xref: /openbmc/qemu/target/arm/cpu.h (revision 587adaca)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_HVC            11   /* HyperVisor Call */
46 #define EXCP_HYP_TRAP       12
47 #define EXCP_SMC            13   /* Secure Monitor Call */
48 #define EXCP_VIRQ           14
49 #define EXCP_VFIQ           15
50 #define EXCP_SEMIHOST       16   /* semihosting call */
51 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
58 
59 #define ARMV7M_EXCP_RESET   1
60 #define ARMV7M_EXCP_NMI     2
61 #define ARMV7M_EXCP_HARD    3
62 #define ARMV7M_EXCP_MEM     4
63 #define ARMV7M_EXCP_BUS     5
64 #define ARMV7M_EXCP_USAGE   6
65 #define ARMV7M_EXCP_SECURE  7
66 #define ARMV7M_EXCP_SVC     11
67 #define ARMV7M_EXCP_DEBUG   12
68 #define ARMV7M_EXCP_PENDSV  14
69 #define ARMV7M_EXCP_SYSTICK 15
70 
71 /* For M profile, some registers are banked secure vs non-secure;
72  * these are represented as a 2-element array where the first element
73  * is the non-secure copy and the second is the secure copy.
74  * When the CPU does not have implement the security extension then
75  * only the first element is used.
76  * This means that the copy for the current security state can be
77  * accessed via env->registerfield[env->v7m.secure] (whether the security
78  * extension is implemented or not).
79  */
80 enum {
81     M_REG_NS = 0,
82     M_REG_S = 1,
83     M_REG_NUM_BANKS = 2,
84 };
85 
86 /* ARM-specific interrupt pending bits.  */
87 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
88 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
89 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
90 
91 /* The usual mapping for an AArch64 system register to its AArch32
92  * counterpart is for the 32 bit world to have access to the lower
93  * half only (with writes leaving the upper half untouched). It's
94  * therefore useful to be able to pass TCG the offset of the least
95  * significant half of a uint64_t struct member.
96  */
97 #ifdef HOST_WORDS_BIGENDIAN
98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #define offsetofhigh32(S, M) offsetof(S, M)
100 #else
101 #define offsetoflow32(S, M) offsetof(S, M)
102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #endif
104 
105 /* Meanings of the ARMCPU object's four inbound GPIO lines */
106 #define ARM_CPU_IRQ 0
107 #define ARM_CPU_FIQ 1
108 #define ARM_CPU_VIRQ 2
109 #define ARM_CPU_VFIQ 3
110 
111 /* ARM-specific extra insn start words:
112  * 1: Conditional execution bits
113  * 2: Partial exception syndrome for data aborts
114  */
115 #define TARGET_INSN_START_EXTRA_WORDS 2
116 
117 /* The 2nd extra word holding syndrome info for data aborts does not use
118  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119  * help the sleb128 encoder do a better job.
120  * When restoring the CPU state, we shift it back up.
121  */
122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123 #define ARM_INSN_START_WORD2_SHIFT 14
124 
125 /* We currently assume float and double are IEEE single and double
126    precision respectively.
127    Doing runtime conversions is tricky because VFP registers may contain
128    integer values (eg. as the result of a FTOSI instruction).
129    s<2n> maps to the least significant half of d<n>
130    s<2n+1> maps to the most significant half of d<n>
131  */
132 
133 /**
134  * DynamicGDBXMLInfo:
135  * @desc: Contains the XML descriptions.
136  * @num: Number of the registers in this XML seen by GDB.
137  * @data: A union with data specific to the set of registers
138  *    @cpregs_keys: Array that contains the corresponding Key of
139  *                  a given cpreg with the same order of the cpreg
140  *                  in the XML description.
141  */
142 typedef struct DynamicGDBXMLInfo {
143     char *desc;
144     int num;
145     union {
146         struct {
147             uint32_t *keys;
148         } cpregs;
149     } data;
150 } DynamicGDBXMLInfo;
151 
152 /* CPU state for each instance of a generic timer (in cp15 c14) */
153 typedef struct ARMGenericTimer {
154     uint64_t cval; /* Timer CompareValue register */
155     uint64_t ctl; /* Timer Control register */
156 } ARMGenericTimer;
157 
158 #define GTIMER_PHYS     0
159 #define GTIMER_VIRT     1
160 #define GTIMER_HYP      2
161 #define GTIMER_SEC      3
162 #define GTIMER_HYPVIRT  4
163 #define NUM_GTIMERS     5
164 
165 typedef struct {
166     uint64_t raw_tcr;
167     uint32_t mask;
168     uint32_t base_mask;
169 } TCR;
170 
171 #define VTCR_NSW (1u << 29)
172 #define VTCR_NSA (1u << 30)
173 #define VSTCR_SW VTCR_NSW
174 #define VSTCR_SA VTCR_NSA
175 
176 /* Define a maximum sized vector register.
177  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
178  * For 64-bit, this is a 2048-bit SVE register.
179  *
180  * Note that the mapping between S, D, and Q views of the register bank
181  * differs between AArch64 and AArch32.
182  * In AArch32:
183  *  Qn = regs[n].d[1]:regs[n].d[0]
184  *  Dn = regs[n / 2].d[n & 1]
185  *  Sn = regs[n / 4].d[n % 4 / 2],
186  *       bits 31..0 for even n, and bits 63..32 for odd n
187  *       (and regs[16] to regs[31] are inaccessible)
188  * In AArch64:
189  *  Zn = regs[n].d[*]
190  *  Qn = regs[n].d[1]:regs[n].d[0]
191  *  Dn = regs[n].d[0]
192  *  Sn = regs[n].d[0] bits 31..0
193  *  Hn = regs[n].d[0] bits 15..0
194  *
195  * This corresponds to the architecturally defined mapping between
196  * the two execution states, and means we do not need to explicitly
197  * map these registers when changing states.
198  *
199  * Align the data for use with TCG host vector operations.
200  */
201 
202 #ifdef TARGET_AARCH64
203 # define ARM_MAX_VQ    16
204 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
205 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
206 #else
207 # define ARM_MAX_VQ    1
208 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
209 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
210 #endif
211 
212 typedef struct ARMVectorReg {
213     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214 } ARMVectorReg;
215 
216 #ifdef TARGET_AARCH64
217 /* In AArch32 mode, predicate registers do not exist at all.  */
218 typedef struct ARMPredicateReg {
219     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
220 } ARMPredicateReg;
221 
222 /* In AArch32 mode, PAC keys do not exist at all.  */
223 typedef struct ARMPACKey {
224     uint64_t lo, hi;
225 } ARMPACKey;
226 #endif
227 
228 /* See the commentary above the TBFLAG field definitions.  */
229 typedef struct CPUARMTBFlags {
230     uint32_t flags;
231     target_ulong flags2;
232 } CPUARMTBFlags;
233 
234 typedef struct CPUARMState {
235     /* Regs for current mode.  */
236     uint32_t regs[16];
237 
238     /* 32/64 switch only happens when taking and returning from
239      * exceptions so the overlap semantics are taken care of then
240      * instead of having a complicated union.
241      */
242     /* Regs for A64 mode.  */
243     uint64_t xregs[32];
244     uint64_t pc;
245     /* PSTATE isn't an architectural register for ARMv8. However, it is
246      * convenient for us to assemble the underlying state into a 32 bit format
247      * identical to the architectural format used for the SPSR. (This is also
248      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
249      * 'pstate' register are.) Of the PSTATE bits:
250      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
251      *    semantics as for AArch32, as described in the comments on each field)
252      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
253      *  DAIF (exception masks) are kept in env->daif
254      *  BTYPE is kept in env->btype
255      *  all other bits are stored in their correct places in env->pstate
256      */
257     uint32_t pstate;
258     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
259 
260     /* Cached TBFLAGS state.  See below for which bits are included.  */
261     CPUARMTBFlags hflags;
262 
263     /* Frequently accessed CPSR bits are stored separately for efficiency.
264        This contains all the other bits.  Use cpsr_{read,write} to access
265        the whole CPSR.  */
266     uint32_t uncached_cpsr;
267     uint32_t spsr;
268 
269     /* Banked registers.  */
270     uint64_t banked_spsr[8];
271     uint32_t banked_r13[8];
272     uint32_t banked_r14[8];
273 
274     /* These hold r8-r12.  */
275     uint32_t usr_regs[5];
276     uint32_t fiq_regs[5];
277 
278     /* cpsr flag cache for faster execution */
279     uint32_t CF; /* 0 or 1 */
280     uint32_t VF; /* V is the bit 31. All other bits are undefined */
281     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
282     uint32_t ZF; /* Z set if zero.  */
283     uint32_t QF; /* 0 or 1 */
284     uint32_t GE; /* cpsr[19:16] */
285     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
286     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
287     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
288     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
289 
290     uint64_t elr_el[4]; /* AArch64 exception link regs  */
291     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
292 
293     /* System control coprocessor (cp15) */
294     struct {
295         uint32_t c0_cpuid;
296         union { /* Cache size selection */
297             struct {
298                 uint64_t _unused_csselr0;
299                 uint64_t csselr_ns;
300                 uint64_t _unused_csselr1;
301                 uint64_t csselr_s;
302             };
303             uint64_t csselr_el[4];
304         };
305         union { /* System control register. */
306             struct {
307                 uint64_t _unused_sctlr;
308                 uint64_t sctlr_ns;
309                 uint64_t hsctlr;
310                 uint64_t sctlr_s;
311             };
312             uint64_t sctlr_el[4];
313         };
314         uint64_t cpacr_el1; /* Architectural feature access control register */
315         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
316         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
317         uint64_t sder; /* Secure debug enable register. */
318         uint32_t nsacr; /* Non-secure access control register. */
319         union { /* MMU translation table base 0. */
320             struct {
321                 uint64_t _unused_ttbr0_0;
322                 uint64_t ttbr0_ns;
323                 uint64_t _unused_ttbr0_1;
324                 uint64_t ttbr0_s;
325             };
326             uint64_t ttbr0_el[4];
327         };
328         union { /* MMU translation table base 1. */
329             struct {
330                 uint64_t _unused_ttbr1_0;
331                 uint64_t ttbr1_ns;
332                 uint64_t _unused_ttbr1_1;
333                 uint64_t ttbr1_s;
334             };
335             uint64_t ttbr1_el[4];
336         };
337         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
338         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
339         /* MMU translation table base control. */
340         TCR tcr_el[4];
341         TCR vtcr_el2; /* Virtualization Translation Control.  */
342         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
343         uint32_t c2_data; /* MPU data cacheable bits.  */
344         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
345         union { /* MMU domain access control register
346                  * MPU write buffer control.
347                  */
348             struct {
349                 uint64_t dacr_ns;
350                 uint64_t dacr_s;
351             };
352             struct {
353                 uint64_t dacr32_el2;
354             };
355         };
356         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
357         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
358         uint64_t hcr_el2; /* Hypervisor configuration register */
359         uint64_t scr_el3; /* Secure configuration register.  */
360         union { /* Fault status registers.  */
361             struct {
362                 uint64_t ifsr_ns;
363                 uint64_t ifsr_s;
364             };
365             struct {
366                 uint64_t ifsr32_el2;
367             };
368         };
369         union {
370             struct {
371                 uint64_t _unused_dfsr;
372                 uint64_t dfsr_ns;
373                 uint64_t hsr;
374                 uint64_t dfsr_s;
375             };
376             uint64_t esr_el[4];
377         };
378         uint32_t c6_region[8]; /* MPU base/size registers.  */
379         union { /* Fault address registers. */
380             struct {
381                 uint64_t _unused_far0;
382 #ifdef HOST_WORDS_BIGENDIAN
383                 uint32_t ifar_ns;
384                 uint32_t dfar_ns;
385                 uint32_t ifar_s;
386                 uint32_t dfar_s;
387 #else
388                 uint32_t dfar_ns;
389                 uint32_t ifar_ns;
390                 uint32_t dfar_s;
391                 uint32_t ifar_s;
392 #endif
393                 uint64_t _unused_far3;
394             };
395             uint64_t far_el[4];
396         };
397         uint64_t hpfar_el2;
398         uint64_t hstr_el2;
399         union { /* Translation result. */
400             struct {
401                 uint64_t _unused_par_0;
402                 uint64_t par_ns;
403                 uint64_t _unused_par_1;
404                 uint64_t par_s;
405             };
406             uint64_t par_el[4];
407         };
408 
409         uint32_t c9_insn; /* Cache lockdown registers.  */
410         uint32_t c9_data;
411         uint64_t c9_pmcr; /* performance monitor control register */
412         uint64_t c9_pmcnten; /* perf monitor counter enables */
413         uint64_t c9_pmovsr; /* perf monitor overflow status */
414         uint64_t c9_pmuserenr; /* perf monitor user enable */
415         uint64_t c9_pmselr; /* perf monitor counter selection register */
416         uint64_t c9_pminten; /* perf monitor interrupt enables */
417         union { /* Memory attribute redirection */
418             struct {
419 #ifdef HOST_WORDS_BIGENDIAN
420                 uint64_t _unused_mair_0;
421                 uint32_t mair1_ns;
422                 uint32_t mair0_ns;
423                 uint64_t _unused_mair_1;
424                 uint32_t mair1_s;
425                 uint32_t mair0_s;
426 #else
427                 uint64_t _unused_mair_0;
428                 uint32_t mair0_ns;
429                 uint32_t mair1_ns;
430                 uint64_t _unused_mair_1;
431                 uint32_t mair0_s;
432                 uint32_t mair1_s;
433 #endif
434             };
435             uint64_t mair_el[4];
436         };
437         union { /* vector base address register */
438             struct {
439                 uint64_t _unused_vbar;
440                 uint64_t vbar_ns;
441                 uint64_t hvbar;
442                 uint64_t vbar_s;
443             };
444             uint64_t vbar_el[4];
445         };
446         uint32_t mvbar; /* (monitor) vector base address register */
447         struct { /* FCSE PID. */
448             uint32_t fcseidr_ns;
449             uint32_t fcseidr_s;
450         };
451         union { /* Context ID. */
452             struct {
453                 uint64_t _unused_contextidr_0;
454                 uint64_t contextidr_ns;
455                 uint64_t _unused_contextidr_1;
456                 uint64_t contextidr_s;
457             };
458             uint64_t contextidr_el[4];
459         };
460         union { /* User RW Thread register. */
461             struct {
462                 uint64_t tpidrurw_ns;
463                 uint64_t tpidrprw_ns;
464                 uint64_t htpidr;
465                 uint64_t _tpidr_el3;
466             };
467             uint64_t tpidr_el[4];
468         };
469         /* The secure banks of these registers don't map anywhere */
470         uint64_t tpidrurw_s;
471         uint64_t tpidrprw_s;
472         uint64_t tpidruro_s;
473 
474         union { /* User RO Thread register. */
475             uint64_t tpidruro_ns;
476             uint64_t tpidrro_el[1];
477         };
478         uint64_t c14_cntfrq; /* Counter Frequency register */
479         uint64_t c14_cntkctl; /* Timer Control register */
480         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
481         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
482         ARMGenericTimer c14_timer[NUM_GTIMERS];
483         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
484         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
485         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
486         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
487         uint32_t c15_threadid; /* TI debugger thread-ID.  */
488         uint32_t c15_config_base_address; /* SCU base address.  */
489         uint32_t c15_diagnostic; /* diagnostic register */
490         uint32_t c15_power_diagnostic;
491         uint32_t c15_power_control; /* power control */
492         uint64_t dbgbvr[16]; /* breakpoint value registers */
493         uint64_t dbgbcr[16]; /* breakpoint control registers */
494         uint64_t dbgwvr[16]; /* watchpoint value registers */
495         uint64_t dbgwcr[16]; /* watchpoint control registers */
496         uint64_t mdscr_el1;
497         uint64_t oslsr_el1; /* OS Lock Status */
498         uint64_t mdcr_el2;
499         uint64_t mdcr_el3;
500         /* Stores the architectural value of the counter *the last time it was
501          * updated* by pmccntr_op_start. Accesses should always be surrounded
502          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
503          * architecturally-correct value is being read/set.
504          */
505         uint64_t c15_ccnt;
506         /* Stores the delta between the architectural value and the underlying
507          * cycle count during normal operation. It is used to update c15_ccnt
508          * to be the correct architectural value before accesses. During
509          * accesses, c15_ccnt_delta contains the underlying count being used
510          * for the access, after which it reverts to the delta value in
511          * pmccntr_op_finish.
512          */
513         uint64_t c15_ccnt_delta;
514         uint64_t c14_pmevcntr[31];
515         uint64_t c14_pmevcntr_delta[31];
516         uint64_t c14_pmevtyper[31];
517         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
518         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
519         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
520         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
521         uint64_t gcr_el1;
522         uint64_t rgsr_el1;
523     } cp15;
524 
525     struct {
526         /* M profile has up to 4 stack pointers:
527          * a Main Stack Pointer and a Process Stack Pointer for each
528          * of the Secure and Non-Secure states. (If the CPU doesn't support
529          * the security extension then it has only two SPs.)
530          * In QEMU we always store the currently active SP in regs[13],
531          * and the non-active SP for the current security state in
532          * v7m.other_sp. The stack pointers for the inactive security state
533          * are stored in other_ss_msp and other_ss_psp.
534          * switch_v7m_security_state() is responsible for rearranging them
535          * when we change security state.
536          */
537         uint32_t other_sp;
538         uint32_t other_ss_msp;
539         uint32_t other_ss_psp;
540         uint32_t vecbase[M_REG_NUM_BANKS];
541         uint32_t basepri[M_REG_NUM_BANKS];
542         uint32_t control[M_REG_NUM_BANKS];
543         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
544         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
545         uint32_t hfsr; /* HardFault Status */
546         uint32_t dfsr; /* Debug Fault Status Register */
547         uint32_t sfsr; /* Secure Fault Status Register */
548         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
549         uint32_t bfar; /* BusFault Address */
550         uint32_t sfar; /* Secure Fault Address Register */
551         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
552         int exception;
553         uint32_t primask[M_REG_NUM_BANKS];
554         uint32_t faultmask[M_REG_NUM_BANKS];
555         uint32_t aircr; /* only holds r/w state if security extn implemented */
556         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
557         uint32_t csselr[M_REG_NUM_BANKS];
558         uint32_t scr[M_REG_NUM_BANKS];
559         uint32_t msplim[M_REG_NUM_BANKS];
560         uint32_t psplim[M_REG_NUM_BANKS];
561         uint32_t fpcar[M_REG_NUM_BANKS];
562         uint32_t fpccr[M_REG_NUM_BANKS];
563         uint32_t fpdscr[M_REG_NUM_BANKS];
564         uint32_t cpacr[M_REG_NUM_BANKS];
565         uint32_t nsacr;
566         uint32_t ltpsize;
567         uint32_t vpr;
568     } v7m;
569 
570     /* Information associated with an exception about to be taken:
571      * code which raises an exception must set cs->exception_index and
572      * the relevant parts of this structure; the cpu_do_interrupt function
573      * will then set the guest-visible registers as part of the exception
574      * entry process.
575      */
576     struct {
577         uint32_t syndrome; /* AArch64 format syndrome register */
578         uint32_t fsr; /* AArch32 format fault status register info */
579         uint64_t vaddress; /* virtual addr associated with exception, if any */
580         uint32_t target_el; /* EL the exception should be targeted for */
581         /* If we implement EL2 we will also need to store information
582          * about the intermediate physical address for stage 2 faults.
583          */
584     } exception;
585 
586     /* Information associated with an SError */
587     struct {
588         uint8_t pending;
589         uint8_t has_esr;
590         uint64_t esr;
591     } serror;
592 
593     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
594 
595     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
596     uint32_t irq_line_state;
597 
598     /* Thumb-2 EE state.  */
599     uint32_t teecr;
600     uint32_t teehbr;
601 
602     /* VFP coprocessor state.  */
603     struct {
604         ARMVectorReg zregs[32];
605 
606 #ifdef TARGET_AARCH64
607         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
608 #define FFR_PRED_NUM 16
609         ARMPredicateReg pregs[17];
610         /* Scratch space for aa64 sve predicate temporary.  */
611         ARMPredicateReg preg_tmp;
612 #endif
613 
614         /* We store these fpcsr fields separately for convenience.  */
615         uint32_t qc[4] QEMU_ALIGNED(16);
616         int vec_len;
617         int vec_stride;
618 
619         uint32_t xregs[16];
620 
621         /* Scratch space for aa32 neon expansion.  */
622         uint32_t scratch[8];
623 
624         /* There are a number of distinct float control structures:
625          *
626          *  fp_status: is the "normal" fp status.
627          *  fp_status_fp16: used for half-precision calculations
628          *  standard_fp_status : the ARM "Standard FPSCR Value"
629          *  standard_fp_status_fp16 : used for half-precision
630          *       calculations with the ARM "Standard FPSCR Value"
631          *
632          * Half-precision operations are governed by a separate
633          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
634          * status structure to control this.
635          *
636          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
637          * round-to-nearest and is used by any operations (generally
638          * Neon) which the architecture defines as controlled by the
639          * standard FPSCR value rather than the FPSCR.
640          *
641          * The "standard FPSCR but for fp16 ops" is needed because
642          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
643          * using a fixed value for it.
644          *
645          * To avoid having to transfer exception bits around, we simply
646          * say that the FPSCR cumulative exception flags are the logical
647          * OR of the flags in the four fp statuses. This relies on the
648          * only thing which needs to read the exception flags being
649          * an explicit FPSCR read.
650          */
651         float_status fp_status;
652         float_status fp_status_f16;
653         float_status standard_fp_status;
654         float_status standard_fp_status_f16;
655 
656         /* ZCR_EL[1-3] */
657         uint64_t zcr_el[4];
658     } vfp;
659     uint64_t exclusive_addr;
660     uint64_t exclusive_val;
661     uint64_t exclusive_high;
662 
663     /* iwMMXt coprocessor state.  */
664     struct {
665         uint64_t regs[16];
666         uint64_t val;
667 
668         uint32_t cregs[16];
669     } iwmmxt;
670 
671 #ifdef TARGET_AARCH64
672     struct {
673         ARMPACKey apia;
674         ARMPACKey apib;
675         ARMPACKey apda;
676         ARMPACKey apdb;
677         ARMPACKey apga;
678     } keys;
679 #endif
680 
681 #if defined(CONFIG_USER_ONLY)
682     /* For usermode syscall translation.  */
683     int eabi;
684 #endif
685 
686     struct CPUBreakpoint *cpu_breakpoint[16];
687     struct CPUWatchpoint *cpu_watchpoint[16];
688 
689     /* Fields up to this point are cleared by a CPU reset */
690     struct {} end_reset_fields;
691 
692     /* Fields after this point are preserved across CPU reset. */
693 
694     /* Internal CPU feature flags.  */
695     uint64_t features;
696 
697     /* PMSAv7 MPU */
698     struct {
699         uint32_t *drbar;
700         uint32_t *drsr;
701         uint32_t *dracr;
702         uint32_t rnr[M_REG_NUM_BANKS];
703     } pmsav7;
704 
705     /* PMSAv8 MPU */
706     struct {
707         /* The PMSAv8 implementation also shares some PMSAv7 config
708          * and state:
709          *  pmsav7.rnr (region number register)
710          *  pmsav7_dregion (number of configured regions)
711          */
712         uint32_t *rbar[M_REG_NUM_BANKS];
713         uint32_t *rlar[M_REG_NUM_BANKS];
714         uint32_t mair0[M_REG_NUM_BANKS];
715         uint32_t mair1[M_REG_NUM_BANKS];
716     } pmsav8;
717 
718     /* v8M SAU */
719     struct {
720         uint32_t *rbar;
721         uint32_t *rlar;
722         uint32_t rnr;
723         uint32_t ctrl;
724     } sau;
725 
726     void *nvic;
727     const struct arm_boot_info *boot_info;
728     /* Store GICv3CPUState to access from this struct */
729     void *gicv3state;
730 
731 #ifdef TARGET_TAGGED_ADDRESSES
732     /* Linux syscall tagged address support */
733     bool tagged_addr_enable;
734 #endif
735 } CPUARMState;
736 
737 static inline void set_feature(CPUARMState *env, int feature)
738 {
739     env->features |= 1ULL << feature;
740 }
741 
742 static inline void unset_feature(CPUARMState *env, int feature)
743 {
744     env->features &= ~(1ULL << feature);
745 }
746 
747 /**
748  * ARMELChangeHookFn:
749  * type of a function which can be registered via arm_register_el_change_hook()
750  * to get callbacks when the CPU changes its exception level or mode.
751  */
752 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
753 typedef struct ARMELChangeHook ARMELChangeHook;
754 struct ARMELChangeHook {
755     ARMELChangeHookFn *hook;
756     void *opaque;
757     QLIST_ENTRY(ARMELChangeHook) node;
758 };
759 
760 /* These values map onto the return values for
761  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
762 typedef enum ARMPSCIState {
763     PSCI_ON = 0,
764     PSCI_OFF = 1,
765     PSCI_ON_PENDING = 2
766 } ARMPSCIState;
767 
768 typedef struct ARMISARegisters ARMISARegisters;
769 
770 /**
771  * ARMCPU:
772  * @env: #CPUARMState
773  *
774  * An ARM CPU core.
775  */
776 struct ARMCPU {
777     /*< private >*/
778     CPUState parent_obj;
779     /*< public >*/
780 
781     CPUNegativeOffsetState neg;
782     CPUARMState env;
783 
784     /* Coprocessor information */
785     GHashTable *cp_regs;
786     /* For marshalling (mostly coprocessor) register state between the
787      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
788      * we use these arrays.
789      */
790     /* List of register indexes managed via these arrays; (full KVM style
791      * 64 bit indexes, not CPRegInfo 32 bit indexes)
792      */
793     uint64_t *cpreg_indexes;
794     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
795     uint64_t *cpreg_values;
796     /* Length of the indexes, values, reset_values arrays */
797     int32_t cpreg_array_len;
798     /* These are used only for migration: incoming data arrives in
799      * these fields and is sanity checked in post_load before copying
800      * to the working data structures above.
801      */
802     uint64_t *cpreg_vmstate_indexes;
803     uint64_t *cpreg_vmstate_values;
804     int32_t cpreg_vmstate_array_len;
805 
806     DynamicGDBXMLInfo dyn_sysreg_xml;
807     DynamicGDBXMLInfo dyn_svereg_xml;
808 
809     /* Timers used by the generic (architected) timer */
810     QEMUTimer *gt_timer[NUM_GTIMERS];
811     /*
812      * Timer used by the PMU. Its state is restored after migration by
813      * pmu_op_finish() - it does not need other handling during migration
814      */
815     QEMUTimer *pmu_timer;
816     /* GPIO outputs for generic timer */
817     qemu_irq gt_timer_outputs[NUM_GTIMERS];
818     /* GPIO output for GICv3 maintenance interrupt signal */
819     qemu_irq gicv3_maintenance_interrupt;
820     /* GPIO output for the PMU interrupt */
821     qemu_irq pmu_interrupt;
822 
823     /* MemoryRegion to use for secure physical accesses */
824     MemoryRegion *secure_memory;
825 
826     /* MemoryRegion to use for allocation tag accesses */
827     MemoryRegion *tag_memory;
828     MemoryRegion *secure_tag_memory;
829 
830     /* For v8M, pointer to the IDAU interface provided by board/SoC */
831     Object *idau;
832 
833     /* 'compatible' string for this CPU for Linux device trees */
834     const char *dtb_compatible;
835 
836     /* PSCI version for this CPU
837      * Bits[31:16] = Major Version
838      * Bits[15:0] = Minor Version
839      */
840     uint32_t psci_version;
841 
842     /* Current power state, access guarded by BQL */
843     ARMPSCIState power_state;
844 
845     /* CPU has virtualization extension */
846     bool has_el2;
847     /* CPU has security extension */
848     bool has_el3;
849     /* CPU has PMU (Performance Monitor Unit) */
850     bool has_pmu;
851     /* CPU has VFP */
852     bool has_vfp;
853     /* CPU has Neon */
854     bool has_neon;
855     /* CPU has M-profile DSP extension */
856     bool has_dsp;
857 
858     /* CPU has memory protection unit */
859     bool has_mpu;
860     /* PMSAv7 MPU number of supported regions */
861     uint32_t pmsav7_dregion;
862     /* v8M SAU number of supported regions */
863     uint32_t sau_sregion;
864 
865     /* PSCI conduit used to invoke PSCI methods
866      * 0 - disabled, 1 - smc, 2 - hvc
867      */
868     uint32_t psci_conduit;
869 
870     /* For v8M, initial value of the Secure VTOR */
871     uint32_t init_svtor;
872     /* For v8M, initial value of the Non-secure VTOR */
873     uint32_t init_nsvtor;
874 
875     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
876      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
877      */
878     uint32_t kvm_target;
879 
880     /* KVM init features for this CPU */
881     uint32_t kvm_init_features[7];
882 
883     /* KVM CPU state */
884 
885     /* KVM virtual time adjustment */
886     bool kvm_adjvtime;
887     bool kvm_vtime_dirty;
888     uint64_t kvm_vtime;
889 
890     /* KVM steal time */
891     OnOffAuto kvm_steal_time;
892 
893     /* Uniprocessor system with MP extensions */
894     bool mp_is_up;
895 
896     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
897      * and the probe failed (so we need to report the error in realize)
898      */
899     bool host_cpu_probe_failed;
900 
901     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
902      * register.
903      */
904     int32_t core_count;
905 
906     /* The instance init functions for implementation-specific subclasses
907      * set these fields to specify the implementation-dependent values of
908      * various constant registers and reset values of non-constant
909      * registers.
910      * Some of these might become QOM properties eventually.
911      * Field names match the official register names as defined in the
912      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
913      * is used for reset values of non-constant registers; no reset_
914      * prefix means a constant register.
915      * Some of these registers are split out into a substructure that
916      * is shared with the translators to control the ISA.
917      *
918      * Note that if you add an ID register to the ARMISARegisters struct
919      * you need to also update the 32-bit and 64-bit versions of the
920      * kvm_arm_get_host_cpu_features() function to correctly populate the
921      * field by reading the value from the KVM vCPU.
922      */
923     struct ARMISARegisters {
924         uint32_t id_isar0;
925         uint32_t id_isar1;
926         uint32_t id_isar2;
927         uint32_t id_isar3;
928         uint32_t id_isar4;
929         uint32_t id_isar5;
930         uint32_t id_isar6;
931         uint32_t id_mmfr0;
932         uint32_t id_mmfr1;
933         uint32_t id_mmfr2;
934         uint32_t id_mmfr3;
935         uint32_t id_mmfr4;
936         uint32_t id_pfr0;
937         uint32_t id_pfr1;
938         uint32_t id_pfr2;
939         uint32_t mvfr0;
940         uint32_t mvfr1;
941         uint32_t mvfr2;
942         uint32_t id_dfr0;
943         uint32_t dbgdidr;
944         uint64_t id_aa64isar0;
945         uint64_t id_aa64isar1;
946         uint64_t id_aa64pfr0;
947         uint64_t id_aa64pfr1;
948         uint64_t id_aa64mmfr0;
949         uint64_t id_aa64mmfr1;
950         uint64_t id_aa64mmfr2;
951         uint64_t id_aa64dfr0;
952         uint64_t id_aa64dfr1;
953         uint64_t id_aa64zfr0;
954     } isar;
955     uint64_t midr;
956     uint32_t revidr;
957     uint32_t reset_fpsid;
958     uint64_t ctr;
959     uint32_t reset_sctlr;
960     uint64_t pmceid0;
961     uint64_t pmceid1;
962     uint32_t id_afr0;
963     uint64_t id_aa64afr0;
964     uint64_t id_aa64afr1;
965     uint64_t clidr;
966     uint64_t mp_affinity; /* MP ID without feature bits */
967     /* The elements of this array are the CCSIDR values for each cache,
968      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
969      */
970     uint64_t ccsidr[16];
971     uint64_t reset_cbar;
972     uint32_t reset_auxcr;
973     bool reset_hivecs;
974 
975     /*
976      * Intermediate values used during property parsing.
977      * Once finalized, the values should be read from ID_AA64ISAR1.
978      */
979     bool prop_pauth;
980     bool prop_pauth_impdef;
981 
982     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
983     uint32_t dcz_blocksize;
984     uint64_t rvbar;
985 
986     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
987     int gic_num_lrs; /* number of list registers */
988     int gic_vpribits; /* number of virtual priority bits */
989     int gic_vprebits; /* number of virtual preemption bits */
990 
991     /* Whether the cfgend input is high (i.e. this CPU should reset into
992      * big-endian mode).  This setting isn't used directly: instead it modifies
993      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
994      * architecture version.
995      */
996     bool cfgend;
997 
998     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
999     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1000 
1001     int32_t node_id; /* NUMA node this CPU belongs to */
1002 
1003     /* Used to synchronize KVM and QEMU in-kernel device levels */
1004     uint8_t device_irq_level;
1005 
1006     /* Used to set the maximum vector length the cpu will support.  */
1007     uint32_t sve_max_vq;
1008 
1009     /*
1010      * In sve_vq_map each set bit is a supported vector length of
1011      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1012      * length in quadwords.
1013      *
1014      * While processing properties during initialization, corresponding
1015      * sve_vq_init bits are set for bits in sve_vq_map that have been
1016      * set by properties.
1017      */
1018     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1019     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1020 
1021     /* Generic timer counter frequency, in Hz */
1022     uint64_t gt_cntfrq_hz;
1023 };
1024 
1025 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1026 
1027 void arm_cpu_post_init(Object *obj);
1028 
1029 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1030 
1031 #ifndef CONFIG_USER_ONLY
1032 extern const VMStateDescription vmstate_arm_cpu;
1033 #endif
1034 
1035 void arm_cpu_do_interrupt(CPUState *cpu);
1036 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1037 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1038 
1039 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1040                                          MemTxAttrs *attrs);
1041 
1042 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1043 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1044 
1045 /*
1046  * Helpers to dynamically generates XML descriptions of the sysregs
1047  * and SVE registers. Returns the number of registers in each set.
1048  */
1049 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1050 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1051 
1052 /* Returns the dynamically generated XML for the gdb stub.
1053  * Returns a pointer to the XML contents for the specified XML file or NULL
1054  * if the XML name doesn't match the predefined one.
1055  */
1056 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1057 
1058 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1059                              int cpuid, void *opaque);
1060 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1061                              int cpuid, void *opaque);
1062 
1063 #ifdef TARGET_AARCH64
1064 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1065 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1066 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1067 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1068                            int new_el, bool el0_a64);
1069 void aarch64_add_sve_properties(Object *obj);
1070 
1071 /*
1072  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1073  * The byte at offset i from the start of the in-memory representation contains
1074  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1075  * lowest offsets are stored in the lowest memory addresses, then that nearly
1076  * matches QEMU's representation, which is to use an array of host-endian
1077  * uint64_t's, where the lower offsets are at the lower indices. To complete
1078  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1079  */
1080 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1081 {
1082 #ifdef HOST_WORDS_BIGENDIAN
1083     int i;
1084 
1085     for (i = 0; i < nr; ++i) {
1086         dst[i] = bswap64(src[i]);
1087     }
1088 
1089     return dst;
1090 #else
1091     return src;
1092 #endif
1093 }
1094 
1095 #else
1096 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1097 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1098                                          int n, bool a)
1099 { }
1100 static inline void aarch64_add_sve_properties(Object *obj) { }
1101 #endif
1102 
1103 void aarch64_sync_32_to_64(CPUARMState *env);
1104 void aarch64_sync_64_to_32(CPUARMState *env);
1105 
1106 int fp_exception_el(CPUARMState *env, int cur_el);
1107 int sve_exception_el(CPUARMState *env, int cur_el);
1108 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1109 
1110 static inline bool is_a64(CPUARMState *env)
1111 {
1112     return env->aarch64;
1113 }
1114 
1115 /* you can call this signal handler from your SIGBUS and SIGSEGV
1116    signal handlers to inform the virtual CPU of exceptions. non zero
1117    is returned if the signal was handled by the virtual CPU.  */
1118 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1119                            void *puc);
1120 
1121 /**
1122  * pmu_op_start/finish
1123  * @env: CPUARMState
1124  *
1125  * Convert all PMU counters between their delta form (the typical mode when
1126  * they are enabled) and the guest-visible values. These two calls must
1127  * surround any action which might affect the counters.
1128  */
1129 void pmu_op_start(CPUARMState *env);
1130 void pmu_op_finish(CPUARMState *env);
1131 
1132 /*
1133  * Called when a PMU counter is due to overflow
1134  */
1135 void arm_pmu_timer_cb(void *opaque);
1136 
1137 /**
1138  * Functions to register as EL change hooks for PMU mode filtering
1139  */
1140 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1141 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1142 
1143 /*
1144  * pmu_init
1145  * @cpu: ARMCPU
1146  *
1147  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1148  * for the current configuration
1149  */
1150 void pmu_init(ARMCPU *cpu);
1151 
1152 /* SCTLR bit meanings. Several bits have been reused in newer
1153  * versions of the architecture; in that case we define constants
1154  * for both old and new bit meanings. Code which tests against those
1155  * bits should probably check or otherwise arrange that the CPU
1156  * is the architectural version it expects.
1157  */
1158 #define SCTLR_M       (1U << 0)
1159 #define SCTLR_A       (1U << 1)
1160 #define SCTLR_C       (1U << 2)
1161 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1162 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1163 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1164 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1165 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1166 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1167 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1168 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1169 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1170 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1171 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1172 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1173 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1174 #define SCTLR_SED     (1U << 8) /* v8 onward */
1175 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1176 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1177 #define SCTLR_F       (1U << 10) /* up to v6 */
1178 #define SCTLR_SW      (1U << 10) /* v7 */
1179 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1180 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1181 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1182 #define SCTLR_I       (1U << 12)
1183 #define SCTLR_V       (1U << 13) /* AArch32 only */
1184 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1185 #define SCTLR_RR      (1U << 14) /* up to v7 */
1186 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1187 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1188 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1189 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1190 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1191 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1192 #define SCTLR_BR      (1U << 17) /* PMSA only */
1193 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1194 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1195 #define SCTLR_WXN     (1U << 19)
1196 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1197 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1198 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1199 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1200 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1201 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1202 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1203 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1204 #define SCTLR_VE      (1U << 24) /* up to v7 */
1205 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1206 #define SCTLR_EE      (1U << 25)
1207 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1208 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1209 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1210 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1211 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1212 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1213 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1214 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1215 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1216 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1217 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1218 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1219 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1220 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1221 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1222 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1223 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1224 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1225 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1226 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1227 
1228 #define CPTR_TCPAC    (1U << 31)
1229 #define CPTR_TTA      (1U << 20)
1230 #define CPTR_TFP      (1U << 10)
1231 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1232 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1233 
1234 #define MDCR_EPMAD    (1U << 21)
1235 #define MDCR_EDAD     (1U << 20)
1236 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1237 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1238 #define MDCR_SDD      (1U << 16)
1239 #define MDCR_SPD      (3U << 14)
1240 #define MDCR_TDRA     (1U << 11)
1241 #define MDCR_TDOSA    (1U << 10)
1242 #define MDCR_TDA      (1U << 9)
1243 #define MDCR_TDE      (1U << 8)
1244 #define MDCR_HPME     (1U << 7)
1245 #define MDCR_TPM      (1U << 6)
1246 #define MDCR_TPMCR    (1U << 5)
1247 #define MDCR_HPMN     (0x1fU)
1248 
1249 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1250 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1251 
1252 #define CPSR_M (0x1fU)
1253 #define CPSR_T (1U << 5)
1254 #define CPSR_F (1U << 6)
1255 #define CPSR_I (1U << 7)
1256 #define CPSR_A (1U << 8)
1257 #define CPSR_E (1U << 9)
1258 #define CPSR_IT_2_7 (0xfc00U)
1259 #define CPSR_GE (0xfU << 16)
1260 #define CPSR_IL (1U << 20)
1261 #define CPSR_DIT (1U << 21)
1262 #define CPSR_PAN (1U << 22)
1263 #define CPSR_SSBS (1U << 23)
1264 #define CPSR_J (1U << 24)
1265 #define CPSR_IT_0_1 (3U << 25)
1266 #define CPSR_Q (1U << 27)
1267 #define CPSR_V (1U << 28)
1268 #define CPSR_C (1U << 29)
1269 #define CPSR_Z (1U << 30)
1270 #define CPSR_N (1U << 31)
1271 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1272 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1273 
1274 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1275 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1276     | CPSR_NZCV)
1277 /* Bits writable in user mode.  */
1278 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1279 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1280 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1281 
1282 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1283 #define XPSR_EXCP 0x1ffU
1284 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1285 #define XPSR_IT_2_7 CPSR_IT_2_7
1286 #define XPSR_GE CPSR_GE
1287 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1288 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1289 #define XPSR_IT_0_1 CPSR_IT_0_1
1290 #define XPSR_Q CPSR_Q
1291 #define XPSR_V CPSR_V
1292 #define XPSR_C CPSR_C
1293 #define XPSR_Z CPSR_Z
1294 #define XPSR_N CPSR_N
1295 #define XPSR_NZCV CPSR_NZCV
1296 #define XPSR_IT CPSR_IT
1297 
1298 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1299 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1300 #define TTBCR_PD0    (1U << 4)
1301 #define TTBCR_PD1    (1U << 5)
1302 #define TTBCR_EPD0   (1U << 7)
1303 #define TTBCR_IRGN0  (3U << 8)
1304 #define TTBCR_ORGN0  (3U << 10)
1305 #define TTBCR_SH0    (3U << 12)
1306 #define TTBCR_T1SZ   (3U << 16)
1307 #define TTBCR_A1     (1U << 22)
1308 #define TTBCR_EPD1   (1U << 23)
1309 #define TTBCR_IRGN1  (3U << 24)
1310 #define TTBCR_ORGN1  (3U << 26)
1311 #define TTBCR_SH1    (1U << 28)
1312 #define TTBCR_EAE    (1U << 31)
1313 
1314 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1315  * Only these are valid when in AArch64 mode; in
1316  * AArch32 mode SPSRs are basically CPSR-format.
1317  */
1318 #define PSTATE_SP (1U)
1319 #define PSTATE_M (0xFU)
1320 #define PSTATE_nRW (1U << 4)
1321 #define PSTATE_F (1U << 6)
1322 #define PSTATE_I (1U << 7)
1323 #define PSTATE_A (1U << 8)
1324 #define PSTATE_D (1U << 9)
1325 #define PSTATE_BTYPE (3U << 10)
1326 #define PSTATE_SSBS (1U << 12)
1327 #define PSTATE_IL (1U << 20)
1328 #define PSTATE_SS (1U << 21)
1329 #define PSTATE_PAN (1U << 22)
1330 #define PSTATE_UAO (1U << 23)
1331 #define PSTATE_DIT (1U << 24)
1332 #define PSTATE_TCO (1U << 25)
1333 #define PSTATE_V (1U << 28)
1334 #define PSTATE_C (1U << 29)
1335 #define PSTATE_Z (1U << 30)
1336 #define PSTATE_N (1U << 31)
1337 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1338 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1339 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1340 /* Mode values for AArch64 */
1341 #define PSTATE_MODE_EL3h 13
1342 #define PSTATE_MODE_EL3t 12
1343 #define PSTATE_MODE_EL2h 9
1344 #define PSTATE_MODE_EL2t 8
1345 #define PSTATE_MODE_EL1h 5
1346 #define PSTATE_MODE_EL1t 4
1347 #define PSTATE_MODE_EL0t 0
1348 
1349 /* Write a new value to v7m.exception, thus transitioning into or out
1350  * of Handler mode; this may result in a change of active stack pointer.
1351  */
1352 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1353 
1354 /* Map EL and handler into a PSTATE_MODE.  */
1355 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1356 {
1357     return (el << 2) | handler;
1358 }
1359 
1360 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1361  * interprocessing, so we don't attempt to sync with the cpsr state used by
1362  * the 32 bit decoder.
1363  */
1364 static inline uint32_t pstate_read(CPUARMState *env)
1365 {
1366     int ZF;
1367 
1368     ZF = (env->ZF == 0);
1369     return (env->NF & 0x80000000) | (ZF << 30)
1370         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1371         | env->pstate | env->daif | (env->btype << 10);
1372 }
1373 
1374 static inline void pstate_write(CPUARMState *env, uint32_t val)
1375 {
1376     env->ZF = (~val) & PSTATE_Z;
1377     env->NF = val;
1378     env->CF = (val >> 29) & 1;
1379     env->VF = (val << 3) & 0x80000000;
1380     env->daif = val & PSTATE_DAIF;
1381     env->btype = (val >> 10) & 3;
1382     env->pstate = val & ~CACHED_PSTATE_BITS;
1383 }
1384 
1385 /* Return the current CPSR value.  */
1386 uint32_t cpsr_read(CPUARMState *env);
1387 
1388 typedef enum CPSRWriteType {
1389     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1390     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1391     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1392     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1393 } CPSRWriteType;
1394 
1395 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1396 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1397                 CPSRWriteType write_type);
1398 
1399 /* Return the current xPSR value.  */
1400 static inline uint32_t xpsr_read(CPUARMState *env)
1401 {
1402     int ZF;
1403     ZF = (env->ZF == 0);
1404     return (env->NF & 0x80000000) | (ZF << 30)
1405         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1406         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1407         | ((env->condexec_bits & 0xfc) << 8)
1408         | (env->GE << 16)
1409         | env->v7m.exception;
1410 }
1411 
1412 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1413 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1414 {
1415     if (mask & XPSR_NZCV) {
1416         env->ZF = (~val) & XPSR_Z;
1417         env->NF = val;
1418         env->CF = (val >> 29) & 1;
1419         env->VF = (val << 3) & 0x80000000;
1420     }
1421     if (mask & XPSR_Q) {
1422         env->QF = ((val & XPSR_Q) != 0);
1423     }
1424     if (mask & XPSR_GE) {
1425         env->GE = (val & XPSR_GE) >> 16;
1426     }
1427 #ifndef CONFIG_USER_ONLY
1428     if (mask & XPSR_T) {
1429         env->thumb = ((val & XPSR_T) != 0);
1430     }
1431     if (mask & XPSR_IT_0_1) {
1432         env->condexec_bits &= ~3;
1433         env->condexec_bits |= (val >> 25) & 3;
1434     }
1435     if (mask & XPSR_IT_2_7) {
1436         env->condexec_bits &= 3;
1437         env->condexec_bits |= (val >> 8) & 0xfc;
1438     }
1439     if (mask & XPSR_EXCP) {
1440         /* Note that this only happens on exception exit */
1441         write_v7m_exception(env, val & XPSR_EXCP);
1442     }
1443 #endif
1444 }
1445 
1446 #define HCR_VM        (1ULL << 0)
1447 #define HCR_SWIO      (1ULL << 1)
1448 #define HCR_PTW       (1ULL << 2)
1449 #define HCR_FMO       (1ULL << 3)
1450 #define HCR_IMO       (1ULL << 4)
1451 #define HCR_AMO       (1ULL << 5)
1452 #define HCR_VF        (1ULL << 6)
1453 #define HCR_VI        (1ULL << 7)
1454 #define HCR_VSE       (1ULL << 8)
1455 #define HCR_FB        (1ULL << 9)
1456 #define HCR_BSU_MASK  (3ULL << 10)
1457 #define HCR_DC        (1ULL << 12)
1458 #define HCR_TWI       (1ULL << 13)
1459 #define HCR_TWE       (1ULL << 14)
1460 #define HCR_TID0      (1ULL << 15)
1461 #define HCR_TID1      (1ULL << 16)
1462 #define HCR_TID2      (1ULL << 17)
1463 #define HCR_TID3      (1ULL << 18)
1464 #define HCR_TSC       (1ULL << 19)
1465 #define HCR_TIDCP     (1ULL << 20)
1466 #define HCR_TACR      (1ULL << 21)
1467 #define HCR_TSW       (1ULL << 22)
1468 #define HCR_TPCP      (1ULL << 23)
1469 #define HCR_TPU       (1ULL << 24)
1470 #define HCR_TTLB      (1ULL << 25)
1471 #define HCR_TVM       (1ULL << 26)
1472 #define HCR_TGE       (1ULL << 27)
1473 #define HCR_TDZ       (1ULL << 28)
1474 #define HCR_HCD       (1ULL << 29)
1475 #define HCR_TRVM      (1ULL << 30)
1476 #define HCR_RW        (1ULL << 31)
1477 #define HCR_CD        (1ULL << 32)
1478 #define HCR_ID        (1ULL << 33)
1479 #define HCR_E2H       (1ULL << 34)
1480 #define HCR_TLOR      (1ULL << 35)
1481 #define HCR_TERR      (1ULL << 36)
1482 #define HCR_TEA       (1ULL << 37)
1483 #define HCR_MIOCNCE   (1ULL << 38)
1484 /* RES0 bit 39 */
1485 #define HCR_APK       (1ULL << 40)
1486 #define HCR_API       (1ULL << 41)
1487 #define HCR_NV        (1ULL << 42)
1488 #define HCR_NV1       (1ULL << 43)
1489 #define HCR_AT        (1ULL << 44)
1490 #define HCR_NV2       (1ULL << 45)
1491 #define HCR_FWB       (1ULL << 46)
1492 #define HCR_FIEN      (1ULL << 47)
1493 /* RES0 bit 48 */
1494 #define HCR_TID4      (1ULL << 49)
1495 #define HCR_TICAB     (1ULL << 50)
1496 #define HCR_AMVOFFEN  (1ULL << 51)
1497 #define HCR_TOCU      (1ULL << 52)
1498 #define HCR_ENSCXT    (1ULL << 53)
1499 #define HCR_TTLBIS    (1ULL << 54)
1500 #define HCR_TTLBOS    (1ULL << 55)
1501 #define HCR_ATA       (1ULL << 56)
1502 #define HCR_DCT       (1ULL << 57)
1503 #define HCR_TID5      (1ULL << 58)
1504 #define HCR_TWEDEN    (1ULL << 59)
1505 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1506 
1507 #define HPFAR_NS      (1ULL << 63)
1508 
1509 #define SCR_NS                (1U << 0)
1510 #define SCR_IRQ               (1U << 1)
1511 #define SCR_FIQ               (1U << 2)
1512 #define SCR_EA                (1U << 3)
1513 #define SCR_FW                (1U << 4)
1514 #define SCR_AW                (1U << 5)
1515 #define SCR_NET               (1U << 6)
1516 #define SCR_SMD               (1U << 7)
1517 #define SCR_HCE               (1U << 8)
1518 #define SCR_SIF               (1U << 9)
1519 #define SCR_RW                (1U << 10)
1520 #define SCR_ST                (1U << 11)
1521 #define SCR_TWI               (1U << 12)
1522 #define SCR_TWE               (1U << 13)
1523 #define SCR_TLOR              (1U << 14)
1524 #define SCR_TERR              (1U << 15)
1525 #define SCR_APK               (1U << 16)
1526 #define SCR_API               (1U << 17)
1527 #define SCR_EEL2              (1U << 18)
1528 #define SCR_EASE              (1U << 19)
1529 #define SCR_NMEA              (1U << 20)
1530 #define SCR_FIEN              (1U << 21)
1531 #define SCR_ENSCXT            (1U << 25)
1532 #define SCR_ATA               (1U << 26)
1533 
1534 /* Return the current FPSCR value.  */
1535 uint32_t vfp_get_fpscr(CPUARMState *env);
1536 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1537 
1538 /* FPCR, Floating Point Control Register
1539  * FPSR, Floating Poiht Status Register
1540  *
1541  * For A64 the FPSCR is split into two logically distinct registers,
1542  * FPCR and FPSR. However since they still use non-overlapping bits
1543  * we store the underlying state in fpscr and just mask on read/write.
1544  */
1545 #define FPSR_MASK 0xf800009f
1546 #define FPCR_MASK 0x07ff9f00
1547 
1548 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1549 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1550 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1551 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1552 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1553 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1554 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1555 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1556 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1557 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1558 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1559 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1560 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1561 #define FPCR_C      (1 << 29)   /* FP carry flag */
1562 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1563 #define FPCR_N      (1 << 31)   /* FP negative flag */
1564 
1565 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1566 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1567 #define FPCR_LTPSIZE_LENGTH 3
1568 
1569 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1570 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1571 
1572 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1573 {
1574     return vfp_get_fpscr(env) & FPSR_MASK;
1575 }
1576 
1577 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1578 {
1579     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1580     vfp_set_fpscr(env, new_fpscr);
1581 }
1582 
1583 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1584 {
1585     return vfp_get_fpscr(env) & FPCR_MASK;
1586 }
1587 
1588 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1589 {
1590     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1591     vfp_set_fpscr(env, new_fpscr);
1592 }
1593 
1594 enum arm_cpu_mode {
1595   ARM_CPU_MODE_USR = 0x10,
1596   ARM_CPU_MODE_FIQ = 0x11,
1597   ARM_CPU_MODE_IRQ = 0x12,
1598   ARM_CPU_MODE_SVC = 0x13,
1599   ARM_CPU_MODE_MON = 0x16,
1600   ARM_CPU_MODE_ABT = 0x17,
1601   ARM_CPU_MODE_HYP = 0x1a,
1602   ARM_CPU_MODE_UND = 0x1b,
1603   ARM_CPU_MODE_SYS = 0x1f
1604 };
1605 
1606 /* VFP system registers.  */
1607 #define ARM_VFP_FPSID   0
1608 #define ARM_VFP_FPSCR   1
1609 #define ARM_VFP_MVFR2   5
1610 #define ARM_VFP_MVFR1   6
1611 #define ARM_VFP_MVFR0   7
1612 #define ARM_VFP_FPEXC   8
1613 #define ARM_VFP_FPINST  9
1614 #define ARM_VFP_FPINST2 10
1615 /* These ones are M-profile only */
1616 #define ARM_VFP_FPSCR_NZCVQC 2
1617 #define ARM_VFP_VPR 12
1618 #define ARM_VFP_P0 13
1619 #define ARM_VFP_FPCXT_NS 14
1620 #define ARM_VFP_FPCXT_S 15
1621 
1622 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1623 #define QEMU_VFP_FPSCR_NZCV 0xffff
1624 
1625 /* iwMMXt coprocessor control registers.  */
1626 #define ARM_IWMMXT_wCID  0
1627 #define ARM_IWMMXT_wCon  1
1628 #define ARM_IWMMXT_wCSSF 2
1629 #define ARM_IWMMXT_wCASF 3
1630 #define ARM_IWMMXT_wCGR0 8
1631 #define ARM_IWMMXT_wCGR1 9
1632 #define ARM_IWMMXT_wCGR2 10
1633 #define ARM_IWMMXT_wCGR3 11
1634 
1635 /* V7M CCR bits */
1636 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1637 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1638 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1639 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1640 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1641 FIELD(V7M_CCR, STKALIGN, 9, 1)
1642 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1643 FIELD(V7M_CCR, DC, 16, 1)
1644 FIELD(V7M_CCR, IC, 17, 1)
1645 FIELD(V7M_CCR, BP, 18, 1)
1646 FIELD(V7M_CCR, LOB, 19, 1)
1647 FIELD(V7M_CCR, TRD, 20, 1)
1648 
1649 /* V7M SCR bits */
1650 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1651 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1652 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1653 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1654 
1655 /* V7M AIRCR bits */
1656 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1657 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1658 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1659 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1660 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1661 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1662 FIELD(V7M_AIRCR, PRIS, 14, 1)
1663 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1664 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1665 
1666 /* V7M CFSR bits for MMFSR */
1667 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1668 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1669 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1670 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1671 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1672 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1673 
1674 /* V7M CFSR bits for BFSR */
1675 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1676 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1677 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1678 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1679 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1680 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1681 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1682 
1683 /* V7M CFSR bits for UFSR */
1684 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1685 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1686 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1687 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1688 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1689 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1690 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1691 
1692 /* V7M CFSR bit masks covering all of the subregister bits */
1693 FIELD(V7M_CFSR, MMFSR, 0, 8)
1694 FIELD(V7M_CFSR, BFSR, 8, 8)
1695 FIELD(V7M_CFSR, UFSR, 16, 16)
1696 
1697 /* V7M HFSR bits */
1698 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1699 FIELD(V7M_HFSR, FORCED, 30, 1)
1700 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1701 
1702 /* V7M DFSR bits */
1703 FIELD(V7M_DFSR, HALTED, 0, 1)
1704 FIELD(V7M_DFSR, BKPT, 1, 1)
1705 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1706 FIELD(V7M_DFSR, VCATCH, 3, 1)
1707 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1708 
1709 /* V7M SFSR bits */
1710 FIELD(V7M_SFSR, INVEP, 0, 1)
1711 FIELD(V7M_SFSR, INVIS, 1, 1)
1712 FIELD(V7M_SFSR, INVER, 2, 1)
1713 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1714 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1715 FIELD(V7M_SFSR, LSPERR, 5, 1)
1716 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1717 FIELD(V7M_SFSR, LSERR, 7, 1)
1718 
1719 /* v7M MPU_CTRL bits */
1720 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1721 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1722 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1723 
1724 /* v7M CLIDR bits */
1725 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1726 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1727 FIELD(V7M_CLIDR, LOC, 24, 3)
1728 FIELD(V7M_CLIDR, LOUU, 27, 3)
1729 FIELD(V7M_CLIDR, ICB, 30, 2)
1730 
1731 FIELD(V7M_CSSELR, IND, 0, 1)
1732 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1733 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1734  * define a mask for this and check that it doesn't permit running off
1735  * the end of the array.
1736  */
1737 FIELD(V7M_CSSELR, INDEX, 0, 4)
1738 
1739 /* v7M FPCCR bits */
1740 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1741 FIELD(V7M_FPCCR, USER, 1, 1)
1742 FIELD(V7M_FPCCR, S, 2, 1)
1743 FIELD(V7M_FPCCR, THREAD, 3, 1)
1744 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1745 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1746 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1747 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1748 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1749 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1750 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1751 FIELD(V7M_FPCCR, RES0, 11, 15)
1752 FIELD(V7M_FPCCR, TS, 26, 1)
1753 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1754 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1755 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1756 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1757 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1758 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1759 #define R_V7M_FPCCR_BANKED_MASK                 \
1760     (R_V7M_FPCCR_LSPACT_MASK |                  \
1761      R_V7M_FPCCR_USER_MASK |                    \
1762      R_V7M_FPCCR_THREAD_MASK |                  \
1763      R_V7M_FPCCR_MMRDY_MASK |                   \
1764      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1765      R_V7M_FPCCR_UFRDY_MASK |                   \
1766      R_V7M_FPCCR_ASPEN_MASK)
1767 
1768 /* v7M VPR bits */
1769 FIELD(V7M_VPR, P0, 0, 16)
1770 FIELD(V7M_VPR, MASK01, 16, 4)
1771 FIELD(V7M_VPR, MASK23, 20, 4)
1772 
1773 /*
1774  * System register ID fields.
1775  */
1776 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1777 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1778 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1779 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1780 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1781 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1782 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1783 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1784 FIELD(CLIDR_EL1, LOC, 24, 3)
1785 FIELD(CLIDR_EL1, LOUU, 27, 3)
1786 FIELD(CLIDR_EL1, ICB, 30, 3)
1787 
1788 /* When FEAT_CCIDX is implemented */
1789 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1790 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1791 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1792 
1793 /* When FEAT_CCIDX is not implemented */
1794 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1795 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1796 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1797 
1798 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1799 FIELD(CTR_EL0,  L1IP, 14, 2)
1800 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1801 FIELD(CTR_EL0,  ERG, 20, 4)
1802 FIELD(CTR_EL0,  CWG, 24, 4)
1803 FIELD(CTR_EL0,  IDC, 28, 1)
1804 FIELD(CTR_EL0,  DIC, 29, 1)
1805 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1806 
1807 FIELD(MIDR_EL1, REVISION, 0, 4)
1808 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1809 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1810 FIELD(MIDR_EL1, VARIANT, 20, 4)
1811 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1812 
1813 FIELD(ID_ISAR0, SWAP, 0, 4)
1814 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1815 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1816 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1817 FIELD(ID_ISAR0, COPROC, 16, 4)
1818 FIELD(ID_ISAR0, DEBUG, 20, 4)
1819 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1820 
1821 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1822 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1823 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1824 FIELD(ID_ISAR1, EXTEND, 12, 4)
1825 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1826 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1827 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1828 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1829 
1830 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1831 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1832 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1833 FIELD(ID_ISAR2, MULT, 12, 4)
1834 FIELD(ID_ISAR2, MULTS, 16, 4)
1835 FIELD(ID_ISAR2, MULTU, 20, 4)
1836 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1837 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1838 
1839 FIELD(ID_ISAR3, SATURATE, 0, 4)
1840 FIELD(ID_ISAR3, SIMD, 4, 4)
1841 FIELD(ID_ISAR3, SVC, 8, 4)
1842 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1843 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1844 FIELD(ID_ISAR3, T32COPY, 20, 4)
1845 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1846 FIELD(ID_ISAR3, T32EE, 28, 4)
1847 
1848 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1849 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1850 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1851 FIELD(ID_ISAR4, SMC, 12, 4)
1852 FIELD(ID_ISAR4, BARRIER, 16, 4)
1853 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1854 FIELD(ID_ISAR4, PSR_M, 24, 4)
1855 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1856 
1857 FIELD(ID_ISAR5, SEVL, 0, 4)
1858 FIELD(ID_ISAR5, AES, 4, 4)
1859 FIELD(ID_ISAR5, SHA1, 8, 4)
1860 FIELD(ID_ISAR5, SHA2, 12, 4)
1861 FIELD(ID_ISAR5, CRC32, 16, 4)
1862 FIELD(ID_ISAR5, RDM, 24, 4)
1863 FIELD(ID_ISAR5, VCMA, 28, 4)
1864 
1865 FIELD(ID_ISAR6, JSCVT, 0, 4)
1866 FIELD(ID_ISAR6, DP, 4, 4)
1867 FIELD(ID_ISAR6, FHM, 8, 4)
1868 FIELD(ID_ISAR6, SB, 12, 4)
1869 FIELD(ID_ISAR6, SPECRES, 16, 4)
1870 FIELD(ID_ISAR6, BF16, 20, 4)
1871 FIELD(ID_ISAR6, I8MM, 24, 4)
1872 
1873 FIELD(ID_MMFR0, VMSA, 0, 4)
1874 FIELD(ID_MMFR0, PMSA, 4, 4)
1875 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1876 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1877 FIELD(ID_MMFR0, TCM, 16, 4)
1878 FIELD(ID_MMFR0, AUXREG, 20, 4)
1879 FIELD(ID_MMFR0, FCSE, 24, 4)
1880 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1881 
1882 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1883 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1884 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1885 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1886 FIELD(ID_MMFR1, L1HVD, 16, 4)
1887 FIELD(ID_MMFR1, L1UNI, 20, 4)
1888 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1889 FIELD(ID_MMFR1, BPRED, 28, 4)
1890 
1891 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1892 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1893 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1894 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1895 FIELD(ID_MMFR2, UNITLB, 16, 4)
1896 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1897 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1898 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1899 
1900 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1901 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1902 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1903 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1904 FIELD(ID_MMFR3, PAN, 16, 4)
1905 FIELD(ID_MMFR3, COHWALK, 20, 4)
1906 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1907 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1908 
1909 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1910 FIELD(ID_MMFR4, AC2, 4, 4)
1911 FIELD(ID_MMFR4, XNX, 8, 4)
1912 FIELD(ID_MMFR4, CNP, 12, 4)
1913 FIELD(ID_MMFR4, HPDS, 16, 4)
1914 FIELD(ID_MMFR4, LSM, 20, 4)
1915 FIELD(ID_MMFR4, CCIDX, 24, 4)
1916 FIELD(ID_MMFR4, EVT, 28, 4)
1917 
1918 FIELD(ID_MMFR5, ETS, 0, 4)
1919 
1920 FIELD(ID_PFR0, STATE0, 0, 4)
1921 FIELD(ID_PFR0, STATE1, 4, 4)
1922 FIELD(ID_PFR0, STATE2, 8, 4)
1923 FIELD(ID_PFR0, STATE3, 12, 4)
1924 FIELD(ID_PFR0, CSV2, 16, 4)
1925 FIELD(ID_PFR0, AMU, 20, 4)
1926 FIELD(ID_PFR0, DIT, 24, 4)
1927 FIELD(ID_PFR0, RAS, 28, 4)
1928 
1929 FIELD(ID_PFR1, PROGMOD, 0, 4)
1930 FIELD(ID_PFR1, SECURITY, 4, 4)
1931 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1932 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1933 FIELD(ID_PFR1, GENTIMER, 16, 4)
1934 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1935 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1936 FIELD(ID_PFR1, GIC, 28, 4)
1937 
1938 FIELD(ID_PFR2, CSV3, 0, 4)
1939 FIELD(ID_PFR2, SSBS, 4, 4)
1940 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1941 
1942 FIELD(ID_AA64ISAR0, AES, 4, 4)
1943 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1944 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1945 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1946 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1947 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1948 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1949 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1950 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1951 FIELD(ID_AA64ISAR0, DP, 44, 4)
1952 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1953 FIELD(ID_AA64ISAR0, TS, 52, 4)
1954 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1955 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1956 
1957 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1958 FIELD(ID_AA64ISAR1, APA, 4, 4)
1959 FIELD(ID_AA64ISAR1, API, 8, 4)
1960 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1961 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1962 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1963 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1964 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1965 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1966 FIELD(ID_AA64ISAR1, SB, 36, 4)
1967 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1968 FIELD(ID_AA64ISAR1, BF16, 44, 4)
1969 FIELD(ID_AA64ISAR1, DGH, 48, 4)
1970 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1971 
1972 FIELD(ID_AA64PFR0, EL0, 0, 4)
1973 FIELD(ID_AA64PFR0, EL1, 4, 4)
1974 FIELD(ID_AA64PFR0, EL2, 8, 4)
1975 FIELD(ID_AA64PFR0, EL3, 12, 4)
1976 FIELD(ID_AA64PFR0, FP, 16, 4)
1977 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1978 FIELD(ID_AA64PFR0, GIC, 24, 4)
1979 FIELD(ID_AA64PFR0, RAS, 28, 4)
1980 FIELD(ID_AA64PFR0, SVE, 32, 4)
1981 FIELD(ID_AA64PFR0, SEL2, 36, 4)
1982 FIELD(ID_AA64PFR0, MPAM, 40, 4)
1983 FIELD(ID_AA64PFR0, AMU, 44, 4)
1984 FIELD(ID_AA64PFR0, DIT, 48, 4)
1985 FIELD(ID_AA64PFR0, CSV2, 56, 4)
1986 FIELD(ID_AA64PFR0, CSV3, 60, 4)
1987 
1988 FIELD(ID_AA64PFR1, BT, 0, 4)
1989 FIELD(ID_AA64PFR1, SSBS, 4, 4)
1990 FIELD(ID_AA64PFR1, MTE, 8, 4)
1991 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1992 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1993 
1994 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1995 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1996 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1997 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1998 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1999 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2000 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2001 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2002 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2003 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2004 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2005 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2006 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2007 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2008 
2009 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2010 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2011 FIELD(ID_AA64MMFR1, VH, 8, 4)
2012 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2013 FIELD(ID_AA64MMFR1, LO, 16, 4)
2014 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2015 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2016 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2017 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2018 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2019 
2020 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2021 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2022 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2023 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2024 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2025 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2026 FIELD(ID_AA64MMFR2, NV, 24, 4)
2027 FIELD(ID_AA64MMFR2, ST, 28, 4)
2028 FIELD(ID_AA64MMFR2, AT, 32, 4)
2029 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2030 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2031 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2032 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2033 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2034 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2035 
2036 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2037 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2038 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2039 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2040 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2041 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2042 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2043 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2044 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2045 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2046 
2047 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2048 FIELD(ID_AA64ZFR0, AES, 4, 4)
2049 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2050 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2051 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2052 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2053 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2054 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2055 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2056 
2057 FIELD(ID_DFR0, COPDBG, 0, 4)
2058 FIELD(ID_DFR0, COPSDBG, 4, 4)
2059 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2060 FIELD(ID_DFR0, COPTRC, 12, 4)
2061 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2062 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2063 FIELD(ID_DFR0, PERFMON, 24, 4)
2064 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2065 
2066 FIELD(ID_DFR1, MTPMU, 0, 4)
2067 
2068 FIELD(DBGDIDR, SE_IMP, 12, 1)
2069 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2070 FIELD(DBGDIDR, VERSION, 16, 4)
2071 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2072 FIELD(DBGDIDR, BRPS, 24, 4)
2073 FIELD(DBGDIDR, WRPS, 28, 4)
2074 
2075 FIELD(MVFR0, SIMDREG, 0, 4)
2076 FIELD(MVFR0, FPSP, 4, 4)
2077 FIELD(MVFR0, FPDP, 8, 4)
2078 FIELD(MVFR0, FPTRAP, 12, 4)
2079 FIELD(MVFR0, FPDIVIDE, 16, 4)
2080 FIELD(MVFR0, FPSQRT, 20, 4)
2081 FIELD(MVFR0, FPSHVEC, 24, 4)
2082 FIELD(MVFR0, FPROUND, 28, 4)
2083 
2084 FIELD(MVFR1, FPFTZ, 0, 4)
2085 FIELD(MVFR1, FPDNAN, 4, 4)
2086 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2087 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2088 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2089 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2090 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2091 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2092 FIELD(MVFR1, FPHP, 24, 4)
2093 FIELD(MVFR1, SIMDFMAC, 28, 4)
2094 
2095 FIELD(MVFR2, SIMDMISC, 0, 4)
2096 FIELD(MVFR2, FPMISC, 4, 4)
2097 
2098 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2099 
2100 /* If adding a feature bit which corresponds to a Linux ELF
2101  * HWCAP bit, remember to update the feature-bit-to-hwcap
2102  * mapping in linux-user/elfload.c:get_elf_hwcap().
2103  */
2104 enum arm_features {
2105     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2106     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2107     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2108     ARM_FEATURE_V6,
2109     ARM_FEATURE_V6K,
2110     ARM_FEATURE_V7,
2111     ARM_FEATURE_THUMB2,
2112     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2113     ARM_FEATURE_NEON,
2114     ARM_FEATURE_M, /* Microcontroller profile.  */
2115     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2116     ARM_FEATURE_THUMB2EE,
2117     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2118     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2119     ARM_FEATURE_V4T,
2120     ARM_FEATURE_V5,
2121     ARM_FEATURE_STRONGARM,
2122     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2123     ARM_FEATURE_GENERIC_TIMER,
2124     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2125     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2126     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2127     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2128     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2129     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2130     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2131     ARM_FEATURE_V8,
2132     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2133     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2134     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2135     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2136     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2137     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2138     ARM_FEATURE_PMU, /* has PMU support */
2139     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2140     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2141     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2142     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2143 };
2144 
2145 static inline int arm_feature(CPUARMState *env, int feature)
2146 {
2147     return (env->features & (1ULL << feature)) != 0;
2148 }
2149 
2150 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2151 
2152 #if !defined(CONFIG_USER_ONLY)
2153 /* Return true if exception levels below EL3 are in secure state,
2154  * or would be following an exception return to that level.
2155  * Unlike arm_is_secure() (which is always a question about the
2156  * _current_ state of the CPU) this doesn't care about the current
2157  * EL or mode.
2158  */
2159 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2160 {
2161     if (arm_feature(env, ARM_FEATURE_EL3)) {
2162         return !(env->cp15.scr_el3 & SCR_NS);
2163     } else {
2164         /* If EL3 is not supported then the secure state is implementation
2165          * defined, in which case QEMU defaults to non-secure.
2166          */
2167         return false;
2168     }
2169 }
2170 
2171 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2172 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2173 {
2174     if (arm_feature(env, ARM_FEATURE_EL3)) {
2175         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2176             /* CPU currently in AArch64 state and EL3 */
2177             return true;
2178         } else if (!is_a64(env) &&
2179                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2180             /* CPU currently in AArch32 state and monitor mode */
2181             return true;
2182         }
2183     }
2184     return false;
2185 }
2186 
2187 /* Return true if the processor is in secure state */
2188 static inline bool arm_is_secure(CPUARMState *env)
2189 {
2190     if (arm_is_el3_or_mon(env)) {
2191         return true;
2192     }
2193     return arm_is_secure_below_el3(env);
2194 }
2195 
2196 /*
2197  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2198  * This corresponds to the pseudocode EL2Enabled()
2199  */
2200 static inline bool arm_is_el2_enabled(CPUARMState *env)
2201 {
2202     if (arm_feature(env, ARM_FEATURE_EL2)) {
2203         if (arm_is_secure_below_el3(env)) {
2204             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2205         }
2206         return true;
2207     }
2208     return false;
2209 }
2210 
2211 #else
2212 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2213 {
2214     return false;
2215 }
2216 
2217 static inline bool arm_is_secure(CPUARMState *env)
2218 {
2219     return false;
2220 }
2221 
2222 static inline bool arm_is_el2_enabled(CPUARMState *env)
2223 {
2224     return false;
2225 }
2226 #endif
2227 
2228 /**
2229  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2230  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2231  * "for all purposes other than a direct read or write access of HCR_EL2."
2232  * Not included here is HCR_RW.
2233  */
2234 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2235 
2236 /* Return true if the specified exception level is running in AArch64 state. */
2237 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2238 {
2239     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2240      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2241      */
2242     assert(el >= 1 && el <= 3);
2243     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2244 
2245     /* The highest exception level is always at the maximum supported
2246      * register width, and then lower levels have a register width controlled
2247      * by bits in the SCR or HCR registers.
2248      */
2249     if (el == 3) {
2250         return aa64;
2251     }
2252 
2253     if (arm_feature(env, ARM_FEATURE_EL3) &&
2254         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2255         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2256     }
2257 
2258     if (el == 2) {
2259         return aa64;
2260     }
2261 
2262     if (arm_is_el2_enabled(env)) {
2263         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2264     }
2265 
2266     return aa64;
2267 }
2268 
2269 /* Function for determing whether guest cp register reads and writes should
2270  * access the secure or non-secure bank of a cp register.  When EL3 is
2271  * operating in AArch32 state, the NS-bit determines whether the secure
2272  * instance of a cp register should be used. When EL3 is AArch64 (or if
2273  * it doesn't exist at all) then there is no register banking, and all
2274  * accesses are to the non-secure version.
2275  */
2276 static inline bool access_secure_reg(CPUARMState *env)
2277 {
2278     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2279                 !arm_el_is_aa64(env, 3) &&
2280                 !(env->cp15.scr_el3 & SCR_NS));
2281 
2282     return ret;
2283 }
2284 
2285 /* Macros for accessing a specified CP register bank */
2286 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2287     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2288 
2289 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2290     do {                                                \
2291         if (_secure) {                                   \
2292             (_env)->cp15._regname##_s = (_val);            \
2293         } else {                                        \
2294             (_env)->cp15._regname##_ns = (_val);           \
2295         }                                               \
2296     } while (0)
2297 
2298 /* Macros for automatically accessing a specific CP register bank depending on
2299  * the current secure state of the system.  These macros are not intended for
2300  * supporting instruction translation reads/writes as these are dependent
2301  * solely on the SCR.NS bit and not the mode.
2302  */
2303 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2304     A32_BANKED_REG_GET((_env), _regname,                \
2305                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2306 
2307 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2308     A32_BANKED_REG_SET((_env), _regname,                                    \
2309                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2310                        (_val))
2311 
2312 void arm_cpu_list(void);
2313 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2314                                  uint32_t cur_el, bool secure);
2315 
2316 /* Interface between CPU and Interrupt controller.  */
2317 #ifndef CONFIG_USER_ONLY
2318 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2319 #else
2320 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2321 {
2322     return true;
2323 }
2324 #endif
2325 /**
2326  * armv7m_nvic_set_pending: mark the specified exception as pending
2327  * @opaque: the NVIC
2328  * @irq: the exception number to mark pending
2329  * @secure: false for non-banked exceptions or for the nonsecure
2330  * version of a banked exception, true for the secure version of a banked
2331  * exception.
2332  *
2333  * Marks the specified exception as pending. Note that we will assert()
2334  * if @secure is true and @irq does not specify one of the fixed set
2335  * of architecturally banked exceptions.
2336  */
2337 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2338 /**
2339  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2340  * @opaque: the NVIC
2341  * @irq: the exception number to mark pending
2342  * @secure: false for non-banked exceptions or for the nonsecure
2343  * version of a banked exception, true for the secure version of a banked
2344  * exception.
2345  *
2346  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2347  * exceptions (exceptions generated in the course of trying to take
2348  * a different exception).
2349  */
2350 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2351 /**
2352  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2353  * @opaque: the NVIC
2354  * @irq: the exception number to mark pending
2355  * @secure: false for non-banked exceptions or for the nonsecure
2356  * version of a banked exception, true for the secure version of a banked
2357  * exception.
2358  *
2359  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2360  * generated in the course of lazy stacking of FP registers.
2361  */
2362 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2363 /**
2364  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2365  *    exception, and whether it targets Secure state
2366  * @opaque: the NVIC
2367  * @pirq: set to pending exception number
2368  * @ptargets_secure: set to whether pending exception targets Secure
2369  *
2370  * This function writes the number of the highest priority pending
2371  * exception (the one which would be made active by
2372  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2373  * to true if the current highest priority pending exception should
2374  * be taken to Secure state, false for NS.
2375  */
2376 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2377                                       bool *ptargets_secure);
2378 /**
2379  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2380  * @opaque: the NVIC
2381  *
2382  * Move the current highest priority pending exception from the pending
2383  * state to the active state, and update v7m.exception to indicate that
2384  * it is the exception currently being handled.
2385  */
2386 void armv7m_nvic_acknowledge_irq(void *opaque);
2387 /**
2388  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2389  * @opaque: the NVIC
2390  * @irq: the exception number to complete
2391  * @secure: true if this exception was secure
2392  *
2393  * Returns: -1 if the irq was not active
2394  *           1 if completing this irq brought us back to base (no active irqs)
2395  *           0 if there is still an irq active after this one was completed
2396  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2397  */
2398 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2399 /**
2400  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2401  * @opaque: the NVIC
2402  * @irq: the exception number to mark pending
2403  * @secure: false for non-banked exceptions or for the nonsecure
2404  * version of a banked exception, true for the secure version of a banked
2405  * exception.
2406  *
2407  * Return whether an exception is "ready", i.e. whether the exception is
2408  * enabled and is configured at a priority which would allow it to
2409  * interrupt the current execution priority. This controls whether the
2410  * RDY bit for it in the FPCCR is set.
2411  */
2412 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2413 /**
2414  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2415  * @opaque: the NVIC
2416  *
2417  * Returns: the raw execution priority as defined by the v8M architecture.
2418  * This is the execution priority minus the effects of AIRCR.PRIS,
2419  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2420  * (v8M ARM ARM I_PKLD.)
2421  */
2422 int armv7m_nvic_raw_execution_priority(void *opaque);
2423 /**
2424  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2425  * priority is negative for the specified security state.
2426  * @opaque: the NVIC
2427  * @secure: the security state to test
2428  * This corresponds to the pseudocode IsReqExecPriNeg().
2429  */
2430 #ifndef CONFIG_USER_ONLY
2431 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2432 #else
2433 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2434 {
2435     return false;
2436 }
2437 #endif
2438 
2439 /* Interface for defining coprocessor registers.
2440  * Registers are defined in tables of arm_cp_reginfo structs
2441  * which are passed to define_arm_cp_regs().
2442  */
2443 
2444 /* When looking up a coprocessor register we look for it
2445  * via an integer which encodes all of:
2446  *  coprocessor number
2447  *  Crn, Crm, opc1, opc2 fields
2448  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2449  *    or via MRRC/MCRR?)
2450  *  non-secure/secure bank (AArch32 only)
2451  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2452  * (In this case crn and opc2 should be zero.)
2453  * For AArch64, there is no 32/64 bit size distinction;
2454  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2455  * and 4 bit CRn and CRm. The encoding patterns are chosen
2456  * to be easy to convert to and from the KVM encodings, and also
2457  * so that the hashtable can contain both AArch32 and AArch64
2458  * registers (to allow for interprocessing where we might run
2459  * 32 bit code on a 64 bit core).
2460  */
2461 /* This bit is private to our hashtable cpreg; in KVM register
2462  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2463  * in the upper bits of the 64 bit ID.
2464  */
2465 #define CP_REG_AA64_SHIFT 28
2466 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2467 
2468 /* To enable banking of coprocessor registers depending on ns-bit we
2469  * add a bit to distinguish between secure and non-secure cpregs in the
2470  * hashtable.
2471  */
2472 #define CP_REG_NS_SHIFT 29
2473 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2474 
2475 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2476     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2477      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2478 
2479 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2480     (CP_REG_AA64_MASK |                                 \
2481      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2482      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2483      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2484      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2485      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2486      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2487 
2488 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2489  * version used as a key for the coprocessor register hashtable
2490  */
2491 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2492 {
2493     uint32_t cpregid = kvmid;
2494     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2495         cpregid |= CP_REG_AA64_MASK;
2496     } else {
2497         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2498             cpregid |= (1 << 15);
2499         }
2500 
2501         /* KVM is always non-secure so add the NS flag on AArch32 register
2502          * entries.
2503          */
2504          cpregid |= 1 << CP_REG_NS_SHIFT;
2505     }
2506     return cpregid;
2507 }
2508 
2509 /* Convert a truncated 32 bit hashtable key into the full
2510  * 64 bit KVM register ID.
2511  */
2512 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2513 {
2514     uint64_t kvmid;
2515 
2516     if (cpregid & CP_REG_AA64_MASK) {
2517         kvmid = cpregid & ~CP_REG_AA64_MASK;
2518         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2519     } else {
2520         kvmid = cpregid & ~(1 << 15);
2521         if (cpregid & (1 << 15)) {
2522             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2523         } else {
2524             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2525         }
2526     }
2527     return kvmid;
2528 }
2529 
2530 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2531  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2532  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2533  * TCG can assume the value to be constant (ie load at translate time)
2534  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2535  * indicates that the TB should not be ended after a write to this register
2536  * (the default is that the TB ends after cp writes). OVERRIDE permits
2537  * a register definition to override a previous definition for the
2538  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2539  * old must have the OVERRIDE bit set.
2540  * ALIAS indicates that this register is an alias view of some underlying
2541  * state which is also visible via another register, and that the other
2542  * register is handling migration and reset; registers marked ALIAS will not be
2543  * migrated but may have their state set by syncing of register state from KVM.
2544  * NO_RAW indicates that this register has no underlying state and does not
2545  * support raw access for state saving/loading; it will not be used for either
2546  * migration or KVM state synchronization. (Typically this is for "registers"
2547  * which are actually used as instructions for cache maintenance and so on.)
2548  * IO indicates that this register does I/O and therefore its accesses
2549  * need to be marked with gen_io_start() and also end the TB. In particular,
2550  * registers which implement clocks or timers require this.
2551  * RAISES_EXC is for when the read or write hook might raise an exception;
2552  * the generated code will synchronize the CPU state before calling the hook
2553  * so that it is safe for the hook to call raise_exception().
2554  * NEWEL is for writes to registers that might change the exception
2555  * level - typically on older ARM chips. For those cases we need to
2556  * re-read the new el when recomputing the translation flags.
2557  */
2558 #define ARM_CP_SPECIAL           0x0001
2559 #define ARM_CP_CONST             0x0002
2560 #define ARM_CP_64BIT             0x0004
2561 #define ARM_CP_SUPPRESS_TB_END   0x0008
2562 #define ARM_CP_OVERRIDE          0x0010
2563 #define ARM_CP_ALIAS             0x0020
2564 #define ARM_CP_IO                0x0040
2565 #define ARM_CP_NO_RAW            0x0080
2566 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2567 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2568 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2569 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2570 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2571 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2572 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2573 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2574 #define ARM_CP_FPU               0x1000
2575 #define ARM_CP_SVE               0x2000
2576 #define ARM_CP_NO_GDB            0x4000
2577 #define ARM_CP_RAISES_EXC        0x8000
2578 #define ARM_CP_NEWEL             0x10000
2579 /* Used only as a terminator for ARMCPRegInfo lists */
2580 #define ARM_CP_SENTINEL          0xfffff
2581 /* Mask of only the flag bits in a type field */
2582 #define ARM_CP_FLAG_MASK         0x1f0ff
2583 
2584 /* Valid values for ARMCPRegInfo state field, indicating which of
2585  * the AArch32 and AArch64 execution states this register is visible in.
2586  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2587  * If the reginfo is declared to be visible in both states then a second
2588  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2589  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2590  * Note that we rely on the values of these enums as we iterate through
2591  * the various states in some places.
2592  */
2593 enum {
2594     ARM_CP_STATE_AA32 = 0,
2595     ARM_CP_STATE_AA64 = 1,
2596     ARM_CP_STATE_BOTH = 2,
2597 };
2598 
2599 /* ARM CP register secure state flags.  These flags identify security state
2600  * attributes for a given CP register entry.
2601  * The existence of both or neither secure and non-secure flags indicates that
2602  * the register has both a secure and non-secure hash entry.  A single one of
2603  * these flags causes the register to only be hashed for the specified
2604  * security state.
2605  * Although definitions may have any combination of the S/NS bits, each
2606  * registered entry will only have one to identify whether the entry is secure
2607  * or non-secure.
2608  */
2609 enum {
2610     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2611     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2612 };
2613 
2614 /* Return true if cptype is a valid type field. This is used to try to
2615  * catch errors where the sentinel has been accidentally left off the end
2616  * of a list of registers.
2617  */
2618 static inline bool cptype_valid(int cptype)
2619 {
2620     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2621         || ((cptype & ARM_CP_SPECIAL) &&
2622             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2623 }
2624 
2625 /* Access rights:
2626  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2627  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2628  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2629  * (ie any of the privileged modes in Secure state, or Monitor mode).
2630  * If a register is accessible in one privilege level it's always accessible
2631  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2632  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2633  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2634  * terminology a little and call this PL3.
2635  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2636  * with the ELx exception levels.
2637  *
2638  * If access permissions for a register are more complex than can be
2639  * described with these bits, then use a laxer set of restrictions, and
2640  * do the more restrictive/complex check inside a helper function.
2641  */
2642 #define PL3_R 0x80
2643 #define PL3_W 0x40
2644 #define PL2_R (0x20 | PL3_R)
2645 #define PL2_W (0x10 | PL3_W)
2646 #define PL1_R (0x08 | PL2_R)
2647 #define PL1_W (0x04 | PL2_W)
2648 #define PL0_R (0x02 | PL1_R)
2649 #define PL0_W (0x01 | PL1_W)
2650 
2651 /*
2652  * For user-mode some registers are accessible to EL0 via a kernel
2653  * trap-and-emulate ABI. In this case we define the read permissions
2654  * as actually being PL0_R. However some bits of any given register
2655  * may still be masked.
2656  */
2657 #ifdef CONFIG_USER_ONLY
2658 #define PL0U_R PL0_R
2659 #else
2660 #define PL0U_R PL1_R
2661 #endif
2662 
2663 #define PL3_RW (PL3_R | PL3_W)
2664 #define PL2_RW (PL2_R | PL2_W)
2665 #define PL1_RW (PL1_R | PL1_W)
2666 #define PL0_RW (PL0_R | PL0_W)
2667 
2668 /* Return the highest implemented Exception Level */
2669 static inline int arm_highest_el(CPUARMState *env)
2670 {
2671     if (arm_feature(env, ARM_FEATURE_EL3)) {
2672         return 3;
2673     }
2674     if (arm_feature(env, ARM_FEATURE_EL2)) {
2675         return 2;
2676     }
2677     return 1;
2678 }
2679 
2680 /* Return true if a v7M CPU is in Handler mode */
2681 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2682 {
2683     return env->v7m.exception != 0;
2684 }
2685 
2686 /* Return the current Exception Level (as per ARMv8; note that this differs
2687  * from the ARMv7 Privilege Level).
2688  */
2689 static inline int arm_current_el(CPUARMState *env)
2690 {
2691     if (arm_feature(env, ARM_FEATURE_M)) {
2692         return arm_v7m_is_handler_mode(env) ||
2693             !(env->v7m.control[env->v7m.secure] & 1);
2694     }
2695 
2696     if (is_a64(env)) {
2697         return extract32(env->pstate, 2, 2);
2698     }
2699 
2700     switch (env->uncached_cpsr & 0x1f) {
2701     case ARM_CPU_MODE_USR:
2702         return 0;
2703     case ARM_CPU_MODE_HYP:
2704         return 2;
2705     case ARM_CPU_MODE_MON:
2706         return 3;
2707     default:
2708         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2709             /* If EL3 is 32-bit then all secure privileged modes run in
2710              * EL3
2711              */
2712             return 3;
2713         }
2714 
2715         return 1;
2716     }
2717 }
2718 
2719 typedef struct ARMCPRegInfo ARMCPRegInfo;
2720 
2721 typedef enum CPAccessResult {
2722     /* Access is permitted */
2723     CP_ACCESS_OK = 0,
2724     /* Access fails due to a configurable trap or enable which would
2725      * result in a categorized exception syndrome giving information about
2726      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2727      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2728      * PL1 if in EL0, otherwise to the current EL).
2729      */
2730     CP_ACCESS_TRAP = 1,
2731     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2732      * Note that this is not a catch-all case -- the set of cases which may
2733      * result in this failure is specifically defined by the architecture.
2734      */
2735     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2736     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2737     CP_ACCESS_TRAP_EL2 = 3,
2738     CP_ACCESS_TRAP_EL3 = 4,
2739     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2740     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2741     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2742     /* Access fails and results in an exception syndrome for an FP access,
2743      * trapped directly to EL2 or EL3
2744      */
2745     CP_ACCESS_TRAP_FP_EL2 = 7,
2746     CP_ACCESS_TRAP_FP_EL3 = 8,
2747 } CPAccessResult;
2748 
2749 /* Access functions for coprocessor registers. These cannot fail and
2750  * may not raise exceptions.
2751  */
2752 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2753 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2754                        uint64_t value);
2755 /* Access permission check functions for coprocessor registers. */
2756 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2757                                   const ARMCPRegInfo *opaque,
2758                                   bool isread);
2759 /* Hook function for register reset */
2760 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2761 
2762 #define CP_ANY 0xff
2763 
2764 /* Definition of an ARM coprocessor register */
2765 struct ARMCPRegInfo {
2766     /* Name of register (useful mainly for debugging, need not be unique) */
2767     const char *name;
2768     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2769      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2770      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2771      * will be decoded to this register. The register read and write
2772      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2773      * used by the program, so it is possible to register a wildcard and
2774      * then behave differently on read/write if necessary.
2775      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2776      * must both be zero.
2777      * For AArch64-visible registers, opc0 is also used.
2778      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2779      * way to distinguish (for KVM's benefit) guest-visible system registers
2780      * from demuxed ones provided to preserve the "no side effects on
2781      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2782      * visible (to match KVM's encoding); cp==0 will be converted to
2783      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2784      */
2785     uint8_t cp;
2786     uint8_t crn;
2787     uint8_t crm;
2788     uint8_t opc0;
2789     uint8_t opc1;
2790     uint8_t opc2;
2791     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2792     int state;
2793     /* Register type: ARM_CP_* bits/values */
2794     int type;
2795     /* Access rights: PL*_[RW] */
2796     int access;
2797     /* Security state: ARM_CP_SECSTATE_* bits/values */
2798     int secure;
2799     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2800      * this register was defined: can be used to hand data through to the
2801      * register read/write functions, since they are passed the ARMCPRegInfo*.
2802      */
2803     void *opaque;
2804     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2805      * fieldoffset is non-zero, the reset value of the register.
2806      */
2807     uint64_t resetvalue;
2808     /* Offset of the field in CPUARMState for this register.
2809      *
2810      * This is not needed if either:
2811      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2812      *  2. both readfn and writefn are specified
2813      */
2814     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2815 
2816     /* Offsets of the secure and non-secure fields in CPUARMState for the
2817      * register if it is banked.  These fields are only used during the static
2818      * registration of a register.  During hashing the bank associated
2819      * with a given security state is copied to fieldoffset which is used from
2820      * there on out.
2821      *
2822      * It is expected that register definitions use either fieldoffset or
2823      * bank_fieldoffsets in the definition but not both.  It is also expected
2824      * that both bank offsets are set when defining a banked register.  This
2825      * use indicates that a register is banked.
2826      */
2827     ptrdiff_t bank_fieldoffsets[2];
2828 
2829     /* Function for making any access checks for this register in addition to
2830      * those specified by the 'access' permissions bits. If NULL, no extra
2831      * checks required. The access check is performed at runtime, not at
2832      * translate time.
2833      */
2834     CPAccessFn *accessfn;
2835     /* Function for handling reads of this register. If NULL, then reads
2836      * will be done by loading from the offset into CPUARMState specified
2837      * by fieldoffset.
2838      */
2839     CPReadFn *readfn;
2840     /* Function for handling writes of this register. If NULL, then writes
2841      * will be done by writing to the offset into CPUARMState specified
2842      * by fieldoffset.
2843      */
2844     CPWriteFn *writefn;
2845     /* Function for doing a "raw" read; used when we need to copy
2846      * coprocessor state to the kernel for KVM or out for
2847      * migration. This only needs to be provided if there is also a
2848      * readfn and it has side effects (for instance clear-on-read bits).
2849      */
2850     CPReadFn *raw_readfn;
2851     /* Function for doing a "raw" write; used when we need to copy KVM
2852      * kernel coprocessor state into userspace, or for inbound
2853      * migration. This only needs to be provided if there is also a
2854      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2855      * or similar behaviour.
2856      */
2857     CPWriteFn *raw_writefn;
2858     /* Function for resetting the register. If NULL, then reset will be done
2859      * by writing resetvalue to the field specified in fieldoffset. If
2860      * fieldoffset is 0 then no reset will be done.
2861      */
2862     CPResetFn *resetfn;
2863 
2864     /*
2865      * "Original" writefn and readfn.
2866      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2867      * accessor functions of various EL1/EL0 to perform the runtime
2868      * check for which sysreg should actually be modified, and then
2869      * forwards the operation.  Before overwriting the accessors,
2870      * the original function is copied here, so that accesses that
2871      * really do go to the EL1/EL0 version proceed normally.
2872      * (The corresponding EL2 register is linked via opaque.)
2873      */
2874     CPReadFn *orig_readfn;
2875     CPWriteFn *orig_writefn;
2876 };
2877 
2878 /* Macros which are lvalues for the field in CPUARMState for the
2879  * ARMCPRegInfo *ri.
2880  */
2881 #define CPREG_FIELD32(env, ri) \
2882     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2883 #define CPREG_FIELD64(env, ri) \
2884     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2885 
2886 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2887 
2888 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2889                                     const ARMCPRegInfo *regs, void *opaque);
2890 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2891                                        const ARMCPRegInfo *regs, void *opaque);
2892 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2893 {
2894     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2895 }
2896 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2897 {
2898     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2899 }
2900 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2901 
2902 /*
2903  * Definition of an ARM co-processor register as viewed from
2904  * userspace. This is used for presenting sanitised versions of
2905  * registers to userspace when emulating the Linux AArch64 CPU
2906  * ID/feature ABI (advertised as HWCAP_CPUID).
2907  */
2908 typedef struct ARMCPRegUserSpaceInfo {
2909     /* Name of register */
2910     const char *name;
2911 
2912     /* Is the name actually a glob pattern */
2913     bool is_glob;
2914 
2915     /* Only some bits are exported to user space */
2916     uint64_t exported_bits;
2917 
2918     /* Fixed bits are applied after the mask */
2919     uint64_t fixed_bits;
2920 } ARMCPRegUserSpaceInfo;
2921 
2922 #define REGUSERINFO_SENTINEL { .name = NULL }
2923 
2924 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2925 
2926 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2927 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2928                          uint64_t value);
2929 /* CPReadFn that can be used for read-as-zero behaviour */
2930 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2931 
2932 /* CPResetFn that does nothing, for use if no reset is required even
2933  * if fieldoffset is non zero.
2934  */
2935 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2936 
2937 /* Return true if this reginfo struct's field in the cpu state struct
2938  * is 64 bits wide.
2939  */
2940 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2941 {
2942     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2943 }
2944 
2945 static inline bool cp_access_ok(int current_el,
2946                                 const ARMCPRegInfo *ri, int isread)
2947 {
2948     return (ri->access >> ((current_el * 2) + isread)) & 1;
2949 }
2950 
2951 /* Raw read of a coprocessor register (as needed for migration, etc) */
2952 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2953 
2954 /**
2955  * write_list_to_cpustate
2956  * @cpu: ARMCPU
2957  *
2958  * For each register listed in the ARMCPU cpreg_indexes list, write
2959  * its value from the cpreg_values list into the ARMCPUState structure.
2960  * This updates TCG's working data structures from KVM data or
2961  * from incoming migration state.
2962  *
2963  * Returns: true if all register values were updated correctly,
2964  * false if some register was unknown or could not be written.
2965  * Note that we do not stop early on failure -- we will attempt
2966  * writing all registers in the list.
2967  */
2968 bool write_list_to_cpustate(ARMCPU *cpu);
2969 
2970 /**
2971  * write_cpustate_to_list:
2972  * @cpu: ARMCPU
2973  * @kvm_sync: true if this is for syncing back to KVM
2974  *
2975  * For each register listed in the ARMCPU cpreg_indexes list, write
2976  * its value from the ARMCPUState structure into the cpreg_values list.
2977  * This is used to copy info from TCG's working data structures into
2978  * KVM or for outbound migration.
2979  *
2980  * @kvm_sync is true if we are doing this in order to sync the
2981  * register state back to KVM. In this case we will only update
2982  * values in the list if the previous list->cpustate sync actually
2983  * successfully wrote the CPU state. Otherwise we will keep the value
2984  * that is in the list.
2985  *
2986  * Returns: true if all register values were read correctly,
2987  * false if some register was unknown or could not be read.
2988  * Note that we do not stop early on failure -- we will attempt
2989  * reading all registers in the list.
2990  */
2991 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2992 
2993 #define ARM_CPUID_TI915T      0x54029152
2994 #define ARM_CPUID_TI925T      0x54029252
2995 
2996 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2997 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2998 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2999 
3000 #define cpu_signal_handler cpu_arm_signal_handler
3001 #define cpu_list arm_cpu_list
3002 
3003 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
3004  *
3005  * If EL3 is 64-bit:
3006  *  + NonSecure EL1 & 0 stage 1
3007  *  + NonSecure EL1 & 0 stage 2
3008  *  + NonSecure EL2
3009  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
3010  *  + Secure EL1 & 0
3011  *  + Secure EL3
3012  * If EL3 is 32-bit:
3013  *  + NonSecure PL1 & 0 stage 1
3014  *  + NonSecure PL1 & 0 stage 2
3015  *  + NonSecure PL2
3016  *  + Secure PL0
3017  *  + Secure PL1
3018  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3019  *
3020  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3021  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3022  *     because they may differ in access permissions even if the VA->PA map is
3023  *     the same
3024  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3025  *     translation, which means that we have one mmu_idx that deals with two
3026  *     concatenated translation regimes [this sort of combined s1+2 TLB is
3027  *     architecturally permitted]
3028  *  3. we don't need to allocate an mmu_idx to translations that we won't be
3029  *     handling via the TLB. The only way to do a stage 1 translation without
3030  *     the immediate stage 2 translation is via the ATS or AT system insns,
3031  *     which can be slow-pathed and always do a page table walk.
3032  *     The only use of stage 2 translations is either as part of an s1+2
3033  *     lookup or when loading the descriptors during a stage 1 page table walk,
3034  *     and in both those cases we don't use the TLB.
3035  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3036  *     translation regimes, because they map reasonably well to each other
3037  *     and they can't both be active at the same time.
3038  *  5. we want to be able to use the TLB for accesses done as part of a
3039  *     stage1 page table walk, rather than having to walk the stage2 page
3040  *     table over and over.
3041  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3042  *     Never (PAN) bit within PSTATE.
3043  *
3044  * This gives us the following list of cases:
3045  *
3046  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3047  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3048  * NS EL1 EL1&0 stage 1+2 +PAN
3049  * NS EL0 EL2&0
3050  * NS EL2 EL2&0
3051  * NS EL2 EL2&0 +PAN
3052  * NS EL2 (aka NS PL2)
3053  * S EL0 EL1&0 (aka S PL0)
3054  * S EL1 EL1&0 (not used if EL3 is 32 bit)
3055  * S EL1 EL1&0 +PAN
3056  * S EL3 (aka S PL1)
3057  *
3058  * for a total of 11 different mmu_idx.
3059  *
3060  * R profile CPUs have an MPU, but can use the same set of MMU indexes
3061  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3062  * NS EL2 if we ever model a Cortex-R52).
3063  *
3064  * M profile CPUs are rather different as they do not have a true MMU.
3065  * They have the following different MMU indexes:
3066  *  User
3067  *  Privileged
3068  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3069  *  Privileged, execution priority negative (ditto)
3070  * If the CPU supports the v8M Security Extension then there are also:
3071  *  Secure User
3072  *  Secure Privileged
3073  *  Secure User, execution priority negative
3074  *  Secure Privileged, execution priority negative
3075  *
3076  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3077  * are not quite the same -- different CPU types (most notably M profile
3078  * vs A/R profile) would like to use MMU indexes with different semantics,
3079  * but since we don't ever need to use all of those in a single CPU we
3080  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3081  * modes + total number of M profile MMU modes". The lower bits of
3082  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3083  * the same for any particular CPU.
3084  * Variables of type ARMMUIdx are always full values, and the core
3085  * index values are in variables of type 'int'.
3086  *
3087  * Our enumeration includes at the end some entries which are not "true"
3088  * mmu_idx values in that they don't have corresponding TLBs and are only
3089  * valid for doing slow path page table walks.
3090  *
3091  * The constant names here are patterned after the general style of the names
3092  * of the AT/ATS operations.
3093  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3094  * For M profile we arrange them to have a bit for priv, a bit for negpri
3095  * and a bit for secure.
3096  */
3097 #define ARM_MMU_IDX_A     0x10  /* A profile */
3098 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3099 #define ARM_MMU_IDX_M     0x40  /* M profile */
3100 
3101 /* Meanings of the bits for A profile mmu idx values */
3102 #define ARM_MMU_IDX_A_NS     0x8
3103 
3104 /* Meanings of the bits for M profile mmu idx values */
3105 #define ARM_MMU_IDX_M_PRIV   0x1
3106 #define ARM_MMU_IDX_M_NEGPRI 0x2
3107 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3108 
3109 #define ARM_MMU_IDX_TYPE_MASK \
3110     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3111 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3112 
3113 typedef enum ARMMMUIdx {
3114     /*
3115      * A-profile.
3116      */
3117     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3118     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3119     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3120     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3121     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3122     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3123     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3124     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3125 
3126     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3127     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3128     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3129     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3130     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3131     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3132     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3133 
3134     /*
3135      * These are not allocated TLBs and are used only for AT system
3136      * instructions or for the first stage of an S12 page table walk.
3137      */
3138     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3139     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3140     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3141     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3142     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3143     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3144     /*
3145      * Not allocated a TLB: used only for second stage of an S12 page
3146      * table walk, or for descriptor loads during first stage of an S1
3147      * page table walk. Note that if we ever want to have a TLB for this
3148      * then various TLB flush insns which currently are no-ops or flush
3149      * only stage 1 MMU indexes will need to change to flush stage 2.
3150      */
3151     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3152     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3153 
3154     /*
3155      * M-profile.
3156      */
3157     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3158     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3159     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3160     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3161     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3162     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3163     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3164     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3165 } ARMMMUIdx;
3166 
3167 /*
3168  * Bit macros for the core-mmu-index values for each index,
3169  * for use when calling tlb_flush_by_mmuidx() and friends.
3170  */
3171 #define TO_CORE_BIT(NAME) \
3172     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3173 
3174 typedef enum ARMMMUIdxBit {
3175     TO_CORE_BIT(E10_0),
3176     TO_CORE_BIT(E20_0),
3177     TO_CORE_BIT(E10_1),
3178     TO_CORE_BIT(E10_1_PAN),
3179     TO_CORE_BIT(E2),
3180     TO_CORE_BIT(E20_2),
3181     TO_CORE_BIT(E20_2_PAN),
3182     TO_CORE_BIT(SE10_0),
3183     TO_CORE_BIT(SE20_0),
3184     TO_CORE_BIT(SE10_1),
3185     TO_CORE_BIT(SE20_2),
3186     TO_CORE_BIT(SE10_1_PAN),
3187     TO_CORE_BIT(SE20_2_PAN),
3188     TO_CORE_BIT(SE2),
3189     TO_CORE_BIT(SE3),
3190 
3191     TO_CORE_BIT(MUser),
3192     TO_CORE_BIT(MPriv),
3193     TO_CORE_BIT(MUserNegPri),
3194     TO_CORE_BIT(MPrivNegPri),
3195     TO_CORE_BIT(MSUser),
3196     TO_CORE_BIT(MSPriv),
3197     TO_CORE_BIT(MSUserNegPri),
3198     TO_CORE_BIT(MSPrivNegPri),
3199 } ARMMMUIdxBit;
3200 
3201 #undef TO_CORE_BIT
3202 
3203 #define MMU_USER_IDX 0
3204 
3205 /* Indexes used when registering address spaces with cpu_address_space_init */
3206 typedef enum ARMASIdx {
3207     ARMASIdx_NS = 0,
3208     ARMASIdx_S = 1,
3209     ARMASIdx_TagNS = 2,
3210     ARMASIdx_TagS = 3,
3211 } ARMASIdx;
3212 
3213 /* Return the Exception Level targeted by debug exceptions. */
3214 static inline int arm_debug_target_el(CPUARMState *env)
3215 {
3216     bool secure = arm_is_secure(env);
3217     bool route_to_el2 = false;
3218 
3219     if (arm_is_el2_enabled(env)) {
3220         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3221                        env->cp15.mdcr_el2 & MDCR_TDE;
3222     }
3223 
3224     if (route_to_el2) {
3225         return 2;
3226     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3227                !arm_el_is_aa64(env, 3) && secure) {
3228         return 3;
3229     } else {
3230         return 1;
3231     }
3232 }
3233 
3234 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3235 {
3236     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3237      * CSSELR is RAZ/WI.
3238      */
3239     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3240 }
3241 
3242 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3243 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3244 {
3245     int cur_el = arm_current_el(env);
3246     int debug_el;
3247 
3248     if (cur_el == 3) {
3249         return false;
3250     }
3251 
3252     /* MDCR_EL3.SDD disables debug events from Secure state */
3253     if (arm_is_secure_below_el3(env)
3254         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3255         return false;
3256     }
3257 
3258     /*
3259      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3260      * while not masking the (D)ebug bit in DAIF.
3261      */
3262     debug_el = arm_debug_target_el(env);
3263 
3264     if (cur_el == debug_el) {
3265         return extract32(env->cp15.mdscr_el1, 13, 1)
3266             && !(env->daif & PSTATE_D);
3267     }
3268 
3269     /* Otherwise the debug target needs to be a higher EL */
3270     return debug_el > cur_el;
3271 }
3272 
3273 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3274 {
3275     int el = arm_current_el(env);
3276 
3277     if (el == 0 && arm_el_is_aa64(env, 1)) {
3278         return aa64_generate_debug_exceptions(env);
3279     }
3280 
3281     if (arm_is_secure(env)) {
3282         int spd;
3283 
3284         if (el == 0 && (env->cp15.sder & 1)) {
3285             /* SDER.SUIDEN means debug exceptions from Secure EL0
3286              * are always enabled. Otherwise they are controlled by
3287              * SDCR.SPD like those from other Secure ELs.
3288              */
3289             return true;
3290         }
3291 
3292         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3293         switch (spd) {
3294         case 1:
3295             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3296         case 0:
3297             /* For 0b00 we return true if external secure invasive debug
3298              * is enabled. On real hardware this is controlled by external
3299              * signals to the core. QEMU always permits debug, and behaves
3300              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3301              */
3302             return true;
3303         case 2:
3304             return false;
3305         case 3:
3306             return true;
3307         }
3308     }
3309 
3310     return el != 2;
3311 }
3312 
3313 /* Return true if debugging exceptions are currently enabled.
3314  * This corresponds to what in ARM ARM pseudocode would be
3315  *    if UsingAArch32() then
3316  *        return AArch32.GenerateDebugExceptions()
3317  *    else
3318  *        return AArch64.GenerateDebugExceptions()
3319  * We choose to push the if() down into this function for clarity,
3320  * since the pseudocode has it at all callsites except for the one in
3321  * CheckSoftwareStep(), where it is elided because both branches would
3322  * always return the same value.
3323  */
3324 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3325 {
3326     if (env->aarch64) {
3327         return aa64_generate_debug_exceptions(env);
3328     } else {
3329         return aa32_generate_debug_exceptions(env);
3330     }
3331 }
3332 
3333 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3334  * implicitly means this always returns false in pre-v8 CPUs.)
3335  */
3336 static inline bool arm_singlestep_active(CPUARMState *env)
3337 {
3338     return extract32(env->cp15.mdscr_el1, 0, 1)
3339         && arm_el_is_aa64(env, arm_debug_target_el(env))
3340         && arm_generate_debug_exceptions(env);
3341 }
3342 
3343 static inline bool arm_sctlr_b(CPUARMState *env)
3344 {
3345     return
3346         /* We need not implement SCTLR.ITD in user-mode emulation, so
3347          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3348          * This lets people run BE32 binaries with "-cpu any".
3349          */
3350 #ifndef CONFIG_USER_ONLY
3351         !arm_feature(env, ARM_FEATURE_V7) &&
3352 #endif
3353         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3354 }
3355 
3356 uint64_t arm_sctlr(CPUARMState *env, int el);
3357 
3358 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3359                                                   bool sctlr_b)
3360 {
3361 #ifdef CONFIG_USER_ONLY
3362     /*
3363      * In system mode, BE32 is modelled in line with the
3364      * architecture (as word-invariant big-endianness), where loads
3365      * and stores are done little endian but from addresses which
3366      * are adjusted by XORing with the appropriate constant. So the
3367      * endianness to use for the raw data access is not affected by
3368      * SCTLR.B.
3369      * In user mode, however, we model BE32 as byte-invariant
3370      * big-endianness (because user-only code cannot tell the
3371      * difference), and so we need to use a data access endianness
3372      * that depends on SCTLR.B.
3373      */
3374     if (sctlr_b) {
3375         return true;
3376     }
3377 #endif
3378     /* In 32bit endianness is determined by looking at CPSR's E bit */
3379     return env->uncached_cpsr & CPSR_E;
3380 }
3381 
3382 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3383 {
3384     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3385 }
3386 
3387 /* Return true if the processor is in big-endian mode. */
3388 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3389 {
3390     if (!is_a64(env)) {
3391         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3392     } else {
3393         int cur_el = arm_current_el(env);
3394         uint64_t sctlr = arm_sctlr(env, cur_el);
3395         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3396     }
3397 }
3398 
3399 typedef CPUARMState CPUArchState;
3400 typedef ARMCPU ArchCPU;
3401 
3402 #include "exec/cpu-all.h"
3403 
3404 /*
3405  * We have more than 32-bits worth of state per TB, so we split the data
3406  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3407  * We collect these two parts in CPUARMTBFlags where they are named
3408  * flags and flags2 respectively.
3409  *
3410  * The flags that are shared between all execution modes, TBFLAG_ANY,
3411  * are stored in flags.  The flags that are specific to a given mode
3412  * are stores in flags2.  Since cs_base is sized on the configured
3413  * address size, flags2 always has 64-bits for A64, and a minimum of
3414  * 32-bits for A32 and M32.
3415  *
3416  * The bits for 32-bit A-profile and M-profile partially overlap:
3417  *
3418  *  31         23         11 10             0
3419  * +-------------+----------+----------------+
3420  * |             |          |   TBFLAG_A32   |
3421  * | TBFLAG_AM32 |          +-----+----------+
3422  * |             |                |TBFLAG_M32|
3423  * +-------------+----------------+----------+
3424  *  31         23                5 4        0
3425  *
3426  * Unless otherwise noted, these bits are cached in env->hflags.
3427  */
3428 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3429 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3430 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3431 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3432 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3433 /* Target EL if we take a floating-point-disabled exception */
3434 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3435 /* For A-profile only, target EL for debug exceptions.  */
3436 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3437 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3438 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3439 
3440 /*
3441  * Bit usage when in AArch32 state, both A- and M-profile.
3442  */
3443 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3444 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3445 
3446 /*
3447  * Bit usage when in AArch32 state, for A-profile only.
3448  */
3449 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3450 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3451 /*
3452  * We store the bottom two bits of the CPAR as TB flags and handle
3453  * checks on the other bits at runtime. This shares the same bits as
3454  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3455  * Not cached, because VECLEN+VECSTRIDE are not cached.
3456  */
3457 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3458 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3459 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3460 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3461 /*
3462  * Indicates whether cp register reads and writes by guest code should access
3463  * the secure or nonsecure bank of banked registers; note that this is not
3464  * the same thing as the current security state of the processor!
3465  */
3466 FIELD(TBFLAG_A32, NS, 10, 1)
3467 
3468 /*
3469  * Bit usage when in AArch32 state, for M-profile only.
3470  */
3471 /* Handler (ie not Thread) mode */
3472 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3473 /* Whether we should generate stack-limit checks */
3474 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3475 /* Set if FPCCR.LSPACT is set */
3476 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3477 /* Set if we must create a new FP context */
3478 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3479 /* Set if FPCCR.S does not match current security state */
3480 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3481 
3482 /*
3483  * Bit usage when in AArch64 state
3484  */
3485 FIELD(TBFLAG_A64, TBII, 0, 2)
3486 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3487 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3488 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3489 FIELD(TBFLAG_A64, BT, 9, 1)
3490 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3491 FIELD(TBFLAG_A64, TBID, 12, 2)
3492 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3493 FIELD(TBFLAG_A64, ATA, 15, 1)
3494 FIELD(TBFLAG_A64, TCMA, 16, 2)
3495 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3496 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3497 
3498 /*
3499  * Helpers for using the above.
3500  */
3501 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3502     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3503 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3504     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3505 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3506     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3507 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3508     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3509 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3510     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3511 
3512 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3513 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3514 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3515 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3516 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3517 
3518 /**
3519  * cpu_mmu_index:
3520  * @env: The cpu environment
3521  * @ifetch: True for code access, false for data access.
3522  *
3523  * Return the core mmu index for the current translation regime.
3524  * This function is used by generic TCG code paths.
3525  */
3526 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3527 {
3528     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3529 }
3530 
3531 static inline bool bswap_code(bool sctlr_b)
3532 {
3533 #ifdef CONFIG_USER_ONLY
3534     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3535      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3536      * would also end up as a mixed-endian mode with BE code, LE data.
3537      */
3538     return
3539 #ifdef TARGET_WORDS_BIGENDIAN
3540         1 ^
3541 #endif
3542         sctlr_b;
3543 #else
3544     /* All code access in ARM is little endian, and there are no loaders
3545      * doing swaps that need to be reversed
3546      */
3547     return 0;
3548 #endif
3549 }
3550 
3551 #ifdef CONFIG_USER_ONLY
3552 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3553 {
3554     return
3555 #ifdef TARGET_WORDS_BIGENDIAN
3556        1 ^
3557 #endif
3558        arm_cpu_data_is_big_endian(env);
3559 }
3560 #endif
3561 
3562 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3563                           target_ulong *cs_base, uint32_t *flags);
3564 
3565 enum {
3566     QEMU_PSCI_CONDUIT_DISABLED = 0,
3567     QEMU_PSCI_CONDUIT_SMC = 1,
3568     QEMU_PSCI_CONDUIT_HVC = 2,
3569 };
3570 
3571 #ifndef CONFIG_USER_ONLY
3572 /* Return the address space index to use for a memory access */
3573 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3574 {
3575     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3576 }
3577 
3578 /* Return the AddressSpace to use for a memory access
3579  * (which depends on whether the access is S or NS, and whether
3580  * the board gave us a separate AddressSpace for S accesses).
3581  */
3582 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3583 {
3584     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3585 }
3586 #endif
3587 
3588 /**
3589  * arm_register_pre_el_change_hook:
3590  * Register a hook function which will be called immediately before this
3591  * CPU changes exception level or mode. The hook function will be
3592  * passed a pointer to the ARMCPU and the opaque data pointer passed
3593  * to this function when the hook was registered.
3594  *
3595  * Note that if a pre-change hook is called, any registered post-change hooks
3596  * are guaranteed to subsequently be called.
3597  */
3598 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3599                                  void *opaque);
3600 /**
3601  * arm_register_el_change_hook:
3602  * Register a hook function which will be called immediately after this
3603  * CPU changes exception level or mode. The hook function will be
3604  * passed a pointer to the ARMCPU and the opaque data pointer passed
3605  * to this function when the hook was registered.
3606  *
3607  * Note that any registered hooks registered here are guaranteed to be called
3608  * if pre-change hooks have been.
3609  */
3610 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3611         *opaque);
3612 
3613 /**
3614  * arm_rebuild_hflags:
3615  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3616  */
3617 void arm_rebuild_hflags(CPUARMState *env);
3618 
3619 /**
3620  * aa32_vfp_dreg:
3621  * Return a pointer to the Dn register within env in 32-bit mode.
3622  */
3623 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3624 {
3625     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3626 }
3627 
3628 /**
3629  * aa32_vfp_qreg:
3630  * Return a pointer to the Qn register within env in 32-bit mode.
3631  */
3632 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3633 {
3634     return &env->vfp.zregs[regno].d[0];
3635 }
3636 
3637 /**
3638  * aa64_vfp_qreg:
3639  * Return a pointer to the Qn register within env in 64-bit mode.
3640  */
3641 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3642 {
3643     return &env->vfp.zregs[regno].d[0];
3644 }
3645 
3646 /* Shared between translate-sve.c and sve_helper.c.  */
3647 extern const uint64_t pred_esz_masks[4];
3648 
3649 /* Helper for the macros below, validating the argument type. */
3650 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3651 {
3652     return x;
3653 }
3654 
3655 /*
3656  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3657  * Using these should be a bit more self-documenting than using the
3658  * generic target bits directly.
3659  */
3660 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3661 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3662 
3663 /*
3664  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3665  */
3666 #define PAGE_BTI  PAGE_TARGET_1
3667 #define PAGE_MTE  PAGE_TARGET_2
3668 
3669 #ifdef TARGET_TAGGED_ADDRESSES
3670 /**
3671  * cpu_untagged_addr:
3672  * @cs: CPU context
3673  * @x: tagged address
3674  *
3675  * Remove any address tag from @x.  This is explicitly related to the
3676  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3677  *
3678  * There should be a better place to put this, but we need this in
3679  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3680  */
3681 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3682 {
3683     ARMCPU *cpu = ARM_CPU(cs);
3684     if (cpu->env.tagged_addr_enable) {
3685         /*
3686          * TBI is enabled for userspace but not kernelspace addresses.
3687          * Only clear the tag if bit 55 is clear.
3688          */
3689         x &= sextract64(x, 0, 56);
3690     }
3691     return x;
3692 }
3693 #endif
3694 
3695 /*
3696  * Naming convention for isar_feature functions:
3697  * Functions which test 32-bit ID registers should have _aa32_ in
3698  * their name. Functions which test 64-bit ID registers should have
3699  * _aa64_ in their name. These must only be used in code where we
3700  * know for certain that the CPU has AArch32 or AArch64 respectively
3701  * or where the correct answer for a CPU which doesn't implement that
3702  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3703  * system registers that are specific to that CPU state, for "should
3704  * we let this system register bit be set" tests where the 32-bit
3705  * flavour of the register doesn't have the bit, and so on).
3706  * Functions which simply ask "does this feature exist at all" have
3707  * _any_ in their name, and always return the logical OR of the _aa64_
3708  * and the _aa32_ function.
3709  */
3710 
3711 /*
3712  * 32-bit feature tests via id registers.
3713  */
3714 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3715 {
3716     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3717 }
3718 
3719 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3720 {
3721     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3722 }
3723 
3724 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3725 {
3726     /* (M-profile) low-overhead loops and branch future */
3727     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3728 }
3729 
3730 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3731 {
3732     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3733 }
3734 
3735 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3736 {
3737     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3738 }
3739 
3740 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3741 {
3742     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3743 }
3744 
3745 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3746 {
3747     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3748 }
3749 
3750 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3751 {
3752     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3753 }
3754 
3755 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3756 {
3757     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3758 }
3759 
3760 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3761 {
3762     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3763 }
3764 
3765 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3766 {
3767     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3768 }
3769 
3770 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3771 {
3772     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3773 }
3774 
3775 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3778 }
3779 
3780 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3783 }
3784 
3785 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3786 {
3787     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3788 }
3789 
3790 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3791 {
3792     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3793 }
3794 
3795 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3796 {
3797     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3798 }
3799 
3800 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3801 {
3802     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3803 }
3804 
3805 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3806 {
3807     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3808 }
3809 
3810 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3811 {
3812     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3813 }
3814 
3815 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3816 {
3817     /*
3818      * Return true if M-profile state handling insns
3819      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3820      */
3821     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3822 }
3823 
3824 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3825 {
3826     /* Sadly this is encoded differently for A-profile and M-profile */
3827     if (isar_feature_aa32_mprofile(id)) {
3828         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3829     } else {
3830         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3831     }
3832 }
3833 
3834 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3835 {
3836     /*
3837      * Return true if MVE is supported (either integer or floating point).
3838      * We must check for M-profile as the MVFR1 field means something
3839      * else for A-profile.
3840      */
3841     return isar_feature_aa32_mprofile(id) &&
3842         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3843 }
3844 
3845 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3846 {
3847     /*
3848      * Return true if MVE is supported (either integer or floating point).
3849      * We must check for M-profile as the MVFR1 field means something
3850      * else for A-profile.
3851      */
3852     return isar_feature_aa32_mprofile(id) &&
3853         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3854 }
3855 
3856 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3857 {
3858     /*
3859      * Return true if either VFP or SIMD is implemented.
3860      * In this case, a minimum of VFP w/ D0-D15.
3861      */
3862     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3863 }
3864 
3865 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3866 {
3867     /* Return true if D16-D31 are implemented */
3868     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3869 }
3870 
3871 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3872 {
3873     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3874 }
3875 
3876 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3877 {
3878     /* Return true if CPU supports single precision floating point, VFPv2 */
3879     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3880 }
3881 
3882 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3883 {
3884     /* Return true if CPU supports single precision floating point, VFPv3 */
3885     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3886 }
3887 
3888 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3889 {
3890     /* Return true if CPU supports double precision floating point, VFPv2 */
3891     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3892 }
3893 
3894 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3895 {
3896     /* Return true if CPU supports double precision floating point, VFPv3 */
3897     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3898 }
3899 
3900 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3901 {
3902     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3903 }
3904 
3905 /*
3906  * We always set the FP and SIMD FP16 fields to indicate identical
3907  * levels of support (assuming SIMD is implemented at all), so
3908  * we only need one set of accessors.
3909  */
3910 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3911 {
3912     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3913 }
3914 
3915 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3916 {
3917     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3918 }
3919 
3920 /*
3921  * Note that this ID register field covers both VFP and Neon FMAC,
3922  * so should usually be tested in combination with some other
3923  * check that confirms the presence of whichever of VFP or Neon is
3924  * relevant, to avoid accidentally enabling a Neon feature on
3925  * a VFP-no-Neon core or vice-versa.
3926  */
3927 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3928 {
3929     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3930 }
3931 
3932 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3933 {
3934     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3935 }
3936 
3937 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3938 {
3939     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3940 }
3941 
3942 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3943 {
3944     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3945 }
3946 
3947 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3948 {
3949     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3950 }
3951 
3952 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3953 {
3954     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3955 }
3956 
3957 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3958 {
3959     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3960 }
3961 
3962 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3963 {
3964     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3965 }
3966 
3967 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3968 {
3969     /* 0xf means "non-standard IMPDEF PMU" */
3970     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3971         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3972 }
3973 
3974 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3975 {
3976     /* 0xf means "non-standard IMPDEF PMU" */
3977     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3978         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3979 }
3980 
3981 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3982 {
3983     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3984 }
3985 
3986 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3987 {
3988     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3989 }
3990 
3991 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3992 {
3993     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3994 }
3995 
3996 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3997 {
3998     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3999 }
4000 
4001 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4002 {
4003     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4004 }
4005 
4006 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4007 {
4008     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4009 }
4010 
4011 /*
4012  * 64-bit feature tests via id registers.
4013  */
4014 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4015 {
4016     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4017 }
4018 
4019 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4020 {
4021     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4022 }
4023 
4024 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4025 {
4026     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4027 }
4028 
4029 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4030 {
4031     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4032 }
4033 
4034 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4035 {
4036     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4037 }
4038 
4039 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4040 {
4041     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4042 }
4043 
4044 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4045 {
4046     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4047 }
4048 
4049 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4050 {
4051     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4052 }
4053 
4054 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4055 {
4056     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4057 }
4058 
4059 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4060 {
4061     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4062 }
4063 
4064 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4065 {
4066     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4067 }
4068 
4069 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4070 {
4071     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4072 }
4073 
4074 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4075 {
4076     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4077 }
4078 
4079 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4080 {
4081     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4082 }
4083 
4084 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4085 {
4086     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4087 }
4088 
4089 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4090 {
4091     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4092 }
4093 
4094 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4095 {
4096     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4097 }
4098 
4099 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4100 {
4101     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4102 }
4103 
4104 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4105 {
4106     /*
4107      * Return true if any form of pauth is enabled, as this
4108      * predicate controls migration of the 128-bit keys.
4109      */
4110     return (id->id_aa64isar1 &
4111             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4112              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4113              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4114              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4115 }
4116 
4117 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4118 {
4119     /*
4120      * Return true if pauth is enabled with the architected QARMA algorithm.
4121      * QEMU will always set APA+GPA to the same value.
4122      */
4123     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4124 }
4125 
4126 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4127 {
4128     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4129 }
4130 
4131 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4132 {
4133     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4134 }
4135 
4136 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4137 {
4138     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4139 }
4140 
4141 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4142 {
4143     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4144 }
4145 
4146 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4147 {
4148     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4149 }
4150 
4151 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4152 {
4153     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4154 }
4155 
4156 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4157 {
4158     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4159 }
4160 
4161 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4162 {
4163     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4164 }
4165 
4166 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4167 {
4168     /* We always set the AdvSIMD and FP fields identically.  */
4169     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4170 }
4171 
4172 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4173 {
4174     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4175     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4176 }
4177 
4178 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4179 {
4180     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4181 }
4182 
4183 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4184 {
4185     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4186 }
4187 
4188 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4189 {
4190     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4191 }
4192 
4193 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4194 {
4195     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4196 }
4197 
4198 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4199 {
4200     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4201 }
4202 
4203 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4204 {
4205     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4206 }
4207 
4208 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4209 {
4210     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4211 }
4212 
4213 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4214 {
4215     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4216 }
4217 
4218 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4219 {
4220     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4221 }
4222 
4223 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4224 {
4225     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4226 }
4227 
4228 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4229 {
4230     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4231 }
4232 
4233 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4234 {
4235     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4236 }
4237 
4238 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4239 {
4240     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4241 }
4242 
4243 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4244 {
4245     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4246         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4247 }
4248 
4249 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4250 {
4251     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4252         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4253 }
4254 
4255 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4256 {
4257     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4258 }
4259 
4260 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4261 {
4262     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4263 }
4264 
4265 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4266 {
4267     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4268 }
4269 
4270 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4271 {
4272     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4273 }
4274 
4275 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4276 {
4277     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4278 }
4279 
4280 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4281 {
4282     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4283 }
4284 
4285 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4286 {
4287     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4288 }
4289 
4290 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4291 {
4292     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4293 }
4294 
4295 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4296 {
4297     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4298 }
4299 
4300 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4301 {
4302     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4303 }
4304 
4305 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4306 {
4307     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4308 }
4309 
4310 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4311 {
4312     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4313 }
4314 
4315 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4316 {
4317     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4318 }
4319 
4320 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4321 {
4322     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4323 }
4324 
4325 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4326 {
4327     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4328 }
4329 
4330 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4331 {
4332     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4333 }
4334 
4335 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4336 {
4337     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4338 }
4339 
4340 /*
4341  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4342  */
4343 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4344 {
4345     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4346 }
4347 
4348 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4349 {
4350     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4351 }
4352 
4353 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4354 {
4355     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4356 }
4357 
4358 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4359 {
4360     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4361 }
4362 
4363 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4364 {
4365     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4366 }
4367 
4368 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4369 {
4370     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4371 }
4372 
4373 /*
4374  * Forward to the above feature tests given an ARMCPU pointer.
4375  */
4376 #define cpu_isar_feature(name, cpu) \
4377     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4378 
4379 #endif
4380