xref: /openbmc/qemu/target/arm/cpu.h (revision 49d755d0)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #define EXCP_UDEF            1   /* undefined instruction */
43 #define EXCP_SWI             2   /* software interrupt */
44 #define EXCP_PREFETCH_ABORT  3
45 #define EXCP_DATA_ABORT      4
46 #define EXCP_IRQ             5
47 #define EXCP_FIQ             6
48 #define EXCP_BKPT            7
49 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
50 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
51 #define EXCP_HVC            11   /* HyperVisor Call */
52 #define EXCP_HYP_TRAP       12
53 #define EXCP_SMC            13   /* Secure Monitor Call */
54 #define EXCP_VIRQ           14
55 #define EXCP_VFIQ           15
56 #define EXCP_SEMIHOST       16   /* semihosting call */
57 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
60 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
61 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
62 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
63 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
64 
65 #define ARMV7M_EXCP_RESET   1
66 #define ARMV7M_EXCP_NMI     2
67 #define ARMV7M_EXCP_HARD    3
68 #define ARMV7M_EXCP_MEM     4
69 #define ARMV7M_EXCP_BUS     5
70 #define ARMV7M_EXCP_USAGE   6
71 #define ARMV7M_EXCP_SECURE  7
72 #define ARMV7M_EXCP_SVC     11
73 #define ARMV7M_EXCP_DEBUG   12
74 #define ARMV7M_EXCP_PENDSV  14
75 #define ARMV7M_EXCP_SYSTICK 15
76 
77 /* For M profile, some registers are banked secure vs non-secure;
78  * these are represented as a 2-element array where the first element
79  * is the non-secure copy and the second is the secure copy.
80  * When the CPU does not have implement the security extension then
81  * only the first element is used.
82  * This means that the copy for the current security state can be
83  * accessed via env->registerfield[env->v7m.secure] (whether the security
84  * extension is implemented or not).
85  */
86 enum {
87     M_REG_NS = 0,
88     M_REG_S = 1,
89     M_REG_NUM_BANKS = 2,
90 };
91 
92 /* ARM-specific interrupt pending bits.  */
93 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
94 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
95 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
96 
97 /* The usual mapping for an AArch64 system register to its AArch32
98  * counterpart is for the 32 bit world to have access to the lower
99  * half only (with writes leaving the upper half untouched). It's
100  * therefore useful to be able to pass TCG the offset of the least
101  * significant half of a uint64_t struct member.
102  */
103 #ifdef HOST_WORDS_BIGENDIAN
104 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #define offsetofhigh32(S, M) offsetof(S, M)
106 #else
107 #define offsetoflow32(S, M) offsetof(S, M)
108 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
109 #endif
110 
111 /* Meanings of the ARMCPU object's four inbound GPIO lines */
112 #define ARM_CPU_IRQ 0
113 #define ARM_CPU_FIQ 1
114 #define ARM_CPU_VIRQ 2
115 #define ARM_CPU_VFIQ 3
116 
117 #define NB_MMU_MODES 8
118 /* ARM-specific extra insn start words:
119  * 1: Conditional execution bits
120  * 2: Partial exception syndrome for data aborts
121  */
122 #define TARGET_INSN_START_EXTRA_WORDS 2
123 
124 /* The 2nd extra word holding syndrome info for data aborts does not use
125  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
126  * help the sleb128 encoder do a better job.
127  * When restoring the CPU state, we shift it back up.
128  */
129 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
130 #define ARM_INSN_START_WORD2_SHIFT 14
131 
132 /* We currently assume float and double are IEEE single and double
133    precision respectively.
134    Doing runtime conversions is tricky because VFP registers may contain
135    integer values (eg. as the result of a FTOSI instruction).
136    s<2n> maps to the least significant half of d<n>
137    s<2n+1> maps to the most significant half of d<n>
138  */
139 
140 /**
141  * DynamicGDBXMLInfo:
142  * @desc: Contains the XML descriptions.
143  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
144  * @cpregs_keys: Array that contains the corresponding Key of
145  * a given cpreg with the same order of the cpreg in the XML description.
146  */
147 typedef struct DynamicGDBXMLInfo {
148     char *desc;
149     int num_cpregs;
150     uint32_t *cpregs_keys;
151 } DynamicGDBXMLInfo;
152 
153 /* CPU state for each instance of a generic timer (in cp15 c14) */
154 typedef struct ARMGenericTimer {
155     uint64_t cval; /* Timer CompareValue register */
156     uint64_t ctl; /* Timer Control register */
157 } ARMGenericTimer;
158 
159 #define GTIMER_PHYS 0
160 #define GTIMER_VIRT 1
161 #define GTIMER_HYP  2
162 #define GTIMER_SEC  3
163 #define NUM_GTIMERS 4
164 
165 typedef struct {
166     uint64_t raw_tcr;
167     uint32_t mask;
168     uint32_t base_mask;
169 } TCR;
170 
171 /* Define a maximum sized vector register.
172  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
173  * For 64-bit, this is a 2048-bit SVE register.
174  *
175  * Note that the mapping between S, D, and Q views of the register bank
176  * differs between AArch64 and AArch32.
177  * In AArch32:
178  *  Qn = regs[n].d[1]:regs[n].d[0]
179  *  Dn = regs[n / 2].d[n & 1]
180  *  Sn = regs[n / 4].d[n % 4 / 2],
181  *       bits 31..0 for even n, and bits 63..32 for odd n
182  *       (and regs[16] to regs[31] are inaccessible)
183  * In AArch64:
184  *  Zn = regs[n].d[*]
185  *  Qn = regs[n].d[1]:regs[n].d[0]
186  *  Dn = regs[n].d[0]
187  *  Sn = regs[n].d[0] bits 31..0
188  *  Hn = regs[n].d[0] bits 15..0
189  *
190  * This corresponds to the architecturally defined mapping between
191  * the two execution states, and means we do not need to explicitly
192  * map these registers when changing states.
193  *
194  * Align the data for use with TCG host vector operations.
195  */
196 
197 #ifdef TARGET_AARCH64
198 # define ARM_MAX_VQ    16
199 #else
200 # define ARM_MAX_VQ    1
201 #endif
202 
203 typedef struct ARMVectorReg {
204     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
205 } ARMVectorReg;
206 
207 #ifdef TARGET_AARCH64
208 /* In AArch32 mode, predicate registers do not exist at all.  */
209 typedef struct ARMPredicateReg {
210     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
211 } ARMPredicateReg;
212 
213 /* In AArch32 mode, PAC keys do not exist at all.  */
214 typedef struct ARMPACKey {
215     uint64_t lo, hi;
216 } ARMPACKey;
217 #endif
218 
219 
220 typedef struct CPUARMState {
221     /* Regs for current mode.  */
222     uint32_t regs[16];
223 
224     /* 32/64 switch only happens when taking and returning from
225      * exceptions so the overlap semantics are taken care of then
226      * instead of having a complicated union.
227      */
228     /* Regs for A64 mode.  */
229     uint64_t xregs[32];
230     uint64_t pc;
231     /* PSTATE isn't an architectural register for ARMv8. However, it is
232      * convenient for us to assemble the underlying state into a 32 bit format
233      * identical to the architectural format used for the SPSR. (This is also
234      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
235      * 'pstate' register are.) Of the PSTATE bits:
236      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
237      *    semantics as for AArch32, as described in the comments on each field)
238      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
239      *  DAIF (exception masks) are kept in env->daif
240      *  BTYPE is kept in env->btype
241      *  all other bits are stored in their correct places in env->pstate
242      */
243     uint32_t pstate;
244     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
245 
246     /* Frequently accessed CPSR bits are stored separately for efficiency.
247        This contains all the other bits.  Use cpsr_{read,write} to access
248        the whole CPSR.  */
249     uint32_t uncached_cpsr;
250     uint32_t spsr;
251 
252     /* Banked registers.  */
253     uint64_t banked_spsr[8];
254     uint32_t banked_r13[8];
255     uint32_t banked_r14[8];
256 
257     /* These hold r8-r12.  */
258     uint32_t usr_regs[5];
259     uint32_t fiq_regs[5];
260 
261     /* cpsr flag cache for faster execution */
262     uint32_t CF; /* 0 or 1 */
263     uint32_t VF; /* V is the bit 31. All other bits are undefined */
264     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
265     uint32_t ZF; /* Z set if zero.  */
266     uint32_t QF; /* 0 or 1 */
267     uint32_t GE; /* cpsr[19:16] */
268     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
269     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
270     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
271     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
272 
273     uint64_t elr_el[4]; /* AArch64 exception link regs  */
274     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
275 
276     /* System control coprocessor (cp15) */
277     struct {
278         uint32_t c0_cpuid;
279         union { /* Cache size selection */
280             struct {
281                 uint64_t _unused_csselr0;
282                 uint64_t csselr_ns;
283                 uint64_t _unused_csselr1;
284                 uint64_t csselr_s;
285             };
286             uint64_t csselr_el[4];
287         };
288         union { /* System control register. */
289             struct {
290                 uint64_t _unused_sctlr;
291                 uint64_t sctlr_ns;
292                 uint64_t hsctlr;
293                 uint64_t sctlr_s;
294             };
295             uint64_t sctlr_el[4];
296         };
297         uint64_t cpacr_el1; /* Architectural feature access control register */
298         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
299         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
300         uint64_t sder; /* Secure debug enable register. */
301         uint32_t nsacr; /* Non-secure access control register. */
302         union { /* MMU translation table base 0. */
303             struct {
304                 uint64_t _unused_ttbr0_0;
305                 uint64_t ttbr0_ns;
306                 uint64_t _unused_ttbr0_1;
307                 uint64_t ttbr0_s;
308             };
309             uint64_t ttbr0_el[4];
310         };
311         union { /* MMU translation table base 1. */
312             struct {
313                 uint64_t _unused_ttbr1_0;
314                 uint64_t ttbr1_ns;
315                 uint64_t _unused_ttbr1_1;
316                 uint64_t ttbr1_s;
317             };
318             uint64_t ttbr1_el[4];
319         };
320         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
321         /* MMU translation table base control. */
322         TCR tcr_el[4];
323         TCR vtcr_el2; /* Virtualization Translation Control.  */
324         uint32_t c2_data; /* MPU data cacheable bits.  */
325         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
326         union { /* MMU domain access control register
327                  * MPU write buffer control.
328                  */
329             struct {
330                 uint64_t dacr_ns;
331                 uint64_t dacr_s;
332             };
333             struct {
334                 uint64_t dacr32_el2;
335             };
336         };
337         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
338         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
339         uint64_t hcr_el2; /* Hypervisor configuration register */
340         uint64_t scr_el3; /* Secure configuration register.  */
341         union { /* Fault status registers.  */
342             struct {
343                 uint64_t ifsr_ns;
344                 uint64_t ifsr_s;
345             };
346             struct {
347                 uint64_t ifsr32_el2;
348             };
349         };
350         union {
351             struct {
352                 uint64_t _unused_dfsr;
353                 uint64_t dfsr_ns;
354                 uint64_t hsr;
355                 uint64_t dfsr_s;
356             };
357             uint64_t esr_el[4];
358         };
359         uint32_t c6_region[8]; /* MPU base/size registers.  */
360         union { /* Fault address registers. */
361             struct {
362                 uint64_t _unused_far0;
363 #ifdef HOST_WORDS_BIGENDIAN
364                 uint32_t ifar_ns;
365                 uint32_t dfar_ns;
366                 uint32_t ifar_s;
367                 uint32_t dfar_s;
368 #else
369                 uint32_t dfar_ns;
370                 uint32_t ifar_ns;
371                 uint32_t dfar_s;
372                 uint32_t ifar_s;
373 #endif
374                 uint64_t _unused_far3;
375             };
376             uint64_t far_el[4];
377         };
378         uint64_t hpfar_el2;
379         uint64_t hstr_el2;
380         union { /* Translation result. */
381             struct {
382                 uint64_t _unused_par_0;
383                 uint64_t par_ns;
384                 uint64_t _unused_par_1;
385                 uint64_t par_s;
386             };
387             uint64_t par_el[4];
388         };
389 
390         uint32_t c9_insn; /* Cache lockdown registers.  */
391         uint32_t c9_data;
392         uint64_t c9_pmcr; /* performance monitor control register */
393         uint64_t c9_pmcnten; /* perf monitor counter enables */
394         uint64_t c9_pmovsr; /* perf monitor overflow status */
395         uint64_t c9_pmuserenr; /* perf monitor user enable */
396         uint64_t c9_pmselr; /* perf monitor counter selection register */
397         uint64_t c9_pminten; /* perf monitor interrupt enables */
398         union { /* Memory attribute redirection */
399             struct {
400 #ifdef HOST_WORDS_BIGENDIAN
401                 uint64_t _unused_mair_0;
402                 uint32_t mair1_ns;
403                 uint32_t mair0_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair1_s;
406                 uint32_t mair0_s;
407 #else
408                 uint64_t _unused_mair_0;
409                 uint32_t mair0_ns;
410                 uint32_t mair1_ns;
411                 uint64_t _unused_mair_1;
412                 uint32_t mair0_s;
413                 uint32_t mair1_s;
414 #endif
415             };
416             uint64_t mair_el[4];
417         };
418         union { /* vector base address register */
419             struct {
420                 uint64_t _unused_vbar;
421                 uint64_t vbar_ns;
422                 uint64_t hvbar;
423                 uint64_t vbar_s;
424             };
425             uint64_t vbar_el[4];
426         };
427         uint32_t mvbar; /* (monitor) vector base address register */
428         struct { /* FCSE PID. */
429             uint32_t fcseidr_ns;
430             uint32_t fcseidr_s;
431         };
432         union { /* Context ID. */
433             struct {
434                 uint64_t _unused_contextidr_0;
435                 uint64_t contextidr_ns;
436                 uint64_t _unused_contextidr_1;
437                 uint64_t contextidr_s;
438             };
439             uint64_t contextidr_el[4];
440         };
441         union { /* User RW Thread register. */
442             struct {
443                 uint64_t tpidrurw_ns;
444                 uint64_t tpidrprw_ns;
445                 uint64_t htpidr;
446                 uint64_t _tpidr_el3;
447             };
448             uint64_t tpidr_el[4];
449         };
450         /* The secure banks of these registers don't map anywhere */
451         uint64_t tpidrurw_s;
452         uint64_t tpidrprw_s;
453         uint64_t tpidruro_s;
454 
455         union { /* User RO Thread register. */
456             uint64_t tpidruro_ns;
457             uint64_t tpidrro_el[1];
458         };
459         uint64_t c14_cntfrq; /* Counter Frequency register */
460         uint64_t c14_cntkctl; /* Timer Control register */
461         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
462         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
463         ARMGenericTimer c14_timer[NUM_GTIMERS];
464         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
465         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
466         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
467         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
468         uint32_t c15_threadid; /* TI debugger thread-ID.  */
469         uint32_t c15_config_base_address; /* SCU base address.  */
470         uint32_t c15_diagnostic; /* diagnostic register */
471         uint32_t c15_power_diagnostic;
472         uint32_t c15_power_control; /* power control */
473         uint64_t dbgbvr[16]; /* breakpoint value registers */
474         uint64_t dbgbcr[16]; /* breakpoint control registers */
475         uint64_t dbgwvr[16]; /* watchpoint value registers */
476         uint64_t dbgwcr[16]; /* watchpoint control registers */
477         uint64_t mdscr_el1;
478         uint64_t oslsr_el1; /* OS Lock Status */
479         uint64_t mdcr_el2;
480         uint64_t mdcr_el3;
481         /* Stores the architectural value of the counter *the last time it was
482          * updated* by pmccntr_op_start. Accesses should always be surrounded
483          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
484          * architecturally-correct value is being read/set.
485          */
486         uint64_t c15_ccnt;
487         /* Stores the delta between the architectural value and the underlying
488          * cycle count during normal operation. It is used to update c15_ccnt
489          * to be the correct architectural value before accesses. During
490          * accesses, c15_ccnt_delta contains the underlying count being used
491          * for the access, after which it reverts to the delta value in
492          * pmccntr_op_finish.
493          */
494         uint64_t c15_ccnt_delta;
495         uint64_t c14_pmevcntr[31];
496         uint64_t c14_pmevcntr_delta[31];
497         uint64_t c14_pmevtyper[31];
498         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
499         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
500         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
501     } cp15;
502 
503     struct {
504         /* M profile has up to 4 stack pointers:
505          * a Main Stack Pointer and a Process Stack Pointer for each
506          * of the Secure and Non-Secure states. (If the CPU doesn't support
507          * the security extension then it has only two SPs.)
508          * In QEMU we always store the currently active SP in regs[13],
509          * and the non-active SP for the current security state in
510          * v7m.other_sp. The stack pointers for the inactive security state
511          * are stored in other_ss_msp and other_ss_psp.
512          * switch_v7m_security_state() is responsible for rearranging them
513          * when we change security state.
514          */
515         uint32_t other_sp;
516         uint32_t other_ss_msp;
517         uint32_t other_ss_psp;
518         uint32_t vecbase[M_REG_NUM_BANKS];
519         uint32_t basepri[M_REG_NUM_BANKS];
520         uint32_t control[M_REG_NUM_BANKS];
521         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
522         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
523         uint32_t hfsr; /* HardFault Status */
524         uint32_t dfsr; /* Debug Fault Status Register */
525         uint32_t sfsr; /* Secure Fault Status Register */
526         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
527         uint32_t bfar; /* BusFault Address */
528         uint32_t sfar; /* Secure Fault Address Register */
529         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
530         int exception;
531         uint32_t primask[M_REG_NUM_BANKS];
532         uint32_t faultmask[M_REG_NUM_BANKS];
533         uint32_t aircr; /* only holds r/w state if security extn implemented */
534         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
535         uint32_t csselr[M_REG_NUM_BANKS];
536         uint32_t scr[M_REG_NUM_BANKS];
537         uint32_t msplim[M_REG_NUM_BANKS];
538         uint32_t psplim[M_REG_NUM_BANKS];
539         uint32_t fpcar[M_REG_NUM_BANKS];
540         uint32_t fpccr[M_REG_NUM_BANKS];
541         uint32_t fpdscr[M_REG_NUM_BANKS];
542         uint32_t cpacr[M_REG_NUM_BANKS];
543         uint32_t nsacr;
544     } v7m;
545 
546     /* Information associated with an exception about to be taken:
547      * code which raises an exception must set cs->exception_index and
548      * the relevant parts of this structure; the cpu_do_interrupt function
549      * will then set the guest-visible registers as part of the exception
550      * entry process.
551      */
552     struct {
553         uint32_t syndrome; /* AArch64 format syndrome register */
554         uint32_t fsr; /* AArch32 format fault status register info */
555         uint64_t vaddress; /* virtual addr associated with exception, if any */
556         uint32_t target_el; /* EL the exception should be targeted for */
557         /* If we implement EL2 we will also need to store information
558          * about the intermediate physical address for stage 2 faults.
559          */
560     } exception;
561 
562     /* Information associated with an SError */
563     struct {
564         uint8_t pending;
565         uint8_t has_esr;
566         uint64_t esr;
567     } serror;
568 
569     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
570     uint32_t irq_line_state;
571 
572     /* Thumb-2 EE state.  */
573     uint32_t teecr;
574     uint32_t teehbr;
575 
576     /* VFP coprocessor state.  */
577     struct {
578         ARMVectorReg zregs[32];
579 
580 #ifdef TARGET_AARCH64
581         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
582 #define FFR_PRED_NUM 16
583         ARMPredicateReg pregs[17];
584         /* Scratch space for aa64 sve predicate temporary.  */
585         ARMPredicateReg preg_tmp;
586 #endif
587 
588         /* We store these fpcsr fields separately for convenience.  */
589         uint32_t qc[4] QEMU_ALIGNED(16);
590         int vec_len;
591         int vec_stride;
592 
593         uint32_t xregs[16];
594 
595         /* Scratch space for aa32 neon expansion.  */
596         uint32_t scratch[8];
597 
598         /* There are a number of distinct float control structures:
599          *
600          *  fp_status: is the "normal" fp status.
601          *  fp_status_fp16: used for half-precision calculations
602          *  standard_fp_status : the ARM "Standard FPSCR Value"
603          *
604          * Half-precision operations are governed by a separate
605          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
606          * status structure to control this.
607          *
608          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
609          * round-to-nearest and is used by any operations (generally
610          * Neon) which the architecture defines as controlled by the
611          * standard FPSCR value rather than the FPSCR.
612          *
613          * To avoid having to transfer exception bits around, we simply
614          * say that the FPSCR cumulative exception flags are the logical
615          * OR of the flags in the three fp statuses. This relies on the
616          * only thing which needs to read the exception flags being
617          * an explicit FPSCR read.
618          */
619         float_status fp_status;
620         float_status fp_status_f16;
621         float_status standard_fp_status;
622 
623         /* ZCR_EL[1-3] */
624         uint64_t zcr_el[4];
625     } vfp;
626     uint64_t exclusive_addr;
627     uint64_t exclusive_val;
628     uint64_t exclusive_high;
629 
630     /* iwMMXt coprocessor state.  */
631     struct {
632         uint64_t regs[16];
633         uint64_t val;
634 
635         uint32_t cregs[16];
636     } iwmmxt;
637 
638 #ifdef TARGET_AARCH64
639     struct {
640         ARMPACKey apia;
641         ARMPACKey apib;
642         ARMPACKey apda;
643         ARMPACKey apdb;
644         ARMPACKey apga;
645     } keys;
646 #endif
647 
648 #if defined(CONFIG_USER_ONLY)
649     /* For usermode syscall translation.  */
650     int eabi;
651 #endif
652 
653     struct CPUBreakpoint *cpu_breakpoint[16];
654     struct CPUWatchpoint *cpu_watchpoint[16];
655 
656     /* Fields up to this point are cleared by a CPU reset */
657     struct {} end_reset_fields;
658 
659     CPU_COMMON
660 
661     /* Fields after CPU_COMMON are preserved across CPU reset. */
662 
663     /* Internal CPU feature flags.  */
664     uint64_t features;
665 
666     /* PMSAv7 MPU */
667     struct {
668         uint32_t *drbar;
669         uint32_t *drsr;
670         uint32_t *dracr;
671         uint32_t rnr[M_REG_NUM_BANKS];
672     } pmsav7;
673 
674     /* PMSAv8 MPU */
675     struct {
676         /* The PMSAv8 implementation also shares some PMSAv7 config
677          * and state:
678          *  pmsav7.rnr (region number register)
679          *  pmsav7_dregion (number of configured regions)
680          */
681         uint32_t *rbar[M_REG_NUM_BANKS];
682         uint32_t *rlar[M_REG_NUM_BANKS];
683         uint32_t mair0[M_REG_NUM_BANKS];
684         uint32_t mair1[M_REG_NUM_BANKS];
685     } pmsav8;
686 
687     /* v8M SAU */
688     struct {
689         uint32_t *rbar;
690         uint32_t *rlar;
691         uint32_t rnr;
692         uint32_t ctrl;
693     } sau;
694 
695     void *nvic;
696     const struct arm_boot_info *boot_info;
697     /* Store GICv3CPUState to access from this struct */
698     void *gicv3state;
699 } CPUARMState;
700 
701 /**
702  * ARMELChangeHookFn:
703  * type of a function which can be registered via arm_register_el_change_hook()
704  * to get callbacks when the CPU changes its exception level or mode.
705  */
706 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
707 typedef struct ARMELChangeHook ARMELChangeHook;
708 struct ARMELChangeHook {
709     ARMELChangeHookFn *hook;
710     void *opaque;
711     QLIST_ENTRY(ARMELChangeHook) node;
712 };
713 
714 /* These values map onto the return values for
715  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
716 typedef enum ARMPSCIState {
717     PSCI_ON = 0,
718     PSCI_OFF = 1,
719     PSCI_ON_PENDING = 2
720 } ARMPSCIState;
721 
722 typedef struct ARMISARegisters ARMISARegisters;
723 
724 /**
725  * ARMCPU:
726  * @env: #CPUARMState
727  *
728  * An ARM CPU core.
729  */
730 struct ARMCPU {
731     /*< private >*/
732     CPUState parent_obj;
733     /*< public >*/
734 
735     CPUARMState env;
736 
737     /* Coprocessor information */
738     GHashTable *cp_regs;
739     /* For marshalling (mostly coprocessor) register state between the
740      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
741      * we use these arrays.
742      */
743     /* List of register indexes managed via these arrays; (full KVM style
744      * 64 bit indexes, not CPRegInfo 32 bit indexes)
745      */
746     uint64_t *cpreg_indexes;
747     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
748     uint64_t *cpreg_values;
749     /* Length of the indexes, values, reset_values arrays */
750     int32_t cpreg_array_len;
751     /* These are used only for migration: incoming data arrives in
752      * these fields and is sanity checked in post_load before copying
753      * to the working data structures above.
754      */
755     uint64_t *cpreg_vmstate_indexes;
756     uint64_t *cpreg_vmstate_values;
757     int32_t cpreg_vmstate_array_len;
758 
759     DynamicGDBXMLInfo dyn_xml;
760 
761     /* Timers used by the generic (architected) timer */
762     QEMUTimer *gt_timer[NUM_GTIMERS];
763     /*
764      * Timer used by the PMU. Its state is restored after migration by
765      * pmu_op_finish() - it does not need other handling during migration
766      */
767     QEMUTimer *pmu_timer;
768     /* GPIO outputs for generic timer */
769     qemu_irq gt_timer_outputs[NUM_GTIMERS];
770     /* GPIO output for GICv3 maintenance interrupt signal */
771     qemu_irq gicv3_maintenance_interrupt;
772     /* GPIO output for the PMU interrupt */
773     qemu_irq pmu_interrupt;
774 
775     /* MemoryRegion to use for secure physical accesses */
776     MemoryRegion *secure_memory;
777 
778     /* For v8M, pointer to the IDAU interface provided by board/SoC */
779     Object *idau;
780 
781     /* 'compatible' string for this CPU for Linux device trees */
782     const char *dtb_compatible;
783 
784     /* PSCI version for this CPU
785      * Bits[31:16] = Major Version
786      * Bits[15:0] = Minor Version
787      */
788     uint32_t psci_version;
789 
790     /* Should CPU start in PSCI powered-off state? */
791     bool start_powered_off;
792 
793     /* Current power state, access guarded by BQL */
794     ARMPSCIState power_state;
795 
796     /* CPU has virtualization extension */
797     bool has_el2;
798     /* CPU has security extension */
799     bool has_el3;
800     /* CPU has PMU (Performance Monitor Unit) */
801     bool has_pmu;
802 
803     /* CPU has memory protection unit */
804     bool has_mpu;
805     /* PMSAv7 MPU number of supported regions */
806     uint32_t pmsav7_dregion;
807     /* v8M SAU number of supported regions */
808     uint32_t sau_sregion;
809 
810     /* PSCI conduit used to invoke PSCI methods
811      * 0 - disabled, 1 - smc, 2 - hvc
812      */
813     uint32_t psci_conduit;
814 
815     /* For v8M, initial value of the Secure VTOR */
816     uint32_t init_svtor;
817 
818     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
819      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
820      */
821     uint32_t kvm_target;
822 
823     /* KVM init features for this CPU */
824     uint32_t kvm_init_features[7];
825 
826     /* Uniprocessor system with MP extensions */
827     bool mp_is_up;
828 
829     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
830      * and the probe failed (so we need to report the error in realize)
831      */
832     bool host_cpu_probe_failed;
833 
834     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
835      * register.
836      */
837     int32_t core_count;
838 
839     /* The instance init functions for implementation-specific subclasses
840      * set these fields to specify the implementation-dependent values of
841      * various constant registers and reset values of non-constant
842      * registers.
843      * Some of these might become QOM properties eventually.
844      * Field names match the official register names as defined in the
845      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
846      * is used for reset values of non-constant registers; no reset_
847      * prefix means a constant register.
848      * Some of these registers are split out into a substructure that
849      * is shared with the translators to control the ISA.
850      */
851     struct ARMISARegisters {
852         uint32_t id_isar0;
853         uint32_t id_isar1;
854         uint32_t id_isar2;
855         uint32_t id_isar3;
856         uint32_t id_isar4;
857         uint32_t id_isar5;
858         uint32_t id_isar6;
859         uint32_t mvfr0;
860         uint32_t mvfr1;
861         uint32_t mvfr2;
862         uint64_t id_aa64isar0;
863         uint64_t id_aa64isar1;
864         uint64_t id_aa64pfr0;
865         uint64_t id_aa64pfr1;
866         uint64_t id_aa64mmfr0;
867         uint64_t id_aa64mmfr1;
868     } isar;
869     uint32_t midr;
870     uint32_t revidr;
871     uint32_t reset_fpsid;
872     uint32_t ctr;
873     uint32_t reset_sctlr;
874     uint32_t id_pfr0;
875     uint32_t id_pfr1;
876     uint32_t id_dfr0;
877     uint64_t pmceid0;
878     uint64_t pmceid1;
879     uint32_t id_afr0;
880     uint32_t id_mmfr0;
881     uint32_t id_mmfr1;
882     uint32_t id_mmfr2;
883     uint32_t id_mmfr3;
884     uint32_t id_mmfr4;
885     uint64_t id_aa64dfr0;
886     uint64_t id_aa64dfr1;
887     uint64_t id_aa64afr0;
888     uint64_t id_aa64afr1;
889     uint32_t dbgdidr;
890     uint32_t clidr;
891     uint64_t mp_affinity; /* MP ID without feature bits */
892     /* The elements of this array are the CCSIDR values for each cache,
893      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
894      */
895     uint32_t ccsidr[16];
896     uint64_t reset_cbar;
897     uint32_t reset_auxcr;
898     bool reset_hivecs;
899     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
900     uint32_t dcz_blocksize;
901     uint64_t rvbar;
902 
903     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
904     int gic_num_lrs; /* number of list registers */
905     int gic_vpribits; /* number of virtual priority bits */
906     int gic_vprebits; /* number of virtual preemption bits */
907 
908     /* Whether the cfgend input is high (i.e. this CPU should reset into
909      * big-endian mode).  This setting isn't used directly: instead it modifies
910      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
911      * architecture version.
912      */
913     bool cfgend;
914 
915     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
916     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
917 
918     int32_t node_id; /* NUMA node this CPU belongs to */
919 
920     /* Used to synchronize KVM and QEMU in-kernel device levels */
921     uint8_t device_irq_level;
922 
923     /* Used to set the maximum vector length the cpu will support.  */
924     uint32_t sve_max_vq;
925 };
926 
927 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
928 {
929     return container_of(env, ARMCPU, env);
930 }
931 
932 void arm_cpu_post_init(Object *obj);
933 
934 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
935 
936 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
937 
938 #define ENV_OFFSET offsetof(ARMCPU, env)
939 
940 #ifndef CONFIG_USER_ONLY
941 extern const struct VMStateDescription vmstate_arm_cpu;
942 #endif
943 
944 void arm_cpu_do_interrupt(CPUState *cpu);
945 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
946 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
947 
948 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
949 
950 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
951                                          MemTxAttrs *attrs);
952 
953 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
954 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
955 
956 /* Dynamically generates for gdb stub an XML description of the sysregs from
957  * the cp_regs hashtable. Returns the registered sysregs number.
958  */
959 int arm_gen_dynamic_xml(CPUState *cpu);
960 
961 /* Returns the dynamically generated XML for the gdb stub.
962  * Returns a pointer to the XML contents for the specified XML file or NULL
963  * if the XML name doesn't match the predefined one.
964  */
965 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
966 
967 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
968                              int cpuid, void *opaque);
969 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
970                              int cpuid, void *opaque);
971 
972 #ifdef TARGET_AARCH64
973 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
974 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
975 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
976 void aarch64_sve_change_el(CPUARMState *env, int old_el,
977                            int new_el, bool el0_a64);
978 #else
979 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
980 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
981                                          int n, bool a)
982 { }
983 #endif
984 
985 target_ulong do_arm_semihosting(CPUARMState *env);
986 void aarch64_sync_32_to_64(CPUARMState *env);
987 void aarch64_sync_64_to_32(CPUARMState *env);
988 
989 int fp_exception_el(CPUARMState *env, int cur_el);
990 int sve_exception_el(CPUARMState *env, int cur_el);
991 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
992 
993 static inline bool is_a64(CPUARMState *env)
994 {
995     return env->aarch64;
996 }
997 
998 /* you can call this signal handler from your SIGBUS and SIGSEGV
999    signal handlers to inform the virtual CPU of exceptions. non zero
1000    is returned if the signal was handled by the virtual CPU.  */
1001 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1002                            void *puc);
1003 
1004 /**
1005  * pmu_op_start/finish
1006  * @env: CPUARMState
1007  *
1008  * Convert all PMU counters between their delta form (the typical mode when
1009  * they are enabled) and the guest-visible values. These two calls must
1010  * surround any action which might affect the counters.
1011  */
1012 void pmu_op_start(CPUARMState *env);
1013 void pmu_op_finish(CPUARMState *env);
1014 
1015 /*
1016  * Called when a PMU counter is due to overflow
1017  */
1018 void arm_pmu_timer_cb(void *opaque);
1019 
1020 /**
1021  * Functions to register as EL change hooks for PMU mode filtering
1022  */
1023 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1024 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1025 
1026 /*
1027  * pmu_init
1028  * @cpu: ARMCPU
1029  *
1030  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1031  * for the current configuration
1032  */
1033 void pmu_init(ARMCPU *cpu);
1034 
1035 /* SCTLR bit meanings. Several bits have been reused in newer
1036  * versions of the architecture; in that case we define constants
1037  * for both old and new bit meanings. Code which tests against those
1038  * bits should probably check or otherwise arrange that the CPU
1039  * is the architectural version it expects.
1040  */
1041 #define SCTLR_M       (1U << 0)
1042 #define SCTLR_A       (1U << 1)
1043 #define SCTLR_C       (1U << 2)
1044 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1045 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1046 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1047 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1048 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1049 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1050 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1051 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1052 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1053 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1054 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1055 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1056 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1057 #define SCTLR_SED     (1U << 8) /* v8 onward */
1058 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1059 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1060 #define SCTLR_F       (1U << 10) /* up to v6 */
1061 #define SCTLR_SW      (1U << 10) /* v7 */
1062 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1063 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1064 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1065 #define SCTLR_I       (1U << 12)
1066 #define SCTLR_V       (1U << 13) /* AArch32 only */
1067 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1068 #define SCTLR_RR      (1U << 14) /* up to v7 */
1069 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1070 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1071 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1072 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1073 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1074 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1075 #define SCTLR_BR      (1U << 17) /* PMSA only */
1076 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1077 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1078 #define SCTLR_WXN     (1U << 19)
1079 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1080 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1081 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1082 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1083 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1084 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1085 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1086 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1087 #define SCTLR_VE      (1U << 24) /* up to v7 */
1088 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1089 #define SCTLR_EE      (1U << 25)
1090 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1091 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1092 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1093 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1094 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1095 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1096 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1097 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1098 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1099 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1100 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1101 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1102 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1103 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1104 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1105 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1106 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1107 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1108 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1109 
1110 #define CPTR_TCPAC    (1U << 31)
1111 #define CPTR_TTA      (1U << 20)
1112 #define CPTR_TFP      (1U << 10)
1113 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1114 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1115 
1116 #define MDCR_EPMAD    (1U << 21)
1117 #define MDCR_EDAD     (1U << 20)
1118 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1119 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1120 #define MDCR_SDD      (1U << 16)
1121 #define MDCR_SPD      (3U << 14)
1122 #define MDCR_TDRA     (1U << 11)
1123 #define MDCR_TDOSA    (1U << 10)
1124 #define MDCR_TDA      (1U << 9)
1125 #define MDCR_TDE      (1U << 8)
1126 #define MDCR_HPME     (1U << 7)
1127 #define MDCR_TPM      (1U << 6)
1128 #define MDCR_TPMCR    (1U << 5)
1129 #define MDCR_HPMN     (0x1fU)
1130 
1131 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1132 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1133 
1134 #define CPSR_M (0x1fU)
1135 #define CPSR_T (1U << 5)
1136 #define CPSR_F (1U << 6)
1137 #define CPSR_I (1U << 7)
1138 #define CPSR_A (1U << 8)
1139 #define CPSR_E (1U << 9)
1140 #define CPSR_IT_2_7 (0xfc00U)
1141 #define CPSR_GE (0xfU << 16)
1142 #define CPSR_IL (1U << 20)
1143 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1144  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1145  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1146  * where it is live state but not accessible to the AArch32 code.
1147  */
1148 #define CPSR_RESERVED (0x7U << 21)
1149 #define CPSR_J (1U << 24)
1150 #define CPSR_IT_0_1 (3U << 25)
1151 #define CPSR_Q (1U << 27)
1152 #define CPSR_V (1U << 28)
1153 #define CPSR_C (1U << 29)
1154 #define CPSR_Z (1U << 30)
1155 #define CPSR_N (1U << 31)
1156 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1157 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1158 
1159 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1160 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1161     | CPSR_NZCV)
1162 /* Bits writable in user mode.  */
1163 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1164 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1165 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1166 /* Mask of bits which may be set by exception return copying them from SPSR */
1167 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1168 
1169 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1170 #define XPSR_EXCP 0x1ffU
1171 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1172 #define XPSR_IT_2_7 CPSR_IT_2_7
1173 #define XPSR_GE CPSR_GE
1174 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1175 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1176 #define XPSR_IT_0_1 CPSR_IT_0_1
1177 #define XPSR_Q CPSR_Q
1178 #define XPSR_V CPSR_V
1179 #define XPSR_C CPSR_C
1180 #define XPSR_Z CPSR_Z
1181 #define XPSR_N CPSR_N
1182 #define XPSR_NZCV CPSR_NZCV
1183 #define XPSR_IT CPSR_IT
1184 
1185 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1186 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1187 #define TTBCR_PD0    (1U << 4)
1188 #define TTBCR_PD1    (1U << 5)
1189 #define TTBCR_EPD0   (1U << 7)
1190 #define TTBCR_IRGN0  (3U << 8)
1191 #define TTBCR_ORGN0  (3U << 10)
1192 #define TTBCR_SH0    (3U << 12)
1193 #define TTBCR_T1SZ   (3U << 16)
1194 #define TTBCR_A1     (1U << 22)
1195 #define TTBCR_EPD1   (1U << 23)
1196 #define TTBCR_IRGN1  (3U << 24)
1197 #define TTBCR_ORGN1  (3U << 26)
1198 #define TTBCR_SH1    (1U << 28)
1199 #define TTBCR_EAE    (1U << 31)
1200 
1201 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1202  * Only these are valid when in AArch64 mode; in
1203  * AArch32 mode SPSRs are basically CPSR-format.
1204  */
1205 #define PSTATE_SP (1U)
1206 #define PSTATE_M (0xFU)
1207 #define PSTATE_nRW (1U << 4)
1208 #define PSTATE_F (1U << 6)
1209 #define PSTATE_I (1U << 7)
1210 #define PSTATE_A (1U << 8)
1211 #define PSTATE_D (1U << 9)
1212 #define PSTATE_BTYPE (3U << 10)
1213 #define PSTATE_IL (1U << 20)
1214 #define PSTATE_SS (1U << 21)
1215 #define PSTATE_V (1U << 28)
1216 #define PSTATE_C (1U << 29)
1217 #define PSTATE_Z (1U << 30)
1218 #define PSTATE_N (1U << 31)
1219 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1220 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1221 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1222 /* Mode values for AArch64 */
1223 #define PSTATE_MODE_EL3h 13
1224 #define PSTATE_MODE_EL3t 12
1225 #define PSTATE_MODE_EL2h 9
1226 #define PSTATE_MODE_EL2t 8
1227 #define PSTATE_MODE_EL1h 5
1228 #define PSTATE_MODE_EL1t 4
1229 #define PSTATE_MODE_EL0t 0
1230 
1231 /* Write a new value to v7m.exception, thus transitioning into or out
1232  * of Handler mode; this may result in a change of active stack pointer.
1233  */
1234 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1235 
1236 /* Map EL and handler into a PSTATE_MODE.  */
1237 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1238 {
1239     return (el << 2) | handler;
1240 }
1241 
1242 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1243  * interprocessing, so we don't attempt to sync with the cpsr state used by
1244  * the 32 bit decoder.
1245  */
1246 static inline uint32_t pstate_read(CPUARMState *env)
1247 {
1248     int ZF;
1249 
1250     ZF = (env->ZF == 0);
1251     return (env->NF & 0x80000000) | (ZF << 30)
1252         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1253         | env->pstate | env->daif | (env->btype << 10);
1254 }
1255 
1256 static inline void pstate_write(CPUARMState *env, uint32_t val)
1257 {
1258     env->ZF = (~val) & PSTATE_Z;
1259     env->NF = val;
1260     env->CF = (val >> 29) & 1;
1261     env->VF = (val << 3) & 0x80000000;
1262     env->daif = val & PSTATE_DAIF;
1263     env->btype = (val >> 10) & 3;
1264     env->pstate = val & ~CACHED_PSTATE_BITS;
1265 }
1266 
1267 /* Return the current CPSR value.  */
1268 uint32_t cpsr_read(CPUARMState *env);
1269 
1270 typedef enum CPSRWriteType {
1271     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1272     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1273     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1274     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1275 } CPSRWriteType;
1276 
1277 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1278 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1279                 CPSRWriteType write_type);
1280 
1281 /* Return the current xPSR value.  */
1282 static inline uint32_t xpsr_read(CPUARMState *env)
1283 {
1284     int ZF;
1285     ZF = (env->ZF == 0);
1286     return (env->NF & 0x80000000) | (ZF << 30)
1287         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1288         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1289         | ((env->condexec_bits & 0xfc) << 8)
1290         | (env->GE << 16)
1291         | env->v7m.exception;
1292 }
1293 
1294 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1295 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1296 {
1297     if (mask & XPSR_NZCV) {
1298         env->ZF = (~val) & XPSR_Z;
1299         env->NF = val;
1300         env->CF = (val >> 29) & 1;
1301         env->VF = (val << 3) & 0x80000000;
1302     }
1303     if (mask & XPSR_Q) {
1304         env->QF = ((val & XPSR_Q) != 0);
1305     }
1306     if (mask & XPSR_GE) {
1307         env->GE = (val & XPSR_GE) >> 16;
1308     }
1309     if (mask & XPSR_T) {
1310         env->thumb = ((val & XPSR_T) != 0);
1311     }
1312     if (mask & XPSR_IT_0_1) {
1313         env->condexec_bits &= ~3;
1314         env->condexec_bits |= (val >> 25) & 3;
1315     }
1316     if (mask & XPSR_IT_2_7) {
1317         env->condexec_bits &= 3;
1318         env->condexec_bits |= (val >> 8) & 0xfc;
1319     }
1320     if (mask & XPSR_EXCP) {
1321         /* Note that this only happens on exception exit */
1322         write_v7m_exception(env, val & XPSR_EXCP);
1323     }
1324 }
1325 
1326 #define HCR_VM        (1ULL << 0)
1327 #define HCR_SWIO      (1ULL << 1)
1328 #define HCR_PTW       (1ULL << 2)
1329 #define HCR_FMO       (1ULL << 3)
1330 #define HCR_IMO       (1ULL << 4)
1331 #define HCR_AMO       (1ULL << 5)
1332 #define HCR_VF        (1ULL << 6)
1333 #define HCR_VI        (1ULL << 7)
1334 #define HCR_VSE       (1ULL << 8)
1335 #define HCR_FB        (1ULL << 9)
1336 #define HCR_BSU_MASK  (3ULL << 10)
1337 #define HCR_DC        (1ULL << 12)
1338 #define HCR_TWI       (1ULL << 13)
1339 #define HCR_TWE       (1ULL << 14)
1340 #define HCR_TID0      (1ULL << 15)
1341 #define HCR_TID1      (1ULL << 16)
1342 #define HCR_TID2      (1ULL << 17)
1343 #define HCR_TID3      (1ULL << 18)
1344 #define HCR_TSC       (1ULL << 19)
1345 #define HCR_TIDCP     (1ULL << 20)
1346 #define HCR_TACR      (1ULL << 21)
1347 #define HCR_TSW       (1ULL << 22)
1348 #define HCR_TPCP      (1ULL << 23)
1349 #define HCR_TPU       (1ULL << 24)
1350 #define HCR_TTLB      (1ULL << 25)
1351 #define HCR_TVM       (1ULL << 26)
1352 #define HCR_TGE       (1ULL << 27)
1353 #define HCR_TDZ       (1ULL << 28)
1354 #define HCR_HCD       (1ULL << 29)
1355 #define HCR_TRVM      (1ULL << 30)
1356 #define HCR_RW        (1ULL << 31)
1357 #define HCR_CD        (1ULL << 32)
1358 #define HCR_ID        (1ULL << 33)
1359 #define HCR_E2H       (1ULL << 34)
1360 #define HCR_TLOR      (1ULL << 35)
1361 #define HCR_TERR      (1ULL << 36)
1362 #define HCR_TEA       (1ULL << 37)
1363 #define HCR_MIOCNCE   (1ULL << 38)
1364 #define HCR_APK       (1ULL << 40)
1365 #define HCR_API       (1ULL << 41)
1366 #define HCR_NV        (1ULL << 42)
1367 #define HCR_NV1       (1ULL << 43)
1368 #define HCR_AT        (1ULL << 44)
1369 #define HCR_NV2       (1ULL << 45)
1370 #define HCR_FWB       (1ULL << 46)
1371 #define HCR_FIEN      (1ULL << 47)
1372 #define HCR_TID4      (1ULL << 49)
1373 #define HCR_TICAB     (1ULL << 50)
1374 #define HCR_TOCU      (1ULL << 52)
1375 #define HCR_TTLBIS    (1ULL << 54)
1376 #define HCR_TTLBOS    (1ULL << 55)
1377 #define HCR_ATA       (1ULL << 56)
1378 #define HCR_DCT       (1ULL << 57)
1379 
1380 /*
1381  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1382  * HCR_MASK and then clear it again if the feature bit is not set in
1383  * hcr_write().
1384  */
1385 #define HCR_MASK      ((1ULL << 34) - 1)
1386 
1387 #define SCR_NS                (1U << 0)
1388 #define SCR_IRQ               (1U << 1)
1389 #define SCR_FIQ               (1U << 2)
1390 #define SCR_EA                (1U << 3)
1391 #define SCR_FW                (1U << 4)
1392 #define SCR_AW                (1U << 5)
1393 #define SCR_NET               (1U << 6)
1394 #define SCR_SMD               (1U << 7)
1395 #define SCR_HCE               (1U << 8)
1396 #define SCR_SIF               (1U << 9)
1397 #define SCR_RW                (1U << 10)
1398 #define SCR_ST                (1U << 11)
1399 #define SCR_TWI               (1U << 12)
1400 #define SCR_TWE               (1U << 13)
1401 #define SCR_TLOR              (1U << 14)
1402 #define SCR_TERR              (1U << 15)
1403 #define SCR_APK               (1U << 16)
1404 #define SCR_API               (1U << 17)
1405 #define SCR_EEL2              (1U << 18)
1406 #define SCR_EASE              (1U << 19)
1407 #define SCR_NMEA              (1U << 20)
1408 #define SCR_FIEN              (1U << 21)
1409 #define SCR_ENSCXT            (1U << 25)
1410 #define SCR_ATA               (1U << 26)
1411 
1412 /* Return the current FPSCR value.  */
1413 uint32_t vfp_get_fpscr(CPUARMState *env);
1414 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1415 
1416 /* FPCR, Floating Point Control Register
1417  * FPSR, Floating Poiht Status Register
1418  *
1419  * For A64 the FPSCR is split into two logically distinct registers,
1420  * FPCR and FPSR. However since they still use non-overlapping bits
1421  * we store the underlying state in fpscr and just mask on read/write.
1422  */
1423 #define FPSR_MASK 0xf800009f
1424 #define FPCR_MASK 0x07ff9f00
1425 
1426 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1427 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1428 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1429 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1430 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1431 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1432 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1433 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1434 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1435 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1436 
1437 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1438 {
1439     return vfp_get_fpscr(env) & FPSR_MASK;
1440 }
1441 
1442 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1443 {
1444     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1445     vfp_set_fpscr(env, new_fpscr);
1446 }
1447 
1448 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1449 {
1450     return vfp_get_fpscr(env) & FPCR_MASK;
1451 }
1452 
1453 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1454 {
1455     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1456     vfp_set_fpscr(env, new_fpscr);
1457 }
1458 
1459 enum arm_cpu_mode {
1460   ARM_CPU_MODE_USR = 0x10,
1461   ARM_CPU_MODE_FIQ = 0x11,
1462   ARM_CPU_MODE_IRQ = 0x12,
1463   ARM_CPU_MODE_SVC = 0x13,
1464   ARM_CPU_MODE_MON = 0x16,
1465   ARM_CPU_MODE_ABT = 0x17,
1466   ARM_CPU_MODE_HYP = 0x1a,
1467   ARM_CPU_MODE_UND = 0x1b,
1468   ARM_CPU_MODE_SYS = 0x1f
1469 };
1470 
1471 /* VFP system registers.  */
1472 #define ARM_VFP_FPSID   0
1473 #define ARM_VFP_FPSCR   1
1474 #define ARM_VFP_MVFR2   5
1475 #define ARM_VFP_MVFR1   6
1476 #define ARM_VFP_MVFR0   7
1477 #define ARM_VFP_FPEXC   8
1478 #define ARM_VFP_FPINST  9
1479 #define ARM_VFP_FPINST2 10
1480 
1481 /* iwMMXt coprocessor control registers.  */
1482 #define ARM_IWMMXT_wCID  0
1483 #define ARM_IWMMXT_wCon  1
1484 #define ARM_IWMMXT_wCSSF 2
1485 #define ARM_IWMMXT_wCASF 3
1486 #define ARM_IWMMXT_wCGR0 8
1487 #define ARM_IWMMXT_wCGR1 9
1488 #define ARM_IWMMXT_wCGR2 10
1489 #define ARM_IWMMXT_wCGR3 11
1490 
1491 /* V7M CCR bits */
1492 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1493 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1494 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1495 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1496 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1497 FIELD(V7M_CCR, STKALIGN, 9, 1)
1498 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1499 FIELD(V7M_CCR, DC, 16, 1)
1500 FIELD(V7M_CCR, IC, 17, 1)
1501 FIELD(V7M_CCR, BP, 18, 1)
1502 
1503 /* V7M SCR bits */
1504 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1505 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1506 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1507 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1508 
1509 /* V7M AIRCR bits */
1510 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1511 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1512 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1513 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1514 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1515 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1516 FIELD(V7M_AIRCR, PRIS, 14, 1)
1517 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1518 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1519 
1520 /* V7M CFSR bits for MMFSR */
1521 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1522 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1523 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1524 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1525 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1526 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1527 
1528 /* V7M CFSR bits for BFSR */
1529 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1530 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1531 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1532 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1533 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1534 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1535 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1536 
1537 /* V7M CFSR bits for UFSR */
1538 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1539 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1540 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1541 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1542 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1543 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1544 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1545 
1546 /* V7M CFSR bit masks covering all of the subregister bits */
1547 FIELD(V7M_CFSR, MMFSR, 0, 8)
1548 FIELD(V7M_CFSR, BFSR, 8, 8)
1549 FIELD(V7M_CFSR, UFSR, 16, 16)
1550 
1551 /* V7M HFSR bits */
1552 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1553 FIELD(V7M_HFSR, FORCED, 30, 1)
1554 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1555 
1556 /* V7M DFSR bits */
1557 FIELD(V7M_DFSR, HALTED, 0, 1)
1558 FIELD(V7M_DFSR, BKPT, 1, 1)
1559 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1560 FIELD(V7M_DFSR, VCATCH, 3, 1)
1561 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1562 
1563 /* V7M SFSR bits */
1564 FIELD(V7M_SFSR, INVEP, 0, 1)
1565 FIELD(V7M_SFSR, INVIS, 1, 1)
1566 FIELD(V7M_SFSR, INVER, 2, 1)
1567 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1568 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1569 FIELD(V7M_SFSR, LSPERR, 5, 1)
1570 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1571 FIELD(V7M_SFSR, LSERR, 7, 1)
1572 
1573 /* v7M MPU_CTRL bits */
1574 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1575 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1576 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1577 
1578 /* v7M CLIDR bits */
1579 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1580 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1581 FIELD(V7M_CLIDR, LOC, 24, 3)
1582 FIELD(V7M_CLIDR, LOUU, 27, 3)
1583 FIELD(V7M_CLIDR, ICB, 30, 2)
1584 
1585 FIELD(V7M_CSSELR, IND, 0, 1)
1586 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1587 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1588  * define a mask for this and check that it doesn't permit running off
1589  * the end of the array.
1590  */
1591 FIELD(V7M_CSSELR, INDEX, 0, 4)
1592 
1593 /* v7M FPCCR bits */
1594 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1595 FIELD(V7M_FPCCR, USER, 1, 1)
1596 FIELD(V7M_FPCCR, S, 2, 1)
1597 FIELD(V7M_FPCCR, THREAD, 3, 1)
1598 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1599 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1600 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1601 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1602 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1603 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1604 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1605 FIELD(V7M_FPCCR, RES0, 11, 15)
1606 FIELD(V7M_FPCCR, TS, 26, 1)
1607 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1608 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1609 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1610 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1611 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1612 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1613 #define R_V7M_FPCCR_BANKED_MASK                 \
1614     (R_V7M_FPCCR_LSPACT_MASK |                  \
1615      R_V7M_FPCCR_USER_MASK |                    \
1616      R_V7M_FPCCR_THREAD_MASK |                  \
1617      R_V7M_FPCCR_MMRDY_MASK |                   \
1618      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1619      R_V7M_FPCCR_UFRDY_MASK |                   \
1620      R_V7M_FPCCR_ASPEN_MASK)
1621 
1622 /*
1623  * System register ID fields.
1624  */
1625 FIELD(ID_ISAR0, SWAP, 0, 4)
1626 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1627 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1628 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1629 FIELD(ID_ISAR0, COPROC, 16, 4)
1630 FIELD(ID_ISAR0, DEBUG, 20, 4)
1631 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1632 
1633 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1634 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1635 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1636 FIELD(ID_ISAR1, EXTEND, 12, 4)
1637 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1638 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1639 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1640 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1641 
1642 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1643 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1644 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1645 FIELD(ID_ISAR2, MULT, 12, 4)
1646 FIELD(ID_ISAR2, MULTS, 16, 4)
1647 FIELD(ID_ISAR2, MULTU, 20, 4)
1648 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1649 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1650 
1651 FIELD(ID_ISAR3, SATURATE, 0, 4)
1652 FIELD(ID_ISAR3, SIMD, 4, 4)
1653 FIELD(ID_ISAR3, SVC, 8, 4)
1654 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1655 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1656 FIELD(ID_ISAR3, T32COPY, 20, 4)
1657 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1658 FIELD(ID_ISAR3, T32EE, 28, 4)
1659 
1660 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1661 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1662 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1663 FIELD(ID_ISAR4, SMC, 12, 4)
1664 FIELD(ID_ISAR4, BARRIER, 16, 4)
1665 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1666 FIELD(ID_ISAR4, PSR_M, 24, 4)
1667 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1668 
1669 FIELD(ID_ISAR5, SEVL, 0, 4)
1670 FIELD(ID_ISAR5, AES, 4, 4)
1671 FIELD(ID_ISAR5, SHA1, 8, 4)
1672 FIELD(ID_ISAR5, SHA2, 12, 4)
1673 FIELD(ID_ISAR5, CRC32, 16, 4)
1674 FIELD(ID_ISAR5, RDM, 24, 4)
1675 FIELD(ID_ISAR5, VCMA, 28, 4)
1676 
1677 FIELD(ID_ISAR6, JSCVT, 0, 4)
1678 FIELD(ID_ISAR6, DP, 4, 4)
1679 FIELD(ID_ISAR6, FHM, 8, 4)
1680 FIELD(ID_ISAR6, SB, 12, 4)
1681 FIELD(ID_ISAR6, SPECRES, 16, 4)
1682 
1683 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1684 FIELD(ID_MMFR4, AC2, 4, 4)
1685 FIELD(ID_MMFR4, XNX, 8, 4)
1686 FIELD(ID_MMFR4, CNP, 12, 4)
1687 FIELD(ID_MMFR4, HPDS, 16, 4)
1688 FIELD(ID_MMFR4, LSM, 20, 4)
1689 FIELD(ID_MMFR4, CCIDX, 24, 4)
1690 FIELD(ID_MMFR4, EVT, 28, 4)
1691 
1692 FIELD(ID_AA64ISAR0, AES, 4, 4)
1693 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1694 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1695 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1696 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1697 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1698 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1699 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1700 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1701 FIELD(ID_AA64ISAR0, DP, 44, 4)
1702 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1703 FIELD(ID_AA64ISAR0, TS, 52, 4)
1704 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1705 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1706 
1707 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1708 FIELD(ID_AA64ISAR1, APA, 4, 4)
1709 FIELD(ID_AA64ISAR1, API, 8, 4)
1710 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1711 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1712 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1713 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1714 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1715 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1716 FIELD(ID_AA64ISAR1, SB, 36, 4)
1717 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1718 
1719 FIELD(ID_AA64PFR0, EL0, 0, 4)
1720 FIELD(ID_AA64PFR0, EL1, 4, 4)
1721 FIELD(ID_AA64PFR0, EL2, 8, 4)
1722 FIELD(ID_AA64PFR0, EL3, 12, 4)
1723 FIELD(ID_AA64PFR0, FP, 16, 4)
1724 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1725 FIELD(ID_AA64PFR0, GIC, 24, 4)
1726 FIELD(ID_AA64PFR0, RAS, 28, 4)
1727 FIELD(ID_AA64PFR0, SVE, 32, 4)
1728 
1729 FIELD(ID_AA64PFR1, BT, 0, 4)
1730 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1731 FIELD(ID_AA64PFR1, MTE, 8, 4)
1732 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1733 
1734 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1735 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1736 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1737 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1738 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1739 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1740 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1741 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1742 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1743 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1744 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1745 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1746 
1747 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1748 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1749 FIELD(ID_AA64MMFR1, VH, 8, 4)
1750 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1751 FIELD(ID_AA64MMFR1, LO, 16, 4)
1752 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1753 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1754 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1755 
1756 FIELD(ID_DFR0, COPDBG, 0, 4)
1757 FIELD(ID_DFR0, COPSDBG, 4, 4)
1758 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1759 FIELD(ID_DFR0, COPTRC, 12, 4)
1760 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1761 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1762 FIELD(ID_DFR0, PERFMON, 24, 4)
1763 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1764 
1765 FIELD(MVFR0, SIMDREG, 0, 4)
1766 FIELD(MVFR0, FPSP, 4, 4)
1767 FIELD(MVFR0, FPDP, 8, 4)
1768 FIELD(MVFR0, FPTRAP, 12, 4)
1769 FIELD(MVFR0, FPDIVIDE, 16, 4)
1770 FIELD(MVFR0, FPSQRT, 20, 4)
1771 FIELD(MVFR0, FPSHVEC, 24, 4)
1772 FIELD(MVFR0, FPROUND, 28, 4)
1773 
1774 FIELD(MVFR1, FPFTZ, 0, 4)
1775 FIELD(MVFR1, FPDNAN, 4, 4)
1776 FIELD(MVFR1, SIMDLS, 8, 4)
1777 FIELD(MVFR1, SIMDINT, 12, 4)
1778 FIELD(MVFR1, SIMDSP, 16, 4)
1779 FIELD(MVFR1, SIMDHP, 20, 4)
1780 FIELD(MVFR1, FPHP, 24, 4)
1781 FIELD(MVFR1, SIMDFMAC, 28, 4)
1782 
1783 FIELD(MVFR2, SIMDMISC, 0, 4)
1784 FIELD(MVFR2, FPMISC, 4, 4)
1785 
1786 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1787 
1788 /* If adding a feature bit which corresponds to a Linux ELF
1789  * HWCAP bit, remember to update the feature-bit-to-hwcap
1790  * mapping in linux-user/elfload.c:get_elf_hwcap().
1791  */
1792 enum arm_features {
1793     ARM_FEATURE_VFP,
1794     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1795     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1796     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1797     ARM_FEATURE_V6,
1798     ARM_FEATURE_V6K,
1799     ARM_FEATURE_V7,
1800     ARM_FEATURE_THUMB2,
1801     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1802     ARM_FEATURE_VFP3,
1803     ARM_FEATURE_NEON,
1804     ARM_FEATURE_M, /* Microcontroller profile.  */
1805     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1806     ARM_FEATURE_THUMB2EE,
1807     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1808     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1809     ARM_FEATURE_V4T,
1810     ARM_FEATURE_V5,
1811     ARM_FEATURE_STRONGARM,
1812     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1813     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1814     ARM_FEATURE_GENERIC_TIMER,
1815     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1816     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1817     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1818     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1819     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1820     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1821     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1822     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1823     ARM_FEATURE_V8,
1824     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1825     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1826     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1827     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1828     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1829     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1830     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1831     ARM_FEATURE_PMU, /* has PMU support */
1832     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1833     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1834     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1835 };
1836 
1837 static inline int arm_feature(CPUARMState *env, int feature)
1838 {
1839     return (env->features & (1ULL << feature)) != 0;
1840 }
1841 
1842 #if !defined(CONFIG_USER_ONLY)
1843 /* Return true if exception levels below EL3 are in secure state,
1844  * or would be following an exception return to that level.
1845  * Unlike arm_is_secure() (which is always a question about the
1846  * _current_ state of the CPU) this doesn't care about the current
1847  * EL or mode.
1848  */
1849 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1850 {
1851     if (arm_feature(env, ARM_FEATURE_EL3)) {
1852         return !(env->cp15.scr_el3 & SCR_NS);
1853     } else {
1854         /* If EL3 is not supported then the secure state is implementation
1855          * defined, in which case QEMU defaults to non-secure.
1856          */
1857         return false;
1858     }
1859 }
1860 
1861 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1862 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1863 {
1864     if (arm_feature(env, ARM_FEATURE_EL3)) {
1865         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1866             /* CPU currently in AArch64 state and EL3 */
1867             return true;
1868         } else if (!is_a64(env) &&
1869                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1870             /* CPU currently in AArch32 state and monitor mode */
1871             return true;
1872         }
1873     }
1874     return false;
1875 }
1876 
1877 /* Return true if the processor is in secure state */
1878 static inline bool arm_is_secure(CPUARMState *env)
1879 {
1880     if (arm_is_el3_or_mon(env)) {
1881         return true;
1882     }
1883     return arm_is_secure_below_el3(env);
1884 }
1885 
1886 #else
1887 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1888 {
1889     return false;
1890 }
1891 
1892 static inline bool arm_is_secure(CPUARMState *env)
1893 {
1894     return false;
1895 }
1896 #endif
1897 
1898 /**
1899  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1900  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1901  * "for all purposes other than a direct read or write access of HCR_EL2."
1902  * Not included here is HCR_RW.
1903  */
1904 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1905 
1906 /* Return true if the specified exception level is running in AArch64 state. */
1907 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1908 {
1909     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1910      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1911      */
1912     assert(el >= 1 && el <= 3);
1913     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1914 
1915     /* The highest exception level is always at the maximum supported
1916      * register width, and then lower levels have a register width controlled
1917      * by bits in the SCR or HCR registers.
1918      */
1919     if (el == 3) {
1920         return aa64;
1921     }
1922 
1923     if (arm_feature(env, ARM_FEATURE_EL3)) {
1924         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1925     }
1926 
1927     if (el == 2) {
1928         return aa64;
1929     }
1930 
1931     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1932         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1933     }
1934 
1935     return aa64;
1936 }
1937 
1938 /* Function for determing whether guest cp register reads and writes should
1939  * access the secure or non-secure bank of a cp register.  When EL3 is
1940  * operating in AArch32 state, the NS-bit determines whether the secure
1941  * instance of a cp register should be used. When EL3 is AArch64 (or if
1942  * it doesn't exist at all) then there is no register banking, and all
1943  * accesses are to the non-secure version.
1944  */
1945 static inline bool access_secure_reg(CPUARMState *env)
1946 {
1947     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1948                 !arm_el_is_aa64(env, 3) &&
1949                 !(env->cp15.scr_el3 & SCR_NS));
1950 
1951     return ret;
1952 }
1953 
1954 /* Macros for accessing a specified CP register bank */
1955 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1956     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1957 
1958 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1959     do {                                                \
1960         if (_secure) {                                   \
1961             (_env)->cp15._regname##_s = (_val);            \
1962         } else {                                        \
1963             (_env)->cp15._regname##_ns = (_val);           \
1964         }                                               \
1965     } while (0)
1966 
1967 /* Macros for automatically accessing a specific CP register bank depending on
1968  * the current secure state of the system.  These macros are not intended for
1969  * supporting instruction translation reads/writes as these are dependent
1970  * solely on the SCR.NS bit and not the mode.
1971  */
1972 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1973     A32_BANKED_REG_GET((_env), _regname,                \
1974                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1975 
1976 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1977     A32_BANKED_REG_SET((_env), _regname,                                    \
1978                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1979                        (_val))
1980 
1981 void arm_cpu_list(void);
1982 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1983                                  uint32_t cur_el, bool secure);
1984 
1985 /* Interface between CPU and Interrupt controller.  */
1986 #ifndef CONFIG_USER_ONLY
1987 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1988 #else
1989 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1990 {
1991     return true;
1992 }
1993 #endif
1994 /**
1995  * armv7m_nvic_set_pending: mark the specified exception as pending
1996  * @opaque: the NVIC
1997  * @irq: the exception number to mark pending
1998  * @secure: false for non-banked exceptions or for the nonsecure
1999  * version of a banked exception, true for the secure version of a banked
2000  * exception.
2001  *
2002  * Marks the specified exception as pending. Note that we will assert()
2003  * if @secure is true and @irq does not specify one of the fixed set
2004  * of architecturally banked exceptions.
2005  */
2006 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2007 /**
2008  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2009  * @opaque: the NVIC
2010  * @irq: the exception number to mark pending
2011  * @secure: false for non-banked exceptions or for the nonsecure
2012  * version of a banked exception, true for the secure version of a banked
2013  * exception.
2014  *
2015  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2016  * exceptions (exceptions generated in the course of trying to take
2017  * a different exception).
2018  */
2019 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2020 /**
2021  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2022  * @opaque: the NVIC
2023  * @irq: the exception number to mark pending
2024  * @secure: false for non-banked exceptions or for the nonsecure
2025  * version of a banked exception, true for the secure version of a banked
2026  * exception.
2027  *
2028  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2029  * generated in the course of lazy stacking of FP registers.
2030  */
2031 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2032 /**
2033  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2034  *    exception, and whether it targets Secure state
2035  * @opaque: the NVIC
2036  * @pirq: set to pending exception number
2037  * @ptargets_secure: set to whether pending exception targets Secure
2038  *
2039  * This function writes the number of the highest priority pending
2040  * exception (the one which would be made active by
2041  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2042  * to true if the current highest priority pending exception should
2043  * be taken to Secure state, false for NS.
2044  */
2045 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2046                                       bool *ptargets_secure);
2047 /**
2048  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2049  * @opaque: the NVIC
2050  *
2051  * Move the current highest priority pending exception from the pending
2052  * state to the active state, and update v7m.exception to indicate that
2053  * it is the exception currently being handled.
2054  */
2055 void armv7m_nvic_acknowledge_irq(void *opaque);
2056 /**
2057  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2058  * @opaque: the NVIC
2059  * @irq: the exception number to complete
2060  * @secure: true if this exception was secure
2061  *
2062  * Returns: -1 if the irq was not active
2063  *           1 if completing this irq brought us back to base (no active irqs)
2064  *           0 if there is still an irq active after this one was completed
2065  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2066  */
2067 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2068 /**
2069  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2070  * @opaque: the NVIC
2071  * @irq: the exception number to mark pending
2072  * @secure: false for non-banked exceptions or for the nonsecure
2073  * version of a banked exception, true for the secure version of a banked
2074  * exception.
2075  *
2076  * Return whether an exception is "ready", i.e. whether the exception is
2077  * enabled and is configured at a priority which would allow it to
2078  * interrupt the current execution priority. This controls whether the
2079  * RDY bit for it in the FPCCR is set.
2080  */
2081 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2082 /**
2083  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2084  * @opaque: the NVIC
2085  *
2086  * Returns: the raw execution priority as defined by the v8M architecture.
2087  * This is the execution priority minus the effects of AIRCR.PRIS,
2088  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2089  * (v8M ARM ARM I_PKLD.)
2090  */
2091 int armv7m_nvic_raw_execution_priority(void *opaque);
2092 /**
2093  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2094  * priority is negative for the specified security state.
2095  * @opaque: the NVIC
2096  * @secure: the security state to test
2097  * This corresponds to the pseudocode IsReqExecPriNeg().
2098  */
2099 #ifndef CONFIG_USER_ONLY
2100 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2101 #else
2102 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2103 {
2104     return false;
2105 }
2106 #endif
2107 
2108 /* Interface for defining coprocessor registers.
2109  * Registers are defined in tables of arm_cp_reginfo structs
2110  * which are passed to define_arm_cp_regs().
2111  */
2112 
2113 /* When looking up a coprocessor register we look for it
2114  * via an integer which encodes all of:
2115  *  coprocessor number
2116  *  Crn, Crm, opc1, opc2 fields
2117  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2118  *    or via MRRC/MCRR?)
2119  *  non-secure/secure bank (AArch32 only)
2120  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2121  * (In this case crn and opc2 should be zero.)
2122  * For AArch64, there is no 32/64 bit size distinction;
2123  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2124  * and 4 bit CRn and CRm. The encoding patterns are chosen
2125  * to be easy to convert to and from the KVM encodings, and also
2126  * so that the hashtable can contain both AArch32 and AArch64
2127  * registers (to allow for interprocessing where we might run
2128  * 32 bit code on a 64 bit core).
2129  */
2130 /* This bit is private to our hashtable cpreg; in KVM register
2131  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2132  * in the upper bits of the 64 bit ID.
2133  */
2134 #define CP_REG_AA64_SHIFT 28
2135 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2136 
2137 /* To enable banking of coprocessor registers depending on ns-bit we
2138  * add a bit to distinguish between secure and non-secure cpregs in the
2139  * hashtable.
2140  */
2141 #define CP_REG_NS_SHIFT 29
2142 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2143 
2144 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2145     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2146      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2147 
2148 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2149     (CP_REG_AA64_MASK |                                 \
2150      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2151      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2152      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2153      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2154      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2155      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2156 
2157 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2158  * version used as a key for the coprocessor register hashtable
2159  */
2160 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2161 {
2162     uint32_t cpregid = kvmid;
2163     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2164         cpregid |= CP_REG_AA64_MASK;
2165     } else {
2166         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2167             cpregid |= (1 << 15);
2168         }
2169 
2170         /* KVM is always non-secure so add the NS flag on AArch32 register
2171          * entries.
2172          */
2173          cpregid |= 1 << CP_REG_NS_SHIFT;
2174     }
2175     return cpregid;
2176 }
2177 
2178 /* Convert a truncated 32 bit hashtable key into the full
2179  * 64 bit KVM register ID.
2180  */
2181 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2182 {
2183     uint64_t kvmid;
2184 
2185     if (cpregid & CP_REG_AA64_MASK) {
2186         kvmid = cpregid & ~CP_REG_AA64_MASK;
2187         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2188     } else {
2189         kvmid = cpregid & ~(1 << 15);
2190         if (cpregid & (1 << 15)) {
2191             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2192         } else {
2193             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2194         }
2195     }
2196     return kvmid;
2197 }
2198 
2199 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2200  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2201  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2202  * TCG can assume the value to be constant (ie load at translate time)
2203  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2204  * indicates that the TB should not be ended after a write to this register
2205  * (the default is that the TB ends after cp writes). OVERRIDE permits
2206  * a register definition to override a previous definition for the
2207  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2208  * old must have the OVERRIDE bit set.
2209  * ALIAS indicates that this register is an alias view of some underlying
2210  * state which is also visible via another register, and that the other
2211  * register is handling migration and reset; registers marked ALIAS will not be
2212  * migrated but may have their state set by syncing of register state from KVM.
2213  * NO_RAW indicates that this register has no underlying state and does not
2214  * support raw access for state saving/loading; it will not be used for either
2215  * migration or KVM state synchronization. (Typically this is for "registers"
2216  * which are actually used as instructions for cache maintenance and so on.)
2217  * IO indicates that this register does I/O and therefore its accesses
2218  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2219  * registers which implement clocks or timers require this.
2220  */
2221 #define ARM_CP_SPECIAL           0x0001
2222 #define ARM_CP_CONST             0x0002
2223 #define ARM_CP_64BIT             0x0004
2224 #define ARM_CP_SUPPRESS_TB_END   0x0008
2225 #define ARM_CP_OVERRIDE          0x0010
2226 #define ARM_CP_ALIAS             0x0020
2227 #define ARM_CP_IO                0x0040
2228 #define ARM_CP_NO_RAW            0x0080
2229 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2230 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2231 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2232 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2233 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2234 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2235 #define ARM_CP_FPU               0x1000
2236 #define ARM_CP_SVE               0x2000
2237 #define ARM_CP_NO_GDB            0x4000
2238 /* Used only as a terminator for ARMCPRegInfo lists */
2239 #define ARM_CP_SENTINEL          0xffff
2240 /* Mask of only the flag bits in a type field */
2241 #define ARM_CP_FLAG_MASK         0x70ff
2242 
2243 /* Valid values for ARMCPRegInfo state field, indicating which of
2244  * the AArch32 and AArch64 execution states this register is visible in.
2245  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2246  * If the reginfo is declared to be visible in both states then a second
2247  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2248  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2249  * Note that we rely on the values of these enums as we iterate through
2250  * the various states in some places.
2251  */
2252 enum {
2253     ARM_CP_STATE_AA32 = 0,
2254     ARM_CP_STATE_AA64 = 1,
2255     ARM_CP_STATE_BOTH = 2,
2256 };
2257 
2258 /* ARM CP register secure state flags.  These flags identify security state
2259  * attributes for a given CP register entry.
2260  * The existence of both or neither secure and non-secure flags indicates that
2261  * the register has both a secure and non-secure hash entry.  A single one of
2262  * these flags causes the register to only be hashed for the specified
2263  * security state.
2264  * Although definitions may have any combination of the S/NS bits, each
2265  * registered entry will only have one to identify whether the entry is secure
2266  * or non-secure.
2267  */
2268 enum {
2269     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2270     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2271 };
2272 
2273 /* Return true if cptype is a valid type field. This is used to try to
2274  * catch errors where the sentinel has been accidentally left off the end
2275  * of a list of registers.
2276  */
2277 static inline bool cptype_valid(int cptype)
2278 {
2279     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2280         || ((cptype & ARM_CP_SPECIAL) &&
2281             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2282 }
2283 
2284 /* Access rights:
2285  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2286  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2287  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2288  * (ie any of the privileged modes in Secure state, or Monitor mode).
2289  * If a register is accessible in one privilege level it's always accessible
2290  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2291  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2292  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2293  * terminology a little and call this PL3.
2294  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2295  * with the ELx exception levels.
2296  *
2297  * If access permissions for a register are more complex than can be
2298  * described with these bits, then use a laxer set of restrictions, and
2299  * do the more restrictive/complex check inside a helper function.
2300  */
2301 #define PL3_R 0x80
2302 #define PL3_W 0x40
2303 #define PL2_R (0x20 | PL3_R)
2304 #define PL2_W (0x10 | PL3_W)
2305 #define PL1_R (0x08 | PL2_R)
2306 #define PL1_W (0x04 | PL2_W)
2307 #define PL0_R (0x02 | PL1_R)
2308 #define PL0_W (0x01 | PL1_W)
2309 
2310 /*
2311  * For user-mode some registers are accessible to EL0 via a kernel
2312  * trap-and-emulate ABI. In this case we define the read permissions
2313  * as actually being PL0_R. However some bits of any given register
2314  * may still be masked.
2315  */
2316 #ifdef CONFIG_USER_ONLY
2317 #define PL0U_R PL0_R
2318 #else
2319 #define PL0U_R PL1_R
2320 #endif
2321 
2322 #define PL3_RW (PL3_R | PL3_W)
2323 #define PL2_RW (PL2_R | PL2_W)
2324 #define PL1_RW (PL1_R | PL1_W)
2325 #define PL0_RW (PL0_R | PL0_W)
2326 
2327 /* Return the highest implemented Exception Level */
2328 static inline int arm_highest_el(CPUARMState *env)
2329 {
2330     if (arm_feature(env, ARM_FEATURE_EL3)) {
2331         return 3;
2332     }
2333     if (arm_feature(env, ARM_FEATURE_EL2)) {
2334         return 2;
2335     }
2336     return 1;
2337 }
2338 
2339 /* Return true if a v7M CPU is in Handler mode */
2340 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2341 {
2342     return env->v7m.exception != 0;
2343 }
2344 
2345 /* Return the current Exception Level (as per ARMv8; note that this differs
2346  * from the ARMv7 Privilege Level).
2347  */
2348 static inline int arm_current_el(CPUARMState *env)
2349 {
2350     if (arm_feature(env, ARM_FEATURE_M)) {
2351         return arm_v7m_is_handler_mode(env) ||
2352             !(env->v7m.control[env->v7m.secure] & 1);
2353     }
2354 
2355     if (is_a64(env)) {
2356         return extract32(env->pstate, 2, 2);
2357     }
2358 
2359     switch (env->uncached_cpsr & 0x1f) {
2360     case ARM_CPU_MODE_USR:
2361         return 0;
2362     case ARM_CPU_MODE_HYP:
2363         return 2;
2364     case ARM_CPU_MODE_MON:
2365         return 3;
2366     default:
2367         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2368             /* If EL3 is 32-bit then all secure privileged modes run in
2369              * EL3
2370              */
2371             return 3;
2372         }
2373 
2374         return 1;
2375     }
2376 }
2377 
2378 typedef struct ARMCPRegInfo ARMCPRegInfo;
2379 
2380 typedef enum CPAccessResult {
2381     /* Access is permitted */
2382     CP_ACCESS_OK = 0,
2383     /* Access fails due to a configurable trap or enable which would
2384      * result in a categorized exception syndrome giving information about
2385      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2386      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2387      * PL1 if in EL0, otherwise to the current EL).
2388      */
2389     CP_ACCESS_TRAP = 1,
2390     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2391      * Note that this is not a catch-all case -- the set of cases which may
2392      * result in this failure is specifically defined by the architecture.
2393      */
2394     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2395     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2396     CP_ACCESS_TRAP_EL2 = 3,
2397     CP_ACCESS_TRAP_EL3 = 4,
2398     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2399     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2400     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2401     /* Access fails and results in an exception syndrome for an FP access,
2402      * trapped directly to EL2 or EL3
2403      */
2404     CP_ACCESS_TRAP_FP_EL2 = 7,
2405     CP_ACCESS_TRAP_FP_EL3 = 8,
2406 } CPAccessResult;
2407 
2408 /* Access functions for coprocessor registers. These cannot fail and
2409  * may not raise exceptions.
2410  */
2411 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2412 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2413                        uint64_t value);
2414 /* Access permission check functions for coprocessor registers. */
2415 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2416                                   const ARMCPRegInfo *opaque,
2417                                   bool isread);
2418 /* Hook function for register reset */
2419 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2420 
2421 #define CP_ANY 0xff
2422 
2423 /* Definition of an ARM coprocessor register */
2424 struct ARMCPRegInfo {
2425     /* Name of register (useful mainly for debugging, need not be unique) */
2426     const char *name;
2427     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2428      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2429      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2430      * will be decoded to this register. The register read and write
2431      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2432      * used by the program, so it is possible to register a wildcard and
2433      * then behave differently on read/write if necessary.
2434      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2435      * must both be zero.
2436      * For AArch64-visible registers, opc0 is also used.
2437      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2438      * way to distinguish (for KVM's benefit) guest-visible system registers
2439      * from demuxed ones provided to preserve the "no side effects on
2440      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2441      * visible (to match KVM's encoding); cp==0 will be converted to
2442      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2443      */
2444     uint8_t cp;
2445     uint8_t crn;
2446     uint8_t crm;
2447     uint8_t opc0;
2448     uint8_t opc1;
2449     uint8_t opc2;
2450     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2451     int state;
2452     /* Register type: ARM_CP_* bits/values */
2453     int type;
2454     /* Access rights: PL*_[RW] */
2455     int access;
2456     /* Security state: ARM_CP_SECSTATE_* bits/values */
2457     int secure;
2458     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2459      * this register was defined: can be used to hand data through to the
2460      * register read/write functions, since they are passed the ARMCPRegInfo*.
2461      */
2462     void *opaque;
2463     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2464      * fieldoffset is non-zero, the reset value of the register.
2465      */
2466     uint64_t resetvalue;
2467     /* Offset of the field in CPUARMState for this register.
2468      *
2469      * This is not needed if either:
2470      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2471      *  2. both readfn and writefn are specified
2472      */
2473     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2474 
2475     /* Offsets of the secure and non-secure fields in CPUARMState for the
2476      * register if it is banked.  These fields are only used during the static
2477      * registration of a register.  During hashing the bank associated
2478      * with a given security state is copied to fieldoffset which is used from
2479      * there on out.
2480      *
2481      * It is expected that register definitions use either fieldoffset or
2482      * bank_fieldoffsets in the definition but not both.  It is also expected
2483      * that both bank offsets are set when defining a banked register.  This
2484      * use indicates that a register is banked.
2485      */
2486     ptrdiff_t bank_fieldoffsets[2];
2487 
2488     /* Function for making any access checks for this register in addition to
2489      * those specified by the 'access' permissions bits. If NULL, no extra
2490      * checks required. The access check is performed at runtime, not at
2491      * translate time.
2492      */
2493     CPAccessFn *accessfn;
2494     /* Function for handling reads of this register. If NULL, then reads
2495      * will be done by loading from the offset into CPUARMState specified
2496      * by fieldoffset.
2497      */
2498     CPReadFn *readfn;
2499     /* Function for handling writes of this register. If NULL, then writes
2500      * will be done by writing to the offset into CPUARMState specified
2501      * by fieldoffset.
2502      */
2503     CPWriteFn *writefn;
2504     /* Function for doing a "raw" read; used when we need to copy
2505      * coprocessor state to the kernel for KVM or out for
2506      * migration. This only needs to be provided if there is also a
2507      * readfn and it has side effects (for instance clear-on-read bits).
2508      */
2509     CPReadFn *raw_readfn;
2510     /* Function for doing a "raw" write; used when we need to copy KVM
2511      * kernel coprocessor state into userspace, or for inbound
2512      * migration. This only needs to be provided if there is also a
2513      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2514      * or similar behaviour.
2515      */
2516     CPWriteFn *raw_writefn;
2517     /* Function for resetting the register. If NULL, then reset will be done
2518      * by writing resetvalue to the field specified in fieldoffset. If
2519      * fieldoffset is 0 then no reset will be done.
2520      */
2521     CPResetFn *resetfn;
2522 };
2523 
2524 /* Macros which are lvalues for the field in CPUARMState for the
2525  * ARMCPRegInfo *ri.
2526  */
2527 #define CPREG_FIELD32(env, ri) \
2528     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2529 #define CPREG_FIELD64(env, ri) \
2530     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2531 
2532 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2533 
2534 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2535                                     const ARMCPRegInfo *regs, void *opaque);
2536 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2537                                        const ARMCPRegInfo *regs, void *opaque);
2538 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2539 {
2540     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2541 }
2542 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2543 {
2544     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2545 }
2546 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2547 
2548 /*
2549  * Definition of an ARM co-processor register as viewed from
2550  * userspace. This is used for presenting sanitised versions of
2551  * registers to userspace when emulating the Linux AArch64 CPU
2552  * ID/feature ABI (advertised as HWCAP_CPUID).
2553  */
2554 typedef struct ARMCPRegUserSpaceInfo {
2555     /* Name of register */
2556     const char *name;
2557 
2558     /* Is the name actually a glob pattern */
2559     bool is_glob;
2560 
2561     /* Only some bits are exported to user space */
2562     uint64_t exported_bits;
2563 
2564     /* Fixed bits are applied after the mask */
2565     uint64_t fixed_bits;
2566 } ARMCPRegUserSpaceInfo;
2567 
2568 #define REGUSERINFO_SENTINEL { .name = NULL }
2569 
2570 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2571 
2572 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2573 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2574                          uint64_t value);
2575 /* CPReadFn that can be used for read-as-zero behaviour */
2576 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2577 
2578 /* CPResetFn that does nothing, for use if no reset is required even
2579  * if fieldoffset is non zero.
2580  */
2581 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2582 
2583 /* Return true if this reginfo struct's field in the cpu state struct
2584  * is 64 bits wide.
2585  */
2586 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2587 {
2588     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2589 }
2590 
2591 static inline bool cp_access_ok(int current_el,
2592                                 const ARMCPRegInfo *ri, int isread)
2593 {
2594     return (ri->access >> ((current_el * 2) + isread)) & 1;
2595 }
2596 
2597 /* Raw read of a coprocessor register (as needed for migration, etc) */
2598 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2599 
2600 /**
2601  * write_list_to_cpustate
2602  * @cpu: ARMCPU
2603  *
2604  * For each register listed in the ARMCPU cpreg_indexes list, write
2605  * its value from the cpreg_values list into the ARMCPUState structure.
2606  * This updates TCG's working data structures from KVM data or
2607  * from incoming migration state.
2608  *
2609  * Returns: true if all register values were updated correctly,
2610  * false if some register was unknown or could not be written.
2611  * Note that we do not stop early on failure -- we will attempt
2612  * writing all registers in the list.
2613  */
2614 bool write_list_to_cpustate(ARMCPU *cpu);
2615 
2616 /**
2617  * write_cpustate_to_list:
2618  * @cpu: ARMCPU
2619  * @kvm_sync: true if this is for syncing back to KVM
2620  *
2621  * For each register listed in the ARMCPU cpreg_indexes list, write
2622  * its value from the ARMCPUState structure into the cpreg_values list.
2623  * This is used to copy info from TCG's working data structures into
2624  * KVM or for outbound migration.
2625  *
2626  * @kvm_sync is true if we are doing this in order to sync the
2627  * register state back to KVM. In this case we will only update
2628  * values in the list if the previous list->cpustate sync actually
2629  * successfully wrote the CPU state. Otherwise we will keep the value
2630  * that is in the list.
2631  *
2632  * Returns: true if all register values were read correctly,
2633  * false if some register was unknown or could not be read.
2634  * Note that we do not stop early on failure -- we will attempt
2635  * reading all registers in the list.
2636  */
2637 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2638 
2639 #define ARM_CPUID_TI915T      0x54029152
2640 #define ARM_CPUID_TI925T      0x54029252
2641 
2642 #if defined(CONFIG_USER_ONLY)
2643 #define TARGET_PAGE_BITS 12
2644 #else
2645 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2646  * have to support 1K tiny pages.
2647  */
2648 #define TARGET_PAGE_BITS_VARY
2649 #define TARGET_PAGE_BITS_MIN 10
2650 #endif
2651 
2652 #if defined(TARGET_AARCH64)
2653 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
2654 #  define TARGET_VIRT_ADDR_SPACE_BITS 48
2655 #else
2656 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
2657 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
2658 #endif
2659 
2660 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2661                                      unsigned int target_el)
2662 {
2663     CPUARMState *env = cs->env_ptr;
2664     unsigned int cur_el = arm_current_el(env);
2665     bool secure = arm_is_secure(env);
2666     bool pstate_unmasked;
2667     int8_t unmasked = 0;
2668     uint64_t hcr_el2;
2669 
2670     /* Don't take exceptions if they target a lower EL.
2671      * This check should catch any exceptions that would not be taken but left
2672      * pending.
2673      */
2674     if (cur_el > target_el) {
2675         return false;
2676     }
2677 
2678     hcr_el2 = arm_hcr_el2_eff(env);
2679 
2680     switch (excp_idx) {
2681     case EXCP_FIQ:
2682         pstate_unmasked = !(env->daif & PSTATE_F);
2683         break;
2684 
2685     case EXCP_IRQ:
2686         pstate_unmasked = !(env->daif & PSTATE_I);
2687         break;
2688 
2689     case EXCP_VFIQ:
2690         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2691             /* VFIQs are only taken when hypervized and non-secure.  */
2692             return false;
2693         }
2694         return !(env->daif & PSTATE_F);
2695     case EXCP_VIRQ:
2696         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2697             /* VIRQs are only taken when hypervized and non-secure.  */
2698             return false;
2699         }
2700         return !(env->daif & PSTATE_I);
2701     default:
2702         g_assert_not_reached();
2703     }
2704 
2705     /* Use the target EL, current execution state and SCR/HCR settings to
2706      * determine whether the corresponding CPSR bit is used to mask the
2707      * interrupt.
2708      */
2709     if ((target_el > cur_el) && (target_el != 1)) {
2710         /* Exceptions targeting a higher EL may not be maskable */
2711         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2712             /* 64-bit masking rules are simple: exceptions to EL3
2713              * can't be masked, and exceptions to EL2 can only be
2714              * masked from Secure state. The HCR and SCR settings
2715              * don't affect the masking logic, only the interrupt routing.
2716              */
2717             if (target_el == 3 || !secure) {
2718                 unmasked = 1;
2719             }
2720         } else {
2721             /* The old 32-bit-only environment has a more complicated
2722              * masking setup. HCR and SCR bits not only affect interrupt
2723              * routing but also change the behaviour of masking.
2724              */
2725             bool hcr, scr;
2726 
2727             switch (excp_idx) {
2728             case EXCP_FIQ:
2729                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2730                  * we override the CPSR.F in determining if the exception is
2731                  * masked or not. If neither of these are set then we fall back
2732                  * to the CPSR.F setting otherwise we further assess the state
2733                  * below.
2734                  */
2735                 hcr = hcr_el2 & HCR_FMO;
2736                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2737 
2738                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2739                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2740                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2741                  * when non-secure but only when FIQs are only routed to EL3.
2742                  */
2743                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2744                 break;
2745             case EXCP_IRQ:
2746                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2747                  * we may override the CPSR.I masking when in non-secure state.
2748                  * The SCR.IRQ setting has already been taken into consideration
2749                  * when setting the target EL, so it does not have a further
2750                  * affect here.
2751                  */
2752                 hcr = hcr_el2 & HCR_IMO;
2753                 scr = false;
2754                 break;
2755             default:
2756                 g_assert_not_reached();
2757             }
2758 
2759             if ((scr || hcr) && !secure) {
2760                 unmasked = 1;
2761             }
2762         }
2763     }
2764 
2765     /* The PSTATE bits only mask the interrupt if we have not overriden the
2766      * ability above.
2767      */
2768     return unmasked || pstate_unmasked;
2769 }
2770 
2771 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2772 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2773 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2774 
2775 #define cpu_signal_handler cpu_arm_signal_handler
2776 #define cpu_list arm_cpu_list
2777 
2778 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2779  *
2780  * If EL3 is 64-bit:
2781  *  + NonSecure EL1 & 0 stage 1
2782  *  + NonSecure EL1 & 0 stage 2
2783  *  + NonSecure EL2
2784  *  + Secure EL1 & EL0
2785  *  + Secure EL3
2786  * If EL3 is 32-bit:
2787  *  + NonSecure PL1 & 0 stage 1
2788  *  + NonSecure PL1 & 0 stage 2
2789  *  + NonSecure PL2
2790  *  + Secure PL0 & PL1
2791  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2792  *
2793  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2794  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2795  *     may differ in access permissions even if the VA->PA map is the same
2796  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2797  *     translation, which means that we have one mmu_idx that deals with two
2798  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2799  *     architecturally permitted]
2800  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2801  *     handling via the TLB. The only way to do a stage 1 translation without
2802  *     the immediate stage 2 translation is via the ATS or AT system insns,
2803  *     which can be slow-pathed and always do a page table walk.
2804  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2805  *     translation regimes, because they map reasonably well to each other
2806  *     and they can't both be active at the same time.
2807  * This gives us the following list of mmu_idx values:
2808  *
2809  * NS EL0 (aka NS PL0) stage 1+2
2810  * NS EL1 (aka NS PL1) stage 1+2
2811  * NS EL2 (aka NS PL2)
2812  * S EL3 (aka S PL1)
2813  * S EL0 (aka S PL0)
2814  * S EL1 (not used if EL3 is 32 bit)
2815  * NS EL0+1 stage 2
2816  *
2817  * (The last of these is an mmu_idx because we want to be able to use the TLB
2818  * for the accesses done as part of a stage 1 page table walk, rather than
2819  * having to walk the stage 2 page table over and over.)
2820  *
2821  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2822  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2823  * NS EL2 if we ever model a Cortex-R52).
2824  *
2825  * M profile CPUs are rather different as they do not have a true MMU.
2826  * They have the following different MMU indexes:
2827  *  User
2828  *  Privileged
2829  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2830  *  Privileged, execution priority negative (ditto)
2831  * If the CPU supports the v8M Security Extension then there are also:
2832  *  Secure User
2833  *  Secure Privileged
2834  *  Secure User, execution priority negative
2835  *  Secure Privileged, execution priority negative
2836  *
2837  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2838  * are not quite the same -- different CPU types (most notably M profile
2839  * vs A/R profile) would like to use MMU indexes with different semantics,
2840  * but since we don't ever need to use all of those in a single CPU we
2841  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2842  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2843  * the same for any particular CPU.
2844  * Variables of type ARMMUIdx are always full values, and the core
2845  * index values are in variables of type 'int'.
2846  *
2847  * Our enumeration includes at the end some entries which are not "true"
2848  * mmu_idx values in that they don't have corresponding TLBs and are only
2849  * valid for doing slow path page table walks.
2850  *
2851  * The constant names here are patterned after the general style of the names
2852  * of the AT/ATS operations.
2853  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2854  * For M profile we arrange them to have a bit for priv, a bit for negpri
2855  * and a bit for secure.
2856  */
2857 #define ARM_MMU_IDX_A 0x10 /* A profile */
2858 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2859 #define ARM_MMU_IDX_M 0x40 /* M profile */
2860 
2861 /* meanings of the bits for M profile mmu idx values */
2862 #define ARM_MMU_IDX_M_PRIV 0x1
2863 #define ARM_MMU_IDX_M_NEGPRI 0x2
2864 #define ARM_MMU_IDX_M_S 0x4
2865 
2866 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2867 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2868 
2869 typedef enum ARMMMUIdx {
2870     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2871     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2872     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2873     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2874     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2875     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2876     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2877     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2878     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2879     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2880     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2881     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2882     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2883     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2884     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2885     /* Indexes below here don't have TLBs and are used only for AT system
2886      * instructions or for the first stage of an S12 page table walk.
2887      */
2888     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2889     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2890 } ARMMMUIdx;
2891 
2892 /* Bit macros for the core-mmu-index values for each index,
2893  * for use when calling tlb_flush_by_mmuidx() and friends.
2894  */
2895 typedef enum ARMMMUIdxBit {
2896     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2897     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2898     ARMMMUIdxBit_S1E2 = 1 << 2,
2899     ARMMMUIdxBit_S1E3 = 1 << 3,
2900     ARMMMUIdxBit_S1SE0 = 1 << 4,
2901     ARMMMUIdxBit_S1SE1 = 1 << 5,
2902     ARMMMUIdxBit_S2NS = 1 << 6,
2903     ARMMMUIdxBit_MUser = 1 << 0,
2904     ARMMMUIdxBit_MPriv = 1 << 1,
2905     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2906     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2907     ARMMMUIdxBit_MSUser = 1 << 4,
2908     ARMMMUIdxBit_MSPriv = 1 << 5,
2909     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2910     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2911 } ARMMMUIdxBit;
2912 
2913 #define MMU_USER_IDX 0
2914 
2915 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2916 {
2917     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2918 }
2919 
2920 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2921 {
2922     if (arm_feature(env, ARM_FEATURE_M)) {
2923         return mmu_idx | ARM_MMU_IDX_M;
2924     } else {
2925         return mmu_idx | ARM_MMU_IDX_A;
2926     }
2927 }
2928 
2929 /* Return the exception level we're running at if this is our mmu_idx */
2930 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2931 {
2932     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2933     case ARM_MMU_IDX_A:
2934         return mmu_idx & 3;
2935     case ARM_MMU_IDX_M:
2936         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2937     default:
2938         g_assert_not_reached();
2939     }
2940 }
2941 
2942 /*
2943  * Return the MMU index for a v7M CPU with all relevant information
2944  * manually specified.
2945  */
2946 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2947                               bool secstate, bool priv, bool negpri);
2948 
2949 /* Return the MMU index for a v7M CPU in the specified security and
2950  * privilege state.
2951  */
2952 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2953                                                 bool secstate, bool priv);
2954 
2955 /* Return the MMU index for a v7M CPU in the specified security state */
2956 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2957 
2958 /**
2959  * cpu_mmu_index:
2960  * @env: The cpu environment
2961  * @ifetch: True for code access, false for data access.
2962  *
2963  * Return the core mmu index for the current translation regime.
2964  * This function is used by generic TCG code paths.
2965  */
2966 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2967 
2968 /* Indexes used when registering address spaces with cpu_address_space_init */
2969 typedef enum ARMASIdx {
2970     ARMASIdx_NS = 0,
2971     ARMASIdx_S = 1,
2972 } ARMASIdx;
2973 
2974 /* Return the Exception Level targeted by debug exceptions. */
2975 static inline int arm_debug_target_el(CPUARMState *env)
2976 {
2977     bool secure = arm_is_secure(env);
2978     bool route_to_el2 = false;
2979 
2980     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2981         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2982                        env->cp15.mdcr_el2 & MDCR_TDE;
2983     }
2984 
2985     if (route_to_el2) {
2986         return 2;
2987     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2988                !arm_el_is_aa64(env, 3) && secure) {
2989         return 3;
2990     } else {
2991         return 1;
2992     }
2993 }
2994 
2995 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2996 {
2997     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2998      * CSSELR is RAZ/WI.
2999      */
3000     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3001 }
3002 
3003 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3004 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3005 {
3006     int cur_el = arm_current_el(env);
3007     int debug_el;
3008 
3009     if (cur_el == 3) {
3010         return false;
3011     }
3012 
3013     /* MDCR_EL3.SDD disables debug events from Secure state */
3014     if (arm_is_secure_below_el3(env)
3015         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3016         return false;
3017     }
3018 
3019     /*
3020      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3021      * while not masking the (D)ebug bit in DAIF.
3022      */
3023     debug_el = arm_debug_target_el(env);
3024 
3025     if (cur_el == debug_el) {
3026         return extract32(env->cp15.mdscr_el1, 13, 1)
3027             && !(env->daif & PSTATE_D);
3028     }
3029 
3030     /* Otherwise the debug target needs to be a higher EL */
3031     return debug_el > cur_el;
3032 }
3033 
3034 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3035 {
3036     int el = arm_current_el(env);
3037 
3038     if (el == 0 && arm_el_is_aa64(env, 1)) {
3039         return aa64_generate_debug_exceptions(env);
3040     }
3041 
3042     if (arm_is_secure(env)) {
3043         int spd;
3044 
3045         if (el == 0 && (env->cp15.sder & 1)) {
3046             /* SDER.SUIDEN means debug exceptions from Secure EL0
3047              * are always enabled. Otherwise they are controlled by
3048              * SDCR.SPD like those from other Secure ELs.
3049              */
3050             return true;
3051         }
3052 
3053         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3054         switch (spd) {
3055         case 1:
3056             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3057         case 0:
3058             /* For 0b00 we return true if external secure invasive debug
3059              * is enabled. On real hardware this is controlled by external
3060              * signals to the core. QEMU always permits debug, and behaves
3061              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3062              */
3063             return true;
3064         case 2:
3065             return false;
3066         case 3:
3067             return true;
3068         }
3069     }
3070 
3071     return el != 2;
3072 }
3073 
3074 /* Return true if debugging exceptions are currently enabled.
3075  * This corresponds to what in ARM ARM pseudocode would be
3076  *    if UsingAArch32() then
3077  *        return AArch32.GenerateDebugExceptions()
3078  *    else
3079  *        return AArch64.GenerateDebugExceptions()
3080  * We choose to push the if() down into this function for clarity,
3081  * since the pseudocode has it at all callsites except for the one in
3082  * CheckSoftwareStep(), where it is elided because both branches would
3083  * always return the same value.
3084  */
3085 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3086 {
3087     if (env->aarch64) {
3088         return aa64_generate_debug_exceptions(env);
3089     } else {
3090         return aa32_generate_debug_exceptions(env);
3091     }
3092 }
3093 
3094 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3095  * implicitly means this always returns false in pre-v8 CPUs.)
3096  */
3097 static inline bool arm_singlestep_active(CPUARMState *env)
3098 {
3099     return extract32(env->cp15.mdscr_el1, 0, 1)
3100         && arm_el_is_aa64(env, arm_debug_target_el(env))
3101         && arm_generate_debug_exceptions(env);
3102 }
3103 
3104 static inline bool arm_sctlr_b(CPUARMState *env)
3105 {
3106     return
3107         /* We need not implement SCTLR.ITD in user-mode emulation, so
3108          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3109          * This lets people run BE32 binaries with "-cpu any".
3110          */
3111 #ifndef CONFIG_USER_ONLY
3112         !arm_feature(env, ARM_FEATURE_V7) &&
3113 #endif
3114         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3115 }
3116 
3117 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3118 {
3119     if (el == 0) {
3120         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3121         return env->cp15.sctlr_el[1];
3122     } else {
3123         return env->cp15.sctlr_el[el];
3124     }
3125 }
3126 
3127 
3128 /* Return true if the processor is in big-endian mode. */
3129 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3130 {
3131     /* In 32bit endianness is determined by looking at CPSR's E bit */
3132     if (!is_a64(env)) {
3133         return
3134 #ifdef CONFIG_USER_ONLY
3135             /* In system mode, BE32 is modelled in line with the
3136              * architecture (as word-invariant big-endianness), where loads
3137              * and stores are done little endian but from addresses which
3138              * are adjusted by XORing with the appropriate constant. So the
3139              * endianness to use for the raw data access is not affected by
3140              * SCTLR.B.
3141              * In user mode, however, we model BE32 as byte-invariant
3142              * big-endianness (because user-only code cannot tell the
3143              * difference), and so we need to use a data access endianness
3144              * that depends on SCTLR.B.
3145              */
3146             arm_sctlr_b(env) ||
3147 #endif
3148                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3149     } else {
3150         int cur_el = arm_current_el(env);
3151         uint64_t sctlr = arm_sctlr(env, cur_el);
3152 
3153         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3154     }
3155 }
3156 
3157 #include "exec/cpu-all.h"
3158 
3159 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3160  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3161  * We put flags which are shared between 32 and 64 bit mode at the top
3162  * of the word, and flags which apply to only one mode at the bottom.
3163  */
3164 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3165 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3166 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3167 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3168 /* Target EL if we take a floating-point-disabled exception */
3169 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3170 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3171 
3172 /* Bit usage when in AArch32 state: */
3173 FIELD(TBFLAG_A32, THUMB, 0, 1)
3174 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3175 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3176 /*
3177  * We store the bottom two bits of the CPAR as TB flags and handle
3178  * checks on the other bits at runtime. This shares the same bits as
3179  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3180  */
3181 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3182 /*
3183  * Indicates whether cp register reads and writes by guest code should access
3184  * the secure or nonsecure bank of banked registers; note that this is not
3185  * the same thing as the current security state of the processor!
3186  */
3187 FIELD(TBFLAG_A32, NS, 6, 1)
3188 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3189 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3190 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3191 /* For M profile only, set if FPCCR.LSPACT is set */
3192 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3193 /* For M profile only, set if we must create a new FP context */
3194 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3195 /* For M profile only, set if FPCCR.S does not match current security state */
3196 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3197 /* For M profile only, Handler (ie not Thread) mode */
3198 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3199 /* For M profile only, whether we should generate stack-limit checks */
3200 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3201 
3202 /* Bit usage when in AArch64 state */
3203 FIELD(TBFLAG_A64, TBII, 0, 2)
3204 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3205 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3206 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3207 FIELD(TBFLAG_A64, BT, 9, 1)
3208 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3209 FIELD(TBFLAG_A64, TBID, 12, 2)
3210 
3211 static inline bool bswap_code(bool sctlr_b)
3212 {
3213 #ifdef CONFIG_USER_ONLY
3214     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3215      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3216      * would also end up as a mixed-endian mode with BE code, LE data.
3217      */
3218     return
3219 #ifdef TARGET_WORDS_BIGENDIAN
3220         1 ^
3221 #endif
3222         sctlr_b;
3223 #else
3224     /* All code access in ARM is little endian, and there are no loaders
3225      * doing swaps that need to be reversed
3226      */
3227     return 0;
3228 #endif
3229 }
3230 
3231 #ifdef CONFIG_USER_ONLY
3232 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3233 {
3234     return
3235 #ifdef TARGET_WORDS_BIGENDIAN
3236        1 ^
3237 #endif
3238        arm_cpu_data_is_big_endian(env);
3239 }
3240 #endif
3241 
3242 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3243                           target_ulong *cs_base, uint32_t *flags);
3244 
3245 enum {
3246     QEMU_PSCI_CONDUIT_DISABLED = 0,
3247     QEMU_PSCI_CONDUIT_SMC = 1,
3248     QEMU_PSCI_CONDUIT_HVC = 2,
3249 };
3250 
3251 #ifndef CONFIG_USER_ONLY
3252 /* Return the address space index to use for a memory access */
3253 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3254 {
3255     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3256 }
3257 
3258 /* Return the AddressSpace to use for a memory access
3259  * (which depends on whether the access is S or NS, and whether
3260  * the board gave us a separate AddressSpace for S accesses).
3261  */
3262 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3263 {
3264     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3265 }
3266 #endif
3267 
3268 /**
3269  * arm_register_pre_el_change_hook:
3270  * Register a hook function which will be called immediately before this
3271  * CPU changes exception level or mode. The hook function will be
3272  * passed a pointer to the ARMCPU and the opaque data pointer passed
3273  * to this function when the hook was registered.
3274  *
3275  * Note that if a pre-change hook is called, any registered post-change hooks
3276  * are guaranteed to subsequently be called.
3277  */
3278 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3279                                  void *opaque);
3280 /**
3281  * arm_register_el_change_hook:
3282  * Register a hook function which will be called immediately after this
3283  * CPU changes exception level or mode. The hook function will be
3284  * passed a pointer to the ARMCPU and the opaque data pointer passed
3285  * to this function when the hook was registered.
3286  *
3287  * Note that any registered hooks registered here are guaranteed to be called
3288  * if pre-change hooks have been.
3289  */
3290 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3291         *opaque);
3292 
3293 /**
3294  * aa32_vfp_dreg:
3295  * Return a pointer to the Dn register within env in 32-bit mode.
3296  */
3297 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3298 {
3299     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3300 }
3301 
3302 /**
3303  * aa32_vfp_qreg:
3304  * Return a pointer to the Qn register within env in 32-bit mode.
3305  */
3306 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3307 {
3308     return &env->vfp.zregs[regno].d[0];
3309 }
3310 
3311 /**
3312  * aa64_vfp_qreg:
3313  * Return a pointer to the Qn register within env in 64-bit mode.
3314  */
3315 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3316 {
3317     return &env->vfp.zregs[regno].d[0];
3318 }
3319 
3320 /* Shared between translate-sve.c and sve_helper.c.  */
3321 extern const uint64_t pred_esz_masks[4];
3322 
3323 /*
3324  * 32-bit feature tests via id registers.
3325  */
3326 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3327 {
3328     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3329 }
3330 
3331 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3332 {
3333     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3334 }
3335 
3336 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3337 {
3338     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3339 }
3340 
3341 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3342 {
3343     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3344 }
3345 
3346 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3347 {
3348     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3349 }
3350 
3351 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3352 {
3353     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3354 }
3355 
3356 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3357 {
3358     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3359 }
3360 
3361 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3362 {
3363     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3364 }
3365 
3366 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3367 {
3368     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3369 }
3370 
3371 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3372 {
3373     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3374 }
3375 
3376 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3377 {
3378     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3379 }
3380 
3381 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3382 {
3383     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3384 }
3385 
3386 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3387 {
3388     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3389 }
3390 
3391 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3392 {
3393     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3394 }
3395 
3396 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3397 {
3398     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3399 }
3400 
3401 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3402 {
3403     /*
3404      * This is a placeholder for use by VCMA until the rest of
3405      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3406      * At which point we can properly set and check MVFR1.FPHP.
3407      */
3408     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3409 }
3410 
3411 /*
3412  * We always set the FP and SIMD FP16 fields to indicate identical
3413  * levels of support (assuming SIMD is implemented at all), so
3414  * we only need one set of accessors.
3415  */
3416 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3417 {
3418     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3419 }
3420 
3421 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3422 {
3423     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3424 }
3425 
3426 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3427 {
3428     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3429 }
3430 
3431 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3432 {
3433     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3434 }
3435 
3436 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3437 {
3438     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3439 }
3440 
3441 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3442 {
3443     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3444 }
3445 
3446 /*
3447  * 64-bit feature tests via id registers.
3448  */
3449 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3450 {
3451     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3452 }
3453 
3454 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3455 {
3456     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3457 }
3458 
3459 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3460 {
3461     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3462 }
3463 
3464 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3465 {
3466     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3467 }
3468 
3469 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3470 {
3471     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3472 }
3473 
3474 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3475 {
3476     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3477 }
3478 
3479 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3480 {
3481     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3482 }
3483 
3484 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3485 {
3486     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3487 }
3488 
3489 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3490 {
3491     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3492 }
3493 
3494 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3495 {
3496     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3497 }
3498 
3499 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3500 {
3501     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3502 }
3503 
3504 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3505 {
3506     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3507 }
3508 
3509 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3510 {
3511     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3512 }
3513 
3514 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3515 {
3516     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3517 }
3518 
3519 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3520 {
3521     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3522 }
3523 
3524 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3525 {
3526     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3527 }
3528 
3529 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3530 {
3531     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3532 }
3533 
3534 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3535 {
3536     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3537 }
3538 
3539 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3540 {
3541     /*
3542      * Note that while QEMU will only implement the architected algorithm
3543      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3544      * defined algorithms, and thus API+GPI, and this predicate controls
3545      * migration of the 128-bit keys.
3546      */
3547     return (id->id_aa64isar1 &
3548             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3549              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3550              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3551              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3552 }
3553 
3554 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3555 {
3556     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3557 }
3558 
3559 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3560 {
3561     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3562 }
3563 
3564 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3565 {
3566     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3567 }
3568 
3569 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3570 {
3571     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3572     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3573 }
3574 
3575 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3576 {
3577     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3578 }
3579 
3580 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3581 {
3582     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3583 }
3584 
3585 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3586 {
3587     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3588 }
3589 
3590 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3591 {
3592     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3593 }
3594 
3595 /*
3596  * Forward to the above feature tests given an ARMCPU pointer.
3597  */
3598 #define cpu_isar_feature(name, cpu) \
3599     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3600 
3601 #endif
3602