xref: /openbmc/qemu/target/arm/cpu.h (revision 56e2cd24)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SVC     11
69 #define ARMV7M_EXCP_DEBUG   12
70 #define ARMV7M_EXCP_PENDSV  14
71 #define ARMV7M_EXCP_SYSTICK 15
72 
73 /* ARM-specific interrupt pending bits.  */
74 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
75 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
76 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
77 
78 /* The usual mapping for an AArch64 system register to its AArch32
79  * counterpart is for the 32 bit world to have access to the lower
80  * half only (with writes leaving the upper half untouched). It's
81  * therefore useful to be able to pass TCG the offset of the least
82  * significant half of a uint64_t struct member.
83  */
84 #ifdef HOST_WORDS_BIGENDIAN
85 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
86 #define offsetofhigh32(S, M) offsetof(S, M)
87 #else
88 #define offsetoflow32(S, M) offsetof(S, M)
89 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
90 #endif
91 
92 /* Meanings of the ARMCPU object's four inbound GPIO lines */
93 #define ARM_CPU_IRQ 0
94 #define ARM_CPU_FIQ 1
95 #define ARM_CPU_VIRQ 2
96 #define ARM_CPU_VFIQ 3
97 
98 #define NB_MMU_MODES 7
99 /* ARM-specific extra insn start words:
100  * 1: Conditional execution bits
101  * 2: Partial exception syndrome for data aborts
102  */
103 #define TARGET_INSN_START_EXTRA_WORDS 2
104 
105 /* The 2nd extra word holding syndrome info for data aborts does not use
106  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
107  * help the sleb128 encoder do a better job.
108  * When restoring the CPU state, we shift it back up.
109  */
110 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
111 #define ARM_INSN_START_WORD2_SHIFT 14
112 
113 /* We currently assume float and double are IEEE single and double
114    precision respectively.
115    Doing runtime conversions is tricky because VFP registers may contain
116    integer values (eg. as the result of a FTOSI instruction).
117    s<2n> maps to the least significant half of d<n>
118    s<2n+1> maps to the most significant half of d<n>
119  */
120 
121 /* CPU state for each instance of a generic timer (in cp15 c14) */
122 typedef struct ARMGenericTimer {
123     uint64_t cval; /* Timer CompareValue register */
124     uint64_t ctl; /* Timer Control register */
125 } ARMGenericTimer;
126 
127 #define GTIMER_PHYS 0
128 #define GTIMER_VIRT 1
129 #define GTIMER_HYP  2
130 #define GTIMER_SEC  3
131 #define NUM_GTIMERS 4
132 
133 typedef struct {
134     uint64_t raw_tcr;
135     uint32_t mask;
136     uint32_t base_mask;
137 } TCR;
138 
139 typedef struct CPUARMState {
140     /* Regs for current mode.  */
141     uint32_t regs[16];
142 
143     /* 32/64 switch only happens when taking and returning from
144      * exceptions so the overlap semantics are taken care of then
145      * instead of having a complicated union.
146      */
147     /* Regs for A64 mode.  */
148     uint64_t xregs[32];
149     uint64_t pc;
150     /* PSTATE isn't an architectural register for ARMv8. However, it is
151      * convenient for us to assemble the underlying state into a 32 bit format
152      * identical to the architectural format used for the SPSR. (This is also
153      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
154      * 'pstate' register are.) Of the PSTATE bits:
155      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
156      *    semantics as for AArch32, as described in the comments on each field)
157      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
158      *  DAIF (exception masks) are kept in env->daif
159      *  all other bits are stored in their correct places in env->pstate
160      */
161     uint32_t pstate;
162     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
163 
164     /* Frequently accessed CPSR bits are stored separately for efficiency.
165        This contains all the other bits.  Use cpsr_{read,write} to access
166        the whole CPSR.  */
167     uint32_t uncached_cpsr;
168     uint32_t spsr;
169 
170     /* Banked registers.  */
171     uint64_t banked_spsr[8];
172     uint32_t banked_r13[8];
173     uint32_t banked_r14[8];
174 
175     /* These hold r8-r12.  */
176     uint32_t usr_regs[5];
177     uint32_t fiq_regs[5];
178 
179     /* cpsr flag cache for faster execution */
180     uint32_t CF; /* 0 or 1 */
181     uint32_t VF; /* V is the bit 31. All other bits are undefined */
182     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
183     uint32_t ZF; /* Z set if zero.  */
184     uint32_t QF; /* 0 or 1 */
185     uint32_t GE; /* cpsr[19:16] */
186     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
187     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
188     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
189 
190     uint64_t elr_el[4]; /* AArch64 exception link regs  */
191     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
192 
193     /* System control coprocessor (cp15) */
194     struct {
195         uint32_t c0_cpuid;
196         union { /* Cache size selection */
197             struct {
198                 uint64_t _unused_csselr0;
199                 uint64_t csselr_ns;
200                 uint64_t _unused_csselr1;
201                 uint64_t csselr_s;
202             };
203             uint64_t csselr_el[4];
204         };
205         union { /* System control register. */
206             struct {
207                 uint64_t _unused_sctlr;
208                 uint64_t sctlr_ns;
209                 uint64_t hsctlr;
210                 uint64_t sctlr_s;
211             };
212             uint64_t sctlr_el[4];
213         };
214         uint64_t cpacr_el1; /* Architectural feature access control register */
215         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
216         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
217         uint64_t sder; /* Secure debug enable register. */
218         uint32_t nsacr; /* Non-secure access control register. */
219         union { /* MMU translation table base 0. */
220             struct {
221                 uint64_t _unused_ttbr0_0;
222                 uint64_t ttbr0_ns;
223                 uint64_t _unused_ttbr0_1;
224                 uint64_t ttbr0_s;
225             };
226             uint64_t ttbr0_el[4];
227         };
228         union { /* MMU translation table base 1. */
229             struct {
230                 uint64_t _unused_ttbr1_0;
231                 uint64_t ttbr1_ns;
232                 uint64_t _unused_ttbr1_1;
233                 uint64_t ttbr1_s;
234             };
235             uint64_t ttbr1_el[4];
236         };
237         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
238         /* MMU translation table base control. */
239         TCR tcr_el[4];
240         TCR vtcr_el2; /* Virtualization Translation Control.  */
241         uint32_t c2_data; /* MPU data cacheable bits.  */
242         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
243         union { /* MMU domain access control register
244                  * MPU write buffer control.
245                  */
246             struct {
247                 uint64_t dacr_ns;
248                 uint64_t dacr_s;
249             };
250             struct {
251                 uint64_t dacr32_el2;
252             };
253         };
254         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
255         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
256         uint64_t hcr_el2; /* Hypervisor configuration register */
257         uint64_t scr_el3; /* Secure configuration register.  */
258         union { /* Fault status registers.  */
259             struct {
260                 uint64_t ifsr_ns;
261                 uint64_t ifsr_s;
262             };
263             struct {
264                 uint64_t ifsr32_el2;
265             };
266         };
267         union {
268             struct {
269                 uint64_t _unused_dfsr;
270                 uint64_t dfsr_ns;
271                 uint64_t hsr;
272                 uint64_t dfsr_s;
273             };
274             uint64_t esr_el[4];
275         };
276         uint32_t c6_region[8]; /* MPU base/size registers.  */
277         union { /* Fault address registers. */
278             struct {
279                 uint64_t _unused_far0;
280 #ifdef HOST_WORDS_BIGENDIAN
281                 uint32_t ifar_ns;
282                 uint32_t dfar_ns;
283                 uint32_t ifar_s;
284                 uint32_t dfar_s;
285 #else
286                 uint32_t dfar_ns;
287                 uint32_t ifar_ns;
288                 uint32_t dfar_s;
289                 uint32_t ifar_s;
290 #endif
291                 uint64_t _unused_far3;
292             };
293             uint64_t far_el[4];
294         };
295         uint64_t hpfar_el2;
296         uint64_t hstr_el2;
297         union { /* Translation result. */
298             struct {
299                 uint64_t _unused_par_0;
300                 uint64_t par_ns;
301                 uint64_t _unused_par_1;
302                 uint64_t par_s;
303             };
304             uint64_t par_el[4];
305         };
306 
307         uint32_t c6_rgnr;
308 
309         uint32_t c9_insn; /* Cache lockdown registers.  */
310         uint32_t c9_data;
311         uint64_t c9_pmcr; /* performance monitor control register */
312         uint64_t c9_pmcnten; /* perf monitor counter enables */
313         uint32_t c9_pmovsr; /* perf monitor overflow status */
314         uint32_t c9_pmuserenr; /* perf monitor user enable */
315         uint64_t c9_pmselr; /* perf monitor counter selection register */
316         uint64_t c9_pminten; /* perf monitor interrupt enables */
317         union { /* Memory attribute redirection */
318             struct {
319 #ifdef HOST_WORDS_BIGENDIAN
320                 uint64_t _unused_mair_0;
321                 uint32_t mair1_ns;
322                 uint32_t mair0_ns;
323                 uint64_t _unused_mair_1;
324                 uint32_t mair1_s;
325                 uint32_t mair0_s;
326 #else
327                 uint64_t _unused_mair_0;
328                 uint32_t mair0_ns;
329                 uint32_t mair1_ns;
330                 uint64_t _unused_mair_1;
331                 uint32_t mair0_s;
332                 uint32_t mair1_s;
333 #endif
334             };
335             uint64_t mair_el[4];
336         };
337         union { /* vector base address register */
338             struct {
339                 uint64_t _unused_vbar;
340                 uint64_t vbar_ns;
341                 uint64_t hvbar;
342                 uint64_t vbar_s;
343             };
344             uint64_t vbar_el[4];
345         };
346         uint32_t mvbar; /* (monitor) vector base address register */
347         struct { /* FCSE PID. */
348             uint32_t fcseidr_ns;
349             uint32_t fcseidr_s;
350         };
351         union { /* Context ID. */
352             struct {
353                 uint64_t _unused_contextidr_0;
354                 uint64_t contextidr_ns;
355                 uint64_t _unused_contextidr_1;
356                 uint64_t contextidr_s;
357             };
358             uint64_t contextidr_el[4];
359         };
360         union { /* User RW Thread register. */
361             struct {
362                 uint64_t tpidrurw_ns;
363                 uint64_t tpidrprw_ns;
364                 uint64_t htpidr;
365                 uint64_t _tpidr_el3;
366             };
367             uint64_t tpidr_el[4];
368         };
369         /* The secure banks of these registers don't map anywhere */
370         uint64_t tpidrurw_s;
371         uint64_t tpidrprw_s;
372         uint64_t tpidruro_s;
373 
374         union { /* User RO Thread register. */
375             uint64_t tpidruro_ns;
376             uint64_t tpidrro_el[1];
377         };
378         uint64_t c14_cntfrq; /* Counter Frequency register */
379         uint64_t c14_cntkctl; /* Timer Control register */
380         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
381         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
382         ARMGenericTimer c14_timer[NUM_GTIMERS];
383         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
384         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
385         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
386         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
387         uint32_t c15_threadid; /* TI debugger thread-ID.  */
388         uint32_t c15_config_base_address; /* SCU base address.  */
389         uint32_t c15_diagnostic; /* diagnostic register */
390         uint32_t c15_power_diagnostic;
391         uint32_t c15_power_control; /* power control */
392         uint64_t dbgbvr[16]; /* breakpoint value registers */
393         uint64_t dbgbcr[16]; /* breakpoint control registers */
394         uint64_t dbgwvr[16]; /* watchpoint value registers */
395         uint64_t dbgwcr[16]; /* watchpoint control registers */
396         uint64_t mdscr_el1;
397         uint64_t oslsr_el1; /* OS Lock Status */
398         uint64_t mdcr_el2;
399         uint64_t mdcr_el3;
400         /* If the counter is enabled, this stores the last time the counter
401          * was reset. Otherwise it stores the counter value
402          */
403         uint64_t c15_ccnt;
404         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
405         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
406         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
407     } cp15;
408 
409     struct {
410         uint32_t other_sp;
411         uint32_t vecbase;
412         uint32_t basepri;
413         uint32_t control;
414         uint32_t ccr; /* Configuration and Control */
415         uint32_t cfsr; /* Configurable Fault Status */
416         uint32_t hfsr; /* HardFault Status */
417         uint32_t dfsr; /* Debug Fault Status Register */
418         uint32_t mmfar; /* MemManage Fault Address */
419         uint32_t bfar; /* BusFault Address */
420         int exception;
421     } v7m;
422 
423     /* Information associated with an exception about to be taken:
424      * code which raises an exception must set cs->exception_index and
425      * the relevant parts of this structure; the cpu_do_interrupt function
426      * will then set the guest-visible registers as part of the exception
427      * entry process.
428      */
429     struct {
430         uint32_t syndrome; /* AArch64 format syndrome register */
431         uint32_t fsr; /* AArch32 format fault status register info */
432         uint64_t vaddress; /* virtual addr associated with exception, if any */
433         uint32_t target_el; /* EL the exception should be targeted for */
434         /* If we implement EL2 we will also need to store information
435          * about the intermediate physical address for stage 2 faults.
436          */
437     } exception;
438 
439     /* Thumb-2 EE state.  */
440     uint32_t teecr;
441     uint32_t teehbr;
442 
443     /* VFP coprocessor state.  */
444     struct {
445         /* VFP/Neon register state. Note that the mapping between S, D and Q
446          * views of the register bank differs between AArch64 and AArch32:
447          * In AArch32:
448          *  Qn = regs[2n+1]:regs[2n]
449          *  Dn = regs[n]
450          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
451          * (and regs[32] to regs[63] are inaccessible)
452          * In AArch64:
453          *  Qn = regs[2n+1]:regs[2n]
454          *  Dn = regs[2n]
455          *  Sn = regs[2n] bits 31..0
456          * This corresponds to the architecturally defined mapping between
457          * the two execution states, and means we do not need to explicitly
458          * map these registers when changing states.
459          */
460         float64 regs[64];
461 
462         uint32_t xregs[16];
463         /* We store these fpcsr fields separately for convenience.  */
464         int vec_len;
465         int vec_stride;
466 
467         /* scratch space when Tn are not sufficient.  */
468         uint32_t scratch[8];
469 
470         /* fp_status is the "normal" fp status. standard_fp_status retains
471          * values corresponding to the ARM "Standard FPSCR Value", ie
472          * default-NaN, flush-to-zero, round-to-nearest and is used by
473          * any operations (generally Neon) which the architecture defines
474          * as controlled by the standard FPSCR value rather than the FPSCR.
475          *
476          * To avoid having to transfer exception bits around, we simply
477          * say that the FPSCR cumulative exception flags are the logical
478          * OR of the flags in the two fp statuses. This relies on the
479          * only thing which needs to read the exception flags being
480          * an explicit FPSCR read.
481          */
482         float_status fp_status;
483         float_status standard_fp_status;
484     } vfp;
485     uint64_t exclusive_addr;
486     uint64_t exclusive_val;
487     uint64_t exclusive_high;
488 
489     /* iwMMXt coprocessor state.  */
490     struct {
491         uint64_t regs[16];
492         uint64_t val;
493 
494         uint32_t cregs[16];
495     } iwmmxt;
496 
497 #if defined(CONFIG_USER_ONLY)
498     /* For usermode syscall translation.  */
499     int eabi;
500 #endif
501 
502     struct CPUBreakpoint *cpu_breakpoint[16];
503     struct CPUWatchpoint *cpu_watchpoint[16];
504 
505     /* Fields up to this point are cleared by a CPU reset */
506     struct {} end_reset_fields;
507 
508     CPU_COMMON
509 
510     /* Fields after CPU_COMMON are preserved across CPU reset. */
511 
512     /* Internal CPU feature flags.  */
513     uint64_t features;
514 
515     /* PMSAv7 MPU */
516     struct {
517         uint32_t *drbar;
518         uint32_t *drsr;
519         uint32_t *dracr;
520     } pmsav7;
521 
522     void *nvic;
523     const struct arm_boot_info *boot_info;
524     /* Store GICv3CPUState to access from this struct */
525     void *gicv3state;
526 } CPUARMState;
527 
528 /**
529  * ARMELChangeHook:
530  * type of a function which can be registered via arm_register_el_change_hook()
531  * to get callbacks when the CPU changes its exception level or mode.
532  */
533 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
534 
535 
536 /* These values map onto the return values for
537  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
538 typedef enum ARMPSCIState {
539     PSCI_ON = 0,
540     PSCI_OFF = 1,
541     PSCI_ON_PENDING = 2
542 } ARMPSCIState;
543 
544 /**
545  * ARMCPU:
546  * @env: #CPUARMState
547  *
548  * An ARM CPU core.
549  */
550 struct ARMCPU {
551     /*< private >*/
552     CPUState parent_obj;
553     /*< public >*/
554 
555     CPUARMState env;
556 
557     /* Coprocessor information */
558     GHashTable *cp_regs;
559     /* For marshalling (mostly coprocessor) register state between the
560      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
561      * we use these arrays.
562      */
563     /* List of register indexes managed via these arrays; (full KVM style
564      * 64 bit indexes, not CPRegInfo 32 bit indexes)
565      */
566     uint64_t *cpreg_indexes;
567     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
568     uint64_t *cpreg_values;
569     /* Length of the indexes, values, reset_values arrays */
570     int32_t cpreg_array_len;
571     /* These are used only for migration: incoming data arrives in
572      * these fields and is sanity checked in post_load before copying
573      * to the working data structures above.
574      */
575     uint64_t *cpreg_vmstate_indexes;
576     uint64_t *cpreg_vmstate_values;
577     int32_t cpreg_vmstate_array_len;
578 
579     /* Timers used by the generic (architected) timer */
580     QEMUTimer *gt_timer[NUM_GTIMERS];
581     /* GPIO outputs for generic timer */
582     qemu_irq gt_timer_outputs[NUM_GTIMERS];
583     /* GPIO output for GICv3 maintenance interrupt signal */
584     qemu_irq gicv3_maintenance_interrupt;
585 
586     /* MemoryRegion to use for secure physical accesses */
587     MemoryRegion *secure_memory;
588 
589     /* 'compatible' string for this CPU for Linux device trees */
590     const char *dtb_compatible;
591 
592     /* PSCI version for this CPU
593      * Bits[31:16] = Major Version
594      * Bits[15:0] = Minor Version
595      */
596     uint32_t psci_version;
597 
598     /* Should CPU start in PSCI powered-off state? */
599     bool start_powered_off;
600 
601     /* Current power state, access guarded by BQL */
602     ARMPSCIState power_state;
603 
604     /* CPU has virtualization extension */
605     bool has_el2;
606     /* CPU has security extension */
607     bool has_el3;
608     /* CPU has PMU (Performance Monitor Unit) */
609     bool has_pmu;
610 
611     /* CPU has memory protection unit */
612     bool has_mpu;
613     /* PMSAv7 MPU number of supported regions */
614     uint32_t pmsav7_dregion;
615 
616     /* PSCI conduit used to invoke PSCI methods
617      * 0 - disabled, 1 - smc, 2 - hvc
618      */
619     uint32_t psci_conduit;
620 
621     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
622      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
623      */
624     uint32_t kvm_target;
625 
626     /* KVM init features for this CPU */
627     uint32_t kvm_init_features[7];
628 
629     /* Uniprocessor system with MP extensions */
630     bool mp_is_up;
631 
632     /* The instance init functions for implementation-specific subclasses
633      * set these fields to specify the implementation-dependent values of
634      * various constant registers and reset values of non-constant
635      * registers.
636      * Some of these might become QOM properties eventually.
637      * Field names match the official register names as defined in the
638      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
639      * is used for reset values of non-constant registers; no reset_
640      * prefix means a constant register.
641      */
642     uint32_t midr;
643     uint32_t revidr;
644     uint32_t reset_fpsid;
645     uint32_t mvfr0;
646     uint32_t mvfr1;
647     uint32_t mvfr2;
648     uint32_t ctr;
649     uint32_t reset_sctlr;
650     uint32_t id_pfr0;
651     uint32_t id_pfr1;
652     uint32_t id_dfr0;
653     uint32_t pmceid0;
654     uint32_t pmceid1;
655     uint32_t id_afr0;
656     uint32_t id_mmfr0;
657     uint32_t id_mmfr1;
658     uint32_t id_mmfr2;
659     uint32_t id_mmfr3;
660     uint32_t id_mmfr4;
661     uint32_t id_isar0;
662     uint32_t id_isar1;
663     uint32_t id_isar2;
664     uint32_t id_isar3;
665     uint32_t id_isar4;
666     uint32_t id_isar5;
667     uint64_t id_aa64pfr0;
668     uint64_t id_aa64pfr1;
669     uint64_t id_aa64dfr0;
670     uint64_t id_aa64dfr1;
671     uint64_t id_aa64afr0;
672     uint64_t id_aa64afr1;
673     uint64_t id_aa64isar0;
674     uint64_t id_aa64isar1;
675     uint64_t id_aa64mmfr0;
676     uint64_t id_aa64mmfr1;
677     uint32_t dbgdidr;
678     uint32_t clidr;
679     uint64_t mp_affinity; /* MP ID without feature bits */
680     /* The elements of this array are the CCSIDR values for each cache,
681      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
682      */
683     uint32_t ccsidr[16];
684     uint64_t reset_cbar;
685     uint32_t reset_auxcr;
686     bool reset_hivecs;
687     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
688     uint32_t dcz_blocksize;
689     uint64_t rvbar;
690 
691     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
692     int gic_num_lrs; /* number of list registers */
693     int gic_vpribits; /* number of virtual priority bits */
694     int gic_vprebits; /* number of virtual preemption bits */
695 
696     /* Whether the cfgend input is high (i.e. this CPU should reset into
697      * big-endian mode).  This setting isn't used directly: instead it modifies
698      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
699      * architecture version.
700      */
701     bool cfgend;
702 
703     ARMELChangeHook *el_change_hook;
704     void *el_change_hook_opaque;
705 };
706 
707 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
708 {
709     return container_of(env, ARMCPU, env);
710 }
711 
712 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
713 
714 #define ENV_OFFSET offsetof(ARMCPU, env)
715 
716 #ifndef CONFIG_USER_ONLY
717 extern const struct VMStateDescription vmstate_arm_cpu;
718 #endif
719 
720 void arm_cpu_do_interrupt(CPUState *cpu);
721 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
722 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
723 
724 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
725                         int flags);
726 
727 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
728                                          MemTxAttrs *attrs);
729 
730 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
731 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
732 
733 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
734                              int cpuid, void *opaque);
735 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
736                              int cpuid, void *opaque);
737 
738 #ifdef TARGET_AARCH64
739 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
740 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
741 #endif
742 
743 ARMCPU *cpu_arm_init(const char *cpu_model);
744 target_ulong do_arm_semihosting(CPUARMState *env);
745 void aarch64_sync_32_to_64(CPUARMState *env);
746 void aarch64_sync_64_to_32(CPUARMState *env);
747 
748 static inline bool is_a64(CPUARMState *env)
749 {
750     return env->aarch64;
751 }
752 
753 /* you can call this signal handler from your SIGBUS and SIGSEGV
754    signal handlers to inform the virtual CPU of exceptions. non zero
755    is returned if the signal was handled by the virtual CPU.  */
756 int cpu_arm_signal_handler(int host_signum, void *pinfo,
757                            void *puc);
758 
759 /**
760  * pmccntr_sync
761  * @env: CPUARMState
762  *
763  * Synchronises the counter in the PMCCNTR. This must always be called twice,
764  * once before any action that might affect the timer and again afterwards.
765  * The function is used to swap the state of the register if required.
766  * This only happens when not in user mode (!CONFIG_USER_ONLY)
767  */
768 void pmccntr_sync(CPUARMState *env);
769 
770 /* SCTLR bit meanings. Several bits have been reused in newer
771  * versions of the architecture; in that case we define constants
772  * for both old and new bit meanings. Code which tests against those
773  * bits should probably check or otherwise arrange that the CPU
774  * is the architectural version it expects.
775  */
776 #define SCTLR_M       (1U << 0)
777 #define SCTLR_A       (1U << 1)
778 #define SCTLR_C       (1U << 2)
779 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
780 #define SCTLR_SA      (1U << 3)
781 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
782 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
783 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
784 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
785 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
786 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
787 #define SCTLR_ITD     (1U << 7) /* v8 onward */
788 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
789 #define SCTLR_SED     (1U << 8) /* v8 onward */
790 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
791 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
792 #define SCTLR_F       (1U << 10) /* up to v6 */
793 #define SCTLR_SW      (1U << 10) /* v7 onward */
794 #define SCTLR_Z       (1U << 11)
795 #define SCTLR_I       (1U << 12)
796 #define SCTLR_V       (1U << 13)
797 #define SCTLR_RR      (1U << 14) /* up to v7 */
798 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
799 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
800 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
801 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
802 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
803 #define SCTLR_HA      (1U << 17)
804 #define SCTLR_BR      (1U << 17) /* PMSA only */
805 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
806 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
807 #define SCTLR_WXN     (1U << 19)
808 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
809 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
810 #define SCTLR_FI      (1U << 21)
811 #define SCTLR_U       (1U << 22)
812 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
813 #define SCTLR_VE      (1U << 24) /* up to v7 */
814 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
815 #define SCTLR_EE      (1U << 25)
816 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
817 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
818 #define SCTLR_NMFI    (1U << 27)
819 #define SCTLR_TRE     (1U << 28)
820 #define SCTLR_AFE     (1U << 29)
821 #define SCTLR_TE      (1U << 30)
822 
823 #define CPTR_TCPAC    (1U << 31)
824 #define CPTR_TTA      (1U << 20)
825 #define CPTR_TFP      (1U << 10)
826 
827 #define MDCR_EPMAD    (1U << 21)
828 #define MDCR_EDAD     (1U << 20)
829 #define MDCR_SPME     (1U << 17)
830 #define MDCR_SDD      (1U << 16)
831 #define MDCR_SPD      (3U << 14)
832 #define MDCR_TDRA     (1U << 11)
833 #define MDCR_TDOSA    (1U << 10)
834 #define MDCR_TDA      (1U << 9)
835 #define MDCR_TDE      (1U << 8)
836 #define MDCR_HPME     (1U << 7)
837 #define MDCR_TPM      (1U << 6)
838 #define MDCR_TPMCR    (1U << 5)
839 
840 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
841 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
842 
843 #define CPSR_M (0x1fU)
844 #define CPSR_T (1U << 5)
845 #define CPSR_F (1U << 6)
846 #define CPSR_I (1U << 7)
847 #define CPSR_A (1U << 8)
848 #define CPSR_E (1U << 9)
849 #define CPSR_IT_2_7 (0xfc00U)
850 #define CPSR_GE (0xfU << 16)
851 #define CPSR_IL (1U << 20)
852 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
853  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
854  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
855  * where it is live state but not accessible to the AArch32 code.
856  */
857 #define CPSR_RESERVED (0x7U << 21)
858 #define CPSR_J (1U << 24)
859 #define CPSR_IT_0_1 (3U << 25)
860 #define CPSR_Q (1U << 27)
861 #define CPSR_V (1U << 28)
862 #define CPSR_C (1U << 29)
863 #define CPSR_Z (1U << 30)
864 #define CPSR_N (1U << 31)
865 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
866 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
867 
868 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
869 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
870     | CPSR_NZCV)
871 /* Bits writable in user mode.  */
872 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
873 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
874 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
875 /* Mask of bits which may be set by exception return copying them from SPSR */
876 #define CPSR_ERET_MASK (~CPSR_RESERVED)
877 
878 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
879 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
880 #define TTBCR_PD0    (1U << 4)
881 #define TTBCR_PD1    (1U << 5)
882 #define TTBCR_EPD0   (1U << 7)
883 #define TTBCR_IRGN0  (3U << 8)
884 #define TTBCR_ORGN0  (3U << 10)
885 #define TTBCR_SH0    (3U << 12)
886 #define TTBCR_T1SZ   (3U << 16)
887 #define TTBCR_A1     (1U << 22)
888 #define TTBCR_EPD1   (1U << 23)
889 #define TTBCR_IRGN1  (3U << 24)
890 #define TTBCR_ORGN1  (3U << 26)
891 #define TTBCR_SH1    (1U << 28)
892 #define TTBCR_EAE    (1U << 31)
893 
894 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
895  * Only these are valid when in AArch64 mode; in
896  * AArch32 mode SPSRs are basically CPSR-format.
897  */
898 #define PSTATE_SP (1U)
899 #define PSTATE_M (0xFU)
900 #define PSTATE_nRW (1U << 4)
901 #define PSTATE_F (1U << 6)
902 #define PSTATE_I (1U << 7)
903 #define PSTATE_A (1U << 8)
904 #define PSTATE_D (1U << 9)
905 #define PSTATE_IL (1U << 20)
906 #define PSTATE_SS (1U << 21)
907 #define PSTATE_V (1U << 28)
908 #define PSTATE_C (1U << 29)
909 #define PSTATE_Z (1U << 30)
910 #define PSTATE_N (1U << 31)
911 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
912 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
913 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
914 /* Mode values for AArch64 */
915 #define PSTATE_MODE_EL3h 13
916 #define PSTATE_MODE_EL3t 12
917 #define PSTATE_MODE_EL2h 9
918 #define PSTATE_MODE_EL2t 8
919 #define PSTATE_MODE_EL1h 5
920 #define PSTATE_MODE_EL1t 4
921 #define PSTATE_MODE_EL0t 0
922 
923 /* Map EL and handler into a PSTATE_MODE.  */
924 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
925 {
926     return (el << 2) | handler;
927 }
928 
929 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
930  * interprocessing, so we don't attempt to sync with the cpsr state used by
931  * the 32 bit decoder.
932  */
933 static inline uint32_t pstate_read(CPUARMState *env)
934 {
935     int ZF;
936 
937     ZF = (env->ZF == 0);
938     return (env->NF & 0x80000000) | (ZF << 30)
939         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
940         | env->pstate | env->daif;
941 }
942 
943 static inline void pstate_write(CPUARMState *env, uint32_t val)
944 {
945     env->ZF = (~val) & PSTATE_Z;
946     env->NF = val;
947     env->CF = (val >> 29) & 1;
948     env->VF = (val << 3) & 0x80000000;
949     env->daif = val & PSTATE_DAIF;
950     env->pstate = val & ~CACHED_PSTATE_BITS;
951 }
952 
953 /* Return the current CPSR value.  */
954 uint32_t cpsr_read(CPUARMState *env);
955 
956 typedef enum CPSRWriteType {
957     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
958     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
959     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
960     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
961 } CPSRWriteType;
962 
963 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
964 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
965                 CPSRWriteType write_type);
966 
967 /* Return the current xPSR value.  */
968 static inline uint32_t xpsr_read(CPUARMState *env)
969 {
970     int ZF;
971     ZF = (env->ZF == 0);
972     return (env->NF & 0x80000000) | (ZF << 30)
973         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
974         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
975         | ((env->condexec_bits & 0xfc) << 8)
976         | env->v7m.exception;
977 }
978 
979 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
980 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
981 {
982     if (mask & CPSR_NZCV) {
983         env->ZF = (~val) & CPSR_Z;
984         env->NF = val;
985         env->CF = (val >> 29) & 1;
986         env->VF = (val << 3) & 0x80000000;
987     }
988     if (mask & CPSR_Q)
989         env->QF = ((val & CPSR_Q) != 0);
990     if (mask & (1 << 24))
991         env->thumb = ((val & (1 << 24)) != 0);
992     if (mask & CPSR_IT_0_1) {
993         env->condexec_bits &= ~3;
994         env->condexec_bits |= (val >> 25) & 3;
995     }
996     if (mask & CPSR_IT_2_7) {
997         env->condexec_bits &= 3;
998         env->condexec_bits |= (val >> 8) & 0xfc;
999     }
1000     if (mask & 0x1ff) {
1001         env->v7m.exception = val & 0x1ff;
1002     }
1003 }
1004 
1005 #define HCR_VM        (1ULL << 0)
1006 #define HCR_SWIO      (1ULL << 1)
1007 #define HCR_PTW       (1ULL << 2)
1008 #define HCR_FMO       (1ULL << 3)
1009 #define HCR_IMO       (1ULL << 4)
1010 #define HCR_AMO       (1ULL << 5)
1011 #define HCR_VF        (1ULL << 6)
1012 #define HCR_VI        (1ULL << 7)
1013 #define HCR_VSE       (1ULL << 8)
1014 #define HCR_FB        (1ULL << 9)
1015 #define HCR_BSU_MASK  (3ULL << 10)
1016 #define HCR_DC        (1ULL << 12)
1017 #define HCR_TWI       (1ULL << 13)
1018 #define HCR_TWE       (1ULL << 14)
1019 #define HCR_TID0      (1ULL << 15)
1020 #define HCR_TID1      (1ULL << 16)
1021 #define HCR_TID2      (1ULL << 17)
1022 #define HCR_TID3      (1ULL << 18)
1023 #define HCR_TSC       (1ULL << 19)
1024 #define HCR_TIDCP     (1ULL << 20)
1025 #define HCR_TACR      (1ULL << 21)
1026 #define HCR_TSW       (1ULL << 22)
1027 #define HCR_TPC       (1ULL << 23)
1028 #define HCR_TPU       (1ULL << 24)
1029 #define HCR_TTLB      (1ULL << 25)
1030 #define HCR_TVM       (1ULL << 26)
1031 #define HCR_TGE       (1ULL << 27)
1032 #define HCR_TDZ       (1ULL << 28)
1033 #define HCR_HCD       (1ULL << 29)
1034 #define HCR_TRVM      (1ULL << 30)
1035 #define HCR_RW        (1ULL << 31)
1036 #define HCR_CD        (1ULL << 32)
1037 #define HCR_ID        (1ULL << 33)
1038 #define HCR_MASK      ((1ULL << 34) - 1)
1039 
1040 #define SCR_NS                (1U << 0)
1041 #define SCR_IRQ               (1U << 1)
1042 #define SCR_FIQ               (1U << 2)
1043 #define SCR_EA                (1U << 3)
1044 #define SCR_FW                (1U << 4)
1045 #define SCR_AW                (1U << 5)
1046 #define SCR_NET               (1U << 6)
1047 #define SCR_SMD               (1U << 7)
1048 #define SCR_HCE               (1U << 8)
1049 #define SCR_SIF               (1U << 9)
1050 #define SCR_RW                (1U << 10)
1051 #define SCR_ST                (1U << 11)
1052 #define SCR_TWI               (1U << 12)
1053 #define SCR_TWE               (1U << 13)
1054 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1055 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1056 
1057 /* Return the current FPSCR value.  */
1058 uint32_t vfp_get_fpscr(CPUARMState *env);
1059 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1060 
1061 /* For A64 the FPSCR is split into two logically distinct registers,
1062  * FPCR and FPSR. However since they still use non-overlapping bits
1063  * we store the underlying state in fpscr and just mask on read/write.
1064  */
1065 #define FPSR_MASK 0xf800009f
1066 #define FPCR_MASK 0x07f79f00
1067 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1068 {
1069     return vfp_get_fpscr(env) & FPSR_MASK;
1070 }
1071 
1072 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1073 {
1074     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1075     vfp_set_fpscr(env, new_fpscr);
1076 }
1077 
1078 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1079 {
1080     return vfp_get_fpscr(env) & FPCR_MASK;
1081 }
1082 
1083 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1084 {
1085     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1086     vfp_set_fpscr(env, new_fpscr);
1087 }
1088 
1089 enum arm_cpu_mode {
1090   ARM_CPU_MODE_USR = 0x10,
1091   ARM_CPU_MODE_FIQ = 0x11,
1092   ARM_CPU_MODE_IRQ = 0x12,
1093   ARM_CPU_MODE_SVC = 0x13,
1094   ARM_CPU_MODE_MON = 0x16,
1095   ARM_CPU_MODE_ABT = 0x17,
1096   ARM_CPU_MODE_HYP = 0x1a,
1097   ARM_CPU_MODE_UND = 0x1b,
1098   ARM_CPU_MODE_SYS = 0x1f
1099 };
1100 
1101 /* VFP system registers.  */
1102 #define ARM_VFP_FPSID   0
1103 #define ARM_VFP_FPSCR   1
1104 #define ARM_VFP_MVFR2   5
1105 #define ARM_VFP_MVFR1   6
1106 #define ARM_VFP_MVFR0   7
1107 #define ARM_VFP_FPEXC   8
1108 #define ARM_VFP_FPINST  9
1109 #define ARM_VFP_FPINST2 10
1110 
1111 /* iwMMXt coprocessor control registers.  */
1112 #define ARM_IWMMXT_wCID		0
1113 #define ARM_IWMMXT_wCon		1
1114 #define ARM_IWMMXT_wCSSF	2
1115 #define ARM_IWMMXT_wCASF	3
1116 #define ARM_IWMMXT_wCGR0	8
1117 #define ARM_IWMMXT_wCGR1	9
1118 #define ARM_IWMMXT_wCGR2	10
1119 #define ARM_IWMMXT_wCGR3	11
1120 
1121 /* V7M CCR bits */
1122 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1123 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1124 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1125 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1126 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1127 FIELD(V7M_CCR, STKALIGN, 9, 1)
1128 FIELD(V7M_CCR, DC, 16, 1)
1129 FIELD(V7M_CCR, IC, 17, 1)
1130 
1131 /* V7M CFSR bits for MMFSR */
1132 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1133 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1134 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1135 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1136 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1137 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1138 
1139 /* V7M CFSR bits for BFSR */
1140 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1141 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1142 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1143 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1144 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1145 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1146 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1147 
1148 /* V7M CFSR bits for UFSR */
1149 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1150 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1151 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1152 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1153 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1154 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1155 
1156 /* V7M HFSR bits */
1157 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1158 FIELD(V7M_HFSR, FORCED, 30, 1)
1159 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1160 
1161 /* V7M DFSR bits */
1162 FIELD(V7M_DFSR, HALTED, 0, 1)
1163 FIELD(V7M_DFSR, BKPT, 1, 1)
1164 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1165 FIELD(V7M_DFSR, VCATCH, 3, 1)
1166 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1167 
1168 /* If adding a feature bit which corresponds to a Linux ELF
1169  * HWCAP bit, remember to update the feature-bit-to-hwcap
1170  * mapping in linux-user/elfload.c:get_elf_hwcap().
1171  */
1172 enum arm_features {
1173     ARM_FEATURE_VFP,
1174     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1175     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1176     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1177     ARM_FEATURE_V6,
1178     ARM_FEATURE_V6K,
1179     ARM_FEATURE_V7,
1180     ARM_FEATURE_THUMB2,
1181     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1182     ARM_FEATURE_VFP3,
1183     ARM_FEATURE_VFP_FP16,
1184     ARM_FEATURE_NEON,
1185     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1186     ARM_FEATURE_M, /* Microcontroller profile.  */
1187     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1188     ARM_FEATURE_THUMB2EE,
1189     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1190     ARM_FEATURE_V4T,
1191     ARM_FEATURE_V5,
1192     ARM_FEATURE_STRONGARM,
1193     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1194     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1195     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1196     ARM_FEATURE_GENERIC_TIMER,
1197     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1198     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1199     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1200     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1201     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1202     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1203     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1204     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1205     ARM_FEATURE_V8,
1206     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1207     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1208     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1209     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1210     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1211     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1212     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1213     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1214     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1215     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1216     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1217     ARM_FEATURE_PMU, /* has PMU support */
1218     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1219 };
1220 
1221 static inline int arm_feature(CPUARMState *env, int feature)
1222 {
1223     return (env->features & (1ULL << feature)) != 0;
1224 }
1225 
1226 #if !defined(CONFIG_USER_ONLY)
1227 /* Return true if exception levels below EL3 are in secure state,
1228  * or would be following an exception return to that level.
1229  * Unlike arm_is_secure() (which is always a question about the
1230  * _current_ state of the CPU) this doesn't care about the current
1231  * EL or mode.
1232  */
1233 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1234 {
1235     if (arm_feature(env, ARM_FEATURE_EL3)) {
1236         return !(env->cp15.scr_el3 & SCR_NS);
1237     } else {
1238         /* If EL3 is not supported then the secure state is implementation
1239          * defined, in which case QEMU defaults to non-secure.
1240          */
1241         return false;
1242     }
1243 }
1244 
1245 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1246 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1247 {
1248     if (arm_feature(env, ARM_FEATURE_EL3)) {
1249         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1250             /* CPU currently in AArch64 state and EL3 */
1251             return true;
1252         } else if (!is_a64(env) &&
1253                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1254             /* CPU currently in AArch32 state and monitor mode */
1255             return true;
1256         }
1257     }
1258     return false;
1259 }
1260 
1261 /* Return true if the processor is in secure state */
1262 static inline bool arm_is_secure(CPUARMState *env)
1263 {
1264     if (arm_is_el3_or_mon(env)) {
1265         return true;
1266     }
1267     return arm_is_secure_below_el3(env);
1268 }
1269 
1270 #else
1271 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1272 {
1273     return false;
1274 }
1275 
1276 static inline bool arm_is_secure(CPUARMState *env)
1277 {
1278     return false;
1279 }
1280 #endif
1281 
1282 /* Return true if the specified exception level is running in AArch64 state. */
1283 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1284 {
1285     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1286      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1287      */
1288     assert(el >= 1 && el <= 3);
1289     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1290 
1291     /* The highest exception level is always at the maximum supported
1292      * register width, and then lower levels have a register width controlled
1293      * by bits in the SCR or HCR registers.
1294      */
1295     if (el == 3) {
1296         return aa64;
1297     }
1298 
1299     if (arm_feature(env, ARM_FEATURE_EL3)) {
1300         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1301     }
1302 
1303     if (el == 2) {
1304         return aa64;
1305     }
1306 
1307     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1308         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1309     }
1310 
1311     return aa64;
1312 }
1313 
1314 /* Function for determing whether guest cp register reads and writes should
1315  * access the secure or non-secure bank of a cp register.  When EL3 is
1316  * operating in AArch32 state, the NS-bit determines whether the secure
1317  * instance of a cp register should be used. When EL3 is AArch64 (or if
1318  * it doesn't exist at all) then there is no register banking, and all
1319  * accesses are to the non-secure version.
1320  */
1321 static inline bool access_secure_reg(CPUARMState *env)
1322 {
1323     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1324                 !arm_el_is_aa64(env, 3) &&
1325                 !(env->cp15.scr_el3 & SCR_NS));
1326 
1327     return ret;
1328 }
1329 
1330 /* Macros for accessing a specified CP register bank */
1331 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1332     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1333 
1334 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1335     do {                                                \
1336         if (_secure) {                                   \
1337             (_env)->cp15._regname##_s = (_val);            \
1338         } else {                                        \
1339             (_env)->cp15._regname##_ns = (_val);           \
1340         }                                               \
1341     } while (0)
1342 
1343 /* Macros for automatically accessing a specific CP register bank depending on
1344  * the current secure state of the system.  These macros are not intended for
1345  * supporting instruction translation reads/writes as these are dependent
1346  * solely on the SCR.NS bit and not the mode.
1347  */
1348 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1349     A32_BANKED_REG_GET((_env), _regname,                \
1350                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1351 
1352 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1353     A32_BANKED_REG_SET((_env), _regname,                                    \
1354                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1355                        (_val))
1356 
1357 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1358 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1359                                  uint32_t cur_el, bool secure);
1360 
1361 /* Interface between CPU and Interrupt controller.  */
1362 #ifndef CONFIG_USER_ONLY
1363 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1364 #else
1365 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1366 {
1367     return true;
1368 }
1369 #endif
1370 void armv7m_nvic_set_pending(void *opaque, int irq);
1371 void armv7m_nvic_acknowledge_irq(void *opaque);
1372 /**
1373  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1374  * @opaque: the NVIC
1375  * @irq: the exception number to complete
1376  *
1377  * Returns: -1 if the irq was not active
1378  *           1 if completing this irq brought us back to base (no active irqs)
1379  *           0 if there is still an irq active after this one was completed
1380  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1381  */
1382 int armv7m_nvic_complete_irq(void *opaque, int irq);
1383 
1384 /* Interface for defining coprocessor registers.
1385  * Registers are defined in tables of arm_cp_reginfo structs
1386  * which are passed to define_arm_cp_regs().
1387  */
1388 
1389 /* When looking up a coprocessor register we look for it
1390  * via an integer which encodes all of:
1391  *  coprocessor number
1392  *  Crn, Crm, opc1, opc2 fields
1393  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1394  *    or via MRRC/MCRR?)
1395  *  non-secure/secure bank (AArch32 only)
1396  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1397  * (In this case crn and opc2 should be zero.)
1398  * For AArch64, there is no 32/64 bit size distinction;
1399  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1400  * and 4 bit CRn and CRm. The encoding patterns are chosen
1401  * to be easy to convert to and from the KVM encodings, and also
1402  * so that the hashtable can contain both AArch32 and AArch64
1403  * registers (to allow for interprocessing where we might run
1404  * 32 bit code on a 64 bit core).
1405  */
1406 /* This bit is private to our hashtable cpreg; in KVM register
1407  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1408  * in the upper bits of the 64 bit ID.
1409  */
1410 #define CP_REG_AA64_SHIFT 28
1411 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1412 
1413 /* To enable banking of coprocessor registers depending on ns-bit we
1414  * add a bit to distinguish between secure and non-secure cpregs in the
1415  * hashtable.
1416  */
1417 #define CP_REG_NS_SHIFT 29
1418 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1419 
1420 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1421     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1422      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1423 
1424 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1425     (CP_REG_AA64_MASK |                                 \
1426      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1427      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1428      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1429      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1430      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1431      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1432 
1433 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1434  * version used as a key for the coprocessor register hashtable
1435  */
1436 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1437 {
1438     uint32_t cpregid = kvmid;
1439     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1440         cpregid |= CP_REG_AA64_MASK;
1441     } else {
1442         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1443             cpregid |= (1 << 15);
1444         }
1445 
1446         /* KVM is always non-secure so add the NS flag on AArch32 register
1447          * entries.
1448          */
1449          cpregid |= 1 << CP_REG_NS_SHIFT;
1450     }
1451     return cpregid;
1452 }
1453 
1454 /* Convert a truncated 32 bit hashtable key into the full
1455  * 64 bit KVM register ID.
1456  */
1457 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1458 {
1459     uint64_t kvmid;
1460 
1461     if (cpregid & CP_REG_AA64_MASK) {
1462         kvmid = cpregid & ~CP_REG_AA64_MASK;
1463         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1464     } else {
1465         kvmid = cpregid & ~(1 << 15);
1466         if (cpregid & (1 << 15)) {
1467             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1468         } else {
1469             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1470         }
1471     }
1472     return kvmid;
1473 }
1474 
1475 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1476  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1477  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1478  * TCG can assume the value to be constant (ie load at translate time)
1479  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1480  * indicates that the TB should not be ended after a write to this register
1481  * (the default is that the TB ends after cp writes). OVERRIDE permits
1482  * a register definition to override a previous definition for the
1483  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1484  * old must have the OVERRIDE bit set.
1485  * ALIAS indicates that this register is an alias view of some underlying
1486  * state which is also visible via another register, and that the other
1487  * register is handling migration and reset; registers marked ALIAS will not be
1488  * migrated but may have their state set by syncing of register state from KVM.
1489  * NO_RAW indicates that this register has no underlying state and does not
1490  * support raw access for state saving/loading; it will not be used for either
1491  * migration or KVM state synchronization. (Typically this is for "registers"
1492  * which are actually used as instructions for cache maintenance and so on.)
1493  * IO indicates that this register does I/O and therefore its accesses
1494  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1495  * registers which implement clocks or timers require this.
1496  */
1497 #define ARM_CP_SPECIAL 1
1498 #define ARM_CP_CONST 2
1499 #define ARM_CP_64BIT 4
1500 #define ARM_CP_SUPPRESS_TB_END 8
1501 #define ARM_CP_OVERRIDE 16
1502 #define ARM_CP_ALIAS 32
1503 #define ARM_CP_IO 64
1504 #define ARM_CP_NO_RAW 128
1505 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1506 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1507 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1508 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1509 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1510 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1511 /* Used only as a terminator for ARMCPRegInfo lists */
1512 #define ARM_CP_SENTINEL 0xffff
1513 /* Mask of only the flag bits in a type field */
1514 #define ARM_CP_FLAG_MASK 0xff
1515 
1516 /* Valid values for ARMCPRegInfo state field, indicating which of
1517  * the AArch32 and AArch64 execution states this register is visible in.
1518  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1519  * If the reginfo is declared to be visible in both states then a second
1520  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1521  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1522  * Note that we rely on the values of these enums as we iterate through
1523  * the various states in some places.
1524  */
1525 enum {
1526     ARM_CP_STATE_AA32 = 0,
1527     ARM_CP_STATE_AA64 = 1,
1528     ARM_CP_STATE_BOTH = 2,
1529 };
1530 
1531 /* ARM CP register secure state flags.  These flags identify security state
1532  * attributes for a given CP register entry.
1533  * The existence of both or neither secure and non-secure flags indicates that
1534  * the register has both a secure and non-secure hash entry.  A single one of
1535  * these flags causes the register to only be hashed for the specified
1536  * security state.
1537  * Although definitions may have any combination of the S/NS bits, each
1538  * registered entry will only have one to identify whether the entry is secure
1539  * or non-secure.
1540  */
1541 enum {
1542     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1543     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1544 };
1545 
1546 /* Return true if cptype is a valid type field. This is used to try to
1547  * catch errors where the sentinel has been accidentally left off the end
1548  * of a list of registers.
1549  */
1550 static inline bool cptype_valid(int cptype)
1551 {
1552     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1553         || ((cptype & ARM_CP_SPECIAL) &&
1554             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1555 }
1556 
1557 /* Access rights:
1558  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1559  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1560  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1561  * (ie any of the privileged modes in Secure state, or Monitor mode).
1562  * If a register is accessible in one privilege level it's always accessible
1563  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1564  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1565  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1566  * terminology a little and call this PL3.
1567  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1568  * with the ELx exception levels.
1569  *
1570  * If access permissions for a register are more complex than can be
1571  * described with these bits, then use a laxer set of restrictions, and
1572  * do the more restrictive/complex check inside a helper function.
1573  */
1574 #define PL3_R 0x80
1575 #define PL3_W 0x40
1576 #define PL2_R (0x20 | PL3_R)
1577 #define PL2_W (0x10 | PL3_W)
1578 #define PL1_R (0x08 | PL2_R)
1579 #define PL1_W (0x04 | PL2_W)
1580 #define PL0_R (0x02 | PL1_R)
1581 #define PL0_W (0x01 | PL1_W)
1582 
1583 #define PL3_RW (PL3_R | PL3_W)
1584 #define PL2_RW (PL2_R | PL2_W)
1585 #define PL1_RW (PL1_R | PL1_W)
1586 #define PL0_RW (PL0_R | PL0_W)
1587 
1588 /* Return the highest implemented Exception Level */
1589 static inline int arm_highest_el(CPUARMState *env)
1590 {
1591     if (arm_feature(env, ARM_FEATURE_EL3)) {
1592         return 3;
1593     }
1594     if (arm_feature(env, ARM_FEATURE_EL2)) {
1595         return 2;
1596     }
1597     return 1;
1598 }
1599 
1600 /* Return the current Exception Level (as per ARMv8; note that this differs
1601  * from the ARMv7 Privilege Level).
1602  */
1603 static inline int arm_current_el(CPUARMState *env)
1604 {
1605     if (arm_feature(env, ARM_FEATURE_M)) {
1606         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1607     }
1608 
1609     if (is_a64(env)) {
1610         return extract32(env->pstate, 2, 2);
1611     }
1612 
1613     switch (env->uncached_cpsr & 0x1f) {
1614     case ARM_CPU_MODE_USR:
1615         return 0;
1616     case ARM_CPU_MODE_HYP:
1617         return 2;
1618     case ARM_CPU_MODE_MON:
1619         return 3;
1620     default:
1621         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1622             /* If EL3 is 32-bit then all secure privileged modes run in
1623              * EL3
1624              */
1625             return 3;
1626         }
1627 
1628         return 1;
1629     }
1630 }
1631 
1632 typedef struct ARMCPRegInfo ARMCPRegInfo;
1633 
1634 typedef enum CPAccessResult {
1635     /* Access is permitted */
1636     CP_ACCESS_OK = 0,
1637     /* Access fails due to a configurable trap or enable which would
1638      * result in a categorized exception syndrome giving information about
1639      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1640      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1641      * PL1 if in EL0, otherwise to the current EL).
1642      */
1643     CP_ACCESS_TRAP = 1,
1644     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1645      * Note that this is not a catch-all case -- the set of cases which may
1646      * result in this failure is specifically defined by the architecture.
1647      */
1648     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1649     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1650     CP_ACCESS_TRAP_EL2 = 3,
1651     CP_ACCESS_TRAP_EL3 = 4,
1652     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1653     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1654     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1655     /* Access fails and results in an exception syndrome for an FP access,
1656      * trapped directly to EL2 or EL3
1657      */
1658     CP_ACCESS_TRAP_FP_EL2 = 7,
1659     CP_ACCESS_TRAP_FP_EL3 = 8,
1660 } CPAccessResult;
1661 
1662 /* Access functions for coprocessor registers. These cannot fail and
1663  * may not raise exceptions.
1664  */
1665 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1666 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1667                        uint64_t value);
1668 /* Access permission check functions for coprocessor registers. */
1669 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1670                                   const ARMCPRegInfo *opaque,
1671                                   bool isread);
1672 /* Hook function for register reset */
1673 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1674 
1675 #define CP_ANY 0xff
1676 
1677 /* Definition of an ARM coprocessor register */
1678 struct ARMCPRegInfo {
1679     /* Name of register (useful mainly for debugging, need not be unique) */
1680     const char *name;
1681     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1682      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1683      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1684      * will be decoded to this register. The register read and write
1685      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1686      * used by the program, so it is possible to register a wildcard and
1687      * then behave differently on read/write if necessary.
1688      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1689      * must both be zero.
1690      * For AArch64-visible registers, opc0 is also used.
1691      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1692      * way to distinguish (for KVM's benefit) guest-visible system registers
1693      * from demuxed ones provided to preserve the "no side effects on
1694      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1695      * visible (to match KVM's encoding); cp==0 will be converted to
1696      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1697      */
1698     uint8_t cp;
1699     uint8_t crn;
1700     uint8_t crm;
1701     uint8_t opc0;
1702     uint8_t opc1;
1703     uint8_t opc2;
1704     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1705     int state;
1706     /* Register type: ARM_CP_* bits/values */
1707     int type;
1708     /* Access rights: PL*_[RW] */
1709     int access;
1710     /* Security state: ARM_CP_SECSTATE_* bits/values */
1711     int secure;
1712     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1713      * this register was defined: can be used to hand data through to the
1714      * register read/write functions, since they are passed the ARMCPRegInfo*.
1715      */
1716     void *opaque;
1717     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1718      * fieldoffset is non-zero, the reset value of the register.
1719      */
1720     uint64_t resetvalue;
1721     /* Offset of the field in CPUARMState for this register.
1722      *
1723      * This is not needed if either:
1724      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1725      *  2. both readfn and writefn are specified
1726      */
1727     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1728 
1729     /* Offsets of the secure and non-secure fields in CPUARMState for the
1730      * register if it is banked.  These fields are only used during the static
1731      * registration of a register.  During hashing the bank associated
1732      * with a given security state is copied to fieldoffset which is used from
1733      * there on out.
1734      *
1735      * It is expected that register definitions use either fieldoffset or
1736      * bank_fieldoffsets in the definition but not both.  It is also expected
1737      * that both bank offsets are set when defining a banked register.  This
1738      * use indicates that a register is banked.
1739      */
1740     ptrdiff_t bank_fieldoffsets[2];
1741 
1742     /* Function for making any access checks for this register in addition to
1743      * those specified by the 'access' permissions bits. If NULL, no extra
1744      * checks required. The access check is performed at runtime, not at
1745      * translate time.
1746      */
1747     CPAccessFn *accessfn;
1748     /* Function for handling reads of this register. If NULL, then reads
1749      * will be done by loading from the offset into CPUARMState specified
1750      * by fieldoffset.
1751      */
1752     CPReadFn *readfn;
1753     /* Function for handling writes of this register. If NULL, then writes
1754      * will be done by writing to the offset into CPUARMState specified
1755      * by fieldoffset.
1756      */
1757     CPWriteFn *writefn;
1758     /* Function for doing a "raw" read; used when we need to copy
1759      * coprocessor state to the kernel for KVM or out for
1760      * migration. This only needs to be provided if there is also a
1761      * readfn and it has side effects (for instance clear-on-read bits).
1762      */
1763     CPReadFn *raw_readfn;
1764     /* Function for doing a "raw" write; used when we need to copy KVM
1765      * kernel coprocessor state into userspace, or for inbound
1766      * migration. This only needs to be provided if there is also a
1767      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1768      * or similar behaviour.
1769      */
1770     CPWriteFn *raw_writefn;
1771     /* Function for resetting the register. If NULL, then reset will be done
1772      * by writing resetvalue to the field specified in fieldoffset. If
1773      * fieldoffset is 0 then no reset will be done.
1774      */
1775     CPResetFn *resetfn;
1776 };
1777 
1778 /* Macros which are lvalues for the field in CPUARMState for the
1779  * ARMCPRegInfo *ri.
1780  */
1781 #define CPREG_FIELD32(env, ri) \
1782     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1783 #define CPREG_FIELD64(env, ri) \
1784     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1785 
1786 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1787 
1788 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1789                                     const ARMCPRegInfo *regs, void *opaque);
1790 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1791                                        const ARMCPRegInfo *regs, void *opaque);
1792 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1793 {
1794     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1795 }
1796 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1797 {
1798     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1799 }
1800 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1801 
1802 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1803 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1804                          uint64_t value);
1805 /* CPReadFn that can be used for read-as-zero behaviour */
1806 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1807 
1808 /* CPResetFn that does nothing, for use if no reset is required even
1809  * if fieldoffset is non zero.
1810  */
1811 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1812 
1813 /* Return true if this reginfo struct's field in the cpu state struct
1814  * is 64 bits wide.
1815  */
1816 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1817 {
1818     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1819 }
1820 
1821 static inline bool cp_access_ok(int current_el,
1822                                 const ARMCPRegInfo *ri, int isread)
1823 {
1824     return (ri->access >> ((current_el * 2) + isread)) & 1;
1825 }
1826 
1827 /* Raw read of a coprocessor register (as needed for migration, etc) */
1828 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1829 
1830 /**
1831  * write_list_to_cpustate
1832  * @cpu: ARMCPU
1833  *
1834  * For each register listed in the ARMCPU cpreg_indexes list, write
1835  * its value from the cpreg_values list into the ARMCPUState structure.
1836  * This updates TCG's working data structures from KVM data or
1837  * from incoming migration state.
1838  *
1839  * Returns: true if all register values were updated correctly,
1840  * false if some register was unknown or could not be written.
1841  * Note that we do not stop early on failure -- we will attempt
1842  * writing all registers in the list.
1843  */
1844 bool write_list_to_cpustate(ARMCPU *cpu);
1845 
1846 /**
1847  * write_cpustate_to_list:
1848  * @cpu: ARMCPU
1849  *
1850  * For each register listed in the ARMCPU cpreg_indexes list, write
1851  * its value from the ARMCPUState structure into the cpreg_values list.
1852  * This is used to copy info from TCG's working data structures into
1853  * KVM or for outbound migration.
1854  *
1855  * Returns: true if all register values were read correctly,
1856  * false if some register was unknown or could not be read.
1857  * Note that we do not stop early on failure -- we will attempt
1858  * reading all registers in the list.
1859  */
1860 bool write_cpustate_to_list(ARMCPU *cpu);
1861 
1862 #define ARM_CPUID_TI915T      0x54029152
1863 #define ARM_CPUID_TI925T      0x54029252
1864 
1865 #if defined(CONFIG_USER_ONLY)
1866 #define TARGET_PAGE_BITS 12
1867 #else
1868 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1869  * have to support 1K tiny pages.
1870  */
1871 #define TARGET_PAGE_BITS_VARY
1872 #define TARGET_PAGE_BITS_MIN 10
1873 #endif
1874 
1875 #if defined(TARGET_AARCH64)
1876 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1877 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1878 #else
1879 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1880 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1881 #endif
1882 
1883 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1884                                      unsigned int target_el)
1885 {
1886     CPUARMState *env = cs->env_ptr;
1887     unsigned int cur_el = arm_current_el(env);
1888     bool secure = arm_is_secure(env);
1889     bool pstate_unmasked;
1890     int8_t unmasked = 0;
1891 
1892     /* Don't take exceptions if they target a lower EL.
1893      * This check should catch any exceptions that would not be taken but left
1894      * pending.
1895      */
1896     if (cur_el > target_el) {
1897         return false;
1898     }
1899 
1900     switch (excp_idx) {
1901     case EXCP_FIQ:
1902         pstate_unmasked = !(env->daif & PSTATE_F);
1903         break;
1904 
1905     case EXCP_IRQ:
1906         pstate_unmasked = !(env->daif & PSTATE_I);
1907         break;
1908 
1909     case EXCP_VFIQ:
1910         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1911             /* VFIQs are only taken when hypervized and non-secure.  */
1912             return false;
1913         }
1914         return !(env->daif & PSTATE_F);
1915     case EXCP_VIRQ:
1916         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1917             /* VIRQs are only taken when hypervized and non-secure.  */
1918             return false;
1919         }
1920         return !(env->daif & PSTATE_I);
1921     default:
1922         g_assert_not_reached();
1923     }
1924 
1925     /* Use the target EL, current execution state and SCR/HCR settings to
1926      * determine whether the corresponding CPSR bit is used to mask the
1927      * interrupt.
1928      */
1929     if ((target_el > cur_el) && (target_el != 1)) {
1930         /* Exceptions targeting a higher EL may not be maskable */
1931         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1932             /* 64-bit masking rules are simple: exceptions to EL3
1933              * can't be masked, and exceptions to EL2 can only be
1934              * masked from Secure state. The HCR and SCR settings
1935              * don't affect the masking logic, only the interrupt routing.
1936              */
1937             if (target_el == 3 || !secure) {
1938                 unmasked = 1;
1939             }
1940         } else {
1941             /* The old 32-bit-only environment has a more complicated
1942              * masking setup. HCR and SCR bits not only affect interrupt
1943              * routing but also change the behaviour of masking.
1944              */
1945             bool hcr, scr;
1946 
1947             switch (excp_idx) {
1948             case EXCP_FIQ:
1949                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1950                  * we override the CPSR.F in determining if the exception is
1951                  * masked or not. If neither of these are set then we fall back
1952                  * to the CPSR.F setting otherwise we further assess the state
1953                  * below.
1954                  */
1955                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1956                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1957 
1958                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1959                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1960                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1961                  * when non-secure but only when FIQs are only routed to EL3.
1962                  */
1963                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1964                 break;
1965             case EXCP_IRQ:
1966                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1967                  * we may override the CPSR.I masking when in non-secure state.
1968                  * The SCR.IRQ setting has already been taken into consideration
1969                  * when setting the target EL, so it does not have a further
1970                  * affect here.
1971                  */
1972                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1973                 scr = false;
1974                 break;
1975             default:
1976                 g_assert_not_reached();
1977             }
1978 
1979             if ((scr || hcr) && !secure) {
1980                 unmasked = 1;
1981             }
1982         }
1983     }
1984 
1985     /* The PSTATE bits only mask the interrupt if we have not overriden the
1986      * ability above.
1987      */
1988     return unmasked || pstate_unmasked;
1989 }
1990 
1991 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1992 
1993 #define cpu_signal_handler cpu_arm_signal_handler
1994 #define cpu_list arm_cpu_list
1995 
1996 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1997  *
1998  * If EL3 is 64-bit:
1999  *  + NonSecure EL1 & 0 stage 1
2000  *  + NonSecure EL1 & 0 stage 2
2001  *  + NonSecure EL2
2002  *  + Secure EL1 & EL0
2003  *  + Secure EL3
2004  * If EL3 is 32-bit:
2005  *  + NonSecure PL1 & 0 stage 1
2006  *  + NonSecure PL1 & 0 stage 2
2007  *  + NonSecure PL2
2008  *  + Secure PL0 & PL1
2009  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2010  *
2011  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2012  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2013  *     may differ in access permissions even if the VA->PA map is the same
2014  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2015  *     translation, which means that we have one mmu_idx that deals with two
2016  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2017  *     architecturally permitted]
2018  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2019  *     handling via the TLB. The only way to do a stage 1 translation without
2020  *     the immediate stage 2 translation is via the ATS or AT system insns,
2021  *     which can be slow-pathed and always do a page table walk.
2022  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2023  *     translation regimes, because they map reasonably well to each other
2024  *     and they can't both be active at the same time.
2025  * This gives us the following list of mmu_idx values:
2026  *
2027  * NS EL0 (aka NS PL0) stage 1+2
2028  * NS EL1 (aka NS PL1) stage 1+2
2029  * NS EL2 (aka NS PL2)
2030  * S EL3 (aka S PL1)
2031  * S EL0 (aka S PL0)
2032  * S EL1 (not used if EL3 is 32 bit)
2033  * NS EL0+1 stage 2
2034  *
2035  * (The last of these is an mmu_idx because we want to be able to use the TLB
2036  * for the accesses done as part of a stage 1 page table walk, rather than
2037  * having to walk the stage 2 page table over and over.)
2038  *
2039  * Our enumeration includes at the end some entries which are not "true"
2040  * mmu_idx values in that they don't have corresponding TLBs and are only
2041  * valid for doing slow path page table walks.
2042  *
2043  * The constant names here are patterned after the general style of the names
2044  * of the AT/ATS operations.
2045  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2046  */
2047 typedef enum ARMMMUIdx {
2048     ARMMMUIdx_S12NSE0 = 0,
2049     ARMMMUIdx_S12NSE1 = 1,
2050     ARMMMUIdx_S1E2 = 2,
2051     ARMMMUIdx_S1E3 = 3,
2052     ARMMMUIdx_S1SE0 = 4,
2053     ARMMMUIdx_S1SE1 = 5,
2054     ARMMMUIdx_S2NS = 6,
2055     /* Indexes below here don't have TLBs and are used only for AT system
2056      * instructions or for the first stage of an S12 page table walk.
2057      */
2058     ARMMMUIdx_S1NSE0 = 7,
2059     ARMMMUIdx_S1NSE1 = 8,
2060 } ARMMMUIdx;
2061 
2062 #define MMU_USER_IDX 0
2063 
2064 /* Return the exception level we're running at if this is our mmu_idx */
2065 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2066 {
2067     assert(mmu_idx < ARMMMUIdx_S2NS);
2068     return mmu_idx & 3;
2069 }
2070 
2071 /* Determine the current mmu_idx to use for normal loads/stores */
2072 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2073 {
2074     int el = arm_current_el(env);
2075 
2076     if (el < 2 && arm_is_secure_below_el3(env)) {
2077         return ARMMMUIdx_S1SE0 + el;
2078     }
2079     return el;
2080 }
2081 
2082 /* Indexes used when registering address spaces with cpu_address_space_init */
2083 typedef enum ARMASIdx {
2084     ARMASIdx_NS = 0,
2085     ARMASIdx_S = 1,
2086 } ARMASIdx;
2087 
2088 /* Return the Exception Level targeted by debug exceptions. */
2089 static inline int arm_debug_target_el(CPUARMState *env)
2090 {
2091     bool secure = arm_is_secure(env);
2092     bool route_to_el2 = false;
2093 
2094     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2095         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2096                        env->cp15.mdcr_el2 & (1 << 8);
2097     }
2098 
2099     if (route_to_el2) {
2100         return 2;
2101     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2102                !arm_el_is_aa64(env, 3) && secure) {
2103         return 3;
2104     } else {
2105         return 1;
2106     }
2107 }
2108 
2109 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2110 {
2111     if (arm_is_secure(env)) {
2112         /* MDCR_EL3.SDD disables debug events from Secure state */
2113         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2114             || arm_current_el(env) == 3) {
2115             return false;
2116         }
2117     }
2118 
2119     if (arm_current_el(env) == arm_debug_target_el(env)) {
2120         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2121             || (env->daif & PSTATE_D)) {
2122             return false;
2123         }
2124     }
2125     return true;
2126 }
2127 
2128 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2129 {
2130     int el = arm_current_el(env);
2131 
2132     if (el == 0 && arm_el_is_aa64(env, 1)) {
2133         return aa64_generate_debug_exceptions(env);
2134     }
2135 
2136     if (arm_is_secure(env)) {
2137         int spd;
2138 
2139         if (el == 0 && (env->cp15.sder & 1)) {
2140             /* SDER.SUIDEN means debug exceptions from Secure EL0
2141              * are always enabled. Otherwise they are controlled by
2142              * SDCR.SPD like those from other Secure ELs.
2143              */
2144             return true;
2145         }
2146 
2147         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2148         switch (spd) {
2149         case 1:
2150             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2151         case 0:
2152             /* For 0b00 we return true if external secure invasive debug
2153              * is enabled. On real hardware this is controlled by external
2154              * signals to the core. QEMU always permits debug, and behaves
2155              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2156              */
2157             return true;
2158         case 2:
2159             return false;
2160         case 3:
2161             return true;
2162         }
2163     }
2164 
2165     return el != 2;
2166 }
2167 
2168 /* Return true if debugging exceptions are currently enabled.
2169  * This corresponds to what in ARM ARM pseudocode would be
2170  *    if UsingAArch32() then
2171  *        return AArch32.GenerateDebugExceptions()
2172  *    else
2173  *        return AArch64.GenerateDebugExceptions()
2174  * We choose to push the if() down into this function for clarity,
2175  * since the pseudocode has it at all callsites except for the one in
2176  * CheckSoftwareStep(), where it is elided because both branches would
2177  * always return the same value.
2178  *
2179  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2180  * don't yet implement those exception levels or their associated trap bits.
2181  */
2182 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2183 {
2184     if (env->aarch64) {
2185         return aa64_generate_debug_exceptions(env);
2186     } else {
2187         return aa32_generate_debug_exceptions(env);
2188     }
2189 }
2190 
2191 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2192  * implicitly means this always returns false in pre-v8 CPUs.)
2193  */
2194 static inline bool arm_singlestep_active(CPUARMState *env)
2195 {
2196     return extract32(env->cp15.mdscr_el1, 0, 1)
2197         && arm_el_is_aa64(env, arm_debug_target_el(env))
2198         && arm_generate_debug_exceptions(env);
2199 }
2200 
2201 static inline bool arm_sctlr_b(CPUARMState *env)
2202 {
2203     return
2204         /* We need not implement SCTLR.ITD in user-mode emulation, so
2205          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2206          * This lets people run BE32 binaries with "-cpu any".
2207          */
2208 #ifndef CONFIG_USER_ONLY
2209         !arm_feature(env, ARM_FEATURE_V7) &&
2210 #endif
2211         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2212 }
2213 
2214 /* Return true if the processor is in big-endian mode. */
2215 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2216 {
2217     int cur_el;
2218 
2219     /* In 32bit endianness is determined by looking at CPSR's E bit */
2220     if (!is_a64(env)) {
2221         return
2222 #ifdef CONFIG_USER_ONLY
2223             /* In system mode, BE32 is modelled in line with the
2224              * architecture (as word-invariant big-endianness), where loads
2225              * and stores are done little endian but from addresses which
2226              * are adjusted by XORing with the appropriate constant. So the
2227              * endianness to use for the raw data access is not affected by
2228              * SCTLR.B.
2229              * In user mode, however, we model BE32 as byte-invariant
2230              * big-endianness (because user-only code cannot tell the
2231              * difference), and so we need to use a data access endianness
2232              * that depends on SCTLR.B.
2233              */
2234             arm_sctlr_b(env) ||
2235 #endif
2236                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2237     }
2238 
2239     cur_el = arm_current_el(env);
2240 
2241     if (cur_el == 0) {
2242         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2243     }
2244 
2245     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2246 }
2247 
2248 #include "exec/cpu-all.h"
2249 
2250 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2251  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2252  * We put flags which are shared between 32 and 64 bit mode at the top
2253  * of the word, and flags which apply to only one mode at the bottom.
2254  */
2255 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2256 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2257 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2258 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2259 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2260 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2261 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2262 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2263 /* Target EL if we take a floating-point-disabled exception */
2264 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2265 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2266 
2267 /* Bit usage when in AArch32 state: */
2268 #define ARM_TBFLAG_THUMB_SHIFT      0
2269 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2270 #define ARM_TBFLAG_VECLEN_SHIFT     1
2271 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2272 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2273 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2274 #define ARM_TBFLAG_VFPEN_SHIFT      7
2275 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2276 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2277 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2278 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2279 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2280 /* We store the bottom two bits of the CPAR as TB flags and handle
2281  * checks on the other bits at runtime
2282  */
2283 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2284 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2285 /* Indicates whether cp register reads and writes by guest code should access
2286  * the secure or nonsecure bank of banked registers; note that this is not
2287  * the same thing as the current security state of the processor!
2288  */
2289 #define ARM_TBFLAG_NS_SHIFT         19
2290 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2291 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2292 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2293 
2294 /* Bit usage when in AArch64 state */
2295 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2296 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2297 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2298 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2299 
2300 /* some convenience accessor macros */
2301 #define ARM_TBFLAG_AARCH64_STATE(F) \
2302     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2303 #define ARM_TBFLAG_MMUIDX(F) \
2304     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2305 #define ARM_TBFLAG_SS_ACTIVE(F) \
2306     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2307 #define ARM_TBFLAG_PSTATE_SS(F) \
2308     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2309 #define ARM_TBFLAG_FPEXC_EL(F) \
2310     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2311 #define ARM_TBFLAG_THUMB(F) \
2312     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2313 #define ARM_TBFLAG_VECLEN(F) \
2314     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2315 #define ARM_TBFLAG_VECSTRIDE(F) \
2316     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2317 #define ARM_TBFLAG_VFPEN(F) \
2318     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2319 #define ARM_TBFLAG_CONDEXEC(F) \
2320     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2321 #define ARM_TBFLAG_SCTLR_B(F) \
2322     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2323 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2324     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2325 #define ARM_TBFLAG_NS(F) \
2326     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2327 #define ARM_TBFLAG_BE_DATA(F) \
2328     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2329 #define ARM_TBFLAG_TBI0(F) \
2330     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2331 #define ARM_TBFLAG_TBI1(F) \
2332     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2333 
2334 static inline bool bswap_code(bool sctlr_b)
2335 {
2336 #ifdef CONFIG_USER_ONLY
2337     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2338      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2339      * would also end up as a mixed-endian mode with BE code, LE data.
2340      */
2341     return
2342 #ifdef TARGET_WORDS_BIGENDIAN
2343         1 ^
2344 #endif
2345         sctlr_b;
2346 #else
2347     /* All code access in ARM is little endian, and there are no loaders
2348      * doing swaps that need to be reversed
2349      */
2350     return 0;
2351 #endif
2352 }
2353 
2354 /* Return the exception level to which FP-disabled exceptions should
2355  * be taken, or 0 if FP is enabled.
2356  */
2357 static inline int fp_exception_el(CPUARMState *env)
2358 {
2359     int fpen;
2360     int cur_el = arm_current_el(env);
2361 
2362     /* CPACR and the CPTR registers don't exist before v6, so FP is
2363      * always accessible
2364      */
2365     if (!arm_feature(env, ARM_FEATURE_V6)) {
2366         return 0;
2367     }
2368 
2369     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2370      * 0, 2 : trap EL0 and EL1/PL1 accesses
2371      * 1    : trap only EL0 accesses
2372      * 3    : trap no accesses
2373      */
2374     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2375     switch (fpen) {
2376     case 0:
2377     case 2:
2378         if (cur_el == 0 || cur_el == 1) {
2379             /* Trap to PL1, which might be EL1 or EL3 */
2380             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2381                 return 3;
2382             }
2383             return 1;
2384         }
2385         if (cur_el == 3 && !is_a64(env)) {
2386             /* Secure PL1 running at EL3 */
2387             return 3;
2388         }
2389         break;
2390     case 1:
2391         if (cur_el == 0) {
2392             return 1;
2393         }
2394         break;
2395     case 3:
2396         break;
2397     }
2398 
2399     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2400      * check because zero bits in the registers mean "don't trap".
2401      */
2402 
2403     /* CPTR_EL2 : present in v7VE or v8 */
2404     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2405         && !arm_is_secure_below_el3(env)) {
2406         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2407         return 2;
2408     }
2409 
2410     /* CPTR_EL3 : present in v8 */
2411     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2412         /* Trap all FP ops to EL3 */
2413         return 3;
2414     }
2415 
2416     return 0;
2417 }
2418 
2419 #ifdef CONFIG_USER_ONLY
2420 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2421 {
2422     return
2423 #ifdef TARGET_WORDS_BIGENDIAN
2424        1 ^
2425 #endif
2426        arm_cpu_data_is_big_endian(env);
2427 }
2428 #endif
2429 
2430 #ifndef CONFIG_USER_ONLY
2431 /**
2432  * arm_regime_tbi0:
2433  * @env: CPUARMState
2434  * @mmu_idx: MMU index indicating required translation regime
2435  *
2436  * Extracts the TBI0 value from the appropriate TCR for the current EL
2437  *
2438  * Returns: the TBI0 value.
2439  */
2440 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2441 
2442 /**
2443  * arm_regime_tbi1:
2444  * @env: CPUARMState
2445  * @mmu_idx: MMU index indicating required translation regime
2446  *
2447  * Extracts the TBI1 value from the appropriate TCR for the current EL
2448  *
2449  * Returns: the TBI1 value.
2450  */
2451 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2452 #else
2453 /* We can't handle tagged addresses properly in user-only mode */
2454 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2455 {
2456     return 0;
2457 }
2458 
2459 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2460 {
2461     return 0;
2462 }
2463 #endif
2464 
2465 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2466                                         target_ulong *cs_base, uint32_t *flags)
2467 {
2468     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2469     if (is_a64(env)) {
2470         *pc = env->pc;
2471         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2472         /* Get control bits for tagged addresses */
2473         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2474         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2475     } else {
2476         *pc = env->regs[15];
2477         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2478             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2479             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2480             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2481             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2482         if (!(access_secure_reg(env))) {
2483             *flags |= ARM_TBFLAG_NS_MASK;
2484         }
2485         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2486             || arm_el_is_aa64(env, 1)) {
2487             *flags |= ARM_TBFLAG_VFPEN_MASK;
2488         }
2489         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2490                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2491     }
2492 
2493     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2494 
2495     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2496      * states defined in the ARM ARM for software singlestep:
2497      *  SS_ACTIVE   PSTATE.SS   State
2498      *     0            x       Inactive (the TB flag for SS is always 0)
2499      *     1            0       Active-pending
2500      *     1            1       Active-not-pending
2501      */
2502     if (arm_singlestep_active(env)) {
2503         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2504         if (is_a64(env)) {
2505             if (env->pstate & PSTATE_SS) {
2506                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2507             }
2508         } else {
2509             if (env->uncached_cpsr & PSTATE_SS) {
2510                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2511             }
2512         }
2513     }
2514     if (arm_cpu_data_is_big_endian(env)) {
2515         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2516     }
2517     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2518 
2519     *cs_base = 0;
2520 }
2521 
2522 enum {
2523     QEMU_PSCI_CONDUIT_DISABLED = 0,
2524     QEMU_PSCI_CONDUIT_SMC = 1,
2525     QEMU_PSCI_CONDUIT_HVC = 2,
2526 };
2527 
2528 #ifndef CONFIG_USER_ONLY
2529 /* Return the address space index to use for a memory access */
2530 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2531 {
2532     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2533 }
2534 
2535 /* Return the AddressSpace to use for a memory access
2536  * (which depends on whether the access is S or NS, and whether
2537  * the board gave us a separate AddressSpace for S accesses).
2538  */
2539 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2540 {
2541     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2542 }
2543 #endif
2544 
2545 /**
2546  * arm_register_el_change_hook:
2547  * Register a hook function which will be called back whenever this
2548  * CPU changes exception level or mode. The hook function will be
2549  * passed a pointer to the ARMCPU and the opaque data pointer passed
2550  * to this function when the hook was registered.
2551  *
2552  * Note that we currently only support registering a single hook function,
2553  * and will assert if this function is called twice.
2554  * This facility is intended for the use of the GICv3 emulation.
2555  */
2556 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2557                                  void *opaque);
2558 
2559 /**
2560  * arm_get_el_change_hook_opaque:
2561  * Return the opaque data that will be used by the el_change_hook
2562  * for this CPU.
2563  */
2564 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2565 {
2566     return cpu->el_change_hook_opaque;
2567 }
2568 
2569 #endif
2570