xref: /openbmc/qemu/target/arm/cpu.h (revision 53d28455)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 
94 /* The usual mapping for an AArch64 system register to its AArch32
95  * counterpart is for the 32 bit world to have access to the lower
96  * half only (with writes leaving the upper half untouched). It's
97  * therefore useful to be able to pass TCG the offset of the least
98  * significant half of a uint64_t struct member.
99  */
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
107 
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
113 
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141  * @cpregs_keys: Array that contains the corresponding Key of
142  * a given cpreg with the same order of the cpreg in the XML description.
143  */
144 typedef struct DynamicGDBXMLInfo {
145     char *desc;
146     int num_cpregs;
147     uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
149 
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152     uint64_t cval; /* Timer CompareValue register */
153     uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
155 
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP  2
159 #define GTIMER_SEC  3
160 #define NUM_GTIMERS 4
161 
162 typedef struct {
163     uint64_t raw_tcr;
164     uint32_t mask;
165     uint32_t base_mask;
166 } TCR;
167 
168 /* Define a maximum sized vector register.
169  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170  * For 64-bit, this is a 2048-bit SVE register.
171  *
172  * Note that the mapping between S, D, and Q views of the register bank
173  * differs between AArch64 and AArch32.
174  * In AArch32:
175  *  Qn = regs[n].d[1]:regs[n].d[0]
176  *  Dn = regs[n / 2].d[n & 1]
177  *  Sn = regs[n / 4].d[n % 4 / 2],
178  *       bits 31..0 for even n, and bits 63..32 for odd n
179  *       (and regs[16] to regs[31] are inaccessible)
180  * In AArch64:
181  *  Zn = regs[n].d[*]
182  *  Qn = regs[n].d[1]:regs[n].d[0]
183  *  Dn = regs[n].d[0]
184  *  Sn = regs[n].d[0] bits 31..0
185  *  Hn = regs[n].d[0] bits 15..0
186  *
187  * This corresponds to the architecturally defined mapping between
188  * the two execution states, and means we do not need to explicitly
189  * map these registers when changing states.
190  *
191  * Align the data for use with TCG host vector operations.
192  */
193 
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ    16
196 #else
197 # define ARM_MAX_VQ    1
198 #endif
199 
200 typedef struct ARMVectorReg {
201     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
203 
204 /* In AArch32 mode, predicate registers do not exist at all.  */
205 #ifdef TARGET_AARCH64
206 typedef struct ARMPredicateReg {
207     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
209 #endif
210 
211 
212 typedef struct CPUARMState {
213     /* Regs for current mode.  */
214     uint32_t regs[16];
215 
216     /* 32/64 switch only happens when taking and returning from
217      * exceptions so the overlap semantics are taken care of then
218      * instead of having a complicated union.
219      */
220     /* Regs for A64 mode.  */
221     uint64_t xregs[32];
222     uint64_t pc;
223     /* PSTATE isn't an architectural register for ARMv8. However, it is
224      * convenient for us to assemble the underlying state into a 32 bit format
225      * identical to the architectural format used for the SPSR. (This is also
226      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227      * 'pstate' register are.) Of the PSTATE bits:
228      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229      *    semantics as for AArch32, as described in the comments on each field)
230      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
231      *  DAIF (exception masks) are kept in env->daif
232      *  all other bits are stored in their correct places in env->pstate
233      */
234     uint32_t pstate;
235     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
236 
237     /* Frequently accessed CPSR bits are stored separately for efficiency.
238        This contains all the other bits.  Use cpsr_{read,write} to access
239        the whole CPSR.  */
240     uint32_t uncached_cpsr;
241     uint32_t spsr;
242 
243     /* Banked registers.  */
244     uint64_t banked_spsr[8];
245     uint32_t banked_r13[8];
246     uint32_t banked_r14[8];
247 
248     /* These hold r8-r12.  */
249     uint32_t usr_regs[5];
250     uint32_t fiq_regs[5];
251 
252     /* cpsr flag cache for faster execution */
253     uint32_t CF; /* 0 or 1 */
254     uint32_t VF; /* V is the bit 31. All other bits are undefined */
255     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
256     uint32_t ZF; /* Z set if zero.  */
257     uint32_t QF; /* 0 or 1 */
258     uint32_t GE; /* cpsr[19:16] */
259     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
260     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
261     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
262 
263     uint64_t elr_el[4]; /* AArch64 exception link regs  */
264     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265 
266     /* System control coprocessor (cp15) */
267     struct {
268         uint32_t c0_cpuid;
269         union { /* Cache size selection */
270             struct {
271                 uint64_t _unused_csselr0;
272                 uint64_t csselr_ns;
273                 uint64_t _unused_csselr1;
274                 uint64_t csselr_s;
275             };
276             uint64_t csselr_el[4];
277         };
278         union { /* System control register. */
279             struct {
280                 uint64_t _unused_sctlr;
281                 uint64_t sctlr_ns;
282                 uint64_t hsctlr;
283                 uint64_t sctlr_s;
284             };
285             uint64_t sctlr_el[4];
286         };
287         uint64_t cpacr_el1; /* Architectural feature access control register */
288         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
289         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
290         uint64_t sder; /* Secure debug enable register. */
291         uint32_t nsacr; /* Non-secure access control register. */
292         union { /* MMU translation table base 0. */
293             struct {
294                 uint64_t _unused_ttbr0_0;
295                 uint64_t ttbr0_ns;
296                 uint64_t _unused_ttbr0_1;
297                 uint64_t ttbr0_s;
298             };
299             uint64_t ttbr0_el[4];
300         };
301         union { /* MMU translation table base 1. */
302             struct {
303                 uint64_t _unused_ttbr1_0;
304                 uint64_t ttbr1_ns;
305                 uint64_t _unused_ttbr1_1;
306                 uint64_t ttbr1_s;
307             };
308             uint64_t ttbr1_el[4];
309         };
310         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
311         /* MMU translation table base control. */
312         TCR tcr_el[4];
313         TCR vtcr_el2; /* Virtualization Translation Control.  */
314         uint32_t c2_data; /* MPU data cacheable bits.  */
315         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
316         union { /* MMU domain access control register
317                  * MPU write buffer control.
318                  */
319             struct {
320                 uint64_t dacr_ns;
321                 uint64_t dacr_s;
322             };
323             struct {
324                 uint64_t dacr32_el2;
325             };
326         };
327         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
328         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
329         uint64_t hcr_el2; /* Hypervisor configuration register */
330         uint64_t scr_el3; /* Secure configuration register.  */
331         union { /* Fault status registers.  */
332             struct {
333                 uint64_t ifsr_ns;
334                 uint64_t ifsr_s;
335             };
336             struct {
337                 uint64_t ifsr32_el2;
338             };
339         };
340         union {
341             struct {
342                 uint64_t _unused_dfsr;
343                 uint64_t dfsr_ns;
344                 uint64_t hsr;
345                 uint64_t dfsr_s;
346             };
347             uint64_t esr_el[4];
348         };
349         uint32_t c6_region[8]; /* MPU base/size registers.  */
350         union { /* Fault address registers. */
351             struct {
352                 uint64_t _unused_far0;
353 #ifdef HOST_WORDS_BIGENDIAN
354                 uint32_t ifar_ns;
355                 uint32_t dfar_ns;
356                 uint32_t ifar_s;
357                 uint32_t dfar_s;
358 #else
359                 uint32_t dfar_ns;
360                 uint32_t ifar_ns;
361                 uint32_t dfar_s;
362                 uint32_t ifar_s;
363 #endif
364                 uint64_t _unused_far3;
365             };
366             uint64_t far_el[4];
367         };
368         uint64_t hpfar_el2;
369         uint64_t hstr_el2;
370         union { /* Translation result. */
371             struct {
372                 uint64_t _unused_par_0;
373                 uint64_t par_ns;
374                 uint64_t _unused_par_1;
375                 uint64_t par_s;
376             };
377             uint64_t par_el[4];
378         };
379 
380         uint32_t c9_insn; /* Cache lockdown registers.  */
381         uint32_t c9_data;
382         uint64_t c9_pmcr; /* performance monitor control register */
383         uint64_t c9_pmcnten; /* perf monitor counter enables */
384         uint64_t c9_pmovsr; /* perf monitor overflow status */
385         uint64_t c9_pmuserenr; /* perf monitor user enable */
386         uint64_t c9_pmselr; /* perf monitor counter selection register */
387         uint64_t c9_pminten; /* perf monitor interrupt enables */
388         union { /* Memory attribute redirection */
389             struct {
390 #ifdef HOST_WORDS_BIGENDIAN
391                 uint64_t _unused_mair_0;
392                 uint32_t mair1_ns;
393                 uint32_t mair0_ns;
394                 uint64_t _unused_mair_1;
395                 uint32_t mair1_s;
396                 uint32_t mair0_s;
397 #else
398                 uint64_t _unused_mair_0;
399                 uint32_t mair0_ns;
400                 uint32_t mair1_ns;
401                 uint64_t _unused_mair_1;
402                 uint32_t mair0_s;
403                 uint32_t mair1_s;
404 #endif
405             };
406             uint64_t mair_el[4];
407         };
408         union { /* vector base address register */
409             struct {
410                 uint64_t _unused_vbar;
411                 uint64_t vbar_ns;
412                 uint64_t hvbar;
413                 uint64_t vbar_s;
414             };
415             uint64_t vbar_el[4];
416         };
417         uint32_t mvbar; /* (monitor) vector base address register */
418         struct { /* FCSE PID. */
419             uint32_t fcseidr_ns;
420             uint32_t fcseidr_s;
421         };
422         union { /* Context ID. */
423             struct {
424                 uint64_t _unused_contextidr_0;
425                 uint64_t contextidr_ns;
426                 uint64_t _unused_contextidr_1;
427                 uint64_t contextidr_s;
428             };
429             uint64_t contextidr_el[4];
430         };
431         union { /* User RW Thread register. */
432             struct {
433                 uint64_t tpidrurw_ns;
434                 uint64_t tpidrprw_ns;
435                 uint64_t htpidr;
436                 uint64_t _tpidr_el3;
437             };
438             uint64_t tpidr_el[4];
439         };
440         /* The secure banks of these registers don't map anywhere */
441         uint64_t tpidrurw_s;
442         uint64_t tpidrprw_s;
443         uint64_t tpidruro_s;
444 
445         union { /* User RO Thread register. */
446             uint64_t tpidruro_ns;
447             uint64_t tpidrro_el[1];
448         };
449         uint64_t c14_cntfrq; /* Counter Frequency register */
450         uint64_t c14_cntkctl; /* Timer Control register */
451         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
452         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
453         ARMGenericTimer c14_timer[NUM_GTIMERS];
454         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
455         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
456         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
457         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
458         uint32_t c15_threadid; /* TI debugger thread-ID.  */
459         uint32_t c15_config_base_address; /* SCU base address.  */
460         uint32_t c15_diagnostic; /* diagnostic register */
461         uint32_t c15_power_diagnostic;
462         uint32_t c15_power_control; /* power control */
463         uint64_t dbgbvr[16]; /* breakpoint value registers */
464         uint64_t dbgbcr[16]; /* breakpoint control registers */
465         uint64_t dbgwvr[16]; /* watchpoint value registers */
466         uint64_t dbgwcr[16]; /* watchpoint control registers */
467         uint64_t mdscr_el1;
468         uint64_t oslsr_el1; /* OS Lock Status */
469         uint64_t mdcr_el2;
470         uint64_t mdcr_el3;
471         /* If the counter is enabled, this stores the last time the counter
472          * was reset. Otherwise it stores the counter value
473          */
474         uint64_t c15_ccnt;
475         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
476         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
477         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
478     } cp15;
479 
480     struct {
481         /* M profile has up to 4 stack pointers:
482          * a Main Stack Pointer and a Process Stack Pointer for each
483          * of the Secure and Non-Secure states. (If the CPU doesn't support
484          * the security extension then it has only two SPs.)
485          * In QEMU we always store the currently active SP in regs[13],
486          * and the non-active SP for the current security state in
487          * v7m.other_sp. The stack pointers for the inactive security state
488          * are stored in other_ss_msp and other_ss_psp.
489          * switch_v7m_security_state() is responsible for rearranging them
490          * when we change security state.
491          */
492         uint32_t other_sp;
493         uint32_t other_ss_msp;
494         uint32_t other_ss_psp;
495         uint32_t vecbase[M_REG_NUM_BANKS];
496         uint32_t basepri[M_REG_NUM_BANKS];
497         uint32_t control[M_REG_NUM_BANKS];
498         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
499         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
500         uint32_t hfsr; /* HardFault Status */
501         uint32_t dfsr; /* Debug Fault Status Register */
502         uint32_t sfsr; /* Secure Fault Status Register */
503         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
504         uint32_t bfar; /* BusFault Address */
505         uint32_t sfar; /* Secure Fault Address Register */
506         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
507         int exception;
508         uint32_t primask[M_REG_NUM_BANKS];
509         uint32_t faultmask[M_REG_NUM_BANKS];
510         uint32_t aircr; /* only holds r/w state if security extn implemented */
511         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
512         uint32_t csselr[M_REG_NUM_BANKS];
513         uint32_t scr[M_REG_NUM_BANKS];
514         uint32_t msplim[M_REG_NUM_BANKS];
515         uint32_t psplim[M_REG_NUM_BANKS];
516     } v7m;
517 
518     /* Information associated with an exception about to be taken:
519      * code which raises an exception must set cs->exception_index and
520      * the relevant parts of this structure; the cpu_do_interrupt function
521      * will then set the guest-visible registers as part of the exception
522      * entry process.
523      */
524     struct {
525         uint32_t syndrome; /* AArch64 format syndrome register */
526         uint32_t fsr; /* AArch32 format fault status register info */
527         uint64_t vaddress; /* virtual addr associated with exception, if any */
528         uint32_t target_el; /* EL the exception should be targeted for */
529         /* If we implement EL2 we will also need to store information
530          * about the intermediate physical address for stage 2 faults.
531          */
532     } exception;
533 
534     /* Information associated with an SError */
535     struct {
536         uint8_t pending;
537         uint8_t has_esr;
538         uint64_t esr;
539     } serror;
540 
541     /* Thumb-2 EE state.  */
542     uint32_t teecr;
543     uint32_t teehbr;
544 
545     /* VFP coprocessor state.  */
546     struct {
547         ARMVectorReg zregs[32];
548 
549 #ifdef TARGET_AARCH64
550         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
551 #define FFR_PRED_NUM 16
552         ARMPredicateReg pregs[17];
553         /* Scratch space for aa64 sve predicate temporary.  */
554         ARMPredicateReg preg_tmp;
555 #endif
556 
557         uint32_t xregs[16];
558         /* We store these fpcsr fields separately for convenience.  */
559         int vec_len;
560         int vec_stride;
561 
562         /* Scratch space for aa32 neon expansion.  */
563         uint32_t scratch[8];
564 
565         /* There are a number of distinct float control structures:
566          *
567          *  fp_status: is the "normal" fp status.
568          *  fp_status_fp16: used for half-precision calculations
569          *  standard_fp_status : the ARM "Standard FPSCR Value"
570          *
571          * Half-precision operations are governed by a separate
572          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
573          * status structure to control this.
574          *
575          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
576          * round-to-nearest and is used by any operations (generally
577          * Neon) which the architecture defines as controlled by the
578          * standard FPSCR value rather than the FPSCR.
579          *
580          * To avoid having to transfer exception bits around, we simply
581          * say that the FPSCR cumulative exception flags are the logical
582          * OR of the flags in the three fp statuses. This relies on the
583          * only thing which needs to read the exception flags being
584          * an explicit FPSCR read.
585          */
586         float_status fp_status;
587         float_status fp_status_f16;
588         float_status standard_fp_status;
589 
590         /* ZCR_EL[1-3] */
591         uint64_t zcr_el[4];
592     } vfp;
593     uint64_t exclusive_addr;
594     uint64_t exclusive_val;
595     uint64_t exclusive_high;
596 
597     /* iwMMXt coprocessor state.  */
598     struct {
599         uint64_t regs[16];
600         uint64_t val;
601 
602         uint32_t cregs[16];
603     } iwmmxt;
604 
605 #if defined(CONFIG_USER_ONLY)
606     /* For usermode syscall translation.  */
607     int eabi;
608 #endif
609 
610     struct CPUBreakpoint *cpu_breakpoint[16];
611     struct CPUWatchpoint *cpu_watchpoint[16];
612 
613     /* Fields up to this point are cleared by a CPU reset */
614     struct {} end_reset_fields;
615 
616     CPU_COMMON
617 
618     /* Fields after CPU_COMMON are preserved across CPU reset. */
619 
620     /* Internal CPU feature flags.  */
621     uint64_t features;
622 
623     /* PMSAv7 MPU */
624     struct {
625         uint32_t *drbar;
626         uint32_t *drsr;
627         uint32_t *dracr;
628         uint32_t rnr[M_REG_NUM_BANKS];
629     } pmsav7;
630 
631     /* PMSAv8 MPU */
632     struct {
633         /* The PMSAv8 implementation also shares some PMSAv7 config
634          * and state:
635          *  pmsav7.rnr (region number register)
636          *  pmsav7_dregion (number of configured regions)
637          */
638         uint32_t *rbar[M_REG_NUM_BANKS];
639         uint32_t *rlar[M_REG_NUM_BANKS];
640         uint32_t mair0[M_REG_NUM_BANKS];
641         uint32_t mair1[M_REG_NUM_BANKS];
642     } pmsav8;
643 
644     /* v8M SAU */
645     struct {
646         uint32_t *rbar;
647         uint32_t *rlar;
648         uint32_t rnr;
649         uint32_t ctrl;
650     } sau;
651 
652     void *nvic;
653     const struct arm_boot_info *boot_info;
654     /* Store GICv3CPUState to access from this struct */
655     void *gicv3state;
656 } CPUARMState;
657 
658 /**
659  * ARMELChangeHookFn:
660  * type of a function which can be registered via arm_register_el_change_hook()
661  * to get callbacks when the CPU changes its exception level or mode.
662  */
663 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
664 typedef struct ARMELChangeHook ARMELChangeHook;
665 struct ARMELChangeHook {
666     ARMELChangeHookFn *hook;
667     void *opaque;
668     QLIST_ENTRY(ARMELChangeHook) node;
669 };
670 
671 /* These values map onto the return values for
672  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
673 typedef enum ARMPSCIState {
674     PSCI_ON = 0,
675     PSCI_OFF = 1,
676     PSCI_ON_PENDING = 2
677 } ARMPSCIState;
678 
679 typedef struct ARMISARegisters ARMISARegisters;
680 
681 /**
682  * ARMCPU:
683  * @env: #CPUARMState
684  *
685  * An ARM CPU core.
686  */
687 struct ARMCPU {
688     /*< private >*/
689     CPUState parent_obj;
690     /*< public >*/
691 
692     CPUARMState env;
693 
694     /* Coprocessor information */
695     GHashTable *cp_regs;
696     /* For marshalling (mostly coprocessor) register state between the
697      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
698      * we use these arrays.
699      */
700     /* List of register indexes managed via these arrays; (full KVM style
701      * 64 bit indexes, not CPRegInfo 32 bit indexes)
702      */
703     uint64_t *cpreg_indexes;
704     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
705     uint64_t *cpreg_values;
706     /* Length of the indexes, values, reset_values arrays */
707     int32_t cpreg_array_len;
708     /* These are used only for migration: incoming data arrives in
709      * these fields and is sanity checked in post_load before copying
710      * to the working data structures above.
711      */
712     uint64_t *cpreg_vmstate_indexes;
713     uint64_t *cpreg_vmstate_values;
714     int32_t cpreg_vmstate_array_len;
715 
716     DynamicGDBXMLInfo dyn_xml;
717 
718     /* Timers used by the generic (architected) timer */
719     QEMUTimer *gt_timer[NUM_GTIMERS];
720     /* GPIO outputs for generic timer */
721     qemu_irq gt_timer_outputs[NUM_GTIMERS];
722     /* GPIO output for GICv3 maintenance interrupt signal */
723     qemu_irq gicv3_maintenance_interrupt;
724     /* GPIO output for the PMU interrupt */
725     qemu_irq pmu_interrupt;
726 
727     /* MemoryRegion to use for secure physical accesses */
728     MemoryRegion *secure_memory;
729 
730     /* For v8M, pointer to the IDAU interface provided by board/SoC */
731     Object *idau;
732 
733     /* 'compatible' string for this CPU for Linux device trees */
734     const char *dtb_compatible;
735 
736     /* PSCI version for this CPU
737      * Bits[31:16] = Major Version
738      * Bits[15:0] = Minor Version
739      */
740     uint32_t psci_version;
741 
742     /* Should CPU start in PSCI powered-off state? */
743     bool start_powered_off;
744 
745     /* Current power state, access guarded by BQL */
746     ARMPSCIState power_state;
747 
748     /* CPU has virtualization extension */
749     bool has_el2;
750     /* CPU has security extension */
751     bool has_el3;
752     /* CPU has PMU (Performance Monitor Unit) */
753     bool has_pmu;
754 
755     /* CPU has memory protection unit */
756     bool has_mpu;
757     /* PMSAv7 MPU number of supported regions */
758     uint32_t pmsav7_dregion;
759     /* v8M SAU number of supported regions */
760     uint32_t sau_sregion;
761 
762     /* PSCI conduit used to invoke PSCI methods
763      * 0 - disabled, 1 - smc, 2 - hvc
764      */
765     uint32_t psci_conduit;
766 
767     /* For v8M, initial value of the Secure VTOR */
768     uint32_t init_svtor;
769 
770     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
771      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
772      */
773     uint32_t kvm_target;
774 
775     /* KVM init features for this CPU */
776     uint32_t kvm_init_features[7];
777 
778     /* Uniprocessor system with MP extensions */
779     bool mp_is_up;
780 
781     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
782      * and the probe failed (so we need to report the error in realize)
783      */
784     bool host_cpu_probe_failed;
785 
786     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
787      * register.
788      */
789     int32_t core_count;
790 
791     /* The instance init functions for implementation-specific subclasses
792      * set these fields to specify the implementation-dependent values of
793      * various constant registers and reset values of non-constant
794      * registers.
795      * Some of these might become QOM properties eventually.
796      * Field names match the official register names as defined in the
797      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
798      * is used for reset values of non-constant registers; no reset_
799      * prefix means a constant register.
800      * Some of these registers are split out into a substructure that
801      * is shared with the translators to control the ISA.
802      */
803     struct ARMISARegisters {
804         uint32_t id_isar0;
805         uint32_t id_isar1;
806         uint32_t id_isar2;
807         uint32_t id_isar3;
808         uint32_t id_isar4;
809         uint32_t id_isar5;
810         uint32_t id_isar6;
811         uint32_t mvfr0;
812         uint32_t mvfr1;
813         uint32_t mvfr2;
814         uint64_t id_aa64isar0;
815         uint64_t id_aa64isar1;
816         uint64_t id_aa64pfr0;
817         uint64_t id_aa64pfr1;
818     } isar;
819     uint32_t midr;
820     uint32_t revidr;
821     uint32_t reset_fpsid;
822     uint32_t ctr;
823     uint32_t reset_sctlr;
824     uint32_t id_pfr0;
825     uint32_t id_pfr1;
826     uint32_t id_dfr0;
827     uint32_t pmceid0;
828     uint32_t pmceid1;
829     uint32_t id_afr0;
830     uint32_t id_mmfr0;
831     uint32_t id_mmfr1;
832     uint32_t id_mmfr2;
833     uint32_t id_mmfr3;
834     uint32_t id_mmfr4;
835     uint64_t id_aa64dfr0;
836     uint64_t id_aa64dfr1;
837     uint64_t id_aa64afr0;
838     uint64_t id_aa64afr1;
839     uint64_t id_aa64mmfr0;
840     uint64_t id_aa64mmfr1;
841     uint32_t dbgdidr;
842     uint32_t clidr;
843     uint64_t mp_affinity; /* MP ID without feature bits */
844     /* The elements of this array are the CCSIDR values for each cache,
845      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
846      */
847     uint32_t ccsidr[16];
848     uint64_t reset_cbar;
849     uint32_t reset_auxcr;
850     bool reset_hivecs;
851     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
852     uint32_t dcz_blocksize;
853     uint64_t rvbar;
854 
855     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
856     int gic_num_lrs; /* number of list registers */
857     int gic_vpribits; /* number of virtual priority bits */
858     int gic_vprebits; /* number of virtual preemption bits */
859 
860     /* Whether the cfgend input is high (i.e. this CPU should reset into
861      * big-endian mode).  This setting isn't used directly: instead it modifies
862      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
863      * architecture version.
864      */
865     bool cfgend;
866 
867     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
868     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
869 
870     int32_t node_id; /* NUMA node this CPU belongs to */
871 
872     /* Used to synchronize KVM and QEMU in-kernel device levels */
873     uint8_t device_irq_level;
874 
875     /* Used to set the maximum vector length the cpu will support.  */
876     uint32_t sve_max_vq;
877 };
878 
879 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
880 {
881     return container_of(env, ARMCPU, env);
882 }
883 
884 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
885 
886 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
887 
888 #define ENV_OFFSET offsetof(ARMCPU, env)
889 
890 #ifndef CONFIG_USER_ONLY
891 extern const struct VMStateDescription vmstate_arm_cpu;
892 #endif
893 
894 void arm_cpu_do_interrupt(CPUState *cpu);
895 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
896 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
897 
898 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
899                         int flags);
900 
901 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
902                                          MemTxAttrs *attrs);
903 
904 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
905 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
906 
907 /* Dynamically generates for gdb stub an XML description of the sysregs from
908  * the cp_regs hashtable. Returns the registered sysregs number.
909  */
910 int arm_gen_dynamic_xml(CPUState *cpu);
911 
912 /* Returns the dynamically generated XML for the gdb stub.
913  * Returns a pointer to the XML contents for the specified XML file or NULL
914  * if the XML name doesn't match the predefined one.
915  */
916 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
917 
918 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
919                              int cpuid, void *opaque);
920 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
921                              int cpuid, void *opaque);
922 
923 #ifdef TARGET_AARCH64
924 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
925 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
926 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
927 void aarch64_sve_change_el(CPUARMState *env, int old_el,
928                            int new_el, bool el0_a64);
929 #else
930 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
931 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
932                                          int n, bool a)
933 { }
934 #endif
935 
936 target_ulong do_arm_semihosting(CPUARMState *env);
937 void aarch64_sync_32_to_64(CPUARMState *env);
938 void aarch64_sync_64_to_32(CPUARMState *env);
939 
940 int fp_exception_el(CPUARMState *env, int cur_el);
941 int sve_exception_el(CPUARMState *env, int cur_el);
942 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
943 
944 static inline bool is_a64(CPUARMState *env)
945 {
946     return env->aarch64;
947 }
948 
949 /* you can call this signal handler from your SIGBUS and SIGSEGV
950    signal handlers to inform the virtual CPU of exceptions. non zero
951    is returned if the signal was handled by the virtual CPU.  */
952 int cpu_arm_signal_handler(int host_signum, void *pinfo,
953                            void *puc);
954 
955 /**
956  * pmccntr_sync
957  * @env: CPUARMState
958  *
959  * Synchronises the counter in the PMCCNTR. This must always be called twice,
960  * once before any action that might affect the timer and again afterwards.
961  * The function is used to swap the state of the register if required.
962  * This only happens when not in user mode (!CONFIG_USER_ONLY)
963  */
964 void pmccntr_sync(CPUARMState *env);
965 
966 /* SCTLR bit meanings. Several bits have been reused in newer
967  * versions of the architecture; in that case we define constants
968  * for both old and new bit meanings. Code which tests against those
969  * bits should probably check or otherwise arrange that the CPU
970  * is the architectural version it expects.
971  */
972 #define SCTLR_M       (1U << 0)
973 #define SCTLR_A       (1U << 1)
974 #define SCTLR_C       (1U << 2)
975 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
976 #define SCTLR_SA      (1U << 3)
977 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
978 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
979 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
980 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
981 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
982 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
983 #define SCTLR_ITD     (1U << 7) /* v8 onward */
984 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
985 #define SCTLR_SED     (1U << 8) /* v8 onward */
986 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
987 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
988 #define SCTLR_F       (1U << 10) /* up to v6 */
989 #define SCTLR_SW      (1U << 10) /* v7 onward */
990 #define SCTLR_Z       (1U << 11)
991 #define SCTLR_I       (1U << 12)
992 #define SCTLR_V       (1U << 13)
993 #define SCTLR_RR      (1U << 14) /* up to v7 */
994 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
995 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
996 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
997 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
998 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
999 #define SCTLR_HA      (1U << 17)
1000 #define SCTLR_BR      (1U << 17) /* PMSA only */
1001 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1002 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1003 #define SCTLR_WXN     (1U << 19)
1004 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1005 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
1006 #define SCTLR_FI      (1U << 21)
1007 #define SCTLR_U       (1U << 22)
1008 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1009 #define SCTLR_VE      (1U << 24) /* up to v7 */
1010 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1011 #define SCTLR_EE      (1U << 25)
1012 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1013 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1014 #define SCTLR_NMFI    (1U << 27)
1015 #define SCTLR_TRE     (1U << 28)
1016 #define SCTLR_AFE     (1U << 29)
1017 #define SCTLR_TE      (1U << 30)
1018 
1019 #define CPTR_TCPAC    (1U << 31)
1020 #define CPTR_TTA      (1U << 20)
1021 #define CPTR_TFP      (1U << 10)
1022 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1023 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1024 
1025 #define MDCR_EPMAD    (1U << 21)
1026 #define MDCR_EDAD     (1U << 20)
1027 #define MDCR_SPME     (1U << 17)
1028 #define MDCR_SDD      (1U << 16)
1029 #define MDCR_SPD      (3U << 14)
1030 #define MDCR_TDRA     (1U << 11)
1031 #define MDCR_TDOSA    (1U << 10)
1032 #define MDCR_TDA      (1U << 9)
1033 #define MDCR_TDE      (1U << 8)
1034 #define MDCR_HPME     (1U << 7)
1035 #define MDCR_TPM      (1U << 6)
1036 #define MDCR_TPMCR    (1U << 5)
1037 
1038 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1039 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1040 
1041 #define CPSR_M (0x1fU)
1042 #define CPSR_T (1U << 5)
1043 #define CPSR_F (1U << 6)
1044 #define CPSR_I (1U << 7)
1045 #define CPSR_A (1U << 8)
1046 #define CPSR_E (1U << 9)
1047 #define CPSR_IT_2_7 (0xfc00U)
1048 #define CPSR_GE (0xfU << 16)
1049 #define CPSR_IL (1U << 20)
1050 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1051  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1052  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1053  * where it is live state but not accessible to the AArch32 code.
1054  */
1055 #define CPSR_RESERVED (0x7U << 21)
1056 #define CPSR_J (1U << 24)
1057 #define CPSR_IT_0_1 (3U << 25)
1058 #define CPSR_Q (1U << 27)
1059 #define CPSR_V (1U << 28)
1060 #define CPSR_C (1U << 29)
1061 #define CPSR_Z (1U << 30)
1062 #define CPSR_N (1U << 31)
1063 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1064 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1065 
1066 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1067 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1068     | CPSR_NZCV)
1069 /* Bits writable in user mode.  */
1070 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1071 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1072 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1073 /* Mask of bits which may be set by exception return copying them from SPSR */
1074 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1075 
1076 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1077 #define XPSR_EXCP 0x1ffU
1078 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1079 #define XPSR_IT_2_7 CPSR_IT_2_7
1080 #define XPSR_GE CPSR_GE
1081 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1082 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1083 #define XPSR_IT_0_1 CPSR_IT_0_1
1084 #define XPSR_Q CPSR_Q
1085 #define XPSR_V CPSR_V
1086 #define XPSR_C CPSR_C
1087 #define XPSR_Z CPSR_Z
1088 #define XPSR_N CPSR_N
1089 #define XPSR_NZCV CPSR_NZCV
1090 #define XPSR_IT CPSR_IT
1091 
1092 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1093 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1094 #define TTBCR_PD0    (1U << 4)
1095 #define TTBCR_PD1    (1U << 5)
1096 #define TTBCR_EPD0   (1U << 7)
1097 #define TTBCR_IRGN0  (3U << 8)
1098 #define TTBCR_ORGN0  (3U << 10)
1099 #define TTBCR_SH0    (3U << 12)
1100 #define TTBCR_T1SZ   (3U << 16)
1101 #define TTBCR_A1     (1U << 22)
1102 #define TTBCR_EPD1   (1U << 23)
1103 #define TTBCR_IRGN1  (3U << 24)
1104 #define TTBCR_ORGN1  (3U << 26)
1105 #define TTBCR_SH1    (1U << 28)
1106 #define TTBCR_EAE    (1U << 31)
1107 
1108 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1109  * Only these are valid when in AArch64 mode; in
1110  * AArch32 mode SPSRs are basically CPSR-format.
1111  */
1112 #define PSTATE_SP (1U)
1113 #define PSTATE_M (0xFU)
1114 #define PSTATE_nRW (1U << 4)
1115 #define PSTATE_F (1U << 6)
1116 #define PSTATE_I (1U << 7)
1117 #define PSTATE_A (1U << 8)
1118 #define PSTATE_D (1U << 9)
1119 #define PSTATE_IL (1U << 20)
1120 #define PSTATE_SS (1U << 21)
1121 #define PSTATE_V (1U << 28)
1122 #define PSTATE_C (1U << 29)
1123 #define PSTATE_Z (1U << 30)
1124 #define PSTATE_N (1U << 31)
1125 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1126 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1127 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1128 /* Mode values for AArch64 */
1129 #define PSTATE_MODE_EL3h 13
1130 #define PSTATE_MODE_EL3t 12
1131 #define PSTATE_MODE_EL2h 9
1132 #define PSTATE_MODE_EL2t 8
1133 #define PSTATE_MODE_EL1h 5
1134 #define PSTATE_MODE_EL1t 4
1135 #define PSTATE_MODE_EL0t 0
1136 
1137 /* Write a new value to v7m.exception, thus transitioning into or out
1138  * of Handler mode; this may result in a change of active stack pointer.
1139  */
1140 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1141 
1142 /* Map EL and handler into a PSTATE_MODE.  */
1143 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1144 {
1145     return (el << 2) | handler;
1146 }
1147 
1148 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1149  * interprocessing, so we don't attempt to sync with the cpsr state used by
1150  * the 32 bit decoder.
1151  */
1152 static inline uint32_t pstate_read(CPUARMState *env)
1153 {
1154     int ZF;
1155 
1156     ZF = (env->ZF == 0);
1157     return (env->NF & 0x80000000) | (ZF << 30)
1158         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1159         | env->pstate | env->daif;
1160 }
1161 
1162 static inline void pstate_write(CPUARMState *env, uint32_t val)
1163 {
1164     env->ZF = (~val) & PSTATE_Z;
1165     env->NF = val;
1166     env->CF = (val >> 29) & 1;
1167     env->VF = (val << 3) & 0x80000000;
1168     env->daif = val & PSTATE_DAIF;
1169     env->pstate = val & ~CACHED_PSTATE_BITS;
1170 }
1171 
1172 /* Return the current CPSR value.  */
1173 uint32_t cpsr_read(CPUARMState *env);
1174 
1175 typedef enum CPSRWriteType {
1176     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1177     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1178     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1179     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1180 } CPSRWriteType;
1181 
1182 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1183 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1184                 CPSRWriteType write_type);
1185 
1186 /* Return the current xPSR value.  */
1187 static inline uint32_t xpsr_read(CPUARMState *env)
1188 {
1189     int ZF;
1190     ZF = (env->ZF == 0);
1191     return (env->NF & 0x80000000) | (ZF << 30)
1192         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1193         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1194         | ((env->condexec_bits & 0xfc) << 8)
1195         | env->v7m.exception;
1196 }
1197 
1198 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1199 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1200 {
1201     if (mask & XPSR_NZCV) {
1202         env->ZF = (~val) & XPSR_Z;
1203         env->NF = val;
1204         env->CF = (val >> 29) & 1;
1205         env->VF = (val << 3) & 0x80000000;
1206     }
1207     if (mask & XPSR_Q) {
1208         env->QF = ((val & XPSR_Q) != 0);
1209     }
1210     if (mask & XPSR_T) {
1211         env->thumb = ((val & XPSR_T) != 0);
1212     }
1213     if (mask & XPSR_IT_0_1) {
1214         env->condexec_bits &= ~3;
1215         env->condexec_bits |= (val >> 25) & 3;
1216     }
1217     if (mask & XPSR_IT_2_7) {
1218         env->condexec_bits &= 3;
1219         env->condexec_bits |= (val >> 8) & 0xfc;
1220     }
1221     if (mask & XPSR_EXCP) {
1222         /* Note that this only happens on exception exit */
1223         write_v7m_exception(env, val & XPSR_EXCP);
1224     }
1225 }
1226 
1227 #define HCR_VM        (1ULL << 0)
1228 #define HCR_SWIO      (1ULL << 1)
1229 #define HCR_PTW       (1ULL << 2)
1230 #define HCR_FMO       (1ULL << 3)
1231 #define HCR_IMO       (1ULL << 4)
1232 #define HCR_AMO       (1ULL << 5)
1233 #define HCR_VF        (1ULL << 6)
1234 #define HCR_VI        (1ULL << 7)
1235 #define HCR_VSE       (1ULL << 8)
1236 #define HCR_FB        (1ULL << 9)
1237 #define HCR_BSU_MASK  (3ULL << 10)
1238 #define HCR_DC        (1ULL << 12)
1239 #define HCR_TWI       (1ULL << 13)
1240 #define HCR_TWE       (1ULL << 14)
1241 #define HCR_TID0      (1ULL << 15)
1242 #define HCR_TID1      (1ULL << 16)
1243 #define HCR_TID2      (1ULL << 17)
1244 #define HCR_TID3      (1ULL << 18)
1245 #define HCR_TSC       (1ULL << 19)
1246 #define HCR_TIDCP     (1ULL << 20)
1247 #define HCR_TACR      (1ULL << 21)
1248 #define HCR_TSW       (1ULL << 22)
1249 #define HCR_TPC       (1ULL << 23)
1250 #define HCR_TPU       (1ULL << 24)
1251 #define HCR_TTLB      (1ULL << 25)
1252 #define HCR_TVM       (1ULL << 26)
1253 #define HCR_TGE       (1ULL << 27)
1254 #define HCR_TDZ       (1ULL << 28)
1255 #define HCR_HCD       (1ULL << 29)
1256 #define HCR_TRVM      (1ULL << 30)
1257 #define HCR_RW        (1ULL << 31)
1258 #define HCR_CD        (1ULL << 32)
1259 #define HCR_ID        (1ULL << 33)
1260 #define HCR_E2H       (1ULL << 34)
1261 /*
1262  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1263  * HCR_MASK and then clear it again if the feature bit is not set in
1264  * hcr_write().
1265  */
1266 #define HCR_MASK      ((1ULL << 34) - 1)
1267 
1268 #define SCR_NS                (1U << 0)
1269 #define SCR_IRQ               (1U << 1)
1270 #define SCR_FIQ               (1U << 2)
1271 #define SCR_EA                (1U << 3)
1272 #define SCR_FW                (1U << 4)
1273 #define SCR_AW                (1U << 5)
1274 #define SCR_NET               (1U << 6)
1275 #define SCR_SMD               (1U << 7)
1276 #define SCR_HCE               (1U << 8)
1277 #define SCR_SIF               (1U << 9)
1278 #define SCR_RW                (1U << 10)
1279 #define SCR_ST                (1U << 11)
1280 #define SCR_TWI               (1U << 12)
1281 #define SCR_TWE               (1U << 13)
1282 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1283 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1284 
1285 /* Return the current FPSCR value.  */
1286 uint32_t vfp_get_fpscr(CPUARMState *env);
1287 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1288 
1289 /* FPCR, Floating Point Control Register
1290  * FPSR, Floating Poiht Status Register
1291  *
1292  * For A64 the FPSCR is split into two logically distinct registers,
1293  * FPCR and FPSR. However since they still use non-overlapping bits
1294  * we store the underlying state in fpscr and just mask on read/write.
1295  */
1296 #define FPSR_MASK 0xf800009f
1297 #define FPCR_MASK 0x07ff9f00
1298 
1299 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1300 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1301 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1302 
1303 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1304 {
1305     return vfp_get_fpscr(env) & FPSR_MASK;
1306 }
1307 
1308 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1309 {
1310     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1311     vfp_set_fpscr(env, new_fpscr);
1312 }
1313 
1314 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1315 {
1316     return vfp_get_fpscr(env) & FPCR_MASK;
1317 }
1318 
1319 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1320 {
1321     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1322     vfp_set_fpscr(env, new_fpscr);
1323 }
1324 
1325 enum arm_cpu_mode {
1326   ARM_CPU_MODE_USR = 0x10,
1327   ARM_CPU_MODE_FIQ = 0x11,
1328   ARM_CPU_MODE_IRQ = 0x12,
1329   ARM_CPU_MODE_SVC = 0x13,
1330   ARM_CPU_MODE_MON = 0x16,
1331   ARM_CPU_MODE_ABT = 0x17,
1332   ARM_CPU_MODE_HYP = 0x1a,
1333   ARM_CPU_MODE_UND = 0x1b,
1334   ARM_CPU_MODE_SYS = 0x1f
1335 };
1336 
1337 /* VFP system registers.  */
1338 #define ARM_VFP_FPSID   0
1339 #define ARM_VFP_FPSCR   1
1340 #define ARM_VFP_MVFR2   5
1341 #define ARM_VFP_MVFR1   6
1342 #define ARM_VFP_MVFR0   7
1343 #define ARM_VFP_FPEXC   8
1344 #define ARM_VFP_FPINST  9
1345 #define ARM_VFP_FPINST2 10
1346 
1347 /* iwMMXt coprocessor control registers.  */
1348 #define ARM_IWMMXT_wCID  0
1349 #define ARM_IWMMXT_wCon  1
1350 #define ARM_IWMMXT_wCSSF 2
1351 #define ARM_IWMMXT_wCASF 3
1352 #define ARM_IWMMXT_wCGR0 8
1353 #define ARM_IWMMXT_wCGR1 9
1354 #define ARM_IWMMXT_wCGR2 10
1355 #define ARM_IWMMXT_wCGR3 11
1356 
1357 /* V7M CCR bits */
1358 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1359 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1360 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1361 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1362 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1363 FIELD(V7M_CCR, STKALIGN, 9, 1)
1364 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1365 FIELD(V7M_CCR, DC, 16, 1)
1366 FIELD(V7M_CCR, IC, 17, 1)
1367 FIELD(V7M_CCR, BP, 18, 1)
1368 
1369 /* V7M SCR bits */
1370 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1371 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1372 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1373 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1374 
1375 /* V7M AIRCR bits */
1376 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1377 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1378 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1379 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1380 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1381 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1382 FIELD(V7M_AIRCR, PRIS, 14, 1)
1383 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1384 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1385 
1386 /* V7M CFSR bits for MMFSR */
1387 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1388 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1389 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1390 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1391 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1392 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1393 
1394 /* V7M CFSR bits for BFSR */
1395 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1396 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1397 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1398 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1399 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1400 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1401 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1402 
1403 /* V7M CFSR bits for UFSR */
1404 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1405 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1406 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1407 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1408 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1409 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1410 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1411 
1412 /* V7M CFSR bit masks covering all of the subregister bits */
1413 FIELD(V7M_CFSR, MMFSR, 0, 8)
1414 FIELD(V7M_CFSR, BFSR, 8, 8)
1415 FIELD(V7M_CFSR, UFSR, 16, 16)
1416 
1417 /* V7M HFSR bits */
1418 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1419 FIELD(V7M_HFSR, FORCED, 30, 1)
1420 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1421 
1422 /* V7M DFSR bits */
1423 FIELD(V7M_DFSR, HALTED, 0, 1)
1424 FIELD(V7M_DFSR, BKPT, 1, 1)
1425 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1426 FIELD(V7M_DFSR, VCATCH, 3, 1)
1427 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1428 
1429 /* V7M SFSR bits */
1430 FIELD(V7M_SFSR, INVEP, 0, 1)
1431 FIELD(V7M_SFSR, INVIS, 1, 1)
1432 FIELD(V7M_SFSR, INVER, 2, 1)
1433 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1434 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1435 FIELD(V7M_SFSR, LSPERR, 5, 1)
1436 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1437 FIELD(V7M_SFSR, LSERR, 7, 1)
1438 
1439 /* v7M MPU_CTRL bits */
1440 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1441 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1442 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1443 
1444 /* v7M CLIDR bits */
1445 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1446 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1447 FIELD(V7M_CLIDR, LOC, 24, 3)
1448 FIELD(V7M_CLIDR, LOUU, 27, 3)
1449 FIELD(V7M_CLIDR, ICB, 30, 2)
1450 
1451 FIELD(V7M_CSSELR, IND, 0, 1)
1452 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1453 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1454  * define a mask for this and check that it doesn't permit running off
1455  * the end of the array.
1456  */
1457 FIELD(V7M_CSSELR, INDEX, 0, 4)
1458 
1459 /*
1460  * System register ID fields.
1461  */
1462 FIELD(ID_ISAR0, SWAP, 0, 4)
1463 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1464 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1465 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1466 FIELD(ID_ISAR0, COPROC, 16, 4)
1467 FIELD(ID_ISAR0, DEBUG, 20, 4)
1468 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1469 
1470 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1471 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1472 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1473 FIELD(ID_ISAR1, EXTEND, 12, 4)
1474 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1475 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1476 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1477 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1478 
1479 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1480 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1481 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1482 FIELD(ID_ISAR2, MULT, 12, 4)
1483 FIELD(ID_ISAR2, MULTS, 16, 4)
1484 FIELD(ID_ISAR2, MULTU, 20, 4)
1485 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1486 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1487 
1488 FIELD(ID_ISAR3, SATURATE, 0, 4)
1489 FIELD(ID_ISAR3, SIMD, 4, 4)
1490 FIELD(ID_ISAR3, SVC, 8, 4)
1491 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1492 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1493 FIELD(ID_ISAR3, T32COPY, 20, 4)
1494 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1495 FIELD(ID_ISAR3, T32EE, 28, 4)
1496 
1497 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1498 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1499 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1500 FIELD(ID_ISAR4, SMC, 12, 4)
1501 FIELD(ID_ISAR4, BARRIER, 16, 4)
1502 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1503 FIELD(ID_ISAR4, PSR_M, 24, 4)
1504 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1505 
1506 FIELD(ID_ISAR5, SEVL, 0, 4)
1507 FIELD(ID_ISAR5, AES, 4, 4)
1508 FIELD(ID_ISAR5, SHA1, 8, 4)
1509 FIELD(ID_ISAR5, SHA2, 12, 4)
1510 FIELD(ID_ISAR5, CRC32, 16, 4)
1511 FIELD(ID_ISAR5, RDM, 24, 4)
1512 FIELD(ID_ISAR5, VCMA, 28, 4)
1513 
1514 FIELD(ID_ISAR6, JSCVT, 0, 4)
1515 FIELD(ID_ISAR6, DP, 4, 4)
1516 FIELD(ID_ISAR6, FHM, 8, 4)
1517 FIELD(ID_ISAR6, SB, 12, 4)
1518 FIELD(ID_ISAR6, SPECRES, 16, 4)
1519 
1520 FIELD(ID_AA64ISAR0, AES, 4, 4)
1521 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1522 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1523 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1524 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1525 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1526 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1527 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1528 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1529 FIELD(ID_AA64ISAR0, DP, 44, 4)
1530 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1531 FIELD(ID_AA64ISAR0, TS, 52, 4)
1532 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1533 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1534 
1535 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1536 FIELD(ID_AA64ISAR1, APA, 4, 4)
1537 FIELD(ID_AA64ISAR1, API, 8, 4)
1538 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1539 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1540 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1541 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1542 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1543 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1544 FIELD(ID_AA64ISAR1, SB, 36, 4)
1545 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1546 
1547 FIELD(ID_AA64PFR0, EL0, 0, 4)
1548 FIELD(ID_AA64PFR0, EL1, 4, 4)
1549 FIELD(ID_AA64PFR0, EL2, 8, 4)
1550 FIELD(ID_AA64PFR0, EL3, 12, 4)
1551 FIELD(ID_AA64PFR0, FP, 16, 4)
1552 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1553 FIELD(ID_AA64PFR0, GIC, 24, 4)
1554 FIELD(ID_AA64PFR0, RAS, 28, 4)
1555 FIELD(ID_AA64PFR0, SVE, 32, 4)
1556 
1557 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1558 
1559 /* If adding a feature bit which corresponds to a Linux ELF
1560  * HWCAP bit, remember to update the feature-bit-to-hwcap
1561  * mapping in linux-user/elfload.c:get_elf_hwcap().
1562  */
1563 enum arm_features {
1564     ARM_FEATURE_VFP,
1565     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1566     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1567     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1568     ARM_FEATURE_V6,
1569     ARM_FEATURE_V6K,
1570     ARM_FEATURE_V7,
1571     ARM_FEATURE_THUMB2,
1572     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1573     ARM_FEATURE_VFP3,
1574     ARM_FEATURE_VFP_FP16,
1575     ARM_FEATURE_NEON,
1576     ARM_FEATURE_M, /* Microcontroller profile.  */
1577     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1578     ARM_FEATURE_THUMB2EE,
1579     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1580     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1581     ARM_FEATURE_V4T,
1582     ARM_FEATURE_V5,
1583     ARM_FEATURE_STRONGARM,
1584     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1585     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1586     ARM_FEATURE_GENERIC_TIMER,
1587     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1588     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1589     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1590     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1591     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1592     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1593     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1594     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1595     ARM_FEATURE_V8,
1596     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1597     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1598     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1599     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1600     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1601     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1602     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1603     ARM_FEATURE_PMU, /* has PMU support */
1604     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1605     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1606     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1607 };
1608 
1609 static inline int arm_feature(CPUARMState *env, int feature)
1610 {
1611     return (env->features & (1ULL << feature)) != 0;
1612 }
1613 
1614 #if !defined(CONFIG_USER_ONLY)
1615 /* Return true if exception levels below EL3 are in secure state,
1616  * or would be following an exception return to that level.
1617  * Unlike arm_is_secure() (which is always a question about the
1618  * _current_ state of the CPU) this doesn't care about the current
1619  * EL or mode.
1620  */
1621 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1622 {
1623     if (arm_feature(env, ARM_FEATURE_EL3)) {
1624         return !(env->cp15.scr_el3 & SCR_NS);
1625     } else {
1626         /* If EL3 is not supported then the secure state is implementation
1627          * defined, in which case QEMU defaults to non-secure.
1628          */
1629         return false;
1630     }
1631 }
1632 
1633 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1634 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1635 {
1636     if (arm_feature(env, ARM_FEATURE_EL3)) {
1637         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1638             /* CPU currently in AArch64 state and EL3 */
1639             return true;
1640         } else if (!is_a64(env) &&
1641                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1642             /* CPU currently in AArch32 state and monitor mode */
1643             return true;
1644         }
1645     }
1646     return false;
1647 }
1648 
1649 /* Return true if the processor is in secure state */
1650 static inline bool arm_is_secure(CPUARMState *env)
1651 {
1652     if (arm_is_el3_or_mon(env)) {
1653         return true;
1654     }
1655     return arm_is_secure_below_el3(env);
1656 }
1657 
1658 #else
1659 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1660 {
1661     return false;
1662 }
1663 
1664 static inline bool arm_is_secure(CPUARMState *env)
1665 {
1666     return false;
1667 }
1668 #endif
1669 
1670 /* Return true if the specified exception level is running in AArch64 state. */
1671 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1672 {
1673     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1674      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1675      */
1676     assert(el >= 1 && el <= 3);
1677     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1678 
1679     /* The highest exception level is always at the maximum supported
1680      * register width, and then lower levels have a register width controlled
1681      * by bits in the SCR or HCR registers.
1682      */
1683     if (el == 3) {
1684         return aa64;
1685     }
1686 
1687     if (arm_feature(env, ARM_FEATURE_EL3)) {
1688         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1689     }
1690 
1691     if (el == 2) {
1692         return aa64;
1693     }
1694 
1695     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1696         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1697     }
1698 
1699     return aa64;
1700 }
1701 
1702 /* Function for determing whether guest cp register reads and writes should
1703  * access the secure or non-secure bank of a cp register.  When EL3 is
1704  * operating in AArch32 state, the NS-bit determines whether the secure
1705  * instance of a cp register should be used. When EL3 is AArch64 (or if
1706  * it doesn't exist at all) then there is no register banking, and all
1707  * accesses are to the non-secure version.
1708  */
1709 static inline bool access_secure_reg(CPUARMState *env)
1710 {
1711     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1712                 !arm_el_is_aa64(env, 3) &&
1713                 !(env->cp15.scr_el3 & SCR_NS));
1714 
1715     return ret;
1716 }
1717 
1718 /* Macros for accessing a specified CP register bank */
1719 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1720     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1721 
1722 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1723     do {                                                \
1724         if (_secure) {                                   \
1725             (_env)->cp15._regname##_s = (_val);            \
1726         } else {                                        \
1727             (_env)->cp15._regname##_ns = (_val);           \
1728         }                                               \
1729     } while (0)
1730 
1731 /* Macros for automatically accessing a specific CP register bank depending on
1732  * the current secure state of the system.  These macros are not intended for
1733  * supporting instruction translation reads/writes as these are dependent
1734  * solely on the SCR.NS bit and not the mode.
1735  */
1736 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1737     A32_BANKED_REG_GET((_env), _regname,                \
1738                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1739 
1740 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1741     A32_BANKED_REG_SET((_env), _regname,                                    \
1742                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1743                        (_val))
1744 
1745 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1746 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1747                                  uint32_t cur_el, bool secure);
1748 
1749 /* Interface between CPU and Interrupt controller.  */
1750 #ifndef CONFIG_USER_ONLY
1751 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1752 #else
1753 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1754 {
1755     return true;
1756 }
1757 #endif
1758 /**
1759  * armv7m_nvic_set_pending: mark the specified exception as pending
1760  * @opaque: the NVIC
1761  * @irq: the exception number to mark pending
1762  * @secure: false for non-banked exceptions or for the nonsecure
1763  * version of a banked exception, true for the secure version of a banked
1764  * exception.
1765  *
1766  * Marks the specified exception as pending. Note that we will assert()
1767  * if @secure is true and @irq does not specify one of the fixed set
1768  * of architecturally banked exceptions.
1769  */
1770 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1771 /**
1772  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1773  * @opaque: the NVIC
1774  * @irq: the exception number to mark pending
1775  * @secure: false for non-banked exceptions or for the nonsecure
1776  * version of a banked exception, true for the secure version of a banked
1777  * exception.
1778  *
1779  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1780  * exceptions (exceptions generated in the course of trying to take
1781  * a different exception).
1782  */
1783 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1784 /**
1785  * armv7m_nvic_get_pending_irq_info: return highest priority pending
1786  *    exception, and whether it targets Secure state
1787  * @opaque: the NVIC
1788  * @pirq: set to pending exception number
1789  * @ptargets_secure: set to whether pending exception targets Secure
1790  *
1791  * This function writes the number of the highest priority pending
1792  * exception (the one which would be made active by
1793  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1794  * to true if the current highest priority pending exception should
1795  * be taken to Secure state, false for NS.
1796  */
1797 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1798                                       bool *ptargets_secure);
1799 /**
1800  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1801  * @opaque: the NVIC
1802  *
1803  * Move the current highest priority pending exception from the pending
1804  * state to the active state, and update v7m.exception to indicate that
1805  * it is the exception currently being handled.
1806  */
1807 void armv7m_nvic_acknowledge_irq(void *opaque);
1808 /**
1809  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1810  * @opaque: the NVIC
1811  * @irq: the exception number to complete
1812  * @secure: true if this exception was secure
1813  *
1814  * Returns: -1 if the irq was not active
1815  *           1 if completing this irq brought us back to base (no active irqs)
1816  *           0 if there is still an irq active after this one was completed
1817  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1818  */
1819 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1820 /**
1821  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1822  * @opaque: the NVIC
1823  *
1824  * Returns: the raw execution priority as defined by the v8M architecture.
1825  * This is the execution priority minus the effects of AIRCR.PRIS,
1826  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1827  * (v8M ARM ARM I_PKLD.)
1828  */
1829 int armv7m_nvic_raw_execution_priority(void *opaque);
1830 /**
1831  * armv7m_nvic_neg_prio_requested: return true if the requested execution
1832  * priority is negative for the specified security state.
1833  * @opaque: the NVIC
1834  * @secure: the security state to test
1835  * This corresponds to the pseudocode IsReqExecPriNeg().
1836  */
1837 #ifndef CONFIG_USER_ONLY
1838 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1839 #else
1840 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1841 {
1842     return false;
1843 }
1844 #endif
1845 
1846 /* Interface for defining coprocessor registers.
1847  * Registers are defined in tables of arm_cp_reginfo structs
1848  * which are passed to define_arm_cp_regs().
1849  */
1850 
1851 /* When looking up a coprocessor register we look for it
1852  * via an integer which encodes all of:
1853  *  coprocessor number
1854  *  Crn, Crm, opc1, opc2 fields
1855  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1856  *    or via MRRC/MCRR?)
1857  *  non-secure/secure bank (AArch32 only)
1858  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1859  * (In this case crn and opc2 should be zero.)
1860  * For AArch64, there is no 32/64 bit size distinction;
1861  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1862  * and 4 bit CRn and CRm. The encoding patterns are chosen
1863  * to be easy to convert to and from the KVM encodings, and also
1864  * so that the hashtable can contain both AArch32 and AArch64
1865  * registers (to allow for interprocessing where we might run
1866  * 32 bit code on a 64 bit core).
1867  */
1868 /* This bit is private to our hashtable cpreg; in KVM register
1869  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1870  * in the upper bits of the 64 bit ID.
1871  */
1872 #define CP_REG_AA64_SHIFT 28
1873 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1874 
1875 /* To enable banking of coprocessor registers depending on ns-bit we
1876  * add a bit to distinguish between secure and non-secure cpregs in the
1877  * hashtable.
1878  */
1879 #define CP_REG_NS_SHIFT 29
1880 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1881 
1882 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1883     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1884      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1885 
1886 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1887     (CP_REG_AA64_MASK |                                 \
1888      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1889      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1890      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1891      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1892      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1893      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1894 
1895 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1896  * version used as a key for the coprocessor register hashtable
1897  */
1898 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1899 {
1900     uint32_t cpregid = kvmid;
1901     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1902         cpregid |= CP_REG_AA64_MASK;
1903     } else {
1904         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1905             cpregid |= (1 << 15);
1906         }
1907 
1908         /* KVM is always non-secure so add the NS flag on AArch32 register
1909          * entries.
1910          */
1911          cpregid |= 1 << CP_REG_NS_SHIFT;
1912     }
1913     return cpregid;
1914 }
1915 
1916 /* Convert a truncated 32 bit hashtable key into the full
1917  * 64 bit KVM register ID.
1918  */
1919 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1920 {
1921     uint64_t kvmid;
1922 
1923     if (cpregid & CP_REG_AA64_MASK) {
1924         kvmid = cpregid & ~CP_REG_AA64_MASK;
1925         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1926     } else {
1927         kvmid = cpregid & ~(1 << 15);
1928         if (cpregid & (1 << 15)) {
1929             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1930         } else {
1931             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1932         }
1933     }
1934     return kvmid;
1935 }
1936 
1937 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1938  * special-behaviour cp reg and bits [11..8] indicate what behaviour
1939  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1940  * TCG can assume the value to be constant (ie load at translate time)
1941  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1942  * indicates that the TB should not be ended after a write to this register
1943  * (the default is that the TB ends after cp writes). OVERRIDE permits
1944  * a register definition to override a previous definition for the
1945  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1946  * old must have the OVERRIDE bit set.
1947  * ALIAS indicates that this register is an alias view of some underlying
1948  * state which is also visible via another register, and that the other
1949  * register is handling migration and reset; registers marked ALIAS will not be
1950  * migrated but may have their state set by syncing of register state from KVM.
1951  * NO_RAW indicates that this register has no underlying state and does not
1952  * support raw access for state saving/loading; it will not be used for either
1953  * migration or KVM state synchronization. (Typically this is for "registers"
1954  * which are actually used as instructions for cache maintenance and so on.)
1955  * IO indicates that this register does I/O and therefore its accesses
1956  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1957  * registers which implement clocks or timers require this.
1958  */
1959 #define ARM_CP_SPECIAL           0x0001
1960 #define ARM_CP_CONST             0x0002
1961 #define ARM_CP_64BIT             0x0004
1962 #define ARM_CP_SUPPRESS_TB_END   0x0008
1963 #define ARM_CP_OVERRIDE          0x0010
1964 #define ARM_CP_ALIAS             0x0020
1965 #define ARM_CP_IO                0x0040
1966 #define ARM_CP_NO_RAW            0x0080
1967 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
1968 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
1969 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
1970 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
1971 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
1972 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
1973 #define ARM_CP_FPU               0x1000
1974 #define ARM_CP_SVE               0x2000
1975 #define ARM_CP_NO_GDB            0x4000
1976 /* Used only as a terminator for ARMCPRegInfo lists */
1977 #define ARM_CP_SENTINEL          0xffff
1978 /* Mask of only the flag bits in a type field */
1979 #define ARM_CP_FLAG_MASK         0x70ff
1980 
1981 /* Valid values for ARMCPRegInfo state field, indicating which of
1982  * the AArch32 and AArch64 execution states this register is visible in.
1983  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1984  * If the reginfo is declared to be visible in both states then a second
1985  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1986  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1987  * Note that we rely on the values of these enums as we iterate through
1988  * the various states in some places.
1989  */
1990 enum {
1991     ARM_CP_STATE_AA32 = 0,
1992     ARM_CP_STATE_AA64 = 1,
1993     ARM_CP_STATE_BOTH = 2,
1994 };
1995 
1996 /* ARM CP register secure state flags.  These flags identify security state
1997  * attributes for a given CP register entry.
1998  * The existence of both or neither secure and non-secure flags indicates that
1999  * the register has both a secure and non-secure hash entry.  A single one of
2000  * these flags causes the register to only be hashed for the specified
2001  * security state.
2002  * Although definitions may have any combination of the S/NS bits, each
2003  * registered entry will only have one to identify whether the entry is secure
2004  * or non-secure.
2005  */
2006 enum {
2007     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2008     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2009 };
2010 
2011 /* Return true if cptype is a valid type field. This is used to try to
2012  * catch errors where the sentinel has been accidentally left off the end
2013  * of a list of registers.
2014  */
2015 static inline bool cptype_valid(int cptype)
2016 {
2017     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2018         || ((cptype & ARM_CP_SPECIAL) &&
2019             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2020 }
2021 
2022 /* Access rights:
2023  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2024  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2025  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2026  * (ie any of the privileged modes in Secure state, or Monitor mode).
2027  * If a register is accessible in one privilege level it's always accessible
2028  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2029  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2030  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2031  * terminology a little and call this PL3.
2032  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2033  * with the ELx exception levels.
2034  *
2035  * If access permissions for a register are more complex than can be
2036  * described with these bits, then use a laxer set of restrictions, and
2037  * do the more restrictive/complex check inside a helper function.
2038  */
2039 #define PL3_R 0x80
2040 #define PL3_W 0x40
2041 #define PL2_R (0x20 | PL3_R)
2042 #define PL2_W (0x10 | PL3_W)
2043 #define PL1_R (0x08 | PL2_R)
2044 #define PL1_W (0x04 | PL2_W)
2045 #define PL0_R (0x02 | PL1_R)
2046 #define PL0_W (0x01 | PL1_W)
2047 
2048 #define PL3_RW (PL3_R | PL3_W)
2049 #define PL2_RW (PL2_R | PL2_W)
2050 #define PL1_RW (PL1_R | PL1_W)
2051 #define PL0_RW (PL0_R | PL0_W)
2052 
2053 /* Return the highest implemented Exception Level */
2054 static inline int arm_highest_el(CPUARMState *env)
2055 {
2056     if (arm_feature(env, ARM_FEATURE_EL3)) {
2057         return 3;
2058     }
2059     if (arm_feature(env, ARM_FEATURE_EL2)) {
2060         return 2;
2061     }
2062     return 1;
2063 }
2064 
2065 /* Return true if a v7M CPU is in Handler mode */
2066 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2067 {
2068     return env->v7m.exception != 0;
2069 }
2070 
2071 /* Return the current Exception Level (as per ARMv8; note that this differs
2072  * from the ARMv7 Privilege Level).
2073  */
2074 static inline int arm_current_el(CPUARMState *env)
2075 {
2076     if (arm_feature(env, ARM_FEATURE_M)) {
2077         return arm_v7m_is_handler_mode(env) ||
2078             !(env->v7m.control[env->v7m.secure] & 1);
2079     }
2080 
2081     if (is_a64(env)) {
2082         return extract32(env->pstate, 2, 2);
2083     }
2084 
2085     switch (env->uncached_cpsr & 0x1f) {
2086     case ARM_CPU_MODE_USR:
2087         return 0;
2088     case ARM_CPU_MODE_HYP:
2089         return 2;
2090     case ARM_CPU_MODE_MON:
2091         return 3;
2092     default:
2093         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2094             /* If EL3 is 32-bit then all secure privileged modes run in
2095              * EL3
2096              */
2097             return 3;
2098         }
2099 
2100         return 1;
2101     }
2102 }
2103 
2104 typedef struct ARMCPRegInfo ARMCPRegInfo;
2105 
2106 typedef enum CPAccessResult {
2107     /* Access is permitted */
2108     CP_ACCESS_OK = 0,
2109     /* Access fails due to a configurable trap or enable which would
2110      * result in a categorized exception syndrome giving information about
2111      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2112      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2113      * PL1 if in EL0, otherwise to the current EL).
2114      */
2115     CP_ACCESS_TRAP = 1,
2116     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2117      * Note that this is not a catch-all case -- the set of cases which may
2118      * result in this failure is specifically defined by the architecture.
2119      */
2120     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2121     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2122     CP_ACCESS_TRAP_EL2 = 3,
2123     CP_ACCESS_TRAP_EL3 = 4,
2124     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2125     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2126     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2127     /* Access fails and results in an exception syndrome for an FP access,
2128      * trapped directly to EL2 or EL3
2129      */
2130     CP_ACCESS_TRAP_FP_EL2 = 7,
2131     CP_ACCESS_TRAP_FP_EL3 = 8,
2132 } CPAccessResult;
2133 
2134 /* Access functions for coprocessor registers. These cannot fail and
2135  * may not raise exceptions.
2136  */
2137 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2138 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2139                        uint64_t value);
2140 /* Access permission check functions for coprocessor registers. */
2141 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2142                                   const ARMCPRegInfo *opaque,
2143                                   bool isread);
2144 /* Hook function for register reset */
2145 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2146 
2147 #define CP_ANY 0xff
2148 
2149 /* Definition of an ARM coprocessor register */
2150 struct ARMCPRegInfo {
2151     /* Name of register (useful mainly for debugging, need not be unique) */
2152     const char *name;
2153     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2154      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2155      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2156      * will be decoded to this register. The register read and write
2157      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2158      * used by the program, so it is possible to register a wildcard and
2159      * then behave differently on read/write if necessary.
2160      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2161      * must both be zero.
2162      * For AArch64-visible registers, opc0 is also used.
2163      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2164      * way to distinguish (for KVM's benefit) guest-visible system registers
2165      * from demuxed ones provided to preserve the "no side effects on
2166      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2167      * visible (to match KVM's encoding); cp==0 will be converted to
2168      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2169      */
2170     uint8_t cp;
2171     uint8_t crn;
2172     uint8_t crm;
2173     uint8_t opc0;
2174     uint8_t opc1;
2175     uint8_t opc2;
2176     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2177     int state;
2178     /* Register type: ARM_CP_* bits/values */
2179     int type;
2180     /* Access rights: PL*_[RW] */
2181     int access;
2182     /* Security state: ARM_CP_SECSTATE_* bits/values */
2183     int secure;
2184     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2185      * this register was defined: can be used to hand data through to the
2186      * register read/write functions, since they are passed the ARMCPRegInfo*.
2187      */
2188     void *opaque;
2189     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2190      * fieldoffset is non-zero, the reset value of the register.
2191      */
2192     uint64_t resetvalue;
2193     /* Offset of the field in CPUARMState for this register.
2194      *
2195      * This is not needed if either:
2196      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2197      *  2. both readfn and writefn are specified
2198      */
2199     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2200 
2201     /* Offsets of the secure and non-secure fields in CPUARMState for the
2202      * register if it is banked.  These fields are only used during the static
2203      * registration of a register.  During hashing the bank associated
2204      * with a given security state is copied to fieldoffset which is used from
2205      * there on out.
2206      *
2207      * It is expected that register definitions use either fieldoffset or
2208      * bank_fieldoffsets in the definition but not both.  It is also expected
2209      * that both bank offsets are set when defining a banked register.  This
2210      * use indicates that a register is banked.
2211      */
2212     ptrdiff_t bank_fieldoffsets[2];
2213 
2214     /* Function for making any access checks for this register in addition to
2215      * those specified by the 'access' permissions bits. If NULL, no extra
2216      * checks required. The access check is performed at runtime, not at
2217      * translate time.
2218      */
2219     CPAccessFn *accessfn;
2220     /* Function for handling reads of this register. If NULL, then reads
2221      * will be done by loading from the offset into CPUARMState specified
2222      * by fieldoffset.
2223      */
2224     CPReadFn *readfn;
2225     /* Function for handling writes of this register. If NULL, then writes
2226      * will be done by writing to the offset into CPUARMState specified
2227      * by fieldoffset.
2228      */
2229     CPWriteFn *writefn;
2230     /* Function for doing a "raw" read; used when we need to copy
2231      * coprocessor state to the kernel for KVM or out for
2232      * migration. This only needs to be provided if there is also a
2233      * readfn and it has side effects (for instance clear-on-read bits).
2234      */
2235     CPReadFn *raw_readfn;
2236     /* Function for doing a "raw" write; used when we need to copy KVM
2237      * kernel coprocessor state into userspace, or for inbound
2238      * migration. This only needs to be provided if there is also a
2239      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2240      * or similar behaviour.
2241      */
2242     CPWriteFn *raw_writefn;
2243     /* Function for resetting the register. If NULL, then reset will be done
2244      * by writing resetvalue to the field specified in fieldoffset. If
2245      * fieldoffset is 0 then no reset will be done.
2246      */
2247     CPResetFn *resetfn;
2248 };
2249 
2250 /* Macros which are lvalues for the field in CPUARMState for the
2251  * ARMCPRegInfo *ri.
2252  */
2253 #define CPREG_FIELD32(env, ri) \
2254     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2255 #define CPREG_FIELD64(env, ri) \
2256     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2257 
2258 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2259 
2260 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2261                                     const ARMCPRegInfo *regs, void *opaque);
2262 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2263                                        const ARMCPRegInfo *regs, void *opaque);
2264 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2265 {
2266     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2267 }
2268 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2269 {
2270     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2271 }
2272 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2273 
2274 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2275 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2276                          uint64_t value);
2277 /* CPReadFn that can be used for read-as-zero behaviour */
2278 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2279 
2280 /* CPResetFn that does nothing, for use if no reset is required even
2281  * if fieldoffset is non zero.
2282  */
2283 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2284 
2285 /* Return true if this reginfo struct's field in the cpu state struct
2286  * is 64 bits wide.
2287  */
2288 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2289 {
2290     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2291 }
2292 
2293 static inline bool cp_access_ok(int current_el,
2294                                 const ARMCPRegInfo *ri, int isread)
2295 {
2296     return (ri->access >> ((current_el * 2) + isread)) & 1;
2297 }
2298 
2299 /* Raw read of a coprocessor register (as needed for migration, etc) */
2300 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2301 
2302 /**
2303  * write_list_to_cpustate
2304  * @cpu: ARMCPU
2305  *
2306  * For each register listed in the ARMCPU cpreg_indexes list, write
2307  * its value from the cpreg_values list into the ARMCPUState structure.
2308  * This updates TCG's working data structures from KVM data or
2309  * from incoming migration state.
2310  *
2311  * Returns: true if all register values were updated correctly,
2312  * false if some register was unknown or could not be written.
2313  * Note that we do not stop early on failure -- we will attempt
2314  * writing all registers in the list.
2315  */
2316 bool write_list_to_cpustate(ARMCPU *cpu);
2317 
2318 /**
2319  * write_cpustate_to_list:
2320  * @cpu: ARMCPU
2321  *
2322  * For each register listed in the ARMCPU cpreg_indexes list, write
2323  * its value from the ARMCPUState structure into the cpreg_values list.
2324  * This is used to copy info from TCG's working data structures into
2325  * KVM or for outbound migration.
2326  *
2327  * Returns: true if all register values were read correctly,
2328  * false if some register was unknown or could not be read.
2329  * Note that we do not stop early on failure -- we will attempt
2330  * reading all registers in the list.
2331  */
2332 bool write_cpustate_to_list(ARMCPU *cpu);
2333 
2334 #define ARM_CPUID_TI915T      0x54029152
2335 #define ARM_CPUID_TI925T      0x54029252
2336 
2337 #if defined(CONFIG_USER_ONLY)
2338 #define TARGET_PAGE_BITS 12
2339 #else
2340 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2341  * have to support 1K tiny pages.
2342  */
2343 #define TARGET_PAGE_BITS_VARY
2344 #define TARGET_PAGE_BITS_MIN 10
2345 #endif
2346 
2347 #if defined(TARGET_AARCH64)
2348 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2349 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
2350 #else
2351 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2352 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2353 #endif
2354 
2355 /**
2356  * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2357  * Depending on the values of HCR_EL2.E2H and TGE, this may be
2358  * "behaves as 1 for all purposes other than direct read/write" or
2359  * "behaves as 0 for all purposes other than direct read/write"
2360  */
2361 static inline bool arm_hcr_el2_imo(CPUARMState *env)
2362 {
2363     switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2364     case HCR_TGE:
2365         return true;
2366     case HCR_TGE | HCR_E2H:
2367         return false;
2368     default:
2369         return env->cp15.hcr_el2 & HCR_IMO;
2370     }
2371 }
2372 
2373 /**
2374  * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2375  */
2376 static inline bool arm_hcr_el2_fmo(CPUARMState *env)
2377 {
2378     switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2379     case HCR_TGE:
2380         return true;
2381     case HCR_TGE | HCR_E2H:
2382         return false;
2383     default:
2384         return env->cp15.hcr_el2 & HCR_FMO;
2385     }
2386 }
2387 
2388 /**
2389  * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2390  */
2391 static inline bool arm_hcr_el2_amo(CPUARMState *env)
2392 {
2393     switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
2394     case HCR_TGE:
2395         return true;
2396     case HCR_TGE | HCR_E2H:
2397         return false;
2398     default:
2399         return env->cp15.hcr_el2 & HCR_AMO;
2400     }
2401 }
2402 
2403 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2404                                      unsigned int target_el)
2405 {
2406     CPUARMState *env = cs->env_ptr;
2407     unsigned int cur_el = arm_current_el(env);
2408     bool secure = arm_is_secure(env);
2409     bool pstate_unmasked;
2410     int8_t unmasked = 0;
2411 
2412     /* Don't take exceptions if they target a lower EL.
2413      * This check should catch any exceptions that would not be taken but left
2414      * pending.
2415      */
2416     if (cur_el > target_el) {
2417         return false;
2418     }
2419 
2420     switch (excp_idx) {
2421     case EXCP_FIQ:
2422         pstate_unmasked = !(env->daif & PSTATE_F);
2423         break;
2424 
2425     case EXCP_IRQ:
2426         pstate_unmasked = !(env->daif & PSTATE_I);
2427         break;
2428 
2429     case EXCP_VFIQ:
2430         if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
2431             /* VFIQs are only taken when hypervized and non-secure.  */
2432             return false;
2433         }
2434         return !(env->daif & PSTATE_F);
2435     case EXCP_VIRQ:
2436         if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
2437             /* VIRQs are only taken when hypervized and non-secure.  */
2438             return false;
2439         }
2440         return !(env->daif & PSTATE_I);
2441     default:
2442         g_assert_not_reached();
2443     }
2444 
2445     /* Use the target EL, current execution state and SCR/HCR settings to
2446      * determine whether the corresponding CPSR bit is used to mask the
2447      * interrupt.
2448      */
2449     if ((target_el > cur_el) && (target_el != 1)) {
2450         /* Exceptions targeting a higher EL may not be maskable */
2451         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2452             /* 64-bit masking rules are simple: exceptions to EL3
2453              * can't be masked, and exceptions to EL2 can only be
2454              * masked from Secure state. The HCR and SCR settings
2455              * don't affect the masking logic, only the interrupt routing.
2456              */
2457             if (target_el == 3 || !secure) {
2458                 unmasked = 1;
2459             }
2460         } else {
2461             /* The old 32-bit-only environment has a more complicated
2462              * masking setup. HCR and SCR bits not only affect interrupt
2463              * routing but also change the behaviour of masking.
2464              */
2465             bool hcr, scr;
2466 
2467             switch (excp_idx) {
2468             case EXCP_FIQ:
2469                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2470                  * we override the CPSR.F in determining if the exception is
2471                  * masked or not. If neither of these are set then we fall back
2472                  * to the CPSR.F setting otherwise we further assess the state
2473                  * below.
2474                  */
2475                 hcr = arm_hcr_el2_fmo(env);
2476                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2477 
2478                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2479                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2480                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2481                  * when non-secure but only when FIQs are only routed to EL3.
2482                  */
2483                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2484                 break;
2485             case EXCP_IRQ:
2486                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2487                  * we may override the CPSR.I masking when in non-secure state.
2488                  * The SCR.IRQ setting has already been taken into consideration
2489                  * when setting the target EL, so it does not have a further
2490                  * affect here.
2491                  */
2492                 hcr = arm_hcr_el2_imo(env);
2493                 scr = false;
2494                 break;
2495             default:
2496                 g_assert_not_reached();
2497             }
2498 
2499             if ((scr || hcr) && !secure) {
2500                 unmasked = 1;
2501             }
2502         }
2503     }
2504 
2505     /* The PSTATE bits only mask the interrupt if we have not overriden the
2506      * ability above.
2507      */
2508     return unmasked || pstate_unmasked;
2509 }
2510 
2511 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2512 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2513 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2514 
2515 #define cpu_signal_handler cpu_arm_signal_handler
2516 #define cpu_list arm_cpu_list
2517 
2518 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2519  *
2520  * If EL3 is 64-bit:
2521  *  + NonSecure EL1 & 0 stage 1
2522  *  + NonSecure EL1 & 0 stage 2
2523  *  + NonSecure EL2
2524  *  + Secure EL1 & EL0
2525  *  + Secure EL3
2526  * If EL3 is 32-bit:
2527  *  + NonSecure PL1 & 0 stage 1
2528  *  + NonSecure PL1 & 0 stage 2
2529  *  + NonSecure PL2
2530  *  + Secure PL0 & PL1
2531  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2532  *
2533  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2534  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2535  *     may differ in access permissions even if the VA->PA map is the same
2536  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2537  *     translation, which means that we have one mmu_idx that deals with two
2538  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2539  *     architecturally permitted]
2540  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2541  *     handling via the TLB. The only way to do a stage 1 translation without
2542  *     the immediate stage 2 translation is via the ATS or AT system insns,
2543  *     which can be slow-pathed and always do a page table walk.
2544  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2545  *     translation regimes, because they map reasonably well to each other
2546  *     and they can't both be active at the same time.
2547  * This gives us the following list of mmu_idx values:
2548  *
2549  * NS EL0 (aka NS PL0) stage 1+2
2550  * NS EL1 (aka NS PL1) stage 1+2
2551  * NS EL2 (aka NS PL2)
2552  * S EL3 (aka S PL1)
2553  * S EL0 (aka S PL0)
2554  * S EL1 (not used if EL3 is 32 bit)
2555  * NS EL0+1 stage 2
2556  *
2557  * (The last of these is an mmu_idx because we want to be able to use the TLB
2558  * for the accesses done as part of a stage 1 page table walk, rather than
2559  * having to walk the stage 2 page table over and over.)
2560  *
2561  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2562  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2563  * NS EL2 if we ever model a Cortex-R52).
2564  *
2565  * M profile CPUs are rather different as they do not have a true MMU.
2566  * They have the following different MMU indexes:
2567  *  User
2568  *  Privileged
2569  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2570  *  Privileged, execution priority negative (ditto)
2571  * If the CPU supports the v8M Security Extension then there are also:
2572  *  Secure User
2573  *  Secure Privileged
2574  *  Secure User, execution priority negative
2575  *  Secure Privileged, execution priority negative
2576  *
2577  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2578  * are not quite the same -- different CPU types (most notably M profile
2579  * vs A/R profile) would like to use MMU indexes with different semantics,
2580  * but since we don't ever need to use all of those in a single CPU we
2581  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2582  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2583  * the same for any particular CPU.
2584  * Variables of type ARMMUIdx are always full values, and the core
2585  * index values are in variables of type 'int'.
2586  *
2587  * Our enumeration includes at the end some entries which are not "true"
2588  * mmu_idx values in that they don't have corresponding TLBs and are only
2589  * valid for doing slow path page table walks.
2590  *
2591  * The constant names here are patterned after the general style of the names
2592  * of the AT/ATS operations.
2593  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2594  * For M profile we arrange them to have a bit for priv, a bit for negpri
2595  * and a bit for secure.
2596  */
2597 #define ARM_MMU_IDX_A 0x10 /* A profile */
2598 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2599 #define ARM_MMU_IDX_M 0x40 /* M profile */
2600 
2601 /* meanings of the bits for M profile mmu idx values */
2602 #define ARM_MMU_IDX_M_PRIV 0x1
2603 #define ARM_MMU_IDX_M_NEGPRI 0x2
2604 #define ARM_MMU_IDX_M_S 0x4
2605 
2606 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2607 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2608 
2609 typedef enum ARMMMUIdx {
2610     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2611     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2612     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2613     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2614     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2615     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2616     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2617     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2618     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2619     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2620     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2621     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2622     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2623     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2624     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2625     /* Indexes below here don't have TLBs and are used only for AT system
2626      * instructions or for the first stage of an S12 page table walk.
2627      */
2628     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2629     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2630 } ARMMMUIdx;
2631 
2632 /* Bit macros for the core-mmu-index values for each index,
2633  * for use when calling tlb_flush_by_mmuidx() and friends.
2634  */
2635 typedef enum ARMMMUIdxBit {
2636     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2637     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2638     ARMMMUIdxBit_S1E2 = 1 << 2,
2639     ARMMMUIdxBit_S1E3 = 1 << 3,
2640     ARMMMUIdxBit_S1SE0 = 1 << 4,
2641     ARMMMUIdxBit_S1SE1 = 1 << 5,
2642     ARMMMUIdxBit_S2NS = 1 << 6,
2643     ARMMMUIdxBit_MUser = 1 << 0,
2644     ARMMMUIdxBit_MPriv = 1 << 1,
2645     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2646     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2647     ARMMMUIdxBit_MSUser = 1 << 4,
2648     ARMMMUIdxBit_MSPriv = 1 << 5,
2649     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2650     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2651 } ARMMMUIdxBit;
2652 
2653 #define MMU_USER_IDX 0
2654 
2655 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2656 {
2657     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2658 }
2659 
2660 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2661 {
2662     if (arm_feature(env, ARM_FEATURE_M)) {
2663         return mmu_idx | ARM_MMU_IDX_M;
2664     } else {
2665         return mmu_idx | ARM_MMU_IDX_A;
2666     }
2667 }
2668 
2669 /* Return the exception level we're running at if this is our mmu_idx */
2670 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2671 {
2672     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2673     case ARM_MMU_IDX_A:
2674         return mmu_idx & 3;
2675     case ARM_MMU_IDX_M:
2676         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2677     default:
2678         g_assert_not_reached();
2679     }
2680 }
2681 
2682 /* Return the MMU index for a v7M CPU in the specified security and
2683  * privilege state
2684  */
2685 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2686                                                               bool secstate,
2687                                                               bool priv)
2688 {
2689     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2690 
2691     if (priv) {
2692         mmu_idx |= ARM_MMU_IDX_M_PRIV;
2693     }
2694 
2695     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2696         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2697     }
2698 
2699     if (secstate) {
2700         mmu_idx |= ARM_MMU_IDX_M_S;
2701     }
2702 
2703     return mmu_idx;
2704 }
2705 
2706 /* Return the MMU index for a v7M CPU in the specified security state */
2707 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2708                                                      bool secstate)
2709 {
2710     bool priv = arm_current_el(env) != 0;
2711 
2712     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2713 }
2714 
2715 /* Determine the current mmu_idx to use for normal loads/stores */
2716 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2717 {
2718     int el = arm_current_el(env);
2719 
2720     if (arm_feature(env, ARM_FEATURE_M)) {
2721         ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2722 
2723         return arm_to_core_mmu_idx(mmu_idx);
2724     }
2725 
2726     if (el < 2 && arm_is_secure_below_el3(env)) {
2727         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2728     }
2729     return el;
2730 }
2731 
2732 /* Indexes used when registering address spaces with cpu_address_space_init */
2733 typedef enum ARMASIdx {
2734     ARMASIdx_NS = 0,
2735     ARMASIdx_S = 1,
2736 } ARMASIdx;
2737 
2738 /* Return the Exception Level targeted by debug exceptions. */
2739 static inline int arm_debug_target_el(CPUARMState *env)
2740 {
2741     bool secure = arm_is_secure(env);
2742     bool route_to_el2 = false;
2743 
2744     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2745         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2746                        env->cp15.mdcr_el2 & (1 << 8);
2747     }
2748 
2749     if (route_to_el2) {
2750         return 2;
2751     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2752                !arm_el_is_aa64(env, 3) && secure) {
2753         return 3;
2754     } else {
2755         return 1;
2756     }
2757 }
2758 
2759 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2760 {
2761     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2762      * CSSELR is RAZ/WI.
2763      */
2764     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2765 }
2766 
2767 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2768 {
2769     if (arm_is_secure(env)) {
2770         /* MDCR_EL3.SDD disables debug events from Secure state */
2771         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2772             || arm_current_el(env) == 3) {
2773             return false;
2774         }
2775     }
2776 
2777     if (arm_current_el(env) == arm_debug_target_el(env)) {
2778         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2779             || (env->daif & PSTATE_D)) {
2780             return false;
2781         }
2782     }
2783     return true;
2784 }
2785 
2786 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2787 {
2788     int el = arm_current_el(env);
2789 
2790     if (el == 0 && arm_el_is_aa64(env, 1)) {
2791         return aa64_generate_debug_exceptions(env);
2792     }
2793 
2794     if (arm_is_secure(env)) {
2795         int spd;
2796 
2797         if (el == 0 && (env->cp15.sder & 1)) {
2798             /* SDER.SUIDEN means debug exceptions from Secure EL0
2799              * are always enabled. Otherwise they are controlled by
2800              * SDCR.SPD like those from other Secure ELs.
2801              */
2802             return true;
2803         }
2804 
2805         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2806         switch (spd) {
2807         case 1:
2808             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2809         case 0:
2810             /* For 0b00 we return true if external secure invasive debug
2811              * is enabled. On real hardware this is controlled by external
2812              * signals to the core. QEMU always permits debug, and behaves
2813              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2814              */
2815             return true;
2816         case 2:
2817             return false;
2818         case 3:
2819             return true;
2820         }
2821     }
2822 
2823     return el != 2;
2824 }
2825 
2826 /* Return true if debugging exceptions are currently enabled.
2827  * This corresponds to what in ARM ARM pseudocode would be
2828  *    if UsingAArch32() then
2829  *        return AArch32.GenerateDebugExceptions()
2830  *    else
2831  *        return AArch64.GenerateDebugExceptions()
2832  * We choose to push the if() down into this function for clarity,
2833  * since the pseudocode has it at all callsites except for the one in
2834  * CheckSoftwareStep(), where it is elided because both branches would
2835  * always return the same value.
2836  *
2837  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2838  * don't yet implement those exception levels or their associated trap bits.
2839  */
2840 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2841 {
2842     if (env->aarch64) {
2843         return aa64_generate_debug_exceptions(env);
2844     } else {
2845         return aa32_generate_debug_exceptions(env);
2846     }
2847 }
2848 
2849 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2850  * implicitly means this always returns false in pre-v8 CPUs.)
2851  */
2852 static inline bool arm_singlestep_active(CPUARMState *env)
2853 {
2854     return extract32(env->cp15.mdscr_el1, 0, 1)
2855         && arm_el_is_aa64(env, arm_debug_target_el(env))
2856         && arm_generate_debug_exceptions(env);
2857 }
2858 
2859 static inline bool arm_sctlr_b(CPUARMState *env)
2860 {
2861     return
2862         /* We need not implement SCTLR.ITD in user-mode emulation, so
2863          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2864          * This lets people run BE32 binaries with "-cpu any".
2865          */
2866 #ifndef CONFIG_USER_ONLY
2867         !arm_feature(env, ARM_FEATURE_V7) &&
2868 #endif
2869         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2870 }
2871 
2872 /* Return true if the processor is in big-endian mode. */
2873 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2874 {
2875     int cur_el;
2876 
2877     /* In 32bit endianness is determined by looking at CPSR's E bit */
2878     if (!is_a64(env)) {
2879         return
2880 #ifdef CONFIG_USER_ONLY
2881             /* In system mode, BE32 is modelled in line with the
2882              * architecture (as word-invariant big-endianness), where loads
2883              * and stores are done little endian but from addresses which
2884              * are adjusted by XORing with the appropriate constant. So the
2885              * endianness to use for the raw data access is not affected by
2886              * SCTLR.B.
2887              * In user mode, however, we model BE32 as byte-invariant
2888              * big-endianness (because user-only code cannot tell the
2889              * difference), and so we need to use a data access endianness
2890              * that depends on SCTLR.B.
2891              */
2892             arm_sctlr_b(env) ||
2893 #endif
2894                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2895     }
2896 
2897     cur_el = arm_current_el(env);
2898 
2899     if (cur_el == 0) {
2900         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2901     }
2902 
2903     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2904 }
2905 
2906 #include "exec/cpu-all.h"
2907 
2908 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2909  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2910  * We put flags which are shared between 32 and 64 bit mode at the top
2911  * of the word, and flags which apply to only one mode at the bottom.
2912  */
2913 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2914 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2915 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2916 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2917 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2918 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2919 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2920 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2921 /* Target EL if we take a floating-point-disabled exception */
2922 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2923 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2924 
2925 /* Bit usage when in AArch32 state: */
2926 #define ARM_TBFLAG_THUMB_SHIFT      0
2927 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2928 #define ARM_TBFLAG_VECLEN_SHIFT     1
2929 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2930 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2931 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2932 #define ARM_TBFLAG_VFPEN_SHIFT      7
2933 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2934 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2935 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2936 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2937 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2938 /* We store the bottom two bits of the CPAR as TB flags and handle
2939  * checks on the other bits at runtime
2940  */
2941 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2942 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2943 /* Indicates whether cp register reads and writes by guest code should access
2944  * the secure or nonsecure bank of banked registers; note that this is not
2945  * the same thing as the current security state of the processor!
2946  */
2947 #define ARM_TBFLAG_NS_SHIFT         19
2948 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2949 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2950 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2951 /* For M profile only, Handler (ie not Thread) mode */
2952 #define ARM_TBFLAG_HANDLER_SHIFT    21
2953 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2954 /* For M profile only, whether we should generate stack-limit checks */
2955 #define ARM_TBFLAG_STACKCHECK_SHIFT 22
2956 #define ARM_TBFLAG_STACKCHECK_MASK  (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
2957 
2958 /* Bit usage when in AArch64 state */
2959 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2960 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2961 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2962 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2963 #define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
2964 #define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2965 #define ARM_TBFLAG_ZCR_LEN_SHIFT    4
2966 #define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2967 
2968 /* some convenience accessor macros */
2969 #define ARM_TBFLAG_AARCH64_STATE(F) \
2970     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2971 #define ARM_TBFLAG_MMUIDX(F) \
2972     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2973 #define ARM_TBFLAG_SS_ACTIVE(F) \
2974     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2975 #define ARM_TBFLAG_PSTATE_SS(F) \
2976     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2977 #define ARM_TBFLAG_FPEXC_EL(F) \
2978     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2979 #define ARM_TBFLAG_THUMB(F) \
2980     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2981 #define ARM_TBFLAG_VECLEN(F) \
2982     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2983 #define ARM_TBFLAG_VECSTRIDE(F) \
2984     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2985 #define ARM_TBFLAG_VFPEN(F) \
2986     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2987 #define ARM_TBFLAG_CONDEXEC(F) \
2988     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2989 #define ARM_TBFLAG_SCTLR_B(F) \
2990     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2991 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2992     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2993 #define ARM_TBFLAG_NS(F) \
2994     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2995 #define ARM_TBFLAG_BE_DATA(F) \
2996     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2997 #define ARM_TBFLAG_HANDLER(F) \
2998     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2999 #define ARM_TBFLAG_STACKCHECK(F) \
3000     (((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
3001 #define ARM_TBFLAG_TBI0(F) \
3002     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
3003 #define ARM_TBFLAG_TBI1(F) \
3004     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
3005 #define ARM_TBFLAG_SVEEXC_EL(F) \
3006     (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
3007 #define ARM_TBFLAG_ZCR_LEN(F) \
3008     (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
3009 
3010 static inline bool bswap_code(bool sctlr_b)
3011 {
3012 #ifdef CONFIG_USER_ONLY
3013     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3014      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3015      * would also end up as a mixed-endian mode with BE code, LE data.
3016      */
3017     return
3018 #ifdef TARGET_WORDS_BIGENDIAN
3019         1 ^
3020 #endif
3021         sctlr_b;
3022 #else
3023     /* All code access in ARM is little endian, and there are no loaders
3024      * doing swaps that need to be reversed
3025      */
3026     return 0;
3027 #endif
3028 }
3029 
3030 #ifdef CONFIG_USER_ONLY
3031 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3032 {
3033     return
3034 #ifdef TARGET_WORDS_BIGENDIAN
3035        1 ^
3036 #endif
3037        arm_cpu_data_is_big_endian(env);
3038 }
3039 #endif
3040 
3041 #ifndef CONFIG_USER_ONLY
3042 /**
3043  * arm_regime_tbi0:
3044  * @env: CPUARMState
3045  * @mmu_idx: MMU index indicating required translation regime
3046  *
3047  * Extracts the TBI0 value from the appropriate TCR for the current EL
3048  *
3049  * Returns: the TBI0 value.
3050  */
3051 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
3052 
3053 /**
3054  * arm_regime_tbi1:
3055  * @env: CPUARMState
3056  * @mmu_idx: MMU index indicating required translation regime
3057  *
3058  * Extracts the TBI1 value from the appropriate TCR for the current EL
3059  *
3060  * Returns: the TBI1 value.
3061  */
3062 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
3063 #else
3064 /* We can't handle tagged addresses properly in user-only mode */
3065 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
3066 {
3067     return 0;
3068 }
3069 
3070 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
3071 {
3072     return 0;
3073 }
3074 #endif
3075 
3076 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3077                           target_ulong *cs_base, uint32_t *flags);
3078 
3079 enum {
3080     QEMU_PSCI_CONDUIT_DISABLED = 0,
3081     QEMU_PSCI_CONDUIT_SMC = 1,
3082     QEMU_PSCI_CONDUIT_HVC = 2,
3083 };
3084 
3085 #ifndef CONFIG_USER_ONLY
3086 /* Return the address space index to use for a memory access */
3087 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3088 {
3089     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3090 }
3091 
3092 /* Return the AddressSpace to use for a memory access
3093  * (which depends on whether the access is S or NS, and whether
3094  * the board gave us a separate AddressSpace for S accesses).
3095  */
3096 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3097 {
3098     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3099 }
3100 #endif
3101 
3102 /**
3103  * arm_register_pre_el_change_hook:
3104  * Register a hook function which will be called immediately before this
3105  * CPU changes exception level or mode. The hook function will be
3106  * passed a pointer to the ARMCPU and the opaque data pointer passed
3107  * to this function when the hook was registered.
3108  *
3109  * Note that if a pre-change hook is called, any registered post-change hooks
3110  * are guaranteed to subsequently be called.
3111  */
3112 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3113                                  void *opaque);
3114 /**
3115  * arm_register_el_change_hook:
3116  * Register a hook function which will be called immediately after this
3117  * CPU changes exception level or mode. The hook function will be
3118  * passed a pointer to the ARMCPU and the opaque data pointer passed
3119  * to this function when the hook was registered.
3120  *
3121  * Note that any registered hooks registered here are guaranteed to be called
3122  * if pre-change hooks have been.
3123  */
3124 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3125         *opaque);
3126 
3127 /**
3128  * aa32_vfp_dreg:
3129  * Return a pointer to the Dn register within env in 32-bit mode.
3130  */
3131 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3132 {
3133     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3134 }
3135 
3136 /**
3137  * aa32_vfp_qreg:
3138  * Return a pointer to the Qn register within env in 32-bit mode.
3139  */
3140 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3141 {
3142     return &env->vfp.zregs[regno].d[0];
3143 }
3144 
3145 /**
3146  * aa64_vfp_qreg:
3147  * Return a pointer to the Qn register within env in 64-bit mode.
3148  */
3149 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3150 {
3151     return &env->vfp.zregs[regno].d[0];
3152 }
3153 
3154 /* Shared between translate-sve.c and sve_helper.c.  */
3155 extern const uint64_t pred_esz_masks[4];
3156 
3157 /*
3158  * 32-bit feature tests via id registers.
3159  */
3160 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3161 {
3162     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3163 }
3164 
3165 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3166 {
3167     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3168 }
3169 
3170 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3171 {
3172     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3173 }
3174 
3175 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3176 {
3177     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3178 }
3179 
3180 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3181 {
3182     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3183 }
3184 
3185 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3186 {
3187     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3188 }
3189 
3190 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3191 {
3192     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3193 }
3194 
3195 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3196 {
3197     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3198 }
3199 
3200 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3201 {
3202     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3203 }
3204 
3205 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3206 {
3207     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3208 }
3209 
3210 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3211 {
3212     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3213 }
3214 
3215 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3216 {
3217     /*
3218      * This is a placeholder for use by VCMA until the rest of
3219      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3220      * At which point we can properly set and check MVFR1.FPHP.
3221      */
3222     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3223 }
3224 
3225 /*
3226  * 64-bit feature tests via id registers.
3227  */
3228 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3229 {
3230     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3231 }
3232 
3233 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3234 {
3235     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3236 }
3237 
3238 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3239 {
3240     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3241 }
3242 
3243 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3244 {
3245     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3246 }
3247 
3248 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3249 {
3250     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3251 }
3252 
3253 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3254 {
3255     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3256 }
3257 
3258 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3259 {
3260     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3261 }
3262 
3263 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3264 {
3265     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3266 }
3267 
3268 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3269 {
3270     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3271 }
3272 
3273 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3274 {
3275     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3276 }
3277 
3278 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3279 {
3280     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3281 }
3282 
3283 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3284 {
3285     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3286 }
3287 
3288 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3289 {
3290     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3291 }
3292 
3293 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3294 {
3295     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3296     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3297 }
3298 
3299 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3300 {
3301     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3302 }
3303 
3304 /*
3305  * Forward to the above feature tests given an ARMCPU pointer.
3306  */
3307 #define cpu_isar_feature(name, cpu) \
3308     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3309 
3310 #endif
3311