1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "qemu/cpu-float.h" 25 #include "hw/registerfields.h" 26 #include "cpu-qom.h" 27 #include "exec/cpu-defs.h" 28 #include "qapi/qapi-types-common.h" 29 30 /* ARM processors have a weak memory model */ 31 #define TCG_GUEST_DEFAULT_MO (0) 32 33 #ifdef TARGET_AARCH64 34 #define KVM_HAVE_MCE_INJECTION 1 35 #endif 36 37 #define EXCP_UDEF 1 /* undefined instruction */ 38 #define EXCP_SWI 2 /* software interrupt */ 39 #define EXCP_PREFETCH_ABORT 3 40 #define EXCP_DATA_ABORT 4 41 #define EXCP_IRQ 5 42 #define EXCP_FIQ 6 43 #define EXCP_BKPT 7 44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 46 #define EXCP_HVC 11 /* HyperVisor Call */ 47 #define EXCP_HYP_TRAP 12 48 #define EXCP_SMC 13 /* Secure Monitor Call */ 49 #define EXCP_VIRQ 14 50 #define EXCP_VFIQ 15 51 #define EXCP_SEMIHOST 16 /* semihosting call */ 52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ 59 #define EXCP_VSERR 24 60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 61 62 #define ARMV7M_EXCP_RESET 1 63 #define ARMV7M_EXCP_NMI 2 64 #define ARMV7M_EXCP_HARD 3 65 #define ARMV7M_EXCP_MEM 4 66 #define ARMV7M_EXCP_BUS 5 67 #define ARMV7M_EXCP_USAGE 6 68 #define ARMV7M_EXCP_SECURE 7 69 #define ARMV7M_EXCP_SVC 11 70 #define ARMV7M_EXCP_DEBUG 12 71 #define ARMV7M_EXCP_PENDSV 14 72 #define ARMV7M_EXCP_SYSTICK 15 73 74 /* For M profile, some registers are banked secure vs non-secure; 75 * these are represented as a 2-element array where the first element 76 * is the non-secure copy and the second is the secure copy. 77 * When the CPU does not have implement the security extension then 78 * only the first element is used. 79 * This means that the copy for the current security state can be 80 * accessed via env->registerfield[env->v7m.secure] (whether the security 81 * extension is implemented or not). 82 */ 83 enum { 84 M_REG_NS = 0, 85 M_REG_S = 1, 86 M_REG_NUM_BANKS = 2, 87 }; 88 89 /* ARM-specific interrupt pending bits. */ 90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0 94 95 /* The usual mapping for an AArch64 system register to its AArch32 96 * counterpart is for the 32 bit world to have access to the lower 97 * half only (with writes leaving the upper half untouched). It's 98 * therefore useful to be able to pass TCG the offset of the least 99 * significant half of a uint64_t struct member. 100 */ 101 #if HOST_BIG_ENDIAN 102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 103 #define offsetofhigh32(S, M) offsetof(S, M) 104 #else 105 #define offsetoflow32(S, M) offsetof(S, M) 106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 107 #endif 108 109 /* Meanings of the ARMCPU object's four inbound GPIO lines */ 110 #define ARM_CPU_IRQ 0 111 #define ARM_CPU_FIQ 1 112 #define ARM_CPU_VIRQ 2 113 #define ARM_CPU_VFIQ 3 114 115 /* ARM-specific extra insn start words: 116 * 1: Conditional execution bits 117 * 2: Partial exception syndrome for data aborts 118 */ 119 #define TARGET_INSN_START_EXTRA_WORDS 2 120 121 /* The 2nd extra word holding syndrome info for data aborts does not use 122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to 123 * help the sleb128 encoder do a better job. 124 * When restoring the CPU state, we shift it back up. 125 */ 126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 127 #define ARM_INSN_START_WORD2_SHIFT 14 128 129 /* We currently assume float and double are IEEE single and double 130 precision respectively. 131 Doing runtime conversions is tricky because VFP registers may contain 132 integer values (eg. as the result of a FTOSI instruction). 133 s<2n> maps to the least significant half of d<n> 134 s<2n+1> maps to the most significant half of d<n> 135 */ 136 137 /** 138 * DynamicGDBXMLInfo: 139 * @desc: Contains the XML descriptions. 140 * @num: Number of the registers in this XML seen by GDB. 141 * @data: A union with data specific to the set of registers 142 * @cpregs_keys: Array that contains the corresponding Key of 143 * a given cpreg with the same order of the cpreg 144 * in the XML description. 145 */ 146 typedef struct DynamicGDBXMLInfo { 147 char *desc; 148 int num; 149 union { 150 struct { 151 uint32_t *keys; 152 } cpregs; 153 } data; 154 } DynamicGDBXMLInfo; 155 156 /* CPU state for each instance of a generic timer (in cp15 c14) */ 157 typedef struct ARMGenericTimer { 158 uint64_t cval; /* Timer CompareValue register */ 159 uint64_t ctl; /* Timer Control register */ 160 } ARMGenericTimer; 161 162 #define GTIMER_PHYS 0 163 #define GTIMER_VIRT 1 164 #define GTIMER_HYP 2 165 #define GTIMER_SEC 3 166 #define GTIMER_HYPVIRT 4 167 #define NUM_GTIMERS 5 168 169 #define VTCR_NSW (1u << 29) 170 #define VTCR_NSA (1u << 30) 171 #define VSTCR_SW VTCR_NSW 172 #define VSTCR_SA VTCR_NSA 173 174 /* Define a maximum sized vector register. 175 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 176 * For 64-bit, this is a 2048-bit SVE register. 177 * 178 * Note that the mapping between S, D, and Q views of the register bank 179 * differs between AArch64 and AArch32. 180 * In AArch32: 181 * Qn = regs[n].d[1]:regs[n].d[0] 182 * Dn = regs[n / 2].d[n & 1] 183 * Sn = regs[n / 4].d[n % 4 / 2], 184 * bits 31..0 for even n, and bits 63..32 for odd n 185 * (and regs[16] to regs[31] are inaccessible) 186 * In AArch64: 187 * Zn = regs[n].d[*] 188 * Qn = regs[n].d[1]:regs[n].d[0] 189 * Dn = regs[n].d[0] 190 * Sn = regs[n].d[0] bits 31..0 191 * Hn = regs[n].d[0] bits 15..0 192 * 193 * This corresponds to the architecturally defined mapping between 194 * the two execution states, and means we do not need to explicitly 195 * map these registers when changing states. 196 * 197 * Align the data for use with TCG host vector operations. 198 */ 199 200 #ifdef TARGET_AARCH64 201 # define ARM_MAX_VQ 16 202 #else 203 # define ARM_MAX_VQ 1 204 #endif 205 206 typedef struct ARMVectorReg { 207 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 208 } ARMVectorReg; 209 210 #ifdef TARGET_AARCH64 211 /* In AArch32 mode, predicate registers do not exist at all. */ 212 typedef struct ARMPredicateReg { 213 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 214 } ARMPredicateReg; 215 216 /* In AArch32 mode, PAC keys do not exist at all. */ 217 typedef struct ARMPACKey { 218 uint64_t lo, hi; 219 } ARMPACKey; 220 #endif 221 222 /* See the commentary above the TBFLAG field definitions. */ 223 typedef struct CPUARMTBFlags { 224 uint32_t flags; 225 target_ulong flags2; 226 } CPUARMTBFlags; 227 228 typedef struct CPUArchState { 229 /* Regs for current mode. */ 230 uint32_t regs[16]; 231 232 /* 32/64 switch only happens when taking and returning from 233 * exceptions so the overlap semantics are taken care of then 234 * instead of having a complicated union. 235 */ 236 /* Regs for A64 mode. */ 237 uint64_t xregs[32]; 238 uint64_t pc; 239 /* PSTATE isn't an architectural register for ARMv8. However, it is 240 * convenient for us to assemble the underlying state into a 32 bit format 241 * identical to the architectural format used for the SPSR. (This is also 242 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 243 * 'pstate' register are.) Of the PSTATE bits: 244 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 245 * semantics as for AArch32, as described in the comments on each field) 246 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 247 * DAIF (exception masks) are kept in env->daif 248 * BTYPE is kept in env->btype 249 * SM and ZA are kept in env->svcr 250 * all other bits are stored in their correct places in env->pstate 251 */ 252 uint32_t pstate; 253 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */ 254 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */ 255 256 /* Cached TBFLAGS state. See below for which bits are included. */ 257 CPUARMTBFlags hflags; 258 259 /* Frequently accessed CPSR bits are stored separately for efficiency. 260 This contains all the other bits. Use cpsr_{read,write} to access 261 the whole CPSR. */ 262 uint32_t uncached_cpsr; 263 uint32_t spsr; 264 265 /* Banked registers. */ 266 uint64_t banked_spsr[8]; 267 uint32_t banked_r13[8]; 268 uint32_t banked_r14[8]; 269 270 /* These hold r8-r12. */ 271 uint32_t usr_regs[5]; 272 uint32_t fiq_regs[5]; 273 274 /* cpsr flag cache for faster execution */ 275 uint32_t CF; /* 0 or 1 */ 276 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 277 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 278 uint32_t ZF; /* Z set if zero. */ 279 uint32_t QF; /* 0 or 1 */ 280 uint32_t GE; /* cpsr[19:16] */ 281 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 282 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 283 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 284 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */ 285 286 uint64_t elr_el[4]; /* AArch64 exception link regs */ 287 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 288 289 /* System control coprocessor (cp15) */ 290 struct { 291 uint32_t c0_cpuid; 292 union { /* Cache size selection */ 293 struct { 294 uint64_t _unused_csselr0; 295 uint64_t csselr_ns; 296 uint64_t _unused_csselr1; 297 uint64_t csselr_s; 298 }; 299 uint64_t csselr_el[4]; 300 }; 301 union { /* System control register. */ 302 struct { 303 uint64_t _unused_sctlr; 304 uint64_t sctlr_ns; 305 uint64_t hsctlr; 306 uint64_t sctlr_s; 307 }; 308 uint64_t sctlr_el[4]; 309 }; 310 uint64_t cpacr_el1; /* Architectural feature access control register */ 311 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 312 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 313 uint64_t sder; /* Secure debug enable register. */ 314 uint32_t nsacr; /* Non-secure access control register. */ 315 union { /* MMU translation table base 0. */ 316 struct { 317 uint64_t _unused_ttbr0_0; 318 uint64_t ttbr0_ns; 319 uint64_t _unused_ttbr0_1; 320 uint64_t ttbr0_s; 321 }; 322 uint64_t ttbr0_el[4]; 323 }; 324 union { /* MMU translation table base 1. */ 325 struct { 326 uint64_t _unused_ttbr1_0; 327 uint64_t ttbr1_ns; 328 uint64_t _unused_ttbr1_1; 329 uint64_t ttbr1_s; 330 }; 331 uint64_t ttbr1_el[4]; 332 }; 333 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 334 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ 335 /* MMU translation table base control. */ 336 uint64_t tcr_el[4]; 337 uint64_t vtcr_el2; /* Virtualization Translation Control. */ 338 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */ 339 uint32_t c2_data; /* MPU data cacheable bits. */ 340 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 341 union { /* MMU domain access control register 342 * MPU write buffer control. 343 */ 344 struct { 345 uint64_t dacr_ns; 346 uint64_t dacr_s; 347 }; 348 struct { 349 uint64_t dacr32_el2; 350 }; 351 }; 352 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 353 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 354 uint64_t hcr_el2; /* Hypervisor configuration register */ 355 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */ 356 uint64_t scr_el3; /* Secure configuration register. */ 357 union { /* Fault status registers. */ 358 struct { 359 uint64_t ifsr_ns; 360 uint64_t ifsr_s; 361 }; 362 struct { 363 uint64_t ifsr32_el2; 364 }; 365 }; 366 union { 367 struct { 368 uint64_t _unused_dfsr; 369 uint64_t dfsr_ns; 370 uint64_t hsr; 371 uint64_t dfsr_s; 372 }; 373 uint64_t esr_el[4]; 374 }; 375 uint32_t c6_region[8]; /* MPU base/size registers. */ 376 union { /* Fault address registers. */ 377 struct { 378 uint64_t _unused_far0; 379 #if HOST_BIG_ENDIAN 380 uint32_t ifar_ns; 381 uint32_t dfar_ns; 382 uint32_t ifar_s; 383 uint32_t dfar_s; 384 #else 385 uint32_t dfar_ns; 386 uint32_t ifar_ns; 387 uint32_t dfar_s; 388 uint32_t ifar_s; 389 #endif 390 uint64_t _unused_far3; 391 }; 392 uint64_t far_el[4]; 393 }; 394 uint64_t hpfar_el2; 395 uint64_t hstr_el2; 396 union { /* Translation result. */ 397 struct { 398 uint64_t _unused_par_0; 399 uint64_t par_ns; 400 uint64_t _unused_par_1; 401 uint64_t par_s; 402 }; 403 uint64_t par_el[4]; 404 }; 405 406 uint32_t c9_insn; /* Cache lockdown registers. */ 407 uint32_t c9_data; 408 uint64_t c9_pmcr; /* performance monitor control register */ 409 uint64_t c9_pmcnten; /* perf monitor counter enables */ 410 uint64_t c9_pmovsr; /* perf monitor overflow status */ 411 uint64_t c9_pmuserenr; /* perf monitor user enable */ 412 uint64_t c9_pmselr; /* perf monitor counter selection register */ 413 uint64_t c9_pminten; /* perf monitor interrupt enables */ 414 union { /* Memory attribute redirection */ 415 struct { 416 #if HOST_BIG_ENDIAN 417 uint64_t _unused_mair_0; 418 uint32_t mair1_ns; 419 uint32_t mair0_ns; 420 uint64_t _unused_mair_1; 421 uint32_t mair1_s; 422 uint32_t mair0_s; 423 #else 424 uint64_t _unused_mair_0; 425 uint32_t mair0_ns; 426 uint32_t mair1_ns; 427 uint64_t _unused_mair_1; 428 uint32_t mair0_s; 429 uint32_t mair1_s; 430 #endif 431 }; 432 uint64_t mair_el[4]; 433 }; 434 union { /* vector base address register */ 435 struct { 436 uint64_t _unused_vbar; 437 uint64_t vbar_ns; 438 uint64_t hvbar; 439 uint64_t vbar_s; 440 }; 441 uint64_t vbar_el[4]; 442 }; 443 uint32_t mvbar; /* (monitor) vector base address register */ 444 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */ 445 struct { /* FCSE PID. */ 446 uint32_t fcseidr_ns; 447 uint32_t fcseidr_s; 448 }; 449 union { /* Context ID. */ 450 struct { 451 uint64_t _unused_contextidr_0; 452 uint64_t contextidr_ns; 453 uint64_t _unused_contextidr_1; 454 uint64_t contextidr_s; 455 }; 456 uint64_t contextidr_el[4]; 457 }; 458 union { /* User RW Thread register. */ 459 struct { 460 uint64_t tpidrurw_ns; 461 uint64_t tpidrprw_ns; 462 uint64_t htpidr; 463 uint64_t _tpidr_el3; 464 }; 465 uint64_t tpidr_el[4]; 466 }; 467 uint64_t tpidr2_el0; 468 /* The secure banks of these registers don't map anywhere */ 469 uint64_t tpidrurw_s; 470 uint64_t tpidrprw_s; 471 uint64_t tpidruro_s; 472 473 union { /* User RO Thread register. */ 474 uint64_t tpidruro_ns; 475 uint64_t tpidrro_el[1]; 476 }; 477 uint64_t c14_cntfrq; /* Counter Frequency register */ 478 uint64_t c14_cntkctl; /* Timer Control register */ 479 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 480 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 481 ARMGenericTimer c14_timer[NUM_GTIMERS]; 482 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 483 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 484 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 485 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 486 uint32_t c15_threadid; /* TI debugger thread-ID. */ 487 uint32_t c15_config_base_address; /* SCU base address. */ 488 uint32_t c15_diagnostic; /* diagnostic register */ 489 uint32_t c15_power_diagnostic; 490 uint32_t c15_power_control; /* power control */ 491 uint64_t dbgbvr[16]; /* breakpoint value registers */ 492 uint64_t dbgbcr[16]; /* breakpoint control registers */ 493 uint64_t dbgwvr[16]; /* watchpoint value registers */ 494 uint64_t dbgwcr[16]; /* watchpoint control registers */ 495 uint64_t mdscr_el1; 496 uint64_t oslsr_el1; /* OS Lock Status */ 497 uint64_t osdlr_el1; /* OS DoubleLock status */ 498 uint64_t mdcr_el2; 499 uint64_t mdcr_el3; 500 /* Stores the architectural value of the counter *the last time it was 501 * updated* by pmccntr_op_start. Accesses should always be surrounded 502 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 503 * architecturally-correct value is being read/set. 504 */ 505 uint64_t c15_ccnt; 506 /* Stores the delta between the architectural value and the underlying 507 * cycle count during normal operation. It is used to update c15_ccnt 508 * to be the correct architectural value before accesses. During 509 * accesses, c15_ccnt_delta contains the underlying count being used 510 * for the access, after which it reverts to the delta value in 511 * pmccntr_op_finish. 512 */ 513 uint64_t c15_ccnt_delta; 514 uint64_t c14_pmevcntr[31]; 515 uint64_t c14_pmevcntr_delta[31]; 516 uint64_t c14_pmevtyper[31]; 517 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 518 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 519 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 520 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 521 uint64_t gcr_el1; 522 uint64_t rgsr_el1; 523 524 /* Minimal RAS registers */ 525 uint64_t disr_el1; 526 uint64_t vdisr_el2; 527 uint64_t vsesr_el2; 528 } cp15; 529 530 struct { 531 /* M profile has up to 4 stack pointers: 532 * a Main Stack Pointer and a Process Stack Pointer for each 533 * of the Secure and Non-Secure states. (If the CPU doesn't support 534 * the security extension then it has only two SPs.) 535 * In QEMU we always store the currently active SP in regs[13], 536 * and the non-active SP for the current security state in 537 * v7m.other_sp. The stack pointers for the inactive security state 538 * are stored in other_ss_msp and other_ss_psp. 539 * switch_v7m_security_state() is responsible for rearranging them 540 * when we change security state. 541 */ 542 uint32_t other_sp; 543 uint32_t other_ss_msp; 544 uint32_t other_ss_psp; 545 uint32_t vecbase[M_REG_NUM_BANKS]; 546 uint32_t basepri[M_REG_NUM_BANKS]; 547 uint32_t control[M_REG_NUM_BANKS]; 548 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 549 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 550 uint32_t hfsr; /* HardFault Status */ 551 uint32_t dfsr; /* Debug Fault Status Register */ 552 uint32_t sfsr; /* Secure Fault Status Register */ 553 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 554 uint32_t bfar; /* BusFault Address */ 555 uint32_t sfar; /* Secure Fault Address Register */ 556 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 557 int exception; 558 uint32_t primask[M_REG_NUM_BANKS]; 559 uint32_t faultmask[M_REG_NUM_BANKS]; 560 uint32_t aircr; /* only holds r/w state if security extn implemented */ 561 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 562 uint32_t csselr[M_REG_NUM_BANKS]; 563 uint32_t scr[M_REG_NUM_BANKS]; 564 uint32_t msplim[M_REG_NUM_BANKS]; 565 uint32_t psplim[M_REG_NUM_BANKS]; 566 uint32_t fpcar[M_REG_NUM_BANKS]; 567 uint32_t fpccr[M_REG_NUM_BANKS]; 568 uint32_t fpdscr[M_REG_NUM_BANKS]; 569 uint32_t cpacr[M_REG_NUM_BANKS]; 570 uint32_t nsacr; 571 uint32_t ltpsize; 572 uint32_t vpr; 573 } v7m; 574 575 /* Information associated with an exception about to be taken: 576 * code which raises an exception must set cs->exception_index and 577 * the relevant parts of this structure; the cpu_do_interrupt function 578 * will then set the guest-visible registers as part of the exception 579 * entry process. 580 */ 581 struct { 582 uint32_t syndrome; /* AArch64 format syndrome register */ 583 uint32_t fsr; /* AArch32 format fault status register info */ 584 uint64_t vaddress; /* virtual addr associated with exception, if any */ 585 uint32_t target_el; /* EL the exception should be targeted for */ 586 /* If we implement EL2 we will also need to store information 587 * about the intermediate physical address for stage 2 faults. 588 */ 589 } exception; 590 591 /* Information associated with an SError */ 592 struct { 593 uint8_t pending; 594 uint8_t has_esr; 595 uint64_t esr; 596 } serror; 597 598 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 599 600 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 601 uint32_t irq_line_state; 602 603 /* Thumb-2 EE state. */ 604 uint32_t teecr; 605 uint32_t teehbr; 606 607 /* VFP coprocessor state. */ 608 struct { 609 ARMVectorReg zregs[32]; 610 611 #ifdef TARGET_AARCH64 612 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 613 #define FFR_PRED_NUM 16 614 ARMPredicateReg pregs[17]; 615 /* Scratch space for aa64 sve predicate temporary. */ 616 ARMPredicateReg preg_tmp; 617 #endif 618 619 /* We store these fpcsr fields separately for convenience. */ 620 uint32_t qc[4] QEMU_ALIGNED(16); 621 int vec_len; 622 int vec_stride; 623 624 uint32_t xregs[16]; 625 626 /* Scratch space for aa32 neon expansion. */ 627 uint32_t scratch[8]; 628 629 /* There are a number of distinct float control structures: 630 * 631 * fp_status: is the "normal" fp status. 632 * fp_status_fp16: used for half-precision calculations 633 * standard_fp_status : the ARM "Standard FPSCR Value" 634 * standard_fp_status_fp16 : used for half-precision 635 * calculations with the ARM "Standard FPSCR Value" 636 * 637 * Half-precision operations are governed by a separate 638 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 639 * status structure to control this. 640 * 641 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 642 * round-to-nearest and is used by any operations (generally 643 * Neon) which the architecture defines as controlled by the 644 * standard FPSCR value rather than the FPSCR. 645 * 646 * The "standard FPSCR but for fp16 ops" is needed because 647 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 648 * using a fixed value for it. 649 * 650 * To avoid having to transfer exception bits around, we simply 651 * say that the FPSCR cumulative exception flags are the logical 652 * OR of the flags in the four fp statuses. This relies on the 653 * only thing which needs to read the exception flags being 654 * an explicit FPSCR read. 655 */ 656 float_status fp_status; 657 float_status fp_status_f16; 658 float_status standard_fp_status; 659 float_status standard_fp_status_f16; 660 661 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ 662 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ 663 } vfp; 664 uint64_t exclusive_addr; 665 uint64_t exclusive_val; 666 uint64_t exclusive_high; 667 668 /* iwMMXt coprocessor state. */ 669 struct { 670 uint64_t regs[16]; 671 uint64_t val; 672 673 uint32_t cregs[16]; 674 } iwmmxt; 675 676 #ifdef TARGET_AARCH64 677 struct { 678 ARMPACKey apia; 679 ARMPACKey apib; 680 ARMPACKey apda; 681 ARMPACKey apdb; 682 ARMPACKey apga; 683 } keys; 684 685 uint64_t scxtnum_el[4]; 686 687 /* 688 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order, 689 * as we do with vfp.zregs[]. This corresponds to the architectural ZA 690 * array, where ZA[N] is in the least-significant bytes of env->zarray[N]. 691 * When SVL is less than the architectural maximum, the accessible 692 * storage is restricted, such that if the SVL is X bytes the guest can 693 * see only the bottom X elements of zarray[], and only the least 694 * significant X bytes of each element of the array. (In other words, 695 * the observable part is always square.) 696 * 697 * The ZA storage can also be considered as a set of square tiles of 698 * elements of different sizes. The mapping from tiles to the ZA array 699 * is architecturally defined, such that for tiles of elements of esz 700 * bytes, the Nth row (or "horizontal slice") of tile T is in 701 * ZA[T + N * esz]. Note that this means that each tile is not contiguous 702 * in the ZA storage, because its rows are striped through the ZA array. 703 * 704 * Because this is so large, keep this toward the end of the reset area, 705 * to keep the offsets into the rest of the structure smaller. 706 */ 707 ARMVectorReg zarray[ARM_MAX_VQ * 16]; 708 #endif 709 710 #if defined(CONFIG_USER_ONLY) 711 /* For usermode syscall translation. */ 712 int eabi; 713 #endif 714 715 struct CPUBreakpoint *cpu_breakpoint[16]; 716 struct CPUWatchpoint *cpu_watchpoint[16]; 717 718 /* Fields up to this point are cleared by a CPU reset */ 719 struct {} end_reset_fields; 720 721 /* Fields after this point are preserved across CPU reset. */ 722 723 /* Internal CPU feature flags. */ 724 uint64_t features; 725 726 /* PMSAv7 MPU */ 727 struct { 728 uint32_t *drbar; 729 uint32_t *drsr; 730 uint32_t *dracr; 731 uint32_t rnr[M_REG_NUM_BANKS]; 732 } pmsav7; 733 734 /* PMSAv8 MPU */ 735 struct { 736 /* The PMSAv8 implementation also shares some PMSAv7 config 737 * and state: 738 * pmsav7.rnr (region number register) 739 * pmsav7_dregion (number of configured regions) 740 */ 741 uint32_t *rbar[M_REG_NUM_BANKS]; 742 uint32_t *rlar[M_REG_NUM_BANKS]; 743 uint32_t mair0[M_REG_NUM_BANKS]; 744 uint32_t mair1[M_REG_NUM_BANKS]; 745 } pmsav8; 746 747 /* v8M SAU */ 748 struct { 749 uint32_t *rbar; 750 uint32_t *rlar; 751 uint32_t rnr; 752 uint32_t ctrl; 753 } sau; 754 755 void *nvic; 756 const struct arm_boot_info *boot_info; 757 /* Store GICv3CPUState to access from this struct */ 758 void *gicv3state; 759 760 #ifdef TARGET_TAGGED_ADDRESSES 761 /* Linux syscall tagged address support */ 762 bool tagged_addr_enable; 763 #endif 764 } CPUARMState; 765 766 static inline void set_feature(CPUARMState *env, int feature) 767 { 768 env->features |= 1ULL << feature; 769 } 770 771 static inline void unset_feature(CPUARMState *env, int feature) 772 { 773 env->features &= ~(1ULL << feature); 774 } 775 776 /** 777 * ARMELChangeHookFn: 778 * type of a function which can be registered via arm_register_el_change_hook() 779 * to get callbacks when the CPU changes its exception level or mode. 780 */ 781 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 782 typedef struct ARMELChangeHook ARMELChangeHook; 783 struct ARMELChangeHook { 784 ARMELChangeHookFn *hook; 785 void *opaque; 786 QLIST_ENTRY(ARMELChangeHook) node; 787 }; 788 789 /* These values map onto the return values for 790 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 791 typedef enum ARMPSCIState { 792 PSCI_ON = 0, 793 PSCI_OFF = 1, 794 PSCI_ON_PENDING = 2 795 } ARMPSCIState; 796 797 typedef struct ARMISARegisters ARMISARegisters; 798 799 /* 800 * In map, each set bit is a supported vector length of (bit-number + 1) * 16 801 * bytes, i.e. each bit number + 1 is the vector length in quadwords. 802 * 803 * While processing properties during initialization, corresponding init bits 804 * are set for bits in sve_vq_map that have been set by properties. 805 * 806 * Bits set in supported represent valid vector lengths for the CPU type. 807 */ 808 typedef struct { 809 uint32_t map, init, supported; 810 } ARMVQMap; 811 812 /** 813 * ARMCPU: 814 * @env: #CPUARMState 815 * 816 * An ARM CPU core. 817 */ 818 struct ArchCPU { 819 /*< private >*/ 820 CPUState parent_obj; 821 /*< public >*/ 822 823 CPUNegativeOffsetState neg; 824 CPUARMState env; 825 826 /* Coprocessor information */ 827 GHashTable *cp_regs; 828 /* For marshalling (mostly coprocessor) register state between the 829 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 830 * we use these arrays. 831 */ 832 /* List of register indexes managed via these arrays; (full KVM style 833 * 64 bit indexes, not CPRegInfo 32 bit indexes) 834 */ 835 uint64_t *cpreg_indexes; 836 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 837 uint64_t *cpreg_values; 838 /* Length of the indexes, values, reset_values arrays */ 839 int32_t cpreg_array_len; 840 /* These are used only for migration: incoming data arrives in 841 * these fields and is sanity checked in post_load before copying 842 * to the working data structures above. 843 */ 844 uint64_t *cpreg_vmstate_indexes; 845 uint64_t *cpreg_vmstate_values; 846 int32_t cpreg_vmstate_array_len; 847 848 DynamicGDBXMLInfo dyn_sysreg_xml; 849 DynamicGDBXMLInfo dyn_svereg_xml; 850 851 /* Timers used by the generic (architected) timer */ 852 QEMUTimer *gt_timer[NUM_GTIMERS]; 853 /* 854 * Timer used by the PMU. Its state is restored after migration by 855 * pmu_op_finish() - it does not need other handling during migration 856 */ 857 QEMUTimer *pmu_timer; 858 /* GPIO outputs for generic timer */ 859 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 860 /* GPIO output for GICv3 maintenance interrupt signal */ 861 qemu_irq gicv3_maintenance_interrupt; 862 /* GPIO output for the PMU interrupt */ 863 qemu_irq pmu_interrupt; 864 865 /* MemoryRegion to use for secure physical accesses */ 866 MemoryRegion *secure_memory; 867 868 /* MemoryRegion to use for allocation tag accesses */ 869 MemoryRegion *tag_memory; 870 MemoryRegion *secure_tag_memory; 871 872 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 873 Object *idau; 874 875 /* 'compatible' string for this CPU for Linux device trees */ 876 const char *dtb_compatible; 877 878 /* PSCI version for this CPU 879 * Bits[31:16] = Major Version 880 * Bits[15:0] = Minor Version 881 */ 882 uint32_t psci_version; 883 884 /* Current power state, access guarded by BQL */ 885 ARMPSCIState power_state; 886 887 /* CPU has virtualization extension */ 888 bool has_el2; 889 /* CPU has security extension */ 890 bool has_el3; 891 /* CPU has PMU (Performance Monitor Unit) */ 892 bool has_pmu; 893 /* CPU has VFP */ 894 bool has_vfp; 895 /* CPU has Neon */ 896 bool has_neon; 897 /* CPU has M-profile DSP extension */ 898 bool has_dsp; 899 900 /* CPU has memory protection unit */ 901 bool has_mpu; 902 /* PMSAv7 MPU number of supported regions */ 903 uint32_t pmsav7_dregion; 904 /* v8M SAU number of supported regions */ 905 uint32_t sau_sregion; 906 907 /* PSCI conduit used to invoke PSCI methods 908 * 0 - disabled, 1 - smc, 2 - hvc 909 */ 910 uint32_t psci_conduit; 911 912 /* For v8M, initial value of the Secure VTOR */ 913 uint32_t init_svtor; 914 /* For v8M, initial value of the Non-secure VTOR */ 915 uint32_t init_nsvtor; 916 917 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 918 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 919 */ 920 uint32_t kvm_target; 921 922 /* KVM init features for this CPU */ 923 uint32_t kvm_init_features[7]; 924 925 /* KVM CPU state */ 926 927 /* KVM virtual time adjustment */ 928 bool kvm_adjvtime; 929 bool kvm_vtime_dirty; 930 uint64_t kvm_vtime; 931 932 /* KVM steal time */ 933 OnOffAuto kvm_steal_time; 934 935 /* Uniprocessor system with MP extensions */ 936 bool mp_is_up; 937 938 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 939 * and the probe failed (so we need to report the error in realize) 940 */ 941 bool host_cpu_probe_failed; 942 943 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 944 * register. 945 */ 946 int32_t core_count; 947 948 /* The instance init functions for implementation-specific subclasses 949 * set these fields to specify the implementation-dependent values of 950 * various constant registers and reset values of non-constant 951 * registers. 952 * Some of these might become QOM properties eventually. 953 * Field names match the official register names as defined in the 954 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 955 * is used for reset values of non-constant registers; no reset_ 956 * prefix means a constant register. 957 * Some of these registers are split out into a substructure that 958 * is shared with the translators to control the ISA. 959 * 960 * Note that if you add an ID register to the ARMISARegisters struct 961 * you need to also update the 32-bit and 64-bit versions of the 962 * kvm_arm_get_host_cpu_features() function to correctly populate the 963 * field by reading the value from the KVM vCPU. 964 */ 965 struct ARMISARegisters { 966 uint32_t id_isar0; 967 uint32_t id_isar1; 968 uint32_t id_isar2; 969 uint32_t id_isar3; 970 uint32_t id_isar4; 971 uint32_t id_isar5; 972 uint32_t id_isar6; 973 uint32_t id_mmfr0; 974 uint32_t id_mmfr1; 975 uint32_t id_mmfr2; 976 uint32_t id_mmfr3; 977 uint32_t id_mmfr4; 978 uint32_t id_pfr0; 979 uint32_t id_pfr1; 980 uint32_t id_pfr2; 981 uint32_t mvfr0; 982 uint32_t mvfr1; 983 uint32_t mvfr2; 984 uint32_t id_dfr0; 985 uint32_t dbgdidr; 986 uint32_t dbgdevid; 987 uint32_t dbgdevid1; 988 uint64_t id_aa64isar0; 989 uint64_t id_aa64isar1; 990 uint64_t id_aa64pfr0; 991 uint64_t id_aa64pfr1; 992 uint64_t id_aa64mmfr0; 993 uint64_t id_aa64mmfr1; 994 uint64_t id_aa64mmfr2; 995 uint64_t id_aa64dfr0; 996 uint64_t id_aa64dfr1; 997 uint64_t id_aa64zfr0; 998 uint64_t id_aa64smfr0; 999 uint64_t reset_pmcr_el0; 1000 } isar; 1001 uint64_t midr; 1002 uint32_t revidr; 1003 uint32_t reset_fpsid; 1004 uint64_t ctr; 1005 uint32_t reset_sctlr; 1006 uint64_t pmceid0; 1007 uint64_t pmceid1; 1008 uint32_t id_afr0; 1009 uint64_t id_aa64afr0; 1010 uint64_t id_aa64afr1; 1011 uint64_t clidr; 1012 uint64_t mp_affinity; /* MP ID without feature bits */ 1013 /* The elements of this array are the CCSIDR values for each cache, 1014 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 1015 */ 1016 uint64_t ccsidr[16]; 1017 uint64_t reset_cbar; 1018 uint32_t reset_auxcr; 1019 bool reset_hivecs; 1020 1021 /* 1022 * Intermediate values used during property parsing. 1023 * Once finalized, the values should be read from ID_AA64*. 1024 */ 1025 bool prop_pauth; 1026 bool prop_pauth_impdef; 1027 bool prop_lpa2; 1028 1029 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 1030 uint32_t dcz_blocksize; 1031 uint64_t rvbar_prop; /* Property/input signals. */ 1032 1033 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 1034 int gic_num_lrs; /* number of list registers */ 1035 int gic_vpribits; /* number of virtual priority bits */ 1036 int gic_vprebits; /* number of virtual preemption bits */ 1037 int gic_pribits; /* number of physical priority bits */ 1038 1039 /* Whether the cfgend input is high (i.e. this CPU should reset into 1040 * big-endian mode). This setting isn't used directly: instead it modifies 1041 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 1042 * architecture version. 1043 */ 1044 bool cfgend; 1045 1046 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 1047 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 1048 1049 int32_t node_id; /* NUMA node this CPU belongs to */ 1050 1051 /* Used to synchronize KVM and QEMU in-kernel device levels */ 1052 uint8_t device_irq_level; 1053 1054 /* Used to set the maximum vector length the cpu will support. */ 1055 uint32_t sve_max_vq; 1056 1057 #ifdef CONFIG_USER_ONLY 1058 /* Used to set the default vector length at process start. */ 1059 uint32_t sve_default_vq; 1060 uint32_t sme_default_vq; 1061 #endif 1062 1063 ARMVQMap sve_vq; 1064 ARMVQMap sme_vq; 1065 1066 /* Generic timer counter frequency, in Hz */ 1067 uint64_t gt_cntfrq_hz; 1068 }; 1069 1070 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 1071 1072 void arm_cpu_post_init(Object *obj); 1073 1074 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); 1075 1076 #ifndef CONFIG_USER_ONLY 1077 extern const VMStateDescription vmstate_arm_cpu; 1078 1079 void arm_cpu_do_interrupt(CPUState *cpu); 1080 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1081 #endif /* !CONFIG_USER_ONLY */ 1082 1083 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1084 MemTxAttrs *attrs); 1085 1086 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1087 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1088 1089 /* 1090 * Helpers to dynamically generates XML descriptions of the sysregs 1091 * and SVE registers. Returns the number of registers in each set. 1092 */ 1093 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); 1094 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); 1095 1096 /* Returns the dynamically generated XML for the gdb stub. 1097 * Returns a pointer to the XML contents for the specified XML file or NULL 1098 * if the XML name doesn't match the predefined one. 1099 */ 1100 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); 1101 1102 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1103 int cpuid, void *opaque); 1104 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1105 int cpuid, void *opaque); 1106 1107 #ifdef TARGET_AARCH64 1108 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1109 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1110 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1111 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1112 int new_el, bool el0_a64); 1113 void arm_reset_sve_state(CPUARMState *env); 1114 1115 /* 1116 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1117 * The byte at offset i from the start of the in-memory representation contains 1118 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1119 * lowest offsets are stored in the lowest memory addresses, then that nearly 1120 * matches QEMU's representation, which is to use an array of host-endian 1121 * uint64_t's, where the lower offsets are at the lower indices. To complete 1122 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1123 */ 1124 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1125 { 1126 #if HOST_BIG_ENDIAN 1127 int i; 1128 1129 for (i = 0; i < nr; ++i) { 1130 dst[i] = bswap64(src[i]); 1131 } 1132 1133 return dst; 1134 #else 1135 return src; 1136 #endif 1137 } 1138 1139 #else 1140 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } 1141 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1142 int n, bool a) 1143 { } 1144 #endif 1145 1146 void aarch64_sync_32_to_64(CPUARMState *env); 1147 void aarch64_sync_64_to_32(CPUARMState *env); 1148 1149 int fp_exception_el(CPUARMState *env, int cur_el); 1150 int sve_exception_el(CPUARMState *env, int cur_el); 1151 int sme_exception_el(CPUARMState *env, int cur_el); 1152 1153 /** 1154 * sve_vqm1_for_el_sm: 1155 * @env: CPUARMState 1156 * @el: exception level 1157 * @sm: streaming mode 1158 * 1159 * Compute the current vector length for @el & @sm, in units of 1160 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN. 1161 * If @sm, compute for SVL, otherwise NVL. 1162 */ 1163 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm); 1164 1165 /* Likewise, but using @sm = PSTATE.SM. */ 1166 uint32_t sve_vqm1_for_el(CPUARMState *env, int el); 1167 1168 static inline bool is_a64(CPUARMState *env) 1169 { 1170 return env->aarch64; 1171 } 1172 1173 /** 1174 * pmu_op_start/finish 1175 * @env: CPUARMState 1176 * 1177 * Convert all PMU counters between their delta form (the typical mode when 1178 * they are enabled) and the guest-visible values. These two calls must 1179 * surround any action which might affect the counters. 1180 */ 1181 void pmu_op_start(CPUARMState *env); 1182 void pmu_op_finish(CPUARMState *env); 1183 1184 /* 1185 * Called when a PMU counter is due to overflow 1186 */ 1187 void arm_pmu_timer_cb(void *opaque); 1188 1189 /** 1190 * Functions to register as EL change hooks for PMU mode filtering 1191 */ 1192 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1193 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1194 1195 /* 1196 * pmu_init 1197 * @cpu: ARMCPU 1198 * 1199 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1200 * for the current configuration 1201 */ 1202 void pmu_init(ARMCPU *cpu); 1203 1204 /* SCTLR bit meanings. Several bits have been reused in newer 1205 * versions of the architecture; in that case we define constants 1206 * for both old and new bit meanings. Code which tests against those 1207 * bits should probably check or otherwise arrange that the CPU 1208 * is the architectural version it expects. 1209 */ 1210 #define SCTLR_M (1U << 0) 1211 #define SCTLR_A (1U << 1) 1212 #define SCTLR_C (1U << 2) 1213 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1214 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1215 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1216 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1217 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1218 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1219 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1220 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1221 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1222 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ 1223 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1224 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1225 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1226 #define SCTLR_SED (1U << 8) /* v8 onward */ 1227 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1228 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1229 #define SCTLR_F (1U << 10) /* up to v6 */ 1230 #define SCTLR_SW (1U << 10) /* v7 */ 1231 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1232 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1233 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1234 #define SCTLR_I (1U << 12) 1235 #define SCTLR_V (1U << 13) /* AArch32 only */ 1236 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1237 #define SCTLR_RR (1U << 14) /* up to v7 */ 1238 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1239 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1240 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1241 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1242 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1243 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1244 #define SCTLR_BR (1U << 17) /* PMSA only */ 1245 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1246 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1247 #define SCTLR_WXN (1U << 19) 1248 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1249 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1250 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */ 1251 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1252 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1253 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1254 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1255 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1256 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1257 #define SCTLR_VE (1U << 24) /* up to v7 */ 1258 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1259 #define SCTLR_EE (1U << 25) 1260 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1261 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1262 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1263 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1264 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1265 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1266 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1267 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1268 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1269 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1270 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1271 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ 1272 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1273 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1274 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1275 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1276 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1277 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1278 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1279 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ 1280 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */ 1281 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */ 1282 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */ 1283 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */ 1284 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */ 1285 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */ 1286 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */ 1287 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */ 1288 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */ 1289 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */ 1290 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */ 1291 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */ 1292 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */ 1293 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */ 1294 1295 /* Bit definitions for CPACR (AArch32 only) */ 1296 FIELD(CPACR, CP10, 20, 2) 1297 FIELD(CPACR, CP11, 22, 2) 1298 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */ 1299 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */ 1300 FIELD(CPACR, ASEDIS, 31, 1) 1301 1302 /* Bit definitions for CPACR_EL1 (AArch64 only) */ 1303 FIELD(CPACR_EL1, ZEN, 16, 2) 1304 FIELD(CPACR_EL1, FPEN, 20, 2) 1305 FIELD(CPACR_EL1, SMEN, 24, 2) 1306 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */ 1307 1308 /* Bit definitions for HCPTR (AArch32 only) */ 1309 FIELD(HCPTR, TCP10, 10, 1) 1310 FIELD(HCPTR, TCP11, 11, 1) 1311 FIELD(HCPTR, TASE, 15, 1) 1312 FIELD(HCPTR, TTA, 20, 1) 1313 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */ 1314 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */ 1315 1316 /* Bit definitions for CPTR_EL2 (AArch64 only) */ 1317 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */ 1318 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */ 1319 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */ 1320 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */ 1321 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */ 1322 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */ 1323 FIELD(CPTR_EL2, TTA, 28, 1) 1324 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */ 1325 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */ 1326 1327 /* Bit definitions for CPTR_EL3 (AArch64 only) */ 1328 FIELD(CPTR_EL3, EZ, 8, 1) 1329 FIELD(CPTR_EL3, TFP, 10, 1) 1330 FIELD(CPTR_EL3, ESM, 12, 1) 1331 FIELD(CPTR_EL3, TTA, 20, 1) 1332 FIELD(CPTR_EL3, TAM, 30, 1) 1333 FIELD(CPTR_EL3, TCPAC, 31, 1) 1334 1335 #define MDCR_EPMAD (1U << 21) 1336 #define MDCR_EDAD (1U << 20) 1337 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */ 1338 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ 1339 #define MDCR_SDD (1U << 16) 1340 #define MDCR_SPD (3U << 14) 1341 #define MDCR_TDRA (1U << 11) 1342 #define MDCR_TDOSA (1U << 10) 1343 #define MDCR_TDA (1U << 9) 1344 #define MDCR_TDE (1U << 8) 1345 #define MDCR_HPME (1U << 7) 1346 #define MDCR_TPM (1U << 6) 1347 #define MDCR_TPMCR (1U << 5) 1348 #define MDCR_HPMN (0x1fU) 1349 1350 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ 1351 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) 1352 1353 #define CPSR_M (0x1fU) 1354 #define CPSR_T (1U << 5) 1355 #define CPSR_F (1U << 6) 1356 #define CPSR_I (1U << 7) 1357 #define CPSR_A (1U << 8) 1358 #define CPSR_E (1U << 9) 1359 #define CPSR_IT_2_7 (0xfc00U) 1360 #define CPSR_GE (0xfU << 16) 1361 #define CPSR_IL (1U << 20) 1362 #define CPSR_DIT (1U << 21) 1363 #define CPSR_PAN (1U << 22) 1364 #define CPSR_SSBS (1U << 23) 1365 #define CPSR_J (1U << 24) 1366 #define CPSR_IT_0_1 (3U << 25) 1367 #define CPSR_Q (1U << 27) 1368 #define CPSR_V (1U << 28) 1369 #define CPSR_C (1U << 29) 1370 #define CPSR_Z (1U << 30) 1371 #define CPSR_N (1U << 31) 1372 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1373 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1374 1375 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1376 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1377 | CPSR_NZCV) 1378 /* Bits writable in user mode. */ 1379 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1380 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1381 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1382 1383 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1384 #define XPSR_EXCP 0x1ffU 1385 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1386 #define XPSR_IT_2_7 CPSR_IT_2_7 1387 #define XPSR_GE CPSR_GE 1388 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1389 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1390 #define XPSR_IT_0_1 CPSR_IT_0_1 1391 #define XPSR_Q CPSR_Q 1392 #define XPSR_V CPSR_V 1393 #define XPSR_C CPSR_C 1394 #define XPSR_Z CPSR_Z 1395 #define XPSR_N CPSR_N 1396 #define XPSR_NZCV CPSR_NZCV 1397 #define XPSR_IT CPSR_IT 1398 1399 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ 1400 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ 1401 #define TTBCR_PD0 (1U << 4) 1402 #define TTBCR_PD1 (1U << 5) 1403 #define TTBCR_EPD0 (1U << 7) 1404 #define TTBCR_IRGN0 (3U << 8) 1405 #define TTBCR_ORGN0 (3U << 10) 1406 #define TTBCR_SH0 (3U << 12) 1407 #define TTBCR_T1SZ (3U << 16) 1408 #define TTBCR_A1 (1U << 22) 1409 #define TTBCR_EPD1 (1U << 23) 1410 #define TTBCR_IRGN1 (3U << 24) 1411 #define TTBCR_ORGN1 (3U << 26) 1412 #define TTBCR_SH1 (1U << 28) 1413 #define TTBCR_EAE (1U << 31) 1414 1415 FIELD(VTCR, T0SZ, 0, 6) 1416 FIELD(VTCR, SL0, 6, 2) 1417 FIELD(VTCR, IRGN0, 8, 2) 1418 FIELD(VTCR, ORGN0, 10, 2) 1419 FIELD(VTCR, SH0, 12, 2) 1420 FIELD(VTCR, TG0, 14, 2) 1421 FIELD(VTCR, PS, 16, 3) 1422 FIELD(VTCR, VS, 19, 1) 1423 FIELD(VTCR, HA, 21, 1) 1424 FIELD(VTCR, HD, 22, 1) 1425 FIELD(VTCR, HWU59, 25, 1) 1426 FIELD(VTCR, HWU60, 26, 1) 1427 FIELD(VTCR, HWU61, 27, 1) 1428 FIELD(VTCR, HWU62, 28, 1) 1429 FIELD(VTCR, NSW, 29, 1) 1430 FIELD(VTCR, NSA, 30, 1) 1431 FIELD(VTCR, DS, 32, 1) 1432 FIELD(VTCR, SL2, 33, 1) 1433 1434 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1435 * Only these are valid when in AArch64 mode; in 1436 * AArch32 mode SPSRs are basically CPSR-format. 1437 */ 1438 #define PSTATE_SP (1U) 1439 #define PSTATE_M (0xFU) 1440 #define PSTATE_nRW (1U << 4) 1441 #define PSTATE_F (1U << 6) 1442 #define PSTATE_I (1U << 7) 1443 #define PSTATE_A (1U << 8) 1444 #define PSTATE_D (1U << 9) 1445 #define PSTATE_BTYPE (3U << 10) 1446 #define PSTATE_SSBS (1U << 12) 1447 #define PSTATE_IL (1U << 20) 1448 #define PSTATE_SS (1U << 21) 1449 #define PSTATE_PAN (1U << 22) 1450 #define PSTATE_UAO (1U << 23) 1451 #define PSTATE_DIT (1U << 24) 1452 #define PSTATE_TCO (1U << 25) 1453 #define PSTATE_V (1U << 28) 1454 #define PSTATE_C (1U << 29) 1455 #define PSTATE_Z (1U << 30) 1456 #define PSTATE_N (1U << 31) 1457 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1458 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1459 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1460 /* Mode values for AArch64 */ 1461 #define PSTATE_MODE_EL3h 13 1462 #define PSTATE_MODE_EL3t 12 1463 #define PSTATE_MODE_EL2h 9 1464 #define PSTATE_MODE_EL2t 8 1465 #define PSTATE_MODE_EL1h 5 1466 #define PSTATE_MODE_EL1t 4 1467 #define PSTATE_MODE_EL0t 0 1468 1469 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */ 1470 FIELD(SVCR, SM, 0, 1) 1471 FIELD(SVCR, ZA, 1, 1) 1472 1473 /* Fields for SMCR_ELx. */ 1474 FIELD(SMCR, LEN, 0, 4) 1475 FIELD(SMCR, FA64, 31, 1) 1476 1477 /* Write a new value to v7m.exception, thus transitioning into or out 1478 * of Handler mode; this may result in a change of active stack pointer. 1479 */ 1480 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1481 1482 /* Map EL and handler into a PSTATE_MODE. */ 1483 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1484 { 1485 return (el << 2) | handler; 1486 } 1487 1488 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1489 * interprocessing, so we don't attempt to sync with the cpsr state used by 1490 * the 32 bit decoder. 1491 */ 1492 static inline uint32_t pstate_read(CPUARMState *env) 1493 { 1494 int ZF; 1495 1496 ZF = (env->ZF == 0); 1497 return (env->NF & 0x80000000) | (ZF << 30) 1498 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1499 | env->pstate | env->daif | (env->btype << 10); 1500 } 1501 1502 static inline void pstate_write(CPUARMState *env, uint32_t val) 1503 { 1504 env->ZF = (~val) & PSTATE_Z; 1505 env->NF = val; 1506 env->CF = (val >> 29) & 1; 1507 env->VF = (val << 3) & 0x80000000; 1508 env->daif = val & PSTATE_DAIF; 1509 env->btype = (val >> 10) & 3; 1510 env->pstate = val & ~CACHED_PSTATE_BITS; 1511 } 1512 1513 /* Return the current CPSR value. */ 1514 uint32_t cpsr_read(CPUARMState *env); 1515 1516 typedef enum CPSRWriteType { 1517 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1518 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1519 CPSRWriteRaw = 2, 1520 /* trust values, no reg bank switch, no hflags rebuild */ 1521 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1522 } CPSRWriteType; 1523 1524 /* 1525 * Set the CPSR. Note that some bits of mask must be all-set or all-clear. 1526 * This will do an arm_rebuild_hflags() if any of the bits in @mask 1527 * correspond to TB flags bits cached in the hflags, unless @write_type 1528 * is CPSRWriteRaw. 1529 */ 1530 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1531 CPSRWriteType write_type); 1532 1533 /* Return the current xPSR value. */ 1534 static inline uint32_t xpsr_read(CPUARMState *env) 1535 { 1536 int ZF; 1537 ZF = (env->ZF == 0); 1538 return (env->NF & 0x80000000) | (ZF << 30) 1539 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1540 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1541 | ((env->condexec_bits & 0xfc) << 8) 1542 | (env->GE << 16) 1543 | env->v7m.exception; 1544 } 1545 1546 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1547 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1548 { 1549 if (mask & XPSR_NZCV) { 1550 env->ZF = (~val) & XPSR_Z; 1551 env->NF = val; 1552 env->CF = (val >> 29) & 1; 1553 env->VF = (val << 3) & 0x80000000; 1554 } 1555 if (mask & XPSR_Q) { 1556 env->QF = ((val & XPSR_Q) != 0); 1557 } 1558 if (mask & XPSR_GE) { 1559 env->GE = (val & XPSR_GE) >> 16; 1560 } 1561 #ifndef CONFIG_USER_ONLY 1562 if (mask & XPSR_T) { 1563 env->thumb = ((val & XPSR_T) != 0); 1564 } 1565 if (mask & XPSR_IT_0_1) { 1566 env->condexec_bits &= ~3; 1567 env->condexec_bits |= (val >> 25) & 3; 1568 } 1569 if (mask & XPSR_IT_2_7) { 1570 env->condexec_bits &= 3; 1571 env->condexec_bits |= (val >> 8) & 0xfc; 1572 } 1573 if (mask & XPSR_EXCP) { 1574 /* Note that this only happens on exception exit */ 1575 write_v7m_exception(env, val & XPSR_EXCP); 1576 } 1577 #endif 1578 } 1579 1580 #define HCR_VM (1ULL << 0) 1581 #define HCR_SWIO (1ULL << 1) 1582 #define HCR_PTW (1ULL << 2) 1583 #define HCR_FMO (1ULL << 3) 1584 #define HCR_IMO (1ULL << 4) 1585 #define HCR_AMO (1ULL << 5) 1586 #define HCR_VF (1ULL << 6) 1587 #define HCR_VI (1ULL << 7) 1588 #define HCR_VSE (1ULL << 8) 1589 #define HCR_FB (1ULL << 9) 1590 #define HCR_BSU_MASK (3ULL << 10) 1591 #define HCR_DC (1ULL << 12) 1592 #define HCR_TWI (1ULL << 13) 1593 #define HCR_TWE (1ULL << 14) 1594 #define HCR_TID0 (1ULL << 15) 1595 #define HCR_TID1 (1ULL << 16) 1596 #define HCR_TID2 (1ULL << 17) 1597 #define HCR_TID3 (1ULL << 18) 1598 #define HCR_TSC (1ULL << 19) 1599 #define HCR_TIDCP (1ULL << 20) 1600 #define HCR_TACR (1ULL << 21) 1601 #define HCR_TSW (1ULL << 22) 1602 #define HCR_TPCP (1ULL << 23) 1603 #define HCR_TPU (1ULL << 24) 1604 #define HCR_TTLB (1ULL << 25) 1605 #define HCR_TVM (1ULL << 26) 1606 #define HCR_TGE (1ULL << 27) 1607 #define HCR_TDZ (1ULL << 28) 1608 #define HCR_HCD (1ULL << 29) 1609 #define HCR_TRVM (1ULL << 30) 1610 #define HCR_RW (1ULL << 31) 1611 #define HCR_CD (1ULL << 32) 1612 #define HCR_ID (1ULL << 33) 1613 #define HCR_E2H (1ULL << 34) 1614 #define HCR_TLOR (1ULL << 35) 1615 #define HCR_TERR (1ULL << 36) 1616 #define HCR_TEA (1ULL << 37) 1617 #define HCR_MIOCNCE (1ULL << 38) 1618 /* RES0 bit 39 */ 1619 #define HCR_APK (1ULL << 40) 1620 #define HCR_API (1ULL << 41) 1621 #define HCR_NV (1ULL << 42) 1622 #define HCR_NV1 (1ULL << 43) 1623 #define HCR_AT (1ULL << 44) 1624 #define HCR_NV2 (1ULL << 45) 1625 #define HCR_FWB (1ULL << 46) 1626 #define HCR_FIEN (1ULL << 47) 1627 /* RES0 bit 48 */ 1628 #define HCR_TID4 (1ULL << 49) 1629 #define HCR_TICAB (1ULL << 50) 1630 #define HCR_AMVOFFEN (1ULL << 51) 1631 #define HCR_TOCU (1ULL << 52) 1632 #define HCR_ENSCXT (1ULL << 53) 1633 #define HCR_TTLBIS (1ULL << 54) 1634 #define HCR_TTLBOS (1ULL << 55) 1635 #define HCR_ATA (1ULL << 56) 1636 #define HCR_DCT (1ULL << 57) 1637 #define HCR_TID5 (1ULL << 58) 1638 #define HCR_TWEDEN (1ULL << 59) 1639 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1640 1641 #define HCRX_ENAS0 (1ULL << 0) 1642 #define HCRX_ENALS (1ULL << 1) 1643 #define HCRX_ENASR (1ULL << 2) 1644 #define HCRX_FNXS (1ULL << 3) 1645 #define HCRX_FGTNXS (1ULL << 4) 1646 #define HCRX_SMPME (1ULL << 5) 1647 #define HCRX_TALLINT (1ULL << 6) 1648 #define HCRX_VINMI (1ULL << 7) 1649 #define HCRX_VFNMI (1ULL << 8) 1650 #define HCRX_CMOW (1ULL << 9) 1651 #define HCRX_MCE2 (1ULL << 10) 1652 #define HCRX_MSCEN (1ULL << 11) 1653 1654 #define HPFAR_NS (1ULL << 63) 1655 1656 #define SCR_NS (1U << 0) 1657 #define SCR_IRQ (1U << 1) 1658 #define SCR_FIQ (1U << 2) 1659 #define SCR_EA (1U << 3) 1660 #define SCR_FW (1U << 4) 1661 #define SCR_AW (1U << 5) 1662 #define SCR_NET (1U << 6) 1663 #define SCR_SMD (1U << 7) 1664 #define SCR_HCE (1U << 8) 1665 #define SCR_SIF (1U << 9) 1666 #define SCR_RW (1U << 10) 1667 #define SCR_ST (1U << 11) 1668 #define SCR_TWI (1U << 12) 1669 #define SCR_TWE (1U << 13) 1670 #define SCR_TLOR (1U << 14) 1671 #define SCR_TERR (1U << 15) 1672 #define SCR_APK (1U << 16) 1673 #define SCR_API (1U << 17) 1674 #define SCR_EEL2 (1U << 18) 1675 #define SCR_EASE (1U << 19) 1676 #define SCR_NMEA (1U << 20) 1677 #define SCR_FIEN (1U << 21) 1678 #define SCR_ENSCXT (1U << 25) 1679 #define SCR_ATA (1U << 26) 1680 #define SCR_FGTEN (1U << 27) 1681 #define SCR_ECVEN (1U << 28) 1682 #define SCR_TWEDEN (1U << 29) 1683 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4) 1684 #define SCR_TME (1ULL << 34) 1685 #define SCR_AMVOFFEN (1ULL << 35) 1686 #define SCR_ENAS0 (1ULL << 36) 1687 #define SCR_ADEN (1ULL << 37) 1688 #define SCR_HXEN (1ULL << 38) 1689 #define SCR_TRNDR (1ULL << 40) 1690 #define SCR_ENTP2 (1ULL << 41) 1691 #define SCR_GPF (1ULL << 48) 1692 1693 #define HSTR_TTEE (1 << 16) 1694 #define HSTR_TJDBX (1 << 17) 1695 1696 /* Return the current FPSCR value. */ 1697 uint32_t vfp_get_fpscr(CPUARMState *env); 1698 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1699 1700 /* FPCR, Floating Point Control Register 1701 * FPSR, Floating Poiht Status Register 1702 * 1703 * For A64 the FPSCR is split into two logically distinct registers, 1704 * FPCR and FPSR. However since they still use non-overlapping bits 1705 * we store the underlying state in fpscr and just mask on read/write. 1706 */ 1707 #define FPSR_MASK 0xf800009f 1708 #define FPCR_MASK 0x07ff9f00 1709 1710 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1711 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1712 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1713 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1714 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1715 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1716 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1717 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1718 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1719 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1720 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1721 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */ 1722 #define FPCR_V (1 << 28) /* FP overflow flag */ 1723 #define FPCR_C (1 << 29) /* FP carry flag */ 1724 #define FPCR_Z (1 << 30) /* FP zero flag */ 1725 #define FPCR_N (1 << 31) /* FP negative flag */ 1726 1727 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1728 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1729 #define FPCR_LTPSIZE_LENGTH 3 1730 1731 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) 1732 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) 1733 1734 static inline uint32_t vfp_get_fpsr(CPUARMState *env) 1735 { 1736 return vfp_get_fpscr(env) & FPSR_MASK; 1737 } 1738 1739 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) 1740 { 1741 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); 1742 vfp_set_fpscr(env, new_fpscr); 1743 } 1744 1745 static inline uint32_t vfp_get_fpcr(CPUARMState *env) 1746 { 1747 return vfp_get_fpscr(env) & FPCR_MASK; 1748 } 1749 1750 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) 1751 { 1752 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); 1753 vfp_set_fpscr(env, new_fpscr); 1754 } 1755 1756 enum arm_cpu_mode { 1757 ARM_CPU_MODE_USR = 0x10, 1758 ARM_CPU_MODE_FIQ = 0x11, 1759 ARM_CPU_MODE_IRQ = 0x12, 1760 ARM_CPU_MODE_SVC = 0x13, 1761 ARM_CPU_MODE_MON = 0x16, 1762 ARM_CPU_MODE_ABT = 0x17, 1763 ARM_CPU_MODE_HYP = 0x1a, 1764 ARM_CPU_MODE_UND = 0x1b, 1765 ARM_CPU_MODE_SYS = 0x1f 1766 }; 1767 1768 /* VFP system registers. */ 1769 #define ARM_VFP_FPSID 0 1770 #define ARM_VFP_FPSCR 1 1771 #define ARM_VFP_MVFR2 5 1772 #define ARM_VFP_MVFR1 6 1773 #define ARM_VFP_MVFR0 7 1774 #define ARM_VFP_FPEXC 8 1775 #define ARM_VFP_FPINST 9 1776 #define ARM_VFP_FPINST2 10 1777 /* These ones are M-profile only */ 1778 #define ARM_VFP_FPSCR_NZCVQC 2 1779 #define ARM_VFP_VPR 12 1780 #define ARM_VFP_P0 13 1781 #define ARM_VFP_FPCXT_NS 14 1782 #define ARM_VFP_FPCXT_S 15 1783 1784 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1785 #define QEMU_VFP_FPSCR_NZCV 0xffff 1786 1787 /* iwMMXt coprocessor control registers. */ 1788 #define ARM_IWMMXT_wCID 0 1789 #define ARM_IWMMXT_wCon 1 1790 #define ARM_IWMMXT_wCSSF 2 1791 #define ARM_IWMMXT_wCASF 3 1792 #define ARM_IWMMXT_wCGR0 8 1793 #define ARM_IWMMXT_wCGR1 9 1794 #define ARM_IWMMXT_wCGR2 10 1795 #define ARM_IWMMXT_wCGR3 11 1796 1797 /* V7M CCR bits */ 1798 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1799 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1800 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1801 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1802 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1803 FIELD(V7M_CCR, STKALIGN, 9, 1) 1804 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1805 FIELD(V7M_CCR, DC, 16, 1) 1806 FIELD(V7M_CCR, IC, 17, 1) 1807 FIELD(V7M_CCR, BP, 18, 1) 1808 FIELD(V7M_CCR, LOB, 19, 1) 1809 FIELD(V7M_CCR, TRD, 20, 1) 1810 1811 /* V7M SCR bits */ 1812 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1813 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1814 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1815 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1816 1817 /* V7M AIRCR bits */ 1818 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1819 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1820 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1821 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1822 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1823 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1824 FIELD(V7M_AIRCR, PRIS, 14, 1) 1825 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1826 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1827 1828 /* V7M CFSR bits for MMFSR */ 1829 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1830 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1831 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1832 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1833 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1834 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1835 1836 /* V7M CFSR bits for BFSR */ 1837 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1838 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1839 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1840 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1841 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1842 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1843 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1844 1845 /* V7M CFSR bits for UFSR */ 1846 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1847 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1848 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1849 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1850 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1851 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1852 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1853 1854 /* V7M CFSR bit masks covering all of the subregister bits */ 1855 FIELD(V7M_CFSR, MMFSR, 0, 8) 1856 FIELD(V7M_CFSR, BFSR, 8, 8) 1857 FIELD(V7M_CFSR, UFSR, 16, 16) 1858 1859 /* V7M HFSR bits */ 1860 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1861 FIELD(V7M_HFSR, FORCED, 30, 1) 1862 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1863 1864 /* V7M DFSR bits */ 1865 FIELD(V7M_DFSR, HALTED, 0, 1) 1866 FIELD(V7M_DFSR, BKPT, 1, 1) 1867 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1868 FIELD(V7M_DFSR, VCATCH, 3, 1) 1869 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1870 1871 /* V7M SFSR bits */ 1872 FIELD(V7M_SFSR, INVEP, 0, 1) 1873 FIELD(V7M_SFSR, INVIS, 1, 1) 1874 FIELD(V7M_SFSR, INVER, 2, 1) 1875 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1876 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1877 FIELD(V7M_SFSR, LSPERR, 5, 1) 1878 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1879 FIELD(V7M_SFSR, LSERR, 7, 1) 1880 1881 /* v7M MPU_CTRL bits */ 1882 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1883 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1884 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1885 1886 /* v7M CLIDR bits */ 1887 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1888 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1889 FIELD(V7M_CLIDR, LOC, 24, 3) 1890 FIELD(V7M_CLIDR, LOUU, 27, 3) 1891 FIELD(V7M_CLIDR, ICB, 30, 2) 1892 1893 FIELD(V7M_CSSELR, IND, 0, 1) 1894 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1895 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1896 * define a mask for this and check that it doesn't permit running off 1897 * the end of the array. 1898 */ 1899 FIELD(V7M_CSSELR, INDEX, 0, 4) 1900 1901 /* v7M FPCCR bits */ 1902 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1903 FIELD(V7M_FPCCR, USER, 1, 1) 1904 FIELD(V7M_FPCCR, S, 2, 1) 1905 FIELD(V7M_FPCCR, THREAD, 3, 1) 1906 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1907 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1908 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1909 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1910 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1911 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1912 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1913 FIELD(V7M_FPCCR, RES0, 11, 15) 1914 FIELD(V7M_FPCCR, TS, 26, 1) 1915 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1916 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1917 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1918 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1919 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1920 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1921 #define R_V7M_FPCCR_BANKED_MASK \ 1922 (R_V7M_FPCCR_LSPACT_MASK | \ 1923 R_V7M_FPCCR_USER_MASK | \ 1924 R_V7M_FPCCR_THREAD_MASK | \ 1925 R_V7M_FPCCR_MMRDY_MASK | \ 1926 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1927 R_V7M_FPCCR_UFRDY_MASK | \ 1928 R_V7M_FPCCR_ASPEN_MASK) 1929 1930 /* v7M VPR bits */ 1931 FIELD(V7M_VPR, P0, 0, 16) 1932 FIELD(V7M_VPR, MASK01, 16, 4) 1933 FIELD(V7M_VPR, MASK23, 20, 4) 1934 1935 /* 1936 * System register ID fields. 1937 */ 1938 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1939 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1940 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1941 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1942 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1943 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1944 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1945 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1946 FIELD(CLIDR_EL1, LOC, 24, 3) 1947 FIELD(CLIDR_EL1, LOUU, 27, 3) 1948 FIELD(CLIDR_EL1, ICB, 30, 3) 1949 1950 /* When FEAT_CCIDX is implemented */ 1951 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 1952 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 1953 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 1954 1955 /* When FEAT_CCIDX is not implemented */ 1956 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 1957 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 1958 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 1959 1960 FIELD(CTR_EL0, IMINLINE, 0, 4) 1961 FIELD(CTR_EL0, L1IP, 14, 2) 1962 FIELD(CTR_EL0, DMINLINE, 16, 4) 1963 FIELD(CTR_EL0, ERG, 20, 4) 1964 FIELD(CTR_EL0, CWG, 24, 4) 1965 FIELD(CTR_EL0, IDC, 28, 1) 1966 FIELD(CTR_EL0, DIC, 29, 1) 1967 FIELD(CTR_EL0, TMINLINE, 32, 6) 1968 1969 FIELD(MIDR_EL1, REVISION, 0, 4) 1970 FIELD(MIDR_EL1, PARTNUM, 4, 12) 1971 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 1972 FIELD(MIDR_EL1, VARIANT, 20, 4) 1973 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 1974 1975 FIELD(ID_ISAR0, SWAP, 0, 4) 1976 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 1977 FIELD(ID_ISAR0, BITFIELD, 8, 4) 1978 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 1979 FIELD(ID_ISAR0, COPROC, 16, 4) 1980 FIELD(ID_ISAR0, DEBUG, 20, 4) 1981 FIELD(ID_ISAR0, DIVIDE, 24, 4) 1982 1983 FIELD(ID_ISAR1, ENDIAN, 0, 4) 1984 FIELD(ID_ISAR1, EXCEPT, 4, 4) 1985 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 1986 FIELD(ID_ISAR1, EXTEND, 12, 4) 1987 FIELD(ID_ISAR1, IFTHEN, 16, 4) 1988 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 1989 FIELD(ID_ISAR1, INTERWORK, 24, 4) 1990 FIELD(ID_ISAR1, JAZELLE, 28, 4) 1991 1992 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 1993 FIELD(ID_ISAR2, MEMHINT, 4, 4) 1994 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 1995 FIELD(ID_ISAR2, MULT, 12, 4) 1996 FIELD(ID_ISAR2, MULTS, 16, 4) 1997 FIELD(ID_ISAR2, MULTU, 20, 4) 1998 FIELD(ID_ISAR2, PSR_AR, 24, 4) 1999 FIELD(ID_ISAR2, REVERSAL, 28, 4) 2000 2001 FIELD(ID_ISAR3, SATURATE, 0, 4) 2002 FIELD(ID_ISAR3, SIMD, 4, 4) 2003 FIELD(ID_ISAR3, SVC, 8, 4) 2004 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 2005 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 2006 FIELD(ID_ISAR3, T32COPY, 20, 4) 2007 FIELD(ID_ISAR3, TRUENOP, 24, 4) 2008 FIELD(ID_ISAR3, T32EE, 28, 4) 2009 2010 FIELD(ID_ISAR4, UNPRIV, 0, 4) 2011 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 2012 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 2013 FIELD(ID_ISAR4, SMC, 12, 4) 2014 FIELD(ID_ISAR4, BARRIER, 16, 4) 2015 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 2016 FIELD(ID_ISAR4, PSR_M, 24, 4) 2017 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 2018 2019 FIELD(ID_ISAR5, SEVL, 0, 4) 2020 FIELD(ID_ISAR5, AES, 4, 4) 2021 FIELD(ID_ISAR5, SHA1, 8, 4) 2022 FIELD(ID_ISAR5, SHA2, 12, 4) 2023 FIELD(ID_ISAR5, CRC32, 16, 4) 2024 FIELD(ID_ISAR5, RDM, 24, 4) 2025 FIELD(ID_ISAR5, VCMA, 28, 4) 2026 2027 FIELD(ID_ISAR6, JSCVT, 0, 4) 2028 FIELD(ID_ISAR6, DP, 4, 4) 2029 FIELD(ID_ISAR6, FHM, 8, 4) 2030 FIELD(ID_ISAR6, SB, 12, 4) 2031 FIELD(ID_ISAR6, SPECRES, 16, 4) 2032 FIELD(ID_ISAR6, BF16, 20, 4) 2033 FIELD(ID_ISAR6, I8MM, 24, 4) 2034 2035 FIELD(ID_MMFR0, VMSA, 0, 4) 2036 FIELD(ID_MMFR0, PMSA, 4, 4) 2037 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 2038 FIELD(ID_MMFR0, SHARELVL, 12, 4) 2039 FIELD(ID_MMFR0, TCM, 16, 4) 2040 FIELD(ID_MMFR0, AUXREG, 20, 4) 2041 FIELD(ID_MMFR0, FCSE, 24, 4) 2042 FIELD(ID_MMFR0, INNERSHR, 28, 4) 2043 2044 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 2045 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 2046 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 2047 FIELD(ID_MMFR1, L1UNISW, 12, 4) 2048 FIELD(ID_MMFR1, L1HVD, 16, 4) 2049 FIELD(ID_MMFR1, L1UNI, 20, 4) 2050 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 2051 FIELD(ID_MMFR1, BPRED, 28, 4) 2052 2053 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 2054 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 2055 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 2056 FIELD(ID_MMFR2, HVDTLB, 12, 4) 2057 FIELD(ID_MMFR2, UNITLB, 16, 4) 2058 FIELD(ID_MMFR2, MEMBARR, 20, 4) 2059 FIELD(ID_MMFR2, WFISTALL, 24, 4) 2060 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 2061 2062 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 2063 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 2064 FIELD(ID_MMFR3, BPMAINT, 8, 4) 2065 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 2066 FIELD(ID_MMFR3, PAN, 16, 4) 2067 FIELD(ID_MMFR3, COHWALK, 20, 4) 2068 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 2069 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 2070 2071 FIELD(ID_MMFR4, SPECSEI, 0, 4) 2072 FIELD(ID_MMFR4, AC2, 4, 4) 2073 FIELD(ID_MMFR4, XNX, 8, 4) 2074 FIELD(ID_MMFR4, CNP, 12, 4) 2075 FIELD(ID_MMFR4, HPDS, 16, 4) 2076 FIELD(ID_MMFR4, LSM, 20, 4) 2077 FIELD(ID_MMFR4, CCIDX, 24, 4) 2078 FIELD(ID_MMFR4, EVT, 28, 4) 2079 2080 FIELD(ID_MMFR5, ETS, 0, 4) 2081 FIELD(ID_MMFR5, NTLBPA, 4, 4) 2082 2083 FIELD(ID_PFR0, STATE0, 0, 4) 2084 FIELD(ID_PFR0, STATE1, 4, 4) 2085 FIELD(ID_PFR0, STATE2, 8, 4) 2086 FIELD(ID_PFR0, STATE3, 12, 4) 2087 FIELD(ID_PFR0, CSV2, 16, 4) 2088 FIELD(ID_PFR0, AMU, 20, 4) 2089 FIELD(ID_PFR0, DIT, 24, 4) 2090 FIELD(ID_PFR0, RAS, 28, 4) 2091 2092 FIELD(ID_PFR1, PROGMOD, 0, 4) 2093 FIELD(ID_PFR1, SECURITY, 4, 4) 2094 FIELD(ID_PFR1, MPROGMOD, 8, 4) 2095 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 2096 FIELD(ID_PFR1, GENTIMER, 16, 4) 2097 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 2098 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 2099 FIELD(ID_PFR1, GIC, 28, 4) 2100 2101 FIELD(ID_PFR2, CSV3, 0, 4) 2102 FIELD(ID_PFR2, SSBS, 4, 4) 2103 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 2104 2105 FIELD(ID_AA64ISAR0, AES, 4, 4) 2106 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 2107 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 2108 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 2109 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 2110 FIELD(ID_AA64ISAR0, RDM, 28, 4) 2111 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 2112 FIELD(ID_AA64ISAR0, SM3, 36, 4) 2113 FIELD(ID_AA64ISAR0, SM4, 40, 4) 2114 FIELD(ID_AA64ISAR0, DP, 44, 4) 2115 FIELD(ID_AA64ISAR0, FHM, 48, 4) 2116 FIELD(ID_AA64ISAR0, TS, 52, 4) 2117 FIELD(ID_AA64ISAR0, TLB, 56, 4) 2118 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 2119 2120 FIELD(ID_AA64ISAR1, DPB, 0, 4) 2121 FIELD(ID_AA64ISAR1, APA, 4, 4) 2122 FIELD(ID_AA64ISAR1, API, 8, 4) 2123 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 2124 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 2125 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 2126 FIELD(ID_AA64ISAR1, GPA, 24, 4) 2127 FIELD(ID_AA64ISAR1, GPI, 28, 4) 2128 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 2129 FIELD(ID_AA64ISAR1, SB, 36, 4) 2130 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 2131 FIELD(ID_AA64ISAR1, BF16, 44, 4) 2132 FIELD(ID_AA64ISAR1, DGH, 48, 4) 2133 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 2134 FIELD(ID_AA64ISAR1, XS, 56, 4) 2135 FIELD(ID_AA64ISAR1, LS64, 60, 4) 2136 2137 FIELD(ID_AA64ISAR2, WFXT, 0, 4) 2138 FIELD(ID_AA64ISAR2, RPRES, 4, 4) 2139 FIELD(ID_AA64ISAR2, GPA3, 8, 4) 2140 FIELD(ID_AA64ISAR2, APA3, 12, 4) 2141 FIELD(ID_AA64ISAR2, MOPS, 16, 4) 2142 FIELD(ID_AA64ISAR2, BC, 20, 4) 2143 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4) 2144 2145 FIELD(ID_AA64PFR0, EL0, 0, 4) 2146 FIELD(ID_AA64PFR0, EL1, 4, 4) 2147 FIELD(ID_AA64PFR0, EL2, 8, 4) 2148 FIELD(ID_AA64PFR0, EL3, 12, 4) 2149 FIELD(ID_AA64PFR0, FP, 16, 4) 2150 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 2151 FIELD(ID_AA64PFR0, GIC, 24, 4) 2152 FIELD(ID_AA64PFR0, RAS, 28, 4) 2153 FIELD(ID_AA64PFR0, SVE, 32, 4) 2154 FIELD(ID_AA64PFR0, SEL2, 36, 4) 2155 FIELD(ID_AA64PFR0, MPAM, 40, 4) 2156 FIELD(ID_AA64PFR0, AMU, 44, 4) 2157 FIELD(ID_AA64PFR0, DIT, 48, 4) 2158 FIELD(ID_AA64PFR0, CSV2, 56, 4) 2159 FIELD(ID_AA64PFR0, CSV3, 60, 4) 2160 2161 FIELD(ID_AA64PFR1, BT, 0, 4) 2162 FIELD(ID_AA64PFR1, SSBS, 4, 4) 2163 FIELD(ID_AA64PFR1, MTE, 8, 4) 2164 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 2165 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 2166 FIELD(ID_AA64PFR1, SME, 24, 4) 2167 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4) 2168 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4) 2169 FIELD(ID_AA64PFR1, NMI, 36, 4) 2170 2171 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 2172 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 2173 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 2174 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 2175 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 2176 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 2177 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 2178 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 2179 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 2180 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 2181 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 2182 FIELD(ID_AA64MMFR0, EXS, 44, 4) 2183 FIELD(ID_AA64MMFR0, FGT, 56, 4) 2184 FIELD(ID_AA64MMFR0, ECV, 60, 4) 2185 2186 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 2187 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 2188 FIELD(ID_AA64MMFR1, VH, 8, 4) 2189 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 2190 FIELD(ID_AA64MMFR1, LO, 16, 4) 2191 FIELD(ID_AA64MMFR1, PAN, 20, 4) 2192 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 2193 FIELD(ID_AA64MMFR1, XNX, 28, 4) 2194 FIELD(ID_AA64MMFR1, TWED, 32, 4) 2195 FIELD(ID_AA64MMFR1, ETS, 36, 4) 2196 FIELD(ID_AA64MMFR1, HCX, 40, 4) 2197 FIELD(ID_AA64MMFR1, AFP, 44, 4) 2198 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4) 2199 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4) 2200 FIELD(ID_AA64MMFR1, CMOW, 56, 4) 2201 2202 FIELD(ID_AA64MMFR2, CNP, 0, 4) 2203 FIELD(ID_AA64MMFR2, UAO, 4, 4) 2204 FIELD(ID_AA64MMFR2, LSM, 8, 4) 2205 FIELD(ID_AA64MMFR2, IESB, 12, 4) 2206 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 2207 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 2208 FIELD(ID_AA64MMFR2, NV, 24, 4) 2209 FIELD(ID_AA64MMFR2, ST, 28, 4) 2210 FIELD(ID_AA64MMFR2, AT, 32, 4) 2211 FIELD(ID_AA64MMFR2, IDS, 36, 4) 2212 FIELD(ID_AA64MMFR2, FWB, 40, 4) 2213 FIELD(ID_AA64MMFR2, TTL, 48, 4) 2214 FIELD(ID_AA64MMFR2, BBM, 52, 4) 2215 FIELD(ID_AA64MMFR2, EVT, 56, 4) 2216 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 2217 2218 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2219 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2220 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2221 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2222 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2223 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2224 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2225 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2226 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2227 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4) 2228 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2229 FIELD(ID_AA64DFR0, BRBE, 52, 4) 2230 FIELD(ID_AA64DFR0, HPMN0, 60, 4) 2231 2232 FIELD(ID_AA64ZFR0, SVEVER, 0, 4) 2233 FIELD(ID_AA64ZFR0, AES, 4, 4) 2234 FIELD(ID_AA64ZFR0, BITPERM, 16, 4) 2235 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) 2236 FIELD(ID_AA64ZFR0, SHA3, 32, 4) 2237 FIELD(ID_AA64ZFR0, SM4, 40, 4) 2238 FIELD(ID_AA64ZFR0, I8MM, 44, 4) 2239 FIELD(ID_AA64ZFR0, F32MM, 52, 4) 2240 FIELD(ID_AA64ZFR0, F64MM, 56, 4) 2241 2242 FIELD(ID_AA64SMFR0, F32F32, 32, 1) 2243 FIELD(ID_AA64SMFR0, B16F32, 34, 1) 2244 FIELD(ID_AA64SMFR0, F16F32, 35, 1) 2245 FIELD(ID_AA64SMFR0, I8I32, 36, 4) 2246 FIELD(ID_AA64SMFR0, F64F64, 48, 1) 2247 FIELD(ID_AA64SMFR0, I16I64, 52, 4) 2248 FIELD(ID_AA64SMFR0, SMEVER, 56, 4) 2249 FIELD(ID_AA64SMFR0, FA64, 63, 1) 2250 2251 FIELD(ID_DFR0, COPDBG, 0, 4) 2252 FIELD(ID_DFR0, COPSDBG, 4, 4) 2253 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2254 FIELD(ID_DFR0, COPTRC, 12, 4) 2255 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2256 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2257 FIELD(ID_DFR0, PERFMON, 24, 4) 2258 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2259 2260 FIELD(ID_DFR1, MTPMU, 0, 4) 2261 FIELD(ID_DFR1, HPMN0, 4, 4) 2262 2263 FIELD(DBGDIDR, SE_IMP, 12, 1) 2264 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2265 FIELD(DBGDIDR, VERSION, 16, 4) 2266 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2267 FIELD(DBGDIDR, BRPS, 24, 4) 2268 FIELD(DBGDIDR, WRPS, 28, 4) 2269 2270 FIELD(DBGDEVID, PCSAMPLE, 0, 4) 2271 FIELD(DBGDEVID, WPADDRMASK, 4, 4) 2272 FIELD(DBGDEVID, BPADDRMASK, 8, 4) 2273 FIELD(DBGDEVID, VECTORCATCH, 12, 4) 2274 FIELD(DBGDEVID, VIRTEXTNS, 16, 4) 2275 FIELD(DBGDEVID, DOUBLELOCK, 20, 4) 2276 FIELD(DBGDEVID, AUXREGS, 24, 4) 2277 FIELD(DBGDEVID, CIDMASK, 28, 4) 2278 2279 FIELD(MVFR0, SIMDREG, 0, 4) 2280 FIELD(MVFR0, FPSP, 4, 4) 2281 FIELD(MVFR0, FPDP, 8, 4) 2282 FIELD(MVFR0, FPTRAP, 12, 4) 2283 FIELD(MVFR0, FPDIVIDE, 16, 4) 2284 FIELD(MVFR0, FPSQRT, 20, 4) 2285 FIELD(MVFR0, FPSHVEC, 24, 4) 2286 FIELD(MVFR0, FPROUND, 28, 4) 2287 2288 FIELD(MVFR1, FPFTZ, 0, 4) 2289 FIELD(MVFR1, FPDNAN, 4, 4) 2290 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2291 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2292 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2293 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2294 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2295 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2296 FIELD(MVFR1, FPHP, 24, 4) 2297 FIELD(MVFR1, SIMDFMAC, 28, 4) 2298 2299 FIELD(MVFR2, SIMDMISC, 0, 4) 2300 FIELD(MVFR2, FPMISC, 4, 4) 2301 2302 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2303 2304 /* If adding a feature bit which corresponds to a Linux ELF 2305 * HWCAP bit, remember to update the feature-bit-to-hwcap 2306 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2307 */ 2308 enum arm_features { 2309 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2310 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2311 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2312 ARM_FEATURE_V6, 2313 ARM_FEATURE_V6K, 2314 ARM_FEATURE_V7, 2315 ARM_FEATURE_THUMB2, 2316 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2317 ARM_FEATURE_NEON, 2318 ARM_FEATURE_M, /* Microcontroller profile. */ 2319 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2320 ARM_FEATURE_THUMB2EE, 2321 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2322 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2323 ARM_FEATURE_V4T, 2324 ARM_FEATURE_V5, 2325 ARM_FEATURE_STRONGARM, 2326 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2327 ARM_FEATURE_GENERIC_TIMER, 2328 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2329 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2330 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2331 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2332 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2333 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2334 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2335 ARM_FEATURE_V8, 2336 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2337 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2338 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2339 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2340 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2341 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2342 ARM_FEATURE_PMU, /* has PMU support */ 2343 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2344 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2345 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2346 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2347 }; 2348 2349 static inline int arm_feature(CPUARMState *env, int feature) 2350 { 2351 return (env->features & (1ULL << feature)) != 0; 2352 } 2353 2354 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2355 2356 #if !defined(CONFIG_USER_ONLY) 2357 /* Return true if exception levels below EL3 are in secure state, 2358 * or would be following an exception return to that level. 2359 * Unlike arm_is_secure() (which is always a question about the 2360 * _current_ state of the CPU) this doesn't care about the current 2361 * EL or mode. 2362 */ 2363 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2364 { 2365 if (arm_feature(env, ARM_FEATURE_EL3)) { 2366 return !(env->cp15.scr_el3 & SCR_NS); 2367 } else { 2368 /* If EL3 is not supported then the secure state is implementation 2369 * defined, in which case QEMU defaults to non-secure. 2370 */ 2371 return false; 2372 } 2373 } 2374 2375 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2376 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2377 { 2378 if (arm_feature(env, ARM_FEATURE_EL3)) { 2379 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2380 /* CPU currently in AArch64 state and EL3 */ 2381 return true; 2382 } else if (!is_a64(env) && 2383 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2384 /* CPU currently in AArch32 state and monitor mode */ 2385 return true; 2386 } 2387 } 2388 return false; 2389 } 2390 2391 /* Return true if the processor is in secure state */ 2392 static inline bool arm_is_secure(CPUARMState *env) 2393 { 2394 if (arm_is_el3_or_mon(env)) { 2395 return true; 2396 } 2397 return arm_is_secure_below_el3(env); 2398 } 2399 2400 /* 2401 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. 2402 * This corresponds to the pseudocode EL2Enabled() 2403 */ 2404 static inline bool arm_is_el2_enabled(CPUARMState *env) 2405 { 2406 if (arm_feature(env, ARM_FEATURE_EL2)) { 2407 if (arm_is_secure_below_el3(env)) { 2408 return (env->cp15.scr_el3 & SCR_EEL2) != 0; 2409 } 2410 return true; 2411 } 2412 return false; 2413 } 2414 2415 #else 2416 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2417 { 2418 return false; 2419 } 2420 2421 static inline bool arm_is_secure(CPUARMState *env) 2422 { 2423 return false; 2424 } 2425 2426 static inline bool arm_is_el2_enabled(CPUARMState *env) 2427 { 2428 return false; 2429 } 2430 #endif 2431 2432 /** 2433 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2434 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2435 * "for all purposes other than a direct read or write access of HCR_EL2." 2436 * Not included here is HCR_RW. 2437 */ 2438 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2439 uint64_t arm_hcrx_el2_eff(CPUARMState *env); 2440 2441 /* Return true if the specified exception level is running in AArch64 state. */ 2442 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2443 { 2444 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2445 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2446 */ 2447 assert(el >= 1 && el <= 3); 2448 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2449 2450 /* The highest exception level is always at the maximum supported 2451 * register width, and then lower levels have a register width controlled 2452 * by bits in the SCR or HCR registers. 2453 */ 2454 if (el == 3) { 2455 return aa64; 2456 } 2457 2458 if (arm_feature(env, ARM_FEATURE_EL3) && 2459 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { 2460 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2461 } 2462 2463 if (el == 2) { 2464 return aa64; 2465 } 2466 2467 if (arm_is_el2_enabled(env)) { 2468 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2469 } 2470 2471 return aa64; 2472 } 2473 2474 /* Function for determing whether guest cp register reads and writes should 2475 * access the secure or non-secure bank of a cp register. When EL3 is 2476 * operating in AArch32 state, the NS-bit determines whether the secure 2477 * instance of a cp register should be used. When EL3 is AArch64 (or if 2478 * it doesn't exist at all) then there is no register banking, and all 2479 * accesses are to the non-secure version. 2480 */ 2481 static inline bool access_secure_reg(CPUARMState *env) 2482 { 2483 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2484 !arm_el_is_aa64(env, 3) && 2485 !(env->cp15.scr_el3 & SCR_NS)); 2486 2487 return ret; 2488 } 2489 2490 /* Macros for accessing a specified CP register bank */ 2491 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2492 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2493 2494 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2495 do { \ 2496 if (_secure) { \ 2497 (_env)->cp15._regname##_s = (_val); \ 2498 } else { \ 2499 (_env)->cp15._regname##_ns = (_val); \ 2500 } \ 2501 } while (0) 2502 2503 /* Macros for automatically accessing a specific CP register bank depending on 2504 * the current secure state of the system. These macros are not intended for 2505 * supporting instruction translation reads/writes as these are dependent 2506 * solely on the SCR.NS bit and not the mode. 2507 */ 2508 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2509 A32_BANKED_REG_GET((_env), _regname, \ 2510 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2511 2512 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2513 A32_BANKED_REG_SET((_env), _regname, \ 2514 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2515 (_val)) 2516 2517 void arm_cpu_list(void); 2518 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2519 uint32_t cur_el, bool secure); 2520 2521 /* Interface between CPU and Interrupt controller. */ 2522 #ifndef CONFIG_USER_ONLY 2523 bool armv7m_nvic_can_take_pending_exception(void *opaque); 2524 #else 2525 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) 2526 { 2527 return true; 2528 } 2529 #endif 2530 /** 2531 * armv7m_nvic_set_pending: mark the specified exception as pending 2532 * @opaque: the NVIC 2533 * @irq: the exception number to mark pending 2534 * @secure: false for non-banked exceptions or for the nonsecure 2535 * version of a banked exception, true for the secure version of a banked 2536 * exception. 2537 * 2538 * Marks the specified exception as pending. Note that we will assert() 2539 * if @secure is true and @irq does not specify one of the fixed set 2540 * of architecturally banked exceptions. 2541 */ 2542 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); 2543 /** 2544 * armv7m_nvic_set_pending_derived: mark this derived exception as pending 2545 * @opaque: the NVIC 2546 * @irq: the exception number to mark pending 2547 * @secure: false for non-banked exceptions or for the nonsecure 2548 * version of a banked exception, true for the secure version of a banked 2549 * exception. 2550 * 2551 * Similar to armv7m_nvic_set_pending(), but specifically for derived 2552 * exceptions (exceptions generated in the course of trying to take 2553 * a different exception). 2554 */ 2555 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); 2556 /** 2557 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending 2558 * @opaque: the NVIC 2559 * @irq: the exception number to mark pending 2560 * @secure: false for non-banked exceptions or for the nonsecure 2561 * version of a banked exception, true for the secure version of a banked 2562 * exception. 2563 * 2564 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions 2565 * generated in the course of lazy stacking of FP registers. 2566 */ 2567 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); 2568 /** 2569 * armv7m_nvic_get_pending_irq_info: return highest priority pending 2570 * exception, and whether it targets Secure state 2571 * @opaque: the NVIC 2572 * @pirq: set to pending exception number 2573 * @ptargets_secure: set to whether pending exception targets Secure 2574 * 2575 * This function writes the number of the highest priority pending 2576 * exception (the one which would be made active by 2577 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure 2578 * to true if the current highest priority pending exception should 2579 * be taken to Secure state, false for NS. 2580 */ 2581 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, 2582 bool *ptargets_secure); 2583 /** 2584 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active 2585 * @opaque: the NVIC 2586 * 2587 * Move the current highest priority pending exception from the pending 2588 * state to the active state, and update v7m.exception to indicate that 2589 * it is the exception currently being handled. 2590 */ 2591 void armv7m_nvic_acknowledge_irq(void *opaque); 2592 /** 2593 * armv7m_nvic_complete_irq: complete specified interrupt or exception 2594 * @opaque: the NVIC 2595 * @irq: the exception number to complete 2596 * @secure: true if this exception was secure 2597 * 2598 * Returns: -1 if the irq was not active 2599 * 1 if completing this irq brought us back to base (no active irqs) 2600 * 0 if there is still an irq active after this one was completed 2601 * (Ignoring -1, this is the same as the RETTOBASE value before completion.) 2602 */ 2603 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); 2604 /** 2605 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 2606 * @opaque: the NVIC 2607 * @irq: the exception number to mark pending 2608 * @secure: false for non-banked exceptions or for the nonsecure 2609 * version of a banked exception, true for the secure version of a banked 2610 * exception. 2611 * 2612 * Return whether an exception is "ready", i.e. whether the exception is 2613 * enabled and is configured at a priority which would allow it to 2614 * interrupt the current execution priority. This controls whether the 2615 * RDY bit for it in the FPCCR is set. 2616 */ 2617 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); 2618 /** 2619 * armv7m_nvic_raw_execution_priority: return the raw execution priority 2620 * @opaque: the NVIC 2621 * 2622 * Returns: the raw execution priority as defined by the v8M architecture. 2623 * This is the execution priority minus the effects of AIRCR.PRIS, 2624 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. 2625 * (v8M ARM ARM I_PKLD.) 2626 */ 2627 int armv7m_nvic_raw_execution_priority(void *opaque); 2628 /** 2629 * armv7m_nvic_neg_prio_requested: return true if the requested execution 2630 * priority is negative for the specified security state. 2631 * @opaque: the NVIC 2632 * @secure: the security state to test 2633 * This corresponds to the pseudocode IsReqExecPriNeg(). 2634 */ 2635 #ifndef CONFIG_USER_ONLY 2636 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); 2637 #else 2638 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 2639 { 2640 return false; 2641 } 2642 #endif 2643 2644 /* Interface for defining coprocessor registers. 2645 * Registers are defined in tables of arm_cp_reginfo structs 2646 * which are passed to define_arm_cp_regs(). 2647 */ 2648 2649 /* When looking up a coprocessor register we look for it 2650 * via an integer which encodes all of: 2651 * coprocessor number 2652 * Crn, Crm, opc1, opc2 fields 2653 * 32 or 64 bit register (ie is it accessed via MRC/MCR 2654 * or via MRRC/MCRR?) 2655 * non-secure/secure bank (AArch32 only) 2656 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 2657 * (In this case crn and opc2 should be zero.) 2658 * For AArch64, there is no 32/64 bit size distinction; 2659 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 2660 * and 4 bit CRn and CRm. The encoding patterns are chosen 2661 * to be easy to convert to and from the KVM encodings, and also 2662 * so that the hashtable can contain both AArch32 and AArch64 2663 * registers (to allow for interprocessing where we might run 2664 * 32 bit code on a 64 bit core). 2665 */ 2666 /* This bit is private to our hashtable cpreg; in KVM register 2667 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 2668 * in the upper bits of the 64 bit ID. 2669 */ 2670 #define CP_REG_AA64_SHIFT 28 2671 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 2672 2673 /* To enable banking of coprocessor registers depending on ns-bit we 2674 * add a bit to distinguish between secure and non-secure cpregs in the 2675 * hashtable. 2676 */ 2677 #define CP_REG_NS_SHIFT 29 2678 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 2679 2680 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 2681 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 2682 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 2683 2684 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 2685 (CP_REG_AA64_MASK | \ 2686 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 2687 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 2688 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 2689 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 2690 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 2691 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 2692 2693 /* Convert a full 64 bit KVM register ID to the truncated 32 bit 2694 * version used as a key for the coprocessor register hashtable 2695 */ 2696 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 2697 { 2698 uint32_t cpregid = kvmid; 2699 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 2700 cpregid |= CP_REG_AA64_MASK; 2701 } else { 2702 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 2703 cpregid |= (1 << 15); 2704 } 2705 2706 /* KVM is always non-secure so add the NS flag on AArch32 register 2707 * entries. 2708 */ 2709 cpregid |= 1 << CP_REG_NS_SHIFT; 2710 } 2711 return cpregid; 2712 } 2713 2714 /* Convert a truncated 32 bit hashtable key into the full 2715 * 64 bit KVM register ID. 2716 */ 2717 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 2718 { 2719 uint64_t kvmid; 2720 2721 if (cpregid & CP_REG_AA64_MASK) { 2722 kvmid = cpregid & ~CP_REG_AA64_MASK; 2723 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 2724 } else { 2725 kvmid = cpregid & ~(1 << 15); 2726 if (cpregid & (1 << 15)) { 2727 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 2728 } else { 2729 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 2730 } 2731 } 2732 return kvmid; 2733 } 2734 2735 /* Return the highest implemented Exception Level */ 2736 static inline int arm_highest_el(CPUARMState *env) 2737 { 2738 if (arm_feature(env, ARM_FEATURE_EL3)) { 2739 return 3; 2740 } 2741 if (arm_feature(env, ARM_FEATURE_EL2)) { 2742 return 2; 2743 } 2744 return 1; 2745 } 2746 2747 /* Return true if a v7M CPU is in Handler mode */ 2748 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2749 { 2750 return env->v7m.exception != 0; 2751 } 2752 2753 /* Return the current Exception Level (as per ARMv8; note that this differs 2754 * from the ARMv7 Privilege Level). 2755 */ 2756 static inline int arm_current_el(CPUARMState *env) 2757 { 2758 if (arm_feature(env, ARM_FEATURE_M)) { 2759 return arm_v7m_is_handler_mode(env) || 2760 !(env->v7m.control[env->v7m.secure] & 1); 2761 } 2762 2763 if (is_a64(env)) { 2764 return extract32(env->pstate, 2, 2); 2765 } 2766 2767 switch (env->uncached_cpsr & 0x1f) { 2768 case ARM_CPU_MODE_USR: 2769 return 0; 2770 case ARM_CPU_MODE_HYP: 2771 return 2; 2772 case ARM_CPU_MODE_MON: 2773 return 3; 2774 default: 2775 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2776 /* If EL3 is 32-bit then all secure privileged modes run in 2777 * EL3 2778 */ 2779 return 3; 2780 } 2781 2782 return 1; 2783 } 2784 } 2785 2786 /** 2787 * write_list_to_cpustate 2788 * @cpu: ARMCPU 2789 * 2790 * For each register listed in the ARMCPU cpreg_indexes list, write 2791 * its value from the cpreg_values list into the ARMCPUState structure. 2792 * This updates TCG's working data structures from KVM data or 2793 * from incoming migration state. 2794 * 2795 * Returns: true if all register values were updated correctly, 2796 * false if some register was unknown or could not be written. 2797 * Note that we do not stop early on failure -- we will attempt 2798 * writing all registers in the list. 2799 */ 2800 bool write_list_to_cpustate(ARMCPU *cpu); 2801 2802 /** 2803 * write_cpustate_to_list: 2804 * @cpu: ARMCPU 2805 * @kvm_sync: true if this is for syncing back to KVM 2806 * 2807 * For each register listed in the ARMCPU cpreg_indexes list, write 2808 * its value from the ARMCPUState structure into the cpreg_values list. 2809 * This is used to copy info from TCG's working data structures into 2810 * KVM or for outbound migration. 2811 * 2812 * @kvm_sync is true if we are doing this in order to sync the 2813 * register state back to KVM. In this case we will only update 2814 * values in the list if the previous list->cpustate sync actually 2815 * successfully wrote the CPU state. Otherwise we will keep the value 2816 * that is in the list. 2817 * 2818 * Returns: true if all register values were read correctly, 2819 * false if some register was unknown or could not be read. 2820 * Note that we do not stop early on failure -- we will attempt 2821 * reading all registers in the list. 2822 */ 2823 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2824 2825 #define ARM_CPUID_TI915T 0x54029152 2826 #define ARM_CPUID_TI925T 0x54029252 2827 2828 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU 2829 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) 2830 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2831 2832 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU 2833 2834 #define cpu_list arm_cpu_list 2835 2836 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2837 * 2838 * If EL3 is 64-bit: 2839 * + NonSecure EL1 & 0 stage 1 2840 * + NonSecure EL1 & 0 stage 2 2841 * + NonSecure EL2 2842 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2843 * + Secure EL1 & 0 2844 * + Secure EL3 2845 * If EL3 is 32-bit: 2846 * + NonSecure PL1 & 0 stage 1 2847 * + NonSecure PL1 & 0 stage 2 2848 * + NonSecure PL2 2849 * + Secure PL0 2850 * + Secure PL1 2851 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2852 * 2853 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2854 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2855 * because they may differ in access permissions even if the VA->PA map is 2856 * the same 2857 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2858 * translation, which means that we have one mmu_idx that deals with two 2859 * concatenated translation regimes [this sort of combined s1+2 TLB is 2860 * architecturally permitted] 2861 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2862 * handling via the TLB. The only way to do a stage 1 translation without 2863 * the immediate stage 2 translation is via the ATS or AT system insns, 2864 * which can be slow-pathed and always do a page table walk. 2865 * The only use of stage 2 translations is either as part of an s1+2 2866 * lookup or when loading the descriptors during a stage 1 page table walk, 2867 * and in both those cases we don't use the TLB. 2868 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2869 * translation regimes, because they map reasonably well to each other 2870 * and they can't both be active at the same time. 2871 * 5. we want to be able to use the TLB for accesses done as part of a 2872 * stage1 page table walk, rather than having to walk the stage2 page 2873 * table over and over. 2874 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2875 * Never (PAN) bit within PSTATE. 2876 * 2877 * This gives us the following list of cases: 2878 * 2879 * NS EL0 EL1&0 stage 1+2 (aka NS PL0) 2880 * NS EL1 EL1&0 stage 1+2 (aka NS PL1) 2881 * NS EL1 EL1&0 stage 1+2 +PAN 2882 * NS EL0 EL2&0 2883 * NS EL2 EL2&0 2884 * NS EL2 EL2&0 +PAN 2885 * NS EL2 (aka NS PL2) 2886 * S EL0 EL1&0 (aka S PL0) 2887 * S EL1 EL1&0 (not used if EL3 is 32 bit) 2888 * S EL1 EL1&0 +PAN 2889 * S EL3 (aka S PL1) 2890 * 2891 * for a total of 11 different mmu_idx. 2892 * 2893 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2894 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and 2895 * NS EL2 if we ever model a Cortex-R52). 2896 * 2897 * M profile CPUs are rather different as they do not have a true MMU. 2898 * They have the following different MMU indexes: 2899 * User 2900 * Privileged 2901 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2902 * Privileged, execution priority negative (ditto) 2903 * If the CPU supports the v8M Security Extension then there are also: 2904 * Secure User 2905 * Secure Privileged 2906 * Secure User, execution priority negative 2907 * Secure Privileged, execution priority negative 2908 * 2909 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2910 * are not quite the same -- different CPU types (most notably M profile 2911 * vs A/R profile) would like to use MMU indexes with different semantics, 2912 * but since we don't ever need to use all of those in a single CPU we 2913 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2914 * modes + total number of M profile MMU modes". The lower bits of 2915 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2916 * the same for any particular CPU. 2917 * Variables of type ARMMUIdx are always full values, and the core 2918 * index values are in variables of type 'int'. 2919 * 2920 * Our enumeration includes at the end some entries which are not "true" 2921 * mmu_idx values in that they don't have corresponding TLBs and are only 2922 * valid for doing slow path page table walks. 2923 * 2924 * The constant names here are patterned after the general style of the names 2925 * of the AT/ATS operations. 2926 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2927 * For M profile we arrange them to have a bit for priv, a bit for negpri 2928 * and a bit for secure. 2929 */ 2930 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2931 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2932 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2933 2934 /* Meanings of the bits for A profile mmu idx values */ 2935 #define ARM_MMU_IDX_A_NS 0x8 2936 2937 /* Meanings of the bits for M profile mmu idx values */ 2938 #define ARM_MMU_IDX_M_PRIV 0x1 2939 #define ARM_MMU_IDX_M_NEGPRI 0x2 2940 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2941 2942 #define ARM_MMU_IDX_TYPE_MASK \ 2943 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2944 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2945 2946 typedef enum ARMMMUIdx { 2947 /* 2948 * A-profile. 2949 */ 2950 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A, 2951 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A, 2952 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A, 2953 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A, 2954 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A, 2955 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A, 2956 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A, 2957 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A, 2958 2959 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS, 2960 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS, 2961 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS, 2962 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS, 2963 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS, 2964 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS, 2965 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS, 2966 2967 /* 2968 * These are not allocated TLBs and are used only for AT system 2969 * instructions or for the first stage of an S12 page table walk. 2970 */ 2971 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2972 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2973 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2974 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB, 2975 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB, 2976 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB, 2977 /* 2978 * Not allocated a TLB: used only for second stage of an S12 page 2979 * table walk, or for descriptor loads during first stage of an S1 2980 * page table walk. Note that if we ever want to have a TLB for this 2981 * then various TLB flush insns which currently are no-ops or flush 2982 * only stage 1 MMU indexes will need to change to flush stage 2. 2983 */ 2984 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB, 2985 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB, 2986 2987 /* 2988 * M-profile. 2989 */ 2990 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2991 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2992 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2993 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2994 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2995 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2996 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2997 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2998 } ARMMMUIdx; 2999 3000 /* 3001 * Bit macros for the core-mmu-index values for each index, 3002 * for use when calling tlb_flush_by_mmuidx() and friends. 3003 */ 3004 #define TO_CORE_BIT(NAME) \ 3005 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 3006 3007 typedef enum ARMMMUIdxBit { 3008 TO_CORE_BIT(E10_0), 3009 TO_CORE_BIT(E20_0), 3010 TO_CORE_BIT(E10_1), 3011 TO_CORE_BIT(E10_1_PAN), 3012 TO_CORE_BIT(E2), 3013 TO_CORE_BIT(E20_2), 3014 TO_CORE_BIT(E20_2_PAN), 3015 TO_CORE_BIT(SE10_0), 3016 TO_CORE_BIT(SE20_0), 3017 TO_CORE_BIT(SE10_1), 3018 TO_CORE_BIT(SE20_2), 3019 TO_CORE_BIT(SE10_1_PAN), 3020 TO_CORE_BIT(SE20_2_PAN), 3021 TO_CORE_BIT(SE2), 3022 TO_CORE_BIT(SE3), 3023 3024 TO_CORE_BIT(MUser), 3025 TO_CORE_BIT(MPriv), 3026 TO_CORE_BIT(MUserNegPri), 3027 TO_CORE_BIT(MPrivNegPri), 3028 TO_CORE_BIT(MSUser), 3029 TO_CORE_BIT(MSPriv), 3030 TO_CORE_BIT(MSUserNegPri), 3031 TO_CORE_BIT(MSPrivNegPri), 3032 } ARMMMUIdxBit; 3033 3034 #undef TO_CORE_BIT 3035 3036 #define MMU_USER_IDX 0 3037 3038 /* Indexes used when registering address spaces with cpu_address_space_init */ 3039 typedef enum ARMASIdx { 3040 ARMASIdx_NS = 0, 3041 ARMASIdx_S = 1, 3042 ARMASIdx_TagNS = 2, 3043 ARMASIdx_TagS = 3, 3044 } ARMASIdx; 3045 3046 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3047 { 3048 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3049 * CSSELR is RAZ/WI. 3050 */ 3051 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3052 } 3053 3054 static inline bool arm_sctlr_b(CPUARMState *env) 3055 { 3056 return 3057 /* We need not implement SCTLR.ITD in user-mode emulation, so 3058 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3059 * This lets people run BE32 binaries with "-cpu any". 3060 */ 3061 #ifndef CONFIG_USER_ONLY 3062 !arm_feature(env, ARM_FEATURE_V7) && 3063 #endif 3064 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3065 } 3066 3067 uint64_t arm_sctlr(CPUARMState *env, int el); 3068 3069 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3070 bool sctlr_b) 3071 { 3072 #ifdef CONFIG_USER_ONLY 3073 /* 3074 * In system mode, BE32 is modelled in line with the 3075 * architecture (as word-invariant big-endianness), where loads 3076 * and stores are done little endian but from addresses which 3077 * are adjusted by XORing with the appropriate constant. So the 3078 * endianness to use for the raw data access is not affected by 3079 * SCTLR.B. 3080 * In user mode, however, we model BE32 as byte-invariant 3081 * big-endianness (because user-only code cannot tell the 3082 * difference), and so we need to use a data access endianness 3083 * that depends on SCTLR.B. 3084 */ 3085 if (sctlr_b) { 3086 return true; 3087 } 3088 #endif 3089 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3090 return env->uncached_cpsr & CPSR_E; 3091 } 3092 3093 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3094 { 3095 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3096 } 3097 3098 /* Return true if the processor is in big-endian mode. */ 3099 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3100 { 3101 if (!is_a64(env)) { 3102 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3103 } else { 3104 int cur_el = arm_current_el(env); 3105 uint64_t sctlr = arm_sctlr(env, cur_el); 3106 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3107 } 3108 } 3109 3110 #include "exec/cpu-all.h" 3111 3112 /* 3113 * We have more than 32-bits worth of state per TB, so we split the data 3114 * between tb->flags and tb->cs_base, which is otherwise unused for ARM. 3115 * We collect these two parts in CPUARMTBFlags where they are named 3116 * flags and flags2 respectively. 3117 * 3118 * The flags that are shared between all execution modes, TBFLAG_ANY, 3119 * are stored in flags. The flags that are specific to a given mode 3120 * are stores in flags2. Since cs_base is sized on the configured 3121 * address size, flags2 always has 64-bits for A64, and a minimum of 3122 * 32-bits for A32 and M32. 3123 * 3124 * The bits for 32-bit A-profile and M-profile partially overlap: 3125 * 3126 * 31 23 11 10 0 3127 * +-------------+----------+----------------+ 3128 * | | | TBFLAG_A32 | 3129 * | TBFLAG_AM32 | +-----+----------+ 3130 * | | |TBFLAG_M32| 3131 * +-------------+----------------+----------+ 3132 * 31 23 6 5 0 3133 * 3134 * Unless otherwise noted, these bits are cached in env->hflags. 3135 */ 3136 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) 3137 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) 3138 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ 3139 FIELD(TBFLAG_ANY, BE_DATA, 3, 1) 3140 FIELD(TBFLAG_ANY, MMUIDX, 4, 4) 3141 /* Target EL if we take a floating-point-disabled exception */ 3142 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) 3143 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ 3144 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1) 3145 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1) 3146 3147 /* 3148 * Bit usage when in AArch32 state, both A- and M-profile. 3149 */ 3150 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ 3151 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ 3152 3153 /* 3154 * Bit usage when in AArch32 state, for A-profile only. 3155 */ 3156 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ 3157 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ 3158 /* 3159 * We store the bottom two bits of the CPAR as TB flags and handle 3160 * checks on the other bits at runtime. This shares the same bits as 3161 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3162 * Not cached, because VECLEN+VECSTRIDE are not cached. 3163 */ 3164 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) 3165 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 3166 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ 3167 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) 3168 /* 3169 * Indicates whether cp register reads and writes by guest code should access 3170 * the secure or nonsecure bank of banked registers; note that this is not 3171 * the same thing as the current security state of the processor! 3172 */ 3173 FIELD(TBFLAG_A32, NS, 10, 1) 3174 /* 3175 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. 3176 * This requires an SME trap from AArch32 mode when using NEON. 3177 */ 3178 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1) 3179 3180 /* 3181 * Bit usage when in AArch32 state, for M-profile only. 3182 */ 3183 /* Handler (ie not Thread) mode */ 3184 FIELD(TBFLAG_M32, HANDLER, 0, 1) 3185 /* Whether we should generate stack-limit checks */ 3186 FIELD(TBFLAG_M32, STACKCHECK, 1, 1) 3187 /* Set if FPCCR.LSPACT is set */ 3188 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ 3189 /* Set if we must create a new FP context */ 3190 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ 3191 /* Set if FPCCR.S does not match current security state */ 3192 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ 3193 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ 3194 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ 3195 3196 /* 3197 * Bit usage when in AArch64 state 3198 */ 3199 FIELD(TBFLAG_A64, TBII, 0, 2) 3200 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3201 /* The current vector length, either NVL or SVL. */ 3202 FIELD(TBFLAG_A64, VL, 4, 4) 3203 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3204 FIELD(TBFLAG_A64, BT, 9, 1) 3205 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3206 FIELD(TBFLAG_A64, TBID, 12, 2) 3207 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3208 FIELD(TBFLAG_A64, ATA, 15, 1) 3209 FIELD(TBFLAG_A64, TCMA, 16, 2) 3210 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3211 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3212 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2) 3213 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1) 3214 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1) 3215 FIELD(TBFLAG_A64, SVL, 24, 4) 3216 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */ 3217 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1) 3218 3219 /* 3220 * Helpers for using the above. 3221 */ 3222 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ 3223 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) 3224 #define DP_TBFLAG_A64(DST, WHICH, VAL) \ 3225 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL)) 3226 #define DP_TBFLAG_A32(DST, WHICH, VAL) \ 3227 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) 3228 #define DP_TBFLAG_M32(DST, WHICH, VAL) \ 3229 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) 3230 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ 3231 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) 3232 3233 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) 3234 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH) 3235 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) 3236 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) 3237 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) 3238 3239 /** 3240 * cpu_mmu_index: 3241 * @env: The cpu environment 3242 * @ifetch: True for code access, false for data access. 3243 * 3244 * Return the core mmu index for the current translation regime. 3245 * This function is used by generic TCG code paths. 3246 */ 3247 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) 3248 { 3249 return EX_TBFLAG_ANY(env->hflags, MMUIDX); 3250 } 3251 3252 /** 3253 * sve_vq 3254 * @env: the cpu context 3255 * 3256 * Return the VL cached within env->hflags, in units of quadwords. 3257 */ 3258 static inline int sve_vq(CPUARMState *env) 3259 { 3260 return EX_TBFLAG_A64(env->hflags, VL) + 1; 3261 } 3262 3263 /** 3264 * sme_vq 3265 * @env: the cpu context 3266 * 3267 * Return the SVL cached within env->hflags, in units of quadwords. 3268 */ 3269 static inline int sme_vq(CPUARMState *env) 3270 { 3271 return EX_TBFLAG_A64(env->hflags, SVL) + 1; 3272 } 3273 3274 static inline bool bswap_code(bool sctlr_b) 3275 { 3276 #ifdef CONFIG_USER_ONLY 3277 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian. 3278 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0 3279 * would also end up as a mixed-endian mode with BE code, LE data. 3280 */ 3281 return 3282 #if TARGET_BIG_ENDIAN 3283 1 ^ 3284 #endif 3285 sctlr_b; 3286 #else 3287 /* All code access in ARM is little endian, and there are no loaders 3288 * doing swaps that need to be reversed 3289 */ 3290 return 0; 3291 #endif 3292 } 3293 3294 #ifdef CONFIG_USER_ONLY 3295 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3296 { 3297 return 3298 #if TARGET_BIG_ENDIAN 3299 1 ^ 3300 #endif 3301 arm_cpu_data_is_big_endian(env); 3302 } 3303 #endif 3304 3305 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 3306 target_ulong *cs_base, uint32_t *flags); 3307 3308 enum { 3309 QEMU_PSCI_CONDUIT_DISABLED = 0, 3310 QEMU_PSCI_CONDUIT_SMC = 1, 3311 QEMU_PSCI_CONDUIT_HVC = 2, 3312 }; 3313 3314 #ifndef CONFIG_USER_ONLY 3315 /* Return the address space index to use for a memory access */ 3316 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3317 { 3318 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3319 } 3320 3321 /* Return the AddressSpace to use for a memory access 3322 * (which depends on whether the access is S or NS, and whether 3323 * the board gave us a separate AddressSpace for S accesses). 3324 */ 3325 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3326 { 3327 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3328 } 3329 #endif 3330 3331 /** 3332 * arm_register_pre_el_change_hook: 3333 * Register a hook function which will be called immediately before this 3334 * CPU changes exception level or mode. The hook function will be 3335 * passed a pointer to the ARMCPU and the opaque data pointer passed 3336 * to this function when the hook was registered. 3337 * 3338 * Note that if a pre-change hook is called, any registered post-change hooks 3339 * are guaranteed to subsequently be called. 3340 */ 3341 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3342 void *opaque); 3343 /** 3344 * arm_register_el_change_hook: 3345 * Register a hook function which will be called immediately after this 3346 * CPU changes exception level or mode. The hook function will be 3347 * passed a pointer to the ARMCPU and the opaque data pointer passed 3348 * to this function when the hook was registered. 3349 * 3350 * Note that any registered hooks registered here are guaranteed to be called 3351 * if pre-change hooks have been. 3352 */ 3353 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3354 *opaque); 3355 3356 /** 3357 * arm_rebuild_hflags: 3358 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3359 */ 3360 void arm_rebuild_hflags(CPUARMState *env); 3361 3362 /** 3363 * aa32_vfp_dreg: 3364 * Return a pointer to the Dn register within env in 32-bit mode. 3365 */ 3366 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3367 { 3368 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3369 } 3370 3371 /** 3372 * aa32_vfp_qreg: 3373 * Return a pointer to the Qn register within env in 32-bit mode. 3374 */ 3375 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3376 { 3377 return &env->vfp.zregs[regno].d[0]; 3378 } 3379 3380 /** 3381 * aa64_vfp_qreg: 3382 * Return a pointer to the Qn register within env in 64-bit mode. 3383 */ 3384 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3385 { 3386 return &env->vfp.zregs[regno].d[0]; 3387 } 3388 3389 /* Shared between translate-sve.c and sve_helper.c. */ 3390 extern const uint64_t pred_esz_masks[5]; 3391 3392 /* Helper for the macros below, validating the argument type. */ 3393 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) 3394 { 3395 return x; 3396 } 3397 3398 /* 3399 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. 3400 * Using these should be a bit more self-documenting than using the 3401 * generic target bits directly. 3402 */ 3403 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) 3404 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) 3405 3406 /* 3407 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3408 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect 3409 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR. 3410 */ 3411 #define PAGE_BTI PAGE_TARGET_1 3412 #define PAGE_MTE PAGE_TARGET_2 3413 #define PAGE_TARGET_STICKY PAGE_MTE 3414 3415 #ifdef TARGET_TAGGED_ADDRESSES 3416 /** 3417 * cpu_untagged_addr: 3418 * @cs: CPU context 3419 * @x: tagged address 3420 * 3421 * Remove any address tag from @x. This is explicitly related to the 3422 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. 3423 * 3424 * There should be a better place to put this, but we need this in 3425 * include/exec/cpu_ldst.h, and not some place linux-user specific. 3426 */ 3427 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) 3428 { 3429 ARMCPU *cpu = ARM_CPU(cs); 3430 if (cpu->env.tagged_addr_enable) { 3431 /* 3432 * TBI is enabled for userspace but not kernelspace addresses. 3433 * Only clear the tag if bit 55 is clear. 3434 */ 3435 x &= sextract64(x, 0, 56); 3436 } 3437 return x; 3438 } 3439 #endif 3440 3441 /* 3442 * Naming convention for isar_feature functions: 3443 * Functions which test 32-bit ID registers should have _aa32_ in 3444 * their name. Functions which test 64-bit ID registers should have 3445 * _aa64_ in their name. These must only be used in code where we 3446 * know for certain that the CPU has AArch32 or AArch64 respectively 3447 * or where the correct answer for a CPU which doesn't implement that 3448 * CPU state is "false" (eg when generating A32 or A64 code, if adding 3449 * system registers that are specific to that CPU state, for "should 3450 * we let this system register bit be set" tests where the 32-bit 3451 * flavour of the register doesn't have the bit, and so on). 3452 * Functions which simply ask "does this feature exist at all" have 3453 * _any_ in their name, and always return the logical OR of the _aa64_ 3454 * and the _aa32_ function. 3455 */ 3456 3457 /* 3458 * 32-bit feature tests via id registers. 3459 */ 3460 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) 3461 { 3462 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; 3463 } 3464 3465 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) 3466 { 3467 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; 3468 } 3469 3470 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) 3471 { 3472 /* (M-profile) low-overhead loops and branch future */ 3473 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; 3474 } 3475 3476 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) 3477 { 3478 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; 3479 } 3480 3481 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) 3482 { 3483 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; 3484 } 3485 3486 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) 3487 { 3488 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; 3489 } 3490 3491 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) 3492 { 3493 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; 3494 } 3495 3496 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) 3497 { 3498 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; 3499 } 3500 3501 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) 3502 { 3503 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; 3504 } 3505 3506 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) 3507 { 3508 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; 3509 } 3510 3511 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) 3512 { 3513 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; 3514 } 3515 3516 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) 3517 { 3518 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; 3519 } 3520 3521 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) 3522 { 3523 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; 3524 } 3525 3526 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) 3527 { 3528 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; 3529 } 3530 3531 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) 3532 { 3533 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; 3534 } 3535 3536 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) 3537 { 3538 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; 3539 } 3540 3541 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id) 3542 { 3543 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0; 3544 } 3545 3546 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id) 3547 { 3548 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0; 3549 } 3550 3551 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) 3552 { 3553 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; 3554 } 3555 3556 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) 3557 { 3558 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; 3559 } 3560 3561 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) 3562 { 3563 /* 3564 * Return true if M-profile state handling insns 3565 * (VSCCLRM, CLRM, FPCTX access insns) are implemented 3566 */ 3567 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; 3568 } 3569 3570 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) 3571 { 3572 /* Sadly this is encoded differently for A-profile and M-profile */ 3573 if (isar_feature_aa32_mprofile(id)) { 3574 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; 3575 } else { 3576 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; 3577 } 3578 } 3579 3580 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id) 3581 { 3582 /* 3583 * Return true if MVE is supported (either integer or floating point). 3584 * We must check for M-profile as the MVFR1 field means something 3585 * else for A-profile. 3586 */ 3587 return isar_feature_aa32_mprofile(id) && 3588 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0; 3589 } 3590 3591 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id) 3592 { 3593 /* 3594 * Return true if MVE is supported (either integer or floating point). 3595 * We must check for M-profile as the MVFR1 field means something 3596 * else for A-profile. 3597 */ 3598 return isar_feature_aa32_mprofile(id) && 3599 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2; 3600 } 3601 3602 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) 3603 { 3604 /* 3605 * Return true if either VFP or SIMD is implemented. 3606 * In this case, a minimum of VFP w/ D0-D15. 3607 */ 3608 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; 3609 } 3610 3611 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) 3612 { 3613 /* Return true if D16-D31 are implemented */ 3614 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; 3615 } 3616 3617 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) 3618 { 3619 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; 3620 } 3621 3622 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) 3623 { 3624 /* Return true if CPU supports single precision floating point, VFPv2 */ 3625 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; 3626 } 3627 3628 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) 3629 { 3630 /* Return true if CPU supports single precision floating point, VFPv3 */ 3631 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; 3632 } 3633 3634 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) 3635 { 3636 /* Return true if CPU supports double precision floating point, VFPv2 */ 3637 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; 3638 } 3639 3640 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) 3641 { 3642 /* Return true if CPU supports double precision floating point, VFPv3 */ 3643 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; 3644 } 3645 3646 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) 3647 { 3648 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); 3649 } 3650 3651 /* 3652 * We always set the FP and SIMD FP16 fields to indicate identical 3653 * levels of support (assuming SIMD is implemented at all), so 3654 * we only need one set of accessors. 3655 */ 3656 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) 3657 { 3658 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; 3659 } 3660 3661 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) 3662 { 3663 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; 3664 } 3665 3666 /* 3667 * Note that this ID register field covers both VFP and Neon FMAC, 3668 * so should usually be tested in combination with some other 3669 * check that confirms the presence of whichever of VFP or Neon is 3670 * relevant, to avoid accidentally enabling a Neon feature on 3671 * a VFP-no-Neon core or vice-versa. 3672 */ 3673 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) 3674 { 3675 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; 3676 } 3677 3678 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) 3679 { 3680 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; 3681 } 3682 3683 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) 3684 { 3685 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; 3686 } 3687 3688 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) 3689 { 3690 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; 3691 } 3692 3693 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) 3694 { 3695 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; 3696 } 3697 3698 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) 3699 { 3700 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; 3701 } 3702 3703 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) 3704 { 3705 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; 3706 } 3707 3708 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) 3709 { 3710 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; 3711 } 3712 3713 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) 3714 { 3715 /* 0xf means "non-standard IMPDEF PMU" */ 3716 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && 3717 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3718 } 3719 3720 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) 3721 { 3722 /* 0xf means "non-standard IMPDEF PMU" */ 3723 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && 3724 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; 3725 } 3726 3727 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) 3728 { 3729 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; 3730 } 3731 3732 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) 3733 { 3734 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; 3735 } 3736 3737 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) 3738 { 3739 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; 3740 } 3741 3742 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) 3743 { 3744 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; 3745 } 3746 3747 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id) 3748 { 3749 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0; 3750 } 3751 3752 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id) 3753 { 3754 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0; 3755 } 3756 3757 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id) 3758 { 3759 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5; 3760 } 3761 3762 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id) 3763 { 3764 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8; 3765 } 3766 3767 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id) 3768 { 3769 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0; 3770 } 3771 3772 /* 3773 * 64-bit feature tests via id registers. 3774 */ 3775 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) 3776 { 3777 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; 3778 } 3779 3780 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) 3781 { 3782 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; 3783 } 3784 3785 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) 3786 { 3787 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; 3788 } 3789 3790 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) 3791 { 3792 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; 3793 } 3794 3795 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) 3796 { 3797 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; 3798 } 3799 3800 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) 3801 { 3802 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; 3803 } 3804 3805 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) 3806 { 3807 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; 3808 } 3809 3810 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) 3811 { 3812 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; 3813 } 3814 3815 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) 3816 { 3817 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; 3818 } 3819 3820 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) 3821 { 3822 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; 3823 } 3824 3825 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) 3826 { 3827 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; 3828 } 3829 3830 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) 3831 { 3832 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; 3833 } 3834 3835 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) 3836 { 3837 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; 3838 } 3839 3840 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) 3841 { 3842 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; 3843 } 3844 3845 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) 3846 { 3847 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; 3848 } 3849 3850 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) 3851 { 3852 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; 3853 } 3854 3855 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) 3856 { 3857 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; 3858 } 3859 3860 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) 3861 { 3862 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; 3863 } 3864 3865 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) 3866 { 3867 /* 3868 * Return true if any form of pauth is enabled, as this 3869 * predicate controls migration of the 128-bit keys. 3870 */ 3871 return (id->id_aa64isar1 & 3872 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | 3873 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | 3874 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | 3875 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; 3876 } 3877 3878 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id) 3879 { 3880 /* 3881 * Return true if pauth is enabled with the architected QARMA algorithm. 3882 * QEMU will always set APA+GPA to the same value. 3883 */ 3884 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0; 3885 } 3886 3887 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id) 3888 { 3889 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2; 3890 } 3891 3892 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id) 3893 { 3894 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0; 3895 } 3896 3897 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) 3898 { 3899 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; 3900 } 3901 3902 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) 3903 { 3904 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; 3905 } 3906 3907 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) 3908 { 3909 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; 3910 } 3911 3912 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) 3913 { 3914 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; 3915 } 3916 3917 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) 3918 { 3919 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; 3920 } 3921 3922 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id) 3923 { 3924 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0; 3925 } 3926 3927 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) 3928 { 3929 /* We always set the AdvSIMD and FP fields identically. */ 3930 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; 3931 } 3932 3933 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) 3934 { 3935 /* We always set the AdvSIMD and FP fields identically wrt FP16. */ 3936 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; 3937 } 3938 3939 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) 3940 { 3941 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; 3942 } 3943 3944 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id) 3945 { 3946 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2; 3947 } 3948 3949 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id) 3950 { 3951 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2; 3952 } 3953 3954 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id) 3955 { 3956 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0; 3957 } 3958 3959 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id) 3960 { 3961 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2; 3962 } 3963 3964 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) 3965 { 3966 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; 3967 } 3968 3969 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id) 3970 { 3971 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0; 3972 } 3973 3974 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) 3975 { 3976 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; 3977 } 3978 3979 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) 3980 { 3981 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; 3982 } 3983 3984 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) 3985 { 3986 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; 3987 } 3988 3989 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) 3990 { 3991 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; 3992 } 3993 3994 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id) 3995 { 3996 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0; 3997 } 3998 3999 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) 4000 { 4001 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; 4002 } 4003 4004 static inline bool isar_feature_aa64_st(const ARMISARegisters *id) 4005 { 4006 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; 4007 } 4008 4009 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id) 4010 { 4011 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0; 4012 } 4013 4014 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id) 4015 { 4016 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0; 4017 } 4018 4019 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) 4020 { 4021 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; 4022 } 4023 4024 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) 4025 { 4026 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; 4027 } 4028 4029 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) 4030 { 4031 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; 4032 } 4033 4034 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id) 4035 { 4036 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0; 4037 } 4038 4039 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) 4040 { 4041 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && 4042 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4043 } 4044 4045 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) 4046 { 4047 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && 4048 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; 4049 } 4050 4051 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) 4052 { 4053 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; 4054 } 4055 4056 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) 4057 { 4058 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; 4059 } 4060 4061 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id) 4062 { 4063 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0; 4064 } 4065 4066 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id) 4067 { 4068 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1; 4069 } 4070 4071 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id) 4072 { 4073 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2); 4074 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id)); 4075 } 4076 4077 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id) 4078 { 4079 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2; 4080 } 4081 4082 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id) 4083 { 4084 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2); 4085 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id)); 4086 } 4087 4088 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) 4089 { 4090 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; 4091 } 4092 4093 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id) 4094 { 4095 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0; 4096 } 4097 4098 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) 4099 { 4100 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; 4101 } 4102 4103 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id) 4104 { 4105 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0; 4106 } 4107 4108 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id) 4109 { 4110 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2); 4111 if (key >= 2) { 4112 return true; /* FEAT_CSV2_2 */ 4113 } 4114 if (key == 1) { 4115 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC); 4116 return key >= 2; /* FEAT_CSV2_1p2 */ 4117 } 4118 return false; 4119 } 4120 4121 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id) 4122 { 4123 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0; 4124 } 4125 4126 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id) 4127 { 4128 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8; 4129 } 4130 4131 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id) 4132 { 4133 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0; 4134 } 4135 4136 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id) 4137 { 4138 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0; 4139 } 4140 4141 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id) 4142 { 4143 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2; 4144 } 4145 4146 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id) 4147 { 4148 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0; 4149 } 4150 4151 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id) 4152 { 4153 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0; 4154 } 4155 4156 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id) 4157 { 4158 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0; 4159 } 4160 4161 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id) 4162 { 4163 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0; 4164 } 4165 4166 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id) 4167 { 4168 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0; 4169 } 4170 4171 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id) 4172 { 4173 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0; 4174 } 4175 4176 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id) 4177 { 4178 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0; 4179 } 4180 4181 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id) 4182 { 4183 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64); 4184 } 4185 4186 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id) 4187 { 4188 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf; 4189 } 4190 4191 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id) 4192 { 4193 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64); 4194 } 4195 4196 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id) 4197 { 4198 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0; 4199 } 4200 4201 /* 4202 * Feature tests for "does this exist in either 32-bit or 64-bit?" 4203 */ 4204 static inline bool isar_feature_any_fp16(const ARMISARegisters *id) 4205 { 4206 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); 4207 } 4208 4209 static inline bool isar_feature_any_predinv(const ARMISARegisters *id) 4210 { 4211 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); 4212 } 4213 4214 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) 4215 { 4216 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); 4217 } 4218 4219 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) 4220 { 4221 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); 4222 } 4223 4224 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) 4225 { 4226 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); 4227 } 4228 4229 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) 4230 { 4231 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); 4232 } 4233 4234 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id) 4235 { 4236 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id); 4237 } 4238 4239 static inline bool isar_feature_any_ras(const ARMISARegisters *id) 4240 { 4241 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id); 4242 } 4243 4244 /* 4245 * Forward to the above feature tests given an ARMCPU pointer. 4246 */ 4247 #define cpu_isar_feature(name, cpu) \ 4248 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) 4249 4250 #endif 4251