1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 28 /* ARM processors have a weak memory model */ 29 #define TCG_GUEST_DEFAULT_MO (0) 30 31 #define EXCP_UDEF 1 /* undefined instruction */ 32 #define EXCP_SWI 2 /* software interrupt */ 33 #define EXCP_PREFETCH_ABORT 3 34 #define EXCP_DATA_ABORT 4 35 #define EXCP_IRQ 5 36 #define EXCP_FIQ 6 37 #define EXCP_BKPT 7 38 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 39 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 40 #define EXCP_HVC 11 /* HyperVisor Call */ 41 #define EXCP_HYP_TRAP 12 42 #define EXCP_SMC 13 /* Secure Monitor Call */ 43 #define EXCP_VIRQ 14 44 #define EXCP_VFIQ 15 45 #define EXCP_SEMIHOST 16 /* semihosting call */ 46 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 47 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 48 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 49 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 50 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 51 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 53 54 #define ARMV7M_EXCP_RESET 1 55 #define ARMV7M_EXCP_NMI 2 56 #define ARMV7M_EXCP_HARD 3 57 #define ARMV7M_EXCP_MEM 4 58 #define ARMV7M_EXCP_BUS 5 59 #define ARMV7M_EXCP_USAGE 6 60 #define ARMV7M_EXCP_SECURE 7 61 #define ARMV7M_EXCP_SVC 11 62 #define ARMV7M_EXCP_DEBUG 12 63 #define ARMV7M_EXCP_PENDSV 14 64 #define ARMV7M_EXCP_SYSTICK 15 65 66 /* For M profile, some registers are banked secure vs non-secure; 67 * these are represented as a 2-element array where the first element 68 * is the non-secure copy and the second is the secure copy. 69 * When the CPU does not have implement the security extension then 70 * only the first element is used. 71 * This means that the copy for the current security state can be 72 * accessed via env->registerfield[env->v7m.secure] (whether the security 73 * extension is implemented or not). 74 */ 75 enum { 76 M_REG_NS = 0, 77 M_REG_S = 1, 78 M_REG_NUM_BANKS = 2, 79 }; 80 81 /* ARM-specific interrupt pending bits. */ 82 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 83 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 84 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 85 86 /* The usual mapping for an AArch64 system register to its AArch32 87 * counterpart is for the 32 bit world to have access to the lower 88 * half only (with writes leaving the upper half untouched). It's 89 * therefore useful to be able to pass TCG the offset of the least 90 * significant half of a uint64_t struct member. 91 */ 92 #ifdef HOST_WORDS_BIGENDIAN 93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 94 #define offsetofhigh32(S, M) offsetof(S, M) 95 #else 96 #define offsetoflow32(S, M) offsetof(S, M) 97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 98 #endif 99 100 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 101 #define ARM_CPU_IRQ 0 102 #define ARM_CPU_FIQ 1 103 #define ARM_CPU_VIRQ 2 104 #define ARM_CPU_VFIQ 3 105 106 /* ARM-specific extra insn start words: 107 * 1: Conditional execution bits 108 * 2: Partial exception syndrome for data aborts 109 */ 110 #define TARGET_INSN_START_EXTRA_WORDS 2 111 112 /* The 2nd extra word holding syndrome info for data aborts does not use 113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 114 * help the sleb128 encoder do a better job. 115 * When restoring the CPU state, we shift it back up. 116 */ 117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 118 #define ARM_INSN_START_WORD2_SHIFT 14 119 120 /* We currently assume float and double are IEEE single and double 121 precision respectively. 122 Doing runtime conversions is tricky because VFP registers may contain 123 integer values (eg. as the result of a FTOSI instruction). 124 s<2n> maps to the least significant half of d<n> 125 s<2n+1> maps to the most significant half of d<n> 126 */ 127 128 /** 129 * DynamicGDBXMLInfo: 130 * @desc: Contains the XML descriptions. 131 * @num_cpregs: Number of the Coprocessor registers seen by GDB. 132 * @cpregs_keys: Array that contains the corresponding Key of 133 * a given cpreg with the same order of the cpreg in the XML description. 134 */ 135 typedef struct DynamicGDBXMLInfo { 136 char *desc; 137 int num_cpregs; 138 uint32_t *cpregs_keys; 139 } DynamicGDBXMLInfo; 140 141 /* CPU state for each instance of a generic timer (in cp15 c14) */ 142 typedef struct ARMGenericTimer { 143 uint64_t cval; /* Timer CompareValue register */ 144 uint64_t ctl; /* Timer Control register */ 145 } ARMGenericTimer; 146 147 #define GTIMER_PHYS 0 148 #define GTIMER_VIRT 1 149 #define GTIMER_HYP 2 150 #define GTIMER_SEC 3 151 #define NUM_GTIMERS 4 152 153 typedef struct { 154 uint64_t raw_tcr; 155 uint32_t mask; 156 uint32_t base_mask; 157 } TCR; 158 159 /* Define a maximum sized vector register. 160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 161 * For 64-bit, this is a 2048-bit SVE register. 162 * 163 * Note that the mapping between S, D, and Q views of the register bank 164 * differs between AArch64 and AArch32. 165 * In AArch32: 166 * Qn = regs[n].d[1]:regs[n].d[0] 167 * Dn = regs[n / 2].d[n & 1] 168 * Sn = regs[n / 4].d[n % 4 / 2], 169 * bits 31..0 for even n, and bits 63..32 for odd n 170 * (and regs[16] to regs[31] are inaccessible) 171 * In AArch64: 172 * Zn = regs[n].d[*] 173 * Qn = regs[n].d[1]:regs[n].d[0] 174 * Dn = regs[n].d[0] 175 * Sn = regs[n].d[0] bits 31..0 176 * Hn = regs[n].d[0] bits 15..0 177 * 178 * This corresponds to the architecturally defined mapping between 179 * the two execution states, and means we do not need to explicitly 180 * map these registers when changing states. 181 * 182 * Align the data for use with TCG host vector operations. 183 */ 184 185 #ifdef TARGET_AARCH64 186 # define ARM_MAX_VQ 16 187 #else 188 # define ARM_MAX_VQ 1 189 #endif 190 191 typedef struct ARMVectorReg { 192 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 193 } ARMVectorReg; 194 195 #ifdef TARGET_AARCH64 196 /* In AArch32 mode, predicate registers do not exist at all. */ 197 typedef struct ARMPredicateReg { 198 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16); 199 } ARMPredicateReg; 200 201 /* In AArch32 mode, PAC keys do not exist at all. */ 202 typedef struct ARMPACKey { 203 uint64_t lo, hi; 204 } ARMPACKey; 205 #endif 206 207 208 typedef struct CPUARMState { 209 /* Regs for current mode. */ 210 uint32_t regs[16]; 211 212 /* 32/64 switch only happens when taking and returning from 213 * exceptions so the overlap semantics are taken care of then 214 * instead of having a complicated union. 215 */ 216 /* Regs for A64 mode. */ 217 uint64_t xregs[32]; 218 uint64_t pc; 219 /* PSTATE isn't an architectural register for ARMv8. However, it is 220 * convenient for us to assemble the underlying state into a 32 bit format 221 * identical to the architectural format used for the SPSR. (This is also 222 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 223 * 'pstate' register are.) Of the PSTATE bits: 224 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 225 * semantics as for AArch32, as described in the comments on each field) 226 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 227 * DAIF (exception masks) are kept in env->daif 228 * BTYPE is kept in env->btype 229 * all other bits are stored in their correct places in env->pstate 230 */ 231 uint32_t pstate; 232 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 233 234 /* Frequently accessed CPSR bits are stored separately for efficiency. 235 This contains all the other bits. Use cpsr_{read,write} to access 236 the whole CPSR. */ 237 uint32_t uncached_cpsr; 238 uint32_t spsr; 239 240 /* Banked registers. */ 241 uint64_t banked_spsr[8]; 242 uint32_t banked_r13[8]; 243 uint32_t banked_r14[8]; 244 245 /* These hold r8-r12. */ 246 uint32_t usr_regs[5]; 247 uint32_t fiq_regs[5]; 248 249 /* cpsr flag cache for faster execution */ 250 uint32_t CF; /* 0 or 1 */ 251 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 252 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 253 uint32_t ZF; /* Z set if zero. */ 254 uint32_t QF; /* 0 or 1 */ 255 uint32_t GE; /* cpsr[19:16] */ 256 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 257 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 258 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 259 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 260 261 uint64_t elr_el[4]; /* AArch64 exception link regs */ 262 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 263 264 /* System control coprocessor (cp15) */ 265 struct { 266 uint32_t c0_cpuid; 267 union { /* Cache size selection */ 268 struct { 269 uint64_t _unused_csselr0; 270 uint64_t csselr_ns; 271 uint64_t _unused_csselr1; 272 uint64_t csselr_s; 273 }; 274 uint64_t csselr_el[4]; 275 }; 276 union { /* System control register. */ 277 struct { 278 uint64_t _unused_sctlr; 279 uint64_t sctlr_ns; 280 uint64_t hsctlr; 281 uint64_t sctlr_s; 282 }; 283 uint64_t sctlr_el[4]; 284 }; 285 uint64_t cpacr_el1; /* Architectural feature access control register */ 286 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 287 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 288 uint64_t sder; /* Secure debug enable register. */ 289 uint32_t nsacr; /* Non-secure access control register. */ 290 union { /* MMU translation table base 0. */ 291 struct { 292 uint64_t _unused_ttbr0_0; 293 uint64_t ttbr0_ns; 294 uint64_t _unused_ttbr0_1; 295 uint64_t ttbr0_s; 296 }; 297 uint64_t ttbr0_el[4]; 298 }; 299 union { /* MMU translation table base 1. */ 300 struct { 301 uint64_t _unused_ttbr1_0; 302 uint64_t ttbr1_ns; 303 uint64_t _unused_ttbr1_1; 304 uint64_t ttbr1_s; 305 }; 306 uint64_t ttbr1_el[4]; 307 }; 308 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 309 /* MMU translation table base control. */ 310 TCR tcr_el[4]; 311 TCR vtcr_el2; /* Virtualization Translation Control. */ 312 uint32_t c2_data; /* MPU data cacheable bits. */ 313 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 314 union { /* MMU domain access control register 315 * MPU write buffer control. 316 */ 317 struct { 318 uint64_t dacr_ns; 319 uint64_t dacr_s; 320 }; 321 struct { 322 uint64_t dacr32_el2; 323 }; 324 }; 325 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 326 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 327 uint64_t hcr_el2; /* Hypervisor configuration register */ 328 uint64_t scr_el3; /* Secure configuration register. */ 329 union { /* Fault status registers. */ 330 struct { 331 uint64_t ifsr_ns; 332 uint64_t ifsr_s; 333 }; 334 struct { 335 uint64_t ifsr32_el2; 336 }; 337 }; 338 union { 339 struct { 340 uint64_t _unused_dfsr; 341 uint64_t dfsr_ns; 342 uint64_t hsr; 343 uint64_t dfsr_s; 344 }; 345 uint64_t esr_el[4]; 346 }; 347 uint32_t c6_region[8]; /* MPU base/size registers. */ 348 union { /* Fault address registers. */ 349 struct { 350 uint64_t _unused_far0; 351 #ifdef HOST_WORDS_BIGENDIAN 352 uint32_t ifar_ns; 353 uint32_t dfar_ns; 354 uint32_t ifar_s; 355 uint32_t dfar_s; 356 #else 357 uint32_t dfar_ns; 358 uint32_t ifar_ns; 359 uint32_t dfar_s; 360 uint32_t ifar_s; 361 #endif 362 uint64_t _unused_far3; 363 }; 364 uint64_t far_el[4]; 365 }; 366 uint64_t hpfar_el2; 367 uint64_t hstr_el2; 368 union { /* Translation result. */ 369 struct { 370 uint64_t _unused_par_0; 371 uint64_t par_ns; 372 uint64_t _unused_par_1; 373 uint64_t par_s; 374 }; 375 uint64_t par_el[4]; 376 }; 377 378 uint32_t c9_insn; /* Cache lockdown registers. */ 379 uint32_t c9_data; 380 uint64_t c9_pmcr; /* performance monitor control register */ 381 uint64_t c9_pmcnten; /* perf monitor counter enables */ 382 uint64_t c9_pmovsr; /* perf monitor overflow status */ 383 uint64_t c9_pmuserenr; /* perf monitor user enable */ 384 uint64_t c9_pmselr; /* perf monitor counter selection register */ 385 uint64_t c9_pminten; /* perf monitor interrupt enables */ 386 union { /* Memory attribute redirection */ 387 struct { 388 #ifdef HOST_WORDS_BIGENDIAN 389 uint64_t _unused_mair_0; 390 uint32_t mair1_ns; 391 uint32_t mair0_ns; 392 uint64_t _unused_mair_1; 393 uint32_t mair1_s; 394 uint32_t mair0_s; 395 #else 396 uint64_t _unused_mair_0; 397 uint32_t mair0_ns; 398 uint32_t mair1_ns; 399 uint64_t _unused_mair_1; 400 uint32_t mair0_s; 401 uint32_t mair1_s; 402 #endif 403 }; 404 uint64_t mair_el[4]; 405 }; 406 union { /* vector base address register */ 407 struct { 408 uint64_t _unused_vbar; 409 uint64_t vbar_ns; 410 uint64_t hvbar; 411 uint64_t vbar_s; 412 }; 413 uint64_t vbar_el[4]; 414 }; 415 uint32_t mvbar; /* (monitor) vector base address register */ 416 struct { /* FCSE PID. */ 417 uint32_t fcseidr_ns; 418 uint32_t fcseidr_s; 419 }; 420 union { /* Context ID. */ 421 struct { 422 uint64_t _unused_contextidr_0; 423 uint64_t contextidr_ns; 424 uint64_t _unused_contextidr_1; 425 uint64_t contextidr_s; 426 }; 427 uint64_t contextidr_el[4]; 428 }; 429 union { /* User RW Thread register. */ 430 struct { 431 uint64_t tpidrurw_ns; 432 uint64_t tpidrprw_ns; 433 uint64_t htpidr; 434 uint64_t _tpidr_el3; 435 }; 436 uint64_t tpidr_el[4]; 437 }; 438 /* The secure banks of these registers don't map anywhere */ 439 uint64_t tpidrurw_s; 440 uint64_t tpidrprw_s; 441 uint64_t tpidruro_s; 442 443 union { /* User RO Thread register. */ 444 uint64_t tpidruro_ns; 445 uint64_t tpidrro_el[1]; 446 }; 447 uint64_t c14_cntfrq; /* Counter Frequency register */ 448 uint64_t c14_cntkctl; /* Timer Control register */ 449 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 450 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 451 ARMGenericTimer c14_timer[NUM_GTIMERS]; 452 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 453 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 454 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 455 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 456 uint32_t c15_threadid; /* TI debugger thread-ID. */ 457 uint32_t c15_config_base_address; /* SCU base address. */ 458 uint32_t c15_diagnostic; /* diagnostic register */ 459 uint32_t c15_power_diagnostic; 460 uint32_t c15_power_control; /* power control */ 461 uint64_t dbgbvr[16]; /* breakpoint value registers */ 462 uint64_t dbgbcr[16]; /* breakpoint control registers */ 463 uint64_t dbgwvr[16]; /* watchpoint value registers */ 464 uint64_t dbgwcr[16]; /* watchpoint control registers */ 465 uint64_t mdscr_el1; 466 uint64_t oslsr_el1; /* OS Lock Status */ 467 uint64_t mdcr_el2; 468 uint64_t mdcr_el3; 469 /* Stores the architectural value of the counter *the last time it was 470 * updated* by pmccntr_op_start. Accesses should always be surrounded 471 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 472 * architecturally-correct value is being read/set. 473 */ 474 uint64_t c15_ccnt; 475 /* Stores the delta between the architectural value and the underlying 476 * cycle count during normal operation. It is used to update c15_ccnt 477 * to be the correct architectural value before accesses. During 478 * accesses, c15_ccnt_delta contains the underlying count being used 479 * for the access, after which it reverts to the delta value in 480 * pmccntr_op_finish. 481 */ 482 uint64_t c15_ccnt_delta; 483 uint64_t c14_pmevcntr[31]; 484 uint64_t c14_pmevcntr_delta[31]; 485 uint64_t c14_pmevtyper[31]; 486 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 487 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 488 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 489 } cp15; 490 491 struct { 492 /* M profile has up to 4 stack pointers: 493 * a Main Stack Pointer and a Process Stack Pointer for each 494 * of the Secure and Non-Secure states. (If the CPU doesn't support 495 * the security extension then it has only two SPs.) 496 * In QEMU we always store the currently active SP in regs[13], 497 * and the non-active SP for the current security state in 498 * v7m.other_sp. The stack pointers for the inactive security state 499 * are stored in other_ss_msp and other_ss_psp. 500 * switch_v7m_security_state() is responsible for rearranging them 501 * when we change security state. 502 */ 503 uint32_t other_sp; 504 uint32_t other_ss_msp; 505 uint32_t other_ss_psp; 506 uint32_t vecbase[M_REG_NUM_BANKS]; 507 uint32_t basepri[M_REG_NUM_BANKS]; 508 uint32_t control[M_REG_NUM_BANKS]; 509 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 510 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 511 uint32_t hfsr; /* HardFault Status */ 512 uint32_t dfsr; /* Debug Fault Status Register */ 513 uint32_t sfsr; /* Secure Fault Status Register */ 514 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 515 uint32_t bfar; /* BusFault Address */ 516 uint32_t sfar; /* Secure Fault Address Register */ 517 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 518 int exception; 519 uint32_t primask[M_REG_NUM_BANKS]; 520 uint32_t faultmask[M_REG_NUM_BANKS]; 521 uint32_t aircr; /* only holds r/w state if security extn implemented */ 522 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 523 uint32_t csselr[M_REG_NUM_BANKS]; 524 uint32_t scr[M_REG_NUM_BANKS]; 525 uint32_t msplim[M_REG_NUM_BANKS]; 526 uint32_t psplim[M_REG_NUM_BANKS]; 527 uint32_t fpcar[M_REG_NUM_BANKS]; 528 uint32_t fpccr[M_REG_NUM_BANKS]; 529 uint32_t fpdscr[M_REG_NUM_BANKS]; 530 uint32_t cpacr[M_REG_NUM_BANKS]; 531 uint32_t nsacr; 532 } v7m; 533 534 /* Information associated with an exception about to be taken: 535 * code which raises an exception must set cs->exception_index and 536 * the relevant parts of this structure; the cpu_do_interrupt function 537 * will then set the guest-visible registers as part of the exception 538 * entry process. 539 */ 540 struct { 541 uint32_t syndrome; /* AArch64 format syndrome register */ 542 uint32_t fsr; /* AArch32 format fault status register info */ 543 uint64_t vaddress; /* virtual addr associated with exception, if any */ 544 uint32_t target_el; /* EL the exception should be targeted for */ 545 /* If we implement EL2 we will also need to store information 546 * about the intermediate physical address for stage 2 faults. 547 */ 548 } exception; 549 550 /* Information associated with an SError */ 551 struct { 552 uint8_t pending; 553 uint8_t has_esr; 554 uint64_t esr; 555 } serror; 556 557 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 558 uint32_t irq_line_state; 559 560 /* Thumb-2 EE state. */ 561 uint32_t teecr; 562 uint32_t teehbr; 563 564 /* VFP coprocessor state. */ 565 struct { 566 ARMVectorReg zregs[32]; 567 568 #ifdef TARGET_AARCH64 569 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 570 #define FFR_PRED_NUM 16 571 ARMPredicateReg pregs[17]; 572 /* Scratch space for aa64 sve predicate temporary. */ 573 ARMPredicateReg preg_tmp; 574 #endif 575 576 /* We store these fpcsr fields separately for convenience. */ 577 uint32_t qc[4] QEMU_ALIGNED(16); 578 int vec_len; 579 int vec_stride; 580 581 uint32_t xregs[16]; 582 583 /* Scratch space for aa32 neon expansion. */ 584 uint32_t scratch[8]; 585 586 /* There are a number of distinct float control structures: 587 * 588 * fp_status: is the "normal" fp status. 589 * fp_status_fp16: used for half-precision calculations 590 * standard_fp_status : the ARM "Standard FPSCR Value" 591 * 592 * Half-precision operations are governed by a separate 593 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 594 * status structure to control this. 595 * 596 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 597 * round-to-nearest and is used by any operations (generally 598 * Neon) which the architecture defines as controlled by the 599 * standard FPSCR value rather than the FPSCR. 600 * 601 * To avoid having to transfer exception bits around, we simply 602 * say that the FPSCR cumulative exception flags are the logical 603 * OR of the flags in the three fp statuses. This relies on the 604 * only thing which needs to read the exception flags being 605 * an explicit FPSCR read. 606 */ 607 float_status fp_status; 608 float_status fp_status_f16; 609 float_status standard_fp_status; 610 611 /* ZCR_EL[1-3] */ 612 uint64_t zcr_el[4]; 613 } vfp; 614 uint64_t exclusive_addr; 615 uint64_t exclusive_val; 616 uint64_t exclusive_high; 617 618 /* iwMMXt coprocessor state. */ 619 struct { 620 uint64_t regs[16]; 621 uint64_t val; 622 623 uint32_t cregs[16]; 624 } iwmmxt; 625 626 #ifdef TARGET_AARCH64 627 struct { 628 ARMPACKey apia; 629 ARMPACKey apib; 630 ARMPACKey apda; 631 ARMPACKey apdb; 632 ARMPACKey apga; 633 } keys; 634 #endif 635 636 #if defined(CONFIG_USER_ONLY) 637 /* For usermode syscall translation. */ 638 int eabi; 639 #endif 640 641 struct CPUBreakpoint *cpu_breakpoint[16]; 642 struct CPUWatchpoint *cpu_watchpoint[16]; 643 644 /* Fields up to this point are cleared by a CPU reset */ 645 struct {} end_reset_fields; 646 647 /* Fields after this point are preserved across CPU reset. */ 648 649 /* Internal CPU feature flags. */ 650 uint64_t features; 651 652 /* PMSAv7 MPU */ 653 struct { 654 uint32_t *drbar; 655 uint32_t *drsr; 656 uint32_t *dracr; 657 uint32_t rnr[M_REG_NUM_BANKS]; 658 } pmsav7; 659 660 /* PMSAv8 MPU */ 661 struct { 662 /* The PMSAv8 implementation also shares some PMSAv7 config 663 * and state: 664 * pmsav7.rnr (region number register) 665 * pmsav7_dregion (number of configured regions) 666 */ 667 uint32_t *rbar[M_REG_NUM_BANKS]; 668 uint32_t *rlar[M_REG_NUM_BANKS]; 669 uint32_t mair0[M_REG_NUM_BANKS]; 670 uint32_t mair1[M_REG_NUM_BANKS]; 671 } pmsav8; 672 673 /* v8M SAU */ 674 struct { 675 uint32_t *rbar; 676 uint32_t *rlar; 677 uint32_t rnr; 678 uint32_t ctrl; 679 } sau; 680 681 void *nvic; 682 const struct arm_boot_info *boot_info; 683 /* Store GICv3CPUState to access from this struct */ 684 void *gicv3state; 685 } CPUARMState; 686 687 /** 688 * ARMELChangeHookFn: 689 * type of a function which can be registered via arm_register_el_change_hook() 690 * to get callbacks when the CPU changes its exception level or mode. 691 */ 692 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 693 typedef struct ARMELChangeHook ARMELChangeHook; 694 struct ARMELChangeHook { 695 ARMELChangeHookFn *hook; 696 void *opaque; 697 QLIST_ENTRY(ARMELChangeHook) node; 698 }; 699 700 /* These values map onto the return values for 701 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 702 typedef enum ARMPSCIState { 703 PSCI_ON = 0, 704 PSCI_OFF = 1, 705 PSCI_ON_PENDING = 2 706 } ARMPSCIState; 707 708 typedef struct ARMISARegisters ARMISARegisters; 709 710 /** 711 * ARMCPU: 712 * @env: #CPUARMState 713 * 714 * An ARM CPU core. 715 */ 716 struct ARMCPU { 717 /*< private >*/ 718 CPUState parent_obj; 719 /*< public >*/ 720 721 CPUNegativeOffsetState neg; 722 CPUARMState env; 723 724 /* Coprocessor information */ 725 GHashTable *cp_regs; 726 /* For marshalling (mostly coprocessor) register state between the 727 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 728 * we use these arrays. 729 */ 730 /* List of register indexes managed via these arrays; (full KVM style 731 * 64 bit indexes, not CPRegInfo 32 bit indexes) 732 */ 733 uint64_t *cpreg_indexes; 734 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 735 uint64_t *cpreg_values; 736 /* Length of the indexes, values, reset_values arrays */ 737 int32_t cpreg_array_len; 738 /* These are used only for migration: incoming data arrives in 739 * these fields and is sanity checked in post_load before copying 740 * to the working data structures above. 741 */ 742 uint64_t *cpreg_vmstate_indexes; 743 uint64_t *cpreg_vmstate_values; 744 int32_t cpreg_vmstate_array_len; 745 746 DynamicGDBXMLInfo dyn_xml; 747 748 /* Timers used by the generic (architected) timer */ 749 QEMUTimer *gt_timer[NUM_GTIMERS]; 750 /* 751 * Timer used by the PMU. Its state is restored after migration by 752 * pmu_op_finish() - it does not need other handling during migration 753 */ 754 QEMUTimer *pmu_timer; 755 /* GPIO outputs for generic timer */ 756 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 757 /* GPIO output for GICv3 maintenance interrupt signal */ 758 qemu_irq gicv3_maintenance_interrupt; 759 /* GPIO output for the PMU interrupt */ 760 qemu_irq pmu_interrupt; 761 762 /* MemoryRegion to use for secure physical accesses */ 763 MemoryRegion *secure_memory; 764 765 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 766 Object *idau; 767 768 /* 'compatible' string for this CPU for Linux device trees */ 769 const char *dtb_compatible; 770 771 /* PSCI version for this CPU 772 * Bits[31:16] = Major Version 773 * Bits[15:0] = Minor Version 774 */ 775 uint32_t psci_version; 776 777 /* Should CPU start in PSCI powered-off state? */ 778 bool start_powered_off; 779 780 /* Current power state, access guarded by BQL */ 781 ARMPSCIState power_state; 782 783 /* CPU has virtualization extension */ 784 bool has_el2; 785 /* CPU has security extension */ 786 bool has_el3; 787 /* CPU has PMU (Performance Monitor Unit) */ 788 bool has_pmu; 789 790 /* CPU has memory protection unit */ 791 bool has_mpu; 792 /* PMSAv7 MPU number of supported regions */ 793 uint32_t pmsav7_dregion; 794 /* v8M SAU number of supported regions */ 795 uint32_t sau_sregion; 796 797 /* PSCI conduit used to invoke PSCI methods 798 * 0 - disabled, 1 - smc, 2 - hvc 799 */ 800 uint32_t psci_conduit; 801 802 /* For v8M, initial value of the Secure VTOR */ 803 uint32_t init_svtor; 804 805 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 806 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 807 */ 808 uint32_t kvm_target; 809 810 /* KVM init features for this CPU */ 811 uint32_t kvm_init_features[7]; 812 813 /* Uniprocessor system with MP extensions */ 814 bool mp_is_up; 815 816 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 817 * and the probe failed (so we need to report the error in realize) 818 */ 819 bool host_cpu_probe_failed; 820 821 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 822 * register. 823 */ 824 int32_t core_count; 825 826 /* The instance init functions for implementation-specific subclasses 827 * set these fields to specify the implementation-dependent values of 828 * various constant registers and reset values of non-constant 829 * registers. 830 * Some of these might become QOM properties eventually. 831 * Field names match the official register names as defined in the 832 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 833 * is used for reset values of non-constant registers; no reset_ 834 * prefix means a constant register. 835 * Some of these registers are split out into a substructure that 836 * is shared with the translators to control the ISA. 837 */ 838 struct ARMISARegisters { 839 uint32_t id_isar0; 840 uint32_t id_isar1; 841 uint32_t id_isar2; 842 uint32_t id_isar3; 843 uint32_t id_isar4; 844 uint32_t id_isar5; 845 uint32_t id_isar6; 846 uint32_t mvfr0; 847 uint32_t mvfr1; 848 uint32_t mvfr2; 849 uint64_t id_aa64isar0; 850 uint64_t id_aa64isar1; 851 uint64_t id_aa64pfr0; 852 uint64_t id_aa64pfr1; 853 uint64_t id_aa64mmfr0; 854 uint64_t id_aa64mmfr1; 855 } isar; 856 uint32_t midr; 857 uint32_t revidr; 858 uint32_t reset_fpsid; 859 uint32_t ctr; 860 uint32_t reset_sctlr; 861 uint32_t id_pfr0; 862 uint32_t id_pfr1; 863 uint32_t id_dfr0; 864 uint64_t pmceid0; 865 uint64_t pmceid1; 866 uint32_t id_afr0; 867 uint32_t id_mmfr0; 868 uint32_t id_mmfr1; 869 uint32_t id_mmfr2; 870 uint32_t id_mmfr3; 871 uint32_t id_mmfr4; 872 uint64_t id_aa64dfr0; 873 uint64_t id_aa64dfr1; 874 uint64_t id_aa64afr0; 875 uint64_t id_aa64afr1; 876 uint32_t dbgdidr; 877 uint32_t clidr; 878 uint64_t mp_affinity; /* MP ID without feature bits */ 879 /* The elements of this array are the CCSIDR values for each cache, 880 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 881 */ 882 uint32_t ccsidr[16]; 883 uint64_t reset_cbar; 884 uint32_t reset_auxcr; 885 bool reset_hivecs; 886 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 887 uint32_t dcz_blocksize; 888 uint64_t rvbar; 889 890 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 891 int gic_num_lrs; /* number of list registers */ 892 int gic_vpribits; /* number of virtual priority bits */ 893 int gic_vprebits; /* number of virtual preemption bits */ 894 895 /* Whether the cfgend input is high (i.e. this CPU should reset into 896 * big-endian mode). This setting isn't used directly: instead it modifies 897 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 898 * architecture version. 899 */ 900 bool cfgend; 901 902 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 903 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 904 905 int32_t node_id; /* NUMA node this CPU belongs to */ 906 907 /* Used to synchronize KVM and QEMU in-kernel device levels */ 908 uint8_t device_irq_level; 909 910 /* Used to set the maximum vector length the cpu will support. */ 911 uint32_t sve_max_vq; 912 }; 913 914 void arm_cpu_post_init(Object *obj); 915 916 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 917 918 #ifndef CONFIG_USER_ONLY 919 extern const struct VMStateDescription vmstate_arm_cpu; 920 #endif 921 922 void arm_cpu_do_interrupt(CPUState *cpu); 923 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 924 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 925 926 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags); 927 928 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 929 MemTxAttrs *attrs); 930 931 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 932 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 933 934 /* Dynamically generates for gdb stub an XML description of the sysregs from 935 * the cp_regs hashtable. Returns the registered sysregs number. 936 */ 937 int arm_gen_dynamic_xml(CPUState *cpu); 938 939 /* Returns the dynamically generated XML for the gdb stub. 940 * Returns a pointer to the XML contents for the specified XML file or NULL 941 * if the XML name doesn't match the predefined one. 942 */ 943 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 944 945 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 946 int cpuid, void *opaque); 947 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 948 int cpuid, void *opaque); 949 950 #ifdef TARGET_AARCH64 951 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 952 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 953 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 954 void aarch64_sve_change_el(CPUARMState *env, int old_el, 955 int new_el, bool el0_a64); 956 #else 957 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 958 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 959 int n, bool a) 960 { } 961 #endif 962 963 target_ulong do_arm_semihosting(CPUARMState *env); 964 void aarch64_sync_32_to_64(CPUARMState *env); 965 void aarch64_sync_64_to_32(CPUARMState *env); 966 967 int fp_exception_el(CPUARMState *env, int cur_el); 968 int sve_exception_el(CPUARMState *env, int cur_el); 969 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 970 971 static inline bool is_a64(CPUARMState *env) 972 { 973 return env->aarch64; 974 } 975 976 /* you can call this signal handler from your SIGBUS and SIGSEGV 977 signal handlers to inform the virtual CPU of exceptions. non zero 978 is returned if the signal was handled by the virtual CPU. */ 979 int cpu_arm_signal_handler(int host_signum, void *pinfo, 980 void *puc); 981 982 /** 983 * pmu_op_start/finish 984 * @env: CPUARMState 985 * 986 * Convert all PMU counters between their delta form (the typical mode when 987 * they are enabled) and the guest-visible values. These two calls must 988 * surround any action which might affect the counters. 989 */ 990 void pmu_op_start(CPUARMState *env); 991 void pmu_op_finish(CPUARMState *env); 992 993 /* 994 * Called when a PMU counter is due to overflow 995 */ 996 void arm_pmu_timer_cb(void *opaque); 997 998 /** 999 * Functions to register as EL change hooks for PMU mode filtering 1000 */ 1001 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1002 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1003 1004 /* 1005 * pmu_init 1006 * @cpu: ARMCPU 1007 * 1008 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1009 * for the current configuration 1010 */ 1011 void pmu_init(ARMCPU *cpu); 1012 1013 /* SCTLR bit meanings. Several bits have been reused in newer 1014 * versions of the architecture; in that case we define constants 1015 * for both old and new bit meanings. Code which tests against those 1016 * bits should probably check or otherwise arrange that the CPU 1017 * is the architectural version it expects. 1018 */ 1019 #define SCTLR_M (1U << 0) 1020 #define SCTLR_A (1U << 1) 1021 #define SCTLR_C (1U << 2) 1022 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1023 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1024 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1025 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1026 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1027 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1028 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1029 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1030 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1031 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1032 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1033 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1034 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1035 #define SCTLR_SED (1U << 8) /* v8 onward */ 1036 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1037 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1038 #define SCTLR_F (1U << 10) /* up to v6 */ 1039 #define SCTLR_SW (1U << 10) /* v7 */ 1040 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1041 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1042 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1043 #define SCTLR_I (1U << 12) 1044 #define SCTLR_V (1U << 13) /* AArch32 only */ 1045 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1046 #define SCTLR_RR (1U << 14) /* up to v7 */ 1047 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1048 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1049 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1050 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1051 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1052 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1053 #define SCTLR_BR (1U << 17) /* PMSA only */ 1054 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1055 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1056 #define SCTLR_WXN (1U << 19) 1057 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1058 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1059 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1060 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1061 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1062 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1063 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1064 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1065 #define SCTLR_VE (1U << 24) /* up to v7 */ 1066 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1067 #define SCTLR_EE (1U << 25) 1068 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1069 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1070 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1071 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1072 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1073 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1074 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1075 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1076 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1077 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1078 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1079 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1080 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1081 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1082 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1083 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1084 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1085 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1086 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1087 1088 #define CPTR_TCPAC (1U << 31) 1089 #define CPTR_TTA (1U << 20) 1090 #define CPTR_TFP (1U << 10) 1091 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1092 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1093 1094 #define MDCR_EPMAD (1U << 21) 1095 #define MDCR_EDAD (1U << 20) 1096 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1097 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1098 #define MDCR_SDD (1U << 16) 1099 #define MDCR_SPD (3U << 14) 1100 #define MDCR_TDRA (1U << 11) 1101 #define MDCR_TDOSA (1U << 10) 1102 #define MDCR_TDA (1U << 9) 1103 #define MDCR_TDE (1U << 8) 1104 #define MDCR_HPME (1U << 7) 1105 #define MDCR_TPM (1U << 6) 1106 #define MDCR_TPMCR (1U << 5) 1107 #define MDCR_HPMN (0x1fU) 1108 1109 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1110 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1111 1112 #define CPSR_M (0x1fU) 1113 #define CPSR_T (1U << 5) 1114 #define CPSR_F (1U << 6) 1115 #define CPSR_I (1U << 7) 1116 #define CPSR_A (1U << 8) 1117 #define CPSR_E (1U << 9) 1118 #define CPSR_IT_2_7 (0xfc00U) 1119 #define CPSR_GE (0xfU << 16) 1120 #define CPSR_IL (1U << 20) 1121 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 1122 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 1123 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 1124 * where it is live state but not accessible to the AArch32 code. 1125 */ 1126 #define CPSR_RESERVED (0x7U << 21) 1127 #define CPSR_J (1U << 24) 1128 #define CPSR_IT_0_1 (3U << 25) 1129 #define CPSR_Q (1U << 27) 1130 #define CPSR_V (1U << 28) 1131 #define CPSR_C (1U << 29) 1132 #define CPSR_Z (1U << 30) 1133 #define CPSR_N (1U << 31) 1134 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1135 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1136 1137 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1138 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1139 | CPSR_NZCV) 1140 /* Bits writable in user mode. */ 1141 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 1142 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1143 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1144 /* Mask of bits which may be set by exception return copying them from SPSR */ 1145 #define CPSR_ERET_MASK (~CPSR_RESERVED) 1146 1147 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1148 #define XPSR_EXCP 0x1ffU 1149 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1150 #define XPSR_IT_2_7 CPSR_IT_2_7 1151 #define XPSR_GE CPSR_GE 1152 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1153 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1154 #define XPSR_IT_0_1 CPSR_IT_0_1 1155 #define XPSR_Q CPSR_Q 1156 #define XPSR_V CPSR_V 1157 #define XPSR_C CPSR_C 1158 #define XPSR_Z CPSR_Z 1159 #define XPSR_N CPSR_N 1160 #define XPSR_NZCV CPSR_NZCV 1161 #define XPSR_IT CPSR_IT 1162 1163 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1164 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1165 #define TTBCR_PD0 (1U << 4) 1166 #define TTBCR_PD1 (1U << 5) 1167 #define TTBCR_EPD0 (1U << 7) 1168 #define TTBCR_IRGN0 (3U << 8) 1169 #define TTBCR_ORGN0 (3U << 10) 1170 #define TTBCR_SH0 (3U << 12) 1171 #define TTBCR_T1SZ (3U << 16) 1172 #define TTBCR_A1 (1U << 22) 1173 #define TTBCR_EPD1 (1U << 23) 1174 #define TTBCR_IRGN1 (3U << 24) 1175 #define TTBCR_ORGN1 (3U << 26) 1176 #define TTBCR_SH1 (1U << 28) 1177 #define TTBCR_EAE (1U << 31) 1178 1179 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1180 * Only these are valid when in AArch64 mode; in 1181 * AArch32 mode SPSRs are basically CPSR-format. 1182 */ 1183 #define PSTATE_SP (1U) 1184 #define PSTATE_M (0xFU) 1185 #define PSTATE_nRW (1U << 4) 1186 #define PSTATE_F (1U << 6) 1187 #define PSTATE_I (1U << 7) 1188 #define PSTATE_A (1U << 8) 1189 #define PSTATE_D (1U << 9) 1190 #define PSTATE_BTYPE (3U << 10) 1191 #define PSTATE_IL (1U << 20) 1192 #define PSTATE_SS (1U << 21) 1193 #define PSTATE_V (1U << 28) 1194 #define PSTATE_C (1U << 29) 1195 #define PSTATE_Z (1U << 30) 1196 #define PSTATE_N (1U << 31) 1197 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1198 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1199 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1200 /* Mode values for AArch64 */ 1201 #define PSTATE_MODE_EL3h 13 1202 #define PSTATE_MODE_EL3t 12 1203 #define PSTATE_MODE_EL2h 9 1204 #define PSTATE_MODE_EL2t 8 1205 #define PSTATE_MODE_EL1h 5 1206 #define PSTATE_MODE_EL1t 4 1207 #define PSTATE_MODE_EL0t 0 1208 1209 /* Write a new value to v7m.exception, thus transitioning into or out 1210 * of Handler mode; this may result in a change of active stack pointer. 1211 */ 1212 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1213 1214 /* Map EL and handler into a PSTATE_MODE. */ 1215 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1216 { 1217 return (el << 2) | handler; 1218 } 1219 1220 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1221 * interprocessing, so we don't attempt to sync with the cpsr state used by 1222 * the 32 bit decoder. 1223 */ 1224 static inline uint32_t pstate_read(CPUARMState *env) 1225 { 1226 int ZF; 1227 1228 ZF = (env->ZF == 0); 1229 return (env->NF & 0x80000000) | (ZF << 30) 1230 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1231 | env->pstate | env->daif | (env->btype << 10); 1232 } 1233 1234 static inline void pstate_write(CPUARMState *env, uint32_t val) 1235 { 1236 env->ZF = (~val) & PSTATE_Z; 1237 env->NF = val; 1238 env->CF = (val >> 29) & 1; 1239 env->VF = (val << 3) & 0x80000000; 1240 env->daif = val & PSTATE_DAIF; 1241 env->btype = (val >> 10) & 3; 1242 env->pstate = val & ~CACHED_PSTATE_BITS; 1243 } 1244 1245 /* Return the current CPSR value. */ 1246 uint32_t cpsr_read(CPUARMState *env); 1247 1248 typedef enum CPSRWriteType { 1249 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1250 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1251 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1252 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1253 } CPSRWriteType; 1254 1255 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1256 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1257 CPSRWriteType write_type); 1258 1259 /* Return the current xPSR value. */ 1260 static inline uint32_t xpsr_read(CPUARMState *env) 1261 { 1262 int ZF; 1263 ZF = (env->ZF == 0); 1264 return (env->NF & 0x80000000) | (ZF << 30) 1265 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1266 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1267 | ((env->condexec_bits & 0xfc) << 8) 1268 | (env->GE << 16) 1269 | env->v7m.exception; 1270 } 1271 1272 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1273 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1274 { 1275 if (mask & XPSR_NZCV) { 1276 env->ZF = (~val) & XPSR_Z; 1277 env->NF = val; 1278 env->CF = (val >> 29) & 1; 1279 env->VF = (val << 3) & 0x80000000; 1280 } 1281 if (mask & XPSR_Q) { 1282 env->QF = ((val & XPSR_Q) != 0); 1283 } 1284 if (mask & XPSR_GE) { 1285 env->GE = (val & XPSR_GE) >> 16; 1286 } 1287 if (mask & XPSR_T) { 1288 env->thumb = ((val & XPSR_T) != 0); 1289 } 1290 if (mask & XPSR_IT_0_1) { 1291 env->condexec_bits &= ~3; 1292 env->condexec_bits |= (val >> 25) & 3; 1293 } 1294 if (mask & XPSR_IT_2_7) { 1295 env->condexec_bits &= 3; 1296 env->condexec_bits |= (val >> 8) & 0xfc; 1297 } 1298 if (mask & XPSR_EXCP) { 1299 /* Note that this only happens on exception exit */ 1300 write_v7m_exception(env, val & XPSR_EXCP); 1301 } 1302 } 1303 1304 #define HCR_VM (1ULL << 0) 1305 #define HCR_SWIO (1ULL << 1) 1306 #define HCR_PTW (1ULL << 2) 1307 #define HCR_FMO (1ULL << 3) 1308 #define HCR_IMO (1ULL << 4) 1309 #define HCR_AMO (1ULL << 5) 1310 #define HCR_VF (1ULL << 6) 1311 #define HCR_VI (1ULL << 7) 1312 #define HCR_VSE (1ULL << 8) 1313 #define HCR_FB (1ULL << 9) 1314 #define HCR_BSU_MASK (3ULL << 10) 1315 #define HCR_DC (1ULL << 12) 1316 #define HCR_TWI (1ULL << 13) 1317 #define HCR_TWE (1ULL << 14) 1318 #define HCR_TID0 (1ULL << 15) 1319 #define HCR_TID1 (1ULL << 16) 1320 #define HCR_TID2 (1ULL << 17) 1321 #define HCR_TID3 (1ULL << 18) 1322 #define HCR_TSC (1ULL << 19) 1323 #define HCR_TIDCP (1ULL << 20) 1324 #define HCR_TACR (1ULL << 21) 1325 #define HCR_TSW (1ULL << 22) 1326 #define HCR_TPCP (1ULL << 23) 1327 #define HCR_TPU (1ULL << 24) 1328 #define HCR_TTLB (1ULL << 25) 1329 #define HCR_TVM (1ULL << 26) 1330 #define HCR_TGE (1ULL << 27) 1331 #define HCR_TDZ (1ULL << 28) 1332 #define HCR_HCD (1ULL << 29) 1333 #define HCR_TRVM (1ULL << 30) 1334 #define HCR_RW (1ULL << 31) 1335 #define HCR_CD (1ULL << 32) 1336 #define HCR_ID (1ULL << 33) 1337 #define HCR_E2H (1ULL << 34) 1338 #define HCR_TLOR (1ULL << 35) 1339 #define HCR_TERR (1ULL << 36) 1340 #define HCR_TEA (1ULL << 37) 1341 #define HCR_MIOCNCE (1ULL << 38) 1342 #define HCR_APK (1ULL << 40) 1343 #define HCR_API (1ULL << 41) 1344 #define HCR_NV (1ULL << 42) 1345 #define HCR_NV1 (1ULL << 43) 1346 #define HCR_AT (1ULL << 44) 1347 #define HCR_NV2 (1ULL << 45) 1348 #define HCR_FWB (1ULL << 46) 1349 #define HCR_FIEN (1ULL << 47) 1350 #define HCR_TID4 (1ULL << 49) 1351 #define HCR_TICAB (1ULL << 50) 1352 #define HCR_TOCU (1ULL << 52) 1353 #define HCR_TTLBIS (1ULL << 54) 1354 #define HCR_TTLBOS (1ULL << 55) 1355 #define HCR_ATA (1ULL << 56) 1356 #define HCR_DCT (1ULL << 57) 1357 1358 /* 1359 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to 1360 * HCR_MASK and then clear it again if the feature bit is not set in 1361 * hcr_write(). 1362 */ 1363 #define HCR_MASK ((1ULL << 34) - 1) 1364 1365 #define SCR_NS (1U << 0) 1366 #define SCR_IRQ (1U << 1) 1367 #define SCR_FIQ (1U << 2) 1368 #define SCR_EA (1U << 3) 1369 #define SCR_FW (1U << 4) 1370 #define SCR_AW (1U << 5) 1371 #define SCR_NET (1U << 6) 1372 #define SCR_SMD (1U << 7) 1373 #define SCR_HCE (1U << 8) 1374 #define SCR_SIF (1U << 9) 1375 #define SCR_RW (1U << 10) 1376 #define SCR_ST (1U << 11) 1377 #define SCR_TWI (1U << 12) 1378 #define SCR_TWE (1U << 13) 1379 #define SCR_TLOR (1U << 14) 1380 #define SCR_TERR (1U << 15) 1381 #define SCR_APK (1U << 16) 1382 #define SCR_API (1U << 17) 1383 #define SCR_EEL2 (1U << 18) 1384 #define SCR_EASE (1U << 19) 1385 #define SCR_NMEA (1U << 20) 1386 #define SCR_FIEN (1U << 21) 1387 #define SCR_ENSCXT (1U << 25) 1388 #define SCR_ATA (1U << 26) 1389 1390 /* Return the current FPSCR value. */ 1391 uint32_t vfp_get_fpscr(CPUARMState *env); 1392 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1393 1394 /* FPCR, Floating Point Control Register 1395 * FPSR, Floating Poiht Status Register 1396 * 1397 * For A64 the FPSCR is split into two logically distinct registers, 1398 * FPCR and FPSR. However since they still use non-overlapping bits 1399 * we store the underlying state in fpscr and just mask on read/write. 1400 */ 1401 #define FPSR_MASK 0xf800009f 1402 #define FPCR_MASK 0x07ff9f00 1403 1404 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1405 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1406 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1407 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1408 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1409 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1410 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1411 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1412 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1413 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1414 1415 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1416 { 1417 return vfp_get_fpscr(env) & FPSR_MASK; 1418 } 1419 1420 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1421 { 1422 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1423 vfp_set_fpscr(env, new_fpscr); 1424 } 1425 1426 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1427 { 1428 return vfp_get_fpscr(env) & FPCR_MASK; 1429 } 1430 1431 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1432 { 1433 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1434 vfp_set_fpscr(env, new_fpscr); 1435 } 1436 1437 enum arm_cpu_mode { 1438 ARM_CPU_MODE_USR = 0x10, 1439 ARM_CPU_MODE_FIQ = 0x11, 1440 ARM_CPU_MODE_IRQ = 0x12, 1441 ARM_CPU_MODE_SVC = 0x13, 1442 ARM_CPU_MODE_MON = 0x16, 1443 ARM_CPU_MODE_ABT = 0x17, 1444 ARM_CPU_MODE_HYP = 0x1a, 1445 ARM_CPU_MODE_UND = 0x1b, 1446 ARM_CPU_MODE_SYS = 0x1f 1447 }; 1448 1449 /* VFP system registers. */ 1450 #define ARM_VFP_FPSID 0 1451 #define ARM_VFP_FPSCR 1 1452 #define ARM_VFP_MVFR2 5 1453 #define ARM_VFP_MVFR1 6 1454 #define ARM_VFP_MVFR0 7 1455 #define ARM_VFP_FPEXC 8 1456 #define ARM_VFP_FPINST 9 1457 #define ARM_VFP_FPINST2 10 1458 1459 /* iwMMXt coprocessor control registers. */ 1460 #define ARM_IWMMXT_wCID 0 1461 #define ARM_IWMMXT_wCon 1 1462 #define ARM_IWMMXT_wCSSF 2 1463 #define ARM_IWMMXT_wCASF 3 1464 #define ARM_IWMMXT_wCGR0 8 1465 #define ARM_IWMMXT_wCGR1 9 1466 #define ARM_IWMMXT_wCGR2 10 1467 #define ARM_IWMMXT_wCGR3 11 1468 1469 /* V7M CCR bits */ 1470 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1471 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1472 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1473 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1474 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1475 FIELD(V7M_CCR, STKALIGN, 9, 1) 1476 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1477 FIELD(V7M_CCR, DC, 16, 1) 1478 FIELD(V7M_CCR, IC, 17, 1) 1479 FIELD(V7M_CCR, BP, 18, 1) 1480 1481 /* V7M SCR bits */ 1482 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1483 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1484 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1485 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1486 1487 /* V7M AIRCR bits */ 1488 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1489 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1490 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1491 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1492 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1493 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1494 FIELD(V7M_AIRCR, PRIS, 14, 1) 1495 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1496 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1497 1498 /* V7M CFSR bits for MMFSR */ 1499 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1500 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1501 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1502 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1503 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1504 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1505 1506 /* V7M CFSR bits for BFSR */ 1507 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1508 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1509 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1510 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1511 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1512 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1513 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1514 1515 /* V7M CFSR bits for UFSR */ 1516 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1517 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1518 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1519 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1520 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1521 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1522 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1523 1524 /* V7M CFSR bit masks covering all of the subregister bits */ 1525 FIELD(V7M_CFSR, MMFSR, 0, 8) 1526 FIELD(V7M_CFSR, BFSR, 8, 8) 1527 FIELD(V7M_CFSR, UFSR, 16, 16) 1528 1529 /* V7M HFSR bits */ 1530 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1531 FIELD(V7M_HFSR, FORCED, 30, 1) 1532 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1533 1534 /* V7M DFSR bits */ 1535 FIELD(V7M_DFSR, HALTED, 0, 1) 1536 FIELD(V7M_DFSR, BKPT, 1, 1) 1537 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1538 FIELD(V7M_DFSR, VCATCH, 3, 1) 1539 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1540 1541 /* V7M SFSR bits */ 1542 FIELD(V7M_SFSR, INVEP, 0, 1) 1543 FIELD(V7M_SFSR, INVIS, 1, 1) 1544 FIELD(V7M_SFSR, INVER, 2, 1) 1545 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1546 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1547 FIELD(V7M_SFSR, LSPERR, 5, 1) 1548 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1549 FIELD(V7M_SFSR, LSERR, 7, 1) 1550 1551 /* v7M MPU_CTRL bits */ 1552 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1553 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1554 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1555 1556 /* v7M CLIDR bits */ 1557 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1558 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1559 FIELD(V7M_CLIDR, LOC, 24, 3) 1560 FIELD(V7M_CLIDR, LOUU, 27, 3) 1561 FIELD(V7M_CLIDR, ICB, 30, 2) 1562 1563 FIELD(V7M_CSSELR, IND, 0, 1) 1564 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1565 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1566 * define a mask for this and check that it doesn't permit running off 1567 * the end of the array. 1568 */ 1569 FIELD(V7M_CSSELR, INDEX, 0, 4) 1570 1571 /* v7M FPCCR bits */ 1572 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1573 FIELD(V7M_FPCCR, USER, 1, 1) 1574 FIELD(V7M_FPCCR, S, 2, 1) 1575 FIELD(V7M_FPCCR, THREAD, 3, 1) 1576 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1577 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1578 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1579 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1580 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1581 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1582 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1583 FIELD(V7M_FPCCR, RES0, 11, 15) 1584 FIELD(V7M_FPCCR, TS, 26, 1) 1585 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1586 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1587 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1588 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1589 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1590 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1591 #define R_V7M_FPCCR_BANKED_MASK \ 1592 (R_V7M_FPCCR_LSPACT_MASK | \ 1593 R_V7M_FPCCR_USER_MASK | \ 1594 R_V7M_FPCCR_THREAD_MASK | \ 1595 R_V7M_FPCCR_MMRDY_MASK | \ 1596 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1597 R_V7M_FPCCR_UFRDY_MASK | \ 1598 R_V7M_FPCCR_ASPEN_MASK) 1599 1600 /* 1601 * System register ID fields. 1602 */ 1603 FIELD(ID_ISAR0, SWAP, 0, 4) 1604 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1605 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1606 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1607 FIELD(ID_ISAR0, COPROC, 16, 4) 1608 FIELD(ID_ISAR0, DEBUG, 20, 4) 1609 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1610 1611 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1612 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1613 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1614 FIELD(ID_ISAR1, EXTEND, 12, 4) 1615 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1616 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1617 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1618 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1619 1620 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1621 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1622 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1623 FIELD(ID_ISAR2, MULT, 12, 4) 1624 FIELD(ID_ISAR2, MULTS, 16, 4) 1625 FIELD(ID_ISAR2, MULTU, 20, 4) 1626 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1627 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1628 1629 FIELD(ID_ISAR3, SATURATE, 0, 4) 1630 FIELD(ID_ISAR3, SIMD, 4, 4) 1631 FIELD(ID_ISAR3, SVC, 8, 4) 1632 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1633 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1634 FIELD(ID_ISAR3, T32COPY, 20, 4) 1635 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1636 FIELD(ID_ISAR3, T32EE, 28, 4) 1637 1638 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1639 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1640 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1641 FIELD(ID_ISAR4, SMC, 12, 4) 1642 FIELD(ID_ISAR4, BARRIER, 16, 4) 1643 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1644 FIELD(ID_ISAR4, PSR_M, 24, 4) 1645 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1646 1647 FIELD(ID_ISAR5, SEVL, 0, 4) 1648 FIELD(ID_ISAR5, AES, 4, 4) 1649 FIELD(ID_ISAR5, SHA1, 8, 4) 1650 FIELD(ID_ISAR5, SHA2, 12, 4) 1651 FIELD(ID_ISAR5, CRC32, 16, 4) 1652 FIELD(ID_ISAR5, RDM, 24, 4) 1653 FIELD(ID_ISAR5, VCMA, 28, 4) 1654 1655 FIELD(ID_ISAR6, JSCVT, 0, 4) 1656 FIELD(ID_ISAR6, DP, 4, 4) 1657 FIELD(ID_ISAR6, FHM, 8, 4) 1658 FIELD(ID_ISAR6, SB, 12, 4) 1659 FIELD(ID_ISAR6, SPECRES, 16, 4) 1660 1661 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1662 FIELD(ID_MMFR4, AC2, 4, 4) 1663 FIELD(ID_MMFR4, XNX, 8, 4) 1664 FIELD(ID_MMFR4, CNP, 12, 4) 1665 FIELD(ID_MMFR4, HPDS, 16, 4) 1666 FIELD(ID_MMFR4, LSM, 20, 4) 1667 FIELD(ID_MMFR4, CCIDX, 24, 4) 1668 FIELD(ID_MMFR4, EVT, 28, 4) 1669 1670 FIELD(ID_AA64ISAR0, AES, 4, 4) 1671 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1672 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1673 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1674 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1675 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1676 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1677 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1678 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1679 FIELD(ID_AA64ISAR0, DP, 44, 4) 1680 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1681 FIELD(ID_AA64ISAR0, TS, 52, 4) 1682 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1683 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1684 1685 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1686 FIELD(ID_AA64ISAR1, APA, 4, 4) 1687 FIELD(ID_AA64ISAR1, API, 8, 4) 1688 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1689 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1690 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1691 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1692 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1693 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1694 FIELD(ID_AA64ISAR1, SB, 36, 4) 1695 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1696 1697 FIELD(ID_AA64PFR0, EL0, 0, 4) 1698 FIELD(ID_AA64PFR0, EL1, 4, 4) 1699 FIELD(ID_AA64PFR0, EL2, 8, 4) 1700 FIELD(ID_AA64PFR0, EL3, 12, 4) 1701 FIELD(ID_AA64PFR0, FP, 16, 4) 1702 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1703 FIELD(ID_AA64PFR0, GIC, 24, 4) 1704 FIELD(ID_AA64PFR0, RAS, 28, 4) 1705 FIELD(ID_AA64PFR0, SVE, 32, 4) 1706 1707 FIELD(ID_AA64PFR1, BT, 0, 4) 1708 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1709 FIELD(ID_AA64PFR1, MTE, 8, 4) 1710 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1711 1712 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1713 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1714 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1715 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1716 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1717 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1718 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1719 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1720 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1721 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1722 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1723 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1724 1725 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1726 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1727 FIELD(ID_AA64MMFR1, VH, 8, 4) 1728 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1729 FIELD(ID_AA64MMFR1, LO, 16, 4) 1730 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1731 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1732 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1733 1734 FIELD(ID_DFR0, COPDBG, 0, 4) 1735 FIELD(ID_DFR0, COPSDBG, 4, 4) 1736 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1737 FIELD(ID_DFR0, COPTRC, 12, 4) 1738 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1739 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1740 FIELD(ID_DFR0, PERFMON, 24, 4) 1741 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1742 1743 FIELD(MVFR0, SIMDREG, 0, 4) 1744 FIELD(MVFR0, FPSP, 4, 4) 1745 FIELD(MVFR0, FPDP, 8, 4) 1746 FIELD(MVFR0, FPTRAP, 12, 4) 1747 FIELD(MVFR0, FPDIVIDE, 16, 4) 1748 FIELD(MVFR0, FPSQRT, 20, 4) 1749 FIELD(MVFR0, FPSHVEC, 24, 4) 1750 FIELD(MVFR0, FPROUND, 28, 4) 1751 1752 FIELD(MVFR1, FPFTZ, 0, 4) 1753 FIELD(MVFR1, FPDNAN, 4, 4) 1754 FIELD(MVFR1, SIMDLS, 8, 4) 1755 FIELD(MVFR1, SIMDINT, 12, 4) 1756 FIELD(MVFR1, SIMDSP, 16, 4) 1757 FIELD(MVFR1, SIMDHP, 20, 4) 1758 FIELD(MVFR1, FPHP, 24, 4) 1759 FIELD(MVFR1, SIMDFMAC, 28, 4) 1760 1761 FIELD(MVFR2, SIMDMISC, 0, 4) 1762 FIELD(MVFR2, FPMISC, 4, 4) 1763 1764 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1765 1766 /* If adding a feature bit which corresponds to a Linux ELF 1767 * HWCAP bit, remember to update the feature-bit-to-hwcap 1768 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1769 */ 1770 enum arm_features { 1771 ARM_FEATURE_VFP, 1772 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1773 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1774 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1775 ARM_FEATURE_V6, 1776 ARM_FEATURE_V6K, 1777 ARM_FEATURE_V7, 1778 ARM_FEATURE_THUMB2, 1779 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1780 ARM_FEATURE_VFP3, 1781 ARM_FEATURE_NEON, 1782 ARM_FEATURE_M, /* Microcontroller profile. */ 1783 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1784 ARM_FEATURE_THUMB2EE, 1785 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1786 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1787 ARM_FEATURE_V4T, 1788 ARM_FEATURE_V5, 1789 ARM_FEATURE_STRONGARM, 1790 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1791 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1792 ARM_FEATURE_GENERIC_TIMER, 1793 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1794 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1795 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1796 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1797 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1798 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1799 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1800 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1801 ARM_FEATURE_V8, 1802 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1803 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1804 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1805 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1806 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1807 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1808 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1809 ARM_FEATURE_PMU, /* has PMU support */ 1810 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1811 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1812 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1813 }; 1814 1815 static inline int arm_feature(CPUARMState *env, int feature) 1816 { 1817 return (env->features & (1ULL << feature)) != 0; 1818 } 1819 1820 #if !defined(CONFIG_USER_ONLY) 1821 /* Return true if exception levels below EL3 are in secure state, 1822 * or would be following an exception return to that level. 1823 * Unlike arm_is_secure() (which is always a question about the 1824 * _current_ state of the CPU) this doesn't care about the current 1825 * EL or mode. 1826 */ 1827 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1828 { 1829 if (arm_feature(env, ARM_FEATURE_EL3)) { 1830 return !(env->cp15.scr_el3 & SCR_NS); 1831 } else { 1832 /* If EL3 is not supported then the secure state is implementation 1833 * defined, in which case QEMU defaults to non-secure. 1834 */ 1835 return false; 1836 } 1837 } 1838 1839 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1840 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1841 { 1842 if (arm_feature(env, ARM_FEATURE_EL3)) { 1843 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1844 /* CPU currently in AArch64 state and EL3 */ 1845 return true; 1846 } else if (!is_a64(env) && 1847 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1848 /* CPU currently in AArch32 state and monitor mode */ 1849 return true; 1850 } 1851 } 1852 return false; 1853 } 1854 1855 /* Return true if the processor is in secure state */ 1856 static inline bool arm_is_secure(CPUARMState *env) 1857 { 1858 if (arm_is_el3_or_mon(env)) { 1859 return true; 1860 } 1861 return arm_is_secure_below_el3(env); 1862 } 1863 1864 #else 1865 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1866 { 1867 return false; 1868 } 1869 1870 static inline bool arm_is_secure(CPUARMState *env) 1871 { 1872 return false; 1873 } 1874 #endif 1875 1876 /** 1877 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 1878 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 1879 * "for all purposes other than a direct read or write access of HCR_EL2." 1880 * Not included here is HCR_RW. 1881 */ 1882 uint64_t arm_hcr_el2_eff(CPUARMState *env); 1883 1884 /* Return true if the specified exception level is running in AArch64 state. */ 1885 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1886 { 1887 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1888 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1889 */ 1890 assert(el >= 1 && el <= 3); 1891 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1892 1893 /* The highest exception level is always at the maximum supported 1894 * register width, and then lower levels have a register width controlled 1895 * by bits in the SCR or HCR registers. 1896 */ 1897 if (el == 3) { 1898 return aa64; 1899 } 1900 1901 if (arm_feature(env, ARM_FEATURE_EL3)) { 1902 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1903 } 1904 1905 if (el == 2) { 1906 return aa64; 1907 } 1908 1909 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1910 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1911 } 1912 1913 return aa64; 1914 } 1915 1916 /* Function for determing whether guest cp register reads and writes should 1917 * access the secure or non-secure bank of a cp register. When EL3 is 1918 * operating in AArch32 state, the NS-bit determines whether the secure 1919 * instance of a cp register should be used. When EL3 is AArch64 (or if 1920 * it doesn't exist at all) then there is no register banking, and all 1921 * accesses are to the non-secure version. 1922 */ 1923 static inline bool access_secure_reg(CPUARMState *env) 1924 { 1925 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1926 !arm_el_is_aa64(env, 3) && 1927 !(env->cp15.scr_el3 & SCR_NS)); 1928 1929 return ret; 1930 } 1931 1932 /* Macros for accessing a specified CP register bank */ 1933 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 1934 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 1935 1936 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 1937 do { \ 1938 if (_secure) { \ 1939 (_env)->cp15._regname##_s = (_val); \ 1940 } else { \ 1941 (_env)->cp15._regname##_ns = (_val); \ 1942 } \ 1943 } while (0) 1944 1945 /* Macros for automatically accessing a specific CP register bank depending on 1946 * the current secure state of the system. These macros are not intended for 1947 * supporting instruction translation reads/writes as these are dependent 1948 * solely on the SCR.NS bit and not the mode. 1949 */ 1950 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 1951 A32_BANKED_REG_GET((_env), _regname, \ 1952 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 1953 1954 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 1955 A32_BANKED_REG_SET((_env), _regname, \ 1956 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 1957 (_val)) 1958 1959 void arm_cpu_list(void); 1960 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 1961 uint32_t cur_el, bool secure); 1962 1963 /* Interface between CPU and Interrupt controller. */ 1964 #ifndef CONFIG_USER_ONLY 1965 bool armv7m_nvic_can_take_pending_exception(void *opaque); 1966 #else 1967 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 1968 { 1969 return true; 1970 } 1971 #endif 1972 /** 1973 * armv7m_nvic_set_pending: mark the specified exception as pending 1974 * @opaque: the NVIC 1975 * @irq: the exception number to mark pending 1976 * @secure: false for non-banked exceptions or for the nonsecure 1977 * version of a banked exception, true for the secure version of a banked 1978 * exception. 1979 * 1980 * Marks the specified exception as pending. Note that we will assert() 1981 * if @secure is true and @irq does not specify one of the fixed set 1982 * of architecturally banked exceptions. 1983 */ 1984 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 1985 /** 1986 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 1987 * @opaque: the NVIC 1988 * @irq: the exception number to mark pending 1989 * @secure: false for non-banked exceptions or for the nonsecure 1990 * version of a banked exception, true for the secure version of a banked 1991 * exception. 1992 * 1993 * Similar to armv7m_nvic_set_pending(), but specifically for derived 1994 * exceptions (exceptions generated in the course of trying to take 1995 * a different exception). 1996 */ 1997 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 1998 /** 1999 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2000 * @opaque: the NVIC 2001 * @irq: the exception number to mark pending 2002 * @secure: false for non-banked exceptions or for the nonsecure 2003 * version of a banked exception, true for the secure version of a banked 2004 * exception. 2005 * 2006 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2007 * generated in the course of lazy stacking of FP registers. 2008 */ 2009 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2010 /** 2011 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2012 * exception, and whether it targets Secure state 2013 * @opaque: the NVIC 2014 * @pirq: set to pending exception number 2015 * @ptargets_secure: set to whether pending exception targets Secure 2016 * 2017 * This function writes the number of the highest priority pending 2018 * exception (the one which would be made active by 2019 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2020 * to true if the current highest priority pending exception should 2021 * be taken to Secure state, false for NS. 2022 */ 2023 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2024 bool *ptargets_secure); 2025 /** 2026 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2027 * @opaque: the NVIC 2028 * 2029 * Move the current highest priority pending exception from the pending 2030 * state to the active state, and update v7m.exception to indicate that 2031 * it is the exception currently being handled. 2032 */ 2033 void armv7m_nvic_acknowledge_irq(void *opaque); 2034 /** 2035 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2036 * @opaque: the NVIC 2037 * @irq: the exception number to complete 2038 * @secure: true if this exception was secure 2039 * 2040 * Returns: -1 if the irq was not active 2041 * 1 if completing this irq brought us back to base (no active irqs) 2042 * 0 if there is still an irq active after this one was completed 2043 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2044 */ 2045 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2046 /** 2047 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2048 * @opaque: the NVIC 2049 * @irq: the exception number to mark pending 2050 * @secure: false for non-banked exceptions or for the nonsecure 2051 * version of a banked exception, true for the secure version of a banked 2052 * exception. 2053 * 2054 * Return whether an exception is "ready", i.e. whether the exception is 2055 * enabled and is configured at a priority which would allow it to 2056 * interrupt the current execution priority. This controls whether the 2057 * RDY bit for it in the FPCCR is set. 2058 */ 2059 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2060 /** 2061 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2062 * @opaque: the NVIC 2063 * 2064 * Returns: the raw execution priority as defined by the v8M architecture. 2065 * This is the execution priority minus the effects of AIRCR.PRIS, 2066 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2067 * (v8M ARM ARM I_PKLD.) 2068 */ 2069 int armv7m_nvic_raw_execution_priority(void *opaque); 2070 /** 2071 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2072 * priority is negative for the specified security state. 2073 * @opaque: the NVIC 2074 * @secure: the security state to test 2075 * This corresponds to the pseudocode IsReqExecPriNeg(). 2076 */ 2077 #ifndef CONFIG_USER_ONLY 2078 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2079 #else 2080 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2081 { 2082 return false; 2083 } 2084 #endif 2085 2086 /* Interface for defining coprocessor registers. 2087 * Registers are defined in tables of arm_cp_reginfo structs 2088 * which are passed to define_arm_cp_regs(). 2089 */ 2090 2091 /* When looking up a coprocessor register we look for it 2092 * via an integer which encodes all of: 2093 * coprocessor number 2094 * Crn, Crm, opc1, opc2 fields 2095 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2096 * or via MRRC/MCRR?) 2097 * non-secure/secure bank (AArch32 only) 2098 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2099 * (In this case crn and opc2 should be zero.) 2100 * For AArch64, there is no 32/64 bit size distinction; 2101 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2102 * and 4 bit CRn and CRm. The encoding patterns are chosen 2103 * to be easy to convert to and from the KVM encodings, and also 2104 * so that the hashtable can contain both AArch32 and AArch64 2105 * registers (to allow for interprocessing where we might run 2106 * 32 bit code on a 64 bit core). 2107 */ 2108 /* This bit is private to our hashtable cpreg; in KVM register 2109 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2110 * in the upper bits of the 64 bit ID. 2111 */ 2112 #define CP_REG_AA64_SHIFT 28 2113 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2114 2115 /* To enable banking of coprocessor registers depending on ns-bit we 2116 * add a bit to distinguish between secure and non-secure cpregs in the 2117 * hashtable. 2118 */ 2119 #define CP_REG_NS_SHIFT 29 2120 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2121 2122 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2123 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2124 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2125 2126 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2127 (CP_REG_AA64_MASK | \ 2128 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2129 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2130 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2131 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2132 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2133 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2134 2135 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2136 * version used as a key for the coprocessor register hashtable 2137 */ 2138 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2139 { 2140 uint32_t cpregid = kvmid; 2141 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2142 cpregid |= CP_REG_AA64_MASK; 2143 } else { 2144 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2145 cpregid |= (1 << 15); 2146 } 2147 2148 /* KVM is always non-secure so add the NS flag on AArch32 register 2149 * entries. 2150 */ 2151 cpregid |= 1 << CP_REG_NS_SHIFT; 2152 } 2153 return cpregid; 2154 } 2155 2156 /* Convert a truncated 32 bit hashtable key into the full 2157 * 64 bit KVM register ID. 2158 */ 2159 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2160 { 2161 uint64_t kvmid; 2162 2163 if (cpregid & CP_REG_AA64_MASK) { 2164 kvmid = cpregid & ~CP_REG_AA64_MASK; 2165 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2166 } else { 2167 kvmid = cpregid & ~(1 << 15); 2168 if (cpregid & (1 << 15)) { 2169 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2170 } else { 2171 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2172 } 2173 } 2174 return kvmid; 2175 } 2176 2177 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2178 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2179 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2180 * TCG can assume the value to be constant (ie load at translate time) 2181 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2182 * indicates that the TB should not be ended after a write to this register 2183 * (the default is that the TB ends after cp writes). OVERRIDE permits 2184 * a register definition to override a previous definition for the 2185 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2186 * old must have the OVERRIDE bit set. 2187 * ALIAS indicates that this register is an alias view of some underlying 2188 * state which is also visible via another register, and that the other 2189 * register is handling migration and reset; registers marked ALIAS will not be 2190 * migrated but may have their state set by syncing of register state from KVM. 2191 * NO_RAW indicates that this register has no underlying state and does not 2192 * support raw access for state saving/loading; it will not be used for either 2193 * migration or KVM state synchronization. (Typically this is for "registers" 2194 * which are actually used as instructions for cache maintenance and so on.) 2195 * IO indicates that this register does I/O and therefore its accesses 2196 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 2197 * registers which implement clocks or timers require this. 2198 */ 2199 #define ARM_CP_SPECIAL 0x0001 2200 #define ARM_CP_CONST 0x0002 2201 #define ARM_CP_64BIT 0x0004 2202 #define ARM_CP_SUPPRESS_TB_END 0x0008 2203 #define ARM_CP_OVERRIDE 0x0010 2204 #define ARM_CP_ALIAS 0x0020 2205 #define ARM_CP_IO 0x0040 2206 #define ARM_CP_NO_RAW 0x0080 2207 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2208 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2209 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2210 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2211 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2212 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 2213 #define ARM_CP_FPU 0x1000 2214 #define ARM_CP_SVE 0x2000 2215 #define ARM_CP_NO_GDB 0x4000 2216 /* Used only as a terminator for ARMCPRegInfo lists */ 2217 #define ARM_CP_SENTINEL 0xffff 2218 /* Mask of only the flag bits in a type field */ 2219 #define ARM_CP_FLAG_MASK 0x70ff 2220 2221 /* Valid values for ARMCPRegInfo state field, indicating which of 2222 * the AArch32 and AArch64 execution states this register is visible in. 2223 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2224 * If the reginfo is declared to be visible in both states then a second 2225 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2226 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2227 * Note that we rely on the values of these enums as we iterate through 2228 * the various states in some places. 2229 */ 2230 enum { 2231 ARM_CP_STATE_AA32 = 0, 2232 ARM_CP_STATE_AA64 = 1, 2233 ARM_CP_STATE_BOTH = 2, 2234 }; 2235 2236 /* ARM CP register secure state flags. These flags identify security state 2237 * attributes for a given CP register entry. 2238 * The existence of both or neither secure and non-secure flags indicates that 2239 * the register has both a secure and non-secure hash entry. A single one of 2240 * these flags causes the register to only be hashed for the specified 2241 * security state. 2242 * Although definitions may have any combination of the S/NS bits, each 2243 * registered entry will only have one to identify whether the entry is secure 2244 * or non-secure. 2245 */ 2246 enum { 2247 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2248 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2249 }; 2250 2251 /* Return true if cptype is a valid type field. This is used to try to 2252 * catch errors where the sentinel has been accidentally left off the end 2253 * of a list of registers. 2254 */ 2255 static inline bool cptype_valid(int cptype) 2256 { 2257 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2258 || ((cptype & ARM_CP_SPECIAL) && 2259 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2260 } 2261 2262 /* Access rights: 2263 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2264 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2265 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2266 * (ie any of the privileged modes in Secure state, or Monitor mode). 2267 * If a register is accessible in one privilege level it's always accessible 2268 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2269 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2270 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2271 * terminology a little and call this PL3. 2272 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2273 * with the ELx exception levels. 2274 * 2275 * If access permissions for a register are more complex than can be 2276 * described with these bits, then use a laxer set of restrictions, and 2277 * do the more restrictive/complex check inside a helper function. 2278 */ 2279 #define PL3_R 0x80 2280 #define PL3_W 0x40 2281 #define PL2_R (0x20 | PL3_R) 2282 #define PL2_W (0x10 | PL3_W) 2283 #define PL1_R (0x08 | PL2_R) 2284 #define PL1_W (0x04 | PL2_W) 2285 #define PL0_R (0x02 | PL1_R) 2286 #define PL0_W (0x01 | PL1_W) 2287 2288 /* 2289 * For user-mode some registers are accessible to EL0 via a kernel 2290 * trap-and-emulate ABI. In this case we define the read permissions 2291 * as actually being PL0_R. However some bits of any given register 2292 * may still be masked. 2293 */ 2294 #ifdef CONFIG_USER_ONLY 2295 #define PL0U_R PL0_R 2296 #else 2297 #define PL0U_R PL1_R 2298 #endif 2299 2300 #define PL3_RW (PL3_R | PL3_W) 2301 #define PL2_RW (PL2_R | PL2_W) 2302 #define PL1_RW (PL1_R | PL1_W) 2303 #define PL0_RW (PL0_R | PL0_W) 2304 2305 /* Return the highest implemented Exception Level */ 2306 static inline int arm_highest_el(CPUARMState *env) 2307 { 2308 if (arm_feature(env, ARM_FEATURE_EL3)) { 2309 return 3; 2310 } 2311 if (arm_feature(env, ARM_FEATURE_EL2)) { 2312 return 2; 2313 } 2314 return 1; 2315 } 2316 2317 /* Return true if a v7M CPU is in Handler mode */ 2318 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2319 { 2320 return env->v7m.exception != 0; 2321 } 2322 2323 /* Return the current Exception Level (as per ARMv8; note that this differs 2324 * from the ARMv7 Privilege Level). 2325 */ 2326 static inline int arm_current_el(CPUARMState *env) 2327 { 2328 if (arm_feature(env, ARM_FEATURE_M)) { 2329 return arm_v7m_is_handler_mode(env) || 2330 !(env->v7m.control[env->v7m.secure] & 1); 2331 } 2332 2333 if (is_a64(env)) { 2334 return extract32(env->pstate, 2, 2); 2335 } 2336 2337 switch (env->uncached_cpsr & 0x1f) { 2338 case ARM_CPU_MODE_USR: 2339 return 0; 2340 case ARM_CPU_MODE_HYP: 2341 return 2; 2342 case ARM_CPU_MODE_MON: 2343 return 3; 2344 default: 2345 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2346 /* If EL3 is 32-bit then all secure privileged modes run in 2347 * EL3 2348 */ 2349 return 3; 2350 } 2351 2352 return 1; 2353 } 2354 } 2355 2356 typedef struct ARMCPRegInfo ARMCPRegInfo; 2357 2358 typedef enum CPAccessResult { 2359 /* Access is permitted */ 2360 CP_ACCESS_OK = 0, 2361 /* Access fails due to a configurable trap or enable which would 2362 * result in a categorized exception syndrome giving information about 2363 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2364 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2365 * PL1 if in EL0, otherwise to the current EL). 2366 */ 2367 CP_ACCESS_TRAP = 1, 2368 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2369 * Note that this is not a catch-all case -- the set of cases which may 2370 * result in this failure is specifically defined by the architecture. 2371 */ 2372 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2373 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2374 CP_ACCESS_TRAP_EL2 = 3, 2375 CP_ACCESS_TRAP_EL3 = 4, 2376 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2377 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2378 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2379 /* Access fails and results in an exception syndrome for an FP access, 2380 * trapped directly to EL2 or EL3 2381 */ 2382 CP_ACCESS_TRAP_FP_EL2 = 7, 2383 CP_ACCESS_TRAP_FP_EL3 = 8, 2384 } CPAccessResult; 2385 2386 /* Access functions for coprocessor registers. These cannot fail and 2387 * may not raise exceptions. 2388 */ 2389 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2390 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2391 uint64_t value); 2392 /* Access permission check functions for coprocessor registers. */ 2393 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2394 const ARMCPRegInfo *opaque, 2395 bool isread); 2396 /* Hook function for register reset */ 2397 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2398 2399 #define CP_ANY 0xff 2400 2401 /* Definition of an ARM coprocessor register */ 2402 struct ARMCPRegInfo { 2403 /* Name of register (useful mainly for debugging, need not be unique) */ 2404 const char *name; 2405 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2406 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2407 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2408 * will be decoded to this register. The register read and write 2409 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2410 * used by the program, so it is possible to register a wildcard and 2411 * then behave differently on read/write if necessary. 2412 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2413 * must both be zero. 2414 * For AArch64-visible registers, opc0 is also used. 2415 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2416 * way to distinguish (for KVM's benefit) guest-visible system registers 2417 * from demuxed ones provided to preserve the "no side effects on 2418 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2419 * visible (to match KVM's encoding); cp==0 will be converted to 2420 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2421 */ 2422 uint8_t cp; 2423 uint8_t crn; 2424 uint8_t crm; 2425 uint8_t opc0; 2426 uint8_t opc1; 2427 uint8_t opc2; 2428 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2429 int state; 2430 /* Register type: ARM_CP_* bits/values */ 2431 int type; 2432 /* Access rights: PL*_[RW] */ 2433 int access; 2434 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2435 int secure; 2436 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2437 * this register was defined: can be used to hand data through to the 2438 * register read/write functions, since they are passed the ARMCPRegInfo*. 2439 */ 2440 void *opaque; 2441 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2442 * fieldoffset is non-zero, the reset value of the register. 2443 */ 2444 uint64_t resetvalue; 2445 /* Offset of the field in CPUARMState for this register. 2446 * 2447 * This is not needed if either: 2448 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2449 * 2. both readfn and writefn are specified 2450 */ 2451 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2452 2453 /* Offsets of the secure and non-secure fields in CPUARMState for the 2454 * register if it is banked. These fields are only used during the static 2455 * registration of a register. During hashing the bank associated 2456 * with a given security state is copied to fieldoffset which is used from 2457 * there on out. 2458 * 2459 * It is expected that register definitions use either fieldoffset or 2460 * bank_fieldoffsets in the definition but not both. It is also expected 2461 * that both bank offsets are set when defining a banked register. This 2462 * use indicates that a register is banked. 2463 */ 2464 ptrdiff_t bank_fieldoffsets[2]; 2465 2466 /* Function for making any access checks for this register in addition to 2467 * those specified by the 'access' permissions bits. If NULL, no extra 2468 * checks required. The access check is performed at runtime, not at 2469 * translate time. 2470 */ 2471 CPAccessFn *accessfn; 2472 /* Function for handling reads of this register. If NULL, then reads 2473 * will be done by loading from the offset into CPUARMState specified 2474 * by fieldoffset. 2475 */ 2476 CPReadFn *readfn; 2477 /* Function for handling writes of this register. If NULL, then writes 2478 * will be done by writing to the offset into CPUARMState specified 2479 * by fieldoffset. 2480 */ 2481 CPWriteFn *writefn; 2482 /* Function for doing a "raw" read; used when we need to copy 2483 * coprocessor state to the kernel for KVM or out for 2484 * migration. This only needs to be provided if there is also a 2485 * readfn and it has side effects (for instance clear-on-read bits). 2486 */ 2487 CPReadFn *raw_readfn; 2488 /* Function for doing a "raw" write; used when we need to copy KVM 2489 * kernel coprocessor state into userspace, or for inbound 2490 * migration. This only needs to be provided if there is also a 2491 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2492 * or similar behaviour. 2493 */ 2494 CPWriteFn *raw_writefn; 2495 /* Function for resetting the register. If NULL, then reset will be done 2496 * by writing resetvalue to the field specified in fieldoffset. If 2497 * fieldoffset is 0 then no reset will be done. 2498 */ 2499 CPResetFn *resetfn; 2500 }; 2501 2502 /* Macros which are lvalues for the field in CPUARMState for the 2503 * ARMCPRegInfo *ri. 2504 */ 2505 #define CPREG_FIELD32(env, ri) \ 2506 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2507 #define CPREG_FIELD64(env, ri) \ 2508 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2509 2510 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2511 2512 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2513 const ARMCPRegInfo *regs, void *opaque); 2514 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2515 const ARMCPRegInfo *regs, void *opaque); 2516 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2517 { 2518 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2519 } 2520 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2521 { 2522 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2523 } 2524 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2525 2526 /* 2527 * Definition of an ARM co-processor register as viewed from 2528 * userspace. This is used for presenting sanitised versions of 2529 * registers to userspace when emulating the Linux AArch64 CPU 2530 * ID/feature ABI (advertised as HWCAP_CPUID). 2531 */ 2532 typedef struct ARMCPRegUserSpaceInfo { 2533 /* Name of register */ 2534 const char *name; 2535 2536 /* Is the name actually a glob pattern */ 2537 bool is_glob; 2538 2539 /* Only some bits are exported to user space */ 2540 uint64_t exported_bits; 2541 2542 /* Fixed bits are applied after the mask */ 2543 uint64_t fixed_bits; 2544 } ARMCPRegUserSpaceInfo; 2545 2546 #define REGUSERINFO_SENTINEL { .name = NULL } 2547 2548 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2549 2550 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2551 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2552 uint64_t value); 2553 /* CPReadFn that can be used for read-as-zero behaviour */ 2554 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2555 2556 /* CPResetFn that does nothing, for use if no reset is required even 2557 * if fieldoffset is non zero. 2558 */ 2559 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2560 2561 /* Return true if this reginfo struct's field in the cpu state struct 2562 * is 64 bits wide. 2563 */ 2564 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2565 { 2566 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2567 } 2568 2569 static inline bool cp_access_ok(int current_el, 2570 const ARMCPRegInfo *ri, int isread) 2571 { 2572 return (ri->access >> ((current_el * 2) + isread)) & 1; 2573 } 2574 2575 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2576 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2577 2578 /** 2579 * write_list_to_cpustate 2580 * @cpu: ARMCPU 2581 * 2582 * For each register listed in the ARMCPU cpreg_indexes list, write 2583 * its value from the cpreg_values list into the ARMCPUState structure. 2584 * This updates TCG's working data structures from KVM data or 2585 * from incoming migration state. 2586 * 2587 * Returns: true if all register values were updated correctly, 2588 * false if some register was unknown or could not be written. 2589 * Note that we do not stop early on failure -- we will attempt 2590 * writing all registers in the list. 2591 */ 2592 bool write_list_to_cpustate(ARMCPU *cpu); 2593 2594 /** 2595 * write_cpustate_to_list: 2596 * @cpu: ARMCPU 2597 * @kvm_sync: true if this is for syncing back to KVM 2598 * 2599 * For each register listed in the ARMCPU cpreg_indexes list, write 2600 * its value from the ARMCPUState structure into the cpreg_values list. 2601 * This is used to copy info from TCG's working data structures into 2602 * KVM or for outbound migration. 2603 * 2604 * @kvm_sync is true if we are doing this in order to sync the 2605 * register state back to KVM. In this case we will only update 2606 * values in the list if the previous list->cpustate sync actually 2607 * successfully wrote the CPU state. Otherwise we will keep the value 2608 * that is in the list. 2609 * 2610 * Returns: true if all register values were read correctly, 2611 * false if some register was unknown or could not be read. 2612 * Note that we do not stop early on failure -- we will attempt 2613 * reading all registers in the list. 2614 */ 2615 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2616 2617 #define ARM_CPUID_TI915T 0x54029152 2618 #define ARM_CPUID_TI925T 0x54029252 2619 2620 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 2621 unsigned int target_el) 2622 { 2623 CPUARMState *env = cs->env_ptr; 2624 unsigned int cur_el = arm_current_el(env); 2625 bool secure = arm_is_secure(env); 2626 bool pstate_unmasked; 2627 int8_t unmasked = 0; 2628 uint64_t hcr_el2; 2629 2630 /* Don't take exceptions if they target a lower EL. 2631 * This check should catch any exceptions that would not be taken but left 2632 * pending. 2633 */ 2634 if (cur_el > target_el) { 2635 return false; 2636 } 2637 2638 hcr_el2 = arm_hcr_el2_eff(env); 2639 2640 switch (excp_idx) { 2641 case EXCP_FIQ: 2642 pstate_unmasked = !(env->daif & PSTATE_F); 2643 break; 2644 2645 case EXCP_IRQ: 2646 pstate_unmasked = !(env->daif & PSTATE_I); 2647 break; 2648 2649 case EXCP_VFIQ: 2650 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 2651 /* VFIQs are only taken when hypervized and non-secure. */ 2652 return false; 2653 } 2654 return !(env->daif & PSTATE_F); 2655 case EXCP_VIRQ: 2656 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 2657 /* VIRQs are only taken when hypervized and non-secure. */ 2658 return false; 2659 } 2660 return !(env->daif & PSTATE_I); 2661 default: 2662 g_assert_not_reached(); 2663 } 2664 2665 /* Use the target EL, current execution state and SCR/HCR settings to 2666 * determine whether the corresponding CPSR bit is used to mask the 2667 * interrupt. 2668 */ 2669 if ((target_el > cur_el) && (target_el != 1)) { 2670 /* Exceptions targeting a higher EL may not be maskable */ 2671 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 2672 /* 64-bit masking rules are simple: exceptions to EL3 2673 * can't be masked, and exceptions to EL2 can only be 2674 * masked from Secure state. The HCR and SCR settings 2675 * don't affect the masking logic, only the interrupt routing. 2676 */ 2677 if (target_el == 3 || !secure) { 2678 unmasked = 1; 2679 } 2680 } else { 2681 /* The old 32-bit-only environment has a more complicated 2682 * masking setup. HCR and SCR bits not only affect interrupt 2683 * routing but also change the behaviour of masking. 2684 */ 2685 bool hcr, scr; 2686 2687 switch (excp_idx) { 2688 case EXCP_FIQ: 2689 /* If FIQs are routed to EL3 or EL2 then there are cases where 2690 * we override the CPSR.F in determining if the exception is 2691 * masked or not. If neither of these are set then we fall back 2692 * to the CPSR.F setting otherwise we further assess the state 2693 * below. 2694 */ 2695 hcr = hcr_el2 & HCR_FMO; 2696 scr = (env->cp15.scr_el3 & SCR_FIQ); 2697 2698 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 2699 * CPSR.F bit masks FIQ interrupts when taken in non-secure 2700 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 2701 * when non-secure but only when FIQs are only routed to EL3. 2702 */ 2703 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 2704 break; 2705 case EXCP_IRQ: 2706 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 2707 * we may override the CPSR.I masking when in non-secure state. 2708 * The SCR.IRQ setting has already been taken into consideration 2709 * when setting the target EL, so it does not have a further 2710 * affect here. 2711 */ 2712 hcr = hcr_el2 & HCR_IMO; 2713 scr = false; 2714 break; 2715 default: 2716 g_assert_not_reached(); 2717 } 2718 2719 if ((scr || hcr) && !secure) { 2720 unmasked = 1; 2721 } 2722 } 2723 } 2724 2725 /* The PSTATE bits only mask the interrupt if we have not overriden the 2726 * ability above. 2727 */ 2728 return unmasked || pstate_unmasked; 2729 } 2730 2731 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2732 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2733 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2734 2735 #define cpu_signal_handler cpu_arm_signal_handler 2736 #define cpu_list arm_cpu_list 2737 2738 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2739 * 2740 * If EL3 is 64-bit: 2741 * + NonSecure EL1 & 0 stage 1 2742 * + NonSecure EL1 & 0 stage 2 2743 * + NonSecure EL2 2744 * + Secure EL1 & EL0 2745 * + Secure EL3 2746 * If EL3 is 32-bit: 2747 * + NonSecure PL1 & 0 stage 1 2748 * + NonSecure PL1 & 0 stage 2 2749 * + NonSecure PL2 2750 * + Secure PL0 & PL1 2751 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2752 * 2753 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2754 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2755 * may differ in access permissions even if the VA->PA map is the same 2756 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2757 * translation, which means that we have one mmu_idx that deals with two 2758 * concatenated translation regimes [this sort of combined s1+2 TLB is 2759 * architecturally permitted] 2760 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2761 * handling via the TLB. The only way to do a stage 1 translation without 2762 * the immediate stage 2 translation is via the ATS or AT system insns, 2763 * which can be slow-pathed and always do a page table walk. 2764 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2765 * translation regimes, because they map reasonably well to each other 2766 * and they can't both be active at the same time. 2767 * This gives us the following list of mmu_idx values: 2768 * 2769 * NS EL0 (aka NS PL0) stage 1+2 2770 * NS EL1 (aka NS PL1) stage 1+2 2771 * NS EL2 (aka NS PL2) 2772 * S EL3 (aka S PL1) 2773 * S EL0 (aka S PL0) 2774 * S EL1 (not used if EL3 is 32 bit) 2775 * NS EL0+1 stage 2 2776 * 2777 * (The last of these is an mmu_idx because we want to be able to use the TLB 2778 * for the accesses done as part of a stage 1 page table walk, rather than 2779 * having to walk the stage 2 page table over and over.) 2780 * 2781 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2782 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2783 * NS EL2 if we ever model a Cortex-R52). 2784 * 2785 * M profile CPUs are rather different as they do not have a true MMU. 2786 * They have the following different MMU indexes: 2787 * User 2788 * Privileged 2789 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2790 * Privileged, execution priority negative (ditto) 2791 * If the CPU supports the v8M Security Extension then there are also: 2792 * Secure User 2793 * Secure Privileged 2794 * Secure User, execution priority negative 2795 * Secure Privileged, execution priority negative 2796 * 2797 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2798 * are not quite the same -- different CPU types (most notably M profile 2799 * vs A/R profile) would like to use MMU indexes with different semantics, 2800 * but since we don't ever need to use all of those in a single CPU we 2801 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2802 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2803 * the same for any particular CPU. 2804 * Variables of type ARMMUIdx are always full values, and the core 2805 * index values are in variables of type 'int'. 2806 * 2807 * Our enumeration includes at the end some entries which are not "true" 2808 * mmu_idx values in that they don't have corresponding TLBs and are only 2809 * valid for doing slow path page table walks. 2810 * 2811 * The constant names here are patterned after the general style of the names 2812 * of the AT/ATS operations. 2813 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2814 * For M profile we arrange them to have a bit for priv, a bit for negpri 2815 * and a bit for secure. 2816 */ 2817 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2818 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2819 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2820 2821 /* meanings of the bits for M profile mmu idx values */ 2822 #define ARM_MMU_IDX_M_PRIV 0x1 2823 #define ARM_MMU_IDX_M_NEGPRI 0x2 2824 #define ARM_MMU_IDX_M_S 0x4 2825 2826 #define ARM_MMU_IDX_TYPE_MASK (~0x7) 2827 #define ARM_MMU_IDX_COREIDX_MASK 0x7 2828 2829 typedef enum ARMMMUIdx { 2830 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, 2831 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, 2832 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, 2833 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, 2834 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, 2835 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, 2836 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, 2837 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, 2838 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, 2839 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M, 2840 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M, 2841 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M, 2842 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M, 2843 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M, 2844 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M, 2845 /* Indexes below here don't have TLBs and are used only for AT system 2846 * instructions or for the first stage of an S12 page table walk. 2847 */ 2848 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, 2849 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, 2850 } ARMMMUIdx; 2851 2852 /* Bit macros for the core-mmu-index values for each index, 2853 * for use when calling tlb_flush_by_mmuidx() and friends. 2854 */ 2855 typedef enum ARMMMUIdxBit { 2856 ARMMMUIdxBit_S12NSE0 = 1 << 0, 2857 ARMMMUIdxBit_S12NSE1 = 1 << 1, 2858 ARMMMUIdxBit_S1E2 = 1 << 2, 2859 ARMMMUIdxBit_S1E3 = 1 << 3, 2860 ARMMMUIdxBit_S1SE0 = 1 << 4, 2861 ARMMMUIdxBit_S1SE1 = 1 << 5, 2862 ARMMMUIdxBit_S2NS = 1 << 6, 2863 ARMMMUIdxBit_MUser = 1 << 0, 2864 ARMMMUIdxBit_MPriv = 1 << 1, 2865 ARMMMUIdxBit_MUserNegPri = 1 << 2, 2866 ARMMMUIdxBit_MPrivNegPri = 1 << 3, 2867 ARMMMUIdxBit_MSUser = 1 << 4, 2868 ARMMMUIdxBit_MSPriv = 1 << 5, 2869 ARMMMUIdxBit_MSUserNegPri = 1 << 6, 2870 ARMMMUIdxBit_MSPrivNegPri = 1 << 7, 2871 } ARMMMUIdxBit; 2872 2873 #define MMU_USER_IDX 0 2874 2875 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 2876 { 2877 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 2878 } 2879 2880 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 2881 { 2882 if (arm_feature(env, ARM_FEATURE_M)) { 2883 return mmu_idx | ARM_MMU_IDX_M; 2884 } else { 2885 return mmu_idx | ARM_MMU_IDX_A; 2886 } 2887 } 2888 2889 /* Return the exception level we're running at if this is our mmu_idx */ 2890 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2891 { 2892 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { 2893 case ARM_MMU_IDX_A: 2894 return mmu_idx & 3; 2895 case ARM_MMU_IDX_M: 2896 return mmu_idx & ARM_MMU_IDX_M_PRIV; 2897 default: 2898 g_assert_not_reached(); 2899 } 2900 } 2901 2902 /* 2903 * Return the MMU index for a v7M CPU with all relevant information 2904 * manually specified. 2905 */ 2906 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 2907 bool secstate, bool priv, bool negpri); 2908 2909 /* Return the MMU index for a v7M CPU in the specified security and 2910 * privilege state. 2911 */ 2912 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 2913 bool secstate, bool priv); 2914 2915 /* Return the MMU index for a v7M CPU in the specified security state */ 2916 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 2917 2918 /** 2919 * cpu_mmu_index: 2920 * @env: The cpu environment 2921 * @ifetch: True for code access, false for data access. 2922 * 2923 * Return the core mmu index for the current translation regime. 2924 * This function is used by generic TCG code paths. 2925 */ 2926 int cpu_mmu_index(CPUARMState *env, bool ifetch); 2927 2928 /* Indexes used when registering address spaces with cpu_address_space_init */ 2929 typedef enum ARMASIdx { 2930 ARMASIdx_NS = 0, 2931 ARMASIdx_S = 1, 2932 } ARMASIdx; 2933 2934 /* Return the Exception Level targeted by debug exceptions. */ 2935 static inline int arm_debug_target_el(CPUARMState *env) 2936 { 2937 bool secure = arm_is_secure(env); 2938 bool route_to_el2 = false; 2939 2940 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2941 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2942 env->cp15.mdcr_el2 & MDCR_TDE; 2943 } 2944 2945 if (route_to_el2) { 2946 return 2; 2947 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2948 !arm_el_is_aa64(env, 3) && secure) { 2949 return 3; 2950 } else { 2951 return 1; 2952 } 2953 } 2954 2955 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 2956 { 2957 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 2958 * CSSELR is RAZ/WI. 2959 */ 2960 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 2961 } 2962 2963 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 2964 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2965 { 2966 int cur_el = arm_current_el(env); 2967 int debug_el; 2968 2969 if (cur_el == 3) { 2970 return false; 2971 } 2972 2973 /* MDCR_EL3.SDD disables debug events from Secure state */ 2974 if (arm_is_secure_below_el3(env) 2975 && extract32(env->cp15.mdcr_el3, 16, 1)) { 2976 return false; 2977 } 2978 2979 /* 2980 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 2981 * while not masking the (D)ebug bit in DAIF. 2982 */ 2983 debug_el = arm_debug_target_el(env); 2984 2985 if (cur_el == debug_el) { 2986 return extract32(env->cp15.mdscr_el1, 13, 1) 2987 && !(env->daif & PSTATE_D); 2988 } 2989 2990 /* Otherwise the debug target needs to be a higher EL */ 2991 return debug_el > cur_el; 2992 } 2993 2994 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 2995 { 2996 int el = arm_current_el(env); 2997 2998 if (el == 0 && arm_el_is_aa64(env, 1)) { 2999 return aa64_generate_debug_exceptions(env); 3000 } 3001 3002 if (arm_is_secure(env)) { 3003 int spd; 3004 3005 if (el == 0 && (env->cp15.sder & 1)) { 3006 /* SDER.SUIDEN means debug exceptions from Secure EL0 3007 * are always enabled. Otherwise they are controlled by 3008 * SDCR.SPD like those from other Secure ELs. 3009 */ 3010 return true; 3011 } 3012 3013 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3014 switch (spd) { 3015 case 1: 3016 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3017 case 0: 3018 /* For 0b00 we return true if external secure invasive debug 3019 * is enabled. On real hardware this is controlled by external 3020 * signals to the core. QEMU always permits debug, and behaves 3021 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3022 */ 3023 return true; 3024 case 2: 3025 return false; 3026 case 3: 3027 return true; 3028 } 3029 } 3030 3031 return el != 2; 3032 } 3033 3034 /* Return true if debugging exceptions are currently enabled. 3035 * This corresponds to what in ARM ARM pseudocode would be 3036 * if UsingAArch32() then 3037 * return AArch32.GenerateDebugExceptions() 3038 * else 3039 * return AArch64.GenerateDebugExceptions() 3040 * We choose to push the if() down into this function for clarity, 3041 * since the pseudocode has it at all callsites except for the one in 3042 * CheckSoftwareStep(), where it is elided because both branches would 3043 * always return the same value. 3044 */ 3045 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3046 { 3047 if (env->aarch64) { 3048 return aa64_generate_debug_exceptions(env); 3049 } else { 3050 return aa32_generate_debug_exceptions(env); 3051 } 3052 } 3053 3054 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3055 * implicitly means this always returns false in pre-v8 CPUs.) 3056 */ 3057 static inline bool arm_singlestep_active(CPUARMState *env) 3058 { 3059 return extract32(env->cp15.mdscr_el1, 0, 1) 3060 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3061 && arm_generate_debug_exceptions(env); 3062 } 3063 3064 static inline bool arm_sctlr_b(CPUARMState *env) 3065 { 3066 return 3067 /* We need not implement SCTLR.ITD in user-mode emulation, so 3068 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3069 * This lets people run BE32 binaries with "-cpu any". 3070 */ 3071 #ifndef CONFIG_USER_ONLY 3072 !arm_feature(env, ARM_FEATURE_V7) && 3073 #endif 3074 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3075 } 3076 3077 static inline uint64_t arm_sctlr(CPUARMState *env, int el) 3078 { 3079 if (el == 0) { 3080 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 3081 return env->cp15.sctlr_el[1]; 3082 } else { 3083 return env->cp15.sctlr_el[el]; 3084 } 3085 } 3086 3087 3088 /* Return true if the processor is in big-endian mode. */ 3089 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3090 { 3091 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3092 if (!is_a64(env)) { 3093 return 3094 #ifdef CONFIG_USER_ONLY 3095 /* In system mode, BE32 is modelled in line with the 3096 * architecture (as word-invariant big-endianness), where loads 3097 * and stores are done little endian but from addresses which 3098 * are adjusted by XORing with the appropriate constant. So the 3099 * endianness to use for the raw data access is not affected by 3100 * SCTLR.B. 3101 * In user mode, however, we model BE32 as byte-invariant 3102 * big-endianness (because user-only code cannot tell the 3103 * difference), and so we need to use a data access endianness 3104 * that depends on SCTLR.B. 3105 */ 3106 arm_sctlr_b(env) || 3107 #endif 3108 ((env->uncached_cpsr & CPSR_E) ? 1 : 0); 3109 } else { 3110 int cur_el = arm_current_el(env); 3111 uint64_t sctlr = arm_sctlr(env, cur_el); 3112 3113 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0; 3114 } 3115 } 3116 3117 typedef CPUARMState CPUArchState; 3118 typedef ARMCPU ArchCPU; 3119 3120 #include "exec/cpu-all.h" 3121 3122 /* Bit usage in the TB flags field: bit 31 indicates whether we are 3123 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3124 * We put flags which are shared between 32 and 64 bit mode at the top 3125 * of the word, and flags which apply to only one mode at the bottom. 3126 */ 3127 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3128 FIELD(TBFLAG_ANY, MMUIDX, 28, 3) 3129 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1) 3130 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) 3131 /* Target EL if we take a floating-point-disabled exception */ 3132 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2) 3133 FIELD(TBFLAG_ANY, BE_DATA, 23, 1) 3134 3135 /* Bit usage when in AArch32 state: */ 3136 FIELD(TBFLAG_A32, THUMB, 0, 1) 3137 FIELD(TBFLAG_A32, VECLEN, 1, 3) 3138 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) 3139 /* 3140 * We store the bottom two bits of the CPAR as TB flags and handle 3141 * checks on the other bits at runtime. This shares the same bits as 3142 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3143 */ 3144 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2) 3145 /* 3146 * Indicates whether cp register reads and writes by guest code should access 3147 * the secure or nonsecure bank of banked registers; note that this is not 3148 * the same thing as the current security state of the processor! 3149 */ 3150 FIELD(TBFLAG_A32, NS, 6, 1) 3151 FIELD(TBFLAG_A32, VFPEN, 7, 1) 3152 FIELD(TBFLAG_A32, CONDEXEC, 8, 8) 3153 FIELD(TBFLAG_A32, SCTLR_B, 16, 1) 3154 /* For M profile only, set if FPCCR.LSPACT is set */ 3155 FIELD(TBFLAG_A32, LSPACT, 18, 1) 3156 /* For M profile only, set if we must create a new FP context */ 3157 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) 3158 /* For M profile only, set if FPCCR.S does not match current security state */ 3159 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) 3160 /* For M profile only, Handler (ie not Thread) mode */ 3161 FIELD(TBFLAG_A32, HANDLER, 21, 1) 3162 /* For M profile only, whether we should generate stack-limit checks */ 3163 FIELD(TBFLAG_A32, STACKCHECK, 22, 1) 3164 3165 /* Bit usage when in AArch64 state */ 3166 FIELD(TBFLAG_A64, TBII, 0, 2) 3167 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3168 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3169 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3170 FIELD(TBFLAG_A64, BT, 9, 1) 3171 FIELD(TBFLAG_A64, BTYPE, 10, 2) 3172 FIELD(TBFLAG_A64, TBID, 12, 2) 3173 3174 static inline bool bswap_code(bool sctlr_b) 3175 { 3176 #ifdef CONFIG_USER_ONLY 3177 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3178 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3179 * would also end up as a mixed-endian mode with BE code, LE data. 3180 */ 3181 return 3182 #ifdef TARGET_WORDS_BIGENDIAN 3183 1 ^ 3184 #endif 3185 sctlr_b; 3186 #else 3187 /* All code access in ARM is little endian, and there are no loaders 3188 * doing swaps that need to be reversed 3189 */ 3190 return 0; 3191 #endif 3192 } 3193 3194 #ifdef CONFIG_USER_ONLY 3195 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3196 { 3197 return 3198 #ifdef TARGET_WORDS_BIGENDIAN 3199 1 ^ 3200 #endif 3201 arm_cpu_data_is_big_endian(env); 3202 } 3203 #endif 3204 3205 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3206 target_ulong *cs_base, uint32_t *flags); 3207 3208 enum { 3209 QEMU_PSCI_CONDUIT_DISABLED = 0, 3210 QEMU_PSCI_CONDUIT_SMC = 1, 3211 QEMU_PSCI_CONDUIT_HVC = 2, 3212 }; 3213 3214 #ifndef CONFIG_USER_ONLY 3215 /* Return the address space index to use for a memory access */ 3216 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3217 { 3218 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3219 } 3220 3221 /* Return the AddressSpace to use for a memory access 3222 * (which depends on whether the access is S or NS, and whether 3223 * the board gave us a separate AddressSpace for S accesses). 3224 */ 3225 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3226 { 3227 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3228 } 3229 #endif 3230 3231 /** 3232 * arm_register_pre_el_change_hook: 3233 * Register a hook function which will be called immediately before this 3234 * CPU changes exception level or mode. The hook function will be 3235 * passed a pointer to the ARMCPU and the opaque data pointer passed 3236 * to this function when the hook was registered. 3237 * 3238 * Note that if a pre-change hook is called, any registered post-change hooks 3239 * are guaranteed to subsequently be called. 3240 */ 3241 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3242 void *opaque); 3243 /** 3244 * arm_register_el_change_hook: 3245 * Register a hook function which will be called immediately after this 3246 * CPU changes exception level or mode. The hook function will be 3247 * passed a pointer to the ARMCPU and the opaque data pointer passed 3248 * to this function when the hook was registered. 3249 * 3250 * Note that any registered hooks registered here are guaranteed to be called 3251 * if pre-change hooks have been. 3252 */ 3253 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3254 *opaque); 3255 3256 /** 3257 * aa32_vfp_dreg: 3258 * Return a pointer to the Dn register within env in 32-bit mode. 3259 */ 3260 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3261 { 3262 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3263 } 3264 3265 /** 3266 * aa32_vfp_qreg: 3267 * Return a pointer to the Qn register within env in 32-bit mode. 3268 */ 3269 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3270 { 3271 return &env->vfp.zregs[regno].d[0]; 3272 } 3273 3274 /** 3275 * aa64_vfp_qreg: 3276 * Return a pointer to the Qn register within env in 64-bit mode. 3277 */ 3278 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3279 { 3280 return &env->vfp.zregs[regno].d[0]; 3281 } 3282 3283 /* Shared between translate-sve.c and sve_helper.c. */ 3284 extern const uint64_t pred_esz_masks[4]; 3285 3286 /* 3287 * 32-bit feature tests via id registers. 3288 */ 3289 static inline bool isar_feature_thumb_div(const ARMISARegisters *id) 3290 { 3291 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3292 } 3293 3294 static inline bool isar_feature_arm_div(const ARMISARegisters *id) 3295 { 3296 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3297 } 3298 3299 static inline bool isar_feature_jazelle(const ARMISARegisters *id) 3300 { 3301 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3302 } 3303 3304 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3305 { 3306 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3307 } 3308 3309 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3310 { 3311 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3312 } 3313 3314 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3315 { 3316 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3317 } 3318 3319 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3320 { 3321 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3322 } 3323 3324 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3325 { 3326 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3327 } 3328 3329 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3330 { 3331 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3332 } 3333 3334 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3335 { 3336 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3337 } 3338 3339 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3340 { 3341 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3342 } 3343 3344 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3345 { 3346 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3347 } 3348 3349 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3350 { 3351 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3352 } 3353 3354 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3355 { 3356 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3357 } 3358 3359 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3360 { 3361 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3362 } 3363 3364 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3365 { 3366 /* 3367 * This is a placeholder for use by VCMA until the rest of 3368 * the ARMv8.2-FP16 extension is implemented for aa32 mode. 3369 * At which point we can properly set and check MVFR1.FPHP. 3370 */ 3371 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3372 } 3373 3374 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id) 3375 { 3376 /* Return true if D16-D31 are implemented */ 3377 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2; 3378 } 3379 3380 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3381 { 3382 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0; 3383 } 3384 3385 /* 3386 * We always set the FP and SIMD FP16 fields to indicate identical 3387 * levels of support (assuming SIMD is implemented at all), so 3388 * we only need one set of accessors. 3389 */ 3390 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3391 { 3392 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0; 3393 } 3394 3395 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3396 { 3397 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1; 3398 } 3399 3400 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3401 { 3402 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1; 3403 } 3404 3405 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3406 { 3407 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2; 3408 } 3409 3410 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3411 { 3412 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3; 3413 } 3414 3415 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3416 { 3417 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4; 3418 } 3419 3420 /* 3421 * 64-bit feature tests via id registers. 3422 */ 3423 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3424 { 3425 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3426 } 3427 3428 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3429 { 3430 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3431 } 3432 3433 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3434 { 3435 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3436 } 3437 3438 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3439 { 3440 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3441 } 3442 3443 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3444 { 3445 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3446 } 3447 3448 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3449 { 3450 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3451 } 3452 3453 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3454 { 3455 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3456 } 3457 3458 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3459 { 3460 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3461 } 3462 3463 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3464 { 3465 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3466 } 3467 3468 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3469 { 3470 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3471 } 3472 3473 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3474 { 3475 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3476 } 3477 3478 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3479 { 3480 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3481 } 3482 3483 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3484 { 3485 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3486 } 3487 3488 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3489 { 3490 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3491 } 3492 3493 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3494 { 3495 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3496 } 3497 3498 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3499 { 3500 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3501 } 3502 3503 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3504 { 3505 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3506 } 3507 3508 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3509 { 3510 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3511 } 3512 3513 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3514 { 3515 /* 3516 * Note that while QEMU will only implement the architected algorithm 3517 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3518 * defined algorithms, and thus API+GPI, and this predicate controls 3519 * migration of the 128-bit keys. 3520 */ 3521 return (id->id_aa64isar1 & 3522 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3523 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3524 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3525 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3526 } 3527 3528 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3529 { 3530 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3531 } 3532 3533 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3534 { 3535 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3536 } 3537 3538 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3539 { 3540 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3541 } 3542 3543 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3544 { 3545 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3546 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3547 } 3548 3549 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3550 { 3551 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3552 } 3553 3554 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3555 { 3556 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3557 } 3558 3559 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3560 { 3561 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3562 } 3563 3564 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3565 { 3566 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3567 } 3568 3569 /* 3570 * Forward to the above feature tests given an ARMCPU pointer. 3571 */ 3572 #define cpu_isar_feature(name, cpu) \ 3573 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3574 3575 #endif 3576