xref: /openbmc/qemu/target/arm/cpu.h (revision 4b9fa0b4)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP  2
150 #define GTIMER_SEC  3
151 #define NUM_GTIMERS 4
152 
153 typedef struct {
154     uint64_t raw_tcr;
155     uint32_t mask;
156     uint32_t base_mask;
157 } TCR;
158 
159 /* Define a maximum sized vector register.
160  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161  * For 64-bit, this is a 2048-bit SVE register.
162  *
163  * Note that the mapping between S, D, and Q views of the register bank
164  * differs between AArch64 and AArch32.
165  * In AArch32:
166  *  Qn = regs[n].d[1]:regs[n].d[0]
167  *  Dn = regs[n / 2].d[n & 1]
168  *  Sn = regs[n / 4].d[n % 4 / 2],
169  *       bits 31..0 for even n, and bits 63..32 for odd n
170  *       (and regs[16] to regs[31] are inaccessible)
171  * In AArch64:
172  *  Zn = regs[n].d[*]
173  *  Qn = regs[n].d[1]:regs[n].d[0]
174  *  Dn = regs[n].d[0]
175  *  Sn = regs[n].d[0] bits 31..0
176  *  Hn = regs[n].d[0] bits 15..0
177  *
178  * This corresponds to the architecturally defined mapping between
179  * the two execution states, and means we do not need to explicitly
180  * map these registers when changing states.
181  *
182  * Align the data for use with TCG host vector operations.
183  */
184 
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ    16
187 #else
188 # define ARM_MAX_VQ    1
189 #endif
190 
191 typedef struct ARMVectorReg {
192     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
193 } ARMVectorReg;
194 
195 #ifdef TARGET_AARCH64
196 /* In AArch32 mode, predicate registers do not exist at all.  */
197 typedef struct ARMPredicateReg {
198     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
199 } ARMPredicateReg;
200 
201 /* In AArch32 mode, PAC keys do not exist at all.  */
202 typedef struct ARMPACKey {
203     uint64_t lo, hi;
204 } ARMPACKey;
205 #endif
206 
207 
208 typedef struct CPUARMState {
209     /* Regs for current mode.  */
210     uint32_t regs[16];
211 
212     /* 32/64 switch only happens when taking and returning from
213      * exceptions so the overlap semantics are taken care of then
214      * instead of having a complicated union.
215      */
216     /* Regs for A64 mode.  */
217     uint64_t xregs[32];
218     uint64_t pc;
219     /* PSTATE isn't an architectural register for ARMv8. However, it is
220      * convenient for us to assemble the underlying state into a 32 bit format
221      * identical to the architectural format used for the SPSR. (This is also
222      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
223      * 'pstate' register are.) Of the PSTATE bits:
224      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
225      *    semantics as for AArch32, as described in the comments on each field)
226      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
227      *  DAIF (exception masks) are kept in env->daif
228      *  BTYPE is kept in env->btype
229      *  all other bits are stored in their correct places in env->pstate
230      */
231     uint32_t pstate;
232     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
233 
234     /* Cached TBFLAGS state.  See below for which bits are included.  */
235     uint32_t hflags;
236 
237     /* Frequently accessed CPSR bits are stored separately for efficiency.
238        This contains all the other bits.  Use cpsr_{read,write} to access
239        the whole CPSR.  */
240     uint32_t uncached_cpsr;
241     uint32_t spsr;
242 
243     /* Banked registers.  */
244     uint64_t banked_spsr[8];
245     uint32_t banked_r13[8];
246     uint32_t banked_r14[8];
247 
248     /* These hold r8-r12.  */
249     uint32_t usr_regs[5];
250     uint32_t fiq_regs[5];
251 
252     /* cpsr flag cache for faster execution */
253     uint32_t CF; /* 0 or 1 */
254     uint32_t VF; /* V is the bit 31. All other bits are undefined */
255     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
256     uint32_t ZF; /* Z set if zero.  */
257     uint32_t QF; /* 0 or 1 */
258     uint32_t GE; /* cpsr[19:16] */
259     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
260     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
261     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
262     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
263 
264     uint64_t elr_el[4]; /* AArch64 exception link regs  */
265     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
266 
267     /* System control coprocessor (cp15) */
268     struct {
269         uint32_t c0_cpuid;
270         union { /* Cache size selection */
271             struct {
272                 uint64_t _unused_csselr0;
273                 uint64_t csselr_ns;
274                 uint64_t _unused_csselr1;
275                 uint64_t csselr_s;
276             };
277             uint64_t csselr_el[4];
278         };
279         union { /* System control register. */
280             struct {
281                 uint64_t _unused_sctlr;
282                 uint64_t sctlr_ns;
283                 uint64_t hsctlr;
284                 uint64_t sctlr_s;
285             };
286             uint64_t sctlr_el[4];
287         };
288         uint64_t cpacr_el1; /* Architectural feature access control register */
289         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
290         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
291         uint64_t sder; /* Secure debug enable register. */
292         uint32_t nsacr; /* Non-secure access control register. */
293         union { /* MMU translation table base 0. */
294             struct {
295                 uint64_t _unused_ttbr0_0;
296                 uint64_t ttbr0_ns;
297                 uint64_t _unused_ttbr0_1;
298                 uint64_t ttbr0_s;
299             };
300             uint64_t ttbr0_el[4];
301         };
302         union { /* MMU translation table base 1. */
303             struct {
304                 uint64_t _unused_ttbr1_0;
305                 uint64_t ttbr1_ns;
306                 uint64_t _unused_ttbr1_1;
307                 uint64_t ttbr1_s;
308             };
309             uint64_t ttbr1_el[4];
310         };
311         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
312         /* MMU translation table base control. */
313         TCR tcr_el[4];
314         TCR vtcr_el2; /* Virtualization Translation Control.  */
315         uint32_t c2_data; /* MPU data cacheable bits.  */
316         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
317         union { /* MMU domain access control register
318                  * MPU write buffer control.
319                  */
320             struct {
321                 uint64_t dacr_ns;
322                 uint64_t dacr_s;
323             };
324             struct {
325                 uint64_t dacr32_el2;
326             };
327         };
328         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
329         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
330         uint64_t hcr_el2; /* Hypervisor configuration register */
331         uint64_t scr_el3; /* Secure configuration register.  */
332         union { /* Fault status registers.  */
333             struct {
334                 uint64_t ifsr_ns;
335                 uint64_t ifsr_s;
336             };
337             struct {
338                 uint64_t ifsr32_el2;
339             };
340         };
341         union {
342             struct {
343                 uint64_t _unused_dfsr;
344                 uint64_t dfsr_ns;
345                 uint64_t hsr;
346                 uint64_t dfsr_s;
347             };
348             uint64_t esr_el[4];
349         };
350         uint32_t c6_region[8]; /* MPU base/size registers.  */
351         union { /* Fault address registers. */
352             struct {
353                 uint64_t _unused_far0;
354 #ifdef HOST_WORDS_BIGENDIAN
355                 uint32_t ifar_ns;
356                 uint32_t dfar_ns;
357                 uint32_t ifar_s;
358                 uint32_t dfar_s;
359 #else
360                 uint32_t dfar_ns;
361                 uint32_t ifar_ns;
362                 uint32_t dfar_s;
363                 uint32_t ifar_s;
364 #endif
365                 uint64_t _unused_far3;
366             };
367             uint64_t far_el[4];
368         };
369         uint64_t hpfar_el2;
370         uint64_t hstr_el2;
371         union { /* Translation result. */
372             struct {
373                 uint64_t _unused_par_0;
374                 uint64_t par_ns;
375                 uint64_t _unused_par_1;
376                 uint64_t par_s;
377             };
378             uint64_t par_el[4];
379         };
380 
381         uint32_t c9_insn; /* Cache lockdown registers.  */
382         uint32_t c9_data;
383         uint64_t c9_pmcr; /* performance monitor control register */
384         uint64_t c9_pmcnten; /* perf monitor counter enables */
385         uint64_t c9_pmovsr; /* perf monitor overflow status */
386         uint64_t c9_pmuserenr; /* perf monitor user enable */
387         uint64_t c9_pmselr; /* perf monitor counter selection register */
388         uint64_t c9_pminten; /* perf monitor interrupt enables */
389         union { /* Memory attribute redirection */
390             struct {
391 #ifdef HOST_WORDS_BIGENDIAN
392                 uint64_t _unused_mair_0;
393                 uint32_t mair1_ns;
394                 uint32_t mair0_ns;
395                 uint64_t _unused_mair_1;
396                 uint32_t mair1_s;
397                 uint32_t mair0_s;
398 #else
399                 uint64_t _unused_mair_0;
400                 uint32_t mair0_ns;
401                 uint32_t mair1_ns;
402                 uint64_t _unused_mair_1;
403                 uint32_t mair0_s;
404                 uint32_t mair1_s;
405 #endif
406             };
407             uint64_t mair_el[4];
408         };
409         union { /* vector base address register */
410             struct {
411                 uint64_t _unused_vbar;
412                 uint64_t vbar_ns;
413                 uint64_t hvbar;
414                 uint64_t vbar_s;
415             };
416             uint64_t vbar_el[4];
417         };
418         uint32_t mvbar; /* (monitor) vector base address register */
419         struct { /* FCSE PID. */
420             uint32_t fcseidr_ns;
421             uint32_t fcseidr_s;
422         };
423         union { /* Context ID. */
424             struct {
425                 uint64_t _unused_contextidr_0;
426                 uint64_t contextidr_ns;
427                 uint64_t _unused_contextidr_1;
428                 uint64_t contextidr_s;
429             };
430             uint64_t contextidr_el[4];
431         };
432         union { /* User RW Thread register. */
433             struct {
434                 uint64_t tpidrurw_ns;
435                 uint64_t tpidrprw_ns;
436                 uint64_t htpidr;
437                 uint64_t _tpidr_el3;
438             };
439             uint64_t tpidr_el[4];
440         };
441         /* The secure banks of these registers don't map anywhere */
442         uint64_t tpidrurw_s;
443         uint64_t tpidrprw_s;
444         uint64_t tpidruro_s;
445 
446         union { /* User RO Thread register. */
447             uint64_t tpidruro_ns;
448             uint64_t tpidrro_el[1];
449         };
450         uint64_t c14_cntfrq; /* Counter Frequency register */
451         uint64_t c14_cntkctl; /* Timer Control register */
452         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
453         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
454         ARMGenericTimer c14_timer[NUM_GTIMERS];
455         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
456         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
457         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
458         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
459         uint32_t c15_threadid; /* TI debugger thread-ID.  */
460         uint32_t c15_config_base_address; /* SCU base address.  */
461         uint32_t c15_diagnostic; /* diagnostic register */
462         uint32_t c15_power_diagnostic;
463         uint32_t c15_power_control; /* power control */
464         uint64_t dbgbvr[16]; /* breakpoint value registers */
465         uint64_t dbgbcr[16]; /* breakpoint control registers */
466         uint64_t dbgwvr[16]; /* watchpoint value registers */
467         uint64_t dbgwcr[16]; /* watchpoint control registers */
468         uint64_t mdscr_el1;
469         uint64_t oslsr_el1; /* OS Lock Status */
470         uint64_t mdcr_el2;
471         uint64_t mdcr_el3;
472         /* Stores the architectural value of the counter *the last time it was
473          * updated* by pmccntr_op_start. Accesses should always be surrounded
474          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
475          * architecturally-correct value is being read/set.
476          */
477         uint64_t c15_ccnt;
478         /* Stores the delta between the architectural value and the underlying
479          * cycle count during normal operation. It is used to update c15_ccnt
480          * to be the correct architectural value before accesses. During
481          * accesses, c15_ccnt_delta contains the underlying count being used
482          * for the access, after which it reverts to the delta value in
483          * pmccntr_op_finish.
484          */
485         uint64_t c15_ccnt_delta;
486         uint64_t c14_pmevcntr[31];
487         uint64_t c14_pmevcntr_delta[31];
488         uint64_t c14_pmevtyper[31];
489         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
490         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
491         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
492     } cp15;
493 
494     struct {
495         /* M profile has up to 4 stack pointers:
496          * a Main Stack Pointer and a Process Stack Pointer for each
497          * of the Secure and Non-Secure states. (If the CPU doesn't support
498          * the security extension then it has only two SPs.)
499          * In QEMU we always store the currently active SP in regs[13],
500          * and the non-active SP for the current security state in
501          * v7m.other_sp. The stack pointers for the inactive security state
502          * are stored in other_ss_msp and other_ss_psp.
503          * switch_v7m_security_state() is responsible for rearranging them
504          * when we change security state.
505          */
506         uint32_t other_sp;
507         uint32_t other_ss_msp;
508         uint32_t other_ss_psp;
509         uint32_t vecbase[M_REG_NUM_BANKS];
510         uint32_t basepri[M_REG_NUM_BANKS];
511         uint32_t control[M_REG_NUM_BANKS];
512         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
513         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
514         uint32_t hfsr; /* HardFault Status */
515         uint32_t dfsr; /* Debug Fault Status Register */
516         uint32_t sfsr; /* Secure Fault Status Register */
517         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
518         uint32_t bfar; /* BusFault Address */
519         uint32_t sfar; /* Secure Fault Address Register */
520         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
521         int exception;
522         uint32_t primask[M_REG_NUM_BANKS];
523         uint32_t faultmask[M_REG_NUM_BANKS];
524         uint32_t aircr; /* only holds r/w state if security extn implemented */
525         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
526         uint32_t csselr[M_REG_NUM_BANKS];
527         uint32_t scr[M_REG_NUM_BANKS];
528         uint32_t msplim[M_REG_NUM_BANKS];
529         uint32_t psplim[M_REG_NUM_BANKS];
530         uint32_t fpcar[M_REG_NUM_BANKS];
531         uint32_t fpccr[M_REG_NUM_BANKS];
532         uint32_t fpdscr[M_REG_NUM_BANKS];
533         uint32_t cpacr[M_REG_NUM_BANKS];
534         uint32_t nsacr;
535     } v7m;
536 
537     /* Information associated with an exception about to be taken:
538      * code which raises an exception must set cs->exception_index and
539      * the relevant parts of this structure; the cpu_do_interrupt function
540      * will then set the guest-visible registers as part of the exception
541      * entry process.
542      */
543     struct {
544         uint32_t syndrome; /* AArch64 format syndrome register */
545         uint32_t fsr; /* AArch32 format fault status register info */
546         uint64_t vaddress; /* virtual addr associated with exception, if any */
547         uint32_t target_el; /* EL the exception should be targeted for */
548         /* If we implement EL2 we will also need to store information
549          * about the intermediate physical address for stage 2 faults.
550          */
551     } exception;
552 
553     /* Information associated with an SError */
554     struct {
555         uint8_t pending;
556         uint8_t has_esr;
557         uint64_t esr;
558     } serror;
559 
560     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
561     uint32_t irq_line_state;
562 
563     /* Thumb-2 EE state.  */
564     uint32_t teecr;
565     uint32_t teehbr;
566 
567     /* VFP coprocessor state.  */
568     struct {
569         ARMVectorReg zregs[32];
570 
571 #ifdef TARGET_AARCH64
572         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
573 #define FFR_PRED_NUM 16
574         ARMPredicateReg pregs[17];
575         /* Scratch space for aa64 sve predicate temporary.  */
576         ARMPredicateReg preg_tmp;
577 #endif
578 
579         /* We store these fpcsr fields separately for convenience.  */
580         uint32_t qc[4] QEMU_ALIGNED(16);
581         int vec_len;
582         int vec_stride;
583 
584         uint32_t xregs[16];
585 
586         /* Scratch space for aa32 neon expansion.  */
587         uint32_t scratch[8];
588 
589         /* There are a number of distinct float control structures:
590          *
591          *  fp_status: is the "normal" fp status.
592          *  fp_status_fp16: used for half-precision calculations
593          *  standard_fp_status : the ARM "Standard FPSCR Value"
594          *
595          * Half-precision operations are governed by a separate
596          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
597          * status structure to control this.
598          *
599          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
600          * round-to-nearest and is used by any operations (generally
601          * Neon) which the architecture defines as controlled by the
602          * standard FPSCR value rather than the FPSCR.
603          *
604          * To avoid having to transfer exception bits around, we simply
605          * say that the FPSCR cumulative exception flags are the logical
606          * OR of the flags in the three fp statuses. This relies on the
607          * only thing which needs to read the exception flags being
608          * an explicit FPSCR read.
609          */
610         float_status fp_status;
611         float_status fp_status_f16;
612         float_status standard_fp_status;
613 
614         /* ZCR_EL[1-3] */
615         uint64_t zcr_el[4];
616     } vfp;
617     uint64_t exclusive_addr;
618     uint64_t exclusive_val;
619     uint64_t exclusive_high;
620 
621     /* iwMMXt coprocessor state.  */
622     struct {
623         uint64_t regs[16];
624         uint64_t val;
625 
626         uint32_t cregs[16];
627     } iwmmxt;
628 
629 #ifdef TARGET_AARCH64
630     struct {
631         ARMPACKey apia;
632         ARMPACKey apib;
633         ARMPACKey apda;
634         ARMPACKey apdb;
635         ARMPACKey apga;
636     } keys;
637 #endif
638 
639 #if defined(CONFIG_USER_ONLY)
640     /* For usermode syscall translation.  */
641     int eabi;
642 #endif
643 
644     struct CPUBreakpoint *cpu_breakpoint[16];
645     struct CPUWatchpoint *cpu_watchpoint[16];
646 
647     /* Fields up to this point are cleared by a CPU reset */
648     struct {} end_reset_fields;
649 
650     /* Fields after this point are preserved across CPU reset. */
651 
652     /* Internal CPU feature flags.  */
653     uint64_t features;
654 
655     /* PMSAv7 MPU */
656     struct {
657         uint32_t *drbar;
658         uint32_t *drsr;
659         uint32_t *dracr;
660         uint32_t rnr[M_REG_NUM_BANKS];
661     } pmsav7;
662 
663     /* PMSAv8 MPU */
664     struct {
665         /* The PMSAv8 implementation also shares some PMSAv7 config
666          * and state:
667          *  pmsav7.rnr (region number register)
668          *  pmsav7_dregion (number of configured regions)
669          */
670         uint32_t *rbar[M_REG_NUM_BANKS];
671         uint32_t *rlar[M_REG_NUM_BANKS];
672         uint32_t mair0[M_REG_NUM_BANKS];
673         uint32_t mair1[M_REG_NUM_BANKS];
674     } pmsav8;
675 
676     /* v8M SAU */
677     struct {
678         uint32_t *rbar;
679         uint32_t *rlar;
680         uint32_t rnr;
681         uint32_t ctrl;
682     } sau;
683 
684     void *nvic;
685     const struct arm_boot_info *boot_info;
686     /* Store GICv3CPUState to access from this struct */
687     void *gicv3state;
688 } CPUARMState;
689 
690 /**
691  * ARMELChangeHookFn:
692  * type of a function which can be registered via arm_register_el_change_hook()
693  * to get callbacks when the CPU changes its exception level or mode.
694  */
695 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
696 typedef struct ARMELChangeHook ARMELChangeHook;
697 struct ARMELChangeHook {
698     ARMELChangeHookFn *hook;
699     void *opaque;
700     QLIST_ENTRY(ARMELChangeHook) node;
701 };
702 
703 /* These values map onto the return values for
704  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
705 typedef enum ARMPSCIState {
706     PSCI_ON = 0,
707     PSCI_OFF = 1,
708     PSCI_ON_PENDING = 2
709 } ARMPSCIState;
710 
711 typedef struct ARMISARegisters ARMISARegisters;
712 
713 /**
714  * ARMCPU:
715  * @env: #CPUARMState
716  *
717  * An ARM CPU core.
718  */
719 struct ARMCPU {
720     /*< private >*/
721     CPUState parent_obj;
722     /*< public >*/
723 
724     CPUNegativeOffsetState neg;
725     CPUARMState env;
726 
727     /* Coprocessor information */
728     GHashTable *cp_regs;
729     /* For marshalling (mostly coprocessor) register state between the
730      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
731      * we use these arrays.
732      */
733     /* List of register indexes managed via these arrays; (full KVM style
734      * 64 bit indexes, not CPRegInfo 32 bit indexes)
735      */
736     uint64_t *cpreg_indexes;
737     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
738     uint64_t *cpreg_values;
739     /* Length of the indexes, values, reset_values arrays */
740     int32_t cpreg_array_len;
741     /* These are used only for migration: incoming data arrives in
742      * these fields and is sanity checked in post_load before copying
743      * to the working data structures above.
744      */
745     uint64_t *cpreg_vmstate_indexes;
746     uint64_t *cpreg_vmstate_values;
747     int32_t cpreg_vmstate_array_len;
748 
749     DynamicGDBXMLInfo dyn_xml;
750 
751     /* Timers used by the generic (architected) timer */
752     QEMUTimer *gt_timer[NUM_GTIMERS];
753     /*
754      * Timer used by the PMU. Its state is restored after migration by
755      * pmu_op_finish() - it does not need other handling during migration
756      */
757     QEMUTimer *pmu_timer;
758     /* GPIO outputs for generic timer */
759     qemu_irq gt_timer_outputs[NUM_GTIMERS];
760     /* GPIO output for GICv3 maintenance interrupt signal */
761     qemu_irq gicv3_maintenance_interrupt;
762     /* GPIO output for the PMU interrupt */
763     qemu_irq pmu_interrupt;
764 
765     /* MemoryRegion to use for secure physical accesses */
766     MemoryRegion *secure_memory;
767 
768     /* For v8M, pointer to the IDAU interface provided by board/SoC */
769     Object *idau;
770 
771     /* 'compatible' string for this CPU for Linux device trees */
772     const char *dtb_compatible;
773 
774     /* PSCI version for this CPU
775      * Bits[31:16] = Major Version
776      * Bits[15:0] = Minor Version
777      */
778     uint32_t psci_version;
779 
780     /* Should CPU start in PSCI powered-off state? */
781     bool start_powered_off;
782 
783     /* Current power state, access guarded by BQL */
784     ARMPSCIState power_state;
785 
786     /* CPU has virtualization extension */
787     bool has_el2;
788     /* CPU has security extension */
789     bool has_el3;
790     /* CPU has PMU (Performance Monitor Unit) */
791     bool has_pmu;
792     /* CPU has VFP */
793     bool has_vfp;
794     /* CPU has Neon */
795     bool has_neon;
796     /* CPU has M-profile DSP extension */
797     bool has_dsp;
798 
799     /* CPU has memory protection unit */
800     bool has_mpu;
801     /* PMSAv7 MPU number of supported regions */
802     uint32_t pmsav7_dregion;
803     /* v8M SAU number of supported regions */
804     uint32_t sau_sregion;
805 
806     /* PSCI conduit used to invoke PSCI methods
807      * 0 - disabled, 1 - smc, 2 - hvc
808      */
809     uint32_t psci_conduit;
810 
811     /* For v8M, initial value of the Secure VTOR */
812     uint32_t init_svtor;
813 
814     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
815      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
816      */
817     uint32_t kvm_target;
818 
819     /* KVM init features for this CPU */
820     uint32_t kvm_init_features[7];
821 
822     /* Uniprocessor system with MP extensions */
823     bool mp_is_up;
824 
825     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
826      * and the probe failed (so we need to report the error in realize)
827      */
828     bool host_cpu_probe_failed;
829 
830     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
831      * register.
832      */
833     int32_t core_count;
834 
835     /* The instance init functions for implementation-specific subclasses
836      * set these fields to specify the implementation-dependent values of
837      * various constant registers and reset values of non-constant
838      * registers.
839      * Some of these might become QOM properties eventually.
840      * Field names match the official register names as defined in the
841      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
842      * is used for reset values of non-constant registers; no reset_
843      * prefix means a constant register.
844      * Some of these registers are split out into a substructure that
845      * is shared with the translators to control the ISA.
846      */
847     struct ARMISARegisters {
848         uint32_t id_isar0;
849         uint32_t id_isar1;
850         uint32_t id_isar2;
851         uint32_t id_isar3;
852         uint32_t id_isar4;
853         uint32_t id_isar5;
854         uint32_t id_isar6;
855         uint32_t mvfr0;
856         uint32_t mvfr1;
857         uint32_t mvfr2;
858         uint64_t id_aa64isar0;
859         uint64_t id_aa64isar1;
860         uint64_t id_aa64pfr0;
861         uint64_t id_aa64pfr1;
862         uint64_t id_aa64mmfr0;
863         uint64_t id_aa64mmfr1;
864     } isar;
865     uint32_t midr;
866     uint32_t revidr;
867     uint32_t reset_fpsid;
868     uint32_t ctr;
869     uint32_t reset_sctlr;
870     uint32_t id_pfr0;
871     uint32_t id_pfr1;
872     uint32_t id_dfr0;
873     uint64_t pmceid0;
874     uint64_t pmceid1;
875     uint32_t id_afr0;
876     uint32_t id_mmfr0;
877     uint32_t id_mmfr1;
878     uint32_t id_mmfr2;
879     uint32_t id_mmfr3;
880     uint32_t id_mmfr4;
881     uint64_t id_aa64dfr0;
882     uint64_t id_aa64dfr1;
883     uint64_t id_aa64afr0;
884     uint64_t id_aa64afr1;
885     uint32_t dbgdidr;
886     uint32_t clidr;
887     uint64_t mp_affinity; /* MP ID without feature bits */
888     /* The elements of this array are the CCSIDR values for each cache,
889      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
890      */
891     uint32_t ccsidr[16];
892     uint64_t reset_cbar;
893     uint32_t reset_auxcr;
894     bool reset_hivecs;
895     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
896     uint32_t dcz_blocksize;
897     uint64_t rvbar;
898 
899     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
900     int gic_num_lrs; /* number of list registers */
901     int gic_vpribits; /* number of virtual priority bits */
902     int gic_vprebits; /* number of virtual preemption bits */
903 
904     /* Whether the cfgend input is high (i.e. this CPU should reset into
905      * big-endian mode).  This setting isn't used directly: instead it modifies
906      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
907      * architecture version.
908      */
909     bool cfgend;
910 
911     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
912     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
913 
914     int32_t node_id; /* NUMA node this CPU belongs to */
915 
916     /* Used to synchronize KVM and QEMU in-kernel device levels */
917     uint8_t device_irq_level;
918 
919     /* Used to set the maximum vector length the cpu will support.  */
920     uint32_t sve_max_vq;
921 };
922 
923 void arm_cpu_post_init(Object *obj);
924 
925 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
926 
927 #ifndef CONFIG_USER_ONLY
928 extern const VMStateDescription vmstate_arm_cpu;
929 #endif
930 
931 void arm_cpu_do_interrupt(CPUState *cpu);
932 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
933 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
934 
935 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
936                                          MemTxAttrs *attrs);
937 
938 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
939 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
940 
941 /* Dynamically generates for gdb stub an XML description of the sysregs from
942  * the cp_regs hashtable. Returns the registered sysregs number.
943  */
944 int arm_gen_dynamic_xml(CPUState *cpu);
945 
946 /* Returns the dynamically generated XML for the gdb stub.
947  * Returns a pointer to the XML contents for the specified XML file or NULL
948  * if the XML name doesn't match the predefined one.
949  */
950 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
951 
952 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
953                              int cpuid, void *opaque);
954 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
955                              int cpuid, void *opaque);
956 
957 #ifdef TARGET_AARCH64
958 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
959 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
960 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
961 void aarch64_sve_change_el(CPUARMState *env, int old_el,
962                            int new_el, bool el0_a64);
963 #else
964 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
965 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
966                                          int n, bool a)
967 { }
968 #endif
969 
970 #if !defined(CONFIG_TCG)
971 static inline target_ulong do_arm_semihosting(CPUARMState *env)
972 {
973     g_assert_not_reached();
974 }
975 #else
976 target_ulong do_arm_semihosting(CPUARMState *env);
977 #endif
978 void aarch64_sync_32_to_64(CPUARMState *env);
979 void aarch64_sync_64_to_32(CPUARMState *env);
980 
981 int fp_exception_el(CPUARMState *env, int cur_el);
982 int sve_exception_el(CPUARMState *env, int cur_el);
983 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
984 
985 static inline bool is_a64(CPUARMState *env)
986 {
987     return env->aarch64;
988 }
989 
990 /* you can call this signal handler from your SIGBUS and SIGSEGV
991    signal handlers to inform the virtual CPU of exceptions. non zero
992    is returned if the signal was handled by the virtual CPU.  */
993 int cpu_arm_signal_handler(int host_signum, void *pinfo,
994                            void *puc);
995 
996 /**
997  * pmu_op_start/finish
998  * @env: CPUARMState
999  *
1000  * Convert all PMU counters between their delta form (the typical mode when
1001  * they are enabled) and the guest-visible values. These two calls must
1002  * surround any action which might affect the counters.
1003  */
1004 void pmu_op_start(CPUARMState *env);
1005 void pmu_op_finish(CPUARMState *env);
1006 
1007 /*
1008  * Called when a PMU counter is due to overflow
1009  */
1010 void arm_pmu_timer_cb(void *opaque);
1011 
1012 /**
1013  * Functions to register as EL change hooks for PMU mode filtering
1014  */
1015 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1016 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1017 
1018 /*
1019  * pmu_init
1020  * @cpu: ARMCPU
1021  *
1022  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1023  * for the current configuration
1024  */
1025 void pmu_init(ARMCPU *cpu);
1026 
1027 /* SCTLR bit meanings. Several bits have been reused in newer
1028  * versions of the architecture; in that case we define constants
1029  * for both old and new bit meanings. Code which tests against those
1030  * bits should probably check or otherwise arrange that the CPU
1031  * is the architectural version it expects.
1032  */
1033 #define SCTLR_M       (1U << 0)
1034 #define SCTLR_A       (1U << 1)
1035 #define SCTLR_C       (1U << 2)
1036 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1037 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1038 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1039 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1040 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1041 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1042 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1043 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1044 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1045 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1046 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1047 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1048 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1049 #define SCTLR_SED     (1U << 8) /* v8 onward */
1050 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1051 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1052 #define SCTLR_F       (1U << 10) /* up to v6 */
1053 #define SCTLR_SW      (1U << 10) /* v7 */
1054 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1055 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1056 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1057 #define SCTLR_I       (1U << 12)
1058 #define SCTLR_V       (1U << 13) /* AArch32 only */
1059 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1060 #define SCTLR_RR      (1U << 14) /* up to v7 */
1061 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1062 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1063 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1064 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1065 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1066 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1067 #define SCTLR_BR      (1U << 17) /* PMSA only */
1068 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1069 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1070 #define SCTLR_WXN     (1U << 19)
1071 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1072 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1073 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1074 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1075 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1076 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1077 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1078 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1079 #define SCTLR_VE      (1U << 24) /* up to v7 */
1080 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1081 #define SCTLR_EE      (1U << 25)
1082 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1083 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1084 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1085 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1086 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1087 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1088 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1089 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1090 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1091 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1092 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1093 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1094 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1095 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1096 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1097 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1098 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1099 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1100 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1101 
1102 #define CPTR_TCPAC    (1U << 31)
1103 #define CPTR_TTA      (1U << 20)
1104 #define CPTR_TFP      (1U << 10)
1105 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1106 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1107 
1108 #define MDCR_EPMAD    (1U << 21)
1109 #define MDCR_EDAD     (1U << 20)
1110 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1111 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1112 #define MDCR_SDD      (1U << 16)
1113 #define MDCR_SPD      (3U << 14)
1114 #define MDCR_TDRA     (1U << 11)
1115 #define MDCR_TDOSA    (1U << 10)
1116 #define MDCR_TDA      (1U << 9)
1117 #define MDCR_TDE      (1U << 8)
1118 #define MDCR_HPME     (1U << 7)
1119 #define MDCR_TPM      (1U << 6)
1120 #define MDCR_TPMCR    (1U << 5)
1121 #define MDCR_HPMN     (0x1fU)
1122 
1123 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1124 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1125 
1126 #define CPSR_M (0x1fU)
1127 #define CPSR_T (1U << 5)
1128 #define CPSR_F (1U << 6)
1129 #define CPSR_I (1U << 7)
1130 #define CPSR_A (1U << 8)
1131 #define CPSR_E (1U << 9)
1132 #define CPSR_IT_2_7 (0xfc00U)
1133 #define CPSR_GE (0xfU << 16)
1134 #define CPSR_IL (1U << 20)
1135 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1136  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1137  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1138  * where it is live state but not accessible to the AArch32 code.
1139  */
1140 #define CPSR_RESERVED (0x7U << 21)
1141 #define CPSR_J (1U << 24)
1142 #define CPSR_IT_0_1 (3U << 25)
1143 #define CPSR_Q (1U << 27)
1144 #define CPSR_V (1U << 28)
1145 #define CPSR_C (1U << 29)
1146 #define CPSR_Z (1U << 30)
1147 #define CPSR_N (1U << 31)
1148 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1149 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1150 
1151 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1152 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1153     | CPSR_NZCV)
1154 /* Bits writable in user mode.  */
1155 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1156 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1157 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1158 /* Mask of bits which may be set by exception return copying them from SPSR */
1159 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1160 
1161 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1162 #define XPSR_EXCP 0x1ffU
1163 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1164 #define XPSR_IT_2_7 CPSR_IT_2_7
1165 #define XPSR_GE CPSR_GE
1166 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1167 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1168 #define XPSR_IT_0_1 CPSR_IT_0_1
1169 #define XPSR_Q CPSR_Q
1170 #define XPSR_V CPSR_V
1171 #define XPSR_C CPSR_C
1172 #define XPSR_Z CPSR_Z
1173 #define XPSR_N CPSR_N
1174 #define XPSR_NZCV CPSR_NZCV
1175 #define XPSR_IT CPSR_IT
1176 
1177 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1178 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1179 #define TTBCR_PD0    (1U << 4)
1180 #define TTBCR_PD1    (1U << 5)
1181 #define TTBCR_EPD0   (1U << 7)
1182 #define TTBCR_IRGN0  (3U << 8)
1183 #define TTBCR_ORGN0  (3U << 10)
1184 #define TTBCR_SH0    (3U << 12)
1185 #define TTBCR_T1SZ   (3U << 16)
1186 #define TTBCR_A1     (1U << 22)
1187 #define TTBCR_EPD1   (1U << 23)
1188 #define TTBCR_IRGN1  (3U << 24)
1189 #define TTBCR_ORGN1  (3U << 26)
1190 #define TTBCR_SH1    (1U << 28)
1191 #define TTBCR_EAE    (1U << 31)
1192 
1193 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1194  * Only these are valid when in AArch64 mode; in
1195  * AArch32 mode SPSRs are basically CPSR-format.
1196  */
1197 #define PSTATE_SP (1U)
1198 #define PSTATE_M (0xFU)
1199 #define PSTATE_nRW (1U << 4)
1200 #define PSTATE_F (1U << 6)
1201 #define PSTATE_I (1U << 7)
1202 #define PSTATE_A (1U << 8)
1203 #define PSTATE_D (1U << 9)
1204 #define PSTATE_BTYPE (3U << 10)
1205 #define PSTATE_IL (1U << 20)
1206 #define PSTATE_SS (1U << 21)
1207 #define PSTATE_V (1U << 28)
1208 #define PSTATE_C (1U << 29)
1209 #define PSTATE_Z (1U << 30)
1210 #define PSTATE_N (1U << 31)
1211 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1212 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1213 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1214 /* Mode values for AArch64 */
1215 #define PSTATE_MODE_EL3h 13
1216 #define PSTATE_MODE_EL3t 12
1217 #define PSTATE_MODE_EL2h 9
1218 #define PSTATE_MODE_EL2t 8
1219 #define PSTATE_MODE_EL1h 5
1220 #define PSTATE_MODE_EL1t 4
1221 #define PSTATE_MODE_EL0t 0
1222 
1223 /* Write a new value to v7m.exception, thus transitioning into or out
1224  * of Handler mode; this may result in a change of active stack pointer.
1225  */
1226 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1227 
1228 /* Map EL and handler into a PSTATE_MODE.  */
1229 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1230 {
1231     return (el << 2) | handler;
1232 }
1233 
1234 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1235  * interprocessing, so we don't attempt to sync with the cpsr state used by
1236  * the 32 bit decoder.
1237  */
1238 static inline uint32_t pstate_read(CPUARMState *env)
1239 {
1240     int ZF;
1241 
1242     ZF = (env->ZF == 0);
1243     return (env->NF & 0x80000000) | (ZF << 30)
1244         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1245         | env->pstate | env->daif | (env->btype << 10);
1246 }
1247 
1248 static inline void pstate_write(CPUARMState *env, uint32_t val)
1249 {
1250     env->ZF = (~val) & PSTATE_Z;
1251     env->NF = val;
1252     env->CF = (val >> 29) & 1;
1253     env->VF = (val << 3) & 0x80000000;
1254     env->daif = val & PSTATE_DAIF;
1255     env->btype = (val >> 10) & 3;
1256     env->pstate = val & ~CACHED_PSTATE_BITS;
1257 }
1258 
1259 /* Return the current CPSR value.  */
1260 uint32_t cpsr_read(CPUARMState *env);
1261 
1262 typedef enum CPSRWriteType {
1263     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1264     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1265     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1266     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1267 } CPSRWriteType;
1268 
1269 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1270 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1271                 CPSRWriteType write_type);
1272 
1273 /* Return the current xPSR value.  */
1274 static inline uint32_t xpsr_read(CPUARMState *env)
1275 {
1276     int ZF;
1277     ZF = (env->ZF == 0);
1278     return (env->NF & 0x80000000) | (ZF << 30)
1279         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1280         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1281         | ((env->condexec_bits & 0xfc) << 8)
1282         | (env->GE << 16)
1283         | env->v7m.exception;
1284 }
1285 
1286 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1287 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1288 {
1289     if (mask & XPSR_NZCV) {
1290         env->ZF = (~val) & XPSR_Z;
1291         env->NF = val;
1292         env->CF = (val >> 29) & 1;
1293         env->VF = (val << 3) & 0x80000000;
1294     }
1295     if (mask & XPSR_Q) {
1296         env->QF = ((val & XPSR_Q) != 0);
1297     }
1298     if (mask & XPSR_GE) {
1299         env->GE = (val & XPSR_GE) >> 16;
1300     }
1301     if (mask & XPSR_T) {
1302         env->thumb = ((val & XPSR_T) != 0);
1303     }
1304     if (mask & XPSR_IT_0_1) {
1305         env->condexec_bits &= ~3;
1306         env->condexec_bits |= (val >> 25) & 3;
1307     }
1308     if (mask & XPSR_IT_2_7) {
1309         env->condexec_bits &= 3;
1310         env->condexec_bits |= (val >> 8) & 0xfc;
1311     }
1312     if (mask & XPSR_EXCP) {
1313         /* Note that this only happens on exception exit */
1314         write_v7m_exception(env, val & XPSR_EXCP);
1315     }
1316 }
1317 
1318 #define HCR_VM        (1ULL << 0)
1319 #define HCR_SWIO      (1ULL << 1)
1320 #define HCR_PTW       (1ULL << 2)
1321 #define HCR_FMO       (1ULL << 3)
1322 #define HCR_IMO       (1ULL << 4)
1323 #define HCR_AMO       (1ULL << 5)
1324 #define HCR_VF        (1ULL << 6)
1325 #define HCR_VI        (1ULL << 7)
1326 #define HCR_VSE       (1ULL << 8)
1327 #define HCR_FB        (1ULL << 9)
1328 #define HCR_BSU_MASK  (3ULL << 10)
1329 #define HCR_DC        (1ULL << 12)
1330 #define HCR_TWI       (1ULL << 13)
1331 #define HCR_TWE       (1ULL << 14)
1332 #define HCR_TID0      (1ULL << 15)
1333 #define HCR_TID1      (1ULL << 16)
1334 #define HCR_TID2      (1ULL << 17)
1335 #define HCR_TID3      (1ULL << 18)
1336 #define HCR_TSC       (1ULL << 19)
1337 #define HCR_TIDCP     (1ULL << 20)
1338 #define HCR_TACR      (1ULL << 21)
1339 #define HCR_TSW       (1ULL << 22)
1340 #define HCR_TPCP      (1ULL << 23)
1341 #define HCR_TPU       (1ULL << 24)
1342 #define HCR_TTLB      (1ULL << 25)
1343 #define HCR_TVM       (1ULL << 26)
1344 #define HCR_TGE       (1ULL << 27)
1345 #define HCR_TDZ       (1ULL << 28)
1346 #define HCR_HCD       (1ULL << 29)
1347 #define HCR_TRVM      (1ULL << 30)
1348 #define HCR_RW        (1ULL << 31)
1349 #define HCR_CD        (1ULL << 32)
1350 #define HCR_ID        (1ULL << 33)
1351 #define HCR_E2H       (1ULL << 34)
1352 #define HCR_TLOR      (1ULL << 35)
1353 #define HCR_TERR      (1ULL << 36)
1354 #define HCR_TEA       (1ULL << 37)
1355 #define HCR_MIOCNCE   (1ULL << 38)
1356 #define HCR_APK       (1ULL << 40)
1357 #define HCR_API       (1ULL << 41)
1358 #define HCR_NV        (1ULL << 42)
1359 #define HCR_NV1       (1ULL << 43)
1360 #define HCR_AT        (1ULL << 44)
1361 #define HCR_NV2       (1ULL << 45)
1362 #define HCR_FWB       (1ULL << 46)
1363 #define HCR_FIEN      (1ULL << 47)
1364 #define HCR_TID4      (1ULL << 49)
1365 #define HCR_TICAB     (1ULL << 50)
1366 #define HCR_TOCU      (1ULL << 52)
1367 #define HCR_TTLBIS    (1ULL << 54)
1368 #define HCR_TTLBOS    (1ULL << 55)
1369 #define HCR_ATA       (1ULL << 56)
1370 #define HCR_DCT       (1ULL << 57)
1371 
1372 /*
1373  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1374  * HCR_MASK and then clear it again if the feature bit is not set in
1375  * hcr_write().
1376  */
1377 #define HCR_MASK      ((1ULL << 34) - 1)
1378 
1379 #define SCR_NS                (1U << 0)
1380 #define SCR_IRQ               (1U << 1)
1381 #define SCR_FIQ               (1U << 2)
1382 #define SCR_EA                (1U << 3)
1383 #define SCR_FW                (1U << 4)
1384 #define SCR_AW                (1U << 5)
1385 #define SCR_NET               (1U << 6)
1386 #define SCR_SMD               (1U << 7)
1387 #define SCR_HCE               (1U << 8)
1388 #define SCR_SIF               (1U << 9)
1389 #define SCR_RW                (1U << 10)
1390 #define SCR_ST                (1U << 11)
1391 #define SCR_TWI               (1U << 12)
1392 #define SCR_TWE               (1U << 13)
1393 #define SCR_TLOR              (1U << 14)
1394 #define SCR_TERR              (1U << 15)
1395 #define SCR_APK               (1U << 16)
1396 #define SCR_API               (1U << 17)
1397 #define SCR_EEL2              (1U << 18)
1398 #define SCR_EASE              (1U << 19)
1399 #define SCR_NMEA              (1U << 20)
1400 #define SCR_FIEN              (1U << 21)
1401 #define SCR_ENSCXT            (1U << 25)
1402 #define SCR_ATA               (1U << 26)
1403 
1404 /* Return the current FPSCR value.  */
1405 uint32_t vfp_get_fpscr(CPUARMState *env);
1406 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1407 
1408 /* FPCR, Floating Point Control Register
1409  * FPSR, Floating Poiht Status Register
1410  *
1411  * For A64 the FPSCR is split into two logically distinct registers,
1412  * FPCR and FPSR. However since they still use non-overlapping bits
1413  * we store the underlying state in fpscr and just mask on read/write.
1414  */
1415 #define FPSR_MASK 0xf800009f
1416 #define FPCR_MASK 0x07ff9f00
1417 
1418 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1419 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1420 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1421 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1422 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1423 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1424 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1425 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1426 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1427 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1428 
1429 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1430 {
1431     return vfp_get_fpscr(env) & FPSR_MASK;
1432 }
1433 
1434 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1435 {
1436     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1437     vfp_set_fpscr(env, new_fpscr);
1438 }
1439 
1440 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1441 {
1442     return vfp_get_fpscr(env) & FPCR_MASK;
1443 }
1444 
1445 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1446 {
1447     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1448     vfp_set_fpscr(env, new_fpscr);
1449 }
1450 
1451 enum arm_cpu_mode {
1452   ARM_CPU_MODE_USR = 0x10,
1453   ARM_CPU_MODE_FIQ = 0x11,
1454   ARM_CPU_MODE_IRQ = 0x12,
1455   ARM_CPU_MODE_SVC = 0x13,
1456   ARM_CPU_MODE_MON = 0x16,
1457   ARM_CPU_MODE_ABT = 0x17,
1458   ARM_CPU_MODE_HYP = 0x1a,
1459   ARM_CPU_MODE_UND = 0x1b,
1460   ARM_CPU_MODE_SYS = 0x1f
1461 };
1462 
1463 /* VFP system registers.  */
1464 #define ARM_VFP_FPSID   0
1465 #define ARM_VFP_FPSCR   1
1466 #define ARM_VFP_MVFR2   5
1467 #define ARM_VFP_MVFR1   6
1468 #define ARM_VFP_MVFR0   7
1469 #define ARM_VFP_FPEXC   8
1470 #define ARM_VFP_FPINST  9
1471 #define ARM_VFP_FPINST2 10
1472 
1473 /* iwMMXt coprocessor control registers.  */
1474 #define ARM_IWMMXT_wCID  0
1475 #define ARM_IWMMXT_wCon  1
1476 #define ARM_IWMMXT_wCSSF 2
1477 #define ARM_IWMMXT_wCASF 3
1478 #define ARM_IWMMXT_wCGR0 8
1479 #define ARM_IWMMXT_wCGR1 9
1480 #define ARM_IWMMXT_wCGR2 10
1481 #define ARM_IWMMXT_wCGR3 11
1482 
1483 /* V7M CCR bits */
1484 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1485 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1486 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1487 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1488 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1489 FIELD(V7M_CCR, STKALIGN, 9, 1)
1490 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1491 FIELD(V7M_CCR, DC, 16, 1)
1492 FIELD(V7M_CCR, IC, 17, 1)
1493 FIELD(V7M_CCR, BP, 18, 1)
1494 
1495 /* V7M SCR bits */
1496 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1497 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1498 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1499 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1500 
1501 /* V7M AIRCR bits */
1502 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1503 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1504 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1505 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1506 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1507 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1508 FIELD(V7M_AIRCR, PRIS, 14, 1)
1509 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1510 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1511 
1512 /* V7M CFSR bits for MMFSR */
1513 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1514 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1515 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1516 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1517 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1518 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1519 
1520 /* V7M CFSR bits for BFSR */
1521 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1522 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1523 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1524 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1525 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1526 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1527 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1528 
1529 /* V7M CFSR bits for UFSR */
1530 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1531 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1532 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1533 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1534 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1535 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1536 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1537 
1538 /* V7M CFSR bit masks covering all of the subregister bits */
1539 FIELD(V7M_CFSR, MMFSR, 0, 8)
1540 FIELD(V7M_CFSR, BFSR, 8, 8)
1541 FIELD(V7M_CFSR, UFSR, 16, 16)
1542 
1543 /* V7M HFSR bits */
1544 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1545 FIELD(V7M_HFSR, FORCED, 30, 1)
1546 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1547 
1548 /* V7M DFSR bits */
1549 FIELD(V7M_DFSR, HALTED, 0, 1)
1550 FIELD(V7M_DFSR, BKPT, 1, 1)
1551 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1552 FIELD(V7M_DFSR, VCATCH, 3, 1)
1553 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1554 
1555 /* V7M SFSR bits */
1556 FIELD(V7M_SFSR, INVEP, 0, 1)
1557 FIELD(V7M_SFSR, INVIS, 1, 1)
1558 FIELD(V7M_SFSR, INVER, 2, 1)
1559 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1560 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1561 FIELD(V7M_SFSR, LSPERR, 5, 1)
1562 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1563 FIELD(V7M_SFSR, LSERR, 7, 1)
1564 
1565 /* v7M MPU_CTRL bits */
1566 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1567 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1568 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1569 
1570 /* v7M CLIDR bits */
1571 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1572 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1573 FIELD(V7M_CLIDR, LOC, 24, 3)
1574 FIELD(V7M_CLIDR, LOUU, 27, 3)
1575 FIELD(V7M_CLIDR, ICB, 30, 2)
1576 
1577 FIELD(V7M_CSSELR, IND, 0, 1)
1578 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1579 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1580  * define a mask for this and check that it doesn't permit running off
1581  * the end of the array.
1582  */
1583 FIELD(V7M_CSSELR, INDEX, 0, 4)
1584 
1585 /* v7M FPCCR bits */
1586 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1587 FIELD(V7M_FPCCR, USER, 1, 1)
1588 FIELD(V7M_FPCCR, S, 2, 1)
1589 FIELD(V7M_FPCCR, THREAD, 3, 1)
1590 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1591 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1592 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1593 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1594 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1595 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1596 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1597 FIELD(V7M_FPCCR, RES0, 11, 15)
1598 FIELD(V7M_FPCCR, TS, 26, 1)
1599 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1600 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1601 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1602 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1603 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1604 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1605 #define R_V7M_FPCCR_BANKED_MASK                 \
1606     (R_V7M_FPCCR_LSPACT_MASK |                  \
1607      R_V7M_FPCCR_USER_MASK |                    \
1608      R_V7M_FPCCR_THREAD_MASK |                  \
1609      R_V7M_FPCCR_MMRDY_MASK |                   \
1610      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1611      R_V7M_FPCCR_UFRDY_MASK |                   \
1612      R_V7M_FPCCR_ASPEN_MASK)
1613 
1614 /*
1615  * System register ID fields.
1616  */
1617 FIELD(MIDR_EL1, REVISION, 0, 4)
1618 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1619 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1620 FIELD(MIDR_EL1, VARIANT, 20, 4)
1621 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1622 
1623 FIELD(ID_ISAR0, SWAP, 0, 4)
1624 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1625 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1626 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1627 FIELD(ID_ISAR0, COPROC, 16, 4)
1628 FIELD(ID_ISAR0, DEBUG, 20, 4)
1629 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1630 
1631 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1632 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1633 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1634 FIELD(ID_ISAR1, EXTEND, 12, 4)
1635 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1636 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1637 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1638 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1639 
1640 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1641 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1642 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1643 FIELD(ID_ISAR2, MULT, 12, 4)
1644 FIELD(ID_ISAR2, MULTS, 16, 4)
1645 FIELD(ID_ISAR2, MULTU, 20, 4)
1646 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1647 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1648 
1649 FIELD(ID_ISAR3, SATURATE, 0, 4)
1650 FIELD(ID_ISAR3, SIMD, 4, 4)
1651 FIELD(ID_ISAR3, SVC, 8, 4)
1652 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1653 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1654 FIELD(ID_ISAR3, T32COPY, 20, 4)
1655 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1656 FIELD(ID_ISAR3, T32EE, 28, 4)
1657 
1658 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1659 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1660 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1661 FIELD(ID_ISAR4, SMC, 12, 4)
1662 FIELD(ID_ISAR4, BARRIER, 16, 4)
1663 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1664 FIELD(ID_ISAR4, PSR_M, 24, 4)
1665 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1666 
1667 FIELD(ID_ISAR5, SEVL, 0, 4)
1668 FIELD(ID_ISAR5, AES, 4, 4)
1669 FIELD(ID_ISAR5, SHA1, 8, 4)
1670 FIELD(ID_ISAR5, SHA2, 12, 4)
1671 FIELD(ID_ISAR5, CRC32, 16, 4)
1672 FIELD(ID_ISAR5, RDM, 24, 4)
1673 FIELD(ID_ISAR5, VCMA, 28, 4)
1674 
1675 FIELD(ID_ISAR6, JSCVT, 0, 4)
1676 FIELD(ID_ISAR6, DP, 4, 4)
1677 FIELD(ID_ISAR6, FHM, 8, 4)
1678 FIELD(ID_ISAR6, SB, 12, 4)
1679 FIELD(ID_ISAR6, SPECRES, 16, 4)
1680 
1681 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1682 FIELD(ID_MMFR4, AC2, 4, 4)
1683 FIELD(ID_MMFR4, XNX, 8, 4)
1684 FIELD(ID_MMFR4, CNP, 12, 4)
1685 FIELD(ID_MMFR4, HPDS, 16, 4)
1686 FIELD(ID_MMFR4, LSM, 20, 4)
1687 FIELD(ID_MMFR4, CCIDX, 24, 4)
1688 FIELD(ID_MMFR4, EVT, 28, 4)
1689 
1690 FIELD(ID_AA64ISAR0, AES, 4, 4)
1691 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1692 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1693 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1694 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1695 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1696 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1697 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1698 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1699 FIELD(ID_AA64ISAR0, DP, 44, 4)
1700 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1701 FIELD(ID_AA64ISAR0, TS, 52, 4)
1702 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1703 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1704 
1705 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1706 FIELD(ID_AA64ISAR1, APA, 4, 4)
1707 FIELD(ID_AA64ISAR1, API, 8, 4)
1708 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1709 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1710 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1711 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1712 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1713 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1714 FIELD(ID_AA64ISAR1, SB, 36, 4)
1715 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1716 
1717 FIELD(ID_AA64PFR0, EL0, 0, 4)
1718 FIELD(ID_AA64PFR0, EL1, 4, 4)
1719 FIELD(ID_AA64PFR0, EL2, 8, 4)
1720 FIELD(ID_AA64PFR0, EL3, 12, 4)
1721 FIELD(ID_AA64PFR0, FP, 16, 4)
1722 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1723 FIELD(ID_AA64PFR0, GIC, 24, 4)
1724 FIELD(ID_AA64PFR0, RAS, 28, 4)
1725 FIELD(ID_AA64PFR0, SVE, 32, 4)
1726 
1727 FIELD(ID_AA64PFR1, BT, 0, 4)
1728 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1729 FIELD(ID_AA64PFR1, MTE, 8, 4)
1730 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1731 
1732 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1733 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1734 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1735 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1736 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1737 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1738 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1739 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1740 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1741 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1742 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1743 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1744 
1745 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1746 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1747 FIELD(ID_AA64MMFR1, VH, 8, 4)
1748 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1749 FIELD(ID_AA64MMFR1, LO, 16, 4)
1750 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1751 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1752 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1753 
1754 FIELD(ID_DFR0, COPDBG, 0, 4)
1755 FIELD(ID_DFR0, COPSDBG, 4, 4)
1756 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1757 FIELD(ID_DFR0, COPTRC, 12, 4)
1758 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1759 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1760 FIELD(ID_DFR0, PERFMON, 24, 4)
1761 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1762 
1763 FIELD(MVFR0, SIMDREG, 0, 4)
1764 FIELD(MVFR0, FPSP, 4, 4)
1765 FIELD(MVFR0, FPDP, 8, 4)
1766 FIELD(MVFR0, FPTRAP, 12, 4)
1767 FIELD(MVFR0, FPDIVIDE, 16, 4)
1768 FIELD(MVFR0, FPSQRT, 20, 4)
1769 FIELD(MVFR0, FPSHVEC, 24, 4)
1770 FIELD(MVFR0, FPROUND, 28, 4)
1771 
1772 FIELD(MVFR1, FPFTZ, 0, 4)
1773 FIELD(MVFR1, FPDNAN, 4, 4)
1774 FIELD(MVFR1, SIMDLS, 8, 4)
1775 FIELD(MVFR1, SIMDINT, 12, 4)
1776 FIELD(MVFR1, SIMDSP, 16, 4)
1777 FIELD(MVFR1, SIMDHP, 20, 4)
1778 FIELD(MVFR1, FPHP, 24, 4)
1779 FIELD(MVFR1, SIMDFMAC, 28, 4)
1780 
1781 FIELD(MVFR2, SIMDMISC, 0, 4)
1782 FIELD(MVFR2, FPMISC, 4, 4)
1783 
1784 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1785 
1786 /* If adding a feature bit which corresponds to a Linux ELF
1787  * HWCAP bit, remember to update the feature-bit-to-hwcap
1788  * mapping in linux-user/elfload.c:get_elf_hwcap().
1789  */
1790 enum arm_features {
1791     ARM_FEATURE_VFP,
1792     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1793     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1794     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1795     ARM_FEATURE_V6,
1796     ARM_FEATURE_V6K,
1797     ARM_FEATURE_V7,
1798     ARM_FEATURE_THUMB2,
1799     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1800     ARM_FEATURE_VFP3,
1801     ARM_FEATURE_NEON,
1802     ARM_FEATURE_M, /* Microcontroller profile.  */
1803     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1804     ARM_FEATURE_THUMB2EE,
1805     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1806     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1807     ARM_FEATURE_V4T,
1808     ARM_FEATURE_V5,
1809     ARM_FEATURE_STRONGARM,
1810     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1811     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1812     ARM_FEATURE_GENERIC_TIMER,
1813     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1814     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1815     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1816     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1817     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1818     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1819     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1820     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1821     ARM_FEATURE_V8,
1822     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1823     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1824     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1825     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1826     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1827     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1828     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1829     ARM_FEATURE_PMU, /* has PMU support */
1830     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1831     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1832     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1833 };
1834 
1835 static inline int arm_feature(CPUARMState *env, int feature)
1836 {
1837     return (env->features & (1ULL << feature)) != 0;
1838 }
1839 
1840 #if !defined(CONFIG_USER_ONLY)
1841 /* Return true if exception levels below EL3 are in secure state,
1842  * or would be following an exception return to that level.
1843  * Unlike arm_is_secure() (which is always a question about the
1844  * _current_ state of the CPU) this doesn't care about the current
1845  * EL or mode.
1846  */
1847 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1848 {
1849     if (arm_feature(env, ARM_FEATURE_EL3)) {
1850         return !(env->cp15.scr_el3 & SCR_NS);
1851     } else {
1852         /* If EL3 is not supported then the secure state is implementation
1853          * defined, in which case QEMU defaults to non-secure.
1854          */
1855         return false;
1856     }
1857 }
1858 
1859 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1860 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1861 {
1862     if (arm_feature(env, ARM_FEATURE_EL3)) {
1863         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1864             /* CPU currently in AArch64 state and EL3 */
1865             return true;
1866         } else if (!is_a64(env) &&
1867                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1868             /* CPU currently in AArch32 state and monitor mode */
1869             return true;
1870         }
1871     }
1872     return false;
1873 }
1874 
1875 /* Return true if the processor is in secure state */
1876 static inline bool arm_is_secure(CPUARMState *env)
1877 {
1878     if (arm_is_el3_or_mon(env)) {
1879         return true;
1880     }
1881     return arm_is_secure_below_el3(env);
1882 }
1883 
1884 #else
1885 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1886 {
1887     return false;
1888 }
1889 
1890 static inline bool arm_is_secure(CPUARMState *env)
1891 {
1892     return false;
1893 }
1894 #endif
1895 
1896 /**
1897  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1898  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1899  * "for all purposes other than a direct read or write access of HCR_EL2."
1900  * Not included here is HCR_RW.
1901  */
1902 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1903 
1904 /* Return true if the specified exception level is running in AArch64 state. */
1905 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1906 {
1907     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1908      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1909      */
1910     assert(el >= 1 && el <= 3);
1911     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1912 
1913     /* The highest exception level is always at the maximum supported
1914      * register width, and then lower levels have a register width controlled
1915      * by bits in the SCR or HCR registers.
1916      */
1917     if (el == 3) {
1918         return aa64;
1919     }
1920 
1921     if (arm_feature(env, ARM_FEATURE_EL3)) {
1922         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1923     }
1924 
1925     if (el == 2) {
1926         return aa64;
1927     }
1928 
1929     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1930         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1931     }
1932 
1933     return aa64;
1934 }
1935 
1936 /* Function for determing whether guest cp register reads and writes should
1937  * access the secure or non-secure bank of a cp register.  When EL3 is
1938  * operating in AArch32 state, the NS-bit determines whether the secure
1939  * instance of a cp register should be used. When EL3 is AArch64 (or if
1940  * it doesn't exist at all) then there is no register banking, and all
1941  * accesses are to the non-secure version.
1942  */
1943 static inline bool access_secure_reg(CPUARMState *env)
1944 {
1945     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1946                 !arm_el_is_aa64(env, 3) &&
1947                 !(env->cp15.scr_el3 & SCR_NS));
1948 
1949     return ret;
1950 }
1951 
1952 /* Macros for accessing a specified CP register bank */
1953 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1954     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1955 
1956 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1957     do {                                                \
1958         if (_secure) {                                   \
1959             (_env)->cp15._regname##_s = (_val);            \
1960         } else {                                        \
1961             (_env)->cp15._regname##_ns = (_val);           \
1962         }                                               \
1963     } while (0)
1964 
1965 /* Macros for automatically accessing a specific CP register bank depending on
1966  * the current secure state of the system.  These macros are not intended for
1967  * supporting instruction translation reads/writes as these are dependent
1968  * solely on the SCR.NS bit and not the mode.
1969  */
1970 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1971     A32_BANKED_REG_GET((_env), _regname,                \
1972                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1973 
1974 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1975     A32_BANKED_REG_SET((_env), _regname,                                    \
1976                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1977                        (_val))
1978 
1979 void arm_cpu_list(void);
1980 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1981                                  uint32_t cur_el, bool secure);
1982 
1983 /* Interface between CPU and Interrupt controller.  */
1984 #ifndef CONFIG_USER_ONLY
1985 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1986 #else
1987 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1988 {
1989     return true;
1990 }
1991 #endif
1992 /**
1993  * armv7m_nvic_set_pending: mark the specified exception as pending
1994  * @opaque: the NVIC
1995  * @irq: the exception number to mark pending
1996  * @secure: false for non-banked exceptions or for the nonsecure
1997  * version of a banked exception, true for the secure version of a banked
1998  * exception.
1999  *
2000  * Marks the specified exception as pending. Note that we will assert()
2001  * if @secure is true and @irq does not specify one of the fixed set
2002  * of architecturally banked exceptions.
2003  */
2004 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2005 /**
2006  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2007  * @opaque: the NVIC
2008  * @irq: the exception number to mark pending
2009  * @secure: false for non-banked exceptions or for the nonsecure
2010  * version of a banked exception, true for the secure version of a banked
2011  * exception.
2012  *
2013  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2014  * exceptions (exceptions generated in the course of trying to take
2015  * a different exception).
2016  */
2017 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2018 /**
2019  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2020  * @opaque: the NVIC
2021  * @irq: the exception number to mark pending
2022  * @secure: false for non-banked exceptions or for the nonsecure
2023  * version of a banked exception, true for the secure version of a banked
2024  * exception.
2025  *
2026  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2027  * generated in the course of lazy stacking of FP registers.
2028  */
2029 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2030 /**
2031  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2032  *    exception, and whether it targets Secure state
2033  * @opaque: the NVIC
2034  * @pirq: set to pending exception number
2035  * @ptargets_secure: set to whether pending exception targets Secure
2036  *
2037  * This function writes the number of the highest priority pending
2038  * exception (the one which would be made active by
2039  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2040  * to true if the current highest priority pending exception should
2041  * be taken to Secure state, false for NS.
2042  */
2043 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2044                                       bool *ptargets_secure);
2045 /**
2046  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2047  * @opaque: the NVIC
2048  *
2049  * Move the current highest priority pending exception from the pending
2050  * state to the active state, and update v7m.exception to indicate that
2051  * it is the exception currently being handled.
2052  */
2053 void armv7m_nvic_acknowledge_irq(void *opaque);
2054 /**
2055  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2056  * @opaque: the NVIC
2057  * @irq: the exception number to complete
2058  * @secure: true if this exception was secure
2059  *
2060  * Returns: -1 if the irq was not active
2061  *           1 if completing this irq brought us back to base (no active irqs)
2062  *           0 if there is still an irq active after this one was completed
2063  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2064  */
2065 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2066 /**
2067  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2068  * @opaque: the NVIC
2069  * @irq: the exception number to mark pending
2070  * @secure: false for non-banked exceptions or for the nonsecure
2071  * version of a banked exception, true for the secure version of a banked
2072  * exception.
2073  *
2074  * Return whether an exception is "ready", i.e. whether the exception is
2075  * enabled and is configured at a priority which would allow it to
2076  * interrupt the current execution priority. This controls whether the
2077  * RDY bit for it in the FPCCR is set.
2078  */
2079 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2080 /**
2081  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2082  * @opaque: the NVIC
2083  *
2084  * Returns: the raw execution priority as defined by the v8M architecture.
2085  * This is the execution priority minus the effects of AIRCR.PRIS,
2086  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2087  * (v8M ARM ARM I_PKLD.)
2088  */
2089 int armv7m_nvic_raw_execution_priority(void *opaque);
2090 /**
2091  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2092  * priority is negative for the specified security state.
2093  * @opaque: the NVIC
2094  * @secure: the security state to test
2095  * This corresponds to the pseudocode IsReqExecPriNeg().
2096  */
2097 #ifndef CONFIG_USER_ONLY
2098 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2099 #else
2100 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2101 {
2102     return false;
2103 }
2104 #endif
2105 
2106 /* Interface for defining coprocessor registers.
2107  * Registers are defined in tables of arm_cp_reginfo structs
2108  * which are passed to define_arm_cp_regs().
2109  */
2110 
2111 /* When looking up a coprocessor register we look for it
2112  * via an integer which encodes all of:
2113  *  coprocessor number
2114  *  Crn, Crm, opc1, opc2 fields
2115  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2116  *    or via MRRC/MCRR?)
2117  *  non-secure/secure bank (AArch32 only)
2118  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2119  * (In this case crn and opc2 should be zero.)
2120  * For AArch64, there is no 32/64 bit size distinction;
2121  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2122  * and 4 bit CRn and CRm. The encoding patterns are chosen
2123  * to be easy to convert to and from the KVM encodings, and also
2124  * so that the hashtable can contain both AArch32 and AArch64
2125  * registers (to allow for interprocessing where we might run
2126  * 32 bit code on a 64 bit core).
2127  */
2128 /* This bit is private to our hashtable cpreg; in KVM register
2129  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2130  * in the upper bits of the 64 bit ID.
2131  */
2132 #define CP_REG_AA64_SHIFT 28
2133 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2134 
2135 /* To enable banking of coprocessor registers depending on ns-bit we
2136  * add a bit to distinguish between secure and non-secure cpregs in the
2137  * hashtable.
2138  */
2139 #define CP_REG_NS_SHIFT 29
2140 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2141 
2142 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2143     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2144      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2145 
2146 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2147     (CP_REG_AA64_MASK |                                 \
2148      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2149      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2150      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2151      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2152      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2153      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2154 
2155 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2156  * version used as a key for the coprocessor register hashtable
2157  */
2158 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2159 {
2160     uint32_t cpregid = kvmid;
2161     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2162         cpregid |= CP_REG_AA64_MASK;
2163     } else {
2164         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2165             cpregid |= (1 << 15);
2166         }
2167 
2168         /* KVM is always non-secure so add the NS flag on AArch32 register
2169          * entries.
2170          */
2171          cpregid |= 1 << CP_REG_NS_SHIFT;
2172     }
2173     return cpregid;
2174 }
2175 
2176 /* Convert a truncated 32 bit hashtable key into the full
2177  * 64 bit KVM register ID.
2178  */
2179 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2180 {
2181     uint64_t kvmid;
2182 
2183     if (cpregid & CP_REG_AA64_MASK) {
2184         kvmid = cpregid & ~CP_REG_AA64_MASK;
2185         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2186     } else {
2187         kvmid = cpregid & ~(1 << 15);
2188         if (cpregid & (1 << 15)) {
2189             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2190         } else {
2191             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2192         }
2193     }
2194     return kvmid;
2195 }
2196 
2197 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2198  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2199  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2200  * TCG can assume the value to be constant (ie load at translate time)
2201  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2202  * indicates that the TB should not be ended after a write to this register
2203  * (the default is that the TB ends after cp writes). OVERRIDE permits
2204  * a register definition to override a previous definition for the
2205  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2206  * old must have the OVERRIDE bit set.
2207  * ALIAS indicates that this register is an alias view of some underlying
2208  * state which is also visible via another register, and that the other
2209  * register is handling migration and reset; registers marked ALIAS will not be
2210  * migrated but may have their state set by syncing of register state from KVM.
2211  * NO_RAW indicates that this register has no underlying state and does not
2212  * support raw access for state saving/loading; it will not be used for either
2213  * migration or KVM state synchronization. (Typically this is for "registers"
2214  * which are actually used as instructions for cache maintenance and so on.)
2215  * IO indicates that this register does I/O and therefore its accesses
2216  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2217  * registers which implement clocks or timers require this.
2218  * RAISES_EXC is for when the read or write hook might raise an exception;
2219  * the generated code will synchronize the CPU state before calling the hook
2220  * so that it is safe for the hook to call raise_exception().
2221  */
2222 #define ARM_CP_SPECIAL           0x0001
2223 #define ARM_CP_CONST             0x0002
2224 #define ARM_CP_64BIT             0x0004
2225 #define ARM_CP_SUPPRESS_TB_END   0x0008
2226 #define ARM_CP_OVERRIDE          0x0010
2227 #define ARM_CP_ALIAS             0x0020
2228 #define ARM_CP_IO                0x0040
2229 #define ARM_CP_NO_RAW            0x0080
2230 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2231 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2232 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2233 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2234 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2235 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2236 #define ARM_CP_FPU               0x1000
2237 #define ARM_CP_SVE               0x2000
2238 #define ARM_CP_NO_GDB            0x4000
2239 #define ARM_CP_RAISES_EXC        0x8000
2240 /* Used only as a terminator for ARMCPRegInfo lists */
2241 #define ARM_CP_SENTINEL          0xffff
2242 /* Mask of only the flag bits in a type field */
2243 #define ARM_CP_FLAG_MASK         0xf0ff
2244 
2245 /* Valid values for ARMCPRegInfo state field, indicating which of
2246  * the AArch32 and AArch64 execution states this register is visible in.
2247  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2248  * If the reginfo is declared to be visible in both states then a second
2249  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2250  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2251  * Note that we rely on the values of these enums as we iterate through
2252  * the various states in some places.
2253  */
2254 enum {
2255     ARM_CP_STATE_AA32 = 0,
2256     ARM_CP_STATE_AA64 = 1,
2257     ARM_CP_STATE_BOTH = 2,
2258 };
2259 
2260 /* ARM CP register secure state flags.  These flags identify security state
2261  * attributes for a given CP register entry.
2262  * The existence of both or neither secure and non-secure flags indicates that
2263  * the register has both a secure and non-secure hash entry.  A single one of
2264  * these flags causes the register to only be hashed for the specified
2265  * security state.
2266  * Although definitions may have any combination of the S/NS bits, each
2267  * registered entry will only have one to identify whether the entry is secure
2268  * or non-secure.
2269  */
2270 enum {
2271     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2272     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2273 };
2274 
2275 /* Return true if cptype is a valid type field. This is used to try to
2276  * catch errors where the sentinel has been accidentally left off the end
2277  * of a list of registers.
2278  */
2279 static inline bool cptype_valid(int cptype)
2280 {
2281     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2282         || ((cptype & ARM_CP_SPECIAL) &&
2283             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2284 }
2285 
2286 /* Access rights:
2287  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2288  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2289  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2290  * (ie any of the privileged modes in Secure state, or Monitor mode).
2291  * If a register is accessible in one privilege level it's always accessible
2292  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2293  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2294  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2295  * terminology a little and call this PL3.
2296  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2297  * with the ELx exception levels.
2298  *
2299  * If access permissions for a register are more complex than can be
2300  * described with these bits, then use a laxer set of restrictions, and
2301  * do the more restrictive/complex check inside a helper function.
2302  */
2303 #define PL3_R 0x80
2304 #define PL3_W 0x40
2305 #define PL2_R (0x20 | PL3_R)
2306 #define PL2_W (0x10 | PL3_W)
2307 #define PL1_R (0x08 | PL2_R)
2308 #define PL1_W (0x04 | PL2_W)
2309 #define PL0_R (0x02 | PL1_R)
2310 #define PL0_W (0x01 | PL1_W)
2311 
2312 /*
2313  * For user-mode some registers are accessible to EL0 via a kernel
2314  * trap-and-emulate ABI. In this case we define the read permissions
2315  * as actually being PL0_R. However some bits of any given register
2316  * may still be masked.
2317  */
2318 #ifdef CONFIG_USER_ONLY
2319 #define PL0U_R PL0_R
2320 #else
2321 #define PL0U_R PL1_R
2322 #endif
2323 
2324 #define PL3_RW (PL3_R | PL3_W)
2325 #define PL2_RW (PL2_R | PL2_W)
2326 #define PL1_RW (PL1_R | PL1_W)
2327 #define PL0_RW (PL0_R | PL0_W)
2328 
2329 /* Return the highest implemented Exception Level */
2330 static inline int arm_highest_el(CPUARMState *env)
2331 {
2332     if (arm_feature(env, ARM_FEATURE_EL3)) {
2333         return 3;
2334     }
2335     if (arm_feature(env, ARM_FEATURE_EL2)) {
2336         return 2;
2337     }
2338     return 1;
2339 }
2340 
2341 /* Return true if a v7M CPU is in Handler mode */
2342 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2343 {
2344     return env->v7m.exception != 0;
2345 }
2346 
2347 /* Return the current Exception Level (as per ARMv8; note that this differs
2348  * from the ARMv7 Privilege Level).
2349  */
2350 static inline int arm_current_el(CPUARMState *env)
2351 {
2352     if (arm_feature(env, ARM_FEATURE_M)) {
2353         return arm_v7m_is_handler_mode(env) ||
2354             !(env->v7m.control[env->v7m.secure] & 1);
2355     }
2356 
2357     if (is_a64(env)) {
2358         return extract32(env->pstate, 2, 2);
2359     }
2360 
2361     switch (env->uncached_cpsr & 0x1f) {
2362     case ARM_CPU_MODE_USR:
2363         return 0;
2364     case ARM_CPU_MODE_HYP:
2365         return 2;
2366     case ARM_CPU_MODE_MON:
2367         return 3;
2368     default:
2369         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2370             /* If EL3 is 32-bit then all secure privileged modes run in
2371              * EL3
2372              */
2373             return 3;
2374         }
2375 
2376         return 1;
2377     }
2378 }
2379 
2380 typedef struct ARMCPRegInfo ARMCPRegInfo;
2381 
2382 typedef enum CPAccessResult {
2383     /* Access is permitted */
2384     CP_ACCESS_OK = 0,
2385     /* Access fails due to a configurable trap or enable which would
2386      * result in a categorized exception syndrome giving information about
2387      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2388      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2389      * PL1 if in EL0, otherwise to the current EL).
2390      */
2391     CP_ACCESS_TRAP = 1,
2392     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2393      * Note that this is not a catch-all case -- the set of cases which may
2394      * result in this failure is specifically defined by the architecture.
2395      */
2396     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2397     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2398     CP_ACCESS_TRAP_EL2 = 3,
2399     CP_ACCESS_TRAP_EL3 = 4,
2400     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2401     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2402     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2403     /* Access fails and results in an exception syndrome for an FP access,
2404      * trapped directly to EL2 or EL3
2405      */
2406     CP_ACCESS_TRAP_FP_EL2 = 7,
2407     CP_ACCESS_TRAP_FP_EL3 = 8,
2408 } CPAccessResult;
2409 
2410 /* Access functions for coprocessor registers. These cannot fail and
2411  * may not raise exceptions.
2412  */
2413 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2414 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2415                        uint64_t value);
2416 /* Access permission check functions for coprocessor registers. */
2417 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2418                                   const ARMCPRegInfo *opaque,
2419                                   bool isread);
2420 /* Hook function for register reset */
2421 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2422 
2423 #define CP_ANY 0xff
2424 
2425 /* Definition of an ARM coprocessor register */
2426 struct ARMCPRegInfo {
2427     /* Name of register (useful mainly for debugging, need not be unique) */
2428     const char *name;
2429     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2430      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2431      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2432      * will be decoded to this register. The register read and write
2433      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2434      * used by the program, so it is possible to register a wildcard and
2435      * then behave differently on read/write if necessary.
2436      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2437      * must both be zero.
2438      * For AArch64-visible registers, opc0 is also used.
2439      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2440      * way to distinguish (for KVM's benefit) guest-visible system registers
2441      * from demuxed ones provided to preserve the "no side effects on
2442      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2443      * visible (to match KVM's encoding); cp==0 will be converted to
2444      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2445      */
2446     uint8_t cp;
2447     uint8_t crn;
2448     uint8_t crm;
2449     uint8_t opc0;
2450     uint8_t opc1;
2451     uint8_t opc2;
2452     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2453     int state;
2454     /* Register type: ARM_CP_* bits/values */
2455     int type;
2456     /* Access rights: PL*_[RW] */
2457     int access;
2458     /* Security state: ARM_CP_SECSTATE_* bits/values */
2459     int secure;
2460     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2461      * this register was defined: can be used to hand data through to the
2462      * register read/write functions, since they are passed the ARMCPRegInfo*.
2463      */
2464     void *opaque;
2465     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2466      * fieldoffset is non-zero, the reset value of the register.
2467      */
2468     uint64_t resetvalue;
2469     /* Offset of the field in CPUARMState for this register.
2470      *
2471      * This is not needed if either:
2472      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2473      *  2. both readfn and writefn are specified
2474      */
2475     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2476 
2477     /* Offsets of the secure and non-secure fields in CPUARMState for the
2478      * register if it is banked.  These fields are only used during the static
2479      * registration of a register.  During hashing the bank associated
2480      * with a given security state is copied to fieldoffset which is used from
2481      * there on out.
2482      *
2483      * It is expected that register definitions use either fieldoffset or
2484      * bank_fieldoffsets in the definition but not both.  It is also expected
2485      * that both bank offsets are set when defining a banked register.  This
2486      * use indicates that a register is banked.
2487      */
2488     ptrdiff_t bank_fieldoffsets[2];
2489 
2490     /* Function for making any access checks for this register in addition to
2491      * those specified by the 'access' permissions bits. If NULL, no extra
2492      * checks required. The access check is performed at runtime, not at
2493      * translate time.
2494      */
2495     CPAccessFn *accessfn;
2496     /* Function for handling reads of this register. If NULL, then reads
2497      * will be done by loading from the offset into CPUARMState specified
2498      * by fieldoffset.
2499      */
2500     CPReadFn *readfn;
2501     /* Function for handling writes of this register. If NULL, then writes
2502      * will be done by writing to the offset into CPUARMState specified
2503      * by fieldoffset.
2504      */
2505     CPWriteFn *writefn;
2506     /* Function for doing a "raw" read; used when we need to copy
2507      * coprocessor state to the kernel for KVM or out for
2508      * migration. This only needs to be provided if there is also a
2509      * readfn and it has side effects (for instance clear-on-read bits).
2510      */
2511     CPReadFn *raw_readfn;
2512     /* Function for doing a "raw" write; used when we need to copy KVM
2513      * kernel coprocessor state into userspace, or for inbound
2514      * migration. This only needs to be provided if there is also a
2515      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2516      * or similar behaviour.
2517      */
2518     CPWriteFn *raw_writefn;
2519     /* Function for resetting the register. If NULL, then reset will be done
2520      * by writing resetvalue to the field specified in fieldoffset. If
2521      * fieldoffset is 0 then no reset will be done.
2522      */
2523     CPResetFn *resetfn;
2524 };
2525 
2526 /* Macros which are lvalues for the field in CPUARMState for the
2527  * ARMCPRegInfo *ri.
2528  */
2529 #define CPREG_FIELD32(env, ri) \
2530     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2531 #define CPREG_FIELD64(env, ri) \
2532     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2533 
2534 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2535 
2536 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2537                                     const ARMCPRegInfo *regs, void *opaque);
2538 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2539                                        const ARMCPRegInfo *regs, void *opaque);
2540 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2541 {
2542     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2543 }
2544 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2545 {
2546     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2547 }
2548 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2549 
2550 /*
2551  * Definition of an ARM co-processor register as viewed from
2552  * userspace. This is used for presenting sanitised versions of
2553  * registers to userspace when emulating the Linux AArch64 CPU
2554  * ID/feature ABI (advertised as HWCAP_CPUID).
2555  */
2556 typedef struct ARMCPRegUserSpaceInfo {
2557     /* Name of register */
2558     const char *name;
2559 
2560     /* Is the name actually a glob pattern */
2561     bool is_glob;
2562 
2563     /* Only some bits are exported to user space */
2564     uint64_t exported_bits;
2565 
2566     /* Fixed bits are applied after the mask */
2567     uint64_t fixed_bits;
2568 } ARMCPRegUserSpaceInfo;
2569 
2570 #define REGUSERINFO_SENTINEL { .name = NULL }
2571 
2572 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2573 
2574 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2575 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2576                          uint64_t value);
2577 /* CPReadFn that can be used for read-as-zero behaviour */
2578 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2579 
2580 /* CPResetFn that does nothing, for use if no reset is required even
2581  * if fieldoffset is non zero.
2582  */
2583 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2584 
2585 /* Return true if this reginfo struct's field in the cpu state struct
2586  * is 64 bits wide.
2587  */
2588 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2589 {
2590     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2591 }
2592 
2593 static inline bool cp_access_ok(int current_el,
2594                                 const ARMCPRegInfo *ri, int isread)
2595 {
2596     return (ri->access >> ((current_el * 2) + isread)) & 1;
2597 }
2598 
2599 /* Raw read of a coprocessor register (as needed for migration, etc) */
2600 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2601 
2602 /**
2603  * write_list_to_cpustate
2604  * @cpu: ARMCPU
2605  *
2606  * For each register listed in the ARMCPU cpreg_indexes list, write
2607  * its value from the cpreg_values list into the ARMCPUState structure.
2608  * This updates TCG's working data structures from KVM data or
2609  * from incoming migration state.
2610  *
2611  * Returns: true if all register values were updated correctly,
2612  * false if some register was unknown or could not be written.
2613  * Note that we do not stop early on failure -- we will attempt
2614  * writing all registers in the list.
2615  */
2616 bool write_list_to_cpustate(ARMCPU *cpu);
2617 
2618 /**
2619  * write_cpustate_to_list:
2620  * @cpu: ARMCPU
2621  * @kvm_sync: true if this is for syncing back to KVM
2622  *
2623  * For each register listed in the ARMCPU cpreg_indexes list, write
2624  * its value from the ARMCPUState structure into the cpreg_values list.
2625  * This is used to copy info from TCG's working data structures into
2626  * KVM or for outbound migration.
2627  *
2628  * @kvm_sync is true if we are doing this in order to sync the
2629  * register state back to KVM. In this case we will only update
2630  * values in the list if the previous list->cpustate sync actually
2631  * successfully wrote the CPU state. Otherwise we will keep the value
2632  * that is in the list.
2633  *
2634  * Returns: true if all register values were read correctly,
2635  * false if some register was unknown or could not be read.
2636  * Note that we do not stop early on failure -- we will attempt
2637  * reading all registers in the list.
2638  */
2639 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2640 
2641 #define ARM_CPUID_TI915T      0x54029152
2642 #define ARM_CPUID_TI925T      0x54029252
2643 
2644 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2645                                      unsigned int target_el)
2646 {
2647     CPUARMState *env = cs->env_ptr;
2648     unsigned int cur_el = arm_current_el(env);
2649     bool secure = arm_is_secure(env);
2650     bool pstate_unmasked;
2651     int8_t unmasked = 0;
2652     uint64_t hcr_el2;
2653 
2654     /* Don't take exceptions if they target a lower EL.
2655      * This check should catch any exceptions that would not be taken but left
2656      * pending.
2657      */
2658     if (cur_el > target_el) {
2659         return false;
2660     }
2661 
2662     hcr_el2 = arm_hcr_el2_eff(env);
2663 
2664     switch (excp_idx) {
2665     case EXCP_FIQ:
2666         pstate_unmasked = !(env->daif & PSTATE_F);
2667         break;
2668 
2669     case EXCP_IRQ:
2670         pstate_unmasked = !(env->daif & PSTATE_I);
2671         break;
2672 
2673     case EXCP_VFIQ:
2674         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2675             /* VFIQs are only taken when hypervized and non-secure.  */
2676             return false;
2677         }
2678         return !(env->daif & PSTATE_F);
2679     case EXCP_VIRQ:
2680         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2681             /* VIRQs are only taken when hypervized and non-secure.  */
2682             return false;
2683         }
2684         return !(env->daif & PSTATE_I);
2685     default:
2686         g_assert_not_reached();
2687     }
2688 
2689     /* Use the target EL, current execution state and SCR/HCR settings to
2690      * determine whether the corresponding CPSR bit is used to mask the
2691      * interrupt.
2692      */
2693     if ((target_el > cur_el) && (target_el != 1)) {
2694         /* Exceptions targeting a higher EL may not be maskable */
2695         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2696             /* 64-bit masking rules are simple: exceptions to EL3
2697              * can't be masked, and exceptions to EL2 can only be
2698              * masked from Secure state. The HCR and SCR settings
2699              * don't affect the masking logic, only the interrupt routing.
2700              */
2701             if (target_el == 3 || !secure) {
2702                 unmasked = 1;
2703             }
2704         } else {
2705             /* The old 32-bit-only environment has a more complicated
2706              * masking setup. HCR and SCR bits not only affect interrupt
2707              * routing but also change the behaviour of masking.
2708              */
2709             bool hcr, scr;
2710 
2711             switch (excp_idx) {
2712             case EXCP_FIQ:
2713                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2714                  * we override the CPSR.F in determining if the exception is
2715                  * masked or not. If neither of these are set then we fall back
2716                  * to the CPSR.F setting otherwise we further assess the state
2717                  * below.
2718                  */
2719                 hcr = hcr_el2 & HCR_FMO;
2720                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2721 
2722                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2723                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2724                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2725                  * when non-secure but only when FIQs are only routed to EL3.
2726                  */
2727                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2728                 break;
2729             case EXCP_IRQ:
2730                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2731                  * we may override the CPSR.I masking when in non-secure state.
2732                  * The SCR.IRQ setting has already been taken into consideration
2733                  * when setting the target EL, so it does not have a further
2734                  * affect here.
2735                  */
2736                 hcr = hcr_el2 & HCR_IMO;
2737                 scr = false;
2738                 break;
2739             default:
2740                 g_assert_not_reached();
2741             }
2742 
2743             if ((scr || hcr) && !secure) {
2744                 unmasked = 1;
2745             }
2746         }
2747     }
2748 
2749     /* The PSTATE bits only mask the interrupt if we have not overriden the
2750      * ability above.
2751      */
2752     return unmasked || pstate_unmasked;
2753 }
2754 
2755 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2756 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2757 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2758 
2759 #define cpu_signal_handler cpu_arm_signal_handler
2760 #define cpu_list arm_cpu_list
2761 
2762 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2763  *
2764  * If EL3 is 64-bit:
2765  *  + NonSecure EL1 & 0 stage 1
2766  *  + NonSecure EL1 & 0 stage 2
2767  *  + NonSecure EL2
2768  *  + Secure EL1 & EL0
2769  *  + Secure EL3
2770  * If EL3 is 32-bit:
2771  *  + NonSecure PL1 & 0 stage 1
2772  *  + NonSecure PL1 & 0 stage 2
2773  *  + NonSecure PL2
2774  *  + Secure PL0 & PL1
2775  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2776  *
2777  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2778  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2779  *     may differ in access permissions even if the VA->PA map is the same
2780  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2781  *     translation, which means that we have one mmu_idx that deals with two
2782  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2783  *     architecturally permitted]
2784  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2785  *     handling via the TLB. The only way to do a stage 1 translation without
2786  *     the immediate stage 2 translation is via the ATS or AT system insns,
2787  *     which can be slow-pathed and always do a page table walk.
2788  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2789  *     translation regimes, because they map reasonably well to each other
2790  *     and they can't both be active at the same time.
2791  * This gives us the following list of mmu_idx values:
2792  *
2793  * NS EL0 (aka NS PL0) stage 1+2
2794  * NS EL1 (aka NS PL1) stage 1+2
2795  * NS EL2 (aka NS PL2)
2796  * S EL3 (aka S PL1)
2797  * S EL0 (aka S PL0)
2798  * S EL1 (not used if EL3 is 32 bit)
2799  * NS EL0+1 stage 2
2800  *
2801  * (The last of these is an mmu_idx because we want to be able to use the TLB
2802  * for the accesses done as part of a stage 1 page table walk, rather than
2803  * having to walk the stage 2 page table over and over.)
2804  *
2805  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2806  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2807  * NS EL2 if we ever model a Cortex-R52).
2808  *
2809  * M profile CPUs are rather different as they do not have a true MMU.
2810  * They have the following different MMU indexes:
2811  *  User
2812  *  Privileged
2813  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2814  *  Privileged, execution priority negative (ditto)
2815  * If the CPU supports the v8M Security Extension then there are also:
2816  *  Secure User
2817  *  Secure Privileged
2818  *  Secure User, execution priority negative
2819  *  Secure Privileged, execution priority negative
2820  *
2821  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2822  * are not quite the same -- different CPU types (most notably M profile
2823  * vs A/R profile) would like to use MMU indexes with different semantics,
2824  * but since we don't ever need to use all of those in a single CPU we
2825  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2826  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2827  * the same for any particular CPU.
2828  * Variables of type ARMMUIdx are always full values, and the core
2829  * index values are in variables of type 'int'.
2830  *
2831  * Our enumeration includes at the end some entries which are not "true"
2832  * mmu_idx values in that they don't have corresponding TLBs and are only
2833  * valid for doing slow path page table walks.
2834  *
2835  * The constant names here are patterned after the general style of the names
2836  * of the AT/ATS operations.
2837  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2838  * For M profile we arrange them to have a bit for priv, a bit for negpri
2839  * and a bit for secure.
2840  */
2841 #define ARM_MMU_IDX_A 0x10 /* A profile */
2842 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2843 #define ARM_MMU_IDX_M 0x40 /* M profile */
2844 
2845 /* meanings of the bits for M profile mmu idx values */
2846 #define ARM_MMU_IDX_M_PRIV 0x1
2847 #define ARM_MMU_IDX_M_NEGPRI 0x2
2848 #define ARM_MMU_IDX_M_S 0x4
2849 
2850 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2851 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2852 
2853 typedef enum ARMMMUIdx {
2854     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2855     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2856     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2857     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2858     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2859     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2860     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2861     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2862     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2863     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2864     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2865     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2866     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2867     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2868     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2869     /* Indexes below here don't have TLBs and are used only for AT system
2870      * instructions or for the first stage of an S12 page table walk.
2871      */
2872     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2873     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2874 } ARMMMUIdx;
2875 
2876 /* Bit macros for the core-mmu-index values for each index,
2877  * for use when calling tlb_flush_by_mmuidx() and friends.
2878  */
2879 typedef enum ARMMMUIdxBit {
2880     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2881     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2882     ARMMMUIdxBit_S1E2 = 1 << 2,
2883     ARMMMUIdxBit_S1E3 = 1 << 3,
2884     ARMMMUIdxBit_S1SE0 = 1 << 4,
2885     ARMMMUIdxBit_S1SE1 = 1 << 5,
2886     ARMMMUIdxBit_S2NS = 1 << 6,
2887     ARMMMUIdxBit_MUser = 1 << 0,
2888     ARMMMUIdxBit_MPriv = 1 << 1,
2889     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2890     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2891     ARMMMUIdxBit_MSUser = 1 << 4,
2892     ARMMMUIdxBit_MSPriv = 1 << 5,
2893     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2894     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2895 } ARMMMUIdxBit;
2896 
2897 #define MMU_USER_IDX 0
2898 
2899 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2900 {
2901     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2902 }
2903 
2904 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2905 {
2906     if (arm_feature(env, ARM_FEATURE_M)) {
2907         return mmu_idx | ARM_MMU_IDX_M;
2908     } else {
2909         return mmu_idx | ARM_MMU_IDX_A;
2910     }
2911 }
2912 
2913 /* Return the exception level we're running at if this is our mmu_idx */
2914 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2915 {
2916     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2917     case ARM_MMU_IDX_A:
2918         return mmu_idx & 3;
2919     case ARM_MMU_IDX_M:
2920         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2921     default:
2922         g_assert_not_reached();
2923     }
2924 }
2925 
2926 /*
2927  * Return the MMU index for a v7M CPU with all relevant information
2928  * manually specified.
2929  */
2930 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2931                               bool secstate, bool priv, bool negpri);
2932 
2933 /* Return the MMU index for a v7M CPU in the specified security and
2934  * privilege state.
2935  */
2936 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2937                                                 bool secstate, bool priv);
2938 
2939 /* Return the MMU index for a v7M CPU in the specified security state */
2940 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2941 
2942 /**
2943  * cpu_mmu_index:
2944  * @env: The cpu environment
2945  * @ifetch: True for code access, false for data access.
2946  *
2947  * Return the core mmu index for the current translation regime.
2948  * This function is used by generic TCG code paths.
2949  */
2950 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2951 
2952 /* Indexes used when registering address spaces with cpu_address_space_init */
2953 typedef enum ARMASIdx {
2954     ARMASIdx_NS = 0,
2955     ARMASIdx_S = 1,
2956 } ARMASIdx;
2957 
2958 /* Return the Exception Level targeted by debug exceptions. */
2959 static inline int arm_debug_target_el(CPUARMState *env)
2960 {
2961     bool secure = arm_is_secure(env);
2962     bool route_to_el2 = false;
2963 
2964     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2965         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2966                        env->cp15.mdcr_el2 & MDCR_TDE;
2967     }
2968 
2969     if (route_to_el2) {
2970         return 2;
2971     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2972                !arm_el_is_aa64(env, 3) && secure) {
2973         return 3;
2974     } else {
2975         return 1;
2976     }
2977 }
2978 
2979 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2980 {
2981     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2982      * CSSELR is RAZ/WI.
2983      */
2984     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2985 }
2986 
2987 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2988 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2989 {
2990     int cur_el = arm_current_el(env);
2991     int debug_el;
2992 
2993     if (cur_el == 3) {
2994         return false;
2995     }
2996 
2997     /* MDCR_EL3.SDD disables debug events from Secure state */
2998     if (arm_is_secure_below_el3(env)
2999         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3000         return false;
3001     }
3002 
3003     /*
3004      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3005      * while not masking the (D)ebug bit in DAIF.
3006      */
3007     debug_el = arm_debug_target_el(env);
3008 
3009     if (cur_el == debug_el) {
3010         return extract32(env->cp15.mdscr_el1, 13, 1)
3011             && !(env->daif & PSTATE_D);
3012     }
3013 
3014     /* Otherwise the debug target needs to be a higher EL */
3015     return debug_el > cur_el;
3016 }
3017 
3018 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3019 {
3020     int el = arm_current_el(env);
3021 
3022     if (el == 0 && arm_el_is_aa64(env, 1)) {
3023         return aa64_generate_debug_exceptions(env);
3024     }
3025 
3026     if (arm_is_secure(env)) {
3027         int spd;
3028 
3029         if (el == 0 && (env->cp15.sder & 1)) {
3030             /* SDER.SUIDEN means debug exceptions from Secure EL0
3031              * are always enabled. Otherwise they are controlled by
3032              * SDCR.SPD like those from other Secure ELs.
3033              */
3034             return true;
3035         }
3036 
3037         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3038         switch (spd) {
3039         case 1:
3040             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3041         case 0:
3042             /* For 0b00 we return true if external secure invasive debug
3043              * is enabled. On real hardware this is controlled by external
3044              * signals to the core. QEMU always permits debug, and behaves
3045              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3046              */
3047             return true;
3048         case 2:
3049             return false;
3050         case 3:
3051             return true;
3052         }
3053     }
3054 
3055     return el != 2;
3056 }
3057 
3058 /* Return true if debugging exceptions are currently enabled.
3059  * This corresponds to what in ARM ARM pseudocode would be
3060  *    if UsingAArch32() then
3061  *        return AArch32.GenerateDebugExceptions()
3062  *    else
3063  *        return AArch64.GenerateDebugExceptions()
3064  * We choose to push the if() down into this function for clarity,
3065  * since the pseudocode has it at all callsites except for the one in
3066  * CheckSoftwareStep(), where it is elided because both branches would
3067  * always return the same value.
3068  */
3069 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3070 {
3071     if (env->aarch64) {
3072         return aa64_generate_debug_exceptions(env);
3073     } else {
3074         return aa32_generate_debug_exceptions(env);
3075     }
3076 }
3077 
3078 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3079  * implicitly means this always returns false in pre-v8 CPUs.)
3080  */
3081 static inline bool arm_singlestep_active(CPUARMState *env)
3082 {
3083     return extract32(env->cp15.mdscr_el1, 0, 1)
3084         && arm_el_is_aa64(env, arm_debug_target_el(env))
3085         && arm_generate_debug_exceptions(env);
3086 }
3087 
3088 static inline bool arm_sctlr_b(CPUARMState *env)
3089 {
3090     return
3091         /* We need not implement SCTLR.ITD in user-mode emulation, so
3092          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3093          * This lets people run BE32 binaries with "-cpu any".
3094          */
3095 #ifndef CONFIG_USER_ONLY
3096         !arm_feature(env, ARM_FEATURE_V7) &&
3097 #endif
3098         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3099 }
3100 
3101 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3102 {
3103     if (el == 0) {
3104         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3105         return env->cp15.sctlr_el[1];
3106     } else {
3107         return env->cp15.sctlr_el[el];
3108     }
3109 }
3110 
3111 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3112                                                   bool sctlr_b)
3113 {
3114 #ifdef CONFIG_USER_ONLY
3115     /*
3116      * In system mode, BE32 is modelled in line with the
3117      * architecture (as word-invariant big-endianness), where loads
3118      * and stores are done little endian but from addresses which
3119      * are adjusted by XORing with the appropriate constant. So the
3120      * endianness to use for the raw data access is not affected by
3121      * SCTLR.B.
3122      * In user mode, however, we model BE32 as byte-invariant
3123      * big-endianness (because user-only code cannot tell the
3124      * difference), and so we need to use a data access endianness
3125      * that depends on SCTLR.B.
3126      */
3127     if (sctlr_b) {
3128         return true;
3129     }
3130 #endif
3131     /* In 32bit endianness is determined by looking at CPSR's E bit */
3132     return env->uncached_cpsr & CPSR_E;
3133 }
3134 
3135 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3136 {
3137     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3138 }
3139 
3140 /* Return true if the processor is in big-endian mode. */
3141 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3142 {
3143     if (!is_a64(env)) {
3144         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3145     } else {
3146         int cur_el = arm_current_el(env);
3147         uint64_t sctlr = arm_sctlr(env, cur_el);
3148         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3149     }
3150 }
3151 
3152 typedef CPUARMState CPUArchState;
3153 typedef ARMCPU ArchCPU;
3154 
3155 #include "exec/cpu-all.h"
3156 
3157 /*
3158  * Bit usage in the TB flags field: bit 31 indicates whether we are
3159  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3160  * We put flags which are shared between 32 and 64 bit mode at the top
3161  * of the word, and flags which apply to only one mode at the bottom.
3162  *
3163  * Unless otherwise noted, these bits are cached in env->hflags.
3164  */
3165 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3166 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3167 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3168 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)     /* Not cached. */
3169 /* Target EL if we take a floating-point-disabled exception */
3170 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3171 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3172 /*
3173  * For A-profile only, target EL for debug exceptions.
3174  * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3175  */
3176 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3177 
3178 /* Bit usage when in AArch32 state: */
3179 FIELD(TBFLAG_A32, THUMB, 0, 1)          /* Not cached. */
3180 FIELD(TBFLAG_A32, VECLEN, 1, 3)         /* Not cached. */
3181 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)      /* Not cached. */
3182 /*
3183  * We store the bottom two bits of the CPAR as TB flags and handle
3184  * checks on the other bits at runtime. This shares the same bits as
3185  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3186  * Not cached, because VECLEN+VECSTRIDE are not cached.
3187  */
3188 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3189 /*
3190  * Indicates whether cp register reads and writes by guest code should access
3191  * the secure or nonsecure bank of banked registers; note that this is not
3192  * the same thing as the current security state of the processor!
3193  */
3194 FIELD(TBFLAG_A32, NS, 6, 1)
3195 FIELD(TBFLAG_A32, VFPEN, 7, 1)          /* Partially cached, minus FPEXC. */
3196 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)       /* Not cached. */
3197 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3198 /* For M profile only, set if FPCCR.LSPACT is set */
3199 FIELD(TBFLAG_A32, LSPACT, 18, 1)        /* Not cached. */
3200 /* For M profile only, set if we must create a new FP context */
3201 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
3202 /* For M profile only, set if FPCCR.S does not match current security state */
3203 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
3204 /* For M profile only, Handler (ie not Thread) mode */
3205 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3206 /* For M profile only, whether we should generate stack-limit checks */
3207 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3208 
3209 /* Bit usage when in AArch64 state */
3210 FIELD(TBFLAG_A64, TBII, 0, 2)
3211 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3212 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3213 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3214 FIELD(TBFLAG_A64, BT, 9, 1)
3215 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3216 FIELD(TBFLAG_A64, TBID, 12, 2)
3217 
3218 static inline bool bswap_code(bool sctlr_b)
3219 {
3220 #ifdef CONFIG_USER_ONLY
3221     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3222      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3223      * would also end up as a mixed-endian mode with BE code, LE data.
3224      */
3225     return
3226 #ifdef TARGET_WORDS_BIGENDIAN
3227         1 ^
3228 #endif
3229         sctlr_b;
3230 #else
3231     /* All code access in ARM is little endian, and there are no loaders
3232      * doing swaps that need to be reversed
3233      */
3234     return 0;
3235 #endif
3236 }
3237 
3238 #ifdef CONFIG_USER_ONLY
3239 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3240 {
3241     return
3242 #ifdef TARGET_WORDS_BIGENDIAN
3243        1 ^
3244 #endif
3245        arm_cpu_data_is_big_endian(env);
3246 }
3247 #endif
3248 
3249 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3250                           target_ulong *cs_base, uint32_t *flags);
3251 
3252 enum {
3253     QEMU_PSCI_CONDUIT_DISABLED = 0,
3254     QEMU_PSCI_CONDUIT_SMC = 1,
3255     QEMU_PSCI_CONDUIT_HVC = 2,
3256 };
3257 
3258 #ifndef CONFIG_USER_ONLY
3259 /* Return the address space index to use for a memory access */
3260 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3261 {
3262     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3263 }
3264 
3265 /* Return the AddressSpace to use for a memory access
3266  * (which depends on whether the access is S or NS, and whether
3267  * the board gave us a separate AddressSpace for S accesses).
3268  */
3269 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3270 {
3271     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3272 }
3273 #endif
3274 
3275 /**
3276  * arm_register_pre_el_change_hook:
3277  * Register a hook function which will be called immediately before this
3278  * CPU changes exception level or mode. The hook function will be
3279  * passed a pointer to the ARMCPU and the opaque data pointer passed
3280  * to this function when the hook was registered.
3281  *
3282  * Note that if a pre-change hook is called, any registered post-change hooks
3283  * are guaranteed to subsequently be called.
3284  */
3285 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3286                                  void *opaque);
3287 /**
3288  * arm_register_el_change_hook:
3289  * Register a hook function which will be called immediately after this
3290  * CPU changes exception level or mode. The hook function will be
3291  * passed a pointer to the ARMCPU and the opaque data pointer passed
3292  * to this function when the hook was registered.
3293  *
3294  * Note that any registered hooks registered here are guaranteed to be called
3295  * if pre-change hooks have been.
3296  */
3297 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3298         *opaque);
3299 
3300 /**
3301  * arm_rebuild_hflags:
3302  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3303  */
3304 void arm_rebuild_hflags(CPUARMState *env);
3305 
3306 /**
3307  * aa32_vfp_dreg:
3308  * Return a pointer to the Dn register within env in 32-bit mode.
3309  */
3310 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3311 {
3312     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3313 }
3314 
3315 /**
3316  * aa32_vfp_qreg:
3317  * Return a pointer to the Qn register within env in 32-bit mode.
3318  */
3319 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3320 {
3321     return &env->vfp.zregs[regno].d[0];
3322 }
3323 
3324 /**
3325  * aa64_vfp_qreg:
3326  * Return a pointer to the Qn register within env in 64-bit mode.
3327  */
3328 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3329 {
3330     return &env->vfp.zregs[regno].d[0];
3331 }
3332 
3333 /* Shared between translate-sve.c and sve_helper.c.  */
3334 extern const uint64_t pred_esz_masks[4];
3335 
3336 /*
3337  * 32-bit feature tests via id registers.
3338  */
3339 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3340 {
3341     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3342 }
3343 
3344 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3345 {
3346     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3347 }
3348 
3349 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3350 {
3351     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3352 }
3353 
3354 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3355 {
3356     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3357 }
3358 
3359 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3360 {
3361     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3362 }
3363 
3364 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3365 {
3366     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3367 }
3368 
3369 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3370 {
3371     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3372 }
3373 
3374 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3375 {
3376     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3377 }
3378 
3379 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3380 {
3381     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3382 }
3383 
3384 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3385 {
3386     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3387 }
3388 
3389 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3390 {
3391     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3392 }
3393 
3394 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3395 {
3396     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3397 }
3398 
3399 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3400 {
3401     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3402 }
3403 
3404 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3405 {
3406     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3407 }
3408 
3409 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3410 {
3411     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3412 }
3413 
3414 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3415 {
3416     /*
3417      * This is a placeholder for use by VCMA until the rest of
3418      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3419      * At which point we can properly set and check MVFR1.FPHP.
3420      */
3421     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3422 }
3423 
3424 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3425 {
3426     /* Return true if D16-D31 are implemented */
3427     return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3428 }
3429 
3430 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3431 {
3432     return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3433 }
3434 
3435 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3436 {
3437     /* Return true if CPU supports double precision floating point */
3438     return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3439 }
3440 
3441 /*
3442  * We always set the FP and SIMD FP16 fields to indicate identical
3443  * levels of support (assuming SIMD is implemented at all), so
3444  * we only need one set of accessors.
3445  */
3446 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3447 {
3448     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3449 }
3450 
3451 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3452 {
3453     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3454 }
3455 
3456 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3457 {
3458     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3459 }
3460 
3461 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3462 {
3463     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3464 }
3465 
3466 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3467 {
3468     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3469 }
3470 
3471 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3472 {
3473     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3474 }
3475 
3476 /*
3477  * 64-bit feature tests via id registers.
3478  */
3479 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3480 {
3481     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3482 }
3483 
3484 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3485 {
3486     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3487 }
3488 
3489 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3490 {
3491     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3492 }
3493 
3494 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3495 {
3496     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3497 }
3498 
3499 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3500 {
3501     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3502 }
3503 
3504 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3505 {
3506     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3507 }
3508 
3509 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3510 {
3511     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3512 }
3513 
3514 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3515 {
3516     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3517 }
3518 
3519 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3520 {
3521     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3522 }
3523 
3524 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3525 {
3526     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3527 }
3528 
3529 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3530 {
3531     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3532 }
3533 
3534 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3535 {
3536     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3537 }
3538 
3539 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3540 {
3541     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3542 }
3543 
3544 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3545 {
3546     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3547 }
3548 
3549 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3550 {
3551     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3552 }
3553 
3554 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3555 {
3556     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3557 }
3558 
3559 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3560 {
3561     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3562 }
3563 
3564 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3565 {
3566     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3567 }
3568 
3569 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3570 {
3571     /*
3572      * Note that while QEMU will only implement the architected algorithm
3573      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3574      * defined algorithms, and thus API+GPI, and this predicate controls
3575      * migration of the 128-bit keys.
3576      */
3577     return (id->id_aa64isar1 &
3578             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3579              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3580              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3581              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3582 }
3583 
3584 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3585 {
3586     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3587 }
3588 
3589 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3590 {
3591     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3592 }
3593 
3594 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3595 {
3596     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3597 }
3598 
3599 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3600 {
3601     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3602     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3603 }
3604 
3605 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3606 {
3607     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3608 }
3609 
3610 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3611 {
3612     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3613 }
3614 
3615 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3616 {
3617     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3618 }
3619 
3620 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3621 {
3622     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3623 }
3624 
3625 /*
3626  * Forward to the above feature tests given an ARMCPU pointer.
3627  */
3628 #define cpu_isar_feature(name, cpu) \
3629     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3630 
3631 #endif
3632