xref: /openbmc/qemu/target/arm/cpu.h (revision 500eb6db)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP  2
150 #define GTIMER_SEC  3
151 #define NUM_GTIMERS 4
152 
153 typedef struct {
154     uint64_t raw_tcr;
155     uint32_t mask;
156     uint32_t base_mask;
157 } TCR;
158 
159 /* Define a maximum sized vector register.
160  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161  * For 64-bit, this is a 2048-bit SVE register.
162  *
163  * Note that the mapping between S, D, and Q views of the register bank
164  * differs between AArch64 and AArch32.
165  * In AArch32:
166  *  Qn = regs[n].d[1]:regs[n].d[0]
167  *  Dn = regs[n / 2].d[n & 1]
168  *  Sn = regs[n / 4].d[n % 4 / 2],
169  *       bits 31..0 for even n, and bits 63..32 for odd n
170  *       (and regs[16] to regs[31] are inaccessible)
171  * In AArch64:
172  *  Zn = regs[n].d[*]
173  *  Qn = regs[n].d[1]:regs[n].d[0]
174  *  Dn = regs[n].d[0]
175  *  Sn = regs[n].d[0] bits 31..0
176  *  Hn = regs[n].d[0] bits 15..0
177  *
178  * This corresponds to the architecturally defined mapping between
179  * the two execution states, and means we do not need to explicitly
180  * map these registers when changing states.
181  *
182  * Align the data for use with TCG host vector operations.
183  */
184 
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ    16
187 #else
188 # define ARM_MAX_VQ    1
189 #endif
190 
191 typedef struct ARMVectorReg {
192     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
193 } ARMVectorReg;
194 
195 #ifdef TARGET_AARCH64
196 /* In AArch32 mode, predicate registers do not exist at all.  */
197 typedef struct ARMPredicateReg {
198     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
199 } ARMPredicateReg;
200 
201 /* In AArch32 mode, PAC keys do not exist at all.  */
202 typedef struct ARMPACKey {
203     uint64_t lo, hi;
204 } ARMPACKey;
205 #endif
206 
207 
208 typedef struct CPUARMState {
209     /* Regs for current mode.  */
210     uint32_t regs[16];
211 
212     /* 32/64 switch only happens when taking and returning from
213      * exceptions so the overlap semantics are taken care of then
214      * instead of having a complicated union.
215      */
216     /* Regs for A64 mode.  */
217     uint64_t xregs[32];
218     uint64_t pc;
219     /* PSTATE isn't an architectural register for ARMv8. However, it is
220      * convenient for us to assemble the underlying state into a 32 bit format
221      * identical to the architectural format used for the SPSR. (This is also
222      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
223      * 'pstate' register are.) Of the PSTATE bits:
224      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
225      *    semantics as for AArch32, as described in the comments on each field)
226      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
227      *  DAIF (exception masks) are kept in env->daif
228      *  BTYPE is kept in env->btype
229      *  all other bits are stored in their correct places in env->pstate
230      */
231     uint32_t pstate;
232     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
233 
234     /* Frequently accessed CPSR bits are stored separately for efficiency.
235        This contains all the other bits.  Use cpsr_{read,write} to access
236        the whole CPSR.  */
237     uint32_t uncached_cpsr;
238     uint32_t spsr;
239 
240     /* Banked registers.  */
241     uint64_t banked_spsr[8];
242     uint32_t banked_r13[8];
243     uint32_t banked_r14[8];
244 
245     /* These hold r8-r12.  */
246     uint32_t usr_regs[5];
247     uint32_t fiq_regs[5];
248 
249     /* cpsr flag cache for faster execution */
250     uint32_t CF; /* 0 or 1 */
251     uint32_t VF; /* V is the bit 31. All other bits are undefined */
252     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
253     uint32_t ZF; /* Z set if zero.  */
254     uint32_t QF; /* 0 or 1 */
255     uint32_t GE; /* cpsr[19:16] */
256     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
257     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
258     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
259     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
260 
261     uint64_t elr_el[4]; /* AArch64 exception link regs  */
262     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
263 
264     /* System control coprocessor (cp15) */
265     struct {
266         uint32_t c0_cpuid;
267         union { /* Cache size selection */
268             struct {
269                 uint64_t _unused_csselr0;
270                 uint64_t csselr_ns;
271                 uint64_t _unused_csselr1;
272                 uint64_t csselr_s;
273             };
274             uint64_t csselr_el[4];
275         };
276         union { /* System control register. */
277             struct {
278                 uint64_t _unused_sctlr;
279                 uint64_t sctlr_ns;
280                 uint64_t hsctlr;
281                 uint64_t sctlr_s;
282             };
283             uint64_t sctlr_el[4];
284         };
285         uint64_t cpacr_el1; /* Architectural feature access control register */
286         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
287         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
288         uint64_t sder; /* Secure debug enable register. */
289         uint32_t nsacr; /* Non-secure access control register. */
290         union { /* MMU translation table base 0. */
291             struct {
292                 uint64_t _unused_ttbr0_0;
293                 uint64_t ttbr0_ns;
294                 uint64_t _unused_ttbr0_1;
295                 uint64_t ttbr0_s;
296             };
297             uint64_t ttbr0_el[4];
298         };
299         union { /* MMU translation table base 1. */
300             struct {
301                 uint64_t _unused_ttbr1_0;
302                 uint64_t ttbr1_ns;
303                 uint64_t _unused_ttbr1_1;
304                 uint64_t ttbr1_s;
305             };
306             uint64_t ttbr1_el[4];
307         };
308         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
309         /* MMU translation table base control. */
310         TCR tcr_el[4];
311         TCR vtcr_el2; /* Virtualization Translation Control.  */
312         uint32_t c2_data; /* MPU data cacheable bits.  */
313         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
314         union { /* MMU domain access control register
315                  * MPU write buffer control.
316                  */
317             struct {
318                 uint64_t dacr_ns;
319                 uint64_t dacr_s;
320             };
321             struct {
322                 uint64_t dacr32_el2;
323             };
324         };
325         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
326         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
327         uint64_t hcr_el2; /* Hypervisor configuration register */
328         uint64_t scr_el3; /* Secure configuration register.  */
329         union { /* Fault status registers.  */
330             struct {
331                 uint64_t ifsr_ns;
332                 uint64_t ifsr_s;
333             };
334             struct {
335                 uint64_t ifsr32_el2;
336             };
337         };
338         union {
339             struct {
340                 uint64_t _unused_dfsr;
341                 uint64_t dfsr_ns;
342                 uint64_t hsr;
343                 uint64_t dfsr_s;
344             };
345             uint64_t esr_el[4];
346         };
347         uint32_t c6_region[8]; /* MPU base/size registers.  */
348         union { /* Fault address registers. */
349             struct {
350                 uint64_t _unused_far0;
351 #ifdef HOST_WORDS_BIGENDIAN
352                 uint32_t ifar_ns;
353                 uint32_t dfar_ns;
354                 uint32_t ifar_s;
355                 uint32_t dfar_s;
356 #else
357                 uint32_t dfar_ns;
358                 uint32_t ifar_ns;
359                 uint32_t dfar_s;
360                 uint32_t ifar_s;
361 #endif
362                 uint64_t _unused_far3;
363             };
364             uint64_t far_el[4];
365         };
366         uint64_t hpfar_el2;
367         uint64_t hstr_el2;
368         union { /* Translation result. */
369             struct {
370                 uint64_t _unused_par_0;
371                 uint64_t par_ns;
372                 uint64_t _unused_par_1;
373                 uint64_t par_s;
374             };
375             uint64_t par_el[4];
376         };
377 
378         uint32_t c9_insn; /* Cache lockdown registers.  */
379         uint32_t c9_data;
380         uint64_t c9_pmcr; /* performance monitor control register */
381         uint64_t c9_pmcnten; /* perf monitor counter enables */
382         uint64_t c9_pmovsr; /* perf monitor overflow status */
383         uint64_t c9_pmuserenr; /* perf monitor user enable */
384         uint64_t c9_pmselr; /* perf monitor counter selection register */
385         uint64_t c9_pminten; /* perf monitor interrupt enables */
386         union { /* Memory attribute redirection */
387             struct {
388 #ifdef HOST_WORDS_BIGENDIAN
389                 uint64_t _unused_mair_0;
390                 uint32_t mair1_ns;
391                 uint32_t mair0_ns;
392                 uint64_t _unused_mair_1;
393                 uint32_t mair1_s;
394                 uint32_t mair0_s;
395 #else
396                 uint64_t _unused_mair_0;
397                 uint32_t mair0_ns;
398                 uint32_t mair1_ns;
399                 uint64_t _unused_mair_1;
400                 uint32_t mair0_s;
401                 uint32_t mair1_s;
402 #endif
403             };
404             uint64_t mair_el[4];
405         };
406         union { /* vector base address register */
407             struct {
408                 uint64_t _unused_vbar;
409                 uint64_t vbar_ns;
410                 uint64_t hvbar;
411                 uint64_t vbar_s;
412             };
413             uint64_t vbar_el[4];
414         };
415         uint32_t mvbar; /* (monitor) vector base address register */
416         struct { /* FCSE PID. */
417             uint32_t fcseidr_ns;
418             uint32_t fcseidr_s;
419         };
420         union { /* Context ID. */
421             struct {
422                 uint64_t _unused_contextidr_0;
423                 uint64_t contextidr_ns;
424                 uint64_t _unused_contextidr_1;
425                 uint64_t contextidr_s;
426             };
427             uint64_t contextidr_el[4];
428         };
429         union { /* User RW Thread register. */
430             struct {
431                 uint64_t tpidrurw_ns;
432                 uint64_t tpidrprw_ns;
433                 uint64_t htpidr;
434                 uint64_t _tpidr_el3;
435             };
436             uint64_t tpidr_el[4];
437         };
438         /* The secure banks of these registers don't map anywhere */
439         uint64_t tpidrurw_s;
440         uint64_t tpidrprw_s;
441         uint64_t tpidruro_s;
442 
443         union { /* User RO Thread register. */
444             uint64_t tpidruro_ns;
445             uint64_t tpidrro_el[1];
446         };
447         uint64_t c14_cntfrq; /* Counter Frequency register */
448         uint64_t c14_cntkctl; /* Timer Control register */
449         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
450         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
451         ARMGenericTimer c14_timer[NUM_GTIMERS];
452         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
453         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
454         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
455         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
456         uint32_t c15_threadid; /* TI debugger thread-ID.  */
457         uint32_t c15_config_base_address; /* SCU base address.  */
458         uint32_t c15_diagnostic; /* diagnostic register */
459         uint32_t c15_power_diagnostic;
460         uint32_t c15_power_control; /* power control */
461         uint64_t dbgbvr[16]; /* breakpoint value registers */
462         uint64_t dbgbcr[16]; /* breakpoint control registers */
463         uint64_t dbgwvr[16]; /* watchpoint value registers */
464         uint64_t dbgwcr[16]; /* watchpoint control registers */
465         uint64_t mdscr_el1;
466         uint64_t oslsr_el1; /* OS Lock Status */
467         uint64_t mdcr_el2;
468         uint64_t mdcr_el3;
469         /* Stores the architectural value of the counter *the last time it was
470          * updated* by pmccntr_op_start. Accesses should always be surrounded
471          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
472          * architecturally-correct value is being read/set.
473          */
474         uint64_t c15_ccnt;
475         /* Stores the delta between the architectural value and the underlying
476          * cycle count during normal operation. It is used to update c15_ccnt
477          * to be the correct architectural value before accesses. During
478          * accesses, c15_ccnt_delta contains the underlying count being used
479          * for the access, after which it reverts to the delta value in
480          * pmccntr_op_finish.
481          */
482         uint64_t c15_ccnt_delta;
483         uint64_t c14_pmevcntr[31];
484         uint64_t c14_pmevcntr_delta[31];
485         uint64_t c14_pmevtyper[31];
486         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
487         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
488         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
489     } cp15;
490 
491     struct {
492         /* M profile has up to 4 stack pointers:
493          * a Main Stack Pointer and a Process Stack Pointer for each
494          * of the Secure and Non-Secure states. (If the CPU doesn't support
495          * the security extension then it has only two SPs.)
496          * In QEMU we always store the currently active SP in regs[13],
497          * and the non-active SP for the current security state in
498          * v7m.other_sp. The stack pointers for the inactive security state
499          * are stored in other_ss_msp and other_ss_psp.
500          * switch_v7m_security_state() is responsible for rearranging them
501          * when we change security state.
502          */
503         uint32_t other_sp;
504         uint32_t other_ss_msp;
505         uint32_t other_ss_psp;
506         uint32_t vecbase[M_REG_NUM_BANKS];
507         uint32_t basepri[M_REG_NUM_BANKS];
508         uint32_t control[M_REG_NUM_BANKS];
509         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
510         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
511         uint32_t hfsr; /* HardFault Status */
512         uint32_t dfsr; /* Debug Fault Status Register */
513         uint32_t sfsr; /* Secure Fault Status Register */
514         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
515         uint32_t bfar; /* BusFault Address */
516         uint32_t sfar; /* Secure Fault Address Register */
517         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
518         int exception;
519         uint32_t primask[M_REG_NUM_BANKS];
520         uint32_t faultmask[M_REG_NUM_BANKS];
521         uint32_t aircr; /* only holds r/w state if security extn implemented */
522         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
523         uint32_t csselr[M_REG_NUM_BANKS];
524         uint32_t scr[M_REG_NUM_BANKS];
525         uint32_t msplim[M_REG_NUM_BANKS];
526         uint32_t psplim[M_REG_NUM_BANKS];
527         uint32_t fpcar[M_REG_NUM_BANKS];
528         uint32_t fpccr[M_REG_NUM_BANKS];
529         uint32_t fpdscr[M_REG_NUM_BANKS];
530         uint32_t cpacr[M_REG_NUM_BANKS];
531         uint32_t nsacr;
532     } v7m;
533 
534     /* Information associated with an exception about to be taken:
535      * code which raises an exception must set cs->exception_index and
536      * the relevant parts of this structure; the cpu_do_interrupt function
537      * will then set the guest-visible registers as part of the exception
538      * entry process.
539      */
540     struct {
541         uint32_t syndrome; /* AArch64 format syndrome register */
542         uint32_t fsr; /* AArch32 format fault status register info */
543         uint64_t vaddress; /* virtual addr associated with exception, if any */
544         uint32_t target_el; /* EL the exception should be targeted for */
545         /* If we implement EL2 we will also need to store information
546          * about the intermediate physical address for stage 2 faults.
547          */
548     } exception;
549 
550     /* Information associated with an SError */
551     struct {
552         uint8_t pending;
553         uint8_t has_esr;
554         uint64_t esr;
555     } serror;
556 
557     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
558     uint32_t irq_line_state;
559 
560     /* Thumb-2 EE state.  */
561     uint32_t teecr;
562     uint32_t teehbr;
563 
564     /* VFP coprocessor state.  */
565     struct {
566         ARMVectorReg zregs[32];
567 
568 #ifdef TARGET_AARCH64
569         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
570 #define FFR_PRED_NUM 16
571         ARMPredicateReg pregs[17];
572         /* Scratch space for aa64 sve predicate temporary.  */
573         ARMPredicateReg preg_tmp;
574 #endif
575 
576         /* We store these fpcsr fields separately for convenience.  */
577         uint32_t qc[4] QEMU_ALIGNED(16);
578         int vec_len;
579         int vec_stride;
580 
581         uint32_t xregs[16];
582 
583         /* Scratch space for aa32 neon expansion.  */
584         uint32_t scratch[8];
585 
586         /* There are a number of distinct float control structures:
587          *
588          *  fp_status: is the "normal" fp status.
589          *  fp_status_fp16: used for half-precision calculations
590          *  standard_fp_status : the ARM "Standard FPSCR Value"
591          *
592          * Half-precision operations are governed by a separate
593          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
594          * status structure to control this.
595          *
596          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
597          * round-to-nearest and is used by any operations (generally
598          * Neon) which the architecture defines as controlled by the
599          * standard FPSCR value rather than the FPSCR.
600          *
601          * To avoid having to transfer exception bits around, we simply
602          * say that the FPSCR cumulative exception flags are the logical
603          * OR of the flags in the three fp statuses. This relies on the
604          * only thing which needs to read the exception flags being
605          * an explicit FPSCR read.
606          */
607         float_status fp_status;
608         float_status fp_status_f16;
609         float_status standard_fp_status;
610 
611         /* ZCR_EL[1-3] */
612         uint64_t zcr_el[4];
613     } vfp;
614     uint64_t exclusive_addr;
615     uint64_t exclusive_val;
616     uint64_t exclusive_high;
617 
618     /* iwMMXt coprocessor state.  */
619     struct {
620         uint64_t regs[16];
621         uint64_t val;
622 
623         uint32_t cregs[16];
624     } iwmmxt;
625 
626 #ifdef TARGET_AARCH64
627     struct {
628         ARMPACKey apia;
629         ARMPACKey apib;
630         ARMPACKey apda;
631         ARMPACKey apdb;
632         ARMPACKey apga;
633     } keys;
634 #endif
635 
636 #if defined(CONFIG_USER_ONLY)
637     /* For usermode syscall translation.  */
638     int eabi;
639 #endif
640 
641     struct CPUBreakpoint *cpu_breakpoint[16];
642     struct CPUWatchpoint *cpu_watchpoint[16];
643 
644     /* Fields up to this point are cleared by a CPU reset */
645     struct {} end_reset_fields;
646 
647     /* Fields after this point are preserved across CPU reset. */
648 
649     /* Internal CPU feature flags.  */
650     uint64_t features;
651 
652     /* PMSAv7 MPU */
653     struct {
654         uint32_t *drbar;
655         uint32_t *drsr;
656         uint32_t *dracr;
657         uint32_t rnr[M_REG_NUM_BANKS];
658     } pmsav7;
659 
660     /* PMSAv8 MPU */
661     struct {
662         /* The PMSAv8 implementation also shares some PMSAv7 config
663          * and state:
664          *  pmsav7.rnr (region number register)
665          *  pmsav7_dregion (number of configured regions)
666          */
667         uint32_t *rbar[M_REG_NUM_BANKS];
668         uint32_t *rlar[M_REG_NUM_BANKS];
669         uint32_t mair0[M_REG_NUM_BANKS];
670         uint32_t mair1[M_REG_NUM_BANKS];
671     } pmsav8;
672 
673     /* v8M SAU */
674     struct {
675         uint32_t *rbar;
676         uint32_t *rlar;
677         uint32_t rnr;
678         uint32_t ctrl;
679     } sau;
680 
681     void *nvic;
682     const struct arm_boot_info *boot_info;
683     /* Store GICv3CPUState to access from this struct */
684     void *gicv3state;
685 } CPUARMState;
686 
687 /**
688  * ARMELChangeHookFn:
689  * type of a function which can be registered via arm_register_el_change_hook()
690  * to get callbacks when the CPU changes its exception level or mode.
691  */
692 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
693 typedef struct ARMELChangeHook ARMELChangeHook;
694 struct ARMELChangeHook {
695     ARMELChangeHookFn *hook;
696     void *opaque;
697     QLIST_ENTRY(ARMELChangeHook) node;
698 };
699 
700 /* These values map onto the return values for
701  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
702 typedef enum ARMPSCIState {
703     PSCI_ON = 0,
704     PSCI_OFF = 1,
705     PSCI_ON_PENDING = 2
706 } ARMPSCIState;
707 
708 typedef struct ARMISARegisters ARMISARegisters;
709 
710 /**
711  * ARMCPU:
712  * @env: #CPUARMState
713  *
714  * An ARM CPU core.
715  */
716 struct ARMCPU {
717     /*< private >*/
718     CPUState parent_obj;
719     /*< public >*/
720 
721     CPUNegativeOffsetState neg;
722     CPUARMState env;
723 
724     /* Coprocessor information */
725     GHashTable *cp_regs;
726     /* For marshalling (mostly coprocessor) register state between the
727      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
728      * we use these arrays.
729      */
730     /* List of register indexes managed via these arrays; (full KVM style
731      * 64 bit indexes, not CPRegInfo 32 bit indexes)
732      */
733     uint64_t *cpreg_indexes;
734     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
735     uint64_t *cpreg_values;
736     /* Length of the indexes, values, reset_values arrays */
737     int32_t cpreg_array_len;
738     /* These are used only for migration: incoming data arrives in
739      * these fields and is sanity checked in post_load before copying
740      * to the working data structures above.
741      */
742     uint64_t *cpreg_vmstate_indexes;
743     uint64_t *cpreg_vmstate_values;
744     int32_t cpreg_vmstate_array_len;
745 
746     DynamicGDBXMLInfo dyn_xml;
747 
748     /* Timers used by the generic (architected) timer */
749     QEMUTimer *gt_timer[NUM_GTIMERS];
750     /*
751      * Timer used by the PMU. Its state is restored after migration by
752      * pmu_op_finish() - it does not need other handling during migration
753      */
754     QEMUTimer *pmu_timer;
755     /* GPIO outputs for generic timer */
756     qemu_irq gt_timer_outputs[NUM_GTIMERS];
757     /* GPIO output for GICv3 maintenance interrupt signal */
758     qemu_irq gicv3_maintenance_interrupt;
759     /* GPIO output for the PMU interrupt */
760     qemu_irq pmu_interrupt;
761 
762     /* MemoryRegion to use for secure physical accesses */
763     MemoryRegion *secure_memory;
764 
765     /* For v8M, pointer to the IDAU interface provided by board/SoC */
766     Object *idau;
767 
768     /* 'compatible' string for this CPU for Linux device trees */
769     const char *dtb_compatible;
770 
771     /* PSCI version for this CPU
772      * Bits[31:16] = Major Version
773      * Bits[15:0] = Minor Version
774      */
775     uint32_t psci_version;
776 
777     /* Should CPU start in PSCI powered-off state? */
778     bool start_powered_off;
779 
780     /* Current power state, access guarded by BQL */
781     ARMPSCIState power_state;
782 
783     /* CPU has virtualization extension */
784     bool has_el2;
785     /* CPU has security extension */
786     bool has_el3;
787     /* CPU has PMU (Performance Monitor Unit) */
788     bool has_pmu;
789 
790     /* CPU has memory protection unit */
791     bool has_mpu;
792     /* PMSAv7 MPU number of supported regions */
793     uint32_t pmsav7_dregion;
794     /* v8M SAU number of supported regions */
795     uint32_t sau_sregion;
796 
797     /* PSCI conduit used to invoke PSCI methods
798      * 0 - disabled, 1 - smc, 2 - hvc
799      */
800     uint32_t psci_conduit;
801 
802     /* For v8M, initial value of the Secure VTOR */
803     uint32_t init_svtor;
804 
805     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
806      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
807      */
808     uint32_t kvm_target;
809 
810     /* KVM init features for this CPU */
811     uint32_t kvm_init_features[7];
812 
813     /* Uniprocessor system with MP extensions */
814     bool mp_is_up;
815 
816     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
817      * and the probe failed (so we need to report the error in realize)
818      */
819     bool host_cpu_probe_failed;
820 
821     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
822      * register.
823      */
824     int32_t core_count;
825 
826     /* The instance init functions for implementation-specific subclasses
827      * set these fields to specify the implementation-dependent values of
828      * various constant registers and reset values of non-constant
829      * registers.
830      * Some of these might become QOM properties eventually.
831      * Field names match the official register names as defined in the
832      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
833      * is used for reset values of non-constant registers; no reset_
834      * prefix means a constant register.
835      * Some of these registers are split out into a substructure that
836      * is shared with the translators to control the ISA.
837      */
838     struct ARMISARegisters {
839         uint32_t id_isar0;
840         uint32_t id_isar1;
841         uint32_t id_isar2;
842         uint32_t id_isar3;
843         uint32_t id_isar4;
844         uint32_t id_isar5;
845         uint32_t id_isar6;
846         uint32_t mvfr0;
847         uint32_t mvfr1;
848         uint32_t mvfr2;
849         uint64_t id_aa64isar0;
850         uint64_t id_aa64isar1;
851         uint64_t id_aa64pfr0;
852         uint64_t id_aa64pfr1;
853         uint64_t id_aa64mmfr0;
854         uint64_t id_aa64mmfr1;
855     } isar;
856     uint32_t midr;
857     uint32_t revidr;
858     uint32_t reset_fpsid;
859     uint32_t ctr;
860     uint32_t reset_sctlr;
861     uint32_t id_pfr0;
862     uint32_t id_pfr1;
863     uint32_t id_dfr0;
864     uint64_t pmceid0;
865     uint64_t pmceid1;
866     uint32_t id_afr0;
867     uint32_t id_mmfr0;
868     uint32_t id_mmfr1;
869     uint32_t id_mmfr2;
870     uint32_t id_mmfr3;
871     uint32_t id_mmfr4;
872     uint64_t id_aa64dfr0;
873     uint64_t id_aa64dfr1;
874     uint64_t id_aa64afr0;
875     uint64_t id_aa64afr1;
876     uint32_t dbgdidr;
877     uint32_t clidr;
878     uint64_t mp_affinity; /* MP ID without feature bits */
879     /* The elements of this array are the CCSIDR values for each cache,
880      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
881      */
882     uint32_t ccsidr[16];
883     uint64_t reset_cbar;
884     uint32_t reset_auxcr;
885     bool reset_hivecs;
886     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
887     uint32_t dcz_blocksize;
888     uint64_t rvbar;
889 
890     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
891     int gic_num_lrs; /* number of list registers */
892     int gic_vpribits; /* number of virtual priority bits */
893     int gic_vprebits; /* number of virtual preemption bits */
894 
895     /* Whether the cfgend input is high (i.e. this CPU should reset into
896      * big-endian mode).  This setting isn't used directly: instead it modifies
897      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
898      * architecture version.
899      */
900     bool cfgend;
901 
902     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
903     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
904 
905     int32_t node_id; /* NUMA node this CPU belongs to */
906 
907     /* Used to synchronize KVM and QEMU in-kernel device levels */
908     uint8_t device_irq_level;
909 
910     /* Used to set the maximum vector length the cpu will support.  */
911     uint32_t sve_max_vq;
912 };
913 
914 void arm_cpu_post_init(Object *obj);
915 
916 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
917 
918 #ifndef CONFIG_USER_ONLY
919 extern const struct VMStateDescription vmstate_arm_cpu;
920 #endif
921 
922 void arm_cpu_do_interrupt(CPUState *cpu);
923 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
924 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
925 
926 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
927 
928 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
929                                          MemTxAttrs *attrs);
930 
931 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
932 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
933 
934 /* Dynamically generates for gdb stub an XML description of the sysregs from
935  * the cp_regs hashtable. Returns the registered sysregs number.
936  */
937 int arm_gen_dynamic_xml(CPUState *cpu);
938 
939 /* Returns the dynamically generated XML for the gdb stub.
940  * Returns a pointer to the XML contents for the specified XML file or NULL
941  * if the XML name doesn't match the predefined one.
942  */
943 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
944 
945 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
946                              int cpuid, void *opaque);
947 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
948                              int cpuid, void *opaque);
949 
950 #ifdef TARGET_AARCH64
951 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
952 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
953 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
954 void aarch64_sve_change_el(CPUARMState *env, int old_el,
955                            int new_el, bool el0_a64);
956 #else
957 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
958 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
959                                          int n, bool a)
960 { }
961 #endif
962 
963 target_ulong do_arm_semihosting(CPUARMState *env);
964 void aarch64_sync_32_to_64(CPUARMState *env);
965 void aarch64_sync_64_to_32(CPUARMState *env);
966 
967 int fp_exception_el(CPUARMState *env, int cur_el);
968 int sve_exception_el(CPUARMState *env, int cur_el);
969 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
970 
971 static inline bool is_a64(CPUARMState *env)
972 {
973     return env->aarch64;
974 }
975 
976 /* you can call this signal handler from your SIGBUS and SIGSEGV
977    signal handlers to inform the virtual CPU of exceptions. non zero
978    is returned if the signal was handled by the virtual CPU.  */
979 int cpu_arm_signal_handler(int host_signum, void *pinfo,
980                            void *puc);
981 
982 /**
983  * pmu_op_start/finish
984  * @env: CPUARMState
985  *
986  * Convert all PMU counters between their delta form (the typical mode when
987  * they are enabled) and the guest-visible values. These two calls must
988  * surround any action which might affect the counters.
989  */
990 void pmu_op_start(CPUARMState *env);
991 void pmu_op_finish(CPUARMState *env);
992 
993 /*
994  * Called when a PMU counter is due to overflow
995  */
996 void arm_pmu_timer_cb(void *opaque);
997 
998 /**
999  * Functions to register as EL change hooks for PMU mode filtering
1000  */
1001 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1002 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1003 
1004 /*
1005  * pmu_init
1006  * @cpu: ARMCPU
1007  *
1008  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1009  * for the current configuration
1010  */
1011 void pmu_init(ARMCPU *cpu);
1012 
1013 /* SCTLR bit meanings. Several bits have been reused in newer
1014  * versions of the architecture; in that case we define constants
1015  * for both old and new bit meanings. Code which tests against those
1016  * bits should probably check or otherwise arrange that the CPU
1017  * is the architectural version it expects.
1018  */
1019 #define SCTLR_M       (1U << 0)
1020 #define SCTLR_A       (1U << 1)
1021 #define SCTLR_C       (1U << 2)
1022 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1023 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1024 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1025 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1026 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1027 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1028 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1029 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1030 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1031 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1032 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1033 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1034 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1035 #define SCTLR_SED     (1U << 8) /* v8 onward */
1036 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1037 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1038 #define SCTLR_F       (1U << 10) /* up to v6 */
1039 #define SCTLR_SW      (1U << 10) /* v7 */
1040 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1041 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1042 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1043 #define SCTLR_I       (1U << 12)
1044 #define SCTLR_V       (1U << 13) /* AArch32 only */
1045 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1046 #define SCTLR_RR      (1U << 14) /* up to v7 */
1047 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1048 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1049 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1050 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1051 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1052 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1053 #define SCTLR_BR      (1U << 17) /* PMSA only */
1054 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1055 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1056 #define SCTLR_WXN     (1U << 19)
1057 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1058 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1059 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1060 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1061 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1062 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1063 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1064 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1065 #define SCTLR_VE      (1U << 24) /* up to v7 */
1066 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1067 #define SCTLR_EE      (1U << 25)
1068 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1069 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1070 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1071 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1072 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1073 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1074 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1075 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1076 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1077 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1078 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1079 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1080 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1081 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1082 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1083 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1084 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1085 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1086 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1087 
1088 #define CPTR_TCPAC    (1U << 31)
1089 #define CPTR_TTA      (1U << 20)
1090 #define CPTR_TFP      (1U << 10)
1091 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1092 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1093 
1094 #define MDCR_EPMAD    (1U << 21)
1095 #define MDCR_EDAD     (1U << 20)
1096 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1097 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1098 #define MDCR_SDD      (1U << 16)
1099 #define MDCR_SPD      (3U << 14)
1100 #define MDCR_TDRA     (1U << 11)
1101 #define MDCR_TDOSA    (1U << 10)
1102 #define MDCR_TDA      (1U << 9)
1103 #define MDCR_TDE      (1U << 8)
1104 #define MDCR_HPME     (1U << 7)
1105 #define MDCR_TPM      (1U << 6)
1106 #define MDCR_TPMCR    (1U << 5)
1107 #define MDCR_HPMN     (0x1fU)
1108 
1109 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1110 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1111 
1112 #define CPSR_M (0x1fU)
1113 #define CPSR_T (1U << 5)
1114 #define CPSR_F (1U << 6)
1115 #define CPSR_I (1U << 7)
1116 #define CPSR_A (1U << 8)
1117 #define CPSR_E (1U << 9)
1118 #define CPSR_IT_2_7 (0xfc00U)
1119 #define CPSR_GE (0xfU << 16)
1120 #define CPSR_IL (1U << 20)
1121 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1122  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1123  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1124  * where it is live state but not accessible to the AArch32 code.
1125  */
1126 #define CPSR_RESERVED (0x7U << 21)
1127 #define CPSR_J (1U << 24)
1128 #define CPSR_IT_0_1 (3U << 25)
1129 #define CPSR_Q (1U << 27)
1130 #define CPSR_V (1U << 28)
1131 #define CPSR_C (1U << 29)
1132 #define CPSR_Z (1U << 30)
1133 #define CPSR_N (1U << 31)
1134 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1135 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1136 
1137 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1138 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1139     | CPSR_NZCV)
1140 /* Bits writable in user mode.  */
1141 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1142 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1143 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1144 /* Mask of bits which may be set by exception return copying them from SPSR */
1145 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1146 
1147 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1148 #define XPSR_EXCP 0x1ffU
1149 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1150 #define XPSR_IT_2_7 CPSR_IT_2_7
1151 #define XPSR_GE CPSR_GE
1152 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1153 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1154 #define XPSR_IT_0_1 CPSR_IT_0_1
1155 #define XPSR_Q CPSR_Q
1156 #define XPSR_V CPSR_V
1157 #define XPSR_C CPSR_C
1158 #define XPSR_Z CPSR_Z
1159 #define XPSR_N CPSR_N
1160 #define XPSR_NZCV CPSR_NZCV
1161 #define XPSR_IT CPSR_IT
1162 
1163 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1164 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1165 #define TTBCR_PD0    (1U << 4)
1166 #define TTBCR_PD1    (1U << 5)
1167 #define TTBCR_EPD0   (1U << 7)
1168 #define TTBCR_IRGN0  (3U << 8)
1169 #define TTBCR_ORGN0  (3U << 10)
1170 #define TTBCR_SH0    (3U << 12)
1171 #define TTBCR_T1SZ   (3U << 16)
1172 #define TTBCR_A1     (1U << 22)
1173 #define TTBCR_EPD1   (1U << 23)
1174 #define TTBCR_IRGN1  (3U << 24)
1175 #define TTBCR_ORGN1  (3U << 26)
1176 #define TTBCR_SH1    (1U << 28)
1177 #define TTBCR_EAE    (1U << 31)
1178 
1179 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1180  * Only these are valid when in AArch64 mode; in
1181  * AArch32 mode SPSRs are basically CPSR-format.
1182  */
1183 #define PSTATE_SP (1U)
1184 #define PSTATE_M (0xFU)
1185 #define PSTATE_nRW (1U << 4)
1186 #define PSTATE_F (1U << 6)
1187 #define PSTATE_I (1U << 7)
1188 #define PSTATE_A (1U << 8)
1189 #define PSTATE_D (1U << 9)
1190 #define PSTATE_BTYPE (3U << 10)
1191 #define PSTATE_IL (1U << 20)
1192 #define PSTATE_SS (1U << 21)
1193 #define PSTATE_V (1U << 28)
1194 #define PSTATE_C (1U << 29)
1195 #define PSTATE_Z (1U << 30)
1196 #define PSTATE_N (1U << 31)
1197 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1198 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1199 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1200 /* Mode values for AArch64 */
1201 #define PSTATE_MODE_EL3h 13
1202 #define PSTATE_MODE_EL3t 12
1203 #define PSTATE_MODE_EL2h 9
1204 #define PSTATE_MODE_EL2t 8
1205 #define PSTATE_MODE_EL1h 5
1206 #define PSTATE_MODE_EL1t 4
1207 #define PSTATE_MODE_EL0t 0
1208 
1209 /* Write a new value to v7m.exception, thus transitioning into or out
1210  * of Handler mode; this may result in a change of active stack pointer.
1211  */
1212 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1213 
1214 /* Map EL and handler into a PSTATE_MODE.  */
1215 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1216 {
1217     return (el << 2) | handler;
1218 }
1219 
1220 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1221  * interprocessing, so we don't attempt to sync with the cpsr state used by
1222  * the 32 bit decoder.
1223  */
1224 static inline uint32_t pstate_read(CPUARMState *env)
1225 {
1226     int ZF;
1227 
1228     ZF = (env->ZF == 0);
1229     return (env->NF & 0x80000000) | (ZF << 30)
1230         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1231         | env->pstate | env->daif | (env->btype << 10);
1232 }
1233 
1234 static inline void pstate_write(CPUARMState *env, uint32_t val)
1235 {
1236     env->ZF = (~val) & PSTATE_Z;
1237     env->NF = val;
1238     env->CF = (val >> 29) & 1;
1239     env->VF = (val << 3) & 0x80000000;
1240     env->daif = val & PSTATE_DAIF;
1241     env->btype = (val >> 10) & 3;
1242     env->pstate = val & ~CACHED_PSTATE_BITS;
1243 }
1244 
1245 /* Return the current CPSR value.  */
1246 uint32_t cpsr_read(CPUARMState *env);
1247 
1248 typedef enum CPSRWriteType {
1249     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1250     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1251     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1252     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1253 } CPSRWriteType;
1254 
1255 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1256 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1257                 CPSRWriteType write_type);
1258 
1259 /* Return the current xPSR value.  */
1260 static inline uint32_t xpsr_read(CPUARMState *env)
1261 {
1262     int ZF;
1263     ZF = (env->ZF == 0);
1264     return (env->NF & 0x80000000) | (ZF << 30)
1265         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1266         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1267         | ((env->condexec_bits & 0xfc) << 8)
1268         | (env->GE << 16)
1269         | env->v7m.exception;
1270 }
1271 
1272 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1273 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1274 {
1275     if (mask & XPSR_NZCV) {
1276         env->ZF = (~val) & XPSR_Z;
1277         env->NF = val;
1278         env->CF = (val >> 29) & 1;
1279         env->VF = (val << 3) & 0x80000000;
1280     }
1281     if (mask & XPSR_Q) {
1282         env->QF = ((val & XPSR_Q) != 0);
1283     }
1284     if (mask & XPSR_GE) {
1285         env->GE = (val & XPSR_GE) >> 16;
1286     }
1287     if (mask & XPSR_T) {
1288         env->thumb = ((val & XPSR_T) != 0);
1289     }
1290     if (mask & XPSR_IT_0_1) {
1291         env->condexec_bits &= ~3;
1292         env->condexec_bits |= (val >> 25) & 3;
1293     }
1294     if (mask & XPSR_IT_2_7) {
1295         env->condexec_bits &= 3;
1296         env->condexec_bits |= (val >> 8) & 0xfc;
1297     }
1298     if (mask & XPSR_EXCP) {
1299         /* Note that this only happens on exception exit */
1300         write_v7m_exception(env, val & XPSR_EXCP);
1301     }
1302 }
1303 
1304 #define HCR_VM        (1ULL << 0)
1305 #define HCR_SWIO      (1ULL << 1)
1306 #define HCR_PTW       (1ULL << 2)
1307 #define HCR_FMO       (1ULL << 3)
1308 #define HCR_IMO       (1ULL << 4)
1309 #define HCR_AMO       (1ULL << 5)
1310 #define HCR_VF        (1ULL << 6)
1311 #define HCR_VI        (1ULL << 7)
1312 #define HCR_VSE       (1ULL << 8)
1313 #define HCR_FB        (1ULL << 9)
1314 #define HCR_BSU_MASK  (3ULL << 10)
1315 #define HCR_DC        (1ULL << 12)
1316 #define HCR_TWI       (1ULL << 13)
1317 #define HCR_TWE       (1ULL << 14)
1318 #define HCR_TID0      (1ULL << 15)
1319 #define HCR_TID1      (1ULL << 16)
1320 #define HCR_TID2      (1ULL << 17)
1321 #define HCR_TID3      (1ULL << 18)
1322 #define HCR_TSC       (1ULL << 19)
1323 #define HCR_TIDCP     (1ULL << 20)
1324 #define HCR_TACR      (1ULL << 21)
1325 #define HCR_TSW       (1ULL << 22)
1326 #define HCR_TPCP      (1ULL << 23)
1327 #define HCR_TPU       (1ULL << 24)
1328 #define HCR_TTLB      (1ULL << 25)
1329 #define HCR_TVM       (1ULL << 26)
1330 #define HCR_TGE       (1ULL << 27)
1331 #define HCR_TDZ       (1ULL << 28)
1332 #define HCR_HCD       (1ULL << 29)
1333 #define HCR_TRVM      (1ULL << 30)
1334 #define HCR_RW        (1ULL << 31)
1335 #define HCR_CD        (1ULL << 32)
1336 #define HCR_ID        (1ULL << 33)
1337 #define HCR_E2H       (1ULL << 34)
1338 #define HCR_TLOR      (1ULL << 35)
1339 #define HCR_TERR      (1ULL << 36)
1340 #define HCR_TEA       (1ULL << 37)
1341 #define HCR_MIOCNCE   (1ULL << 38)
1342 #define HCR_APK       (1ULL << 40)
1343 #define HCR_API       (1ULL << 41)
1344 #define HCR_NV        (1ULL << 42)
1345 #define HCR_NV1       (1ULL << 43)
1346 #define HCR_AT        (1ULL << 44)
1347 #define HCR_NV2       (1ULL << 45)
1348 #define HCR_FWB       (1ULL << 46)
1349 #define HCR_FIEN      (1ULL << 47)
1350 #define HCR_TID4      (1ULL << 49)
1351 #define HCR_TICAB     (1ULL << 50)
1352 #define HCR_TOCU      (1ULL << 52)
1353 #define HCR_TTLBIS    (1ULL << 54)
1354 #define HCR_TTLBOS    (1ULL << 55)
1355 #define HCR_ATA       (1ULL << 56)
1356 #define HCR_DCT       (1ULL << 57)
1357 
1358 /*
1359  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1360  * HCR_MASK and then clear it again if the feature bit is not set in
1361  * hcr_write().
1362  */
1363 #define HCR_MASK      ((1ULL << 34) - 1)
1364 
1365 #define SCR_NS                (1U << 0)
1366 #define SCR_IRQ               (1U << 1)
1367 #define SCR_FIQ               (1U << 2)
1368 #define SCR_EA                (1U << 3)
1369 #define SCR_FW                (1U << 4)
1370 #define SCR_AW                (1U << 5)
1371 #define SCR_NET               (1U << 6)
1372 #define SCR_SMD               (1U << 7)
1373 #define SCR_HCE               (1U << 8)
1374 #define SCR_SIF               (1U << 9)
1375 #define SCR_RW                (1U << 10)
1376 #define SCR_ST                (1U << 11)
1377 #define SCR_TWI               (1U << 12)
1378 #define SCR_TWE               (1U << 13)
1379 #define SCR_TLOR              (1U << 14)
1380 #define SCR_TERR              (1U << 15)
1381 #define SCR_APK               (1U << 16)
1382 #define SCR_API               (1U << 17)
1383 #define SCR_EEL2              (1U << 18)
1384 #define SCR_EASE              (1U << 19)
1385 #define SCR_NMEA              (1U << 20)
1386 #define SCR_FIEN              (1U << 21)
1387 #define SCR_ENSCXT            (1U << 25)
1388 #define SCR_ATA               (1U << 26)
1389 
1390 /* Return the current FPSCR value.  */
1391 uint32_t vfp_get_fpscr(CPUARMState *env);
1392 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1393 
1394 /* FPCR, Floating Point Control Register
1395  * FPSR, Floating Poiht Status Register
1396  *
1397  * For A64 the FPSCR is split into two logically distinct registers,
1398  * FPCR and FPSR. However since they still use non-overlapping bits
1399  * we store the underlying state in fpscr and just mask on read/write.
1400  */
1401 #define FPSR_MASK 0xf800009f
1402 #define FPCR_MASK 0x07ff9f00
1403 
1404 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1405 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1406 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1407 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1408 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1409 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1410 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1411 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1412 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1413 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1414 
1415 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1416 {
1417     return vfp_get_fpscr(env) & FPSR_MASK;
1418 }
1419 
1420 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1421 {
1422     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1423     vfp_set_fpscr(env, new_fpscr);
1424 }
1425 
1426 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1427 {
1428     return vfp_get_fpscr(env) & FPCR_MASK;
1429 }
1430 
1431 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1432 {
1433     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1434     vfp_set_fpscr(env, new_fpscr);
1435 }
1436 
1437 enum arm_cpu_mode {
1438   ARM_CPU_MODE_USR = 0x10,
1439   ARM_CPU_MODE_FIQ = 0x11,
1440   ARM_CPU_MODE_IRQ = 0x12,
1441   ARM_CPU_MODE_SVC = 0x13,
1442   ARM_CPU_MODE_MON = 0x16,
1443   ARM_CPU_MODE_ABT = 0x17,
1444   ARM_CPU_MODE_HYP = 0x1a,
1445   ARM_CPU_MODE_UND = 0x1b,
1446   ARM_CPU_MODE_SYS = 0x1f
1447 };
1448 
1449 /* VFP system registers.  */
1450 #define ARM_VFP_FPSID   0
1451 #define ARM_VFP_FPSCR   1
1452 #define ARM_VFP_MVFR2   5
1453 #define ARM_VFP_MVFR1   6
1454 #define ARM_VFP_MVFR0   7
1455 #define ARM_VFP_FPEXC   8
1456 #define ARM_VFP_FPINST  9
1457 #define ARM_VFP_FPINST2 10
1458 
1459 /* iwMMXt coprocessor control registers.  */
1460 #define ARM_IWMMXT_wCID  0
1461 #define ARM_IWMMXT_wCon  1
1462 #define ARM_IWMMXT_wCSSF 2
1463 #define ARM_IWMMXT_wCASF 3
1464 #define ARM_IWMMXT_wCGR0 8
1465 #define ARM_IWMMXT_wCGR1 9
1466 #define ARM_IWMMXT_wCGR2 10
1467 #define ARM_IWMMXT_wCGR3 11
1468 
1469 /* V7M CCR bits */
1470 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1471 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1472 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1473 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1474 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1475 FIELD(V7M_CCR, STKALIGN, 9, 1)
1476 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1477 FIELD(V7M_CCR, DC, 16, 1)
1478 FIELD(V7M_CCR, IC, 17, 1)
1479 FIELD(V7M_CCR, BP, 18, 1)
1480 
1481 /* V7M SCR bits */
1482 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1483 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1484 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1485 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1486 
1487 /* V7M AIRCR bits */
1488 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1489 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1490 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1491 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1492 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1493 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1494 FIELD(V7M_AIRCR, PRIS, 14, 1)
1495 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1496 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1497 
1498 /* V7M CFSR bits for MMFSR */
1499 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1500 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1501 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1502 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1503 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1504 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1505 
1506 /* V7M CFSR bits for BFSR */
1507 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1508 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1509 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1510 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1511 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1512 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1513 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1514 
1515 /* V7M CFSR bits for UFSR */
1516 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1517 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1518 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1519 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1520 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1521 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1522 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1523 
1524 /* V7M CFSR bit masks covering all of the subregister bits */
1525 FIELD(V7M_CFSR, MMFSR, 0, 8)
1526 FIELD(V7M_CFSR, BFSR, 8, 8)
1527 FIELD(V7M_CFSR, UFSR, 16, 16)
1528 
1529 /* V7M HFSR bits */
1530 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1531 FIELD(V7M_HFSR, FORCED, 30, 1)
1532 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1533 
1534 /* V7M DFSR bits */
1535 FIELD(V7M_DFSR, HALTED, 0, 1)
1536 FIELD(V7M_DFSR, BKPT, 1, 1)
1537 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1538 FIELD(V7M_DFSR, VCATCH, 3, 1)
1539 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1540 
1541 /* V7M SFSR bits */
1542 FIELD(V7M_SFSR, INVEP, 0, 1)
1543 FIELD(V7M_SFSR, INVIS, 1, 1)
1544 FIELD(V7M_SFSR, INVER, 2, 1)
1545 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1546 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1547 FIELD(V7M_SFSR, LSPERR, 5, 1)
1548 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1549 FIELD(V7M_SFSR, LSERR, 7, 1)
1550 
1551 /* v7M MPU_CTRL bits */
1552 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1553 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1554 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1555 
1556 /* v7M CLIDR bits */
1557 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1558 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1559 FIELD(V7M_CLIDR, LOC, 24, 3)
1560 FIELD(V7M_CLIDR, LOUU, 27, 3)
1561 FIELD(V7M_CLIDR, ICB, 30, 2)
1562 
1563 FIELD(V7M_CSSELR, IND, 0, 1)
1564 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1565 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1566  * define a mask for this and check that it doesn't permit running off
1567  * the end of the array.
1568  */
1569 FIELD(V7M_CSSELR, INDEX, 0, 4)
1570 
1571 /* v7M FPCCR bits */
1572 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1573 FIELD(V7M_FPCCR, USER, 1, 1)
1574 FIELD(V7M_FPCCR, S, 2, 1)
1575 FIELD(V7M_FPCCR, THREAD, 3, 1)
1576 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1577 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1578 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1579 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1580 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1581 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1582 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1583 FIELD(V7M_FPCCR, RES0, 11, 15)
1584 FIELD(V7M_FPCCR, TS, 26, 1)
1585 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1586 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1587 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1588 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1589 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1590 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1591 #define R_V7M_FPCCR_BANKED_MASK                 \
1592     (R_V7M_FPCCR_LSPACT_MASK |                  \
1593      R_V7M_FPCCR_USER_MASK |                    \
1594      R_V7M_FPCCR_THREAD_MASK |                  \
1595      R_V7M_FPCCR_MMRDY_MASK |                   \
1596      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1597      R_V7M_FPCCR_UFRDY_MASK |                   \
1598      R_V7M_FPCCR_ASPEN_MASK)
1599 
1600 /*
1601  * System register ID fields.
1602  */
1603 FIELD(ID_ISAR0, SWAP, 0, 4)
1604 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1605 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1606 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1607 FIELD(ID_ISAR0, COPROC, 16, 4)
1608 FIELD(ID_ISAR0, DEBUG, 20, 4)
1609 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1610 
1611 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1612 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1613 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1614 FIELD(ID_ISAR1, EXTEND, 12, 4)
1615 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1616 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1617 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1618 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1619 
1620 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1621 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1622 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1623 FIELD(ID_ISAR2, MULT, 12, 4)
1624 FIELD(ID_ISAR2, MULTS, 16, 4)
1625 FIELD(ID_ISAR2, MULTU, 20, 4)
1626 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1627 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1628 
1629 FIELD(ID_ISAR3, SATURATE, 0, 4)
1630 FIELD(ID_ISAR3, SIMD, 4, 4)
1631 FIELD(ID_ISAR3, SVC, 8, 4)
1632 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1633 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1634 FIELD(ID_ISAR3, T32COPY, 20, 4)
1635 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1636 FIELD(ID_ISAR3, T32EE, 28, 4)
1637 
1638 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1639 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1640 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1641 FIELD(ID_ISAR4, SMC, 12, 4)
1642 FIELD(ID_ISAR4, BARRIER, 16, 4)
1643 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1644 FIELD(ID_ISAR4, PSR_M, 24, 4)
1645 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1646 
1647 FIELD(ID_ISAR5, SEVL, 0, 4)
1648 FIELD(ID_ISAR5, AES, 4, 4)
1649 FIELD(ID_ISAR5, SHA1, 8, 4)
1650 FIELD(ID_ISAR5, SHA2, 12, 4)
1651 FIELD(ID_ISAR5, CRC32, 16, 4)
1652 FIELD(ID_ISAR5, RDM, 24, 4)
1653 FIELD(ID_ISAR5, VCMA, 28, 4)
1654 
1655 FIELD(ID_ISAR6, JSCVT, 0, 4)
1656 FIELD(ID_ISAR6, DP, 4, 4)
1657 FIELD(ID_ISAR6, FHM, 8, 4)
1658 FIELD(ID_ISAR6, SB, 12, 4)
1659 FIELD(ID_ISAR6, SPECRES, 16, 4)
1660 
1661 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1662 FIELD(ID_MMFR4, AC2, 4, 4)
1663 FIELD(ID_MMFR4, XNX, 8, 4)
1664 FIELD(ID_MMFR4, CNP, 12, 4)
1665 FIELD(ID_MMFR4, HPDS, 16, 4)
1666 FIELD(ID_MMFR4, LSM, 20, 4)
1667 FIELD(ID_MMFR4, CCIDX, 24, 4)
1668 FIELD(ID_MMFR4, EVT, 28, 4)
1669 
1670 FIELD(ID_AA64ISAR0, AES, 4, 4)
1671 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1672 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1673 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1674 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1675 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1676 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1677 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1678 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1679 FIELD(ID_AA64ISAR0, DP, 44, 4)
1680 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1681 FIELD(ID_AA64ISAR0, TS, 52, 4)
1682 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1683 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1684 
1685 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1686 FIELD(ID_AA64ISAR1, APA, 4, 4)
1687 FIELD(ID_AA64ISAR1, API, 8, 4)
1688 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1689 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1690 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1691 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1692 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1693 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1694 FIELD(ID_AA64ISAR1, SB, 36, 4)
1695 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1696 
1697 FIELD(ID_AA64PFR0, EL0, 0, 4)
1698 FIELD(ID_AA64PFR0, EL1, 4, 4)
1699 FIELD(ID_AA64PFR0, EL2, 8, 4)
1700 FIELD(ID_AA64PFR0, EL3, 12, 4)
1701 FIELD(ID_AA64PFR0, FP, 16, 4)
1702 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1703 FIELD(ID_AA64PFR0, GIC, 24, 4)
1704 FIELD(ID_AA64PFR0, RAS, 28, 4)
1705 FIELD(ID_AA64PFR0, SVE, 32, 4)
1706 
1707 FIELD(ID_AA64PFR1, BT, 0, 4)
1708 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1709 FIELD(ID_AA64PFR1, MTE, 8, 4)
1710 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1711 
1712 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1713 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1714 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1715 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1716 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1717 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1718 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1719 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1720 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1721 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1722 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1723 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1724 
1725 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1726 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1727 FIELD(ID_AA64MMFR1, VH, 8, 4)
1728 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1729 FIELD(ID_AA64MMFR1, LO, 16, 4)
1730 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1731 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1732 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1733 
1734 FIELD(ID_DFR0, COPDBG, 0, 4)
1735 FIELD(ID_DFR0, COPSDBG, 4, 4)
1736 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1737 FIELD(ID_DFR0, COPTRC, 12, 4)
1738 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1739 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1740 FIELD(ID_DFR0, PERFMON, 24, 4)
1741 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1742 
1743 FIELD(MVFR0, SIMDREG, 0, 4)
1744 FIELD(MVFR0, FPSP, 4, 4)
1745 FIELD(MVFR0, FPDP, 8, 4)
1746 FIELD(MVFR0, FPTRAP, 12, 4)
1747 FIELD(MVFR0, FPDIVIDE, 16, 4)
1748 FIELD(MVFR0, FPSQRT, 20, 4)
1749 FIELD(MVFR0, FPSHVEC, 24, 4)
1750 FIELD(MVFR0, FPROUND, 28, 4)
1751 
1752 FIELD(MVFR1, FPFTZ, 0, 4)
1753 FIELD(MVFR1, FPDNAN, 4, 4)
1754 FIELD(MVFR1, SIMDLS, 8, 4)
1755 FIELD(MVFR1, SIMDINT, 12, 4)
1756 FIELD(MVFR1, SIMDSP, 16, 4)
1757 FIELD(MVFR1, SIMDHP, 20, 4)
1758 FIELD(MVFR1, FPHP, 24, 4)
1759 FIELD(MVFR1, SIMDFMAC, 28, 4)
1760 
1761 FIELD(MVFR2, SIMDMISC, 0, 4)
1762 FIELD(MVFR2, FPMISC, 4, 4)
1763 
1764 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1765 
1766 /* If adding a feature bit which corresponds to a Linux ELF
1767  * HWCAP bit, remember to update the feature-bit-to-hwcap
1768  * mapping in linux-user/elfload.c:get_elf_hwcap().
1769  */
1770 enum arm_features {
1771     ARM_FEATURE_VFP,
1772     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1773     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1774     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1775     ARM_FEATURE_V6,
1776     ARM_FEATURE_V6K,
1777     ARM_FEATURE_V7,
1778     ARM_FEATURE_THUMB2,
1779     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1780     ARM_FEATURE_VFP3,
1781     ARM_FEATURE_NEON,
1782     ARM_FEATURE_M, /* Microcontroller profile.  */
1783     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1784     ARM_FEATURE_THUMB2EE,
1785     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1786     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1787     ARM_FEATURE_V4T,
1788     ARM_FEATURE_V5,
1789     ARM_FEATURE_STRONGARM,
1790     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1791     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1792     ARM_FEATURE_GENERIC_TIMER,
1793     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1794     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1795     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1796     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1797     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1798     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1799     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1800     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1801     ARM_FEATURE_V8,
1802     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1803     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1804     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1805     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1806     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1807     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1808     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1809     ARM_FEATURE_PMU, /* has PMU support */
1810     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1811     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1812     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1813 };
1814 
1815 static inline int arm_feature(CPUARMState *env, int feature)
1816 {
1817     return (env->features & (1ULL << feature)) != 0;
1818 }
1819 
1820 #if !defined(CONFIG_USER_ONLY)
1821 /* Return true if exception levels below EL3 are in secure state,
1822  * or would be following an exception return to that level.
1823  * Unlike arm_is_secure() (which is always a question about the
1824  * _current_ state of the CPU) this doesn't care about the current
1825  * EL or mode.
1826  */
1827 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1828 {
1829     if (arm_feature(env, ARM_FEATURE_EL3)) {
1830         return !(env->cp15.scr_el3 & SCR_NS);
1831     } else {
1832         /* If EL3 is not supported then the secure state is implementation
1833          * defined, in which case QEMU defaults to non-secure.
1834          */
1835         return false;
1836     }
1837 }
1838 
1839 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1840 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1841 {
1842     if (arm_feature(env, ARM_FEATURE_EL3)) {
1843         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1844             /* CPU currently in AArch64 state and EL3 */
1845             return true;
1846         } else if (!is_a64(env) &&
1847                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1848             /* CPU currently in AArch32 state and monitor mode */
1849             return true;
1850         }
1851     }
1852     return false;
1853 }
1854 
1855 /* Return true if the processor is in secure state */
1856 static inline bool arm_is_secure(CPUARMState *env)
1857 {
1858     if (arm_is_el3_or_mon(env)) {
1859         return true;
1860     }
1861     return arm_is_secure_below_el3(env);
1862 }
1863 
1864 #else
1865 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1866 {
1867     return false;
1868 }
1869 
1870 static inline bool arm_is_secure(CPUARMState *env)
1871 {
1872     return false;
1873 }
1874 #endif
1875 
1876 /**
1877  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1878  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1879  * "for all purposes other than a direct read or write access of HCR_EL2."
1880  * Not included here is HCR_RW.
1881  */
1882 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1883 
1884 /* Return true if the specified exception level is running in AArch64 state. */
1885 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1886 {
1887     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1888      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1889      */
1890     assert(el >= 1 && el <= 3);
1891     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1892 
1893     /* The highest exception level is always at the maximum supported
1894      * register width, and then lower levels have a register width controlled
1895      * by bits in the SCR or HCR registers.
1896      */
1897     if (el == 3) {
1898         return aa64;
1899     }
1900 
1901     if (arm_feature(env, ARM_FEATURE_EL3)) {
1902         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1903     }
1904 
1905     if (el == 2) {
1906         return aa64;
1907     }
1908 
1909     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1910         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1911     }
1912 
1913     return aa64;
1914 }
1915 
1916 /* Function for determing whether guest cp register reads and writes should
1917  * access the secure or non-secure bank of a cp register.  When EL3 is
1918  * operating in AArch32 state, the NS-bit determines whether the secure
1919  * instance of a cp register should be used. When EL3 is AArch64 (or if
1920  * it doesn't exist at all) then there is no register banking, and all
1921  * accesses are to the non-secure version.
1922  */
1923 static inline bool access_secure_reg(CPUARMState *env)
1924 {
1925     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1926                 !arm_el_is_aa64(env, 3) &&
1927                 !(env->cp15.scr_el3 & SCR_NS));
1928 
1929     return ret;
1930 }
1931 
1932 /* Macros for accessing a specified CP register bank */
1933 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1934     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1935 
1936 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1937     do {                                                \
1938         if (_secure) {                                   \
1939             (_env)->cp15._regname##_s = (_val);            \
1940         } else {                                        \
1941             (_env)->cp15._regname##_ns = (_val);           \
1942         }                                               \
1943     } while (0)
1944 
1945 /* Macros for automatically accessing a specific CP register bank depending on
1946  * the current secure state of the system.  These macros are not intended for
1947  * supporting instruction translation reads/writes as these are dependent
1948  * solely on the SCR.NS bit and not the mode.
1949  */
1950 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1951     A32_BANKED_REG_GET((_env), _regname,                \
1952                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1953 
1954 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1955     A32_BANKED_REG_SET((_env), _regname,                                    \
1956                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1957                        (_val))
1958 
1959 void arm_cpu_list(void);
1960 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1961                                  uint32_t cur_el, bool secure);
1962 
1963 /* Interface between CPU and Interrupt controller.  */
1964 #ifndef CONFIG_USER_ONLY
1965 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1966 #else
1967 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1968 {
1969     return true;
1970 }
1971 #endif
1972 /**
1973  * armv7m_nvic_set_pending: mark the specified exception as pending
1974  * @opaque: the NVIC
1975  * @irq: the exception number to mark pending
1976  * @secure: false for non-banked exceptions or for the nonsecure
1977  * version of a banked exception, true for the secure version of a banked
1978  * exception.
1979  *
1980  * Marks the specified exception as pending. Note that we will assert()
1981  * if @secure is true and @irq does not specify one of the fixed set
1982  * of architecturally banked exceptions.
1983  */
1984 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1985 /**
1986  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1987  * @opaque: the NVIC
1988  * @irq: the exception number to mark pending
1989  * @secure: false for non-banked exceptions or for the nonsecure
1990  * version of a banked exception, true for the secure version of a banked
1991  * exception.
1992  *
1993  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1994  * exceptions (exceptions generated in the course of trying to take
1995  * a different exception).
1996  */
1997 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1998 /**
1999  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2000  * @opaque: the NVIC
2001  * @irq: the exception number to mark pending
2002  * @secure: false for non-banked exceptions or for the nonsecure
2003  * version of a banked exception, true for the secure version of a banked
2004  * exception.
2005  *
2006  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2007  * generated in the course of lazy stacking of FP registers.
2008  */
2009 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2010 /**
2011  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2012  *    exception, and whether it targets Secure state
2013  * @opaque: the NVIC
2014  * @pirq: set to pending exception number
2015  * @ptargets_secure: set to whether pending exception targets Secure
2016  *
2017  * This function writes the number of the highest priority pending
2018  * exception (the one which would be made active by
2019  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2020  * to true if the current highest priority pending exception should
2021  * be taken to Secure state, false for NS.
2022  */
2023 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2024                                       bool *ptargets_secure);
2025 /**
2026  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2027  * @opaque: the NVIC
2028  *
2029  * Move the current highest priority pending exception from the pending
2030  * state to the active state, and update v7m.exception to indicate that
2031  * it is the exception currently being handled.
2032  */
2033 void armv7m_nvic_acknowledge_irq(void *opaque);
2034 /**
2035  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2036  * @opaque: the NVIC
2037  * @irq: the exception number to complete
2038  * @secure: true if this exception was secure
2039  *
2040  * Returns: -1 if the irq was not active
2041  *           1 if completing this irq brought us back to base (no active irqs)
2042  *           0 if there is still an irq active after this one was completed
2043  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2044  */
2045 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2046 /**
2047  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2048  * @opaque: the NVIC
2049  * @irq: the exception number to mark pending
2050  * @secure: false for non-banked exceptions or for the nonsecure
2051  * version of a banked exception, true for the secure version of a banked
2052  * exception.
2053  *
2054  * Return whether an exception is "ready", i.e. whether the exception is
2055  * enabled and is configured at a priority which would allow it to
2056  * interrupt the current execution priority. This controls whether the
2057  * RDY bit for it in the FPCCR is set.
2058  */
2059 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2060 /**
2061  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2062  * @opaque: the NVIC
2063  *
2064  * Returns: the raw execution priority as defined by the v8M architecture.
2065  * This is the execution priority minus the effects of AIRCR.PRIS,
2066  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2067  * (v8M ARM ARM I_PKLD.)
2068  */
2069 int armv7m_nvic_raw_execution_priority(void *opaque);
2070 /**
2071  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2072  * priority is negative for the specified security state.
2073  * @opaque: the NVIC
2074  * @secure: the security state to test
2075  * This corresponds to the pseudocode IsReqExecPriNeg().
2076  */
2077 #ifndef CONFIG_USER_ONLY
2078 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2079 #else
2080 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2081 {
2082     return false;
2083 }
2084 #endif
2085 
2086 /* Interface for defining coprocessor registers.
2087  * Registers are defined in tables of arm_cp_reginfo structs
2088  * which are passed to define_arm_cp_regs().
2089  */
2090 
2091 /* When looking up a coprocessor register we look for it
2092  * via an integer which encodes all of:
2093  *  coprocessor number
2094  *  Crn, Crm, opc1, opc2 fields
2095  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2096  *    or via MRRC/MCRR?)
2097  *  non-secure/secure bank (AArch32 only)
2098  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2099  * (In this case crn and opc2 should be zero.)
2100  * For AArch64, there is no 32/64 bit size distinction;
2101  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2102  * and 4 bit CRn and CRm. The encoding patterns are chosen
2103  * to be easy to convert to and from the KVM encodings, and also
2104  * so that the hashtable can contain both AArch32 and AArch64
2105  * registers (to allow for interprocessing where we might run
2106  * 32 bit code on a 64 bit core).
2107  */
2108 /* This bit is private to our hashtable cpreg; in KVM register
2109  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2110  * in the upper bits of the 64 bit ID.
2111  */
2112 #define CP_REG_AA64_SHIFT 28
2113 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2114 
2115 /* To enable banking of coprocessor registers depending on ns-bit we
2116  * add a bit to distinguish between secure and non-secure cpregs in the
2117  * hashtable.
2118  */
2119 #define CP_REG_NS_SHIFT 29
2120 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2121 
2122 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2123     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2124      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2125 
2126 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2127     (CP_REG_AA64_MASK |                                 \
2128      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2129      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2130      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2131      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2132      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2133      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2134 
2135 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2136  * version used as a key for the coprocessor register hashtable
2137  */
2138 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2139 {
2140     uint32_t cpregid = kvmid;
2141     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2142         cpregid |= CP_REG_AA64_MASK;
2143     } else {
2144         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2145             cpregid |= (1 << 15);
2146         }
2147 
2148         /* KVM is always non-secure so add the NS flag on AArch32 register
2149          * entries.
2150          */
2151          cpregid |= 1 << CP_REG_NS_SHIFT;
2152     }
2153     return cpregid;
2154 }
2155 
2156 /* Convert a truncated 32 bit hashtable key into the full
2157  * 64 bit KVM register ID.
2158  */
2159 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2160 {
2161     uint64_t kvmid;
2162 
2163     if (cpregid & CP_REG_AA64_MASK) {
2164         kvmid = cpregid & ~CP_REG_AA64_MASK;
2165         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2166     } else {
2167         kvmid = cpregid & ~(1 << 15);
2168         if (cpregid & (1 << 15)) {
2169             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2170         } else {
2171             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2172         }
2173     }
2174     return kvmid;
2175 }
2176 
2177 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2178  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2179  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2180  * TCG can assume the value to be constant (ie load at translate time)
2181  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2182  * indicates that the TB should not be ended after a write to this register
2183  * (the default is that the TB ends after cp writes). OVERRIDE permits
2184  * a register definition to override a previous definition for the
2185  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2186  * old must have the OVERRIDE bit set.
2187  * ALIAS indicates that this register is an alias view of some underlying
2188  * state which is also visible via another register, and that the other
2189  * register is handling migration and reset; registers marked ALIAS will not be
2190  * migrated but may have their state set by syncing of register state from KVM.
2191  * NO_RAW indicates that this register has no underlying state and does not
2192  * support raw access for state saving/loading; it will not be used for either
2193  * migration or KVM state synchronization. (Typically this is for "registers"
2194  * which are actually used as instructions for cache maintenance and so on.)
2195  * IO indicates that this register does I/O and therefore its accesses
2196  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2197  * registers which implement clocks or timers require this.
2198  */
2199 #define ARM_CP_SPECIAL           0x0001
2200 #define ARM_CP_CONST             0x0002
2201 #define ARM_CP_64BIT             0x0004
2202 #define ARM_CP_SUPPRESS_TB_END   0x0008
2203 #define ARM_CP_OVERRIDE          0x0010
2204 #define ARM_CP_ALIAS             0x0020
2205 #define ARM_CP_IO                0x0040
2206 #define ARM_CP_NO_RAW            0x0080
2207 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2208 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2209 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2210 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2211 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2212 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2213 #define ARM_CP_FPU               0x1000
2214 #define ARM_CP_SVE               0x2000
2215 #define ARM_CP_NO_GDB            0x4000
2216 /* Used only as a terminator for ARMCPRegInfo lists */
2217 #define ARM_CP_SENTINEL          0xffff
2218 /* Mask of only the flag bits in a type field */
2219 #define ARM_CP_FLAG_MASK         0x70ff
2220 
2221 /* Valid values for ARMCPRegInfo state field, indicating which of
2222  * the AArch32 and AArch64 execution states this register is visible in.
2223  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2224  * If the reginfo is declared to be visible in both states then a second
2225  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2226  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2227  * Note that we rely on the values of these enums as we iterate through
2228  * the various states in some places.
2229  */
2230 enum {
2231     ARM_CP_STATE_AA32 = 0,
2232     ARM_CP_STATE_AA64 = 1,
2233     ARM_CP_STATE_BOTH = 2,
2234 };
2235 
2236 /* ARM CP register secure state flags.  These flags identify security state
2237  * attributes for a given CP register entry.
2238  * The existence of both or neither secure and non-secure flags indicates that
2239  * the register has both a secure and non-secure hash entry.  A single one of
2240  * these flags causes the register to only be hashed for the specified
2241  * security state.
2242  * Although definitions may have any combination of the S/NS bits, each
2243  * registered entry will only have one to identify whether the entry is secure
2244  * or non-secure.
2245  */
2246 enum {
2247     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2248     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2249 };
2250 
2251 /* Return true if cptype is a valid type field. This is used to try to
2252  * catch errors where the sentinel has been accidentally left off the end
2253  * of a list of registers.
2254  */
2255 static inline bool cptype_valid(int cptype)
2256 {
2257     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2258         || ((cptype & ARM_CP_SPECIAL) &&
2259             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2260 }
2261 
2262 /* Access rights:
2263  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2264  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2265  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2266  * (ie any of the privileged modes in Secure state, or Monitor mode).
2267  * If a register is accessible in one privilege level it's always accessible
2268  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2269  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2270  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2271  * terminology a little and call this PL3.
2272  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2273  * with the ELx exception levels.
2274  *
2275  * If access permissions for a register are more complex than can be
2276  * described with these bits, then use a laxer set of restrictions, and
2277  * do the more restrictive/complex check inside a helper function.
2278  */
2279 #define PL3_R 0x80
2280 #define PL3_W 0x40
2281 #define PL2_R (0x20 | PL3_R)
2282 #define PL2_W (0x10 | PL3_W)
2283 #define PL1_R (0x08 | PL2_R)
2284 #define PL1_W (0x04 | PL2_W)
2285 #define PL0_R (0x02 | PL1_R)
2286 #define PL0_W (0x01 | PL1_W)
2287 
2288 /*
2289  * For user-mode some registers are accessible to EL0 via a kernel
2290  * trap-and-emulate ABI. In this case we define the read permissions
2291  * as actually being PL0_R. However some bits of any given register
2292  * may still be masked.
2293  */
2294 #ifdef CONFIG_USER_ONLY
2295 #define PL0U_R PL0_R
2296 #else
2297 #define PL0U_R PL1_R
2298 #endif
2299 
2300 #define PL3_RW (PL3_R | PL3_W)
2301 #define PL2_RW (PL2_R | PL2_W)
2302 #define PL1_RW (PL1_R | PL1_W)
2303 #define PL0_RW (PL0_R | PL0_W)
2304 
2305 /* Return the highest implemented Exception Level */
2306 static inline int arm_highest_el(CPUARMState *env)
2307 {
2308     if (arm_feature(env, ARM_FEATURE_EL3)) {
2309         return 3;
2310     }
2311     if (arm_feature(env, ARM_FEATURE_EL2)) {
2312         return 2;
2313     }
2314     return 1;
2315 }
2316 
2317 /* Return true if a v7M CPU is in Handler mode */
2318 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2319 {
2320     return env->v7m.exception != 0;
2321 }
2322 
2323 /* Return the current Exception Level (as per ARMv8; note that this differs
2324  * from the ARMv7 Privilege Level).
2325  */
2326 static inline int arm_current_el(CPUARMState *env)
2327 {
2328     if (arm_feature(env, ARM_FEATURE_M)) {
2329         return arm_v7m_is_handler_mode(env) ||
2330             !(env->v7m.control[env->v7m.secure] & 1);
2331     }
2332 
2333     if (is_a64(env)) {
2334         return extract32(env->pstate, 2, 2);
2335     }
2336 
2337     switch (env->uncached_cpsr & 0x1f) {
2338     case ARM_CPU_MODE_USR:
2339         return 0;
2340     case ARM_CPU_MODE_HYP:
2341         return 2;
2342     case ARM_CPU_MODE_MON:
2343         return 3;
2344     default:
2345         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2346             /* If EL3 is 32-bit then all secure privileged modes run in
2347              * EL3
2348              */
2349             return 3;
2350         }
2351 
2352         return 1;
2353     }
2354 }
2355 
2356 typedef struct ARMCPRegInfo ARMCPRegInfo;
2357 
2358 typedef enum CPAccessResult {
2359     /* Access is permitted */
2360     CP_ACCESS_OK = 0,
2361     /* Access fails due to a configurable trap or enable which would
2362      * result in a categorized exception syndrome giving information about
2363      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2364      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2365      * PL1 if in EL0, otherwise to the current EL).
2366      */
2367     CP_ACCESS_TRAP = 1,
2368     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2369      * Note that this is not a catch-all case -- the set of cases which may
2370      * result in this failure is specifically defined by the architecture.
2371      */
2372     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2373     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2374     CP_ACCESS_TRAP_EL2 = 3,
2375     CP_ACCESS_TRAP_EL3 = 4,
2376     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2377     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2378     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2379     /* Access fails and results in an exception syndrome for an FP access,
2380      * trapped directly to EL2 or EL3
2381      */
2382     CP_ACCESS_TRAP_FP_EL2 = 7,
2383     CP_ACCESS_TRAP_FP_EL3 = 8,
2384 } CPAccessResult;
2385 
2386 /* Access functions for coprocessor registers. These cannot fail and
2387  * may not raise exceptions.
2388  */
2389 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2390 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2391                        uint64_t value);
2392 /* Access permission check functions for coprocessor registers. */
2393 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2394                                   const ARMCPRegInfo *opaque,
2395                                   bool isread);
2396 /* Hook function for register reset */
2397 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2398 
2399 #define CP_ANY 0xff
2400 
2401 /* Definition of an ARM coprocessor register */
2402 struct ARMCPRegInfo {
2403     /* Name of register (useful mainly for debugging, need not be unique) */
2404     const char *name;
2405     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2406      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2407      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2408      * will be decoded to this register. The register read and write
2409      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2410      * used by the program, so it is possible to register a wildcard and
2411      * then behave differently on read/write if necessary.
2412      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2413      * must both be zero.
2414      * For AArch64-visible registers, opc0 is also used.
2415      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2416      * way to distinguish (for KVM's benefit) guest-visible system registers
2417      * from demuxed ones provided to preserve the "no side effects on
2418      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2419      * visible (to match KVM's encoding); cp==0 will be converted to
2420      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2421      */
2422     uint8_t cp;
2423     uint8_t crn;
2424     uint8_t crm;
2425     uint8_t opc0;
2426     uint8_t opc1;
2427     uint8_t opc2;
2428     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2429     int state;
2430     /* Register type: ARM_CP_* bits/values */
2431     int type;
2432     /* Access rights: PL*_[RW] */
2433     int access;
2434     /* Security state: ARM_CP_SECSTATE_* bits/values */
2435     int secure;
2436     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2437      * this register was defined: can be used to hand data through to the
2438      * register read/write functions, since they are passed the ARMCPRegInfo*.
2439      */
2440     void *opaque;
2441     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2442      * fieldoffset is non-zero, the reset value of the register.
2443      */
2444     uint64_t resetvalue;
2445     /* Offset of the field in CPUARMState for this register.
2446      *
2447      * This is not needed if either:
2448      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2449      *  2. both readfn and writefn are specified
2450      */
2451     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2452 
2453     /* Offsets of the secure and non-secure fields in CPUARMState for the
2454      * register if it is banked.  These fields are only used during the static
2455      * registration of a register.  During hashing the bank associated
2456      * with a given security state is copied to fieldoffset which is used from
2457      * there on out.
2458      *
2459      * It is expected that register definitions use either fieldoffset or
2460      * bank_fieldoffsets in the definition but not both.  It is also expected
2461      * that both bank offsets are set when defining a banked register.  This
2462      * use indicates that a register is banked.
2463      */
2464     ptrdiff_t bank_fieldoffsets[2];
2465 
2466     /* Function for making any access checks for this register in addition to
2467      * those specified by the 'access' permissions bits. If NULL, no extra
2468      * checks required. The access check is performed at runtime, not at
2469      * translate time.
2470      */
2471     CPAccessFn *accessfn;
2472     /* Function for handling reads of this register. If NULL, then reads
2473      * will be done by loading from the offset into CPUARMState specified
2474      * by fieldoffset.
2475      */
2476     CPReadFn *readfn;
2477     /* Function for handling writes of this register. If NULL, then writes
2478      * will be done by writing to the offset into CPUARMState specified
2479      * by fieldoffset.
2480      */
2481     CPWriteFn *writefn;
2482     /* Function for doing a "raw" read; used when we need to copy
2483      * coprocessor state to the kernel for KVM or out for
2484      * migration. This only needs to be provided if there is also a
2485      * readfn and it has side effects (for instance clear-on-read bits).
2486      */
2487     CPReadFn *raw_readfn;
2488     /* Function for doing a "raw" write; used when we need to copy KVM
2489      * kernel coprocessor state into userspace, or for inbound
2490      * migration. This only needs to be provided if there is also a
2491      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2492      * or similar behaviour.
2493      */
2494     CPWriteFn *raw_writefn;
2495     /* Function for resetting the register. If NULL, then reset will be done
2496      * by writing resetvalue to the field specified in fieldoffset. If
2497      * fieldoffset is 0 then no reset will be done.
2498      */
2499     CPResetFn *resetfn;
2500 };
2501 
2502 /* Macros which are lvalues for the field in CPUARMState for the
2503  * ARMCPRegInfo *ri.
2504  */
2505 #define CPREG_FIELD32(env, ri) \
2506     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2507 #define CPREG_FIELD64(env, ri) \
2508     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2509 
2510 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2511 
2512 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2513                                     const ARMCPRegInfo *regs, void *opaque);
2514 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2515                                        const ARMCPRegInfo *regs, void *opaque);
2516 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2517 {
2518     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2519 }
2520 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2521 {
2522     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2523 }
2524 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2525 
2526 /*
2527  * Definition of an ARM co-processor register as viewed from
2528  * userspace. This is used for presenting sanitised versions of
2529  * registers to userspace when emulating the Linux AArch64 CPU
2530  * ID/feature ABI (advertised as HWCAP_CPUID).
2531  */
2532 typedef struct ARMCPRegUserSpaceInfo {
2533     /* Name of register */
2534     const char *name;
2535 
2536     /* Is the name actually a glob pattern */
2537     bool is_glob;
2538 
2539     /* Only some bits are exported to user space */
2540     uint64_t exported_bits;
2541 
2542     /* Fixed bits are applied after the mask */
2543     uint64_t fixed_bits;
2544 } ARMCPRegUserSpaceInfo;
2545 
2546 #define REGUSERINFO_SENTINEL { .name = NULL }
2547 
2548 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2549 
2550 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2551 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2552                          uint64_t value);
2553 /* CPReadFn that can be used for read-as-zero behaviour */
2554 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2555 
2556 /* CPResetFn that does nothing, for use if no reset is required even
2557  * if fieldoffset is non zero.
2558  */
2559 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2560 
2561 /* Return true if this reginfo struct's field in the cpu state struct
2562  * is 64 bits wide.
2563  */
2564 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2565 {
2566     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2567 }
2568 
2569 static inline bool cp_access_ok(int current_el,
2570                                 const ARMCPRegInfo *ri, int isread)
2571 {
2572     return (ri->access >> ((current_el * 2) + isread)) & 1;
2573 }
2574 
2575 /* Raw read of a coprocessor register (as needed for migration, etc) */
2576 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2577 
2578 /**
2579  * write_list_to_cpustate
2580  * @cpu: ARMCPU
2581  *
2582  * For each register listed in the ARMCPU cpreg_indexes list, write
2583  * its value from the cpreg_values list into the ARMCPUState structure.
2584  * This updates TCG's working data structures from KVM data or
2585  * from incoming migration state.
2586  *
2587  * Returns: true if all register values were updated correctly,
2588  * false if some register was unknown or could not be written.
2589  * Note that we do not stop early on failure -- we will attempt
2590  * writing all registers in the list.
2591  */
2592 bool write_list_to_cpustate(ARMCPU *cpu);
2593 
2594 /**
2595  * write_cpustate_to_list:
2596  * @cpu: ARMCPU
2597  * @kvm_sync: true if this is for syncing back to KVM
2598  *
2599  * For each register listed in the ARMCPU cpreg_indexes list, write
2600  * its value from the ARMCPUState structure into the cpreg_values list.
2601  * This is used to copy info from TCG's working data structures into
2602  * KVM or for outbound migration.
2603  *
2604  * @kvm_sync is true if we are doing this in order to sync the
2605  * register state back to KVM. In this case we will only update
2606  * values in the list if the previous list->cpustate sync actually
2607  * successfully wrote the CPU state. Otherwise we will keep the value
2608  * that is in the list.
2609  *
2610  * Returns: true if all register values were read correctly,
2611  * false if some register was unknown or could not be read.
2612  * Note that we do not stop early on failure -- we will attempt
2613  * reading all registers in the list.
2614  */
2615 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2616 
2617 #define ARM_CPUID_TI915T      0x54029152
2618 #define ARM_CPUID_TI925T      0x54029252
2619 
2620 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2621                                      unsigned int target_el)
2622 {
2623     CPUARMState *env = cs->env_ptr;
2624     unsigned int cur_el = arm_current_el(env);
2625     bool secure = arm_is_secure(env);
2626     bool pstate_unmasked;
2627     int8_t unmasked = 0;
2628     uint64_t hcr_el2;
2629 
2630     /* Don't take exceptions if they target a lower EL.
2631      * This check should catch any exceptions that would not be taken but left
2632      * pending.
2633      */
2634     if (cur_el > target_el) {
2635         return false;
2636     }
2637 
2638     hcr_el2 = arm_hcr_el2_eff(env);
2639 
2640     switch (excp_idx) {
2641     case EXCP_FIQ:
2642         pstate_unmasked = !(env->daif & PSTATE_F);
2643         break;
2644 
2645     case EXCP_IRQ:
2646         pstate_unmasked = !(env->daif & PSTATE_I);
2647         break;
2648 
2649     case EXCP_VFIQ:
2650         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2651             /* VFIQs are only taken when hypervized and non-secure.  */
2652             return false;
2653         }
2654         return !(env->daif & PSTATE_F);
2655     case EXCP_VIRQ:
2656         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2657             /* VIRQs are only taken when hypervized and non-secure.  */
2658             return false;
2659         }
2660         return !(env->daif & PSTATE_I);
2661     default:
2662         g_assert_not_reached();
2663     }
2664 
2665     /* Use the target EL, current execution state and SCR/HCR settings to
2666      * determine whether the corresponding CPSR bit is used to mask the
2667      * interrupt.
2668      */
2669     if ((target_el > cur_el) && (target_el != 1)) {
2670         /* Exceptions targeting a higher EL may not be maskable */
2671         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2672             /* 64-bit masking rules are simple: exceptions to EL3
2673              * can't be masked, and exceptions to EL2 can only be
2674              * masked from Secure state. The HCR and SCR settings
2675              * don't affect the masking logic, only the interrupt routing.
2676              */
2677             if (target_el == 3 || !secure) {
2678                 unmasked = 1;
2679             }
2680         } else {
2681             /* The old 32-bit-only environment has a more complicated
2682              * masking setup. HCR and SCR bits not only affect interrupt
2683              * routing but also change the behaviour of masking.
2684              */
2685             bool hcr, scr;
2686 
2687             switch (excp_idx) {
2688             case EXCP_FIQ:
2689                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2690                  * we override the CPSR.F in determining if the exception is
2691                  * masked or not. If neither of these are set then we fall back
2692                  * to the CPSR.F setting otherwise we further assess the state
2693                  * below.
2694                  */
2695                 hcr = hcr_el2 & HCR_FMO;
2696                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2697 
2698                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2699                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2700                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2701                  * when non-secure but only when FIQs are only routed to EL3.
2702                  */
2703                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2704                 break;
2705             case EXCP_IRQ:
2706                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2707                  * we may override the CPSR.I masking when in non-secure state.
2708                  * The SCR.IRQ setting has already been taken into consideration
2709                  * when setting the target EL, so it does not have a further
2710                  * affect here.
2711                  */
2712                 hcr = hcr_el2 & HCR_IMO;
2713                 scr = false;
2714                 break;
2715             default:
2716                 g_assert_not_reached();
2717             }
2718 
2719             if ((scr || hcr) && !secure) {
2720                 unmasked = 1;
2721             }
2722         }
2723     }
2724 
2725     /* The PSTATE bits only mask the interrupt if we have not overriden the
2726      * ability above.
2727      */
2728     return unmasked || pstate_unmasked;
2729 }
2730 
2731 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2732 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2733 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2734 
2735 #define cpu_signal_handler cpu_arm_signal_handler
2736 #define cpu_list arm_cpu_list
2737 
2738 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2739  *
2740  * If EL3 is 64-bit:
2741  *  + NonSecure EL1 & 0 stage 1
2742  *  + NonSecure EL1 & 0 stage 2
2743  *  + NonSecure EL2
2744  *  + Secure EL1 & EL0
2745  *  + Secure EL3
2746  * If EL3 is 32-bit:
2747  *  + NonSecure PL1 & 0 stage 1
2748  *  + NonSecure PL1 & 0 stage 2
2749  *  + NonSecure PL2
2750  *  + Secure PL0 & PL1
2751  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2752  *
2753  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2754  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2755  *     may differ in access permissions even if the VA->PA map is the same
2756  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2757  *     translation, which means that we have one mmu_idx that deals with two
2758  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2759  *     architecturally permitted]
2760  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2761  *     handling via the TLB. The only way to do a stage 1 translation without
2762  *     the immediate stage 2 translation is via the ATS or AT system insns,
2763  *     which can be slow-pathed and always do a page table walk.
2764  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2765  *     translation regimes, because they map reasonably well to each other
2766  *     and they can't both be active at the same time.
2767  * This gives us the following list of mmu_idx values:
2768  *
2769  * NS EL0 (aka NS PL0) stage 1+2
2770  * NS EL1 (aka NS PL1) stage 1+2
2771  * NS EL2 (aka NS PL2)
2772  * S EL3 (aka S PL1)
2773  * S EL0 (aka S PL0)
2774  * S EL1 (not used if EL3 is 32 bit)
2775  * NS EL0+1 stage 2
2776  *
2777  * (The last of these is an mmu_idx because we want to be able to use the TLB
2778  * for the accesses done as part of a stage 1 page table walk, rather than
2779  * having to walk the stage 2 page table over and over.)
2780  *
2781  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2782  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2783  * NS EL2 if we ever model a Cortex-R52).
2784  *
2785  * M profile CPUs are rather different as they do not have a true MMU.
2786  * They have the following different MMU indexes:
2787  *  User
2788  *  Privileged
2789  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2790  *  Privileged, execution priority negative (ditto)
2791  * If the CPU supports the v8M Security Extension then there are also:
2792  *  Secure User
2793  *  Secure Privileged
2794  *  Secure User, execution priority negative
2795  *  Secure Privileged, execution priority negative
2796  *
2797  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2798  * are not quite the same -- different CPU types (most notably M profile
2799  * vs A/R profile) would like to use MMU indexes with different semantics,
2800  * but since we don't ever need to use all of those in a single CPU we
2801  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2802  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2803  * the same for any particular CPU.
2804  * Variables of type ARMMUIdx are always full values, and the core
2805  * index values are in variables of type 'int'.
2806  *
2807  * Our enumeration includes at the end some entries which are not "true"
2808  * mmu_idx values in that they don't have corresponding TLBs and are only
2809  * valid for doing slow path page table walks.
2810  *
2811  * The constant names here are patterned after the general style of the names
2812  * of the AT/ATS operations.
2813  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2814  * For M profile we arrange them to have a bit for priv, a bit for negpri
2815  * and a bit for secure.
2816  */
2817 #define ARM_MMU_IDX_A 0x10 /* A profile */
2818 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2819 #define ARM_MMU_IDX_M 0x40 /* M profile */
2820 
2821 /* meanings of the bits for M profile mmu idx values */
2822 #define ARM_MMU_IDX_M_PRIV 0x1
2823 #define ARM_MMU_IDX_M_NEGPRI 0x2
2824 #define ARM_MMU_IDX_M_S 0x4
2825 
2826 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2827 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2828 
2829 typedef enum ARMMMUIdx {
2830     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2831     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2832     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2833     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2834     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2835     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2836     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2837     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2838     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2839     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2840     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2841     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2842     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2843     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2844     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2845     /* Indexes below here don't have TLBs and are used only for AT system
2846      * instructions or for the first stage of an S12 page table walk.
2847      */
2848     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2849     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2850 } ARMMMUIdx;
2851 
2852 /* Bit macros for the core-mmu-index values for each index,
2853  * for use when calling tlb_flush_by_mmuidx() and friends.
2854  */
2855 typedef enum ARMMMUIdxBit {
2856     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2857     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2858     ARMMMUIdxBit_S1E2 = 1 << 2,
2859     ARMMMUIdxBit_S1E3 = 1 << 3,
2860     ARMMMUIdxBit_S1SE0 = 1 << 4,
2861     ARMMMUIdxBit_S1SE1 = 1 << 5,
2862     ARMMMUIdxBit_S2NS = 1 << 6,
2863     ARMMMUIdxBit_MUser = 1 << 0,
2864     ARMMMUIdxBit_MPriv = 1 << 1,
2865     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2866     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2867     ARMMMUIdxBit_MSUser = 1 << 4,
2868     ARMMMUIdxBit_MSPriv = 1 << 5,
2869     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2870     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2871 } ARMMMUIdxBit;
2872 
2873 #define MMU_USER_IDX 0
2874 
2875 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2876 {
2877     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2878 }
2879 
2880 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2881 {
2882     if (arm_feature(env, ARM_FEATURE_M)) {
2883         return mmu_idx | ARM_MMU_IDX_M;
2884     } else {
2885         return mmu_idx | ARM_MMU_IDX_A;
2886     }
2887 }
2888 
2889 /* Return the exception level we're running at if this is our mmu_idx */
2890 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2891 {
2892     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2893     case ARM_MMU_IDX_A:
2894         return mmu_idx & 3;
2895     case ARM_MMU_IDX_M:
2896         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2897     default:
2898         g_assert_not_reached();
2899     }
2900 }
2901 
2902 /*
2903  * Return the MMU index for a v7M CPU with all relevant information
2904  * manually specified.
2905  */
2906 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2907                               bool secstate, bool priv, bool negpri);
2908 
2909 /* Return the MMU index for a v7M CPU in the specified security and
2910  * privilege state.
2911  */
2912 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2913                                                 bool secstate, bool priv);
2914 
2915 /* Return the MMU index for a v7M CPU in the specified security state */
2916 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2917 
2918 /**
2919  * cpu_mmu_index:
2920  * @env: The cpu environment
2921  * @ifetch: True for code access, false for data access.
2922  *
2923  * Return the core mmu index for the current translation regime.
2924  * This function is used by generic TCG code paths.
2925  */
2926 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2927 
2928 /* Indexes used when registering address spaces with cpu_address_space_init */
2929 typedef enum ARMASIdx {
2930     ARMASIdx_NS = 0,
2931     ARMASIdx_S = 1,
2932 } ARMASIdx;
2933 
2934 /* Return the Exception Level targeted by debug exceptions. */
2935 static inline int arm_debug_target_el(CPUARMState *env)
2936 {
2937     bool secure = arm_is_secure(env);
2938     bool route_to_el2 = false;
2939 
2940     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2941         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2942                        env->cp15.mdcr_el2 & MDCR_TDE;
2943     }
2944 
2945     if (route_to_el2) {
2946         return 2;
2947     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2948                !arm_el_is_aa64(env, 3) && secure) {
2949         return 3;
2950     } else {
2951         return 1;
2952     }
2953 }
2954 
2955 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2956 {
2957     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2958      * CSSELR is RAZ/WI.
2959      */
2960     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2961 }
2962 
2963 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2964 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2965 {
2966     int cur_el = arm_current_el(env);
2967     int debug_el;
2968 
2969     if (cur_el == 3) {
2970         return false;
2971     }
2972 
2973     /* MDCR_EL3.SDD disables debug events from Secure state */
2974     if (arm_is_secure_below_el3(env)
2975         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2976         return false;
2977     }
2978 
2979     /*
2980      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2981      * while not masking the (D)ebug bit in DAIF.
2982      */
2983     debug_el = arm_debug_target_el(env);
2984 
2985     if (cur_el == debug_el) {
2986         return extract32(env->cp15.mdscr_el1, 13, 1)
2987             && !(env->daif & PSTATE_D);
2988     }
2989 
2990     /* Otherwise the debug target needs to be a higher EL */
2991     return debug_el > cur_el;
2992 }
2993 
2994 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2995 {
2996     int el = arm_current_el(env);
2997 
2998     if (el == 0 && arm_el_is_aa64(env, 1)) {
2999         return aa64_generate_debug_exceptions(env);
3000     }
3001 
3002     if (arm_is_secure(env)) {
3003         int spd;
3004 
3005         if (el == 0 && (env->cp15.sder & 1)) {
3006             /* SDER.SUIDEN means debug exceptions from Secure EL0
3007              * are always enabled. Otherwise they are controlled by
3008              * SDCR.SPD like those from other Secure ELs.
3009              */
3010             return true;
3011         }
3012 
3013         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3014         switch (spd) {
3015         case 1:
3016             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3017         case 0:
3018             /* For 0b00 we return true if external secure invasive debug
3019              * is enabled. On real hardware this is controlled by external
3020              * signals to the core. QEMU always permits debug, and behaves
3021              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3022              */
3023             return true;
3024         case 2:
3025             return false;
3026         case 3:
3027             return true;
3028         }
3029     }
3030 
3031     return el != 2;
3032 }
3033 
3034 /* Return true if debugging exceptions are currently enabled.
3035  * This corresponds to what in ARM ARM pseudocode would be
3036  *    if UsingAArch32() then
3037  *        return AArch32.GenerateDebugExceptions()
3038  *    else
3039  *        return AArch64.GenerateDebugExceptions()
3040  * We choose to push the if() down into this function for clarity,
3041  * since the pseudocode has it at all callsites except for the one in
3042  * CheckSoftwareStep(), where it is elided because both branches would
3043  * always return the same value.
3044  */
3045 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3046 {
3047     if (env->aarch64) {
3048         return aa64_generate_debug_exceptions(env);
3049     } else {
3050         return aa32_generate_debug_exceptions(env);
3051     }
3052 }
3053 
3054 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3055  * implicitly means this always returns false in pre-v8 CPUs.)
3056  */
3057 static inline bool arm_singlestep_active(CPUARMState *env)
3058 {
3059     return extract32(env->cp15.mdscr_el1, 0, 1)
3060         && arm_el_is_aa64(env, arm_debug_target_el(env))
3061         && arm_generate_debug_exceptions(env);
3062 }
3063 
3064 static inline bool arm_sctlr_b(CPUARMState *env)
3065 {
3066     return
3067         /* We need not implement SCTLR.ITD in user-mode emulation, so
3068          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3069          * This lets people run BE32 binaries with "-cpu any".
3070          */
3071 #ifndef CONFIG_USER_ONLY
3072         !arm_feature(env, ARM_FEATURE_V7) &&
3073 #endif
3074         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3075 }
3076 
3077 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3078 {
3079     if (el == 0) {
3080         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3081         return env->cp15.sctlr_el[1];
3082     } else {
3083         return env->cp15.sctlr_el[el];
3084     }
3085 }
3086 
3087 
3088 /* Return true if the processor is in big-endian mode. */
3089 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3090 {
3091     /* In 32bit endianness is determined by looking at CPSR's E bit */
3092     if (!is_a64(env)) {
3093         return
3094 #ifdef CONFIG_USER_ONLY
3095             /* In system mode, BE32 is modelled in line with the
3096              * architecture (as word-invariant big-endianness), where loads
3097              * and stores are done little endian but from addresses which
3098              * are adjusted by XORing with the appropriate constant. So the
3099              * endianness to use for the raw data access is not affected by
3100              * SCTLR.B.
3101              * In user mode, however, we model BE32 as byte-invariant
3102              * big-endianness (because user-only code cannot tell the
3103              * difference), and so we need to use a data access endianness
3104              * that depends on SCTLR.B.
3105              */
3106             arm_sctlr_b(env) ||
3107 #endif
3108                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3109     } else {
3110         int cur_el = arm_current_el(env);
3111         uint64_t sctlr = arm_sctlr(env, cur_el);
3112 
3113         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3114     }
3115 }
3116 
3117 typedef CPUARMState CPUArchState;
3118 typedef ARMCPU ArchCPU;
3119 
3120 #include "exec/cpu-all.h"
3121 
3122 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3123  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3124  * We put flags which are shared between 32 and 64 bit mode at the top
3125  * of the word, and flags which apply to only one mode at the bottom.
3126  */
3127 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3128 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3129 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3130 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3131 /* Target EL if we take a floating-point-disabled exception */
3132 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3133 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3134 
3135 /* Bit usage when in AArch32 state: */
3136 FIELD(TBFLAG_A32, THUMB, 0, 1)
3137 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3138 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3139 /*
3140  * We store the bottom two bits of the CPAR as TB flags and handle
3141  * checks on the other bits at runtime. This shares the same bits as
3142  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3143  */
3144 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3145 /*
3146  * Indicates whether cp register reads and writes by guest code should access
3147  * the secure or nonsecure bank of banked registers; note that this is not
3148  * the same thing as the current security state of the processor!
3149  */
3150 FIELD(TBFLAG_A32, NS, 6, 1)
3151 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3152 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3153 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3154 /* For M profile only, set if FPCCR.LSPACT is set */
3155 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3156 /* For M profile only, set if we must create a new FP context */
3157 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3158 /* For M profile only, set if FPCCR.S does not match current security state */
3159 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3160 /* For M profile only, Handler (ie not Thread) mode */
3161 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3162 /* For M profile only, whether we should generate stack-limit checks */
3163 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3164 
3165 /* Bit usage when in AArch64 state */
3166 FIELD(TBFLAG_A64, TBII, 0, 2)
3167 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3168 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3169 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3170 FIELD(TBFLAG_A64, BT, 9, 1)
3171 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3172 FIELD(TBFLAG_A64, TBID, 12, 2)
3173 
3174 static inline bool bswap_code(bool sctlr_b)
3175 {
3176 #ifdef CONFIG_USER_ONLY
3177     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3178      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3179      * would also end up as a mixed-endian mode with BE code, LE data.
3180      */
3181     return
3182 #ifdef TARGET_WORDS_BIGENDIAN
3183         1 ^
3184 #endif
3185         sctlr_b;
3186 #else
3187     /* All code access in ARM is little endian, and there are no loaders
3188      * doing swaps that need to be reversed
3189      */
3190     return 0;
3191 #endif
3192 }
3193 
3194 #ifdef CONFIG_USER_ONLY
3195 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3196 {
3197     return
3198 #ifdef TARGET_WORDS_BIGENDIAN
3199        1 ^
3200 #endif
3201        arm_cpu_data_is_big_endian(env);
3202 }
3203 #endif
3204 
3205 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3206                           target_ulong *cs_base, uint32_t *flags);
3207 
3208 enum {
3209     QEMU_PSCI_CONDUIT_DISABLED = 0,
3210     QEMU_PSCI_CONDUIT_SMC = 1,
3211     QEMU_PSCI_CONDUIT_HVC = 2,
3212 };
3213 
3214 #ifndef CONFIG_USER_ONLY
3215 /* Return the address space index to use for a memory access */
3216 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3217 {
3218     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3219 }
3220 
3221 /* Return the AddressSpace to use for a memory access
3222  * (which depends on whether the access is S or NS, and whether
3223  * the board gave us a separate AddressSpace for S accesses).
3224  */
3225 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3226 {
3227     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3228 }
3229 #endif
3230 
3231 /**
3232  * arm_register_pre_el_change_hook:
3233  * Register a hook function which will be called immediately before this
3234  * CPU changes exception level or mode. The hook function will be
3235  * passed a pointer to the ARMCPU and the opaque data pointer passed
3236  * to this function when the hook was registered.
3237  *
3238  * Note that if a pre-change hook is called, any registered post-change hooks
3239  * are guaranteed to subsequently be called.
3240  */
3241 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3242                                  void *opaque);
3243 /**
3244  * arm_register_el_change_hook:
3245  * Register a hook function which will be called immediately after this
3246  * CPU changes exception level or mode. The hook function will be
3247  * passed a pointer to the ARMCPU and the opaque data pointer passed
3248  * to this function when the hook was registered.
3249  *
3250  * Note that any registered hooks registered here are guaranteed to be called
3251  * if pre-change hooks have been.
3252  */
3253 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3254         *opaque);
3255 
3256 /**
3257  * aa32_vfp_dreg:
3258  * Return a pointer to the Dn register within env in 32-bit mode.
3259  */
3260 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3261 {
3262     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3263 }
3264 
3265 /**
3266  * aa32_vfp_qreg:
3267  * Return a pointer to the Qn register within env in 32-bit mode.
3268  */
3269 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3270 {
3271     return &env->vfp.zregs[regno].d[0];
3272 }
3273 
3274 /**
3275  * aa64_vfp_qreg:
3276  * Return a pointer to the Qn register within env in 64-bit mode.
3277  */
3278 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3279 {
3280     return &env->vfp.zregs[regno].d[0];
3281 }
3282 
3283 /* Shared between translate-sve.c and sve_helper.c.  */
3284 extern const uint64_t pred_esz_masks[4];
3285 
3286 /*
3287  * 32-bit feature tests via id registers.
3288  */
3289 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3290 {
3291     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3292 }
3293 
3294 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3295 {
3296     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3297 }
3298 
3299 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3300 {
3301     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3302 }
3303 
3304 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3305 {
3306     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3307 }
3308 
3309 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3310 {
3311     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3312 }
3313 
3314 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3315 {
3316     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3317 }
3318 
3319 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3320 {
3321     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3322 }
3323 
3324 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3325 {
3326     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3327 }
3328 
3329 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3330 {
3331     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3332 }
3333 
3334 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3335 {
3336     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3337 }
3338 
3339 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3340 {
3341     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3342 }
3343 
3344 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3345 {
3346     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3347 }
3348 
3349 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3350 {
3351     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3352 }
3353 
3354 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3355 {
3356     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3357 }
3358 
3359 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3360 {
3361     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3362 }
3363 
3364 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3365 {
3366     /*
3367      * This is a placeholder for use by VCMA until the rest of
3368      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3369      * At which point we can properly set and check MVFR1.FPHP.
3370      */
3371     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3372 }
3373 
3374 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3375 {
3376     /* Return true if D16-D31 are implemented */
3377     return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3378 }
3379 
3380 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3381 {
3382     return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3383 }
3384 
3385 /*
3386  * We always set the FP and SIMD FP16 fields to indicate identical
3387  * levels of support (assuming SIMD is implemented at all), so
3388  * we only need one set of accessors.
3389  */
3390 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3391 {
3392     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3393 }
3394 
3395 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3396 {
3397     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3398 }
3399 
3400 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3401 {
3402     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3403 }
3404 
3405 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3406 {
3407     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3408 }
3409 
3410 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3411 {
3412     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3413 }
3414 
3415 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3416 {
3417     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3418 }
3419 
3420 /*
3421  * 64-bit feature tests via id registers.
3422  */
3423 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3424 {
3425     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3426 }
3427 
3428 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3429 {
3430     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3431 }
3432 
3433 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3434 {
3435     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3436 }
3437 
3438 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3439 {
3440     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3441 }
3442 
3443 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3444 {
3445     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3446 }
3447 
3448 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3449 {
3450     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3451 }
3452 
3453 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3454 {
3455     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3456 }
3457 
3458 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3459 {
3460     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3461 }
3462 
3463 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3464 {
3465     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3466 }
3467 
3468 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3469 {
3470     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3471 }
3472 
3473 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3474 {
3475     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3476 }
3477 
3478 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3479 {
3480     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3481 }
3482 
3483 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3484 {
3485     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3486 }
3487 
3488 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3489 {
3490     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3491 }
3492 
3493 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3494 {
3495     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3496 }
3497 
3498 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3499 {
3500     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3501 }
3502 
3503 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3504 {
3505     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3506 }
3507 
3508 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3509 {
3510     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3511 }
3512 
3513 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3514 {
3515     /*
3516      * Note that while QEMU will only implement the architected algorithm
3517      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3518      * defined algorithms, and thus API+GPI, and this predicate controls
3519      * migration of the 128-bit keys.
3520      */
3521     return (id->id_aa64isar1 &
3522             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3523              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3524              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3525              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3526 }
3527 
3528 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3529 {
3530     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3531 }
3532 
3533 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3534 {
3535     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3536 }
3537 
3538 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3539 {
3540     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3541 }
3542 
3543 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3544 {
3545     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3546     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3547 }
3548 
3549 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3550 {
3551     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3552 }
3553 
3554 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3555 {
3556     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3557 }
3558 
3559 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3560 {
3561     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3562 }
3563 
3564 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3565 {
3566     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3567 }
3568 
3569 /*
3570  * Forward to the above feature tests given an ARMCPU pointer.
3571  */
3572 #define cpu_isar_feature(name, cpu) \
3573     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3574 
3575 #endif
3576