443 #define HCR_HCD (1ULL << 29) 1444 #define HCR_TRVM (1ULL << 30) 1445 #define HCR_RW (1ULL << 31) 1446 #define HCR_CD (1ULL << 32) 1447 #define HCR_ID (1ULL << 33) 1448 #define HCR_E2H (1ULL << 34) 1449 #define HCR_TLOR (1ULL << 35) 1450 #define HCR_TERR (1ULL << 36) 1451 #define HCR_TEA (1ULL << 37) 1452 #define HCR_MIOCNCE (1ULL << 38) 1453 /* RES0 bit 39 */ 1454 #define HCR_APK (1ULL << 40) 1455 #define HCR_API (1ULL << 41) 1456 #define HCR_NV (1ULL << 42) 1457 #define HCR_NV1 (1ULL << 43) 1458 #define HCR_AT (1ULL << 44) 1459 #define HCR_NV2 (1ULL << 45) 1460 #define HCR_FWB (1ULL << 46) 1461 #define HCR_FIEN (1ULL << 47) 1462 /* RES0 bit 48 */ 1463 #define HCR_TID4 (1ULL << 49) 1464 #define HCR_TICAB (1ULL << 50) 1465 #define HCR_AMVOFFEN (1ULL << 51) 1466 #define HCR_TOCU (1ULL << 52) 1467 #define HCR_ENSCXT (1ULL << 53) 1468 #define HCR_TTLBIS (1ULL << 54) 1469 #define HCR_TTLBOS (1ULL << 55) 1470 #define HCR_ATA (1ULL << 56) 1471 #define HCR_DCT (1ULL << 57) 1472 #define HCR_TID5 (1ULL << 58) 1473 #define HCR_TWEDEN (1ULL << 59) 1474 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1475 1476 #define SCR_NS (1U << 0) 1477 #define SCR_IRQ (1U << 1) 1478 #define SCR_FIQ (1U << 2) 1479 #define SCR_EA (1U << 3) 1480 #define SCR_FW (1U << 4) 1481 #define SCR_AW (1U << 5) 1482 #define SCR_NET (1U << 6) 1483 #define SCR_SMD (1U << 7) 1484 #define SCR_HCE (1U << 8) 1485 #define SCR_SIF (1U << 9) 1486 #define SCR_RW (1U << 10) 1487 #define SCR_ST (1U << 11) 1488 #define SCR_TWI (1U << 12) 1489 #define SCR_TWE (1U << 13) 1490 #define SCR_TLOR (1U << 14) 1491 #define SCR_TERR (1U << 15) 1492 #define SCR_APK (1U << 16) 1493 #define SCR_API (1U << 17) 1494 #define SCR_EEL2 (1U << 18) 1495 #define SCR_EASE (1U << 19) 1496 #define SCR_NMEA (1U << 20) 1497 #define SCR_FIEN (1U << 21) 1498 #define SCR_ENSCXT (1U << 25) 1499 #define SCR_ATA (1U << 26) 1500 1501 /* Return the current FPSCR value. */ 1502 uint32_t vfp_get_fpscr(CPUARMState *env); 1503 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1504 1505 /* FPCR, Floating Point Control Register 1506 * FPSR, Floating Poiht Status Register 1507 * 1508 * For A64 the FPSCR is split into two logically distinct registers, 1509 * FPCR and FPSR. However since they still use non-overlapping bits 1510 * we store the underlying state in fpscr and just mask on read/write. 1511 */ 1512 #define FPSR_MASK 0xf800009f 1513 #define FPCR_MASK 0x07ff9f00 1514 1515 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1516 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1517 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1518 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1519 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1520 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1521 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1522 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1523 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1524 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1525 1526 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1527 { 1528 return vfp_get_fpscr(env) & FPSR_MASK; 1529 } 1530 1531 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1532 { 1533 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1534 vfp_set_fpscr(env, new_fpscr); 1535 } 1536 1537 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1538 { 1539 return vfp_get_fpscr(env) & FPCR_MASK; 1540 } 1541 1542 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1543 { 1544 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1545 vfp_set_fpscr(env, new_fpscr); 1546 } 1547 1548 enum arm_cpu_mode { 1549 ARM_CPU_MODE_USR = 0x10, 1550 ARM_CPU_MODE_FIQ = 0x11, 1551 ARM_CPU_MODE_IRQ = 0x12, 1552 ARM_CPU_MODE_SVC = 0x13, 1553 ARM_CPU_MODE_MON = 0x16, 1554 ARM_CPU_MODE_ABT = 0x17, 1555 ARM_CPU_MODE_HYP = 0x1a, 1556 ARM_CPU_MODE_UND = 0x1b, 1557 ARM_CPU_MODE_SYS = 0x1f 1558 }; 1559 1560 /* VFP system registers. */ 1561 #define ARM_VFP_FPSID 0 1562 #define ARM_VFP_FPSCR 1 1563 #define ARM_VFP_MVFR2 5 1564 #define ARM_VFP_MVFR1 6 1565 #define ARM_VFP_MVFR0 7 1566 #define ARM_VFP_FPEXC 8 1567 #define ARM_VFP_FPINST 9 1568 #define ARM_VFP_FPINST2 10 1569 1570 /* iwMMXt coprocessor control registers. */ 1571 #define ARM_IWMMXT_wCID 0 1572 #define ARM_IWMMXT_wCon 1 1573 #define ARM_IWMMXT_wCSSF 2 1574 #define ARM_IWMMXT_wCASF 3 1575 #define ARM_IWMMXT_wCGR0 8 1576 #define ARM_IWMMXT_wCGR1 9 1577 #define ARM_IWMMXT_wCGR2 10 1578 #define ARM_IWMMXT_wCGR3 11 1579 1580 /* V7M CCR bits */ 1581 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1582 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1583 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1584 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1585 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1586 FIELD(V7M_CCR, STKALIGN, 9, 1) 1587 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1588 FIELD(V7M_CCR, DC, 16, 1) 1589 FIELD(V7M_CCR, IC, 17, 1) 1590 FIELD(V7M_CCR, BP, 18, 1) 1591 1592 /* V7M SCR bits */ 1593 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1594 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1595 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1596 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1597 1598 /* V7M AIRCR bits */ 1599 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1600 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1601 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1602 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1603 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1604 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1605 FIELD(V7M_AIRCR, PRIS, 14, 1) 1606 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1607 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1608 1609 /* V7M CFSR bits for MMFSR */ 1610 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1611 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1612 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1613 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1614 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1615 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1616 1617 /* V7M CFSR bits for BFSR */ 1618 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1619 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1620 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1621 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1622 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1623 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1624 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1625 1626 /* V7M CFSR bits for UFSR */ 1627 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1628 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1629 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1630 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1631 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1632 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1633 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1634 1635 /* V7M CFSR bit masks covering all of the subregister bits */ 1636 FIELD(V7M_CFSR, MMFSR, 0, 8) 1637 FIELD(V7M_CFSR, BFSR, 8, 8) 1638 FIELD(V7M_CFSR, UFSR, 16, 16) 1639 1640 /* V7M HFSR bits */ 1641 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1642 FIELD(V7M_HFSR, FORCED, 30, 1) 1643 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1644 1645 /* V7M DFSR bits */ 1646 FIELD(V7M_DFSR, HALTED, 0, 1) 1647 FIELD(V7M_DFSR, BKPT, 1, 1) 1648 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1649 FIELD(V7M_DFSR, VCATCH, 3, 1) 1650 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1651 1652 /* V7M SFSR bits */ 1653 FIELD(V7M_SFSR, INVEP, 0, 1) 1654 FIELD(V7M_SFSR, INVIS, 1, 1) 1655 FIELD(V7M_SFSR, INVER, 2, 1) 1656 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1657 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1658 FIELD(V7M_SFSR, LSPERR, 5, 1) 1659 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1660 FIELD(V7M_SFSR, LSERR, 7, 1) 1661 1662 /* v7M MPU_CTRL bits */ 1663 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1664 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1665 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1666 1667 /* v7M CLIDR bits */ 1668 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1669 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1670 FIELD(V7M_CLIDR, LOC, 24, 3) 1671 FIELD(V7M_CLIDR, LOUU, 27, 3) 1672 FIELD(V7M_CLIDR, ICB, 30, 2) 1673 1674 FIELD(V7M_CSSELR, IND, 0, 1) 1675 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1676 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1677 * define a mask for this and check that it doesn't permit running off 1678 * the end of the array. 1679 */ 1680 FIELD(V7M_CSSELR, INDEX, 0, 4) 1681 1682 /* v7M FPCCR bits */ 1683 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1684 FIELD(V7M_FPCCR, USER, 1, 1) 1685 FIELD(V7M_FPCCR, S, 2, 1) 1686 FIELD(V7M_FPCCR, THREAD, 3, 1) 1687 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1688 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1689 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1690 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1691 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1692 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1693 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1694 FIELD(V7M_FPCCR, RES0, 11, 15) 1695 FIELD(V7M_FPCCR, TS, 26, 1) 1696 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1697 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1698 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1699 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1700 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1701 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1702 #define R_V7M_FPCCR_BANKED_MASK \ 1703 (R_V7M_FPCCR_LSPACT_MASK | \ 1704 R_V7M_FPCCR_USER_MASK | \ 1705 R_V7M_FPCCR_THREAD_MASK | \ 1706 R_V7M_FPCCR_MMRDY_MASK | \ 1707 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1708 R_V7M_FPCCR_UFRDY_MASK | \ 1709 R_V7M_FPCCR_ASPEN_MASK) 1710 1711 /* 1712 * System register ID fields. 1713 */ 1714 FIELD(MIDR_EL1, REVISION, 0, 4) 1715 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1716 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1717 FIELD(MIDR_EL1, VARIANT, 20, 4) 1718 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1719 1720 FIELD(ID_ISAR0, SWAP, 0, 4) 1721 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1722 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1723 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1724 FIELD(ID_ISAR0, COPROC, 16, 4) 1725 FIELD(ID_ISAR0, DEBUG, 20, 4) 1726 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1727 1728 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1729 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1730 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1731 FIELD(ID_ISAR1, EXTEND, 12, 4) 1732 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1733 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1734 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1735 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1736 1737 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1738 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1739 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1740 FIELD(ID_ISAR2, MULT, 12, 4) 1741 FIELD(ID_ISAR2, MULTS, 16, 4) 1742 FIELD(ID_ISAR2, MULTU, 20, 4) 1743 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1744 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1745 1746 FIELD(ID_ISAR3, SATURATE, 0, 4) 1747 FIELD(ID_ISAR3, SIMD, 4, 4) 1748 FIELD(ID_ISAR3, SVC, 8, 4) 1749 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1750 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1751 FIELD(ID_ISAR3, T32COPY, 20, 4) 1752 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1753 FIELD(ID_ISAR3, T32EE, 28, 4) 1754 1755 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1756 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1757 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1758 FIELD(ID_ISAR4, SMC, 12, 4) 1759 FIELD(ID_ISAR4, BARRIER, 16, 4) 1760 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1761 FIELD(ID_ISAR4, PSR_M, 24, 4) 1762 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1763 1764 FIELD(ID_ISAR5, SEVL, 0, 4) 1765 FIELD(ID_ISAR5, AES, 4, 4) 1766 FIELD(ID_ISAR5, SHA1, 8, 4) 1767 FIELD(ID_ISAR5, SHA2, 12, 4) 1768 FIELD(ID_ISAR5, CRC32, 16, 4) 1769 FIELD(ID_ISAR5, RDM, 24, 4) 1770 FIELD(ID_ISAR5, VCMA, 28, 4) 1771 1772 FIELD(ID_ISAR6, JSCVT, 0, 4) 1773 FIELD(ID_ISAR6, DP, 4, 4) 1774 FIELD(ID_ISAR6, FHM, 8, 4) 1775 FIELD(ID_ISAR6, SB, 12, 4) 1776 FIELD(ID_ISAR6, SPECRES, 16, 4) 1777 1778 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 1779 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 1780 FIELD(ID_MMFR3, BPMAINT, 8, 4) 1781 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 1782 FIELD(ID_MMFR3, PAN, 16, 4) 1783 FIELD(ID_MMFR3, COHWALK, 20, 4) 1784 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 1785 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 1786 1787 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1788 FIELD(ID_MMFR4, AC2, 4, 4) 1789 FIELD(ID_MMFR4, XNX, 8, 4) 1790 FIELD(ID_MMFR4, CNP, 12, 4) 1791 FIELD(ID_MMFR4, HPDS, 16, 4) 1792 FIELD(ID_MMFR4, LSM, 20, 4) 1793 FIELD(ID_MMFR4, CCIDX, 24, 4) 1794 FIELD(ID_MMFR4, EVT, 28, 4) 1795 1796 FIELD(ID_AA64ISAR0, AES, 4, 4) 1797 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1798 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1799 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1800 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1801 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1802 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1803 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1804 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1805 FIELD(ID_AA64ISAR0, DP, 44, 4) 1806 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1807 FIELD(ID_AA64ISAR0, TS, 52, 4) 1808 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1809 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1810 1811 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1812 FIELD(ID_AA64ISAR1, APA, 4, 4) 1813 FIELD(ID_AA64ISAR1, API, 8, 4) 1814 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1815 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1816 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1817 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1818 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1819 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1820 FIELD(ID_AA64ISAR1, SB, 36, 4) 1821 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1822 1823 FIELD(ID_AA64PFR0, EL0, 0, 4) 1824 FIELD(ID_AA64PFR0, EL1, 4, 4) 1825 FIELD(ID_AA64PFR0, EL2, 8, 4) 1826 FIELD(ID_AA64PFR0, EL3, 12, 4) 1827 FIELD(ID_AA64PFR0, FP, 16, 4) 1828 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1829 FIELD(ID_AA64PFR0, GIC, 24, 4) 1830 FIELD(ID_AA64PFR0, RAS, 28, 4) 1831 FIELD(ID_AA64PFR0, SVE, 32, 4) 1832 1833 FIELD(ID_AA64PFR1, BT, 0, 4) 1834 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1835 FIELD(ID_AA64PFR1, MTE, 8, 4) 1836 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1837 1838 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1839 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1840 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1841 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1842 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1843 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1844 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1845 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1846 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1847 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1848 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1849 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1850 1851 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1852 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1853 FIELD(ID_AA64MMFR1, VH, 8, 4) 1854 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1855 FIELD(ID_AA64MMFR1, LO, 16, 4) 1856 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1857 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1858 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1859 1860 FIELD(ID_AA64MMFR2, CNP, 0, 4) 1861 FIELD(ID_AA64MMFR2, UAO, 4, 4) 1862 FIELD(ID_AA64MMFR2, LSM, 8, 4) 1863 FIELD(ID_AA64MMFR2, IESB, 12, 4) 1864 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 1865 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 1866 FIELD(ID_AA64MMFR2, NV, 24, 4) 1867 FIELD(ID_AA64MMFR2, ST, 28, 4) 1868 FIELD(ID_AA64MMFR2, AT, 32, 4) 1869 FIELD(ID_AA64MMFR2, IDS, 36, 4) 1870 FIELD(ID_AA64MMFR2, FWB, 40, 4) 1871 FIELD(ID_AA64MMFR2, TTL, 48, 4) 1872 FIELD(ID_AA64MMFR2, BBM, 52, 4) 1873 FIELD(ID_AA64MMFR2, EVT, 56, 4) 1874 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 1875 1876 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 1877 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 1878 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 1879 FIELD(ID_AA64DFR0, BRPS, 12, 4) 1880 FIELD(ID_AA64DFR0, WRPS, 20, 4) 1881 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 1882 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 1883 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 1884 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 1885 1886 FIELD(ID_DFR0, COPDBG, 0, 4) 1887 FIELD(ID_DFR0, COPSDBG, 4, 4) 1888 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1889 FIELD(ID_DFR0, COPTRC, 12, 4) 1890 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1891 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1892 FIELD(ID_DFR0, PERFMON, 24, 4) 1893 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1894 1895 FIELD(DBGDIDR, SE_IMP, 12, 1) 1896 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 1897 FIELD(DBGDIDR, VERSION, 16, 4) 1898 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 1899 FIELD(DBGDIDR, BRPS, 24, 4) 1900 FIELD(DBGDIDR, WRPS, 28, 4) 1901 1902 FIELD(MVFR0, SIMDREG, 0, 4) 1903 FIELD(MVFR0, FPSP, 4, 4) 1904 FIELD(MVFR0, FPDP, 8, 4) 1905 FIELD(MVFR0, FPTRAP, 12, 4) 1906 FIELD(MVFR0, FPDIVIDE, 16, 4) 1907 FIELD(MVFR0, FPSQRT, 20, 4) 1908 FIELD(MVFR0, FPSHVEC, 24, 4) 1909 FIELD(MVFR0, FPROUND, 28, 4) 1910 1911 FIELD(MVFR1, FPFTZ, 0, 4) 1912 FIELD(MVFR1, FPDNAN, 4, 4) 1913 FIELD(MVFR1, SIMDLS, 8, 4) 1914 FIELD(MVFR1, SIMDINT, 12, 4) 1915 FIELD(MVFR1, SIMDSP, 16, 4) 1916 FIELD(MVFR1, SIMDHP, 20, 4) 1917 FIELD(MVFR1, FPHP, 24, 4) 1918 FIELD(MVFR1, SIMDFMAC, 28, 4) 1919 1920 FIELD(MVFR2, SIMDMISC, 0, 4) 1921 FIELD(MVFR2, FPMISC, 4, 4) 1922 1923 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1924 1925 /* If adding a feature bit which corresponds to a Linux ELF 1926 * HWCAP bit, remember to update the feature-bit-to-hwcap 1927 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1928 */ 1929 enum arm_features { 1930 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1931 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1932 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1933 ARM_FEATURE_V6, 1934 ARM_FEATURE_V6K, 1935 ARM_FEATURE_V7, 1936 ARM_FEATURE_THUMB2, 1937 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1938 ARM_FEATURE_NEON, 1939 ARM_FEATURE_M, /* Microcontroller profile. */ 1940 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1941 ARM_FEATURE_THUMB2EE, 1942 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1943 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1944 ARM_FEATURE_V4T, 1945 ARM_FEATURE_V5, 1946 ARM_FEATURE_STRONGARM, 1947 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1948 ARM_FEATURE_GENERIC_TIMER, 1949 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1950 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1951 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1952 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1953 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1954 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1955 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1956 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1957 ARM_FEATURE_V8, 1958 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1959 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1960 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1961 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1962 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1963 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1964 ARM_FEATURE_PMU, /* has PMU support */ 1965 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1966 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1967 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1968 }; 1969 1970 static inline int arm_feature(CPUARMState *env, int feature) 1971 { 1972 return (env->features & (1ULL << feature)) != 0; 1973 } 1974 1975 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 1976 1977 #if !defined(CONFIG_USER_ONLY) 1978 /* Return true if exception levels below EL3 are in secure state, 1979 * or would be following an exception return to that level. 1980 * Unlike arm_is_secure() (which is always a question about the 1981 * _current_ state of the CPU) this doesn't care about the current 1982 * EL or mode. 1983 */ 1984 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1985 { 1986 if (arm_feature(env, ARM_FEATURE_EL3)) { 1987 return !(env->cp15.scr_el3 & SCR_NS); 1988 } else { 1989 /* If EL3 is not supported then the secure state is implementation 1990 * defined, in which case QEMU defaults to non-secure. 1991 */ 1992 return false; 1993 } 1994 } 1995 1996 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1997 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1998 { 1999 if (arm_feature(env, ARM_FEATURE_EL3)) { 2000 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2001 /* CPU currently in AArch64 state and EL3 */ 2002 return true; 2003 } else if (!is_a64(env) && 2004 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2005 /* CPU currently in AArch32 state and monitor mode */ 2006 return true; 2007 } 2008 } 2009 return false; 2010 } 2011 2012 /* Return true if the processor is in secure state */ 2013 static inline bool arm_is_secure(CPUARMState *env) 2014 { 2015 if (arm_is_el3_or_mon(env)) { 2016 return true; 2017 } 2018 return arm_is_secure_below_el3(env); 2019 } 2020 2021 #else 2022 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2023 { 2024 return false; 2025 } 2026 2027 static inline bool arm_is_secure(CPUARMState *env) 2028 { 2029 return false; 2030 } 2031 #endif 2032 2033 /** 2034 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2035 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2036 * "for all purposes other than a direct read or write access of HCR_EL2." 2037 * Not included here is HCR_RW. 2038 */ 2039 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2040 2041 /* Return true if the specified exception level is running in AArch64 state. */ 2042 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2043 { 2044 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2045 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2046 */ 2047 assert(el >= 1 && el <= 3); 2048 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2049 2050 /* The highest exception level is always at the maximum supported 2051 * register width, and then lower levels have a register width controlled 2052 * by bits in the SCR or HCR registers. 2053 */ 2054 if (el == 3) { 2055 return aa64; 2056 } 2057 2058 if (arm_feature(env, ARM_FEATURE_EL3)) { 2059 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2060 } 2061 2062 if (el == 2) { 2063 return aa64; 2064 } 2065 2066 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 2067 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2068 } 2069 2070 return aa64; 2071 } 2072 2073 /* Function for determing whether guest cp register reads and writes should 2074 * access the secure or non-secure bank of a cp register. When EL3 is 2075 * operating in AArch32 state, the NS-bit determines whether the secure 2076 * instance of a cp register should be used. When EL3 is AArch64 (or if 2077 * it doesn't exist at all) then there is no register banking, and all 2078 * accesses are to the non-secure version. 2079 */ 2080 static inline bool access_secure_reg(CPUARMState *env) 2081 { 2082 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2083 !arm_el_is_aa64(env, 3) && 2084 !(env->cp15.scr_el3 & SCR_NS)); 2085 2086 return ret; 2087 } 2088 2089 /* Macros for accessing a specified CP register bank */ 2090 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2091 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2092 2093 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2094 do { \ 2095 if (_secure) { \ 2096 (_env)->cp15._regname##_s = (_val); \ 2097 } else { \ 2098 (_env)->cp15._regname##_ns = (_val); \ 2099 } \ 2100 } while (0) 2101 2102 /* Macros for automatically accessing a specific CP register bank depending on 2103 * the current secure state of the system. These macros are not intended for 2104 * supporting instruction translation reads/writes as these are dependent 2105 * solely on the SCR.NS bit and not the mode. 2106 */ 2107 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2108 A32_BANKED_REG_GET((_env), _regname, \ 2109 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2110 2111 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2112 A32_BANKED_REG_SET((_env), _regname, \ 2113 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2114 (_val)) 2115 2116 void arm_cpu_list(void); 2117 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2118 uint32_t cur_el, bool secure); 2119 2120 /* Interface between CPU and Interrupt controller. */ 2121 #ifndef CONFIG_USER_ONLY 2122 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2123 #else 2124 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2125 { 2126 return true; 2127 } 2128 #endif 2129 /** 2130 * armv7m_nvic_set_pending: mark the specified exception as pending 2131 * @opaque: the NVIC 2132 * @irq: the exception number to mark pending 2133 * @secure: false for non-banked exceptions or for the nonsecure 2134 * version of a banked exception, true for the secure version of a banked 2135 * exception. 2136 * 2137 * Marks the specified exception as pending. Note that we will assert() 2138 * if @secure is true and @irq does not specify one of the fixed set 2139 * of architecturally banked exceptions. 2140 */ 2141 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2142 /** 2143 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2144 * @opaque: the NVIC 2145 * @irq: the exception number to mark pending 2146 * @secure: false for non-banked exceptions or for the nonsecure 2147 * version of a banked exception, true for the secure version of a banked 2148 * exception. 2149 * 2150 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2151 * exceptions (exceptions generated in the course of trying to take 2152 * a different exception). 2153 */ 2154 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2155 /** 2156 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2157 * @opaque: the NVIC 2158 * @irq: the exception number to mark pending 2159 * @secure: false for non-banked exceptions or for the nonsecure 2160 * version of a banked exception, true for the secure version of a banked 2161 * exception. 2162 * 2163 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2164 * generated in the course of lazy stacking of FP registers. 2165 */ 2166 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2167 /** 2168 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2169 * exception, and whether it targets Secure state 2170 * @opaque: the NVIC 2171 * @pirq: set to pending exception number 2172 * @ptargets_secure: set to whether pending exception targets Secure 2173 * 2174 * This function writes the number of the highest priority pending 2175 * exception (the one which would be made active by 2176 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2177 * to true if the current highest priority pending exception should 2178 * be taken to Secure state, false for NS. 2179 */ 2180 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2181 bool *ptargets_secure); 2182 /** 2183 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2184 * @opaque: the NVIC 2185 * 2186 * Move the current highest priority pending exception from the pending 2187 * state to the active state, and update v7m.exception to indicate that 2188 * it is the exception currently being handled. 2189 */ 2190 void armv7m_nvic_acknowledge_irq(void *opaque); 2191 /** 2192 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2193 * @opaque: the NVIC 2194 * @irq: the exception number to complete 2195 * @secure: true if this exception was secure 2196 * 2197 * Returns: -1 if the irq was not active 2198 * 1 if completing this irq brought us back to base (no active irqs) 2199 * 0 if there is still an irq active after this one was completed 2200 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2201 */ 2202 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2203 /** 2204 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2205 * @opaque: the NVIC 2206 * @irq: the exception number to mark pending 2207 * @secure: false for non-banked exceptions or for the nonsecure 2208 * version of a banked exception, true for the secure version of a banked 2209 * exception. 2210 * 2211 * Return whether an exception is "ready", i.e. whether the exception is 2212 * enabled and is configured at a priority which would allow it to 2213 * interrupt the current execution priority. This controls whether the 2214 * RDY bit for it in the FPCCR is set. 2215 */ 2216 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2217 /** 2218 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2219 * @opaque: the NVIC 2220 * 2221 * Returns: the raw execution priority as defined by the v8M architecture. 2222 * This is the execution priority minus the effects of AIRCR.PRIS, 2223 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2224 * (v8M ARM ARM I_PKLD.) 2225 */ 2226 int armv7m_nvic_raw_execution_priority(void *opaque); 2227 /** 2228 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2229 * priority is negative for the specified security state. 2230 * @opaque: the NVIC 2231 * @secure: the security state to test 2232 * This corresponds to the pseudocode IsReqExecPriNeg(). 2233 */ 2234 #ifndef CONFIG_USER_ONLY 2235 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2236 #else 2237 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2238 { 2239 return false; 2240 } 2241 #endif 2242 2243 /* Interface for defining coprocessor registers. 2244 * Registers are defined in tables of arm_cp_reginfo structs 2245 * which are passed to define_arm_cp_regs(). 2246 */ 2247 2248 /* When looking up a coprocessor register we look for it 2249 * via an integer which encodes all of: 2250 * coprocessor number 2251 * Crn, Crm, opc1, opc2 fields 2252 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2253 * or via MRRC/MCRR?) 2254 * non-secure/secure bank (AArch32 only) 2255 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2256 * (In this case crn and opc2 should be zero.) 2257 * For AArch64, there is no 32/64 bit size distinction; 2258 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2259 * and 4 bit CRn and CRm. The encoding patterns are chosen 2260 * to be easy to convert to and from the KVM encodings, and also 2261 * so that the hashtable can contain both AArch32 and AArch64 2262 * registers (to allow for interprocessing where we might run 2263 * 32 bit code on a 64 bit core). 2264 */ 2265 /* This bit is private to our hashtable cpreg; in KVM register 2266 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2267 * in the upper bits of the 64 bit ID. 2268 */ 2269 #define CP_REG_AA64_SHIFT 28 2270 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2271 2272 /* To enable banking of coprocessor registers depending on ns-bit we 2273 * add a bit to distinguish between secure and non-secure cpregs in the 2274 * hashtable. 2275 */ 2276 #define CP_REG_NS_SHIFT 29 2277 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2278 2279 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2280 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2281 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2282 2283 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2284 (CP_REG_AA64_MASK | \ 2285 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2286 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2287 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2288 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2289 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2290 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2291 2292 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2293 * version used as a key for the coprocessor register hashtable 2294 */ 2295 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2296 { 2297 uint32_t cpregid = kvmid; 2298 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2299 cpregid |= CP_REG_AA64_MASK; 2300 } else { 2301 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2302 cpregid |= (1 << 15); 2303 } 2304 2305 /* KVM is always non-secure so add the NS flag on AArch32 register 2306 * entries. 2307 */ 2308 cpregid |= 1 << CP_REG_NS_SHIFT; 2309 } 2310 return cpregid; 2311 } 2312 2313 /* Convert a truncated 32 bit hashtable key into the full 2314 * 64 bit KVM register ID. 2315 */ 2316 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2317 { 2318 uint64_t kvmid; 2319 2320 if (cpregid & CP_REG_AA64_MASK) { 2321 kvmid = cpregid & ~CP_REG_AA64_MASK; 2322 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2323 } else { 2324 kvmid = cpregid & ~(1 << 15); 2325 if (cpregid & (1 << 15)) { 2326 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2327 } else { 2328 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2329 } 2330 } 2331 return kvmid; 2332 } 2333 2334 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2335 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2336 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2337 * TCG can assume the value to be constant (ie load at translate time) 2338 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2339 * indicates that the TB should not be ended after a write to this register 2340 * (the default is that the TB ends after cp writes). OVERRIDE permits 2341 * a register definition to override a previous definition for the 2342 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2343 * old must have the OVERRIDE bit set. 2344 * ALIAS indicates that this register is an alias view of some underlying 2345 * state which is also visible via another register, and that the other 2346 * register is handling migration and reset; registers marked ALIAS will not be 2347 * migrated but may have their state set by syncing of register state from KVM. 2348 * NO_RAW indicates that this register has no underlying state and does not 2349 * support raw access for state saving/loading; it will not be used for either 2350 * migration or KVM state synchronization. (Typically this is for "registers" 2351 * which are actually used as instructions for cache maintenance and so on.) 2352 * IO indicates that this register does I/O and therefore its accesses 2353 * need to be marked with gen_io_start() and also end the TB. In particular, 2354 * registers which implement clocks or timers require this. 2355 * RAISES_EXC is for when the read or write hook might raise an exception; 2356 * the generated code will synchronize the CPU state before calling the hook 2357 * so that it is safe for the hook to call raise_exception(). 2358 * NEWEL is for writes to registers that might change the exception 2359 * level - typically on older ARM chips. For those cases we need to 2360 * re-read the new el when recomputing the translation flags. 2361 */ 2362 #define ARM_CP_SPECIAL 0x0001 2363 #define ARM_CP_CONST 0x0002 2364 #define ARM_CP_64BIT 0x0004 2365 #define ARM_CP_SUPPRESS_TB_END 0x0008 2366 #define ARM_CP_OVERRIDE 0x0010 2367 #define ARM_CP_ALIAS 0x0020 2368 #define ARM_CP_IO 0x0040 2369 #define ARM_CP_NO_RAW 0x0080 2370 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2371 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2372 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2373 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2374 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2375 #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) 2376 #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) 2377 #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA 2378 #define ARM_CP_FPU 0x1000 2379 #define ARM_CP_SVE 0x2000 2380 #define ARM_CP_NO_GDB 0x4000 2381 #define ARM_CP_RAISES_EXC 0x8000 2382 #define ARM_CP_NEWEL 0x10000 2383 /* Used only as a terminator for ARMCPRegInfo lists */ 2384 #define ARM_CP_SENTINEL 0xfffff 2385 /* Mask of only the flag bits in a type field */ 2386 #define ARM_CP_FLAG_MASK 0x1f0ff 2387 2388 /* Valid values for ARMCPRegInfo state field, indicating which of 2389 * the AArch32 and AArch64 execution states this register is visible in. 2390 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2391 * If the reginfo is declared to be visible in both states then a second 2392 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2393 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2394 * Note that we rely on the values of these enums as we iterate through 2395 * the various states in some places. 2396 */ 2397 enum { 2398 ARM_CP_STATE_AA32 = 0, 2399 ARM_CP_STATE_AA64 = 1, 2400 ARM_CP_STATE_BOTH = 2, 2401 }; 2402 2403 /* ARM CP register secure state flags. These flags identify security state 2404 * attributes for a given CP register entry. 2405 * The existence of both or neither secure and non-secure flags indicates that 2406 * the register has both a secure and non-secure hash entry. A single one of 2407 * these flags causes the register to only be hashed for the specified 2408 * security state. 2409 * Although definitions may have any combination of the S/NS bits, each 2410 * registered entry will only have one to identify whether the entry is secure 2411 * or non-secure. 2412 */ 2413 enum { 2414 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2415 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2416 }; 2417 2418 /* Return true if cptype is a valid type field. This is used to try to 2419 * catch errors where the sentinel has been accidentally left off the end 2420 * of a list of registers. 2421 */ 2422 static inline bool cptype_valid(int cptype) 2423 { 2424 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2425 || ((cptype & ARM_CP_SPECIAL) && 2426 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2427 } 2428 2429 /* Access rights: 2430 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2431 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2432 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2433 * (ie any of the privileged modes in Secure state, or Monitor mode). 2434 * If a register is accessible in one privilege level it's always accessible 2435 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2436 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2437 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2438 * terminology a little and call this PL3. 2439 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2440 * with the ELx exception levels. 2441 * 2442 * If access permissions for a register are more complex than can be 2443 * described with these bits, then use a laxer set of restrictions, and 2444 * do the more restrictive/complex check inside a helper function. 2445 */ 2446 #define PL3_R 0x80 2447 #define PL3_W 0x40 2448 #define PL2_R (0x20 | PL3_R) 2449 #define PL2_W (0x10 | PL3_W) 2450 #define PL1_R (0x08 | PL2_R) 2451 #define PL1_W (0x04 | PL2_W) 2452 #define PL0_R (0x02 | PL1_R) 2453 #define PL0_W (0x01 | PL1_W) 2454 2455 /* 2456 * For user-mode some registers are accessible to EL0 via a kernel 2457 * trap-and-emulate ABI. In this case we define the read permissions 2458 * as actually being PL0_R. However some bits of any given register 2459 * may still be masked. 2460 */ 2461 #ifdef CONFIG_USER_ONLY 2462 #define PL0U_R PL0_R 2463 #else 2464 #define PL0U_R PL1_R 2465 #endif 2466 2467 #define PL3_RW (PL3_R | PL3_W) 2468 #define PL2_RW (PL2_R | PL2_W) 2469 #define PL1_RW (PL1_R | PL1_W) 2470 #define PL0_RW (PL0_R | PL0_W) 2471 2472 /* Return the highest implemented Exception Level */ 2473 static inline int arm_highest_el(CPUARMState *env) 2474 { 2475 if (arm_feature(env, ARM_FEATURE_EL3)) { 2476 return 3; 2477 } 2478 if (arm_feature(env, ARM_FEATURE_EL2)) { 2479 return 2; 2480 } 2481 return 1; 2482 } 2483 2484 /* Return true if a v7M CPU is in Handler mode */ 2485 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2486 { 2487 return env->v7m.exception != 0; 2488 } 2489 2490 /* Return the current Exception Level (as per ARMv8; note that this differs 2491 * from the ARMv7 Privilege Level). 2492 */ 2493 static inline int arm_current_el(CPUARMState *env) 2494 { 2495 if (arm_feature(env, ARM_FEATURE_M)) { 2496 return arm_v7m_is_handler_mode(env) || 2497 !(env->v7m.control[env->v7m.secure] & 1); 2498 } 2499 2500 if (is_a64(env)) { 2501 return extract32(env->pstate, 2, 2); 2502 } 2503 2504 switch (env->uncached_cpsr & 0x1f) { 2505 case ARM_CPU_MODE_USR: 2506 return 0; 2507 case ARM_CPU_MODE_HYP: 2508 return 2; 2509 case ARM_CPU_MODE_MON: 2510 return 3; 2511 default: 2512 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2513 /* If EL3 is 32-bit then all secure privileged modes run in 2514 * EL3 2515 */ 2516 return 3; 2517 } 2518 2519 return 1; 2520 } 2521 } 2522 2523 typedef struct ARMCPRegInfo ARMCPRegInfo; 2524 2525 typedef enum CPAccessResult { 2526 /* Access is permitted */ 2527 CP_ACCESS_OK = 0, 2528 /* Access fails due to a configurable trap or enable which would 2529 * result in a categorized exception syndrome giving information about 2530 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2531 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2532 * PL1 if in EL0, otherwise to the current EL). 2533 */ 2534 CP_ACCESS_TRAP = 1, 2535 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2536 * Note that this is not a catch-all case -- the set of cases which may 2537 * result in this failure is specifically defined by the architecture. 2538 */ 2539 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2540 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2541 CP_ACCESS_TRAP_EL2 = 3, 2542 CP_ACCESS_TRAP_EL3 = 4, 2543 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2544 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2545 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2546 /* Access fails and results in an exception syndrome for an FP access, 2547 * trapped directly to EL2 or EL3 2548 */ 2549 CP_ACCESS_TRAP_FP_EL2 = 7, 2550 CP_ACCESS_TRAP_FP_EL3 = 8, 2551 } CPAccessResult; 2552 2553 /* Access functions for coprocessor registers. These cannot fail and 2554 * may not raise exceptions. 2555 */ 2556 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2557 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2558 uint64_t value); 2559 /* Access permission check functions for coprocessor registers. */ 2560 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2561 const ARMCPRegInfo *opaque, 2562 bool isread); 2563 /* Hook function for register reset */ 2564 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2565 2566 #define CP_ANY 0xff 2567 2568 /* Definition of an ARM coprocessor register */ 2569 struct ARMCPRegInfo { 2570 /* Name of register (useful mainly for debugging, need not be unique) */ 2571 const char *name; 2572 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2573 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2574 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2575 * will be decoded to this register. The register read and write 2576 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2577 * used by the program, so it is possible to register a wildcard and 2578 * then behave differently on read/write if necessary. 2579 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2580 * must both be zero. 2581 * For AArch64-visible registers, opc0 is also used. 2582 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2583 * way to distinguish (for KVM's benefit) guest-visible system registers 2584 * from demuxed ones provided to preserve the "no side effects on 2585 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2586 * visible (to match KVM's encoding); cp==0 will be converted to 2587 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2588 */ 2589 uint8_t cp; 2590 uint8_t crn; 2591 uint8_t crm; 2592 uint8_t opc0; 2593 uint8_t opc1; 2594 uint8_t opc2; 2595 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2596 int state; 2597 /* Register type: ARM_CP_* bits/values */ 2598 int type; 2599 /* Access rights: PL*_[RW] */ 2600 int access; 2601 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2602 int secure; 2603 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2604 * this register was defined: can be used to hand data through to the 2605 * register read/write functions, since they are passed the ARMCPRegInfo*. 2606 */ 2607 void *opaque; 2608 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2609 * fieldoffset is non-zero, the reset value of the register. 2610 */ 2611 uint64_t resetvalue; 2612 /* Offset of the field in CPUARMState for this register. 2613 * 2614 * This is not needed if either: 2615 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2616 * 2. both readfn and writefn are specified 2617 */ 2618 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2619 2620 /* Offsets of the secure and non-secure fields in CPUARMState for the 2621 * register if it is banked. These fields are only used during the static 2622 * registration of a register. During hashing the bank associated 2623 * with a given security state is copied to fieldoffset which is used from 2624 * there on out. 2625 * 2626 * It is expected that register definitions use either fieldoffset or 2627 * bank_fieldoffsets in the definition but not both. It is also expected 2628 * that both bank offsets are set when defining a banked register. This 2629 * use indicates that a register is banked. 2630 */ 2631 ptrdiff_t bank_fieldoffsets[2]; 2632 2633 /* Function for making any access checks for this register in addition to 2634 * those specified by the 'access' permissions bits. If NULL, no extra 2635 * checks required. The access check is performed at runtime, not at 2636 * translate time. 2637 */ 2638 CPAccessFn *accessfn; 2639 /* Function for handling reads of this register. If NULL, then reads 2640 * will be done by loading from the offset into CPUARMState specified 2641 * by fieldoffset. 2642 */ 2643 CPReadFn *readfn; 2644 /* Function for handling writes of this register. If NULL, then writes 2645 * will be done by writing to the offset into CPUARMState specified 2646 * by fieldoffset. 2647 */ 2648 CPWriteFn *writefn; 2649 /* Function for doing a "raw" read; used when we need to copy 2650 * coprocessor state to the kernel for KVM or out for 2651 * migration. This only needs to be provided if there is also a 2652 * readfn and it has side effects (for instance clear-on-read bits). 2653 */ 2654 CPReadFn *raw_readfn; 2655 /* Function for doing a "raw" write; used when we need to copy KVM 2656 * kernel coprocessor state into userspace, or for inbound 2657 * migration. This only needs to be provided if there is also a 2658 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2659 * or similar behaviour. 2660 */ 2661 CPWriteFn *raw_writefn; 2662 /* Function for resetting the register. If NULL, then reset will be done 2663 * by writing resetvalue to the field specified in fieldoffset. If 2664 * fieldoffset is 0 then no reset will be done. 2665 */ 2666 CPResetFn *resetfn; 2667 2668 /* 2669 * "Original" writefn and readfn. 2670 * For ARMv8.1-VHE register aliases, we overwrite the read/write 2671 * accessor functions of various EL1/EL0 to perform the runtime 2672 * check for which sysreg should actually be modified, and then 2673 * forwards the operation. Before overwriting the accessors, 2674 * the original function is copied here, so that accesses that 2675 * really do go to the EL1/EL0 version proceed normally. 2676 * (The corresponding EL2 register is linked via opaque.) 2677 */ 2678 CPReadFn *orig_readfn; 2679 CPWriteFn *orig_writefn; 2680 }; 2681 2682 /* Macros which are lvalues for the field in CPUARMState for the 2683 * ARMCPRegInfo *ri. 2684 */ 2685 #define CPREG_FIELD32(env, ri) \ 2686 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2687 #define CPREG_FIELD64(env, ri) \ 2688 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2689 2690 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2691 2692 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2693 const ARMCPRegInfo *regs, void *opaque); 2694 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2695 const ARMCPRegInfo *regs, void *opaque); 2696 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2697 { 2698 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2699 } 2700 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2701 { 2702 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2703 } 2704 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2705 2706 /* 2707 * Definition of an ARM co-processor register as viewed from 2708 * userspace. This is used for presenting sanitised versions of 2709 * registers to userspace when emulating the Linux AArch64 CPU 2710 * ID/feature ABI (advertised as HWCAP_CPUID). 2711 */ 2712 typedef struct ARMCPRegUserSpaceInfo { 2713 /* Name of register */ 2714 const char *name; 2715 2716 /* Is the name actually a glob pattern */ 2717 bool is_glob; 2718 2719 /* Only some bits are exported to user space */ 2720 uint64_t exported_bits; 2721 2722 /* Fixed bits are applied after the mask */ 2723 uint64_t fixed_bits; 2724 } ARMCPRegUserSpaceInfo; 2725 2726 #define REGUSERINFO_SENTINEL { .name = NULL } 2727 2728 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2729 2730 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2731 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2732 uint64_t value); 2733 /* CPReadFn that can be used for read-as-zero behaviour */ 2734 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2735 2736 /* CPResetFn that does nothing, for use if no reset is required even 2737 * if fieldoffset is non zero. 2738 */ 2739 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2740 2741 /* Return true if this reginfo struct's field in the cpu state struct 2742 * is 64 bits wide. 2743 */ 2744 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2745 { 2746 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2747 } 2748 2749 static inline bool cp_access_ok(int current_el, 2750 const ARMCPRegInfo *ri, int isread) 2751 { 2752 return (ri->access >> ((current_el * 2) + isread)) & 1; 2753 } 2754 2755 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2756 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2757 2758 /** 2759 * write_list_to_cpustate 2760 * @cpu: ARMCPU 2761 * 2762 * For each register listed in the ARMCPU cpreg_indexes list, write 2763 * its value from the cpreg_values list into the ARMCPUState structure. 2764 * This updates TCG's working data structures from KVM data or 2765 * from incoming migration state. 2766 * 2767 * Returns: true if all register values were updated correctly, 2768 * false if some register was unknown or could not be written. 2769 * Note that we do not stop early on failure -- we will attempt 2770 * writing all registers in the list. 2771 */ 2772 bool write_list_to_cpustate(ARMCPU *cpu); 2773 2774 /** 2775 * write_cpustate_to_list: 2776 * @cpu: ARMCPU 2777 * @kvm_sync: true if this is for syncing back to KVM 2778 * 2779 * For each register listed in the ARMCPU cpreg_indexes list, write 2780 * its value from the ARMCPUState structure into the cpreg_values list. 2781 * This is used to copy info from TCG's working data structures into 2782 * KVM or for outbound migration. 2783 * 2784 * @kvm_sync is true if we are doing this in order to sync the 2785 * register state back to KVM. In this case we will only update 2786 * values in the list if the previous list->cpustate sync actually 2787 * successfully wrote the CPU state. Otherwise we will keep the value 2788 * that is in the list. 2789 * 2790 * Returns: true if all register values were read correctly, 2791 * false if some register was unknown or could not be read. 2792 * Note that we do not stop early on failure -- we will attempt 2793 * reading all registers in the list. 2794 */ 2795 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2796 2797 #define ARM_CPUID_TI915T 0x54029152 2798 #define ARM_CPUID_TI925T 0x54029252 2799 2800 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2801 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2802 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2803 2804 #define cpu_signal_handler cpu_arm_signal_handler 2805 #define cpu_list arm_cpu_list 2806 2807 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2808 * 2809 * If EL3 is 64-bit: 2810 * + NonSecure EL1 & 0 stage 1 2811 * + NonSecure EL1 & 0 stage 2 2812 * + NonSecure EL2 2813 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2814 * + Secure EL1 & 0 2815 * + Secure EL3 2816 * If EL3 is 32-bit: 2817 * + NonSecure PL1 & 0 stage 1 2818 * + NonSecure PL1 & 0 stage 2 2819 * + NonSecure PL2 2820 * + Secure PL0 2821 * + Secure PL1 2822 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2823 * 2824 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2825 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2826 * because they may differ in access permissions even if the VA->PA map is 2827 * the same 2828 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2829 * translation, which means that we have one mmu_idx that deals with two 2830 * concatenated translation regimes [this sort of combined s1+2 TLB is 2831 * architecturally permitted] 2832 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2833 * handling via the TLB. The only way to do a stage 1 translation without 2834 * the immediate stage 2 translation is via the ATS or AT system insns, 2835 * which can be slow-pathed and always do a page table walk. 2836 * The only use of stage 2 translations is either as part of an s1+2 2837 * lookup or when loading the descriptors during a stage 1 page table walk, 2838 * and in both those cases we don't use the TLB. 2839 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2840 * translation regimes, because they map reasonably well to each other 2841 * and they can't both be active at the same time. 2842 * 5. we want to be able to use the TLB for accesses done as part of a 2843 * stage1 page table walk, rather than having to walk the stage2 page 2844 * table over and over. 2845 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2846 * Never (PAN) bit within PSTATE. 2847 * 2848 * This gives us the following list of cases: 2849 * 2850 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 2851 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 2852 * NS EL1 EL1&0 stage 1+2 +PAN 2853 * NS EL0 EL2&0 2854 * NS EL2 EL2&0 2855 * NS EL2 EL2&0 +PAN 2856 * NS EL2 (aka NS PL2) 2857 * S EL0 EL1&0 (aka S PL0) 2858 * S EL1 EL1&0 (not used if EL3 is 32 bit) 2859 * S EL1 EL1&0 +PAN 2860 * S EL3 (aka S PL1) 2861 * 2862 * for a total of 11 different mmu_idx. 2863 * 2864 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2865 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2866 * NS EL2 if we ever model a Cortex-R52). 2867 * 2868 * M profile CPUs are rather different as they do not have a true MMU. 2869 * They have the following different MMU indexes: 2870 * User 2871 * Privileged 2872 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2873 * Privileged, execution priority negative (ditto) 2874 * If the CPU supports the v8M Security Extension then there are also: 2875 * Secure User 2876 * Secure Privileged 2877 * Secure User, execution priority negative 2878 * Secure Privileged, execution priority negative 2879 * 2880 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2881 * are not quite the same -- different CPU types (most notably M profile 2882 * vs A/R profile) would like to use MMU indexes with different semantics, 2883 * but since we don't ever need to use all of those in a single CPU we 2884 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2885 * modes + total number of M profile MMU modes". The lower bits of 2886 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2887 * the same for any particular CPU. 2888 * Variables of type ARMMUIdx are always full values, and the core 2889 * index values are in variables of type 'int'. 2890 * 2891 * Our enumeration includes at the end some entries which are not "true" 2892 * mmu_idx values in that they don't have corresponding TLBs and are only 2893 * valid for doing slow path page table walks. 2894 * 2895 * The constant names here are patterned after the general style of the names 2896 * of the AT/ATS operations. 2897 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2898 * For M profile we arrange them to have a bit for priv, a bit for negpri 2899 * and a bit for secure. 2900 */ 2901 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2902 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2903 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2904 2905 /* Meanings of the bits for M profile mmu idx values */ 2906 #define ARM_MMU_IDX_M_PRIV 0x1 2907 #define ARM_MMU_IDX_M_NEGPRI 0x2 2908 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2909 2910 #define ARM_MMU_IDX_TYPE_MASK \ 2911 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2912 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2913 2914 typedef enum ARMMMUIdx { 2915 /* 2916 * A-profile. 2917 */ 2918 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2919 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2920 2921 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2922 ARMMMUIdx_E10_1_PAN = 3 | ARM_MMU_IDX_A, 2923 2924 ARMMMUIdx_E2 = 4 | ARM_MMU_IDX_A, 2925 ARMMMUIdx_E20_2 = 5 | ARM_MMU_IDX_A, 2926 ARMMMUIdx_E20_2_PAN = 6 | ARM_MMU_IDX_A, 2927 2928 ARMMMUIdx_SE10_0 = 7 | ARM_MMU_IDX_A, 2929 ARMMMUIdx_SE10_1 = 8 | ARM_MMU_IDX_A, 2930 ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A, 2931 ARMMMUIdx_SE3 = 10 | ARM_MMU_IDX_A, 2932 2933 /* 2934 * These are not allocated TLBs and are used only for AT system 2935 * instructions or for the first stage of an S12 page table walk. 2936 */ 2937 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2938 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2939 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2940 /* 2941 * Not allocated a TLB: used only for second stage of an S12 page 2942 * table walk, or for descriptor loads during first stage of an S1 2943 * page table walk. Note that if we ever want to have a TLB for this 2944 * then various TLB flush insns which currently are no-ops or flush 2945 * only stage 1 MMU indexes will need to change to flush stage 2. 2946 */ 2947 ARMMMUIdx_Stage2 = 3 | ARM_MMU_IDX_NOTLB, 2948 2949 /* 2950 * M-profile. 2951 */ 2952 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2953 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2954 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2955 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2956 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2957 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2958 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2959 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2960 } ARMMMUIdx; 2961 2962 /* 2963 * Bit macros for the core-mmu-index values for each index, 2964 * for use when calling tlb_flush_by_mmuidx() and friends. 2965 */ 2966 #define TO_CORE_BIT(NAME) \ 2967 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2968 2969 typedef enum ARMMMUIdxBit { 2970 TO_CORE_BIT(E10_0), 2971 TO_CORE_BIT(E20_0), 2972 TO_CORE_BIT(E10_1), 2973 TO_CORE_BIT(E10_1_PAN), 2974 TO_CORE_BIT(E2), 2975 TO_CORE_BIT(E20_2), 2976 TO_CORE_BIT(E20_2_PAN), 2977 TO_CORE_BIT(SE10_0), 2978 TO_CORE_BIT(SE10_1), 2979 TO_CORE_BIT(SE10_1_PAN), 2980 TO_CORE_BIT(SE3), 2981 2982 TO_CORE_BIT(MUser), 2983 TO_CORE_BIT(MPriv), 2984 TO_CORE_BIT(MUserNegPri), 2985 TO_CORE_BIT(MPrivNegPri), 2986 TO_CORE_BIT(MSUser), 2987 TO_CORE_BIT(MSPriv), 2988 TO_CORE_BIT(MSUserNegPri), 2989 TO_CORE_BIT(MSPrivNegPri), 2990 } ARMMMUIdxBit; 2991 2992 #undef TO_CORE_BIT 2993 2994 #define MMU_USER_IDX 0 2995 2996 /* Indexes used when registering address spaces with cpu_address_space_init */ 2997 typedef enum ARMASIdx { 2998 ARMASIdx_NS = 0, 2999 ARMASIdx_S = 1, 3000 ARMASIdx_TagNS = 2, 3001 ARMASIdx_TagS = 3, 3002 } ARMASIdx; 3003 3004 /* Return the Exception Level targeted by debug exceptions. */ 3005 static inline int arm_debug_target_el(CPUARMState *env) 3006 { 3007 bool secure = arm_is_secure(env); 3008 bool route_to_el2 = false; 3009 3010 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 3011 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 3012 env->cp15.mdcr_el2 & MDCR_TDE; 3013 } 3014 3015 if (route_to_el2) { 3016 return 2; 3017 } else if (arm_feature(env, ARM_FEATURE_EL3) && 3018 !arm_el_is_aa64(env, 3) && secure) { 3019 return 3; 3020 } else { 3021 return 1; 3022 } 3023 } 3024 3025 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3026 { 3027 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3028 * CSSELR is RAZ/WI. 3029 */ 3030 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3031 } 3032 3033 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 3034 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 3035 { 3036 int cur_el = arm_current_el(env); 3037 int debug_el; 3038 3039 if (cur_el == 3) { 3040 return false; 3041 } 3042 3043 /* MDCR_EL3.SDD disables debug events from Secure state */ 3044 if (arm_is_secure_below_el3(env) 3045 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3046 return false; 3047 } 3048 3049 /* 3050 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3051 * while not masking the (D)ebug bit in DAIF. 3052 */ 3053 debug_el = arm_debug_target_el(env); 3054 3055 if (cur_el == debug_el) { 3056 return extract32(env->cp15.mdscr_el1, 13, 1) 3057 && !(env->daif & PSTATE_D); 3058 } 3059 3060 /* Otherwise the debug target needs to be a higher EL */ 3061 return debug_el > cur_el; 3062 } 3063 3064 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3065 { 3066 int el = arm_current_el(env); 3067 3068 if (el == 0 && arm_el_is_aa64(env, 1)) { 3069 return aa64_generate_debug_exceptions(env); 3070 } 3071 3072 if (arm_is_secure(env)) { 3073 int spd; 3074 3075 if (el == 0 && (env->cp15.sder & 1)) { 3076 /* SDER.SUIDEN means debug exceptions from Secure EL0 3077 * are always enabled. Otherwise they are controlled by 3078 * SDCR.SPD like those from other Secure ELs. 3079 */ 3080 return true; 3081 } 3082 3083 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3084 switch (spd) { 3085 case 1: 3086 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3087 case 0: 3088 /* For 0b00 we return true if external secure invasive debug 3089 * is enabled. On real hardware this is controlled by external 3090 * signals to the core. QEMU always permits debug, and behaves 3091 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3092 */ 3093 return true; 3094 case 2: 3095 return false; 3096 case 3: 3097 return true; 3098 } 3099 } 3100 3101 return el != 2; 3102 } 3103 3104 /* Return true if debugging exceptions are currently enabled. 3105 * This corresponds to what in ARM ARM pseudocode would be 3106 * if UsingAArch32() then 3107 * return AArch32.GenerateDebugExceptions() 3108 * else 3109 * return AArch64.GenerateDebugExceptions() 3110 * We choose to push the if() down into this function for clarity, 3111 * since the pseudocode has it at all callsites except for the one in 3112 * CheckSoftwareStep(), where it is elided because both branches would 3113 * always return the same value. 3114 */ 3115 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3116 { 3117 if (env->aarch64) { 3118 return aa64_generate_debug_exceptions(env); 3119 } else { 3120 return aa32_generate_debug_exceptions(env); 3121 } 3122 } 3123 3124 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3125 * implicitly means this always returns false in pre-v8 CPUs.) 3126 */ 3127 static inline bool arm_singlestep_active(CPUARMState *env) 3128 { 3129 return extract32(env->cp15.mdscr_el1, 0, 1) 3130 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3131 && arm_generate_debug_exceptions(env); 3132 } 3133 3134 static inline bool arm_sctlr_b(CPUARMState *env) 3135 { 3136 return 3137 /* We need not implement SCTLR.ITD in user-mode emulation, so 3138 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3139 * This lets people run BE32 binaries with "-cpu any". 3140 */ 3141 #ifndef CONFIG_USER_ONLY 3142 !arm_feature(env, ARM_FEATURE_V7) && 3143 #endif 3144 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3145 } 3146 3147 uint64_t arm_sctlr(CPUARMState *env, int el); 3148 3149 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3150 bool sctlr_b) 3151 { 3152 #ifdef CONFIG_USER_ONLY 3153 /* 3154 * In system mode, BE32 is modelled in line with the 3155 * architecture (as word-invariant big-endianness), where loads 3156 * and stores are done little endian but from addresses which 3157 * are adjusted by XORing with the appropriate constant. So the 3158 * endianness to use for the raw data access is not affected by 3159 * SCTLR.B. 3160 * In user mode, however, we model BE32 as byte-invariant 3161 * big-endianness (because user-only code cannot tell the 3162 * difference), and so we need to use a data access endianness 3163 * that depends on SCTLR.B. 3164 */ 3165 if (sctlr_b) { 3166 return true; 3167 } 3168 #endif 3169 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3170 return env->uncached_cpsr & CPSR_E; 3171 } 3172 3173 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3174 { 3175 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3176 } 3177 3178 /* Return true if the processor is in big-endian mode. */ 3179 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3180 { 3181 if (!is_a64(env)) { 3182 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3183 } else { 3184 int cur_el = arm_current_el(env); 3185 uint64_t sctlr = arm_sctlr(env, cur_el); 3186 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3187 } 3188 } 3189 3190 typedef CPUARMState CPUArchState; 3191 typedef ARMCPU ArchCPU; 3192 3193 #include "exec/cpu-all.h" 3194 3195 /* 3196 * Bit usage in the TB flags field: bit 31 indicates whether we are 3197 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3198 * We put flags which are shared between 32 and 64 bit mode at the top 3199 * of the word, and flags which apply to only one mode at the bottom. 3200 * 3201 * 31 20 18 14 9 0 3202 * +--------------+-----+-----+----------+--------------+ 3203 * | | | TBFLAG_A32 | | 3204 * | | +-----+----------+ TBFLAG_AM32 | 3205 * | TBFLAG_ANY | |TBFLAG_M32| | 3206 * | +-----------+----------+--------------| 3207 * | | TBFLAG_A64 | 3208 * +--------------+-------------------------------------+ 3209 * 31 20 0 3210 * 3211 * Unless otherwise noted, these bits are cached in env->hflags. 3212 */ 3213 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3214 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1) 3215 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1) /* Not cached. */ 3216 FIELD(TBFLAG_ANY, BE_DATA, 28, 1) 3217 FIELD(TBFLAG_ANY, MMUIDX, 24, 4) 3218 /* Target EL if we take a floating-point-disabled exception */ 3219 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2) 3220 /* For A-profile only, target EL for debug exceptions. */ 3221 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2) 3222 3223 /* 3224 * Bit usage when in AArch32 state, both A- and M-profile. 3225 */ 3226 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8) /* Not cached. */ 3227 FIELD(TBFLAG_AM32, THUMB, 8, 1) /* Not cached. */ 3228 3229 /* 3230 * Bit usage when in AArch32 state, for A-profile only. 3231 */ 3232 FIELD(TBFLAG_A32, VECLEN, 9, 3) /* Not cached. */ 3233 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2) /* Not cached. */ 3234 /* 3235 * We store the bottom two bits of the CPAR as TB flags and handle 3236 * checks on the other bits at runtime. This shares the same bits as 3237 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3238 * Not cached, because VECLEN+VECSTRIDE are not cached. 3239 */ 3240 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2) 3241 FIELD(TBFLAG_A32, VFPEN, 14, 1) /* Partially cached, minus FPEXC. */ 3242 FIELD(TBFLAG_A32, SCTLR_B, 15, 1) 3243 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1) 3244 /* 3245 * Indicates whether cp register reads and writes by guest code should access 3246 * the secure or nonsecure bank of banked registers; note that this is not 3247 * the same thing as the current security state of the processor! 3248 */ 3249 FIELD(TBFLAG_A32, NS, 17, 1) 3250 3251 /* 3252 * Bit usage when in AArch32 state, for M-profile only. 3253 */ 3254 /* Handler (ie not Thread) mode */ 3255 FIELD(TBFLAG_M32, HANDLER, 9, 1) 3256 /* Whether we should generate stack-limit checks */ 3257 FIELD(TBFLAG_M32, STACKCHECK, 10, 1) 3258 /* Set if FPCCR.LSPACT is set */ 3259 FIELD(TBFLAG_M32, LSPACT, 11, 1) /* Not cached. */ 3260 /* Set if we must create a new FP context */ 3261 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1) /* Not cached. */ 3262 /* Set if FPCCR.S does not match current security state */ 3263 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1) /* Not cached. */ 3264 3265 /* 3266 * Bit usage when in AArch64 state 3267 */ 3268 FIELD(TBFLAG_A64, TBII, 0, 2) 3269 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3270 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3271 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3272 FIELD(TBFLAG_A64, BT, 9, 1) 3273 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3274 FIELD(TBFLAG_A64, TBID, 12, 2) 3275 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3276 FIELD(TBFLAG_A64, ATA, 15, 1) 3277 FIELD(TBFLAG_A64, TCMA, 16, 2) 3278 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3279 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3280 3281 /** 3282 * cpu_mmu_index: 3283 * @env: The cpu environment 3284 * @ifetch: True for code access, false for data access. 3285 * 3286 * Return the core mmu index for the current translation regime. 3287 * This function is used by generic TCG code paths. 3288 */ 3289 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3290 { 3291 return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX); 3292 } 3293 3294 static inline bool bswap_code(bool sctlr_b) 3295 { 3296 #ifdef CONFIG_USER_ONLY 3297 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3298 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3299 * would also end up as a mixed-endian mode with BE code, LE data. 3300 */ 3301 return 3302 #ifdef TARGET_WORDS_BIGENDIAN 3303 1 ^ 3304 #endif 3305 sctlr_b; 3306 #else 3307 /* All code access in ARM is little endian, and there are no loaders 3308 * doing swaps that need to be reversed 3309 */ 3310 return 0; 3311 #endif 3312 } 3313 3314 #ifdef CONFIG_USER_ONLY 3315 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3316 { 3317 return 3318 #ifdef TARGET_WORDS_BIGENDIAN 3319 1 ^ 3320 #endif 3321 arm_cpu_data_is_big_endian(env); 3322 } 3323 #endif 3324 3325 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3326 target_ulong *cs_base, uint32_t *flags); 3327 3328 enum { 3329 QEMU_PSCI_CONDUIT_DISABLED = 0, 3330 QEMU_PSCI_CONDUIT_SMC = 1, 3331 QEMU_PSCI_CONDUIT_HVC = 2, 3332 }; 3333 3334 #ifndef CONFIG_USER_ONLY 3335 /* Return the address space index to use for a memory access */ 3336 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3337 { 3338 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3339 } 3340 3341 /* Return the AddressSpace to use for a memory access 3342 * (which depends on whether the access is S or NS, and whether 3343 * the board gave us a separate AddressSpace for S accesses). 3344 */ 3345 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3346 { 3347 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3348 } 3349 #endif 3350 3351 /** 3352 * arm_register_pre_el_change_hook: 3353 * Register a hook function which will be called immediately before this 3354 * CPU changes exception level or mode. The hook function will be 3355 * passed a pointer to the ARMCPU and the opaque data pointer passed 3356 * to this function when the hook was registered. 3357 * 3358 * Note that if a pre-change hook is called, any registered post-change hooks 3359 * are guaranteed to subsequently be called. 3360 */ 3361 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3362 void *opaque); 3363 /** 3364 * arm_register_el_change_hook: 3365 * Register a hook function which will be called immediately after this 3366 * CPU changes exception level or mode. The hook function will be 3367 * passed a pointer to the ARMCPU and the opaque data pointer passed 3368 * to this function when the hook was registered. 3369 * 3370 * Note that any registered hooks registered here are guaranteed to be called 3371 * if pre-change hooks have been. 3372 */ 3373 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3374 *opaque); 3375 3376 /** 3377 * arm_rebuild_hflags: 3378 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3379 */ 3380 void arm_rebuild_hflags(CPUARMState *env); 3381 3382 /** 3383 * aa32_vfp_dreg: 3384 * Return a pointer to the Dn register within env in 32-bit mode. 3385 */ 3386 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3387 { 3388 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3389 } 3390 3391 /** 3392 * aa32_vfp_qreg: 3393 * Return a pointer to the Qn register within env in 32-bit mode. 3394 */ 3395 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3396 { 3397 return &env->vfp.zregs[regno].d[0]; 3398 } 3399 3400 /** 3401 * aa64_vfp_qreg: 3402 * Return a pointer to the Qn register within env in 64-bit mode. 3403 */ 3404 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3405 { 3406 return &env->vfp.zregs[regno].d[0]; 3407 } 3408 3409 /* Shared between translate-sve.c and sve_helper.c. */ 3410 extern const uint64_t pred_esz_masks[4]; 3411 3412 /* Helper for the macros below, validating the argument type. */ 3413 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) 3414 { 3415 return x; 3416 } 3417 3418 /* 3419 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. 3420 * Using these should be a bit more self-documenting than using the 3421 * generic target bits directly. 3422 */ 3423 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) 3424 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) 3425 3426 /* 3427 * Naming convention for isar_feature functions: 3428 * Functions which test 32-bit ID registers should have _aa32_ in 3429 * their name. Functions which test 64-bit ID registers should have 3430 * _aa64_ in their name. These must only be used in code where we 3431 * know for certain that the CPU has AArch32 or AArch64 respectively 3432 * or where the correct answer for a CPU which doesn't implement that 3433 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3434 * system registers that are specific to that CPU state, for "should 3435 * we let this system register bit be set" tests where the 32-bit 3436 * flavour of the register doesn't have the bit, and so on). 3437 * Functions which simply ask "does this feature exist at all" have 3438 * _any_ in their name, and always return the logical OR of the _aa64_ 3439 * and the _aa32_ function. 3440 */ 3441 3442 /* 3443 * 32-bit feature tests via id registers. 3444 */ 3445 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3446 { 3447 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3448 } 3449 3450 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3451 { 3452 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3453 } 3454 3455 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3456 { 3457 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3458 } 3459 3460 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3461 { 3462 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3463 } 3464 3465 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3466 { 3467 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3468 } 3469 3470 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3471 { 3472 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3473 } 3474 3475 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3476 { 3477 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3478 } 3479 3480 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3481 { 3482 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3483 } 3484 3485 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3486 { 3487 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3488 } 3489 3490 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3491 { 3492 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3493 } 3494 3495 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3496 { 3497 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3498 } 3499 3500 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3501 { 3502 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3503 } 3504 3505 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3506 { 3507 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3508 } 3509 3510 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3511 { 3512 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3513 } 3514 3515 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3516 { 3517 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3518 } 3519 3520 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3521 { 3522 /* 3523 * This is a placeholder for use by VCMA until the rest of 3524 * the ARMv8.2-FP16 extension is implemented for aa32 mode. 3525 * At which point we can properly set and check MVFR1.FPHP. 3526 */ 3527 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3528 } 3529 3530 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3531 { 3532 /* 3533 * Return true if either VFP or SIMD is implemented. 3534 * In this case, a minimum of VFP w/ D0-D15. 3535 */ 3536 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3537 } 3538 3539 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3540 { 3541 /* Return true if D16-D31 are implemented */ 3542 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3543 } 3544 3545 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3546 { 3547 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3548 } 3549 3550 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3551 { 3552 /* Return true if CPU supports single precision floating point, VFPv2 */ 3553 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3554 } 3555 3556 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3557 { 3558 /* Return true if CPU supports single precision floating point, VFPv3 */ 3559 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3560 } 3561 3562 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3563 { 3564 /* Return true if CPU supports double precision floating point, VFPv2 */ 3565 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3566 } 3567 3568 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3569 { 3570 /* Return true if CPU supports double precision floating point, VFPv3 */ 3571 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3572 } 3573 3574 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3575 { 3576 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3577 } 3578 3579 /* 3580 * We always set the FP and SIMD FP16 fields to indicate identical 3581 * levels of support (assuming SIMD is implemented at all), so 3582 * we only need one set of accessors. 3583 */ 3584 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3585 { 3586 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3587 } 3588 3589 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3590 { 3591 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3592 } 3593 3594 /* 3595 * Note that this ID register field covers both VFP and Neon FMAC, 3596 * so should usually be tested in combination with some other 3597 * check that confirms the presence of whichever of VFP or Neon is 3598 * relevant, to avoid accidentally enabling a Neon feature on 3599 * a VFP-no-Neon core or vice-versa. 3600 */ 3601 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3602 { 3603 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3604 } 3605 3606 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3607 { 3608 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3609 } 3610 3611 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3612 { 3613 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3614 } 3615 3616 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3617 { 3618 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3619 } 3620 3621 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3622 { 3623 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3624 } 3625 3626 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3627 { 3628 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3629 } 3630 3631 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3632 { 3633 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3634 } 3635 3636 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3637 { 3638 /* 0xf means "non-standard IMPDEF PMU" */ 3639 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3640 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3641 } 3642 3643 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3644 { 3645 /* 0xf means "non-standard IMPDEF PMU" */ 3646 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3647 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3648 } 3649 3650 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3651 { 3652 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3653 } 3654 3655 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3656 { 3657 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3658 } 3659 3660 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3661 { 3662 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3663 } 3664 3665 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3666 { 3667 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3668 } 3669 3670 /* 3671 * 64-bit feature tests via id registers. 3672 */ 3673 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3674 { 3675 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3676 } 3677 3678 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3679 { 3680 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3681 } 3682 3683 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3684 { 3685 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3686 } 3687 3688 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3689 { 3690 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3691 } 3692 3693 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3694 { 3695 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3696 } 3697 3698 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3699 { 3700 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3701 } 3702 3703 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3704 { 3705 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3706 } 3707 3708 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3709 { 3710 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3711 } 3712 3713 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3714 { 3715 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3716 } 3717 3718 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3719 { 3720 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3721 } 3722 3723 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3724 { 3725 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3726 } 3727 3728 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3729 { 3730 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3731 } 3732 3733 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3734 { 3735 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3736 } 3737 3738 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3739 { 3740 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3741 } 3742 3743 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3744 { 3745 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3746 } 3747 3748 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3749 { 3750 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3751 } 3752 3753 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3754 { 3755 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3756 } 3757 3758 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3759 { 3760 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3761 } 3762 3763 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3764 { 3765 /* 3766 * Note that while QEMU will only implement the architected algorithm 3767 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3768 * defined algorithms, and thus API+GPI, and this predicate controls 3769 * migration of the 128-bit keys. 3770 */ 3771 return (id->id_aa64isar1 & 3772 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3773 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3774 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3775 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3776 } 3777 3778 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3779 { 3780 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3781 } 3782 3783 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3784 { 3785 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3786 } 3787 3788 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3789 { 3790 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3791 } 3792 3793 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3794 { 3795 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3796 } 3797 3798 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3799 { 3800 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3801 } 3802 3803 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3804 { 3805 /* We always set the AdvSIMD and FP fields identically. */ 3806 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3807 } 3808 3809 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3810 { 3811 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3812 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3813 } 3814 3815 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3816 { 3817 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3818 } 3819 3820 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3821 { 3822 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3823 } 3824 3825 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3826 { 3827 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3828 } 3829 3830 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3831 { 3832 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3833 } 3834 3835 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3836 { 3837 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3838 } 3839 3840 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3841 { 3842 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3843 } 3844 3845 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 3846 { 3847 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 3848 } 3849 3850 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3851 { 3852 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3853 } 3854 3855 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 3856 { 3857 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 3858 } 3859 3860 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 3861 { 3862 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 3863 } 3864 3865 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 3866 { 3867 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 3868 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3869 } 3870 3871 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 3872 { 3873 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 3874 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 3875 } 3876 3877 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 3878 { 3879 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 3880 } 3881 3882 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 3883 { 3884 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 3885 } 3886 3887 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 3888 { 3889 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 3890 } 3891 3892 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 3893 { 3894 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 3895 } 3896 3897 /* 3898 * Feature tests for "does this exist in either 32-bit or 64-bit?" 3899 */ 3900 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 3901 { 3902 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 3903 } 3904 3905 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 3906 { 3907 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 3908 } 3909 3910 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 3911 { 3912 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 3913 } 3914 3915 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 3916 { 3917 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 3918 } 3919 3920 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 3921 { 3922 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 3923 } 3924 3925 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 3926 { 3927 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 3928 } 3929 3930 /* 3931 * Forward to the above feature tests given an ARMCPU pointer. 3932 */ 3933 #define cpu_isar_feature(name, cpu) \ 3934 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3935 3936 #endif 3937