1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "hw/registerfields.h" 25 #include "cpu-qom.h" 26 #include "exec/cpu-defs.h" 27 28 /* ARM processors have a weak memory model */ 29 #define TCG_GUEST_DEFAULT_MO (0) 30 31 #define EXCP_UDEF 1 /* undefined instruction */ 32 #define EXCP_SWI 2 /* software interrupt */ 33 #define EXCP_PREFETCH_ABORT 3 34 #define EXCP_DATA_ABORT 4 35 #define EXCP_IRQ 5 36 #define EXCP_FIQ 6 37 #define EXCP_BKPT 7 38 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 39 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 40 #define EXCP_HVC 11 /* HyperVisor Call */ 41 #define EXCP_HYP_TRAP 12 42 #define EXCP_SMC 13 /* Secure Monitor Call */ 43 #define EXCP_VIRQ 14 44 #define EXCP_VFIQ 15 45 #define EXCP_SEMIHOST 16 /* semihosting call */ 46 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 47 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 48 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 49 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 50 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 51 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 53 54 #define ARMV7M_EXCP_RESET 1 55 #define ARMV7M_EXCP_NMI 2 56 #define ARMV7M_EXCP_HARD 3 57 #define ARMV7M_EXCP_MEM 4 58 #define ARMV7M_EXCP_BUS 5 59 #define ARMV7M_EXCP_USAGE 6 60 #define ARMV7M_EXCP_SECURE 7 61 #define ARMV7M_EXCP_SVC 11 62 #define ARMV7M_EXCP_DEBUG 12 63 #define ARMV7M_EXCP_PENDSV 14 64 #define ARMV7M_EXCP_SYSTICK 15 65 66 /* For M profile, some registers are banked secure vs non-secure; 67 * these are represented as a 2-element array where the first element 68 * is the non-secure copy and the second is the secure copy. 69 * When the CPU does not have implement the security extension then 70 * only the first element is used. 71 * This means that the copy for the current security state can be 72 * accessed via env->registerfield[env->v7m.secure] (whether the security 73 * extension is implemented or not). 74 */ 75 enum { 76 M_REG_NS = 0, 77 M_REG_S = 1, 78 M_REG_NUM_BANKS = 2, 79 }; 80 81 /* ARM-specific interrupt pending bits. */ 82 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 83 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 84 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 85 86 /* The usual mapping for an AArch64 system register to its AArch32 87 * counterpart is for the 32 bit world to have access to the lower 88 * half only (with writes leaving the upper half untouched). It's 89 * therefore useful to be able to pass TCG the offset of the least 90 * significant half of a uint64_t struct member. 91 */ 92 #ifdef HOST_WORDS_BIGENDIAN 93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 94 #define offsetofhigh32(S, M) offsetof(S, M) 95 #else 96 #define offsetoflow32(S, M) offsetof(S, M) 97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 98 #endif 99 100 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 101 #define ARM_CPU_IRQ 0 102 #define ARM_CPU_FIQ 1 103 #define ARM_CPU_VIRQ 2 104 #define ARM_CPU_VFIQ 3 105 106 /* ARM-specific extra insn start words: 107 * 1: Conditional execution bits 108 * 2: Partial exception syndrome for data aborts 109 */ 110 #define TARGET_INSN_START_EXTRA_WORDS 2 111 112 /* The 2nd extra word holding syndrome info for data aborts does not use 113 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 114 * help the sleb128 encoder do a better job. 115 * When restoring the CPU state, we shift it back up. 116 */ 117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 118 #define ARM_INSN_START_WORD2_SHIFT 14 119 120 /* We currently assume float and double are IEEE single and double 121 precision respectively. 122 Doing runtime conversions is tricky because VFP registers may contain 123 integer values (eg. as the result of a FTOSI instruction). 124 s<2n> maps to the least significant half of d<n> 125 s<2n+1> maps to the most significant half of d<n> 126 */ 127 128 /** 129 * DynamicGDBXMLInfo: 130 * @desc: Contains the XML descriptions. 131 * @num_cpregs: Number of the Coprocessor registers seen by GDB. 132 * @cpregs_keys: Array that contains the corresponding Key of 133 * a given cpreg with the same order of the cpreg in the XML description. 134 */ 135 typedef struct DynamicGDBXMLInfo { 136 char *desc; 137 int num_cpregs; 138 uint32_t *cpregs_keys; 139 } DynamicGDBXMLInfo; 140 141 /* CPU state for each instance of a generic timer (in cp15 c14) */ 142 typedef struct ARMGenericTimer { 143 uint64_t cval; /* Timer CompareValue register */ 144 uint64_t ctl; /* Timer Control register */ 145 } ARMGenericTimer; 146 147 #define GTIMER_PHYS 0 148 #define GTIMER_VIRT 1 149 #define GTIMER_HYP 2 150 #define GTIMER_SEC 3 151 #define NUM_GTIMERS 4 152 153 typedef struct { 154 uint64_t raw_tcr; 155 uint32_t mask; 156 uint32_t base_mask; 157 } TCR; 158 159 /* Define a maximum sized vector register. 160 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 161 * For 64-bit, this is a 2048-bit SVE register. 162 * 163 * Note that the mapping between S, D, and Q views of the register bank 164 * differs between AArch64 and AArch32. 165 * In AArch32: 166 * Qn = regs[n].d[1]:regs[n].d[0] 167 * Dn = regs[n / 2].d[n & 1] 168 * Sn = regs[n / 4].d[n % 4 / 2], 169 * bits 31..0 for even n, and bits 63..32 for odd n 170 * (and regs[16] to regs[31] are inaccessible) 171 * In AArch64: 172 * Zn = regs[n].d[*] 173 * Qn = regs[n].d[1]:regs[n].d[0] 174 * Dn = regs[n].d[0] 175 * Sn = regs[n].d[0] bits 31..0 176 * Hn = regs[n].d[0] bits 15..0 177 * 178 * This corresponds to the architecturally defined mapping between 179 * the two execution states, and means we do not need to explicitly 180 * map these registers when changing states. 181 * 182 * Align the data for use with TCG host vector operations. 183 */ 184 185 #ifdef TARGET_AARCH64 186 # define ARM_MAX_VQ 16 187 #else 188 # define ARM_MAX_VQ 1 189 #endif 190 191 typedef struct ARMVectorReg { 192 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 193 } ARMVectorReg; 194 195 #ifdef TARGET_AARCH64 196 /* In AArch32 mode, predicate registers do not exist at all. */ 197 typedef struct ARMPredicateReg { 198 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 199 } ARMPredicateReg; 200 201 /* In AArch32 mode, PAC keys do not exist at all. */ 202 typedef struct ARMPACKey { 203 uint64_t lo, hi; 204 } ARMPACKey; 205 #endif 206 207 208 typedef struct CPUARMState { 209 /* Regs for current mode. */ 210 uint32_t regs[16]; 211 212 /* 32/64 switch only happens when taking and returning from 213 * exceptions so the overlap semantics are taken care of then 214 * instead of having a complicated union. 215 */ 216 /* Regs for A64 mode. */ 217 uint64_t xregs[32]; 218 uint64_t pc; 219 /* PSTATE isn't an architectural register for ARMv8. However, it is 220 * convenient for us to assemble the underlying state into a 32 bit format 221 * identical to the architectural format used for the SPSR. (This is also 222 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 223 * 'pstate' register are.) Of the PSTATE bits: 224 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 225 * semantics as for AArch32, as described in the comments on each field) 226 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 227 * DAIF (exception masks) are kept in env->daif 228 * BTYPE is kept in env->btype 229 * all other bits are stored in their correct places in env->pstate 230 */ 231 uint32_t pstate; 232 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ 233 234 /* Cached TBFLAGS state. See below for which bits are included. */ 235 uint32_t hflags; 236 237 /* Frequently accessed CPSR bits are stored separately for efficiency. 238 This contains all the other bits. Use cpsr_{read,write} to access 239 the whole CPSR. */ 240 uint32_t uncached_cpsr; 241 uint32_t spsr; 242 243 /* Banked registers. */ 244 uint64_t banked_spsr[8]; 245 uint32_t banked_r13[8]; 246 uint32_t banked_r14[8]; 247 248 /* These hold r8-r12. */ 249 uint32_t usr_regs[5]; 250 uint32_t fiq_regs[5]; 251 252 /* cpsr flag cache for faster execution */ 253 uint32_t CF; /* 0 or 1 */ 254 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 255 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 256 uint32_t ZF; /* Z set if zero. */ 257 uint32_t QF; /* 0 or 1 */ 258 uint32_t GE; /* cpsr[19:16] */ 259 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ 260 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 261 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 262 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 263 264 uint64_t elr_el[4]; /* AArch64 exception link regs */ 265 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 266 267 /* System control coprocessor (cp15) */ 268 struct { 269 uint32_t c0_cpuid; 270 union { /* Cache size selection */ 271 struct { 272 uint64_t _unused_csselr0; 273 uint64_t csselr_ns; 274 uint64_t _unused_csselr1; 275 uint64_t csselr_s; 276 }; 277 uint64_t csselr_el[4]; 278 }; 279 union { /* System control register. */ 280 struct { 281 uint64_t _unused_sctlr; 282 uint64_t sctlr_ns; 283 uint64_t hsctlr; 284 uint64_t sctlr_s; 285 }; 286 uint64_t sctlr_el[4]; 287 }; 288 uint64_t cpacr_el1; /* Architectural feature access control register */ 289 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 290 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 291 uint64_t sder; /* Secure debug enable register. */ 292 uint32_t nsacr; /* Non-secure access control register. */ 293 union { /* MMU translation table base 0. */ 294 struct { 295 uint64_t _unused_ttbr0_0; 296 uint64_t ttbr0_ns; 297 uint64_t _unused_ttbr0_1; 298 uint64_t ttbr0_s; 299 }; 300 uint64_t ttbr0_el[4]; 301 }; 302 union { /* MMU translation table base 1. */ 303 struct { 304 uint64_t _unused_ttbr1_0; 305 uint64_t ttbr1_ns; 306 uint64_t _unused_ttbr1_1; 307 uint64_t ttbr1_s; 308 }; 309 uint64_t ttbr1_el[4]; 310 }; 311 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 312 /* MMU translation table base control. */ 313 TCR tcr_el[4]; 314 TCR vtcr_el2; /* Virtualization Translation Control. */ 315 uint32_t c2_data; /* MPU data cacheable bits. */ 316 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 317 union { /* MMU domain access control register 318 * MPU write buffer control. 319 */ 320 struct { 321 uint64_t dacr_ns; 322 uint64_t dacr_s; 323 }; 324 struct { 325 uint64_t dacr32_el2; 326 }; 327 }; 328 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 329 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 330 uint64_t hcr_el2; /* Hypervisor configuration register */ 331 uint64_t scr_el3; /* Secure configuration register. */ 332 union { /* Fault status registers. */ 333 struct { 334 uint64_t ifsr_ns; 335 uint64_t ifsr_s; 336 }; 337 struct { 338 uint64_t ifsr32_el2; 339 }; 340 }; 341 union { 342 struct { 343 uint64_t _unused_dfsr; 344 uint64_t dfsr_ns; 345 uint64_t hsr; 346 uint64_t dfsr_s; 347 }; 348 uint64_t esr_el[4]; 349 }; 350 uint32_t c6_region[8]; /* MPU base/size registers. */ 351 union { /* Fault address registers. */ 352 struct { 353 uint64_t _unused_far0; 354 #ifdef HOST_WORDS_BIGENDIAN 355 uint32_t ifar_ns; 356 uint32_t dfar_ns; 357 uint32_t ifar_s; 358 uint32_t dfar_s; 359 #else 360 uint32_t dfar_ns; 361 uint32_t ifar_ns; 362 uint32_t dfar_s; 363 uint32_t ifar_s; 364 #endif 365 uint64_t _unused_far3; 366 }; 367 uint64_t far_el[4]; 368 }; 369 uint64_t hpfar_el2; 370 uint64_t hstr_el2; 371 union { /* Translation result. */ 372 struct { 373 uint64_t _unused_par_0; 374 uint64_t par_ns; 375 uint64_t _unused_par_1; 376 uint64_t par_s; 377 }; 378 uint64_t par_el[4]; 379 }; 380 381 uint32_t c9_insn; /* Cache lockdown registers. */ 382 uint32_t c9_data; 383 uint64_t c9_pmcr; /* performance monitor control register */ 384 uint64_t c9_pmcnten; /* perf monitor counter enables */ 385 uint64_t c9_pmovsr; /* perf monitor overflow status */ 386 uint64_t c9_pmuserenr; /* perf monitor user enable */ 387 uint64_t c9_pmselr; /* perf monitor counter selection register */ 388 uint64_t c9_pminten; /* perf monitor interrupt enables */ 389 union { /* Memory attribute redirection */ 390 struct { 391 #ifdef HOST_WORDS_BIGENDIAN 392 uint64_t _unused_mair_0; 393 uint32_t mair1_ns; 394 uint32_t mair0_ns; 395 uint64_t _unused_mair_1; 396 uint32_t mair1_s; 397 uint32_t mair0_s; 398 #else 399 uint64_t _unused_mair_0; 400 uint32_t mair0_ns; 401 uint32_t mair1_ns; 402 uint64_t _unused_mair_1; 403 uint32_t mair0_s; 404 uint32_t mair1_s; 405 #endif 406 }; 407 uint64_t mair_el[4]; 408 }; 409 union { /* vector base address register */ 410 struct { 411 uint64_t _unused_vbar; 412 uint64_t vbar_ns; 413 uint64_t hvbar; 414 uint64_t vbar_s; 415 }; 416 uint64_t vbar_el[4]; 417 }; 418 uint32_t mvbar; /* (monitor) vector base address register */ 419 struct { /* FCSE PID. */ 420 uint32_t fcseidr_ns; 421 uint32_t fcseidr_s; 422 }; 423 union { /* Context ID. */ 424 struct { 425 uint64_t _unused_contextidr_0; 426 uint64_t contextidr_ns; 427 uint64_t _unused_contextidr_1; 428 uint64_t contextidr_s; 429 }; 430 uint64_t contextidr_el[4]; 431 }; 432 union { /* User RW Thread register. */ 433 struct { 434 uint64_t tpidrurw_ns; 435 uint64_t tpidrprw_ns; 436 uint64_t htpidr; 437 uint64_t _tpidr_el3; 438 }; 439 uint64_t tpidr_el[4]; 440 }; 441 /* The secure banks of these registers don't map anywhere */ 442 uint64_t tpidrurw_s; 443 uint64_t tpidrprw_s; 444 uint64_t tpidruro_s; 445 446 union { /* User RO Thread register. */ 447 uint64_t tpidruro_ns; 448 uint64_t tpidrro_el[1]; 449 }; 450 uint64_t c14_cntfrq; /* Counter Frequency register */ 451 uint64_t c14_cntkctl; /* Timer Control register */ 452 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 453 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 454 ARMGenericTimer c14_timer[NUM_GTIMERS]; 455 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 456 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 457 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 458 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 459 uint32_t c15_threadid; /* TI debugger thread-ID. */ 460 uint32_t c15_config_base_address; /* SCU base address. */ 461 uint32_t c15_diagnostic; /* diagnostic register */ 462 uint32_t c15_power_diagnostic; 463 uint32_t c15_power_control; /* power control */ 464 uint64_t dbgbvr[16]; /* breakpoint value registers */ 465 uint64_t dbgbcr[16]; /* breakpoint control registers */ 466 uint64_t dbgwvr[16]; /* watchpoint value registers */ 467 uint64_t dbgwcr[16]; /* watchpoint control registers */ 468 uint64_t mdscr_el1; 469 uint64_t oslsr_el1; /* OS Lock Status */ 470 uint64_t mdcr_el2; 471 uint64_t mdcr_el3; 472 /* Stores the architectural value of the counter *the last time it was 473 * updated* by pmccntr_op_start. Accesses should always be surrounded 474 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 475 * architecturally-correct value is being read/set. 476 */ 477 uint64_t c15_ccnt; 478 /* Stores the delta between the architectural value and the underlying 479 * cycle count during normal operation. It is used to update c15_ccnt 480 * to be the correct architectural value before accesses. During 481 * accesses, c15_ccnt_delta contains the underlying count being used 482 * for the access, after which it reverts to the delta value in 483 * pmccntr_op_finish. 484 */ 485 uint64_t c15_ccnt_delta; 486 uint64_t c14_pmevcntr[31]; 487 uint64_t c14_pmevcntr_delta[31]; 488 uint64_t c14_pmevtyper[31]; 489 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 490 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 491 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 492 } cp15; 493 494 struct { 495 /* M profile has up to 4 stack pointers: 496 * a Main Stack Pointer and a Process Stack Pointer for each 497 * of the Secure and Non-Secure states. (If the CPU doesn't support 498 * the security extension then it has only two SPs.) 499 * In QEMU we always store the currently active SP in regs[13], 500 * and the non-active SP for the current security state in 501 * v7m.other_sp. The stack pointers for the inactive security state 502 * are stored in other_ss_msp and other_ss_psp. 503 * switch_v7m_security_state() is responsible for rearranging them 504 * when we change security state. 505 */ 506 uint32_t other_sp; 507 uint32_t other_ss_msp; 508 uint32_t other_ss_psp; 509 uint32_t vecbase[M_REG_NUM_BANKS]; 510 uint32_t basepri[M_REG_NUM_BANKS]; 511 uint32_t control[M_REG_NUM_BANKS]; 512 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 513 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 514 uint32_t hfsr; /* HardFault Status */ 515 uint32_t dfsr; /* Debug Fault Status Register */ 516 uint32_t sfsr; /* Secure Fault Status Register */ 517 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 518 uint32_t bfar; /* BusFault Address */ 519 uint32_t sfar; /* Secure Fault Address Register */ 520 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 521 int exception; 522 uint32_t primask[M_REG_NUM_BANKS]; 523 uint32_t faultmask[M_REG_NUM_BANKS]; 524 uint32_t aircr; /* only holds r/w state if security extn implemented */ 525 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 526 uint32_t csselr[M_REG_NUM_BANKS]; 527 uint32_t scr[M_REG_NUM_BANKS]; 528 uint32_t msplim[M_REG_NUM_BANKS]; 529 uint32_t psplim[M_REG_NUM_BANKS]; 530 uint32_t fpcar[M_REG_NUM_BANKS]; 531 uint32_t fpccr[M_REG_NUM_BANKS]; 532 uint32_t fpdscr[M_REG_NUM_BANKS]; 533 uint32_t cpacr[M_REG_NUM_BANKS]; 534 uint32_t nsacr; 535 } v7m; 536 537 /* Information associated with an exception about to be taken: 538 * code which raises an exception must set cs->exception_index and 539 * the relevant parts of this structure; the cpu_do_interrupt function 540 * will then set the guest-visible registers as part of the exception 541 * entry process. 542 */ 543 struct { 544 uint32_t syndrome; /* AArch64 format syndrome register */ 545 uint32_t fsr; /* AArch32 format fault status register info */ 546 uint64_t vaddress; /* virtual addr associated with exception, if any */ 547 uint32_t target_el; /* EL the exception should be targeted for */ 548 /* If we implement EL2 we will also need to store information 549 * about the intermediate physical address for stage 2 faults. 550 */ 551 } exception; 552 553 /* Information associated with an SError */ 554 struct { 555 uint8_t pending; 556 uint8_t has_esr; 557 uint64_t esr; 558 } serror; 559 560 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 561 uint32_t irq_line_state; 562 563 /* Thumb-2 EE state. */ 564 uint32_t teecr; 565 uint32_t teehbr; 566 567 /* VFP coprocessor state. */ 568 struct { 569 ARMVectorReg zregs[32]; 570 571 #ifdef TARGET_AARCH64 572 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 573 #define FFR_PRED_NUM 16 574 ARMPredicateReg pregs[17]; 575 /* Scratch space for aa64 sve predicate temporary. */ 576 ARMPredicateReg preg_tmp; 577 #endif 578 579 /* We store these fpcsr fields separately for convenience. */ 580 uint32_t qc[4] QEMU_ALIGNED(16); 581 int vec_len; 582 int vec_stride; 583 584 uint32_t xregs[16]; 585 586 /* Scratch space for aa32 neon expansion. */ 587 uint32_t scratch[8]; 588 589 /* There are a number of distinct float control structures: 590 * 591 * fp_status: is the "normal" fp status. 592 * fp_status_fp16: used for half-precision calculations 593 * standard_fp_status : the ARM "Standard FPSCR Value" 594 * 595 * Half-precision operations are governed by a separate 596 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 597 * status structure to control this. 598 * 599 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 600 * round-to-nearest and is used by any operations (generally 601 * Neon) which the architecture defines as controlled by the 602 * standard FPSCR value rather than the FPSCR. 603 * 604 * To avoid having to transfer exception bits around, we simply 605 * say that the FPSCR cumulative exception flags are the logical 606 * OR of the flags in the three fp statuses. This relies on the 607 * only thing which needs to read the exception flags being 608 * an explicit FPSCR read. 609 */ 610 float_status fp_status; 611 float_status fp_status_f16; 612 float_status standard_fp_status; 613 614 /* ZCR_EL[1-3] */ 615 uint64_t zcr_el[4]; 616 } vfp; 617 uint64_t exclusive_addr; 618 uint64_t exclusive_val; 619 uint64_t exclusive_high; 620 621 /* iwMMXt coprocessor state. */ 622 struct { 623 uint64_t regs[16]; 624 uint64_t val; 625 626 uint32_t cregs[16]; 627 } iwmmxt; 628 629 #ifdef TARGET_AARCH64 630 struct { 631 ARMPACKey apia; 632 ARMPACKey apib; 633 ARMPACKey apda; 634 ARMPACKey apdb; 635 ARMPACKey apga; 636 } keys; 637 #endif 638 639 #if defined(CONFIG_USER_ONLY) 640 /* For usermode syscall translation. */ 641 int eabi; 642 #endif 643 644 struct CPUBreakpoint *cpu_breakpoint[16]; 645 struct CPUWatchpoint *cpu_watchpoint[16]; 646 647 /* Fields up to this point are cleared by a CPU reset */ 648 struct {} end_reset_fields; 649 650 /* Fields after this point are preserved across CPU reset. */ 651 652 /* Internal CPU feature flags. */ 653 uint64_t features; 654 655 /* PMSAv7 MPU */ 656 struct { 657 uint32_t *drbar; 658 uint32_t *drsr; 659 uint32_t *dracr; 660 uint32_t rnr[M_REG_NUM_BANKS]; 661 } pmsav7; 662 663 /* PMSAv8 MPU */ 664 struct { 665 /* The PMSAv8 implementation also shares some PMSAv7 config 666 * and state: 667 * pmsav7.rnr (region number register) 668 * pmsav7_dregion (number of configured regions) 669 */ 670 uint32_t *rbar[M_REG_NUM_BANKS]; 671 uint32_t *rlar[M_REG_NUM_BANKS]; 672 uint32_t mair0[M_REG_NUM_BANKS]; 673 uint32_t mair1[M_REG_NUM_BANKS]; 674 } pmsav8; 675 676 /* v8M SAU */ 677 struct { 678 uint32_t *rbar; 679 uint32_t *rlar; 680 uint32_t rnr; 681 uint32_t ctrl; 682 } sau; 683 684 void *nvic; 685 const struct arm_boot_info *boot_info; 686 /* Store GICv3CPUState to access from this struct */ 687 void *gicv3state; 688 } CPUARMState; 689 690 /** 691 * ARMELChangeHookFn: 692 * type of a function which can be registered via arm_register_el_change_hook() 693 * to get callbacks when the CPU changes its exception level or mode. 694 */ 695 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 696 typedef struct ARMELChangeHook ARMELChangeHook; 697 struct ARMELChangeHook { 698 ARMELChangeHookFn *hook; 699 void *opaque; 700 QLIST_ENTRY(ARMELChangeHook) node; 701 }; 702 703 /* These values map onto the return values for 704 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 705 typedef enum ARMPSCIState { 706 PSCI_ON = 0, 707 PSCI_OFF = 1, 708 PSCI_ON_PENDING = 2 709 } ARMPSCIState; 710 711 typedef struct ARMISARegisters ARMISARegisters; 712 713 /** 714 * ARMCPU: 715 * @env: #CPUARMState 716 * 717 * An ARM CPU core. 718 */ 719 struct ARMCPU { 720 /*< private >*/ 721 CPUState parent_obj; 722 /*< public >*/ 723 724 CPUNegativeOffsetState neg; 725 CPUARMState env; 726 727 /* Coprocessor information */ 728 GHashTable *cp_regs; 729 /* For marshalling (mostly coprocessor) register state between the 730 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 731 * we use these arrays. 732 */ 733 /* List of register indexes managed via these arrays; (full KVM style 734 * 64 bit indexes, not CPRegInfo 32 bit indexes) 735 */ 736 uint64_t *cpreg_indexes; 737 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 738 uint64_t *cpreg_values; 739 /* Length of the indexes, values, reset_values arrays */ 740 int32_t cpreg_array_len; 741 /* These are used only for migration: incoming data arrives in 742 * these fields and is sanity checked in post_load before copying 743 * to the working data structures above. 744 */ 745 uint64_t *cpreg_vmstate_indexes; 746 uint64_t *cpreg_vmstate_values; 747 int32_t cpreg_vmstate_array_len; 748 749 DynamicGDBXMLInfo dyn_xml; 750 751 /* Timers used by the generic (architected) timer */ 752 QEMUTimer *gt_timer[NUM_GTIMERS]; 753 /* 754 * Timer used by the PMU. Its state is restored after migration by 755 * pmu_op_finish() - it does not need other handling during migration 756 */ 757 QEMUTimer *pmu_timer; 758 /* GPIO outputs for generic timer */ 759 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 760 /* GPIO output for GICv3 maintenance interrupt signal */ 761 qemu_irq gicv3_maintenance_interrupt; 762 /* GPIO output for the PMU interrupt */ 763 qemu_irq pmu_interrupt; 764 765 /* MemoryRegion to use for secure physical accesses */ 766 MemoryRegion *secure_memory; 767 768 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 769 Object *idau; 770 771 /* 'compatible' string for this CPU for Linux device trees */ 772 const char *dtb_compatible; 773 774 /* PSCI version for this CPU 775 * Bits[31:16] = Major Version 776 * Bits[15:0] = Minor Version 777 */ 778 uint32_t psci_version; 779 780 /* Should CPU start in PSCI powered-off state? */ 781 bool start_powered_off; 782 783 /* Current power state, access guarded by BQL */ 784 ARMPSCIState power_state; 785 786 /* CPU has virtualization extension */ 787 bool has_el2; 788 /* CPU has security extension */ 789 bool has_el3; 790 /* CPU has PMU (Performance Monitor Unit) */ 791 bool has_pmu; 792 /* CPU has VFP */ 793 bool has_vfp; 794 /* CPU has Neon */ 795 bool has_neon; 796 /* CPU has M-profile DSP extension */ 797 bool has_dsp; 798 799 /* CPU has memory protection unit */ 800 bool has_mpu; 801 /* PMSAv7 MPU number of supported regions */ 802 uint32_t pmsav7_dregion; 803 /* v8M SAU number of supported regions */ 804 uint32_t sau_sregion; 805 806 /* PSCI conduit used to invoke PSCI methods 807 * 0 - disabled, 1 - smc, 2 - hvc 808 */ 809 uint32_t psci_conduit; 810 811 /* For v8M, initial value of the Secure VTOR */ 812 uint32_t init_svtor; 813 814 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 815 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 816 */ 817 uint32_t kvm_target; 818 819 /* KVM init features for this CPU */ 820 uint32_t kvm_init_features[7]; 821 822 /* Uniprocessor system with MP extensions */ 823 bool mp_is_up; 824 825 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 826 * and the probe failed (so we need to report the error in realize) 827 */ 828 bool host_cpu_probe_failed; 829 830 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 831 * register. 832 */ 833 int32_t core_count; 834 835 /* The instance init functions for implementation-specific subclasses 836 * set these fields to specify the implementation-dependent values of 837 * various constant registers and reset values of non-constant 838 * registers. 839 * Some of these might become QOM properties eventually. 840 * Field names match the official register names as defined in the 841 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 842 * is used for reset values of non-constant registers; no reset_ 843 * prefix means a constant register. 844 * Some of these registers are split out into a substructure that 845 * is shared with the translators to control the ISA. 846 */ 847 struct ARMISARegisters { 848 uint32_t id_isar0; 849 uint32_t id_isar1; 850 uint32_t id_isar2; 851 uint32_t id_isar3; 852 uint32_t id_isar4; 853 uint32_t id_isar5; 854 uint32_t id_isar6; 855 uint32_t mvfr0; 856 uint32_t mvfr1; 857 uint32_t mvfr2; 858 uint64_t id_aa64isar0; 859 uint64_t id_aa64isar1; 860 uint64_t id_aa64pfr0; 861 uint64_t id_aa64pfr1; 862 uint64_t id_aa64mmfr0; 863 uint64_t id_aa64mmfr1; 864 } isar; 865 uint32_t midr; 866 uint32_t revidr; 867 uint32_t reset_fpsid; 868 uint32_t ctr; 869 uint32_t reset_sctlr; 870 uint32_t id_pfr0; 871 uint32_t id_pfr1; 872 uint32_t id_dfr0; 873 uint64_t pmceid0; 874 uint64_t pmceid1; 875 uint32_t id_afr0; 876 uint32_t id_mmfr0; 877 uint32_t id_mmfr1; 878 uint32_t id_mmfr2; 879 uint32_t id_mmfr3; 880 uint32_t id_mmfr4; 881 uint64_t id_aa64dfr0; 882 uint64_t id_aa64dfr1; 883 uint64_t id_aa64afr0; 884 uint64_t id_aa64afr1; 885 uint32_t dbgdidr; 886 uint32_t clidr; 887 uint64_t mp_affinity; /* MP ID without feature bits */ 888 /* The elements of this array are the CCSIDR values for each cache, 889 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 890 */ 891 uint32_t ccsidr[16]; 892 uint64_t reset_cbar; 893 uint32_t reset_auxcr; 894 bool reset_hivecs; 895 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 896 uint32_t dcz_blocksize; 897 uint64_t rvbar; 898 899 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 900 int gic_num_lrs; /* number of list registers */ 901 int gic_vpribits; /* number of virtual priority bits */ 902 int gic_vprebits; /* number of virtual preemption bits */ 903 904 /* Whether the cfgend input is high (i.e. this CPU should reset into 905 * big-endian mode). This setting isn't used directly: instead it modifies 906 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 907 * architecture version. 908 */ 909 bool cfgend; 910 911 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 912 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 913 914 int32_t node_id; /* NUMA node this CPU belongs to */ 915 916 /* Used to synchronize KVM and QEMU in-kernel device levels */ 917 uint8_t device_irq_level; 918 919 /* Used to set the maximum vector length the cpu will support. */ 920 uint32_t sve_max_vq; 921 }; 922 923 void arm_cpu_post_init(Object *obj); 924 925 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 926 927 #ifndef CONFIG_USER_ONLY 928 extern const VMStateDescription vmstate_arm_cpu; 929 #endif 930 931 void arm_cpu_do_interrupt(CPUState *cpu); 932 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 933 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); 934 935 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 936 MemTxAttrs *attrs); 937 938 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 939 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 940 941 /* Dynamically generates for gdb stub an XML description of the sysregs from 942 * the cp_regs hashtable. Returns the registered sysregs number. 943 */ 944 int arm_gen_dynamic_xml(CPUState *cpu); 945 946 /* Returns the dynamically generated XML for the gdb stub. 947 * Returns a pointer to the XML contents for the specified XML file or NULL 948 * if the XML name doesn't match the predefined one. 949 */ 950 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 951 952 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 953 int cpuid, void *opaque); 954 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 955 int cpuid, void *opaque); 956 957 #ifdef TARGET_AARCH64 958 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); 959 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 960 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 961 void aarch64_sve_change_el(CPUARMState *env, int old_el, 962 int new_el, bool el0_a64); 963 #else 964 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 965 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 966 int n, bool a) 967 { } 968 #endif 969 970 #if !defined(CONFIG_TCG) 971 static inline target_ulong do_arm_semihosting(CPUARMState *env) 972 { 973 g_assert_not_reached(); 974 } 975 #else 976 target_ulong do_arm_semihosting(CPUARMState *env); 977 #endif 978 void aarch64_sync_32_to_64(CPUARMState *env); 979 void aarch64_sync_64_to_32(CPUARMState *env); 980 981 int fp_exception_el(CPUARMState *env, int cur_el); 982 int sve_exception_el(CPUARMState *env, int cur_el); 983 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); 984 985 static inline bool is_a64(CPUARMState *env) 986 { 987 return env->aarch64; 988 } 989 990 /* you can call this signal handler from your SIGBUS and SIGSEGV 991 signal handlers to inform the virtual CPU of exceptions. non zero 992 is returned if the signal was handled by the virtual CPU. */ 993 int cpu_arm_signal_handler(int host_signum, void *pinfo, 994 void *puc); 995 996 /** 997 * pmu_op_start/finish 998 * @env: CPUARMState 999 * 1000 * Convert all PMU counters between their delta form (the typical mode when 1001 * they are enabled) and the guest-visible values. These two calls must 1002 * surround any action which might affect the counters. 1003 */ 1004 void pmu_op_start(CPUARMState *env); 1005 void pmu_op_finish(CPUARMState *env); 1006 1007 /* 1008 * Called when a PMU counter is due to overflow 1009 */ 1010 void arm_pmu_timer_cb(void *opaque); 1011 1012 /** 1013 * Functions to register as EL change hooks for PMU mode filtering 1014 */ 1015 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1016 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1017 1018 /* 1019 * pmu_init 1020 * @cpu: ARMCPU 1021 * 1022 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1023 * for the current configuration 1024 */ 1025 void pmu_init(ARMCPU *cpu); 1026 1027 /* SCTLR bit meanings. Several bits have been reused in newer 1028 * versions of the architecture; in that case we define constants 1029 * for both old and new bit meanings. Code which tests against those 1030 * bits should probably check or otherwise arrange that the CPU 1031 * is the architectural version it expects. 1032 */ 1033 #define SCTLR_M (1U << 0) 1034 #define SCTLR_A (1U << 1) 1035 #define SCTLR_C (1U << 2) 1036 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1037 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1038 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1039 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1040 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1041 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1042 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1043 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1044 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1045 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1046 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1047 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1048 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1049 #define SCTLR_SED (1U << 8) /* v8 onward */ 1050 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1051 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1052 #define SCTLR_F (1U << 10) /* up to v6 */ 1053 #define SCTLR_SW (1U << 10) /* v7 */ 1054 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1055 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1056 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1057 #define SCTLR_I (1U << 12) 1058 #define SCTLR_V (1U << 13) /* AArch32 only */ 1059 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1060 #define SCTLR_RR (1U << 14) /* up to v7 */ 1061 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1062 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1063 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1064 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1065 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1066 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1067 #define SCTLR_BR (1U << 17) /* PMSA only */ 1068 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1069 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1070 #define SCTLR_WXN (1U << 19) 1071 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1072 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1073 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1074 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1075 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1076 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1077 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1078 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1079 #define SCTLR_VE (1U << 24) /* up to v7 */ 1080 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1081 #define SCTLR_EE (1U << 25) 1082 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1083 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1084 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1085 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1086 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1087 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1088 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1089 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1090 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1091 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1092 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1093 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1094 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1095 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1096 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1097 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1098 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1099 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1100 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */ 1101 1102 #define CPTR_TCPAC (1U << 31) 1103 #define CPTR_TTA (1U << 20) 1104 #define CPTR_TFP (1U << 10) 1105 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */ 1106 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */ 1107 1108 #define MDCR_EPMAD (1U << 21) 1109 #define MDCR_EDAD (1U << 20) 1110 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1111 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1112 #define MDCR_SDD (1U << 16) 1113 #define MDCR_SPD (3U << 14) 1114 #define MDCR_TDRA (1U << 11) 1115 #define MDCR_TDOSA (1U << 10) 1116 #define MDCR_TDA (1U << 9) 1117 #define MDCR_TDE (1U << 8) 1118 #define MDCR_HPME (1U << 7) 1119 #define MDCR_TPM (1U << 6) 1120 #define MDCR_TPMCR (1U << 5) 1121 #define MDCR_HPMN (0x1fU) 1122 1123 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1124 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1125 1126 #define CPSR_M (0x1fU) 1127 #define CPSR_T (1U << 5) 1128 #define CPSR_F (1U << 6) 1129 #define CPSR_I (1U << 7) 1130 #define CPSR_A (1U << 8) 1131 #define CPSR_E (1U << 9) 1132 #define CPSR_IT_2_7 (0xfc00U) 1133 #define CPSR_GE (0xfU << 16) 1134 #define CPSR_IL (1U << 20) 1135 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in 1136 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use 1137 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, 1138 * where it is live state but not accessible to the AArch32 code. 1139 */ 1140 #define CPSR_RESERVED (0x7U << 21) 1141 #define CPSR_J (1U << 24) 1142 #define CPSR_IT_0_1 (3U << 25) 1143 #define CPSR_Q (1U << 27) 1144 #define CPSR_V (1U << 28) 1145 #define CPSR_C (1U << 29) 1146 #define CPSR_Z (1U << 30) 1147 #define CPSR_N (1U << 31) 1148 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1149 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1150 1151 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1152 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1153 | CPSR_NZCV) 1154 /* Bits writable in user mode. */ 1155 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) 1156 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1157 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1158 /* Mask of bits which may be set by exception return copying them from SPSR */ 1159 #define CPSR_ERET_MASK (~CPSR_RESERVED) 1160 1161 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1162 #define XPSR_EXCP 0x1ffU 1163 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1164 #define XPSR_IT_2_7 CPSR_IT_2_7 1165 #define XPSR_GE CPSR_GE 1166 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1167 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1168 #define XPSR_IT_0_1 CPSR_IT_0_1 1169 #define XPSR_Q CPSR_Q 1170 #define XPSR_V CPSR_V 1171 #define XPSR_C CPSR_C 1172 #define XPSR_Z CPSR_Z 1173 #define XPSR_N CPSR_N 1174 #define XPSR_NZCV CPSR_NZCV 1175 #define XPSR_IT CPSR_IT 1176 1177 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1178 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1179 #define TTBCR_PD0 (1U << 4) 1180 #define TTBCR_PD1 (1U << 5) 1181 #define TTBCR_EPD0 (1U << 7) 1182 #define TTBCR_IRGN0 (3U << 8) 1183 #define TTBCR_ORGN0 (3U << 10) 1184 #define TTBCR_SH0 (3U << 12) 1185 #define TTBCR_T1SZ (3U << 16) 1186 #define TTBCR_A1 (1U << 22) 1187 #define TTBCR_EPD1 (1U << 23) 1188 #define TTBCR_IRGN1 (3U << 24) 1189 #define TTBCR_ORGN1 (3U << 26) 1190 #define TTBCR_SH1 (1U << 28) 1191 #define TTBCR_EAE (1U << 31) 1192 1193 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1194 * Only these are valid when in AArch64 mode; in 1195 * AArch32 mode SPSRs are basically CPSR-format. 1196 */ 1197 #define PSTATE_SP (1U) 1198 #define PSTATE_M (0xFU) 1199 #define PSTATE_nRW (1U << 4) 1200 #define PSTATE_F (1U << 6) 1201 #define PSTATE_I (1U << 7) 1202 #define PSTATE_A (1U << 8) 1203 #define PSTATE_D (1U << 9) 1204 #define PSTATE_BTYPE (3U << 10) 1205 #define PSTATE_IL (1U << 20) 1206 #define PSTATE_SS (1U << 21) 1207 #define PSTATE_V (1U << 28) 1208 #define PSTATE_C (1U << 29) 1209 #define PSTATE_Z (1U << 30) 1210 #define PSTATE_N (1U << 31) 1211 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1212 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1213 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1214 /* Mode values for AArch64 */ 1215 #define PSTATE_MODE_EL3h 13 1216 #define PSTATE_MODE_EL3t 12 1217 #define PSTATE_MODE_EL2h 9 1218 #define PSTATE_MODE_EL2t 8 1219 #define PSTATE_MODE_EL1h 5 1220 #define PSTATE_MODE_EL1t 4 1221 #define PSTATE_MODE_EL0t 0 1222 1223 /* Write a new value to v7m.exception, thus transitioning into or out 1224 * of Handler mode; this may result in a change of active stack pointer. 1225 */ 1226 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1227 1228 /* Map EL and handler into a PSTATE_MODE. */ 1229 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1230 { 1231 return (el << 2) | handler; 1232 } 1233 1234 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1235 * interprocessing, so we don't attempt to sync with the cpsr state used by 1236 * the 32 bit decoder. 1237 */ 1238 static inline uint32_t pstate_read(CPUARMState *env) 1239 { 1240 int ZF; 1241 1242 ZF = (env->ZF == 0); 1243 return (env->NF & 0x80000000) | (ZF << 30) 1244 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1245 | env->pstate | env->daif | (env->btype << 10); 1246 } 1247 1248 static inline void pstate_write(CPUARMState *env, uint32_t val) 1249 { 1250 env->ZF = (~val) & PSTATE_Z; 1251 env->NF = val; 1252 env->CF = (val >> 29) & 1; 1253 env->VF = (val << 3) & 0x80000000; 1254 env->daif = val & PSTATE_DAIF; 1255 env->btype = (val >> 10) & 3; 1256 env->pstate = val & ~CACHED_PSTATE_BITS; 1257 } 1258 1259 /* Return the current CPSR value. */ 1260 uint32_t cpsr_read(CPUARMState *env); 1261 1262 typedef enum CPSRWriteType { 1263 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1264 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1265 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ 1266 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1267 } CPSRWriteType; 1268 1269 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ 1270 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1271 CPSRWriteType write_type); 1272 1273 /* Return the current xPSR value. */ 1274 static inline uint32_t xpsr_read(CPUARMState *env) 1275 { 1276 int ZF; 1277 ZF = (env->ZF == 0); 1278 return (env->NF & 0x80000000) | (ZF << 30) 1279 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1280 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1281 | ((env->condexec_bits & 0xfc) << 8) 1282 | (env->GE << 16) 1283 | env->v7m.exception; 1284 } 1285 1286 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1287 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1288 { 1289 if (mask & XPSR_NZCV) { 1290 env->ZF = (~val) & XPSR_Z; 1291 env->NF = val; 1292 env->CF = (val >> 29) & 1; 1293 env->VF = (val << 3) & 0x80000000; 1294 } 1295 if (mask & XPSR_Q) { 1296 env->QF = ((val & XPSR_Q) != 0); 1297 } 1298 if (mask & XPSR_GE) { 1299 env->GE = (val & XPSR_GE) >> 16; 1300 } 1301 if (mask & XPSR_T) { 1302 env->thumb = ((val & XPSR_T) != 0); 1303 } 1304 if (mask & XPSR_IT_0_1) { 1305 env->condexec_bits &= ~3; 1306 env->condexec_bits |= (val >> 25) & 3; 1307 } 1308 if (mask & XPSR_IT_2_7) { 1309 env->condexec_bits &= 3; 1310 env->condexec_bits |= (val >> 8) & 0xfc; 1311 } 1312 if (mask & XPSR_EXCP) { 1313 /* Note that this only happens on exception exit */ 1314 write_v7m_exception(env, val & XPSR_EXCP); 1315 } 1316 } 1317 1318 #define HCR_VM (1ULL << 0) 1319 #define HCR_SWIO (1ULL << 1) 1320 #define HCR_PTW (1ULL << 2) 1321 #define HCR_FMO (1ULL << 3) 1322 #define HCR_IMO (1ULL << 4) 1323 #define HCR_AMO (1ULL << 5) 1324 #define HCR_VF (1ULL << 6) 1325 #define HCR_VI (1ULL << 7) 1326 #define HCR_VSE (1ULL << 8) 1327 #define HCR_FB (1ULL << 9) 1328 #define HCR_BSU_MASK (3ULL << 10) 1329 #define HCR_DC (1ULL << 12) 1330 #define HCR_TWI (1ULL << 13) 1331 #define HCR_TWE (1ULL << 14) 1332 #define HCR_TID0 (1ULL << 15) 1333 #define HCR_TID1 (1ULL << 16) 1334 #define HCR_TID2 (1ULL << 17) 1335 #define HCR_TID3 (1ULL << 18) 1336 #define HCR_TSC (1ULL << 19) 1337 #define HCR_TIDCP (1ULL << 20) 1338 #define HCR_TACR (1ULL << 21) 1339 #define HCR_TSW (1ULL << 22) 1340 #define HCR_TPCP (1ULL << 23) 1341 #define HCR_TPU (1ULL << 24) 1342 #define HCR_TTLB (1ULL << 25) 1343 #define HCR_TVM (1ULL << 26) 1344 #define HCR_TGE (1ULL << 27) 1345 #define HCR_TDZ (1ULL << 28) 1346 #define HCR_HCD (1ULL << 29) 1347 #define HCR_TRVM (1ULL << 30) 1348 #define HCR_RW (1ULL << 31) 1349 #define HCR_CD (1ULL << 32) 1350 #define HCR_ID (1ULL << 33) 1351 #define HCR_E2H (1ULL << 34) 1352 #define HCR_TLOR (1ULL << 35) 1353 #define HCR_TERR (1ULL << 36) 1354 #define HCR_TEA (1ULL << 37) 1355 #define HCR_MIOCNCE (1ULL << 38) 1356 #define HCR_APK (1ULL << 40) 1357 #define HCR_API (1ULL << 41) 1358 #define HCR_NV (1ULL << 42) 1359 #define HCR_NV1 (1ULL << 43) 1360 #define HCR_AT (1ULL << 44) 1361 #define HCR_NV2 (1ULL << 45) 1362 #define HCR_FWB (1ULL << 46) 1363 #define HCR_FIEN (1ULL << 47) 1364 #define HCR_TID4 (1ULL << 49) 1365 #define HCR_TICAB (1ULL << 50) 1366 #define HCR_TOCU (1ULL << 52) 1367 #define HCR_TTLBIS (1ULL << 54) 1368 #define HCR_TTLBOS (1ULL << 55) 1369 #define HCR_ATA (1ULL << 56) 1370 #define HCR_DCT (1ULL << 57) 1371 1372 /* 1373 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to 1374 * HCR_MASK and then clear it again if the feature bit is not set in 1375 * hcr_write(). 1376 */ 1377 #define HCR_MASK ((1ULL << 34) - 1) 1378 1379 #define SCR_NS (1U << 0) 1380 #define SCR_IRQ (1U << 1) 1381 #define SCR_FIQ (1U << 2) 1382 #define SCR_EA (1U << 3) 1383 #define SCR_FW (1U << 4) 1384 #define SCR_AW (1U << 5) 1385 #define SCR_NET (1U << 6) 1386 #define SCR_SMD (1U << 7) 1387 #define SCR_HCE (1U << 8) 1388 #define SCR_SIF (1U << 9) 1389 #define SCR_RW (1U << 10) 1390 #define SCR_ST (1U << 11) 1391 #define SCR_TWI (1U << 12) 1392 #define SCR_TWE (1U << 13) 1393 #define SCR_TLOR (1U << 14) 1394 #define SCR_TERR (1U << 15) 1395 #define SCR_APK (1U << 16) 1396 #define SCR_API (1U << 17) 1397 #define SCR_EEL2 (1U << 18) 1398 #define SCR_EASE (1U << 19) 1399 #define SCR_NMEA (1U << 20) 1400 #define SCR_FIEN (1U << 21) 1401 #define SCR_ENSCXT (1U << 25) 1402 #define SCR_ATA (1U << 26) 1403 1404 /* Return the current FPSCR value. */ 1405 uint32_t vfp_get_fpscr(CPUARMState *env); 1406 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1407 1408 /* FPCR, Floating Point Control Register 1409 * FPSR, Floating Poiht Status Register 1410 * 1411 * For A64 the FPSCR is split into two logically distinct registers, 1412 * FPCR and FPSR. However since they still use non-overlapping bits 1413 * we store the underlying state in fpscr and just mask on read/write. 1414 */ 1415 #define FPSR_MASK 0xf800009f 1416 #define FPCR_MASK 0x07ff9f00 1417 1418 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1419 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1420 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1421 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1422 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1423 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1424 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1425 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1426 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1427 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1428 1429 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1430 { 1431 return vfp_get_fpscr(env) & FPSR_MASK; 1432 } 1433 1434 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1435 { 1436 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1437 vfp_set_fpscr(env, new_fpscr); 1438 } 1439 1440 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1441 { 1442 return vfp_get_fpscr(env) & FPCR_MASK; 1443 } 1444 1445 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1446 { 1447 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1448 vfp_set_fpscr(env, new_fpscr); 1449 } 1450 1451 enum arm_cpu_mode { 1452 ARM_CPU_MODE_USR = 0x10, 1453 ARM_CPU_MODE_FIQ = 0x11, 1454 ARM_CPU_MODE_IRQ = 0x12, 1455 ARM_CPU_MODE_SVC = 0x13, 1456 ARM_CPU_MODE_MON = 0x16, 1457 ARM_CPU_MODE_ABT = 0x17, 1458 ARM_CPU_MODE_HYP = 0x1a, 1459 ARM_CPU_MODE_UND = 0x1b, 1460 ARM_CPU_MODE_SYS = 0x1f 1461 }; 1462 1463 /* VFP system registers. */ 1464 #define ARM_VFP_FPSID 0 1465 #define ARM_VFP_FPSCR 1 1466 #define ARM_VFP_MVFR2 5 1467 #define ARM_VFP_MVFR1 6 1468 #define ARM_VFP_MVFR0 7 1469 #define ARM_VFP_FPEXC 8 1470 #define ARM_VFP_FPINST 9 1471 #define ARM_VFP_FPINST2 10 1472 1473 /* iwMMXt coprocessor control registers. */ 1474 #define ARM_IWMMXT_wCID 0 1475 #define ARM_IWMMXT_wCon 1 1476 #define ARM_IWMMXT_wCSSF 2 1477 #define ARM_IWMMXT_wCASF 3 1478 #define ARM_IWMMXT_wCGR0 8 1479 #define ARM_IWMMXT_wCGR1 9 1480 #define ARM_IWMMXT_wCGR2 10 1481 #define ARM_IWMMXT_wCGR3 11 1482 1483 /* V7M CCR bits */ 1484 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1485 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1486 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1487 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1488 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1489 FIELD(V7M_CCR, STKALIGN, 9, 1) 1490 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1491 FIELD(V7M_CCR, DC, 16, 1) 1492 FIELD(V7M_CCR, IC, 17, 1) 1493 FIELD(V7M_CCR, BP, 18, 1) 1494 1495 /* V7M SCR bits */ 1496 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1497 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1498 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1499 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1500 1501 /* V7M AIRCR bits */ 1502 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1503 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1504 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1505 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1506 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1507 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1508 FIELD(V7M_AIRCR, PRIS, 14, 1) 1509 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1510 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1511 1512 /* V7M CFSR bits for MMFSR */ 1513 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1514 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1515 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1516 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1517 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1518 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1519 1520 /* V7M CFSR bits for BFSR */ 1521 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1522 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1523 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1524 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1525 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1526 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1527 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1528 1529 /* V7M CFSR bits for UFSR */ 1530 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1531 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1532 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1533 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1534 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1535 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1536 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1537 1538 /* V7M CFSR bit masks covering all of the subregister bits */ 1539 FIELD(V7M_CFSR, MMFSR, 0, 8) 1540 FIELD(V7M_CFSR, BFSR, 8, 8) 1541 FIELD(V7M_CFSR, UFSR, 16, 16) 1542 1543 /* V7M HFSR bits */ 1544 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1545 FIELD(V7M_HFSR, FORCED, 30, 1) 1546 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1547 1548 /* V7M DFSR bits */ 1549 FIELD(V7M_DFSR, HALTED, 0, 1) 1550 FIELD(V7M_DFSR, BKPT, 1, 1) 1551 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1552 FIELD(V7M_DFSR, VCATCH, 3, 1) 1553 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1554 1555 /* V7M SFSR bits */ 1556 FIELD(V7M_SFSR, INVEP, 0, 1) 1557 FIELD(V7M_SFSR, INVIS, 1, 1) 1558 FIELD(V7M_SFSR, INVER, 2, 1) 1559 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1560 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1561 FIELD(V7M_SFSR, LSPERR, 5, 1) 1562 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1563 FIELD(V7M_SFSR, LSERR, 7, 1) 1564 1565 /* v7M MPU_CTRL bits */ 1566 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1567 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1568 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1569 1570 /* v7M CLIDR bits */ 1571 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1572 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1573 FIELD(V7M_CLIDR, LOC, 24, 3) 1574 FIELD(V7M_CLIDR, LOUU, 27, 3) 1575 FIELD(V7M_CLIDR, ICB, 30, 2) 1576 1577 FIELD(V7M_CSSELR, IND, 0, 1) 1578 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1579 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1580 * define a mask for this and check that it doesn't permit running off 1581 * the end of the array. 1582 */ 1583 FIELD(V7M_CSSELR, INDEX, 0, 4) 1584 1585 /* v7M FPCCR bits */ 1586 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1587 FIELD(V7M_FPCCR, USER, 1, 1) 1588 FIELD(V7M_FPCCR, S, 2, 1) 1589 FIELD(V7M_FPCCR, THREAD, 3, 1) 1590 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1591 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1592 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1593 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1594 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1595 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1596 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1597 FIELD(V7M_FPCCR, RES0, 11, 15) 1598 FIELD(V7M_FPCCR, TS, 26, 1) 1599 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1600 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1601 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1602 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1603 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1604 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1605 #define R_V7M_FPCCR_BANKED_MASK \ 1606 (R_V7M_FPCCR_LSPACT_MASK | \ 1607 R_V7M_FPCCR_USER_MASK | \ 1608 R_V7M_FPCCR_THREAD_MASK | \ 1609 R_V7M_FPCCR_MMRDY_MASK | \ 1610 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1611 R_V7M_FPCCR_UFRDY_MASK | \ 1612 R_V7M_FPCCR_ASPEN_MASK) 1613 1614 /* 1615 * System register ID fields. 1616 */ 1617 FIELD(MIDR_EL1, REVISION, 0, 4) 1618 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1619 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1620 FIELD(MIDR_EL1, VARIANT, 20, 4) 1621 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1622 1623 FIELD(ID_ISAR0, SWAP, 0, 4) 1624 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1625 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1626 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1627 FIELD(ID_ISAR0, COPROC, 16, 4) 1628 FIELD(ID_ISAR0, DEBUG, 20, 4) 1629 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1630 1631 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1632 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1633 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1634 FIELD(ID_ISAR1, EXTEND, 12, 4) 1635 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1636 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1637 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1638 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1639 1640 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1641 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1642 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1643 FIELD(ID_ISAR2, MULT, 12, 4) 1644 FIELD(ID_ISAR2, MULTS, 16, 4) 1645 FIELD(ID_ISAR2, MULTU, 20, 4) 1646 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1647 FIELD(ID_ISAR2, REVERSAL, 28, 4) 1648 1649 FIELD(ID_ISAR3, SATURATE, 0, 4) 1650 FIELD(ID_ISAR3, SIMD, 4, 4) 1651 FIELD(ID_ISAR3, SVC, 8, 4) 1652 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 1653 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 1654 FIELD(ID_ISAR3, T32COPY, 20, 4) 1655 FIELD(ID_ISAR3, TRUENOP, 24, 4) 1656 FIELD(ID_ISAR3, T32EE, 28, 4) 1657 1658 FIELD(ID_ISAR4, UNPRIV, 0, 4) 1659 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 1660 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 1661 FIELD(ID_ISAR4, SMC, 12, 4) 1662 FIELD(ID_ISAR4, BARRIER, 16, 4) 1663 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 1664 FIELD(ID_ISAR4, PSR_M, 24, 4) 1665 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 1666 1667 FIELD(ID_ISAR5, SEVL, 0, 4) 1668 FIELD(ID_ISAR5, AES, 4, 4) 1669 FIELD(ID_ISAR5, SHA1, 8, 4) 1670 FIELD(ID_ISAR5, SHA2, 12, 4) 1671 FIELD(ID_ISAR5, CRC32, 16, 4) 1672 FIELD(ID_ISAR5, RDM, 24, 4) 1673 FIELD(ID_ISAR5, VCMA, 28, 4) 1674 1675 FIELD(ID_ISAR6, JSCVT, 0, 4) 1676 FIELD(ID_ISAR6, DP, 4, 4) 1677 FIELD(ID_ISAR6, FHM, 8, 4) 1678 FIELD(ID_ISAR6, SB, 12, 4) 1679 FIELD(ID_ISAR6, SPECRES, 16, 4) 1680 1681 FIELD(ID_MMFR4, SPECSEI, 0, 4) 1682 FIELD(ID_MMFR4, AC2, 4, 4) 1683 FIELD(ID_MMFR4, XNX, 8, 4) 1684 FIELD(ID_MMFR4, CNP, 12, 4) 1685 FIELD(ID_MMFR4, HPDS, 16, 4) 1686 FIELD(ID_MMFR4, LSM, 20, 4) 1687 FIELD(ID_MMFR4, CCIDX, 24, 4) 1688 FIELD(ID_MMFR4, EVT, 28, 4) 1689 1690 FIELD(ID_AA64ISAR0, AES, 4, 4) 1691 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 1692 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 1693 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 1694 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 1695 FIELD(ID_AA64ISAR0, RDM, 28, 4) 1696 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 1697 FIELD(ID_AA64ISAR0, SM3, 36, 4) 1698 FIELD(ID_AA64ISAR0, SM4, 40, 4) 1699 FIELD(ID_AA64ISAR0, DP, 44, 4) 1700 FIELD(ID_AA64ISAR0, FHM, 48, 4) 1701 FIELD(ID_AA64ISAR0, TS, 52, 4) 1702 FIELD(ID_AA64ISAR0, TLB, 56, 4) 1703 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 1704 1705 FIELD(ID_AA64ISAR1, DPB, 0, 4) 1706 FIELD(ID_AA64ISAR1, APA, 4, 4) 1707 FIELD(ID_AA64ISAR1, API, 8, 4) 1708 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 1709 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 1710 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 1711 FIELD(ID_AA64ISAR1, GPA, 24, 4) 1712 FIELD(ID_AA64ISAR1, GPI, 28, 4) 1713 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 1714 FIELD(ID_AA64ISAR1, SB, 36, 4) 1715 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 1716 1717 FIELD(ID_AA64PFR0, EL0, 0, 4) 1718 FIELD(ID_AA64PFR0, EL1, 4, 4) 1719 FIELD(ID_AA64PFR0, EL2, 8, 4) 1720 FIELD(ID_AA64PFR0, EL3, 12, 4) 1721 FIELD(ID_AA64PFR0, FP, 16, 4) 1722 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 1723 FIELD(ID_AA64PFR0, GIC, 24, 4) 1724 FIELD(ID_AA64PFR0, RAS, 28, 4) 1725 FIELD(ID_AA64PFR0, SVE, 32, 4) 1726 1727 FIELD(ID_AA64PFR1, BT, 0, 4) 1728 FIELD(ID_AA64PFR1, SBSS, 4, 4) 1729 FIELD(ID_AA64PFR1, MTE, 8, 4) 1730 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 1731 1732 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 1733 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 1734 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 1735 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 1736 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 1737 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 1738 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 1739 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 1740 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 1741 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 1742 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 1743 FIELD(ID_AA64MMFR0, EXS, 44, 4) 1744 1745 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 1746 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 1747 FIELD(ID_AA64MMFR1, VH, 8, 4) 1748 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 1749 FIELD(ID_AA64MMFR1, LO, 16, 4) 1750 FIELD(ID_AA64MMFR1, PAN, 20, 4) 1751 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 1752 FIELD(ID_AA64MMFR1, XNX, 28, 4) 1753 1754 FIELD(ID_DFR0, COPDBG, 0, 4) 1755 FIELD(ID_DFR0, COPSDBG, 4, 4) 1756 FIELD(ID_DFR0, MMAPDBG, 8, 4) 1757 FIELD(ID_DFR0, COPTRC, 12, 4) 1758 FIELD(ID_DFR0, MMAPTRC, 16, 4) 1759 FIELD(ID_DFR0, MPROFDBG, 20, 4) 1760 FIELD(ID_DFR0, PERFMON, 24, 4) 1761 FIELD(ID_DFR0, TRACEFILT, 28, 4) 1762 1763 FIELD(MVFR0, SIMDREG, 0, 4) 1764 FIELD(MVFR0, FPSP, 4, 4) 1765 FIELD(MVFR0, FPDP, 8, 4) 1766 FIELD(MVFR0, FPTRAP, 12, 4) 1767 FIELD(MVFR0, FPDIVIDE, 16, 4) 1768 FIELD(MVFR0, FPSQRT, 20, 4) 1769 FIELD(MVFR0, FPSHVEC, 24, 4) 1770 FIELD(MVFR0, FPROUND, 28, 4) 1771 1772 FIELD(MVFR1, FPFTZ, 0, 4) 1773 FIELD(MVFR1, FPDNAN, 4, 4) 1774 FIELD(MVFR1, SIMDLS, 8, 4) 1775 FIELD(MVFR1, SIMDINT, 12, 4) 1776 FIELD(MVFR1, SIMDSP, 16, 4) 1777 FIELD(MVFR1, SIMDHP, 20, 4) 1778 FIELD(MVFR1, FPHP, 24, 4) 1779 FIELD(MVFR1, SIMDFMAC, 28, 4) 1780 1781 FIELD(MVFR2, SIMDMISC, 0, 4) 1782 FIELD(MVFR2, FPMISC, 4, 4) 1783 1784 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 1785 1786 /* If adding a feature bit which corresponds to a Linux ELF 1787 * HWCAP bit, remember to update the feature-bit-to-hwcap 1788 * mapping in linux-user/elfload.c:get_elf_hwcap(). 1789 */ 1790 enum arm_features { 1791 ARM_FEATURE_VFP, 1792 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 1793 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 1794 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 1795 ARM_FEATURE_V6, 1796 ARM_FEATURE_V6K, 1797 ARM_FEATURE_V7, 1798 ARM_FEATURE_THUMB2, 1799 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 1800 ARM_FEATURE_VFP3, 1801 ARM_FEATURE_NEON, 1802 ARM_FEATURE_M, /* Microcontroller profile. */ 1803 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 1804 ARM_FEATURE_THUMB2EE, 1805 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 1806 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 1807 ARM_FEATURE_V4T, 1808 ARM_FEATURE_V5, 1809 ARM_FEATURE_STRONGARM, 1810 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 1811 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ 1812 ARM_FEATURE_GENERIC_TIMER, 1813 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 1814 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 1815 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 1816 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 1817 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 1818 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 1819 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ 1820 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 1821 ARM_FEATURE_V8, 1822 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 1823 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 1824 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ 1825 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 1826 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 1827 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 1828 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 1829 ARM_FEATURE_PMU, /* has PMU support */ 1830 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 1831 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 1832 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 1833 }; 1834 1835 static inline int arm_feature(CPUARMState *env, int feature) 1836 { 1837 return (env->features & (1ULL << feature)) != 0; 1838 } 1839 1840 #if !defined(CONFIG_USER_ONLY) 1841 /* Return true if exception levels below EL3 are in secure state, 1842 * or would be following an exception return to that level. 1843 * Unlike arm_is_secure() (which is always a question about the 1844 * _current_ state of the CPU) this doesn't care about the current 1845 * EL or mode. 1846 */ 1847 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1848 { 1849 if (arm_feature(env, ARM_FEATURE_EL3)) { 1850 return !(env->cp15.scr_el3 & SCR_NS); 1851 } else { 1852 /* If EL3 is not supported then the secure state is implementation 1853 * defined, in which case QEMU defaults to non-secure. 1854 */ 1855 return false; 1856 } 1857 } 1858 1859 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 1860 static inline bool arm_is_el3_or_mon(CPUARMState *env) 1861 { 1862 if (arm_feature(env, ARM_FEATURE_EL3)) { 1863 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 1864 /* CPU currently in AArch64 state and EL3 */ 1865 return true; 1866 } else if (!is_a64(env) && 1867 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 1868 /* CPU currently in AArch32 state and monitor mode */ 1869 return true; 1870 } 1871 } 1872 return false; 1873 } 1874 1875 /* Return true if the processor is in secure state */ 1876 static inline bool arm_is_secure(CPUARMState *env) 1877 { 1878 if (arm_is_el3_or_mon(env)) { 1879 return true; 1880 } 1881 return arm_is_secure_below_el3(env); 1882 } 1883 1884 #else 1885 static inline bool arm_is_secure_below_el3(CPUARMState *env) 1886 { 1887 return false; 1888 } 1889 1890 static inline bool arm_is_secure(CPUARMState *env) 1891 { 1892 return false; 1893 } 1894 #endif 1895 1896 /** 1897 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 1898 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 1899 * "for all purposes other than a direct read or write access of HCR_EL2." 1900 * Not included here is HCR_RW. 1901 */ 1902 uint64_t arm_hcr_el2_eff(CPUARMState *env); 1903 1904 /* Return true if the specified exception level is running in AArch64 state. */ 1905 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 1906 { 1907 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 1908 * and if we're not in EL0 then the state of EL0 isn't well defined.) 1909 */ 1910 assert(el >= 1 && el <= 3); 1911 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 1912 1913 /* The highest exception level is always at the maximum supported 1914 * register width, and then lower levels have a register width controlled 1915 * by bits in the SCR or HCR registers. 1916 */ 1917 if (el == 3) { 1918 return aa64; 1919 } 1920 1921 if (arm_feature(env, ARM_FEATURE_EL3)) { 1922 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 1923 } 1924 1925 if (el == 2) { 1926 return aa64; 1927 } 1928 1929 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { 1930 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 1931 } 1932 1933 return aa64; 1934 } 1935 1936 /* Function for determing whether guest cp register reads and writes should 1937 * access the secure or non-secure bank of a cp register. When EL3 is 1938 * operating in AArch32 state, the NS-bit determines whether the secure 1939 * instance of a cp register should be used. When EL3 is AArch64 (or if 1940 * it doesn't exist at all) then there is no register banking, and all 1941 * accesses are to the non-secure version. 1942 */ 1943 static inline bool access_secure_reg(CPUARMState *env) 1944 { 1945 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 1946 !arm_el_is_aa64(env, 3) && 1947 !(env->cp15.scr_el3 & SCR_NS)); 1948 1949 return ret; 1950 } 1951 1952 /* Macros for accessing a specified CP register bank */ 1953 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 1954 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 1955 1956 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 1957 do { \ 1958 if (_secure) { \ 1959 (_env)->cp15._regname##_s = (_val); \ 1960 } else { \ 1961 (_env)->cp15._regname##_ns = (_val); \ 1962 } \ 1963 } while (0) 1964 1965 /* Macros for automatically accessing a specific CP register bank depending on 1966 * the current secure state of the system. These macros are not intended for 1967 * supporting instruction translation reads/writes as these are dependent 1968 * solely on the SCR.NS bit and not the mode. 1969 */ 1970 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 1971 A32_BANKED_REG_GET((_env), _regname, \ 1972 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 1973 1974 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 1975 A32_BANKED_REG_SET((_env), _regname, \ 1976 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 1977 (_val)) 1978 1979 void arm_cpu_list(void); 1980 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 1981 uint32_t cur_el, bool secure); 1982 1983 /* Interface between CPU and Interrupt controller. */ 1984 #ifndef CONFIG_USER_ONLY 1985 bool armv7m_nvic_can_take_pending_exception(void *opaque); 1986 #else 1987 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 1988 { 1989 return true; 1990 } 1991 #endif 1992 /** 1993 * armv7m_nvic_set_pending: mark the specified exception as pending 1994 * @opaque: the NVIC 1995 * @irq: the exception number to mark pending 1996 * @secure: false for non-banked exceptions or for the nonsecure 1997 * version of a banked exception, true for the secure version of a banked 1998 * exception. 1999 * 2000 * Marks the specified exception as pending. Note that we will assert() 2001 * if @secure is true and @irq does not specify one of the fixed set 2002 * of architecturally banked exceptions. 2003 */ 2004 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2005 /** 2006 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2007 * @opaque: the NVIC 2008 * @irq: the exception number to mark pending 2009 * @secure: false for non-banked exceptions or for the nonsecure 2010 * version of a banked exception, true for the secure version of a banked 2011 * exception. 2012 * 2013 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2014 * exceptions (exceptions generated in the course of trying to take 2015 * a different exception). 2016 */ 2017 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2018 /** 2019 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2020 * @opaque: the NVIC 2021 * @irq: the exception number to mark pending 2022 * @secure: false for non-banked exceptions or for the nonsecure 2023 * version of a banked exception, true for the secure version of a banked 2024 * exception. 2025 * 2026 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2027 * generated in the course of lazy stacking of FP registers. 2028 */ 2029 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2030 /** 2031 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2032 * exception, and whether it targets Secure state 2033 * @opaque: the NVIC 2034 * @pirq: set to pending exception number 2035 * @ptargets_secure: set to whether pending exception targets Secure 2036 * 2037 * This function writes the number of the highest priority pending 2038 * exception (the one which would be made active by 2039 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2040 * to true if the current highest priority pending exception should 2041 * be taken to Secure state, false for NS. 2042 */ 2043 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2044 bool *ptargets_secure); 2045 /** 2046 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2047 * @opaque: the NVIC 2048 * 2049 * Move the current highest priority pending exception from the pending 2050 * state to the active state, and update v7m.exception to indicate that 2051 * it is the exception currently being handled. 2052 */ 2053 void armv7m_nvic_acknowledge_irq(void *opaque); 2054 /** 2055 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2056 * @opaque: the NVIC 2057 * @irq: the exception number to complete 2058 * @secure: true if this exception was secure 2059 * 2060 * Returns: -1 if the irq was not active 2061 * 1 if completing this irq brought us back to base (no active irqs) 2062 * 0 if there is still an irq active after this one was completed 2063 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2064 */ 2065 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2066 /** 2067 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2068 * @opaque: the NVIC 2069 * @irq: the exception number to mark pending 2070 * @secure: false for non-banked exceptions or for the nonsecure 2071 * version of a banked exception, true for the secure version of a banked 2072 * exception. 2073 * 2074 * Return whether an exception is "ready", i.e. whether the exception is 2075 * enabled and is configured at a priority which would allow it to 2076 * interrupt the current execution priority. This controls whether the 2077 * RDY bit for it in the FPCCR is set. 2078 */ 2079 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2080 /** 2081 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2082 * @opaque: the NVIC 2083 * 2084 * Returns: the raw execution priority as defined by the v8M architecture. 2085 * This is the execution priority minus the effects of AIRCR.PRIS, 2086 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2087 * (v8M ARM ARM I_PKLD.) 2088 */ 2089 int armv7m_nvic_raw_execution_priority(void *opaque); 2090 /** 2091 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2092 * priority is negative for the specified security state. 2093 * @opaque: the NVIC 2094 * @secure: the security state to test 2095 * This corresponds to the pseudocode IsReqExecPriNeg(). 2096 */ 2097 #ifndef CONFIG_USER_ONLY 2098 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2099 #else 2100 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2101 { 2102 return false; 2103 } 2104 #endif 2105 2106 /* Interface for defining coprocessor registers. 2107 * Registers are defined in tables of arm_cp_reginfo structs 2108 * which are passed to define_arm_cp_regs(). 2109 */ 2110 2111 /* When looking up a coprocessor register we look for it 2112 * via an integer which encodes all of: 2113 * coprocessor number 2114 * Crn, Crm, opc1, opc2 fields 2115 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2116 * or via MRRC/MCRR?) 2117 * non-secure/secure bank (AArch32 only) 2118 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2119 * (In this case crn and opc2 should be zero.) 2120 * For AArch64, there is no 32/64 bit size distinction; 2121 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2122 * and 4 bit CRn and CRm. The encoding patterns are chosen 2123 * to be easy to convert to and from the KVM encodings, and also 2124 * so that the hashtable can contain both AArch32 and AArch64 2125 * registers (to allow for interprocessing where we might run 2126 * 32 bit code on a 64 bit core). 2127 */ 2128 /* This bit is private to our hashtable cpreg; in KVM register 2129 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2130 * in the upper bits of the 64 bit ID. 2131 */ 2132 #define CP_REG_AA64_SHIFT 28 2133 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2134 2135 /* To enable banking of coprocessor registers depending on ns-bit we 2136 * add a bit to distinguish between secure and non-secure cpregs in the 2137 * hashtable. 2138 */ 2139 #define CP_REG_NS_SHIFT 29 2140 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2141 2142 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2143 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2144 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2145 2146 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2147 (CP_REG_AA64_MASK | \ 2148 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2149 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2150 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2151 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2152 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2153 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2154 2155 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2156 * version used as a key for the coprocessor register hashtable 2157 */ 2158 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2159 { 2160 uint32_t cpregid = kvmid; 2161 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2162 cpregid |= CP_REG_AA64_MASK; 2163 } else { 2164 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2165 cpregid |= (1 << 15); 2166 } 2167 2168 /* KVM is always non-secure so add the NS flag on AArch32 register 2169 * entries. 2170 */ 2171 cpregid |= 1 << CP_REG_NS_SHIFT; 2172 } 2173 return cpregid; 2174 } 2175 2176 /* Convert a truncated 32 bit hashtable key into the full 2177 * 64 bit KVM register ID. 2178 */ 2179 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2180 { 2181 uint64_t kvmid; 2182 2183 if (cpregid & CP_REG_AA64_MASK) { 2184 kvmid = cpregid & ~CP_REG_AA64_MASK; 2185 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2186 } else { 2187 kvmid = cpregid & ~(1 << 15); 2188 if (cpregid & (1 << 15)) { 2189 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2190 } else { 2191 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2192 } 2193 } 2194 return kvmid; 2195 } 2196 2197 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a 2198 * special-behaviour cp reg and bits [11..8] indicate what behaviour 2199 * it has. Otherwise it is a simple cp reg, where CONST indicates that 2200 * TCG can assume the value to be constant (ie load at translate time) 2201 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END 2202 * indicates that the TB should not be ended after a write to this register 2203 * (the default is that the TB ends after cp writes). OVERRIDE permits 2204 * a register definition to override a previous definition for the 2205 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the 2206 * old must have the OVERRIDE bit set. 2207 * ALIAS indicates that this register is an alias view of some underlying 2208 * state which is also visible via another register, and that the other 2209 * register is handling migration and reset; registers marked ALIAS will not be 2210 * migrated but may have their state set by syncing of register state from KVM. 2211 * NO_RAW indicates that this register has no underlying state and does not 2212 * support raw access for state saving/loading; it will not be used for either 2213 * migration or KVM state synchronization. (Typically this is for "registers" 2214 * which are actually used as instructions for cache maintenance and so on.) 2215 * IO indicates that this register does I/O and therefore its accesses 2216 * need to be surrounded by gen_io_start()/gen_io_end(). In particular, 2217 * registers which implement clocks or timers require this. 2218 * RAISES_EXC is for when the read or write hook might raise an exception; 2219 * the generated code will synchronize the CPU state before calling the hook 2220 * so that it is safe for the hook to call raise_exception(). 2221 */ 2222 #define ARM_CP_SPECIAL 0x0001 2223 #define ARM_CP_CONST 0x0002 2224 #define ARM_CP_64BIT 0x0004 2225 #define ARM_CP_SUPPRESS_TB_END 0x0008 2226 #define ARM_CP_OVERRIDE 0x0010 2227 #define ARM_CP_ALIAS 0x0020 2228 #define ARM_CP_IO 0x0040 2229 #define ARM_CP_NO_RAW 0x0080 2230 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) 2231 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) 2232 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) 2233 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) 2234 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) 2235 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA 2236 #define ARM_CP_FPU 0x1000 2237 #define ARM_CP_SVE 0x2000 2238 #define ARM_CP_NO_GDB 0x4000 2239 #define ARM_CP_RAISES_EXC 0x8000 2240 /* Used only as a terminator for ARMCPRegInfo lists */ 2241 #define ARM_CP_SENTINEL 0xffff 2242 /* Mask of only the flag bits in a type field */ 2243 #define ARM_CP_FLAG_MASK 0xf0ff 2244 2245 /* Valid values for ARMCPRegInfo state field, indicating which of 2246 * the AArch32 and AArch64 execution states this register is visible in. 2247 * If the reginfo doesn't explicitly specify then it is AArch32 only. 2248 * If the reginfo is declared to be visible in both states then a second 2249 * reginfo is synthesised for the AArch32 view of the AArch64 register, 2250 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 2251 * Note that we rely on the values of these enums as we iterate through 2252 * the various states in some places. 2253 */ 2254 enum { 2255 ARM_CP_STATE_AA32 = 0, 2256 ARM_CP_STATE_AA64 = 1, 2257 ARM_CP_STATE_BOTH = 2, 2258 }; 2259 2260 /* ARM CP register secure state flags. These flags identify security state 2261 * attributes for a given CP register entry. 2262 * The existence of both or neither secure and non-secure flags indicates that 2263 * the register has both a secure and non-secure hash entry. A single one of 2264 * these flags causes the register to only be hashed for the specified 2265 * security state. 2266 * Although definitions may have any combination of the S/NS bits, each 2267 * registered entry will only have one to identify whether the entry is secure 2268 * or non-secure. 2269 */ 2270 enum { 2271 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 2272 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 2273 }; 2274 2275 /* Return true if cptype is a valid type field. This is used to try to 2276 * catch errors where the sentinel has been accidentally left off the end 2277 * of a list of registers. 2278 */ 2279 static inline bool cptype_valid(int cptype) 2280 { 2281 return ((cptype & ~ARM_CP_FLAG_MASK) == 0) 2282 || ((cptype & ARM_CP_SPECIAL) && 2283 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); 2284 } 2285 2286 /* Access rights: 2287 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 2288 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 2289 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 2290 * (ie any of the privileged modes in Secure state, or Monitor mode). 2291 * If a register is accessible in one privilege level it's always accessible 2292 * in higher privilege levels too. Since "Secure PL1" also follows this rule 2293 * (ie anything visible in PL2 is visible in S-PL1, some things are only 2294 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 2295 * terminology a little and call this PL3. 2296 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 2297 * with the ELx exception levels. 2298 * 2299 * If access permissions for a register are more complex than can be 2300 * described with these bits, then use a laxer set of restrictions, and 2301 * do the more restrictive/complex check inside a helper function. 2302 */ 2303 #define PL3_R 0x80 2304 #define PL3_W 0x40 2305 #define PL2_R (0x20 | PL3_R) 2306 #define PL2_W (0x10 | PL3_W) 2307 #define PL1_R (0x08 | PL2_R) 2308 #define PL1_W (0x04 | PL2_W) 2309 #define PL0_R (0x02 | PL1_R) 2310 #define PL0_W (0x01 | PL1_W) 2311 2312 /* 2313 * For user-mode some registers are accessible to EL0 via a kernel 2314 * trap-and-emulate ABI. In this case we define the read permissions 2315 * as actually being PL0_R. However some bits of any given register 2316 * may still be masked. 2317 */ 2318 #ifdef CONFIG_USER_ONLY 2319 #define PL0U_R PL0_R 2320 #else 2321 #define PL0U_R PL1_R 2322 #endif 2323 2324 #define PL3_RW (PL3_R | PL3_W) 2325 #define PL2_RW (PL2_R | PL2_W) 2326 #define PL1_RW (PL1_R | PL1_W) 2327 #define PL0_RW (PL0_R | PL0_W) 2328 2329 /* Return the highest implemented Exception Level */ 2330 static inline int arm_highest_el(CPUARMState *env) 2331 { 2332 if (arm_feature(env, ARM_FEATURE_EL3)) { 2333 return 3; 2334 } 2335 if (arm_feature(env, ARM_FEATURE_EL2)) { 2336 return 2; 2337 } 2338 return 1; 2339 } 2340 2341 /* Return true if a v7M CPU is in Handler mode */ 2342 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2343 { 2344 return env->v7m.exception != 0; 2345 } 2346 2347 /* Return the current Exception Level (as per ARMv8; note that this differs 2348 * from the ARMv7 Privilege Level). 2349 */ 2350 static inline int arm_current_el(CPUARMState *env) 2351 { 2352 if (arm_feature(env, ARM_FEATURE_M)) { 2353 return arm_v7m_is_handler_mode(env) || 2354 !(env->v7m.control[env->v7m.secure] & 1); 2355 } 2356 2357 if (is_a64(env)) { 2358 return extract32(env->pstate, 2, 2); 2359 } 2360 2361 switch (env->uncached_cpsr & 0x1f) { 2362 case ARM_CPU_MODE_USR: 2363 return 0; 2364 case ARM_CPU_MODE_HYP: 2365 return 2; 2366 case ARM_CPU_MODE_MON: 2367 return 3; 2368 default: 2369 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2370 /* If EL3 is 32-bit then all secure privileged modes run in 2371 * EL3 2372 */ 2373 return 3; 2374 } 2375 2376 return 1; 2377 } 2378 } 2379 2380 typedef struct ARMCPRegInfo ARMCPRegInfo; 2381 2382 typedef enum CPAccessResult { 2383 /* Access is permitted */ 2384 CP_ACCESS_OK = 0, 2385 /* Access fails due to a configurable trap or enable which would 2386 * result in a categorized exception syndrome giving information about 2387 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 2388 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or 2389 * PL1 if in EL0, otherwise to the current EL). 2390 */ 2391 CP_ACCESS_TRAP = 1, 2392 /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). 2393 * Note that this is not a catch-all case -- the set of cases which may 2394 * result in this failure is specifically defined by the architecture. 2395 */ 2396 CP_ACCESS_TRAP_UNCATEGORIZED = 2, 2397 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ 2398 CP_ACCESS_TRAP_EL2 = 3, 2399 CP_ACCESS_TRAP_EL3 = 4, 2400 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ 2401 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, 2402 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, 2403 /* Access fails and results in an exception syndrome for an FP access, 2404 * trapped directly to EL2 or EL3 2405 */ 2406 CP_ACCESS_TRAP_FP_EL2 = 7, 2407 CP_ACCESS_TRAP_FP_EL3 = 8, 2408 } CPAccessResult; 2409 2410 /* Access functions for coprocessor registers. These cannot fail and 2411 * may not raise exceptions. 2412 */ 2413 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2414 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 2415 uint64_t value); 2416 /* Access permission check functions for coprocessor registers. */ 2417 typedef CPAccessResult CPAccessFn(CPUARMState *env, 2418 const ARMCPRegInfo *opaque, 2419 bool isread); 2420 /* Hook function for register reset */ 2421 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 2422 2423 #define CP_ANY 0xff 2424 2425 /* Definition of an ARM coprocessor register */ 2426 struct ARMCPRegInfo { 2427 /* Name of register (useful mainly for debugging, need not be unique) */ 2428 const char *name; 2429 /* Location of register: coprocessor number and (crn,crm,opc1,opc2) 2430 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 2431 * 'wildcard' field -- any value of that field in the MRC/MCR insn 2432 * will be decoded to this register. The register read and write 2433 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 2434 * used by the program, so it is possible to register a wildcard and 2435 * then behave differently on read/write if necessary. 2436 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 2437 * must both be zero. 2438 * For AArch64-visible registers, opc0 is also used. 2439 * Since there are no "coprocessors" in AArch64, cp is purely used as a 2440 * way to distinguish (for KVM's benefit) guest-visible system registers 2441 * from demuxed ones provided to preserve the "no side effects on 2442 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 2443 * visible (to match KVM's encoding); cp==0 will be converted to 2444 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 2445 */ 2446 uint8_t cp; 2447 uint8_t crn; 2448 uint8_t crm; 2449 uint8_t opc0; 2450 uint8_t opc1; 2451 uint8_t opc2; 2452 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 2453 int state; 2454 /* Register type: ARM_CP_* bits/values */ 2455 int type; 2456 /* Access rights: PL*_[RW] */ 2457 int access; 2458 /* Security state: ARM_CP_SECSTATE_* bits/values */ 2459 int secure; 2460 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when 2461 * this register was defined: can be used to hand data through to the 2462 * register read/write functions, since they are passed the ARMCPRegInfo*. 2463 */ 2464 void *opaque; 2465 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if 2466 * fieldoffset is non-zero, the reset value of the register. 2467 */ 2468 uint64_t resetvalue; 2469 /* Offset of the field in CPUARMState for this register. 2470 * 2471 * This is not needed if either: 2472 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 2473 * 2. both readfn and writefn are specified 2474 */ 2475 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 2476 2477 /* Offsets of the secure and non-secure fields in CPUARMState for the 2478 * register if it is banked. These fields are only used during the static 2479 * registration of a register. During hashing the bank associated 2480 * with a given security state is copied to fieldoffset which is used from 2481 * there on out. 2482 * 2483 * It is expected that register definitions use either fieldoffset or 2484 * bank_fieldoffsets in the definition but not both. It is also expected 2485 * that both bank offsets are set when defining a banked register. This 2486 * use indicates that a register is banked. 2487 */ 2488 ptrdiff_t bank_fieldoffsets[2]; 2489 2490 /* Function for making any access checks for this register in addition to 2491 * those specified by the 'access' permissions bits. If NULL, no extra 2492 * checks required. The access check is performed at runtime, not at 2493 * translate time. 2494 */ 2495 CPAccessFn *accessfn; 2496 /* Function for handling reads of this register. If NULL, then reads 2497 * will be done by loading from the offset into CPUARMState specified 2498 * by fieldoffset. 2499 */ 2500 CPReadFn *readfn; 2501 /* Function for handling writes of this register. If NULL, then writes 2502 * will be done by writing to the offset into CPUARMState specified 2503 * by fieldoffset. 2504 */ 2505 CPWriteFn *writefn; 2506 /* Function for doing a "raw" read; used when we need to copy 2507 * coprocessor state to the kernel for KVM or out for 2508 * migration. This only needs to be provided if there is also a 2509 * readfn and it has side effects (for instance clear-on-read bits). 2510 */ 2511 CPReadFn *raw_readfn; 2512 /* Function for doing a "raw" write; used when we need to copy KVM 2513 * kernel coprocessor state into userspace, or for inbound 2514 * migration. This only needs to be provided if there is also a 2515 * writefn and it masks out "unwritable" bits or has write-one-to-clear 2516 * or similar behaviour. 2517 */ 2518 CPWriteFn *raw_writefn; 2519 /* Function for resetting the register. If NULL, then reset will be done 2520 * by writing resetvalue to the field specified in fieldoffset. If 2521 * fieldoffset is 0 then no reset will be done. 2522 */ 2523 CPResetFn *resetfn; 2524 }; 2525 2526 /* Macros which are lvalues for the field in CPUARMState for the 2527 * ARMCPRegInfo *ri. 2528 */ 2529 #define CPREG_FIELD32(env, ri) \ 2530 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 2531 #define CPREG_FIELD64(env, ri) \ 2532 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 2533 2534 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } 2535 2536 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 2537 const ARMCPRegInfo *regs, void *opaque); 2538 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 2539 const ARMCPRegInfo *regs, void *opaque); 2540 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) 2541 { 2542 define_arm_cp_regs_with_opaque(cpu, regs, 0); 2543 } 2544 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 2545 { 2546 define_one_arm_cp_reg_with_opaque(cpu, regs, 0); 2547 } 2548 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 2549 2550 /* 2551 * Definition of an ARM co-processor register as viewed from 2552 * userspace. This is used for presenting sanitised versions of 2553 * registers to userspace when emulating the Linux AArch64 CPU 2554 * ID/feature ABI (advertised as HWCAP_CPUID). 2555 */ 2556 typedef struct ARMCPRegUserSpaceInfo { 2557 /* Name of register */ 2558 const char *name; 2559 2560 /* Is the name actually a glob pattern */ 2561 bool is_glob; 2562 2563 /* Only some bits are exported to user space */ 2564 uint64_t exported_bits; 2565 2566 /* Fixed bits are applied after the mask */ 2567 uint64_t fixed_bits; 2568 } ARMCPRegUserSpaceInfo; 2569 2570 #define REGUSERINFO_SENTINEL { .name = NULL } 2571 2572 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); 2573 2574 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 2575 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 2576 uint64_t value); 2577 /* CPReadFn that can be used for read-as-zero behaviour */ 2578 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 2579 2580 /* CPResetFn that does nothing, for use if no reset is required even 2581 * if fieldoffset is non zero. 2582 */ 2583 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 2584 2585 /* Return true if this reginfo struct's field in the cpu state struct 2586 * is 64 bits wide. 2587 */ 2588 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 2589 { 2590 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 2591 } 2592 2593 static inline bool cp_access_ok(int current_el, 2594 const ARMCPRegInfo *ri, int isread) 2595 { 2596 return (ri->access >> ((current_el * 2) + isread)) & 1; 2597 } 2598 2599 /* Raw read of a coprocessor register (as needed for migration, etc) */ 2600 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 2601 2602 /** 2603 * write_list_to_cpustate 2604 * @cpu: ARMCPU 2605 * 2606 * For each register listed in the ARMCPU cpreg_indexes list, write 2607 * its value from the cpreg_values list into the ARMCPUState structure. 2608 * This updates TCG's working data structures from KVM data or 2609 * from incoming migration state. 2610 * 2611 * Returns: true if all register values were updated correctly, 2612 * false if some register was unknown or could not be written. 2613 * Note that we do not stop early on failure -- we will attempt 2614 * writing all registers in the list. 2615 */ 2616 bool write_list_to_cpustate(ARMCPU *cpu); 2617 2618 /** 2619 * write_cpustate_to_list: 2620 * @cpu: ARMCPU 2621 * @kvm_sync: true if this is for syncing back to KVM 2622 * 2623 * For each register listed in the ARMCPU cpreg_indexes list, write 2624 * its value from the ARMCPUState structure into the cpreg_values list. 2625 * This is used to copy info from TCG's working data structures into 2626 * KVM or for outbound migration. 2627 * 2628 * @kvm_sync is true if we are doing this in order to sync the 2629 * register state back to KVM. In this case we will only update 2630 * values in the list if the previous list->cpustate sync actually 2631 * successfully wrote the CPU state. Otherwise we will keep the value 2632 * that is in the list. 2633 * 2634 * Returns: true if all register values were read correctly, 2635 * false if some register was unknown or could not be read. 2636 * Note that we do not stop early on failure -- we will attempt 2637 * reading all registers in the list. 2638 */ 2639 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2640 2641 #define ARM_CPUID_TI915T 0x54029152 2642 #define ARM_CPUID_TI925T 0x54029252 2643 2644 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 2645 unsigned int target_el) 2646 { 2647 CPUARMState *env = cs->env_ptr; 2648 unsigned int cur_el = arm_current_el(env); 2649 bool secure = arm_is_secure(env); 2650 bool pstate_unmasked; 2651 int8_t unmasked = 0; 2652 uint64_t hcr_el2; 2653 2654 /* Don't take exceptions if they target a lower EL. 2655 * This check should catch any exceptions that would not be taken but left 2656 * pending. 2657 */ 2658 if (cur_el > target_el) { 2659 return false; 2660 } 2661 2662 hcr_el2 = arm_hcr_el2_eff(env); 2663 2664 switch (excp_idx) { 2665 case EXCP_FIQ: 2666 pstate_unmasked = !(env->daif & PSTATE_F); 2667 break; 2668 2669 case EXCP_IRQ: 2670 pstate_unmasked = !(env->daif & PSTATE_I); 2671 break; 2672 2673 case EXCP_VFIQ: 2674 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 2675 /* VFIQs are only taken when hypervized and non-secure. */ 2676 return false; 2677 } 2678 return !(env->daif & PSTATE_F); 2679 case EXCP_VIRQ: 2680 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 2681 /* VIRQs are only taken when hypervized and non-secure. */ 2682 return false; 2683 } 2684 return !(env->daif & PSTATE_I); 2685 default: 2686 g_assert_not_reached(); 2687 } 2688 2689 /* Use the target EL, current execution state and SCR/HCR settings to 2690 * determine whether the corresponding CPSR bit is used to mask the 2691 * interrupt. 2692 */ 2693 if ((target_el > cur_el) && (target_el != 1)) { 2694 /* Exceptions targeting a higher EL may not be maskable */ 2695 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 2696 /* 64-bit masking rules are simple: exceptions to EL3 2697 * can't be masked, and exceptions to EL2 can only be 2698 * masked from Secure state. The HCR and SCR settings 2699 * don't affect the masking logic, only the interrupt routing. 2700 */ 2701 if (target_el == 3 || !secure) { 2702 unmasked = 1; 2703 } 2704 } else { 2705 /* The old 32-bit-only environment has a more complicated 2706 * masking setup. HCR and SCR bits not only affect interrupt 2707 * routing but also change the behaviour of masking. 2708 */ 2709 bool hcr, scr; 2710 2711 switch (excp_idx) { 2712 case EXCP_FIQ: 2713 /* If FIQs are routed to EL3 or EL2 then there are cases where 2714 * we override the CPSR.F in determining if the exception is 2715 * masked or not. If neither of these are set then we fall back 2716 * to the CPSR.F setting otherwise we further assess the state 2717 * below. 2718 */ 2719 hcr = hcr_el2 & HCR_FMO; 2720 scr = (env->cp15.scr_el3 & SCR_FIQ); 2721 2722 /* When EL3 is 32-bit, the SCR.FW bit controls whether the 2723 * CPSR.F bit masks FIQ interrupts when taken in non-secure 2724 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 2725 * when non-secure but only when FIQs are only routed to EL3. 2726 */ 2727 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 2728 break; 2729 case EXCP_IRQ: 2730 /* When EL3 execution state is 32-bit, if HCR.IMO is set then 2731 * we may override the CPSR.I masking when in non-secure state. 2732 * The SCR.IRQ setting has already been taken into consideration 2733 * when setting the target EL, so it does not have a further 2734 * affect here. 2735 */ 2736 hcr = hcr_el2 & HCR_IMO; 2737 scr = false; 2738 break; 2739 default: 2740 g_assert_not_reached(); 2741 } 2742 2743 if ((scr || hcr) && !secure) { 2744 unmasked = 1; 2745 } 2746 } 2747 } 2748 2749 /* The PSTATE bits only mask the interrupt if we have not overriden the 2750 * ability above. 2751 */ 2752 return unmasked || pstate_unmasked; 2753 } 2754 2755 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2756 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2757 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2758 2759 #define cpu_signal_handler cpu_arm_signal_handler 2760 #define cpu_list arm_cpu_list 2761 2762 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2763 * 2764 * If EL3 is 64-bit: 2765 * + NonSecure EL1 & 0 stage 1 2766 * + NonSecure EL1 & 0 stage 2 2767 * + NonSecure EL2 2768 * + Secure EL1 & EL0 2769 * + Secure EL3 2770 * If EL3 is 32-bit: 2771 * + NonSecure PL1 & 0 stage 1 2772 * + NonSecure PL1 & 0 stage 2 2773 * + NonSecure PL2 2774 * + Secure PL0 & PL1 2775 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2776 * 2777 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2778 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they 2779 * may differ in access permissions even if the VA->PA map is the same 2780 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2781 * translation, which means that we have one mmu_idx that deals with two 2782 * concatenated translation regimes [this sort of combined s1+2 TLB is 2783 * architecturally permitted] 2784 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2785 * handling via the TLB. The only way to do a stage 1 translation without 2786 * the immediate stage 2 translation is via the ATS or AT system insns, 2787 * which can be slow-pathed and always do a page table walk. 2788 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2789 * translation regimes, because they map reasonably well to each other 2790 * and they can't both be active at the same time. 2791 * This gives us the following list of mmu_idx values: 2792 * 2793 * NS EL0 (aka NS PL0) stage 1+2 2794 * NS EL1 (aka NS PL1) stage 1+2 2795 * NS EL2 (aka NS PL2) 2796 * S EL3 (aka S PL1) 2797 * S EL0 (aka S PL0) 2798 * S EL1 (not used if EL3 is 32 bit) 2799 * NS EL0+1 stage 2 2800 * 2801 * (The last of these is an mmu_idx because we want to be able to use the TLB 2802 * for the accesses done as part of a stage 1 page table walk, rather than 2803 * having to walk the stage 2 page table over and over.) 2804 * 2805 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2806 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2807 * NS EL2 if we ever model a Cortex-R52). 2808 * 2809 * M profile CPUs are rather different as they do not have a true MMU. 2810 * They have the following different MMU indexes: 2811 * User 2812 * Privileged 2813 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2814 * Privileged, execution priority negative (ditto) 2815 * If the CPU supports the v8M Security Extension then there are also: 2816 * Secure User 2817 * Secure Privileged 2818 * Secure User, execution priority negative 2819 * Secure Privileged, execution priority negative 2820 * 2821 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2822 * are not quite the same -- different CPU types (most notably M profile 2823 * vs A/R profile) would like to use MMU indexes with different semantics, 2824 * but since we don't ever need to use all of those in a single CPU we 2825 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of 2826 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2827 * the same for any particular CPU. 2828 * Variables of type ARMMUIdx are always full values, and the core 2829 * index values are in variables of type 'int'. 2830 * 2831 * Our enumeration includes at the end some entries which are not "true" 2832 * mmu_idx values in that they don't have corresponding TLBs and are only 2833 * valid for doing slow path page table walks. 2834 * 2835 * The constant names here are patterned after the general style of the names 2836 * of the AT/ATS operations. 2837 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2838 * For M profile we arrange them to have a bit for priv, a bit for negpri 2839 * and a bit for secure. 2840 */ 2841 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2842 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2843 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2844 2845 /* meanings of the bits for M profile mmu idx values */ 2846 #define ARM_MMU_IDX_M_PRIV 0x1 2847 #define ARM_MMU_IDX_M_NEGPRI 0x2 2848 #define ARM_MMU_IDX_M_S 0x4 2849 2850 #define ARM_MMU_IDX_TYPE_MASK (~0x7) 2851 #define ARM_MMU_IDX_COREIDX_MASK 0x7 2852 2853 typedef enum ARMMMUIdx { 2854 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A, 2855 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A, 2856 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A, 2857 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A, 2858 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A, 2859 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A, 2860 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A, 2861 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M, 2862 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M, 2863 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M, 2864 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M, 2865 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M, 2866 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M, 2867 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M, 2868 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M, 2869 /* Indexes below here don't have TLBs and are used only for AT system 2870 * instructions or for the first stage of an S12 page table walk. 2871 */ 2872 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB, 2873 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB, 2874 } ARMMMUIdx; 2875 2876 /* Bit macros for the core-mmu-index values for each index, 2877 * for use when calling tlb_flush_by_mmuidx() and friends. 2878 */ 2879 typedef enum ARMMMUIdxBit { 2880 ARMMMUIdxBit_S12NSE0 = 1 << 0, 2881 ARMMMUIdxBit_S12NSE1 = 1 << 1, 2882 ARMMMUIdxBit_S1E2 = 1 << 2, 2883 ARMMMUIdxBit_S1E3 = 1 << 3, 2884 ARMMMUIdxBit_S1SE0 = 1 << 4, 2885 ARMMMUIdxBit_S1SE1 = 1 << 5, 2886 ARMMMUIdxBit_S2NS = 1 << 6, 2887 ARMMMUIdxBit_MUser = 1 << 0, 2888 ARMMMUIdxBit_MPriv = 1 << 1, 2889 ARMMMUIdxBit_MUserNegPri = 1 << 2, 2890 ARMMMUIdxBit_MPrivNegPri = 1 << 3, 2891 ARMMMUIdxBit_MSUser = 1 << 4, 2892 ARMMMUIdxBit_MSPriv = 1 << 5, 2893 ARMMMUIdxBit_MSUserNegPri = 1 << 6, 2894 ARMMMUIdxBit_MSPrivNegPri = 1 << 7, 2895 } ARMMMUIdxBit; 2896 2897 #define MMU_USER_IDX 0 2898 2899 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx) 2900 { 2901 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK; 2902 } 2903 2904 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx) 2905 { 2906 if (arm_feature(env, ARM_FEATURE_M)) { 2907 return mmu_idx | ARM_MMU_IDX_M; 2908 } else { 2909 return mmu_idx | ARM_MMU_IDX_A; 2910 } 2911 } 2912 2913 /* Return the exception level we're running at if this is our mmu_idx */ 2914 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 2915 { 2916 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) { 2917 case ARM_MMU_IDX_A: 2918 return mmu_idx & 3; 2919 case ARM_MMU_IDX_M: 2920 return mmu_idx & ARM_MMU_IDX_M_PRIV; 2921 default: 2922 g_assert_not_reached(); 2923 } 2924 } 2925 2926 /* 2927 * Return the MMU index for a v7M CPU with all relevant information 2928 * manually specified. 2929 */ 2930 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 2931 bool secstate, bool priv, bool negpri); 2932 2933 /* Return the MMU index for a v7M CPU in the specified security and 2934 * privilege state. 2935 */ 2936 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 2937 bool secstate, bool priv); 2938 2939 /* Return the MMU index for a v7M CPU in the specified security state */ 2940 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate); 2941 2942 /** 2943 * cpu_mmu_index: 2944 * @env: The cpu environment 2945 * @ifetch: True for code access, false for data access. 2946 * 2947 * Return the core mmu index for the current translation regime. 2948 * This function is used by generic TCG code paths. 2949 */ 2950 int cpu_mmu_index(CPUARMState *env, bool ifetch); 2951 2952 /* Indexes used when registering address spaces with cpu_address_space_init */ 2953 typedef enum ARMASIdx { 2954 ARMASIdx_NS = 0, 2955 ARMASIdx_S = 1, 2956 } ARMASIdx; 2957 2958 /* Return the Exception Level targeted by debug exceptions. */ 2959 static inline int arm_debug_target_el(CPUARMState *env) 2960 { 2961 bool secure = arm_is_secure(env); 2962 bool route_to_el2 = false; 2963 2964 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { 2965 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || 2966 env->cp15.mdcr_el2 & MDCR_TDE; 2967 } 2968 2969 if (route_to_el2) { 2970 return 2; 2971 } else if (arm_feature(env, ARM_FEATURE_EL3) && 2972 !arm_el_is_aa64(env, 3) && secure) { 2973 return 3; 2974 } else { 2975 return 1; 2976 } 2977 } 2978 2979 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 2980 { 2981 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 2982 * CSSELR is RAZ/WI. 2983 */ 2984 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 2985 } 2986 2987 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ 2988 static inline bool aa64_generate_debug_exceptions(CPUARMState *env) 2989 { 2990 int cur_el = arm_current_el(env); 2991 int debug_el; 2992 2993 if (cur_el == 3) { 2994 return false; 2995 } 2996 2997 /* MDCR_EL3.SDD disables debug events from Secure state */ 2998 if (arm_is_secure_below_el3(env) 2999 && extract32(env->cp15.mdcr_el3, 16, 1)) { 3000 return false; 3001 } 3002 3003 /* 3004 * Same EL to same EL debug exceptions need MDSCR_KDE enabled 3005 * while not masking the (D)ebug bit in DAIF. 3006 */ 3007 debug_el = arm_debug_target_el(env); 3008 3009 if (cur_el == debug_el) { 3010 return extract32(env->cp15.mdscr_el1, 13, 1) 3011 && !(env->daif & PSTATE_D); 3012 } 3013 3014 /* Otherwise the debug target needs to be a higher EL */ 3015 return debug_el > cur_el; 3016 } 3017 3018 static inline bool aa32_generate_debug_exceptions(CPUARMState *env) 3019 { 3020 int el = arm_current_el(env); 3021 3022 if (el == 0 && arm_el_is_aa64(env, 1)) { 3023 return aa64_generate_debug_exceptions(env); 3024 } 3025 3026 if (arm_is_secure(env)) { 3027 int spd; 3028 3029 if (el == 0 && (env->cp15.sder & 1)) { 3030 /* SDER.SUIDEN means debug exceptions from Secure EL0 3031 * are always enabled. Otherwise they are controlled by 3032 * SDCR.SPD like those from other Secure ELs. 3033 */ 3034 return true; 3035 } 3036 3037 spd = extract32(env->cp15.mdcr_el3, 14, 2); 3038 switch (spd) { 3039 case 1: 3040 /* SPD == 0b01 is reserved, but behaves as 0b00. */ 3041 case 0: 3042 /* For 0b00 we return true if external secure invasive debug 3043 * is enabled. On real hardware this is controlled by external 3044 * signals to the core. QEMU always permits debug, and behaves 3045 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. 3046 */ 3047 return true; 3048 case 2: 3049 return false; 3050 case 3: 3051 return true; 3052 } 3053 } 3054 3055 return el != 2; 3056 } 3057 3058 /* Return true if debugging exceptions are currently enabled. 3059 * This corresponds to what in ARM ARM pseudocode would be 3060 * if UsingAArch32() then 3061 * return AArch32.GenerateDebugExceptions() 3062 * else 3063 * return AArch64.GenerateDebugExceptions() 3064 * We choose to push the if() down into this function for clarity, 3065 * since the pseudocode has it at all callsites except for the one in 3066 * CheckSoftwareStep(), where it is elided because both branches would 3067 * always return the same value. 3068 */ 3069 static inline bool arm_generate_debug_exceptions(CPUARMState *env) 3070 { 3071 if (env->aarch64) { 3072 return aa64_generate_debug_exceptions(env); 3073 } else { 3074 return aa32_generate_debug_exceptions(env); 3075 } 3076 } 3077 3078 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check 3079 * implicitly means this always returns false in pre-v8 CPUs.) 3080 */ 3081 static inline bool arm_singlestep_active(CPUARMState *env) 3082 { 3083 return extract32(env->cp15.mdscr_el1, 0, 1) 3084 && arm_el_is_aa64(env, arm_debug_target_el(env)) 3085 && arm_generate_debug_exceptions(env); 3086 } 3087 3088 static inline bool arm_sctlr_b(CPUARMState *env) 3089 { 3090 return 3091 /* We need not implement SCTLR.ITD in user-mode emulation, so 3092 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3093 * This lets people run BE32 binaries with "-cpu any". 3094 */ 3095 #ifndef CONFIG_USER_ONLY 3096 !arm_feature(env, ARM_FEATURE_V7) && 3097 #endif 3098 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3099 } 3100 3101 static inline uint64_t arm_sctlr(CPUARMState *env, int el) 3102 { 3103 if (el == 0) { 3104 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 3105 return env->cp15.sctlr_el[1]; 3106 } else { 3107 return env->cp15.sctlr_el[el]; 3108 } 3109 } 3110 3111 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3112 bool sctlr_b) 3113 { 3114 #ifdef CONFIG_USER_ONLY 3115 /* 3116 * In system mode, BE32 is modelled in line with the 3117 * architecture (as word-invariant big-endianness), where loads 3118 * and stores are done little endian but from addresses which 3119 * are adjusted by XORing with the appropriate constant. So the 3120 * endianness to use for the raw data access is not affected by 3121 * SCTLR.B. 3122 * In user mode, however, we model BE32 as byte-invariant 3123 * big-endianness (because user-only code cannot tell the 3124 * difference), and so we need to use a data access endianness 3125 * that depends on SCTLR.B. 3126 */ 3127 if (sctlr_b) { 3128 return true; 3129 } 3130 #endif 3131 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3132 return env->uncached_cpsr & CPSR_E; 3133 } 3134 3135 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3136 { 3137 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3138 } 3139 3140 /* Return true if the processor is in big-endian mode. */ 3141 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3142 { 3143 if (!is_a64(env)) { 3144 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3145 } else { 3146 int cur_el = arm_current_el(env); 3147 uint64_t sctlr = arm_sctlr(env, cur_el); 3148 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3149 } 3150 } 3151 3152 typedef CPUARMState CPUArchState; 3153 typedef ARMCPU ArchCPU; 3154 3155 #include "exec/cpu-all.h" 3156 3157 /* 3158 * Bit usage in the TB flags field: bit 31 indicates whether we are 3159 * in 32 or 64 bit mode. The meaning of the other bits depends on that. 3160 * We put flags which are shared between 32 and 64 bit mode at the top 3161 * of the word, and flags which apply to only one mode at the bottom. 3162 * 3163 * Unless otherwise noted, these bits are cached in env->hflags. 3164 */ 3165 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1) 3166 FIELD(TBFLAG_ANY, MMUIDX, 28, 3) 3167 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1) 3168 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1) /* Not cached. */ 3169 /* Target EL if we take a floating-point-disabled exception */ 3170 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2) 3171 FIELD(TBFLAG_ANY, BE_DATA, 23, 1) 3172 /* 3173 * For A-profile only, target EL for debug exceptions. 3174 * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits. 3175 */ 3176 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2) 3177 3178 /* Bit usage when in AArch32 state: */ 3179 FIELD(TBFLAG_A32, THUMB, 0, 1) /* Not cached. */ 3180 FIELD(TBFLAG_A32, VECLEN, 1, 3) /* Not cached. */ 3181 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2) /* Not cached. */ 3182 /* 3183 * We store the bottom two bits of the CPAR as TB flags and handle 3184 * checks on the other bits at runtime. This shares the same bits as 3185 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3186 * Not cached, because VECLEN+VECSTRIDE are not cached. 3187 */ 3188 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2) 3189 /* 3190 * Indicates whether cp register reads and writes by guest code should access 3191 * the secure or nonsecure bank of banked registers; note that this is not 3192 * the same thing as the current security state of the processor! 3193 */ 3194 FIELD(TBFLAG_A32, NS, 6, 1) 3195 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 3196 FIELD(TBFLAG_A32, CONDEXEC, 8, 8) /* Not cached. */ 3197 FIELD(TBFLAG_A32, SCTLR_B, 16, 1) 3198 /* For M profile only, set if FPCCR.LSPACT is set */ 3199 FIELD(TBFLAG_A32, LSPACT, 18, 1) /* Not cached. */ 3200 /* For M profile only, set if we must create a new FP context */ 3201 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */ 3202 /* For M profile only, set if FPCCR.S does not match current security state */ 3203 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */ 3204 /* For M profile only, Handler (ie not Thread) mode */ 3205 FIELD(TBFLAG_A32, HANDLER, 21, 1) 3206 /* For M profile only, whether we should generate stack-limit checks */ 3207 FIELD(TBFLAG_A32, STACKCHECK, 22, 1) 3208 3209 /* Bit usage when in AArch64 state */ 3210 FIELD(TBFLAG_A64, TBII, 0, 2) 3211 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3212 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) 3213 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3214 FIELD(TBFLAG_A64, BT, 9, 1) 3215 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3216 FIELD(TBFLAG_A64, TBID, 12, 2) 3217 3218 static inline bool bswap_code(bool sctlr_b) 3219 { 3220 #ifdef CONFIG_USER_ONLY 3221 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. 3222 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 3223 * would also end up as a mixed-endian mode with BE code, LE data. 3224 */ 3225 return 3226 #ifdef TARGET_WORDS_BIGENDIAN 3227 1 ^ 3228 #endif 3229 sctlr_b; 3230 #else 3231 /* All code access in ARM is little endian, and there are no loaders 3232 * doing swaps that need to be reversed 3233 */ 3234 return 0; 3235 #endif 3236 } 3237 3238 #ifdef CONFIG_USER_ONLY 3239 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3240 { 3241 return 3242 #ifdef TARGET_WORDS_BIGENDIAN 3243 1 ^ 3244 #endif 3245 arm_cpu_data_is_big_endian(env); 3246 } 3247 #endif 3248 3249 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3250 target_ulong *cs_base, uint32_t *flags); 3251 3252 enum { 3253 QEMU_PSCI_CONDUIT_DISABLED = 0, 3254 QEMU_PSCI_CONDUIT_SMC = 1, 3255 QEMU_PSCI_CONDUIT_HVC = 2, 3256 }; 3257 3258 #ifndef CONFIG_USER_ONLY 3259 /* Return the address space index to use for a memory access */ 3260 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3261 { 3262 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3263 } 3264 3265 /* Return the AddressSpace to use for a memory access 3266 * (which depends on whether the access is S or NS, and whether 3267 * the board gave us a separate AddressSpace for S accesses). 3268 */ 3269 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3270 { 3271 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3272 } 3273 #endif 3274 3275 /** 3276 * arm_register_pre_el_change_hook: 3277 * Register a hook function which will be called immediately before this 3278 * CPU changes exception level or mode. The hook function will be 3279 * passed a pointer to the ARMCPU and the opaque data pointer passed 3280 * to this function when the hook was registered. 3281 * 3282 * Note that if a pre-change hook is called, any registered post-change hooks 3283 * are guaranteed to subsequently be called. 3284 */ 3285 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3286 void *opaque); 3287 /** 3288 * arm_register_el_change_hook: 3289 * Register a hook function which will be called immediately after this 3290 * CPU changes exception level or mode. The hook function will be 3291 * passed a pointer to the ARMCPU and the opaque data pointer passed 3292 * to this function when the hook was registered. 3293 * 3294 * Note that any registered hooks registered here are guaranteed to be called 3295 * if pre-change hooks have been. 3296 */ 3297 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3298 *opaque); 3299 3300 /** 3301 * arm_rebuild_hflags: 3302 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3303 */ 3304 void arm_rebuild_hflags(CPUARMState *env); 3305 3306 /** 3307 * aa32_vfp_dreg: 3308 * Return a pointer to the Dn register within env in 32-bit mode. 3309 */ 3310 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3311 { 3312 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3313 } 3314 3315 /** 3316 * aa32_vfp_qreg: 3317 * Return a pointer to the Qn register within env in 32-bit mode. 3318 */ 3319 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3320 { 3321 return &env->vfp.zregs[regno].d[0]; 3322 } 3323 3324 /** 3325 * aa64_vfp_qreg: 3326 * Return a pointer to the Qn register within env in 64-bit mode. 3327 */ 3328 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3329 { 3330 return &env->vfp.zregs[regno].d[0]; 3331 } 3332 3333 /* Shared between translate-sve.c and sve_helper.c. */ 3334 extern const uint64_t pred_esz_masks[4]; 3335 3336 /* 3337 * 32-bit feature tests via id registers. 3338 */ 3339 static inline bool isar_feature_thumb_div(const ARMISARegisters *id) 3340 { 3341 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3342 } 3343 3344 static inline bool isar_feature_arm_div(const ARMISARegisters *id) 3345 { 3346 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3347 } 3348 3349 static inline bool isar_feature_jazelle(const ARMISARegisters *id) 3350 { 3351 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3352 } 3353 3354 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3355 { 3356 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3357 } 3358 3359 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3360 { 3361 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3362 } 3363 3364 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3365 { 3366 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3367 } 3368 3369 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3370 { 3371 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3372 } 3373 3374 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3375 { 3376 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3377 } 3378 3379 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3380 { 3381 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3382 } 3383 3384 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3385 { 3386 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3387 } 3388 3389 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3390 { 3391 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3392 } 3393 3394 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3395 { 3396 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3397 } 3398 3399 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3400 { 3401 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3402 } 3403 3404 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3405 { 3406 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3407 } 3408 3409 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3410 { 3411 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3412 } 3413 3414 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3415 { 3416 /* 3417 * This is a placeholder for use by VCMA until the rest of 3418 * the ARMv8.2-FP16 extension is implemented for aa32 mode. 3419 * At which point we can properly set and check MVFR1.FPHP. 3420 */ 3421 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3422 } 3423 3424 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id) 3425 { 3426 /* Return true if D16-D31 are implemented */ 3427 return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2; 3428 } 3429 3430 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3431 { 3432 return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0; 3433 } 3434 3435 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id) 3436 { 3437 /* Return true if CPU supports double precision floating point */ 3438 return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0; 3439 } 3440 3441 /* 3442 * We always set the FP and SIMD FP16 fields to indicate identical 3443 * levels of support (assuming SIMD is implemented at all), so 3444 * we only need one set of accessors. 3445 */ 3446 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3447 { 3448 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0; 3449 } 3450 3451 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3452 { 3453 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1; 3454 } 3455 3456 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3457 { 3458 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1; 3459 } 3460 3461 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3462 { 3463 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2; 3464 } 3465 3466 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3467 { 3468 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3; 3469 } 3470 3471 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3472 { 3473 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4; 3474 } 3475 3476 /* 3477 * 64-bit feature tests via id registers. 3478 */ 3479 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3480 { 3481 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3482 } 3483 3484 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3485 { 3486 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3487 } 3488 3489 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3490 { 3491 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3492 } 3493 3494 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3495 { 3496 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3497 } 3498 3499 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3500 { 3501 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3502 } 3503 3504 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3505 { 3506 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3507 } 3508 3509 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3510 { 3511 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3512 } 3513 3514 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3515 { 3516 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3517 } 3518 3519 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3520 { 3521 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3522 } 3523 3524 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3525 { 3526 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3527 } 3528 3529 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3530 { 3531 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3532 } 3533 3534 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3535 { 3536 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3537 } 3538 3539 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3540 { 3541 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3542 } 3543 3544 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3545 { 3546 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3547 } 3548 3549 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3550 { 3551 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3552 } 3553 3554 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3555 { 3556 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3557 } 3558 3559 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3560 { 3561 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3562 } 3563 3564 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3565 { 3566 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3567 } 3568 3569 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3570 { 3571 /* 3572 * Note that while QEMU will only implement the architected algorithm 3573 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation 3574 * defined algorithms, and thus API+GPI, and this predicate controls 3575 * migration of the 128-bit keys. 3576 */ 3577 return (id->id_aa64isar1 & 3578 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3579 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3580 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3581 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3582 } 3583 3584 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3585 { 3586 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3587 } 3588 3589 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3590 { 3591 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3592 } 3593 3594 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3595 { 3596 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3597 } 3598 3599 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3600 { 3601 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3602 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3603 } 3604 3605 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3606 { 3607 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3608 } 3609 3610 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3611 { 3612 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3613 } 3614 3615 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3616 { 3617 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3618 } 3619 3620 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 3621 { 3622 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 3623 } 3624 3625 /* 3626 * Forward to the above feature tests given an ARMCPU pointer. 3627 */ 3628 #define cpu_isar_feature(name, cpu) \ 3629 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 3630 3631 #endif 3632