xref: /openbmc/qemu/target/arm/cpu.h (revision 4a09d0bb)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 #define CPUArchState struct CPUARMState
34 
35 #include "qemu-common.h"
36 #include "cpu-qom.h"
37 #include "exec/cpu-defs.h"
38 
39 #include "fpu/softfloat.h"
40 
41 #define EXCP_UDEF            1   /* undefined instruction */
42 #define EXCP_SWI             2   /* software interrupt */
43 #define EXCP_PREFETCH_ABORT  3
44 #define EXCP_DATA_ABORT      4
45 #define EXCP_IRQ             5
46 #define EXCP_FIQ             6
47 #define EXCP_BKPT            7
48 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
49 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
50 #define EXCP_HVC            11   /* HyperVisor Call */
51 #define EXCP_HYP_TRAP       12
52 #define EXCP_SMC            13   /* Secure Monitor Call */
53 #define EXCP_VIRQ           14
54 #define EXCP_VFIQ           15
55 #define EXCP_SEMIHOST       16   /* semihosting call */
56 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
57 
58 #define ARMV7M_EXCP_RESET   1
59 #define ARMV7M_EXCP_NMI     2
60 #define ARMV7M_EXCP_HARD    3
61 #define ARMV7M_EXCP_MEM     4
62 #define ARMV7M_EXCP_BUS     5
63 #define ARMV7M_EXCP_USAGE   6
64 #define ARMV7M_EXCP_SVC     11
65 #define ARMV7M_EXCP_DEBUG   12
66 #define ARMV7M_EXCP_PENDSV  14
67 #define ARMV7M_EXCP_SYSTICK 15
68 
69 /* ARM-specific interrupt pending bits.  */
70 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
71 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
72 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
73 
74 /* The usual mapping for an AArch64 system register to its AArch32
75  * counterpart is for the 32 bit world to have access to the lower
76  * half only (with writes leaving the upper half untouched). It's
77  * therefore useful to be able to pass TCG the offset of the least
78  * significant half of a uint64_t struct member.
79  */
80 #ifdef HOST_WORDS_BIGENDIAN
81 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
82 #define offsetofhigh32(S, M) offsetof(S, M)
83 #else
84 #define offsetoflow32(S, M) offsetof(S, M)
85 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
86 #endif
87 
88 /* Meanings of the ARMCPU object's four inbound GPIO lines */
89 #define ARM_CPU_IRQ 0
90 #define ARM_CPU_FIQ 1
91 #define ARM_CPU_VIRQ 2
92 #define ARM_CPU_VFIQ 3
93 
94 #define NB_MMU_MODES 7
95 /* ARM-specific extra insn start words:
96  * 1: Conditional execution bits
97  * 2: Partial exception syndrome for data aborts
98  */
99 #define TARGET_INSN_START_EXTRA_WORDS 2
100 
101 /* The 2nd extra word holding syndrome info for data aborts does not use
102  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
103  * help the sleb128 encoder do a better job.
104  * When restoring the CPU state, we shift it back up.
105  */
106 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
107 #define ARM_INSN_START_WORD2_SHIFT 14
108 
109 /* We currently assume float and double are IEEE single and double
110    precision respectively.
111    Doing runtime conversions is tricky because VFP registers may contain
112    integer values (eg. as the result of a FTOSI instruction).
113    s<2n> maps to the least significant half of d<n>
114    s<2n+1> maps to the most significant half of d<n>
115  */
116 
117 /* CPU state for each instance of a generic timer (in cp15 c14) */
118 typedef struct ARMGenericTimer {
119     uint64_t cval; /* Timer CompareValue register */
120     uint64_t ctl; /* Timer Control register */
121 } ARMGenericTimer;
122 
123 #define GTIMER_PHYS 0
124 #define GTIMER_VIRT 1
125 #define GTIMER_HYP  2
126 #define GTIMER_SEC  3
127 #define NUM_GTIMERS 4
128 
129 typedef struct {
130     uint64_t raw_tcr;
131     uint32_t mask;
132     uint32_t base_mask;
133 } TCR;
134 
135 typedef struct CPUARMState {
136     /* Regs for current mode.  */
137     uint32_t regs[16];
138 
139     /* 32/64 switch only happens when taking and returning from
140      * exceptions so the overlap semantics are taken care of then
141      * instead of having a complicated union.
142      */
143     /* Regs for A64 mode.  */
144     uint64_t xregs[32];
145     uint64_t pc;
146     /* PSTATE isn't an architectural register for ARMv8. However, it is
147      * convenient for us to assemble the underlying state into a 32 bit format
148      * identical to the architectural format used for the SPSR. (This is also
149      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
150      * 'pstate' register are.) Of the PSTATE bits:
151      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
152      *    semantics as for AArch32, as described in the comments on each field)
153      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
154      *  DAIF (exception masks) are kept in env->daif
155      *  all other bits are stored in their correct places in env->pstate
156      */
157     uint32_t pstate;
158     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
159 
160     /* Frequently accessed CPSR bits are stored separately for efficiency.
161        This contains all the other bits.  Use cpsr_{read,write} to access
162        the whole CPSR.  */
163     uint32_t uncached_cpsr;
164     uint32_t spsr;
165 
166     /* Banked registers.  */
167     uint64_t banked_spsr[8];
168     uint32_t banked_r13[8];
169     uint32_t banked_r14[8];
170 
171     /* These hold r8-r12.  */
172     uint32_t usr_regs[5];
173     uint32_t fiq_regs[5];
174 
175     /* cpsr flag cache for faster execution */
176     uint32_t CF; /* 0 or 1 */
177     uint32_t VF; /* V is the bit 31. All other bits are undefined */
178     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
179     uint32_t ZF; /* Z set if zero.  */
180     uint32_t QF; /* 0 or 1 */
181     uint32_t GE; /* cpsr[19:16] */
182     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
183     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
184     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
185 
186     uint64_t elr_el[4]; /* AArch64 exception link regs  */
187     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
188 
189     /* System control coprocessor (cp15) */
190     struct {
191         uint32_t c0_cpuid;
192         union { /* Cache size selection */
193             struct {
194                 uint64_t _unused_csselr0;
195                 uint64_t csselr_ns;
196                 uint64_t _unused_csselr1;
197                 uint64_t csselr_s;
198             };
199             uint64_t csselr_el[4];
200         };
201         union { /* System control register. */
202             struct {
203                 uint64_t _unused_sctlr;
204                 uint64_t sctlr_ns;
205                 uint64_t hsctlr;
206                 uint64_t sctlr_s;
207             };
208             uint64_t sctlr_el[4];
209         };
210         uint64_t cpacr_el1; /* Architectural feature access control register */
211         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
212         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
213         uint64_t sder; /* Secure debug enable register. */
214         uint32_t nsacr; /* Non-secure access control register. */
215         union { /* MMU translation table base 0. */
216             struct {
217                 uint64_t _unused_ttbr0_0;
218                 uint64_t ttbr0_ns;
219                 uint64_t _unused_ttbr0_1;
220                 uint64_t ttbr0_s;
221             };
222             uint64_t ttbr0_el[4];
223         };
224         union { /* MMU translation table base 1. */
225             struct {
226                 uint64_t _unused_ttbr1_0;
227                 uint64_t ttbr1_ns;
228                 uint64_t _unused_ttbr1_1;
229                 uint64_t ttbr1_s;
230             };
231             uint64_t ttbr1_el[4];
232         };
233         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
234         /* MMU translation table base control. */
235         TCR tcr_el[4];
236         TCR vtcr_el2; /* Virtualization Translation Control.  */
237         uint32_t c2_data; /* MPU data cacheable bits.  */
238         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
239         union { /* MMU domain access control register
240                  * MPU write buffer control.
241                  */
242             struct {
243                 uint64_t dacr_ns;
244                 uint64_t dacr_s;
245             };
246             struct {
247                 uint64_t dacr32_el2;
248             };
249         };
250         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
251         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
252         uint64_t hcr_el2; /* Hypervisor configuration register */
253         uint64_t scr_el3; /* Secure configuration register.  */
254         union { /* Fault status registers.  */
255             struct {
256                 uint64_t ifsr_ns;
257                 uint64_t ifsr_s;
258             };
259             struct {
260                 uint64_t ifsr32_el2;
261             };
262         };
263         union {
264             struct {
265                 uint64_t _unused_dfsr;
266                 uint64_t dfsr_ns;
267                 uint64_t hsr;
268                 uint64_t dfsr_s;
269             };
270             uint64_t esr_el[4];
271         };
272         uint32_t c6_region[8]; /* MPU base/size registers.  */
273         union { /* Fault address registers. */
274             struct {
275                 uint64_t _unused_far0;
276 #ifdef HOST_WORDS_BIGENDIAN
277                 uint32_t ifar_ns;
278                 uint32_t dfar_ns;
279                 uint32_t ifar_s;
280                 uint32_t dfar_s;
281 #else
282                 uint32_t dfar_ns;
283                 uint32_t ifar_ns;
284                 uint32_t dfar_s;
285                 uint32_t ifar_s;
286 #endif
287                 uint64_t _unused_far3;
288             };
289             uint64_t far_el[4];
290         };
291         uint64_t hpfar_el2;
292         uint64_t hstr_el2;
293         union { /* Translation result. */
294             struct {
295                 uint64_t _unused_par_0;
296                 uint64_t par_ns;
297                 uint64_t _unused_par_1;
298                 uint64_t par_s;
299             };
300             uint64_t par_el[4];
301         };
302 
303         uint32_t c6_rgnr;
304 
305         uint32_t c9_insn; /* Cache lockdown registers.  */
306         uint32_t c9_data;
307         uint64_t c9_pmcr; /* performance monitor control register */
308         uint64_t c9_pmcnten; /* perf monitor counter enables */
309         uint32_t c9_pmovsr; /* perf monitor overflow status */
310         uint32_t c9_pmuserenr; /* perf monitor user enable */
311         uint64_t c9_pmselr; /* perf monitor counter selection register */
312         uint64_t c9_pminten; /* perf monitor interrupt enables */
313         union { /* Memory attribute redirection */
314             struct {
315 #ifdef HOST_WORDS_BIGENDIAN
316                 uint64_t _unused_mair_0;
317                 uint32_t mair1_ns;
318                 uint32_t mair0_ns;
319                 uint64_t _unused_mair_1;
320                 uint32_t mair1_s;
321                 uint32_t mair0_s;
322 #else
323                 uint64_t _unused_mair_0;
324                 uint32_t mair0_ns;
325                 uint32_t mair1_ns;
326                 uint64_t _unused_mair_1;
327                 uint32_t mair0_s;
328                 uint32_t mair1_s;
329 #endif
330             };
331             uint64_t mair_el[4];
332         };
333         union { /* vector base address register */
334             struct {
335                 uint64_t _unused_vbar;
336                 uint64_t vbar_ns;
337                 uint64_t hvbar;
338                 uint64_t vbar_s;
339             };
340             uint64_t vbar_el[4];
341         };
342         uint32_t mvbar; /* (monitor) vector base address register */
343         struct { /* FCSE PID. */
344             uint32_t fcseidr_ns;
345             uint32_t fcseidr_s;
346         };
347         union { /* Context ID. */
348             struct {
349                 uint64_t _unused_contextidr_0;
350                 uint64_t contextidr_ns;
351                 uint64_t _unused_contextidr_1;
352                 uint64_t contextidr_s;
353             };
354             uint64_t contextidr_el[4];
355         };
356         union { /* User RW Thread register. */
357             struct {
358                 uint64_t tpidrurw_ns;
359                 uint64_t tpidrprw_ns;
360                 uint64_t htpidr;
361                 uint64_t _tpidr_el3;
362             };
363             uint64_t tpidr_el[4];
364         };
365         /* The secure banks of these registers don't map anywhere */
366         uint64_t tpidrurw_s;
367         uint64_t tpidrprw_s;
368         uint64_t tpidruro_s;
369 
370         union { /* User RO Thread register. */
371             uint64_t tpidruro_ns;
372             uint64_t tpidrro_el[1];
373         };
374         uint64_t c14_cntfrq; /* Counter Frequency register */
375         uint64_t c14_cntkctl; /* Timer Control register */
376         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
377         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
378         ARMGenericTimer c14_timer[NUM_GTIMERS];
379         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
380         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
381         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
382         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
383         uint32_t c15_threadid; /* TI debugger thread-ID.  */
384         uint32_t c15_config_base_address; /* SCU base address.  */
385         uint32_t c15_diagnostic; /* diagnostic register */
386         uint32_t c15_power_diagnostic;
387         uint32_t c15_power_control; /* power control */
388         uint64_t dbgbvr[16]; /* breakpoint value registers */
389         uint64_t dbgbcr[16]; /* breakpoint control registers */
390         uint64_t dbgwvr[16]; /* watchpoint value registers */
391         uint64_t dbgwcr[16]; /* watchpoint control registers */
392         uint64_t mdscr_el1;
393         uint64_t oslsr_el1; /* OS Lock Status */
394         uint64_t mdcr_el2;
395         uint64_t mdcr_el3;
396         /* If the counter is enabled, this stores the last time the counter
397          * was reset. Otherwise it stores the counter value
398          */
399         uint64_t c15_ccnt;
400         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
401         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
402         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
403     } cp15;
404 
405     struct {
406         uint32_t other_sp;
407         uint32_t vecbase;
408         uint32_t basepri;
409         uint32_t control;
410         uint32_t ccr; /* Configuration and Control */
411         uint32_t cfsr; /* Configurable Fault Status */
412         uint32_t hfsr; /* HardFault Status */
413         uint32_t dfsr; /* Debug Fault Status Register */
414         uint32_t mmfar; /* MemManage Fault Address */
415         uint32_t bfar; /* BusFault Address */
416         int exception;
417     } v7m;
418 
419     /* Information associated with an exception about to be taken:
420      * code which raises an exception must set cs->exception_index and
421      * the relevant parts of this structure; the cpu_do_interrupt function
422      * will then set the guest-visible registers as part of the exception
423      * entry process.
424      */
425     struct {
426         uint32_t syndrome; /* AArch64 format syndrome register */
427         uint32_t fsr; /* AArch32 format fault status register info */
428         uint64_t vaddress; /* virtual addr associated with exception, if any */
429         uint32_t target_el; /* EL the exception should be targeted for */
430         /* If we implement EL2 we will also need to store information
431          * about the intermediate physical address for stage 2 faults.
432          */
433     } exception;
434 
435     /* Thumb-2 EE state.  */
436     uint32_t teecr;
437     uint32_t teehbr;
438 
439     /* VFP coprocessor state.  */
440     struct {
441         /* VFP/Neon register state. Note that the mapping between S, D and Q
442          * views of the register bank differs between AArch64 and AArch32:
443          * In AArch32:
444          *  Qn = regs[2n+1]:regs[2n]
445          *  Dn = regs[n]
446          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
447          * (and regs[32] to regs[63] are inaccessible)
448          * In AArch64:
449          *  Qn = regs[2n+1]:regs[2n]
450          *  Dn = regs[2n]
451          *  Sn = regs[2n] bits 31..0
452          * This corresponds to the architecturally defined mapping between
453          * the two execution states, and means we do not need to explicitly
454          * map these registers when changing states.
455          */
456         float64 regs[64];
457 
458         uint32_t xregs[16];
459         /* We store these fpcsr fields separately for convenience.  */
460         int vec_len;
461         int vec_stride;
462 
463         /* scratch space when Tn are not sufficient.  */
464         uint32_t scratch[8];
465 
466         /* fp_status is the "normal" fp status. standard_fp_status retains
467          * values corresponding to the ARM "Standard FPSCR Value", ie
468          * default-NaN, flush-to-zero, round-to-nearest and is used by
469          * any operations (generally Neon) which the architecture defines
470          * as controlled by the standard FPSCR value rather than the FPSCR.
471          *
472          * To avoid having to transfer exception bits around, we simply
473          * say that the FPSCR cumulative exception flags are the logical
474          * OR of the flags in the two fp statuses. This relies on the
475          * only thing which needs to read the exception flags being
476          * an explicit FPSCR read.
477          */
478         float_status fp_status;
479         float_status standard_fp_status;
480     } vfp;
481     uint64_t exclusive_addr;
482     uint64_t exclusive_val;
483     uint64_t exclusive_high;
484 
485     /* iwMMXt coprocessor state.  */
486     struct {
487         uint64_t regs[16];
488         uint64_t val;
489 
490         uint32_t cregs[16];
491     } iwmmxt;
492 
493 #if defined(CONFIG_USER_ONLY)
494     /* For usermode syscall translation.  */
495     int eabi;
496 #endif
497 
498     struct CPUBreakpoint *cpu_breakpoint[16];
499     struct CPUWatchpoint *cpu_watchpoint[16];
500 
501     /* Fields up to this point are cleared by a CPU reset */
502     struct {} end_reset_fields;
503 
504     CPU_COMMON
505 
506     /* Fields after CPU_COMMON are preserved across CPU reset. */
507 
508     /* Internal CPU feature flags.  */
509     uint64_t features;
510 
511     /* PMSAv7 MPU */
512     struct {
513         uint32_t *drbar;
514         uint32_t *drsr;
515         uint32_t *dracr;
516     } pmsav7;
517 
518     void *nvic;
519     const struct arm_boot_info *boot_info;
520 } CPUARMState;
521 
522 /**
523  * ARMELChangeHook:
524  * type of a function which can be registered via arm_register_el_change_hook()
525  * to get callbacks when the CPU changes its exception level or mode.
526  */
527 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
528 
529 /**
530  * ARMCPU:
531  * @env: #CPUARMState
532  *
533  * An ARM CPU core.
534  */
535 struct ARMCPU {
536     /*< private >*/
537     CPUState parent_obj;
538     /*< public >*/
539 
540     CPUARMState env;
541 
542     /* Coprocessor information */
543     GHashTable *cp_regs;
544     /* For marshalling (mostly coprocessor) register state between the
545      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
546      * we use these arrays.
547      */
548     /* List of register indexes managed via these arrays; (full KVM style
549      * 64 bit indexes, not CPRegInfo 32 bit indexes)
550      */
551     uint64_t *cpreg_indexes;
552     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
553     uint64_t *cpreg_values;
554     /* Length of the indexes, values, reset_values arrays */
555     int32_t cpreg_array_len;
556     /* These are used only for migration: incoming data arrives in
557      * these fields and is sanity checked in post_load before copying
558      * to the working data structures above.
559      */
560     uint64_t *cpreg_vmstate_indexes;
561     uint64_t *cpreg_vmstate_values;
562     int32_t cpreg_vmstate_array_len;
563 
564     /* Timers used by the generic (architected) timer */
565     QEMUTimer *gt_timer[NUM_GTIMERS];
566     /* GPIO outputs for generic timer */
567     qemu_irq gt_timer_outputs[NUM_GTIMERS];
568     /* GPIO output for GICv3 maintenance interrupt signal */
569     qemu_irq gicv3_maintenance_interrupt;
570 
571     /* MemoryRegion to use for secure physical accesses */
572     MemoryRegion *secure_memory;
573 
574     /* 'compatible' string for this CPU for Linux device trees */
575     const char *dtb_compatible;
576 
577     /* PSCI version for this CPU
578      * Bits[31:16] = Major Version
579      * Bits[15:0] = Minor Version
580      */
581     uint32_t psci_version;
582 
583     /* Should CPU start in PSCI powered-off state? */
584     bool start_powered_off;
585     /* CPU currently in PSCI powered-off state */
586     bool powered_off;
587     /* CPU has virtualization extension */
588     bool has_el2;
589     /* CPU has security extension */
590     bool has_el3;
591     /* CPU has PMU (Performance Monitor Unit) */
592     bool has_pmu;
593 
594     /* CPU has memory protection unit */
595     bool has_mpu;
596     /* PMSAv7 MPU number of supported regions */
597     uint32_t pmsav7_dregion;
598 
599     /* PSCI conduit used to invoke PSCI methods
600      * 0 - disabled, 1 - smc, 2 - hvc
601      */
602     uint32_t psci_conduit;
603 
604     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
605      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
606      */
607     uint32_t kvm_target;
608 
609     /* KVM init features for this CPU */
610     uint32_t kvm_init_features[7];
611 
612     /* Uniprocessor system with MP extensions */
613     bool mp_is_up;
614 
615     /* The instance init functions for implementation-specific subclasses
616      * set these fields to specify the implementation-dependent values of
617      * various constant registers and reset values of non-constant
618      * registers.
619      * Some of these might become QOM properties eventually.
620      * Field names match the official register names as defined in the
621      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
622      * is used for reset values of non-constant registers; no reset_
623      * prefix means a constant register.
624      */
625     uint32_t midr;
626     uint32_t revidr;
627     uint32_t reset_fpsid;
628     uint32_t mvfr0;
629     uint32_t mvfr1;
630     uint32_t mvfr2;
631     uint32_t ctr;
632     uint32_t reset_sctlr;
633     uint32_t id_pfr0;
634     uint32_t id_pfr1;
635     uint32_t id_dfr0;
636     uint32_t pmceid0;
637     uint32_t pmceid1;
638     uint32_t id_afr0;
639     uint32_t id_mmfr0;
640     uint32_t id_mmfr1;
641     uint32_t id_mmfr2;
642     uint32_t id_mmfr3;
643     uint32_t id_mmfr4;
644     uint32_t id_isar0;
645     uint32_t id_isar1;
646     uint32_t id_isar2;
647     uint32_t id_isar3;
648     uint32_t id_isar4;
649     uint32_t id_isar5;
650     uint64_t id_aa64pfr0;
651     uint64_t id_aa64pfr1;
652     uint64_t id_aa64dfr0;
653     uint64_t id_aa64dfr1;
654     uint64_t id_aa64afr0;
655     uint64_t id_aa64afr1;
656     uint64_t id_aa64isar0;
657     uint64_t id_aa64isar1;
658     uint64_t id_aa64mmfr0;
659     uint64_t id_aa64mmfr1;
660     uint32_t dbgdidr;
661     uint32_t clidr;
662     uint64_t mp_affinity; /* MP ID without feature bits */
663     /* The elements of this array are the CCSIDR values for each cache,
664      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
665      */
666     uint32_t ccsidr[16];
667     uint64_t reset_cbar;
668     uint32_t reset_auxcr;
669     bool reset_hivecs;
670     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
671     uint32_t dcz_blocksize;
672     uint64_t rvbar;
673 
674     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
675     int gic_num_lrs; /* number of list registers */
676     int gic_vpribits; /* number of virtual priority bits */
677     int gic_vprebits; /* number of virtual preemption bits */
678 
679     /* Whether the cfgend input is high (i.e. this CPU should reset into
680      * big-endian mode).  This setting isn't used directly: instead it modifies
681      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
682      * architecture version.
683      */
684     bool cfgend;
685 
686     ARMELChangeHook *el_change_hook;
687     void *el_change_hook_opaque;
688 };
689 
690 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
691 {
692     return container_of(env, ARMCPU, env);
693 }
694 
695 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
696 
697 #define ENV_OFFSET offsetof(ARMCPU, env)
698 
699 #ifndef CONFIG_USER_ONLY
700 extern const struct VMStateDescription vmstate_arm_cpu;
701 #endif
702 
703 void arm_cpu_do_interrupt(CPUState *cpu);
704 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
705 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
706 
707 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
708                         int flags);
709 
710 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
711                                          MemTxAttrs *attrs);
712 
713 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
714 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
715 
716 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
717                              int cpuid, void *opaque);
718 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
719                              int cpuid, void *opaque);
720 
721 #ifdef TARGET_AARCH64
722 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
723 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
724 #endif
725 
726 ARMCPU *cpu_arm_init(const char *cpu_model);
727 target_ulong do_arm_semihosting(CPUARMState *env);
728 void aarch64_sync_32_to_64(CPUARMState *env);
729 void aarch64_sync_64_to_32(CPUARMState *env);
730 
731 static inline bool is_a64(CPUARMState *env)
732 {
733     return env->aarch64;
734 }
735 
736 /* you can call this signal handler from your SIGBUS and SIGSEGV
737    signal handlers to inform the virtual CPU of exceptions. non zero
738    is returned if the signal was handled by the virtual CPU.  */
739 int cpu_arm_signal_handler(int host_signum, void *pinfo,
740                            void *puc);
741 
742 /**
743  * pmccntr_sync
744  * @env: CPUARMState
745  *
746  * Synchronises the counter in the PMCCNTR. This must always be called twice,
747  * once before any action that might affect the timer and again afterwards.
748  * The function is used to swap the state of the register if required.
749  * This only happens when not in user mode (!CONFIG_USER_ONLY)
750  */
751 void pmccntr_sync(CPUARMState *env);
752 
753 /* SCTLR bit meanings. Several bits have been reused in newer
754  * versions of the architecture; in that case we define constants
755  * for both old and new bit meanings. Code which tests against those
756  * bits should probably check or otherwise arrange that the CPU
757  * is the architectural version it expects.
758  */
759 #define SCTLR_M       (1U << 0)
760 #define SCTLR_A       (1U << 1)
761 #define SCTLR_C       (1U << 2)
762 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
763 #define SCTLR_SA      (1U << 3)
764 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
765 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
766 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
767 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
768 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
769 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
770 #define SCTLR_ITD     (1U << 7) /* v8 onward */
771 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
772 #define SCTLR_SED     (1U << 8) /* v8 onward */
773 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
774 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
775 #define SCTLR_F       (1U << 10) /* up to v6 */
776 #define SCTLR_SW      (1U << 10) /* v7 onward */
777 #define SCTLR_Z       (1U << 11)
778 #define SCTLR_I       (1U << 12)
779 #define SCTLR_V       (1U << 13)
780 #define SCTLR_RR      (1U << 14) /* up to v7 */
781 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
782 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
783 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
784 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
785 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
786 #define SCTLR_HA      (1U << 17)
787 #define SCTLR_BR      (1U << 17) /* PMSA only */
788 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
789 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
790 #define SCTLR_WXN     (1U << 19)
791 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
792 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
793 #define SCTLR_FI      (1U << 21)
794 #define SCTLR_U       (1U << 22)
795 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
796 #define SCTLR_VE      (1U << 24) /* up to v7 */
797 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
798 #define SCTLR_EE      (1U << 25)
799 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
800 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
801 #define SCTLR_NMFI    (1U << 27)
802 #define SCTLR_TRE     (1U << 28)
803 #define SCTLR_AFE     (1U << 29)
804 #define SCTLR_TE      (1U << 30)
805 
806 #define CPTR_TCPAC    (1U << 31)
807 #define CPTR_TTA      (1U << 20)
808 #define CPTR_TFP      (1U << 10)
809 
810 #define MDCR_EPMAD    (1U << 21)
811 #define MDCR_EDAD     (1U << 20)
812 #define MDCR_SPME     (1U << 17)
813 #define MDCR_SDD      (1U << 16)
814 #define MDCR_SPD      (3U << 14)
815 #define MDCR_TDRA     (1U << 11)
816 #define MDCR_TDOSA    (1U << 10)
817 #define MDCR_TDA      (1U << 9)
818 #define MDCR_TDE      (1U << 8)
819 #define MDCR_HPME     (1U << 7)
820 #define MDCR_TPM      (1U << 6)
821 #define MDCR_TPMCR    (1U << 5)
822 
823 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
824 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
825 
826 #define CPSR_M (0x1fU)
827 #define CPSR_T (1U << 5)
828 #define CPSR_F (1U << 6)
829 #define CPSR_I (1U << 7)
830 #define CPSR_A (1U << 8)
831 #define CPSR_E (1U << 9)
832 #define CPSR_IT_2_7 (0xfc00U)
833 #define CPSR_GE (0xfU << 16)
834 #define CPSR_IL (1U << 20)
835 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
836  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
837  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
838  * where it is live state but not accessible to the AArch32 code.
839  */
840 #define CPSR_RESERVED (0x7U << 21)
841 #define CPSR_J (1U << 24)
842 #define CPSR_IT_0_1 (3U << 25)
843 #define CPSR_Q (1U << 27)
844 #define CPSR_V (1U << 28)
845 #define CPSR_C (1U << 29)
846 #define CPSR_Z (1U << 30)
847 #define CPSR_N (1U << 31)
848 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
849 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
850 
851 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
852 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
853     | CPSR_NZCV)
854 /* Bits writable in user mode.  */
855 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
856 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
857 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
858 /* Mask of bits which may be set by exception return copying them from SPSR */
859 #define CPSR_ERET_MASK (~CPSR_RESERVED)
860 
861 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
862 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
863 #define TTBCR_PD0    (1U << 4)
864 #define TTBCR_PD1    (1U << 5)
865 #define TTBCR_EPD0   (1U << 7)
866 #define TTBCR_IRGN0  (3U << 8)
867 #define TTBCR_ORGN0  (3U << 10)
868 #define TTBCR_SH0    (3U << 12)
869 #define TTBCR_T1SZ   (3U << 16)
870 #define TTBCR_A1     (1U << 22)
871 #define TTBCR_EPD1   (1U << 23)
872 #define TTBCR_IRGN1  (3U << 24)
873 #define TTBCR_ORGN1  (3U << 26)
874 #define TTBCR_SH1    (1U << 28)
875 #define TTBCR_EAE    (1U << 31)
876 
877 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
878  * Only these are valid when in AArch64 mode; in
879  * AArch32 mode SPSRs are basically CPSR-format.
880  */
881 #define PSTATE_SP (1U)
882 #define PSTATE_M (0xFU)
883 #define PSTATE_nRW (1U << 4)
884 #define PSTATE_F (1U << 6)
885 #define PSTATE_I (1U << 7)
886 #define PSTATE_A (1U << 8)
887 #define PSTATE_D (1U << 9)
888 #define PSTATE_IL (1U << 20)
889 #define PSTATE_SS (1U << 21)
890 #define PSTATE_V (1U << 28)
891 #define PSTATE_C (1U << 29)
892 #define PSTATE_Z (1U << 30)
893 #define PSTATE_N (1U << 31)
894 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
895 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
896 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
897 /* Mode values for AArch64 */
898 #define PSTATE_MODE_EL3h 13
899 #define PSTATE_MODE_EL3t 12
900 #define PSTATE_MODE_EL2h 9
901 #define PSTATE_MODE_EL2t 8
902 #define PSTATE_MODE_EL1h 5
903 #define PSTATE_MODE_EL1t 4
904 #define PSTATE_MODE_EL0t 0
905 
906 /* Map EL and handler into a PSTATE_MODE.  */
907 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
908 {
909     return (el << 2) | handler;
910 }
911 
912 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
913  * interprocessing, so we don't attempt to sync with the cpsr state used by
914  * the 32 bit decoder.
915  */
916 static inline uint32_t pstate_read(CPUARMState *env)
917 {
918     int ZF;
919 
920     ZF = (env->ZF == 0);
921     return (env->NF & 0x80000000) | (ZF << 30)
922         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
923         | env->pstate | env->daif;
924 }
925 
926 static inline void pstate_write(CPUARMState *env, uint32_t val)
927 {
928     env->ZF = (~val) & PSTATE_Z;
929     env->NF = val;
930     env->CF = (val >> 29) & 1;
931     env->VF = (val << 3) & 0x80000000;
932     env->daif = val & PSTATE_DAIF;
933     env->pstate = val & ~CACHED_PSTATE_BITS;
934 }
935 
936 /* Return the current CPSR value.  */
937 uint32_t cpsr_read(CPUARMState *env);
938 
939 typedef enum CPSRWriteType {
940     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
941     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
942     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
943     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
944 } CPSRWriteType;
945 
946 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
947 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
948                 CPSRWriteType write_type);
949 
950 /* Return the current xPSR value.  */
951 static inline uint32_t xpsr_read(CPUARMState *env)
952 {
953     int ZF;
954     ZF = (env->ZF == 0);
955     return (env->NF & 0x80000000) | (ZF << 30)
956         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
957         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
958         | ((env->condexec_bits & 0xfc) << 8)
959         | env->v7m.exception;
960 }
961 
962 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
963 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
964 {
965     if (mask & CPSR_NZCV) {
966         env->ZF = (~val) & CPSR_Z;
967         env->NF = val;
968         env->CF = (val >> 29) & 1;
969         env->VF = (val << 3) & 0x80000000;
970     }
971     if (mask & CPSR_Q)
972         env->QF = ((val & CPSR_Q) != 0);
973     if (mask & (1 << 24))
974         env->thumb = ((val & (1 << 24)) != 0);
975     if (mask & CPSR_IT_0_1) {
976         env->condexec_bits &= ~3;
977         env->condexec_bits |= (val >> 25) & 3;
978     }
979     if (mask & CPSR_IT_2_7) {
980         env->condexec_bits &= 3;
981         env->condexec_bits |= (val >> 8) & 0xfc;
982     }
983     if (mask & 0x1ff) {
984         env->v7m.exception = val & 0x1ff;
985     }
986 }
987 
988 #define HCR_VM        (1ULL << 0)
989 #define HCR_SWIO      (1ULL << 1)
990 #define HCR_PTW       (1ULL << 2)
991 #define HCR_FMO       (1ULL << 3)
992 #define HCR_IMO       (1ULL << 4)
993 #define HCR_AMO       (1ULL << 5)
994 #define HCR_VF        (1ULL << 6)
995 #define HCR_VI        (1ULL << 7)
996 #define HCR_VSE       (1ULL << 8)
997 #define HCR_FB        (1ULL << 9)
998 #define HCR_BSU_MASK  (3ULL << 10)
999 #define HCR_DC        (1ULL << 12)
1000 #define HCR_TWI       (1ULL << 13)
1001 #define HCR_TWE       (1ULL << 14)
1002 #define HCR_TID0      (1ULL << 15)
1003 #define HCR_TID1      (1ULL << 16)
1004 #define HCR_TID2      (1ULL << 17)
1005 #define HCR_TID3      (1ULL << 18)
1006 #define HCR_TSC       (1ULL << 19)
1007 #define HCR_TIDCP     (1ULL << 20)
1008 #define HCR_TACR      (1ULL << 21)
1009 #define HCR_TSW       (1ULL << 22)
1010 #define HCR_TPC       (1ULL << 23)
1011 #define HCR_TPU       (1ULL << 24)
1012 #define HCR_TTLB      (1ULL << 25)
1013 #define HCR_TVM       (1ULL << 26)
1014 #define HCR_TGE       (1ULL << 27)
1015 #define HCR_TDZ       (1ULL << 28)
1016 #define HCR_HCD       (1ULL << 29)
1017 #define HCR_TRVM      (1ULL << 30)
1018 #define HCR_RW        (1ULL << 31)
1019 #define HCR_CD        (1ULL << 32)
1020 #define HCR_ID        (1ULL << 33)
1021 #define HCR_MASK      ((1ULL << 34) - 1)
1022 
1023 #define SCR_NS                (1U << 0)
1024 #define SCR_IRQ               (1U << 1)
1025 #define SCR_FIQ               (1U << 2)
1026 #define SCR_EA                (1U << 3)
1027 #define SCR_FW                (1U << 4)
1028 #define SCR_AW                (1U << 5)
1029 #define SCR_NET               (1U << 6)
1030 #define SCR_SMD               (1U << 7)
1031 #define SCR_HCE               (1U << 8)
1032 #define SCR_SIF               (1U << 9)
1033 #define SCR_RW                (1U << 10)
1034 #define SCR_ST                (1U << 11)
1035 #define SCR_TWI               (1U << 12)
1036 #define SCR_TWE               (1U << 13)
1037 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1038 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1039 
1040 /* Return the current FPSCR value.  */
1041 uint32_t vfp_get_fpscr(CPUARMState *env);
1042 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1043 
1044 /* For A64 the FPSCR is split into two logically distinct registers,
1045  * FPCR and FPSR. However since they still use non-overlapping bits
1046  * we store the underlying state in fpscr and just mask on read/write.
1047  */
1048 #define FPSR_MASK 0xf800009f
1049 #define FPCR_MASK 0x07f79f00
1050 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1051 {
1052     return vfp_get_fpscr(env) & FPSR_MASK;
1053 }
1054 
1055 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1056 {
1057     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1058     vfp_set_fpscr(env, new_fpscr);
1059 }
1060 
1061 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1062 {
1063     return vfp_get_fpscr(env) & FPCR_MASK;
1064 }
1065 
1066 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1067 {
1068     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1069     vfp_set_fpscr(env, new_fpscr);
1070 }
1071 
1072 enum arm_cpu_mode {
1073   ARM_CPU_MODE_USR = 0x10,
1074   ARM_CPU_MODE_FIQ = 0x11,
1075   ARM_CPU_MODE_IRQ = 0x12,
1076   ARM_CPU_MODE_SVC = 0x13,
1077   ARM_CPU_MODE_MON = 0x16,
1078   ARM_CPU_MODE_ABT = 0x17,
1079   ARM_CPU_MODE_HYP = 0x1a,
1080   ARM_CPU_MODE_UND = 0x1b,
1081   ARM_CPU_MODE_SYS = 0x1f
1082 };
1083 
1084 /* VFP system registers.  */
1085 #define ARM_VFP_FPSID   0
1086 #define ARM_VFP_FPSCR   1
1087 #define ARM_VFP_MVFR2   5
1088 #define ARM_VFP_MVFR1   6
1089 #define ARM_VFP_MVFR0   7
1090 #define ARM_VFP_FPEXC   8
1091 #define ARM_VFP_FPINST  9
1092 #define ARM_VFP_FPINST2 10
1093 
1094 /* iwMMXt coprocessor control registers.  */
1095 #define ARM_IWMMXT_wCID		0
1096 #define ARM_IWMMXT_wCon		1
1097 #define ARM_IWMMXT_wCSSF	2
1098 #define ARM_IWMMXT_wCASF	3
1099 #define ARM_IWMMXT_wCGR0	8
1100 #define ARM_IWMMXT_wCGR1	9
1101 #define ARM_IWMMXT_wCGR2	10
1102 #define ARM_IWMMXT_wCGR3	11
1103 
1104 /* V7M CCR bits */
1105 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1106 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1107 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1108 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1109 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1110 FIELD(V7M_CCR, STKALIGN, 9, 1)
1111 FIELD(V7M_CCR, DC, 16, 1)
1112 FIELD(V7M_CCR, IC, 17, 1)
1113 
1114 /* V7M CFSR bits for MMFSR */
1115 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1116 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1117 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1118 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1119 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1120 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1121 
1122 /* V7M CFSR bits for BFSR */
1123 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1124 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1125 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1126 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1127 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1128 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1129 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1130 
1131 /* V7M CFSR bits for UFSR */
1132 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1133 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1134 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1135 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1136 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1137 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1138 
1139 /* V7M HFSR bits */
1140 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1141 FIELD(V7M_HFSR, FORCED, 30, 1)
1142 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1143 
1144 /* V7M DFSR bits */
1145 FIELD(V7M_DFSR, HALTED, 0, 1)
1146 FIELD(V7M_DFSR, BKPT, 1, 1)
1147 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1148 FIELD(V7M_DFSR, VCATCH, 3, 1)
1149 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1150 
1151 /* If adding a feature bit which corresponds to a Linux ELF
1152  * HWCAP bit, remember to update the feature-bit-to-hwcap
1153  * mapping in linux-user/elfload.c:get_elf_hwcap().
1154  */
1155 enum arm_features {
1156     ARM_FEATURE_VFP,
1157     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1158     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1159     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1160     ARM_FEATURE_V6,
1161     ARM_FEATURE_V6K,
1162     ARM_FEATURE_V7,
1163     ARM_FEATURE_THUMB2,
1164     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1165     ARM_FEATURE_VFP3,
1166     ARM_FEATURE_VFP_FP16,
1167     ARM_FEATURE_NEON,
1168     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1169     ARM_FEATURE_M, /* Microcontroller profile.  */
1170     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1171     ARM_FEATURE_THUMB2EE,
1172     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1173     ARM_FEATURE_V4T,
1174     ARM_FEATURE_V5,
1175     ARM_FEATURE_STRONGARM,
1176     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1177     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1178     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1179     ARM_FEATURE_GENERIC_TIMER,
1180     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1181     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1182     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1183     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1184     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1185     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1186     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1187     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1188     ARM_FEATURE_V8,
1189     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1190     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1191     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1192     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1193     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1194     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1195     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1196     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1197     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1198     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1199     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1200     ARM_FEATURE_PMU, /* has PMU support */
1201     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1202 };
1203 
1204 static inline int arm_feature(CPUARMState *env, int feature)
1205 {
1206     return (env->features & (1ULL << feature)) != 0;
1207 }
1208 
1209 #if !defined(CONFIG_USER_ONLY)
1210 /* Return true if exception levels below EL3 are in secure state,
1211  * or would be following an exception return to that level.
1212  * Unlike arm_is_secure() (which is always a question about the
1213  * _current_ state of the CPU) this doesn't care about the current
1214  * EL or mode.
1215  */
1216 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1217 {
1218     if (arm_feature(env, ARM_FEATURE_EL3)) {
1219         return !(env->cp15.scr_el3 & SCR_NS);
1220     } else {
1221         /* If EL3 is not supported then the secure state is implementation
1222          * defined, in which case QEMU defaults to non-secure.
1223          */
1224         return false;
1225     }
1226 }
1227 
1228 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1229 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1230 {
1231     if (arm_feature(env, ARM_FEATURE_EL3)) {
1232         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1233             /* CPU currently in AArch64 state and EL3 */
1234             return true;
1235         } else if (!is_a64(env) &&
1236                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1237             /* CPU currently in AArch32 state and monitor mode */
1238             return true;
1239         }
1240     }
1241     return false;
1242 }
1243 
1244 /* Return true if the processor is in secure state */
1245 static inline bool arm_is_secure(CPUARMState *env)
1246 {
1247     if (arm_is_el3_or_mon(env)) {
1248         return true;
1249     }
1250     return arm_is_secure_below_el3(env);
1251 }
1252 
1253 #else
1254 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1255 {
1256     return false;
1257 }
1258 
1259 static inline bool arm_is_secure(CPUARMState *env)
1260 {
1261     return false;
1262 }
1263 #endif
1264 
1265 /* Return true if the specified exception level is running in AArch64 state. */
1266 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1267 {
1268     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1269      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1270      */
1271     assert(el >= 1 && el <= 3);
1272     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1273 
1274     /* The highest exception level is always at the maximum supported
1275      * register width, and then lower levels have a register width controlled
1276      * by bits in the SCR or HCR registers.
1277      */
1278     if (el == 3) {
1279         return aa64;
1280     }
1281 
1282     if (arm_feature(env, ARM_FEATURE_EL3)) {
1283         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1284     }
1285 
1286     if (el == 2) {
1287         return aa64;
1288     }
1289 
1290     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1291         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1292     }
1293 
1294     return aa64;
1295 }
1296 
1297 /* Function for determing whether guest cp register reads and writes should
1298  * access the secure or non-secure bank of a cp register.  When EL3 is
1299  * operating in AArch32 state, the NS-bit determines whether the secure
1300  * instance of a cp register should be used. When EL3 is AArch64 (or if
1301  * it doesn't exist at all) then there is no register banking, and all
1302  * accesses are to the non-secure version.
1303  */
1304 static inline bool access_secure_reg(CPUARMState *env)
1305 {
1306     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1307                 !arm_el_is_aa64(env, 3) &&
1308                 !(env->cp15.scr_el3 & SCR_NS));
1309 
1310     return ret;
1311 }
1312 
1313 /* Macros for accessing a specified CP register bank */
1314 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1315     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1316 
1317 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1318     do {                                                \
1319         if (_secure) {                                   \
1320             (_env)->cp15._regname##_s = (_val);            \
1321         } else {                                        \
1322             (_env)->cp15._regname##_ns = (_val);           \
1323         }                                               \
1324     } while (0)
1325 
1326 /* Macros for automatically accessing a specific CP register bank depending on
1327  * the current secure state of the system.  These macros are not intended for
1328  * supporting instruction translation reads/writes as these are dependent
1329  * solely on the SCR.NS bit and not the mode.
1330  */
1331 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1332     A32_BANKED_REG_GET((_env), _regname,                \
1333                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1334 
1335 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1336     A32_BANKED_REG_SET((_env), _regname,                                    \
1337                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1338                        (_val))
1339 
1340 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1341 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1342                                  uint32_t cur_el, bool secure);
1343 
1344 /* Interface between CPU and Interrupt controller.  */
1345 void armv7m_nvic_set_pending(void *opaque, int irq);
1346 int armv7m_nvic_acknowledge_irq(void *opaque);
1347 void armv7m_nvic_complete_irq(void *opaque, int irq);
1348 
1349 /* Interface for defining coprocessor registers.
1350  * Registers are defined in tables of arm_cp_reginfo structs
1351  * which are passed to define_arm_cp_regs().
1352  */
1353 
1354 /* When looking up a coprocessor register we look for it
1355  * via an integer which encodes all of:
1356  *  coprocessor number
1357  *  Crn, Crm, opc1, opc2 fields
1358  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1359  *    or via MRRC/MCRR?)
1360  *  non-secure/secure bank (AArch32 only)
1361  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1362  * (In this case crn and opc2 should be zero.)
1363  * For AArch64, there is no 32/64 bit size distinction;
1364  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1365  * and 4 bit CRn and CRm. The encoding patterns are chosen
1366  * to be easy to convert to and from the KVM encodings, and also
1367  * so that the hashtable can contain both AArch32 and AArch64
1368  * registers (to allow for interprocessing where we might run
1369  * 32 bit code on a 64 bit core).
1370  */
1371 /* This bit is private to our hashtable cpreg; in KVM register
1372  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1373  * in the upper bits of the 64 bit ID.
1374  */
1375 #define CP_REG_AA64_SHIFT 28
1376 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1377 
1378 /* To enable banking of coprocessor registers depending on ns-bit we
1379  * add a bit to distinguish between secure and non-secure cpregs in the
1380  * hashtable.
1381  */
1382 #define CP_REG_NS_SHIFT 29
1383 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1384 
1385 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1386     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1387      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1388 
1389 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1390     (CP_REG_AA64_MASK |                                 \
1391      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1392      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1393      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1394      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1395      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1396      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1397 
1398 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1399  * version used as a key for the coprocessor register hashtable
1400  */
1401 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1402 {
1403     uint32_t cpregid = kvmid;
1404     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1405         cpregid |= CP_REG_AA64_MASK;
1406     } else {
1407         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1408             cpregid |= (1 << 15);
1409         }
1410 
1411         /* KVM is always non-secure so add the NS flag on AArch32 register
1412          * entries.
1413          */
1414          cpregid |= 1 << CP_REG_NS_SHIFT;
1415     }
1416     return cpregid;
1417 }
1418 
1419 /* Convert a truncated 32 bit hashtable key into the full
1420  * 64 bit KVM register ID.
1421  */
1422 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1423 {
1424     uint64_t kvmid;
1425 
1426     if (cpregid & CP_REG_AA64_MASK) {
1427         kvmid = cpregid & ~CP_REG_AA64_MASK;
1428         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1429     } else {
1430         kvmid = cpregid & ~(1 << 15);
1431         if (cpregid & (1 << 15)) {
1432             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1433         } else {
1434             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1435         }
1436     }
1437     return kvmid;
1438 }
1439 
1440 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1441  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1442  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1443  * TCG can assume the value to be constant (ie load at translate time)
1444  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1445  * indicates that the TB should not be ended after a write to this register
1446  * (the default is that the TB ends after cp writes). OVERRIDE permits
1447  * a register definition to override a previous definition for the
1448  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1449  * old must have the OVERRIDE bit set.
1450  * ALIAS indicates that this register is an alias view of some underlying
1451  * state which is also visible via another register, and that the other
1452  * register is handling migration and reset; registers marked ALIAS will not be
1453  * migrated but may have their state set by syncing of register state from KVM.
1454  * NO_RAW indicates that this register has no underlying state and does not
1455  * support raw access for state saving/loading; it will not be used for either
1456  * migration or KVM state synchronization. (Typically this is for "registers"
1457  * which are actually used as instructions for cache maintenance and so on.)
1458  * IO indicates that this register does I/O and therefore its accesses
1459  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1460  * registers which implement clocks or timers require this.
1461  */
1462 #define ARM_CP_SPECIAL 1
1463 #define ARM_CP_CONST 2
1464 #define ARM_CP_64BIT 4
1465 #define ARM_CP_SUPPRESS_TB_END 8
1466 #define ARM_CP_OVERRIDE 16
1467 #define ARM_CP_ALIAS 32
1468 #define ARM_CP_IO 64
1469 #define ARM_CP_NO_RAW 128
1470 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1471 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1472 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1473 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1474 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1475 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1476 /* Used only as a terminator for ARMCPRegInfo lists */
1477 #define ARM_CP_SENTINEL 0xffff
1478 /* Mask of only the flag bits in a type field */
1479 #define ARM_CP_FLAG_MASK 0xff
1480 
1481 /* Valid values for ARMCPRegInfo state field, indicating which of
1482  * the AArch32 and AArch64 execution states this register is visible in.
1483  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1484  * If the reginfo is declared to be visible in both states then a second
1485  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1486  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1487  * Note that we rely on the values of these enums as we iterate through
1488  * the various states in some places.
1489  */
1490 enum {
1491     ARM_CP_STATE_AA32 = 0,
1492     ARM_CP_STATE_AA64 = 1,
1493     ARM_CP_STATE_BOTH = 2,
1494 };
1495 
1496 /* ARM CP register secure state flags.  These flags identify security state
1497  * attributes for a given CP register entry.
1498  * The existence of both or neither secure and non-secure flags indicates that
1499  * the register has both a secure and non-secure hash entry.  A single one of
1500  * these flags causes the register to only be hashed for the specified
1501  * security state.
1502  * Although definitions may have any combination of the S/NS bits, each
1503  * registered entry will only have one to identify whether the entry is secure
1504  * or non-secure.
1505  */
1506 enum {
1507     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1508     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1509 };
1510 
1511 /* Return true if cptype is a valid type field. This is used to try to
1512  * catch errors where the sentinel has been accidentally left off the end
1513  * of a list of registers.
1514  */
1515 static inline bool cptype_valid(int cptype)
1516 {
1517     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1518         || ((cptype & ARM_CP_SPECIAL) &&
1519             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1520 }
1521 
1522 /* Access rights:
1523  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1524  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1525  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1526  * (ie any of the privileged modes in Secure state, or Monitor mode).
1527  * If a register is accessible in one privilege level it's always accessible
1528  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1529  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1530  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1531  * terminology a little and call this PL3.
1532  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1533  * with the ELx exception levels.
1534  *
1535  * If access permissions for a register are more complex than can be
1536  * described with these bits, then use a laxer set of restrictions, and
1537  * do the more restrictive/complex check inside a helper function.
1538  */
1539 #define PL3_R 0x80
1540 #define PL3_W 0x40
1541 #define PL2_R (0x20 | PL3_R)
1542 #define PL2_W (0x10 | PL3_W)
1543 #define PL1_R (0x08 | PL2_R)
1544 #define PL1_W (0x04 | PL2_W)
1545 #define PL0_R (0x02 | PL1_R)
1546 #define PL0_W (0x01 | PL1_W)
1547 
1548 #define PL3_RW (PL3_R | PL3_W)
1549 #define PL2_RW (PL2_R | PL2_W)
1550 #define PL1_RW (PL1_R | PL1_W)
1551 #define PL0_RW (PL0_R | PL0_W)
1552 
1553 /* Return the highest implemented Exception Level */
1554 static inline int arm_highest_el(CPUARMState *env)
1555 {
1556     if (arm_feature(env, ARM_FEATURE_EL3)) {
1557         return 3;
1558     }
1559     if (arm_feature(env, ARM_FEATURE_EL2)) {
1560         return 2;
1561     }
1562     return 1;
1563 }
1564 
1565 /* Return the current Exception Level (as per ARMv8; note that this differs
1566  * from the ARMv7 Privilege Level).
1567  */
1568 static inline int arm_current_el(CPUARMState *env)
1569 {
1570     if (arm_feature(env, ARM_FEATURE_M)) {
1571         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1572     }
1573 
1574     if (is_a64(env)) {
1575         return extract32(env->pstate, 2, 2);
1576     }
1577 
1578     switch (env->uncached_cpsr & 0x1f) {
1579     case ARM_CPU_MODE_USR:
1580         return 0;
1581     case ARM_CPU_MODE_HYP:
1582         return 2;
1583     case ARM_CPU_MODE_MON:
1584         return 3;
1585     default:
1586         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1587             /* If EL3 is 32-bit then all secure privileged modes run in
1588              * EL3
1589              */
1590             return 3;
1591         }
1592 
1593         return 1;
1594     }
1595 }
1596 
1597 typedef struct ARMCPRegInfo ARMCPRegInfo;
1598 
1599 typedef enum CPAccessResult {
1600     /* Access is permitted */
1601     CP_ACCESS_OK = 0,
1602     /* Access fails due to a configurable trap or enable which would
1603      * result in a categorized exception syndrome giving information about
1604      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1605      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1606      * PL1 if in EL0, otherwise to the current EL).
1607      */
1608     CP_ACCESS_TRAP = 1,
1609     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1610      * Note that this is not a catch-all case -- the set of cases which may
1611      * result in this failure is specifically defined by the architecture.
1612      */
1613     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1614     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1615     CP_ACCESS_TRAP_EL2 = 3,
1616     CP_ACCESS_TRAP_EL3 = 4,
1617     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1618     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1619     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1620     /* Access fails and results in an exception syndrome for an FP access,
1621      * trapped directly to EL2 or EL3
1622      */
1623     CP_ACCESS_TRAP_FP_EL2 = 7,
1624     CP_ACCESS_TRAP_FP_EL3 = 8,
1625 } CPAccessResult;
1626 
1627 /* Access functions for coprocessor registers. These cannot fail and
1628  * may not raise exceptions.
1629  */
1630 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1631 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1632                        uint64_t value);
1633 /* Access permission check functions for coprocessor registers. */
1634 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1635                                   const ARMCPRegInfo *opaque,
1636                                   bool isread);
1637 /* Hook function for register reset */
1638 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1639 
1640 #define CP_ANY 0xff
1641 
1642 /* Definition of an ARM coprocessor register */
1643 struct ARMCPRegInfo {
1644     /* Name of register (useful mainly for debugging, need not be unique) */
1645     const char *name;
1646     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1647      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1648      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1649      * will be decoded to this register. The register read and write
1650      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1651      * used by the program, so it is possible to register a wildcard and
1652      * then behave differently on read/write if necessary.
1653      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1654      * must both be zero.
1655      * For AArch64-visible registers, opc0 is also used.
1656      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1657      * way to distinguish (for KVM's benefit) guest-visible system registers
1658      * from demuxed ones provided to preserve the "no side effects on
1659      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1660      * visible (to match KVM's encoding); cp==0 will be converted to
1661      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1662      */
1663     uint8_t cp;
1664     uint8_t crn;
1665     uint8_t crm;
1666     uint8_t opc0;
1667     uint8_t opc1;
1668     uint8_t opc2;
1669     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1670     int state;
1671     /* Register type: ARM_CP_* bits/values */
1672     int type;
1673     /* Access rights: PL*_[RW] */
1674     int access;
1675     /* Security state: ARM_CP_SECSTATE_* bits/values */
1676     int secure;
1677     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1678      * this register was defined: can be used to hand data through to the
1679      * register read/write functions, since they are passed the ARMCPRegInfo*.
1680      */
1681     void *opaque;
1682     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1683      * fieldoffset is non-zero, the reset value of the register.
1684      */
1685     uint64_t resetvalue;
1686     /* Offset of the field in CPUARMState for this register.
1687      *
1688      * This is not needed if either:
1689      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1690      *  2. both readfn and writefn are specified
1691      */
1692     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1693 
1694     /* Offsets of the secure and non-secure fields in CPUARMState for the
1695      * register if it is banked.  These fields are only used during the static
1696      * registration of a register.  During hashing the bank associated
1697      * with a given security state is copied to fieldoffset which is used from
1698      * there on out.
1699      *
1700      * It is expected that register definitions use either fieldoffset or
1701      * bank_fieldoffsets in the definition but not both.  It is also expected
1702      * that both bank offsets are set when defining a banked register.  This
1703      * use indicates that a register is banked.
1704      */
1705     ptrdiff_t bank_fieldoffsets[2];
1706 
1707     /* Function for making any access checks for this register in addition to
1708      * those specified by the 'access' permissions bits. If NULL, no extra
1709      * checks required. The access check is performed at runtime, not at
1710      * translate time.
1711      */
1712     CPAccessFn *accessfn;
1713     /* Function for handling reads of this register. If NULL, then reads
1714      * will be done by loading from the offset into CPUARMState specified
1715      * by fieldoffset.
1716      */
1717     CPReadFn *readfn;
1718     /* Function for handling writes of this register. If NULL, then writes
1719      * will be done by writing to the offset into CPUARMState specified
1720      * by fieldoffset.
1721      */
1722     CPWriteFn *writefn;
1723     /* Function for doing a "raw" read; used when we need to copy
1724      * coprocessor state to the kernel for KVM or out for
1725      * migration. This only needs to be provided if there is also a
1726      * readfn and it has side effects (for instance clear-on-read bits).
1727      */
1728     CPReadFn *raw_readfn;
1729     /* Function for doing a "raw" write; used when we need to copy KVM
1730      * kernel coprocessor state into userspace, or for inbound
1731      * migration. This only needs to be provided if there is also a
1732      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1733      * or similar behaviour.
1734      */
1735     CPWriteFn *raw_writefn;
1736     /* Function for resetting the register. If NULL, then reset will be done
1737      * by writing resetvalue to the field specified in fieldoffset. If
1738      * fieldoffset is 0 then no reset will be done.
1739      */
1740     CPResetFn *resetfn;
1741 };
1742 
1743 /* Macros which are lvalues for the field in CPUARMState for the
1744  * ARMCPRegInfo *ri.
1745  */
1746 #define CPREG_FIELD32(env, ri) \
1747     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1748 #define CPREG_FIELD64(env, ri) \
1749     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1750 
1751 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1752 
1753 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1754                                     const ARMCPRegInfo *regs, void *opaque);
1755 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1756                                        const ARMCPRegInfo *regs, void *opaque);
1757 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1758 {
1759     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1760 }
1761 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1762 {
1763     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1764 }
1765 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1766 
1767 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1768 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1769                          uint64_t value);
1770 /* CPReadFn that can be used for read-as-zero behaviour */
1771 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1772 
1773 /* CPResetFn that does nothing, for use if no reset is required even
1774  * if fieldoffset is non zero.
1775  */
1776 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1777 
1778 /* Return true if this reginfo struct's field in the cpu state struct
1779  * is 64 bits wide.
1780  */
1781 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1782 {
1783     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1784 }
1785 
1786 static inline bool cp_access_ok(int current_el,
1787                                 const ARMCPRegInfo *ri, int isread)
1788 {
1789     return (ri->access >> ((current_el * 2) + isread)) & 1;
1790 }
1791 
1792 /* Raw read of a coprocessor register (as needed for migration, etc) */
1793 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1794 
1795 /**
1796  * write_list_to_cpustate
1797  * @cpu: ARMCPU
1798  *
1799  * For each register listed in the ARMCPU cpreg_indexes list, write
1800  * its value from the cpreg_values list into the ARMCPUState structure.
1801  * This updates TCG's working data structures from KVM data or
1802  * from incoming migration state.
1803  *
1804  * Returns: true if all register values were updated correctly,
1805  * false if some register was unknown or could not be written.
1806  * Note that we do not stop early on failure -- we will attempt
1807  * writing all registers in the list.
1808  */
1809 bool write_list_to_cpustate(ARMCPU *cpu);
1810 
1811 /**
1812  * write_cpustate_to_list:
1813  * @cpu: ARMCPU
1814  *
1815  * For each register listed in the ARMCPU cpreg_indexes list, write
1816  * its value from the ARMCPUState structure into the cpreg_values list.
1817  * This is used to copy info from TCG's working data structures into
1818  * KVM or for outbound migration.
1819  *
1820  * Returns: true if all register values were read correctly,
1821  * false if some register was unknown or could not be read.
1822  * Note that we do not stop early on failure -- we will attempt
1823  * reading all registers in the list.
1824  */
1825 bool write_cpustate_to_list(ARMCPU *cpu);
1826 
1827 #define ARM_CPUID_TI915T      0x54029152
1828 #define ARM_CPUID_TI925T      0x54029252
1829 
1830 #if defined(CONFIG_USER_ONLY)
1831 #define TARGET_PAGE_BITS 12
1832 #else
1833 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1834  * have to support 1K tiny pages.
1835  */
1836 #define TARGET_PAGE_BITS_VARY
1837 #define TARGET_PAGE_BITS_MIN 10
1838 #endif
1839 
1840 #if defined(TARGET_AARCH64)
1841 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1842 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1843 #else
1844 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1845 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1846 #endif
1847 
1848 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1849                                      unsigned int target_el)
1850 {
1851     CPUARMState *env = cs->env_ptr;
1852     unsigned int cur_el = arm_current_el(env);
1853     bool secure = arm_is_secure(env);
1854     bool pstate_unmasked;
1855     int8_t unmasked = 0;
1856 
1857     /* Don't take exceptions if they target a lower EL.
1858      * This check should catch any exceptions that would not be taken but left
1859      * pending.
1860      */
1861     if (cur_el > target_el) {
1862         return false;
1863     }
1864 
1865     switch (excp_idx) {
1866     case EXCP_FIQ:
1867         pstate_unmasked = !(env->daif & PSTATE_F);
1868         break;
1869 
1870     case EXCP_IRQ:
1871         pstate_unmasked = !(env->daif & PSTATE_I);
1872         break;
1873 
1874     case EXCP_VFIQ:
1875         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1876             /* VFIQs are only taken when hypervized and non-secure.  */
1877             return false;
1878         }
1879         return !(env->daif & PSTATE_F);
1880     case EXCP_VIRQ:
1881         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1882             /* VIRQs are only taken when hypervized and non-secure.  */
1883             return false;
1884         }
1885         return !(env->daif & PSTATE_I);
1886     default:
1887         g_assert_not_reached();
1888     }
1889 
1890     /* Use the target EL, current execution state and SCR/HCR settings to
1891      * determine whether the corresponding CPSR bit is used to mask the
1892      * interrupt.
1893      */
1894     if ((target_el > cur_el) && (target_el != 1)) {
1895         /* Exceptions targeting a higher EL may not be maskable */
1896         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1897             /* 64-bit masking rules are simple: exceptions to EL3
1898              * can't be masked, and exceptions to EL2 can only be
1899              * masked from Secure state. The HCR and SCR settings
1900              * don't affect the masking logic, only the interrupt routing.
1901              */
1902             if (target_el == 3 || !secure) {
1903                 unmasked = 1;
1904             }
1905         } else {
1906             /* The old 32-bit-only environment has a more complicated
1907              * masking setup. HCR and SCR bits not only affect interrupt
1908              * routing but also change the behaviour of masking.
1909              */
1910             bool hcr, scr;
1911 
1912             switch (excp_idx) {
1913             case EXCP_FIQ:
1914                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1915                  * we override the CPSR.F in determining if the exception is
1916                  * masked or not. If neither of these are set then we fall back
1917                  * to the CPSR.F setting otherwise we further assess the state
1918                  * below.
1919                  */
1920                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1921                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1922 
1923                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1924                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1925                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1926                  * when non-secure but only when FIQs are only routed to EL3.
1927                  */
1928                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1929                 break;
1930             case EXCP_IRQ:
1931                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1932                  * we may override the CPSR.I masking when in non-secure state.
1933                  * The SCR.IRQ setting has already been taken into consideration
1934                  * when setting the target EL, so it does not have a further
1935                  * affect here.
1936                  */
1937                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1938                 scr = false;
1939                 break;
1940             default:
1941                 g_assert_not_reached();
1942             }
1943 
1944             if ((scr || hcr) && !secure) {
1945                 unmasked = 1;
1946             }
1947         }
1948     }
1949 
1950     /* The PSTATE bits only mask the interrupt if we have not overriden the
1951      * ability above.
1952      */
1953     return unmasked || pstate_unmasked;
1954 }
1955 
1956 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1957 
1958 #define cpu_signal_handler cpu_arm_signal_handler
1959 #define cpu_list arm_cpu_list
1960 
1961 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1962  *
1963  * If EL3 is 64-bit:
1964  *  + NonSecure EL1 & 0 stage 1
1965  *  + NonSecure EL1 & 0 stage 2
1966  *  + NonSecure EL2
1967  *  + Secure EL1 & EL0
1968  *  + Secure EL3
1969  * If EL3 is 32-bit:
1970  *  + NonSecure PL1 & 0 stage 1
1971  *  + NonSecure PL1 & 0 stage 2
1972  *  + NonSecure PL2
1973  *  + Secure PL0 & PL1
1974  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1975  *
1976  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1977  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1978  *     may differ in access permissions even if the VA->PA map is the same
1979  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1980  *     translation, which means that we have one mmu_idx that deals with two
1981  *     concatenated translation regimes [this sort of combined s1+2 TLB is
1982  *     architecturally permitted]
1983  *  3. we don't need to allocate an mmu_idx to translations that we won't be
1984  *     handling via the TLB. The only way to do a stage 1 translation without
1985  *     the immediate stage 2 translation is via the ATS or AT system insns,
1986  *     which can be slow-pathed and always do a page table walk.
1987  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1988  *     translation regimes, because they map reasonably well to each other
1989  *     and they can't both be active at the same time.
1990  * This gives us the following list of mmu_idx values:
1991  *
1992  * NS EL0 (aka NS PL0) stage 1+2
1993  * NS EL1 (aka NS PL1) stage 1+2
1994  * NS EL2 (aka NS PL2)
1995  * S EL3 (aka S PL1)
1996  * S EL0 (aka S PL0)
1997  * S EL1 (not used if EL3 is 32 bit)
1998  * NS EL0+1 stage 2
1999  *
2000  * (The last of these is an mmu_idx because we want to be able to use the TLB
2001  * for the accesses done as part of a stage 1 page table walk, rather than
2002  * having to walk the stage 2 page table over and over.)
2003  *
2004  * Our enumeration includes at the end some entries which are not "true"
2005  * mmu_idx values in that they don't have corresponding TLBs and are only
2006  * valid for doing slow path page table walks.
2007  *
2008  * The constant names here are patterned after the general style of the names
2009  * of the AT/ATS operations.
2010  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2011  */
2012 typedef enum ARMMMUIdx {
2013     ARMMMUIdx_S12NSE0 = 0,
2014     ARMMMUIdx_S12NSE1 = 1,
2015     ARMMMUIdx_S1E2 = 2,
2016     ARMMMUIdx_S1E3 = 3,
2017     ARMMMUIdx_S1SE0 = 4,
2018     ARMMMUIdx_S1SE1 = 5,
2019     ARMMMUIdx_S2NS = 6,
2020     /* Indexes below here don't have TLBs and are used only for AT system
2021      * instructions or for the first stage of an S12 page table walk.
2022      */
2023     ARMMMUIdx_S1NSE0 = 7,
2024     ARMMMUIdx_S1NSE1 = 8,
2025 } ARMMMUIdx;
2026 
2027 #define MMU_USER_IDX 0
2028 
2029 /* Return the exception level we're running at if this is our mmu_idx */
2030 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2031 {
2032     assert(mmu_idx < ARMMMUIdx_S2NS);
2033     return mmu_idx & 3;
2034 }
2035 
2036 /* Determine the current mmu_idx to use for normal loads/stores */
2037 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2038 {
2039     int el = arm_current_el(env);
2040 
2041     if (el < 2 && arm_is_secure_below_el3(env)) {
2042         return ARMMMUIdx_S1SE0 + el;
2043     }
2044     return el;
2045 }
2046 
2047 /* Indexes used when registering address spaces with cpu_address_space_init */
2048 typedef enum ARMASIdx {
2049     ARMASIdx_NS = 0,
2050     ARMASIdx_S = 1,
2051 } ARMASIdx;
2052 
2053 /* Return the Exception Level targeted by debug exceptions. */
2054 static inline int arm_debug_target_el(CPUARMState *env)
2055 {
2056     bool secure = arm_is_secure(env);
2057     bool route_to_el2 = false;
2058 
2059     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2060         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2061                        env->cp15.mdcr_el2 & (1 << 8);
2062     }
2063 
2064     if (route_to_el2) {
2065         return 2;
2066     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2067                !arm_el_is_aa64(env, 3) && secure) {
2068         return 3;
2069     } else {
2070         return 1;
2071     }
2072 }
2073 
2074 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2075 {
2076     if (arm_is_secure(env)) {
2077         /* MDCR_EL3.SDD disables debug events from Secure state */
2078         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2079             || arm_current_el(env) == 3) {
2080             return false;
2081         }
2082     }
2083 
2084     if (arm_current_el(env) == arm_debug_target_el(env)) {
2085         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2086             || (env->daif & PSTATE_D)) {
2087             return false;
2088         }
2089     }
2090     return true;
2091 }
2092 
2093 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2094 {
2095     int el = arm_current_el(env);
2096 
2097     if (el == 0 && arm_el_is_aa64(env, 1)) {
2098         return aa64_generate_debug_exceptions(env);
2099     }
2100 
2101     if (arm_is_secure(env)) {
2102         int spd;
2103 
2104         if (el == 0 && (env->cp15.sder & 1)) {
2105             /* SDER.SUIDEN means debug exceptions from Secure EL0
2106              * are always enabled. Otherwise they are controlled by
2107              * SDCR.SPD like those from other Secure ELs.
2108              */
2109             return true;
2110         }
2111 
2112         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2113         switch (spd) {
2114         case 1:
2115             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2116         case 0:
2117             /* For 0b00 we return true if external secure invasive debug
2118              * is enabled. On real hardware this is controlled by external
2119              * signals to the core. QEMU always permits debug, and behaves
2120              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2121              */
2122             return true;
2123         case 2:
2124             return false;
2125         case 3:
2126             return true;
2127         }
2128     }
2129 
2130     return el != 2;
2131 }
2132 
2133 /* Return true if debugging exceptions are currently enabled.
2134  * This corresponds to what in ARM ARM pseudocode would be
2135  *    if UsingAArch32() then
2136  *        return AArch32.GenerateDebugExceptions()
2137  *    else
2138  *        return AArch64.GenerateDebugExceptions()
2139  * We choose to push the if() down into this function for clarity,
2140  * since the pseudocode has it at all callsites except for the one in
2141  * CheckSoftwareStep(), where it is elided because both branches would
2142  * always return the same value.
2143  *
2144  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2145  * don't yet implement those exception levels or their associated trap bits.
2146  */
2147 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2148 {
2149     if (env->aarch64) {
2150         return aa64_generate_debug_exceptions(env);
2151     } else {
2152         return aa32_generate_debug_exceptions(env);
2153     }
2154 }
2155 
2156 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2157  * implicitly means this always returns false in pre-v8 CPUs.)
2158  */
2159 static inline bool arm_singlestep_active(CPUARMState *env)
2160 {
2161     return extract32(env->cp15.mdscr_el1, 0, 1)
2162         && arm_el_is_aa64(env, arm_debug_target_el(env))
2163         && arm_generate_debug_exceptions(env);
2164 }
2165 
2166 static inline bool arm_sctlr_b(CPUARMState *env)
2167 {
2168     return
2169         /* We need not implement SCTLR.ITD in user-mode emulation, so
2170          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2171          * This lets people run BE32 binaries with "-cpu any".
2172          */
2173 #ifndef CONFIG_USER_ONLY
2174         !arm_feature(env, ARM_FEATURE_V7) &&
2175 #endif
2176         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2177 }
2178 
2179 /* Return true if the processor is in big-endian mode. */
2180 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2181 {
2182     int cur_el;
2183 
2184     /* In 32bit endianness is determined by looking at CPSR's E bit */
2185     if (!is_a64(env)) {
2186         return
2187 #ifdef CONFIG_USER_ONLY
2188             /* In system mode, BE32 is modelled in line with the
2189              * architecture (as word-invariant big-endianness), where loads
2190              * and stores are done little endian but from addresses which
2191              * are adjusted by XORing with the appropriate constant. So the
2192              * endianness to use for the raw data access is not affected by
2193              * SCTLR.B.
2194              * In user mode, however, we model BE32 as byte-invariant
2195              * big-endianness (because user-only code cannot tell the
2196              * difference), and so we need to use a data access endianness
2197              * that depends on SCTLR.B.
2198              */
2199             arm_sctlr_b(env) ||
2200 #endif
2201                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2202     }
2203 
2204     cur_el = arm_current_el(env);
2205 
2206     if (cur_el == 0) {
2207         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2208     }
2209 
2210     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2211 }
2212 
2213 #include "exec/cpu-all.h"
2214 
2215 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2216  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2217  * We put flags which are shared between 32 and 64 bit mode at the top
2218  * of the word, and flags which apply to only one mode at the bottom.
2219  */
2220 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2221 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2222 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2223 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2224 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2225 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2226 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2227 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2228 /* Target EL if we take a floating-point-disabled exception */
2229 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2230 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2231 
2232 /* Bit usage when in AArch32 state: */
2233 #define ARM_TBFLAG_THUMB_SHIFT      0
2234 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2235 #define ARM_TBFLAG_VECLEN_SHIFT     1
2236 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2237 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2238 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2239 #define ARM_TBFLAG_VFPEN_SHIFT      7
2240 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2241 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2242 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2243 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2244 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2245 /* We store the bottom two bits of the CPAR as TB flags and handle
2246  * checks on the other bits at runtime
2247  */
2248 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2249 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2250 /* Indicates whether cp register reads and writes by guest code should access
2251  * the secure or nonsecure bank of banked registers; note that this is not
2252  * the same thing as the current security state of the processor!
2253  */
2254 #define ARM_TBFLAG_NS_SHIFT         19
2255 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2256 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2257 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2258 
2259 /* Bit usage when in AArch64 state */
2260 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2261 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2262 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2263 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2264 
2265 /* some convenience accessor macros */
2266 #define ARM_TBFLAG_AARCH64_STATE(F) \
2267     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2268 #define ARM_TBFLAG_MMUIDX(F) \
2269     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2270 #define ARM_TBFLAG_SS_ACTIVE(F) \
2271     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2272 #define ARM_TBFLAG_PSTATE_SS(F) \
2273     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2274 #define ARM_TBFLAG_FPEXC_EL(F) \
2275     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2276 #define ARM_TBFLAG_THUMB(F) \
2277     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2278 #define ARM_TBFLAG_VECLEN(F) \
2279     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2280 #define ARM_TBFLAG_VECSTRIDE(F) \
2281     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2282 #define ARM_TBFLAG_VFPEN(F) \
2283     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2284 #define ARM_TBFLAG_CONDEXEC(F) \
2285     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2286 #define ARM_TBFLAG_SCTLR_B(F) \
2287     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2288 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2289     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2290 #define ARM_TBFLAG_NS(F) \
2291     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2292 #define ARM_TBFLAG_BE_DATA(F) \
2293     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2294 #define ARM_TBFLAG_TBI0(F) \
2295     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2296 #define ARM_TBFLAG_TBI1(F) \
2297     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2298 
2299 static inline bool bswap_code(bool sctlr_b)
2300 {
2301 #ifdef CONFIG_USER_ONLY
2302     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2303      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2304      * would also end up as a mixed-endian mode with BE code, LE data.
2305      */
2306     return
2307 #ifdef TARGET_WORDS_BIGENDIAN
2308         1 ^
2309 #endif
2310         sctlr_b;
2311 #else
2312     /* All code access in ARM is little endian, and there are no loaders
2313      * doing swaps that need to be reversed
2314      */
2315     return 0;
2316 #endif
2317 }
2318 
2319 /* Return the exception level to which FP-disabled exceptions should
2320  * be taken, or 0 if FP is enabled.
2321  */
2322 static inline int fp_exception_el(CPUARMState *env)
2323 {
2324     int fpen;
2325     int cur_el = arm_current_el(env);
2326 
2327     /* CPACR and the CPTR registers don't exist before v6, so FP is
2328      * always accessible
2329      */
2330     if (!arm_feature(env, ARM_FEATURE_V6)) {
2331         return 0;
2332     }
2333 
2334     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2335      * 0, 2 : trap EL0 and EL1/PL1 accesses
2336      * 1    : trap only EL0 accesses
2337      * 3    : trap no accesses
2338      */
2339     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2340     switch (fpen) {
2341     case 0:
2342     case 2:
2343         if (cur_el == 0 || cur_el == 1) {
2344             /* Trap to PL1, which might be EL1 or EL3 */
2345             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2346                 return 3;
2347             }
2348             return 1;
2349         }
2350         if (cur_el == 3 && !is_a64(env)) {
2351             /* Secure PL1 running at EL3 */
2352             return 3;
2353         }
2354         break;
2355     case 1:
2356         if (cur_el == 0) {
2357             return 1;
2358         }
2359         break;
2360     case 3:
2361         break;
2362     }
2363 
2364     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2365      * check because zero bits in the registers mean "don't trap".
2366      */
2367 
2368     /* CPTR_EL2 : present in v7VE or v8 */
2369     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2370         && !arm_is_secure_below_el3(env)) {
2371         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2372         return 2;
2373     }
2374 
2375     /* CPTR_EL3 : present in v8 */
2376     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2377         /* Trap all FP ops to EL3 */
2378         return 3;
2379     }
2380 
2381     return 0;
2382 }
2383 
2384 #ifdef CONFIG_USER_ONLY
2385 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2386 {
2387     return
2388 #ifdef TARGET_WORDS_BIGENDIAN
2389        1 ^
2390 #endif
2391        arm_cpu_data_is_big_endian(env);
2392 }
2393 #endif
2394 
2395 #ifndef CONFIG_USER_ONLY
2396 /**
2397  * arm_regime_tbi0:
2398  * @env: CPUARMState
2399  * @mmu_idx: MMU index indicating required translation regime
2400  *
2401  * Extracts the TBI0 value from the appropriate TCR for the current EL
2402  *
2403  * Returns: the TBI0 value.
2404  */
2405 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2406 
2407 /**
2408  * arm_regime_tbi1:
2409  * @env: CPUARMState
2410  * @mmu_idx: MMU index indicating required translation regime
2411  *
2412  * Extracts the TBI1 value from the appropriate TCR for the current EL
2413  *
2414  * Returns: the TBI1 value.
2415  */
2416 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2417 #else
2418 /* We can't handle tagged addresses properly in user-only mode */
2419 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2420 {
2421     return 0;
2422 }
2423 
2424 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2425 {
2426     return 0;
2427 }
2428 #endif
2429 
2430 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2431                                         target_ulong *cs_base, uint32_t *flags)
2432 {
2433     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2434     if (is_a64(env)) {
2435         *pc = env->pc;
2436         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2437         /* Get control bits for tagged addresses */
2438         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2439         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2440     } else {
2441         *pc = env->regs[15];
2442         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2443             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2444             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2445             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2446             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2447         if (!(access_secure_reg(env))) {
2448             *flags |= ARM_TBFLAG_NS_MASK;
2449         }
2450         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2451             || arm_el_is_aa64(env, 1)) {
2452             *flags |= ARM_TBFLAG_VFPEN_MASK;
2453         }
2454         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2455                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2456     }
2457 
2458     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2459 
2460     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2461      * states defined in the ARM ARM for software singlestep:
2462      *  SS_ACTIVE   PSTATE.SS   State
2463      *     0            x       Inactive (the TB flag for SS is always 0)
2464      *     1            0       Active-pending
2465      *     1            1       Active-not-pending
2466      */
2467     if (arm_singlestep_active(env)) {
2468         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2469         if (is_a64(env)) {
2470             if (env->pstate & PSTATE_SS) {
2471                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2472             }
2473         } else {
2474             if (env->uncached_cpsr & PSTATE_SS) {
2475                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2476             }
2477         }
2478     }
2479     if (arm_cpu_data_is_big_endian(env)) {
2480         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2481     }
2482     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2483 
2484     *cs_base = 0;
2485 }
2486 
2487 enum {
2488     QEMU_PSCI_CONDUIT_DISABLED = 0,
2489     QEMU_PSCI_CONDUIT_SMC = 1,
2490     QEMU_PSCI_CONDUIT_HVC = 2,
2491 };
2492 
2493 #ifndef CONFIG_USER_ONLY
2494 /* Return the address space index to use for a memory access */
2495 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2496 {
2497     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2498 }
2499 
2500 /* Return the AddressSpace to use for a memory access
2501  * (which depends on whether the access is S or NS, and whether
2502  * the board gave us a separate AddressSpace for S accesses).
2503  */
2504 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2505 {
2506     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2507 }
2508 #endif
2509 
2510 /**
2511  * arm_register_el_change_hook:
2512  * Register a hook function which will be called back whenever this
2513  * CPU changes exception level or mode. The hook function will be
2514  * passed a pointer to the ARMCPU and the opaque data pointer passed
2515  * to this function when the hook was registered.
2516  *
2517  * Note that we currently only support registering a single hook function,
2518  * and will assert if this function is called twice.
2519  * This facility is intended for the use of the GICv3 emulation.
2520  */
2521 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2522                                  void *opaque);
2523 
2524 /**
2525  * arm_get_el_change_hook_opaque:
2526  * Return the opaque data that will be used by the el_change_hook
2527  * for this CPU.
2528  */
2529 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2530 {
2531     return cpu->el_change_hook_opaque;
2532 }
2533 
2534 #endif
2535