xref: /openbmc/qemu/target/arm/cpu.h (revision 3a6606c7)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #define EXCP_UDEF            1   /* undefined instruction */
32 #define EXCP_SWI             2   /* software interrupt */
33 #define EXCP_PREFETCH_ABORT  3
34 #define EXCP_DATA_ABORT      4
35 #define EXCP_IRQ             5
36 #define EXCP_FIQ             6
37 #define EXCP_BKPT            7
38 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
39 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
40 #define EXCP_HVC            11   /* HyperVisor Call */
41 #define EXCP_HYP_TRAP       12
42 #define EXCP_SMC            13   /* Secure Monitor Call */
43 #define EXCP_VIRQ           14
44 #define EXCP_VFIQ           15
45 #define EXCP_SEMIHOST       16   /* semihosting call */
46 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
47 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
48 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
49 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
50 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
51 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
52 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
53 
54 #define ARMV7M_EXCP_RESET   1
55 #define ARMV7M_EXCP_NMI     2
56 #define ARMV7M_EXCP_HARD    3
57 #define ARMV7M_EXCP_MEM     4
58 #define ARMV7M_EXCP_BUS     5
59 #define ARMV7M_EXCP_USAGE   6
60 #define ARMV7M_EXCP_SECURE  7
61 #define ARMV7M_EXCP_SVC     11
62 #define ARMV7M_EXCP_DEBUG   12
63 #define ARMV7M_EXCP_PENDSV  14
64 #define ARMV7M_EXCP_SYSTICK 15
65 
66 /* For M profile, some registers are banked secure vs non-secure;
67  * these are represented as a 2-element array where the first element
68  * is the non-secure copy and the second is the secure copy.
69  * When the CPU does not have implement the security extension then
70  * only the first element is used.
71  * This means that the copy for the current security state can be
72  * accessed via env->registerfield[env->v7m.secure] (whether the security
73  * extension is implemented or not).
74  */
75 enum {
76     M_REG_NS = 0,
77     M_REG_S = 1,
78     M_REG_NUM_BANKS = 2,
79 };
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 
86 /* The usual mapping for an AArch64 system register to its AArch32
87  * counterpart is for the 32 bit world to have access to the lower
88  * half only (with writes leaving the upper half untouched). It's
89  * therefore useful to be able to pass TCG the offset of the least
90  * significant half of a uint64_t struct member.
91  */
92 #ifdef HOST_WORDS_BIGENDIAN
93 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
94 #define offsetofhigh32(S, M) offsetof(S, M)
95 #else
96 #define offsetoflow32(S, M) offsetof(S, M)
97 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #endif
99 
100 /* Meanings of the ARMCPU object's four inbound GPIO lines */
101 #define ARM_CPU_IRQ 0
102 #define ARM_CPU_FIQ 1
103 #define ARM_CPU_VIRQ 2
104 #define ARM_CPU_VFIQ 3
105 
106 /* ARM-specific extra insn start words:
107  * 1: Conditional execution bits
108  * 2: Partial exception syndrome for data aborts
109  */
110 #define TARGET_INSN_START_EXTRA_WORDS 2
111 
112 /* The 2nd extra word holding syndrome info for data aborts does not use
113  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
114  * help the sleb128 encoder do a better job.
115  * When restoring the CPU state, we shift it back up.
116  */
117 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
118 #define ARM_INSN_START_WORD2_SHIFT 14
119 
120 /* We currently assume float and double are IEEE single and double
121    precision respectively.
122    Doing runtime conversions is tricky because VFP registers may contain
123    integer values (eg. as the result of a FTOSI instruction).
124    s<2n> maps to the least significant half of d<n>
125    s<2n+1> maps to the most significant half of d<n>
126  */
127 
128 /**
129  * DynamicGDBXMLInfo:
130  * @desc: Contains the XML descriptions.
131  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
132  * @cpregs_keys: Array that contains the corresponding Key of
133  * a given cpreg with the same order of the cpreg in the XML description.
134  */
135 typedef struct DynamicGDBXMLInfo {
136     char *desc;
137     int num_cpregs;
138     uint32_t *cpregs_keys;
139 } DynamicGDBXMLInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 #define GTIMER_PHYS 0
148 #define GTIMER_VIRT 1
149 #define GTIMER_HYP  2
150 #define GTIMER_SEC  3
151 #define NUM_GTIMERS 4
152 
153 typedef struct {
154     uint64_t raw_tcr;
155     uint32_t mask;
156     uint32_t base_mask;
157 } TCR;
158 
159 /* Define a maximum sized vector register.
160  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
161  * For 64-bit, this is a 2048-bit SVE register.
162  *
163  * Note that the mapping between S, D, and Q views of the register bank
164  * differs between AArch64 and AArch32.
165  * In AArch32:
166  *  Qn = regs[n].d[1]:regs[n].d[0]
167  *  Dn = regs[n / 2].d[n & 1]
168  *  Sn = regs[n / 4].d[n % 4 / 2],
169  *       bits 31..0 for even n, and bits 63..32 for odd n
170  *       (and regs[16] to regs[31] are inaccessible)
171  * In AArch64:
172  *  Zn = regs[n].d[*]
173  *  Qn = regs[n].d[1]:regs[n].d[0]
174  *  Dn = regs[n].d[0]
175  *  Sn = regs[n].d[0] bits 31..0
176  *  Hn = regs[n].d[0] bits 15..0
177  *
178  * This corresponds to the architecturally defined mapping between
179  * the two execution states, and means we do not need to explicitly
180  * map these registers when changing states.
181  *
182  * Align the data for use with TCG host vector operations.
183  */
184 
185 #ifdef TARGET_AARCH64
186 # define ARM_MAX_VQ    16
187 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
188 #else
189 # define ARM_MAX_VQ    1
190 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
191 #endif
192 
193 typedef struct ARMVectorReg {
194     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
195 } ARMVectorReg;
196 
197 #ifdef TARGET_AARCH64
198 /* In AArch32 mode, predicate registers do not exist at all.  */
199 typedef struct ARMPredicateReg {
200     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
201 } ARMPredicateReg;
202 
203 /* In AArch32 mode, PAC keys do not exist at all.  */
204 typedef struct ARMPACKey {
205     uint64_t lo, hi;
206 } ARMPACKey;
207 #endif
208 
209 
210 typedef struct CPUARMState {
211     /* Regs for current mode.  */
212     uint32_t regs[16];
213 
214     /* 32/64 switch only happens when taking and returning from
215      * exceptions so the overlap semantics are taken care of then
216      * instead of having a complicated union.
217      */
218     /* Regs for A64 mode.  */
219     uint64_t xregs[32];
220     uint64_t pc;
221     /* PSTATE isn't an architectural register for ARMv8. However, it is
222      * convenient for us to assemble the underlying state into a 32 bit format
223      * identical to the architectural format used for the SPSR. (This is also
224      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
225      * 'pstate' register are.) Of the PSTATE bits:
226      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
227      *    semantics as for AArch32, as described in the comments on each field)
228      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
229      *  DAIF (exception masks) are kept in env->daif
230      *  BTYPE is kept in env->btype
231      *  all other bits are stored in their correct places in env->pstate
232      */
233     uint32_t pstate;
234     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
235 
236     /* Cached TBFLAGS state.  See below for which bits are included.  */
237     uint32_t hflags;
238 
239     /* Frequently accessed CPSR bits are stored separately for efficiency.
240        This contains all the other bits.  Use cpsr_{read,write} to access
241        the whole CPSR.  */
242     uint32_t uncached_cpsr;
243     uint32_t spsr;
244 
245     /* Banked registers.  */
246     uint64_t banked_spsr[8];
247     uint32_t banked_r13[8];
248     uint32_t banked_r14[8];
249 
250     /* These hold r8-r12.  */
251     uint32_t usr_regs[5];
252     uint32_t fiq_regs[5];
253 
254     /* cpsr flag cache for faster execution */
255     uint32_t CF; /* 0 or 1 */
256     uint32_t VF; /* V is the bit 31. All other bits are undefined */
257     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
258     uint32_t ZF; /* Z set if zero.  */
259     uint32_t QF; /* 0 or 1 */
260     uint32_t GE; /* cpsr[19:16] */
261     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
262     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
263     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
264     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
265 
266     uint64_t elr_el[4]; /* AArch64 exception link regs  */
267     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
268 
269     /* System control coprocessor (cp15) */
270     struct {
271         uint32_t c0_cpuid;
272         union { /* Cache size selection */
273             struct {
274                 uint64_t _unused_csselr0;
275                 uint64_t csselr_ns;
276                 uint64_t _unused_csselr1;
277                 uint64_t csselr_s;
278             };
279             uint64_t csselr_el[4];
280         };
281         union { /* System control register. */
282             struct {
283                 uint64_t _unused_sctlr;
284                 uint64_t sctlr_ns;
285                 uint64_t hsctlr;
286                 uint64_t sctlr_s;
287             };
288             uint64_t sctlr_el[4];
289         };
290         uint64_t cpacr_el1; /* Architectural feature access control register */
291         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
292         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
293         uint64_t sder; /* Secure debug enable register. */
294         uint32_t nsacr; /* Non-secure access control register. */
295         union { /* MMU translation table base 0. */
296             struct {
297                 uint64_t _unused_ttbr0_0;
298                 uint64_t ttbr0_ns;
299                 uint64_t _unused_ttbr0_1;
300                 uint64_t ttbr0_s;
301             };
302             uint64_t ttbr0_el[4];
303         };
304         union { /* MMU translation table base 1. */
305             struct {
306                 uint64_t _unused_ttbr1_0;
307                 uint64_t ttbr1_ns;
308                 uint64_t _unused_ttbr1_1;
309                 uint64_t ttbr1_s;
310             };
311             uint64_t ttbr1_el[4];
312         };
313         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
314         /* MMU translation table base control. */
315         TCR tcr_el[4];
316         TCR vtcr_el2; /* Virtualization Translation Control.  */
317         uint32_t c2_data; /* MPU data cacheable bits.  */
318         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319         union { /* MMU domain access control register
320                  * MPU write buffer control.
321                  */
322             struct {
323                 uint64_t dacr_ns;
324                 uint64_t dacr_s;
325             };
326             struct {
327                 uint64_t dacr32_el2;
328             };
329         };
330         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332         uint64_t hcr_el2; /* Hypervisor configuration register */
333         uint64_t scr_el3; /* Secure configuration register.  */
334         union { /* Fault status registers.  */
335             struct {
336                 uint64_t ifsr_ns;
337                 uint64_t ifsr_s;
338             };
339             struct {
340                 uint64_t ifsr32_el2;
341             };
342         };
343         union {
344             struct {
345                 uint64_t _unused_dfsr;
346                 uint64_t dfsr_ns;
347                 uint64_t hsr;
348                 uint64_t dfsr_s;
349             };
350             uint64_t esr_el[4];
351         };
352         uint32_t c6_region[8]; /* MPU base/size registers.  */
353         union { /* Fault address registers. */
354             struct {
355                 uint64_t _unused_far0;
356 #ifdef HOST_WORDS_BIGENDIAN
357                 uint32_t ifar_ns;
358                 uint32_t dfar_ns;
359                 uint32_t ifar_s;
360                 uint32_t dfar_s;
361 #else
362                 uint32_t dfar_ns;
363                 uint32_t ifar_ns;
364                 uint32_t dfar_s;
365                 uint32_t ifar_s;
366 #endif
367                 uint64_t _unused_far3;
368             };
369             uint64_t far_el[4];
370         };
371         uint64_t hpfar_el2;
372         uint64_t hstr_el2;
373         union { /* Translation result. */
374             struct {
375                 uint64_t _unused_par_0;
376                 uint64_t par_ns;
377                 uint64_t _unused_par_1;
378                 uint64_t par_s;
379             };
380             uint64_t par_el[4];
381         };
382 
383         uint32_t c9_insn; /* Cache lockdown registers.  */
384         uint32_t c9_data;
385         uint64_t c9_pmcr; /* performance monitor control register */
386         uint64_t c9_pmcnten; /* perf monitor counter enables */
387         uint64_t c9_pmovsr; /* perf monitor overflow status */
388         uint64_t c9_pmuserenr; /* perf monitor user enable */
389         uint64_t c9_pmselr; /* perf monitor counter selection register */
390         uint64_t c9_pminten; /* perf monitor interrupt enables */
391         union { /* Memory attribute redirection */
392             struct {
393 #ifdef HOST_WORDS_BIGENDIAN
394                 uint64_t _unused_mair_0;
395                 uint32_t mair1_ns;
396                 uint32_t mair0_ns;
397                 uint64_t _unused_mair_1;
398                 uint32_t mair1_s;
399                 uint32_t mair0_s;
400 #else
401                 uint64_t _unused_mair_0;
402                 uint32_t mair0_ns;
403                 uint32_t mair1_ns;
404                 uint64_t _unused_mair_1;
405                 uint32_t mair0_s;
406                 uint32_t mair1_s;
407 #endif
408             };
409             uint64_t mair_el[4];
410         };
411         union { /* vector base address register */
412             struct {
413                 uint64_t _unused_vbar;
414                 uint64_t vbar_ns;
415                 uint64_t hvbar;
416                 uint64_t vbar_s;
417             };
418             uint64_t vbar_el[4];
419         };
420         uint32_t mvbar; /* (monitor) vector base address register */
421         struct { /* FCSE PID. */
422             uint32_t fcseidr_ns;
423             uint32_t fcseidr_s;
424         };
425         union { /* Context ID. */
426             struct {
427                 uint64_t _unused_contextidr_0;
428                 uint64_t contextidr_ns;
429                 uint64_t _unused_contextidr_1;
430                 uint64_t contextidr_s;
431             };
432             uint64_t contextidr_el[4];
433         };
434         union { /* User RW Thread register. */
435             struct {
436                 uint64_t tpidrurw_ns;
437                 uint64_t tpidrprw_ns;
438                 uint64_t htpidr;
439                 uint64_t _tpidr_el3;
440             };
441             uint64_t tpidr_el[4];
442         };
443         /* The secure banks of these registers don't map anywhere */
444         uint64_t tpidrurw_s;
445         uint64_t tpidrprw_s;
446         uint64_t tpidruro_s;
447 
448         union { /* User RO Thread register. */
449             uint64_t tpidruro_ns;
450             uint64_t tpidrro_el[1];
451         };
452         uint64_t c14_cntfrq; /* Counter Frequency register */
453         uint64_t c14_cntkctl; /* Timer Control register */
454         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
455         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
456         ARMGenericTimer c14_timer[NUM_GTIMERS];
457         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
458         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
459         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
460         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
461         uint32_t c15_threadid; /* TI debugger thread-ID.  */
462         uint32_t c15_config_base_address; /* SCU base address.  */
463         uint32_t c15_diagnostic; /* diagnostic register */
464         uint32_t c15_power_diagnostic;
465         uint32_t c15_power_control; /* power control */
466         uint64_t dbgbvr[16]; /* breakpoint value registers */
467         uint64_t dbgbcr[16]; /* breakpoint control registers */
468         uint64_t dbgwvr[16]; /* watchpoint value registers */
469         uint64_t dbgwcr[16]; /* watchpoint control registers */
470         uint64_t mdscr_el1;
471         uint64_t oslsr_el1; /* OS Lock Status */
472         uint64_t mdcr_el2;
473         uint64_t mdcr_el3;
474         /* Stores the architectural value of the counter *the last time it was
475          * updated* by pmccntr_op_start. Accesses should always be surrounded
476          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
477          * architecturally-correct value is being read/set.
478          */
479         uint64_t c15_ccnt;
480         /* Stores the delta between the architectural value and the underlying
481          * cycle count during normal operation. It is used to update c15_ccnt
482          * to be the correct architectural value before accesses. During
483          * accesses, c15_ccnt_delta contains the underlying count being used
484          * for the access, after which it reverts to the delta value in
485          * pmccntr_op_finish.
486          */
487         uint64_t c15_ccnt_delta;
488         uint64_t c14_pmevcntr[31];
489         uint64_t c14_pmevcntr_delta[31];
490         uint64_t c14_pmevtyper[31];
491         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
492         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
493         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
494     } cp15;
495 
496     struct {
497         /* M profile has up to 4 stack pointers:
498          * a Main Stack Pointer and a Process Stack Pointer for each
499          * of the Secure and Non-Secure states. (If the CPU doesn't support
500          * the security extension then it has only two SPs.)
501          * In QEMU we always store the currently active SP in regs[13],
502          * and the non-active SP for the current security state in
503          * v7m.other_sp. The stack pointers for the inactive security state
504          * are stored in other_ss_msp and other_ss_psp.
505          * switch_v7m_security_state() is responsible for rearranging them
506          * when we change security state.
507          */
508         uint32_t other_sp;
509         uint32_t other_ss_msp;
510         uint32_t other_ss_psp;
511         uint32_t vecbase[M_REG_NUM_BANKS];
512         uint32_t basepri[M_REG_NUM_BANKS];
513         uint32_t control[M_REG_NUM_BANKS];
514         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
515         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
516         uint32_t hfsr; /* HardFault Status */
517         uint32_t dfsr; /* Debug Fault Status Register */
518         uint32_t sfsr; /* Secure Fault Status Register */
519         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
520         uint32_t bfar; /* BusFault Address */
521         uint32_t sfar; /* Secure Fault Address Register */
522         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
523         int exception;
524         uint32_t primask[M_REG_NUM_BANKS];
525         uint32_t faultmask[M_REG_NUM_BANKS];
526         uint32_t aircr; /* only holds r/w state if security extn implemented */
527         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
528         uint32_t csselr[M_REG_NUM_BANKS];
529         uint32_t scr[M_REG_NUM_BANKS];
530         uint32_t msplim[M_REG_NUM_BANKS];
531         uint32_t psplim[M_REG_NUM_BANKS];
532         uint32_t fpcar[M_REG_NUM_BANKS];
533         uint32_t fpccr[M_REG_NUM_BANKS];
534         uint32_t fpdscr[M_REG_NUM_BANKS];
535         uint32_t cpacr[M_REG_NUM_BANKS];
536         uint32_t nsacr;
537     } v7m;
538 
539     /* Information associated with an exception about to be taken:
540      * code which raises an exception must set cs->exception_index and
541      * the relevant parts of this structure; the cpu_do_interrupt function
542      * will then set the guest-visible registers as part of the exception
543      * entry process.
544      */
545     struct {
546         uint32_t syndrome; /* AArch64 format syndrome register */
547         uint32_t fsr; /* AArch32 format fault status register info */
548         uint64_t vaddress; /* virtual addr associated with exception, if any */
549         uint32_t target_el; /* EL the exception should be targeted for */
550         /* If we implement EL2 we will also need to store information
551          * about the intermediate physical address for stage 2 faults.
552          */
553     } exception;
554 
555     /* Information associated with an SError */
556     struct {
557         uint8_t pending;
558         uint8_t has_esr;
559         uint64_t esr;
560     } serror;
561 
562     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
563     uint32_t irq_line_state;
564 
565     /* Thumb-2 EE state.  */
566     uint32_t teecr;
567     uint32_t teehbr;
568 
569     /* VFP coprocessor state.  */
570     struct {
571         ARMVectorReg zregs[32];
572 
573 #ifdef TARGET_AARCH64
574         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
575 #define FFR_PRED_NUM 16
576         ARMPredicateReg pregs[17];
577         /* Scratch space for aa64 sve predicate temporary.  */
578         ARMPredicateReg preg_tmp;
579 #endif
580 
581         /* We store these fpcsr fields separately for convenience.  */
582         uint32_t qc[4] QEMU_ALIGNED(16);
583         int vec_len;
584         int vec_stride;
585 
586         uint32_t xregs[16];
587 
588         /* Scratch space for aa32 neon expansion.  */
589         uint32_t scratch[8];
590 
591         /* There are a number of distinct float control structures:
592          *
593          *  fp_status: is the "normal" fp status.
594          *  fp_status_fp16: used for half-precision calculations
595          *  standard_fp_status : the ARM "Standard FPSCR Value"
596          *
597          * Half-precision operations are governed by a separate
598          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
599          * status structure to control this.
600          *
601          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
602          * round-to-nearest and is used by any operations (generally
603          * Neon) which the architecture defines as controlled by the
604          * standard FPSCR value rather than the FPSCR.
605          *
606          * To avoid having to transfer exception bits around, we simply
607          * say that the FPSCR cumulative exception flags are the logical
608          * OR of the flags in the three fp statuses. This relies on the
609          * only thing which needs to read the exception flags being
610          * an explicit FPSCR read.
611          */
612         float_status fp_status;
613         float_status fp_status_f16;
614         float_status standard_fp_status;
615 
616         /* ZCR_EL[1-3] */
617         uint64_t zcr_el[4];
618     } vfp;
619     uint64_t exclusive_addr;
620     uint64_t exclusive_val;
621     uint64_t exclusive_high;
622 
623     /* iwMMXt coprocessor state.  */
624     struct {
625         uint64_t regs[16];
626         uint64_t val;
627 
628         uint32_t cregs[16];
629     } iwmmxt;
630 
631 #ifdef TARGET_AARCH64
632     struct {
633         ARMPACKey apia;
634         ARMPACKey apib;
635         ARMPACKey apda;
636         ARMPACKey apdb;
637         ARMPACKey apga;
638     } keys;
639 #endif
640 
641 #if defined(CONFIG_USER_ONLY)
642     /* For usermode syscall translation.  */
643     int eabi;
644 #endif
645 
646     struct CPUBreakpoint *cpu_breakpoint[16];
647     struct CPUWatchpoint *cpu_watchpoint[16];
648 
649     /* Fields up to this point are cleared by a CPU reset */
650     struct {} end_reset_fields;
651 
652     /* Fields after this point are preserved across CPU reset. */
653 
654     /* Internal CPU feature flags.  */
655     uint64_t features;
656 
657     /* PMSAv7 MPU */
658     struct {
659         uint32_t *drbar;
660         uint32_t *drsr;
661         uint32_t *dracr;
662         uint32_t rnr[M_REG_NUM_BANKS];
663     } pmsav7;
664 
665     /* PMSAv8 MPU */
666     struct {
667         /* The PMSAv8 implementation also shares some PMSAv7 config
668          * and state:
669          *  pmsav7.rnr (region number register)
670          *  pmsav7_dregion (number of configured regions)
671          */
672         uint32_t *rbar[M_REG_NUM_BANKS];
673         uint32_t *rlar[M_REG_NUM_BANKS];
674         uint32_t mair0[M_REG_NUM_BANKS];
675         uint32_t mair1[M_REG_NUM_BANKS];
676     } pmsav8;
677 
678     /* v8M SAU */
679     struct {
680         uint32_t *rbar;
681         uint32_t *rlar;
682         uint32_t rnr;
683         uint32_t ctrl;
684     } sau;
685 
686     void *nvic;
687     const struct arm_boot_info *boot_info;
688     /* Store GICv3CPUState to access from this struct */
689     void *gicv3state;
690 } CPUARMState;
691 
692 /**
693  * ARMELChangeHookFn:
694  * type of a function which can be registered via arm_register_el_change_hook()
695  * to get callbacks when the CPU changes its exception level or mode.
696  */
697 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
698 typedef struct ARMELChangeHook ARMELChangeHook;
699 struct ARMELChangeHook {
700     ARMELChangeHookFn *hook;
701     void *opaque;
702     QLIST_ENTRY(ARMELChangeHook) node;
703 };
704 
705 /* These values map onto the return values for
706  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
707 typedef enum ARMPSCIState {
708     PSCI_ON = 0,
709     PSCI_OFF = 1,
710     PSCI_ON_PENDING = 2
711 } ARMPSCIState;
712 
713 typedef struct ARMISARegisters ARMISARegisters;
714 
715 /**
716  * ARMCPU:
717  * @env: #CPUARMState
718  *
719  * An ARM CPU core.
720  */
721 struct ARMCPU {
722     /*< private >*/
723     CPUState parent_obj;
724     /*< public >*/
725 
726     CPUNegativeOffsetState neg;
727     CPUARMState env;
728 
729     /* Coprocessor information */
730     GHashTable *cp_regs;
731     /* For marshalling (mostly coprocessor) register state between the
732      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
733      * we use these arrays.
734      */
735     /* List of register indexes managed via these arrays; (full KVM style
736      * 64 bit indexes, not CPRegInfo 32 bit indexes)
737      */
738     uint64_t *cpreg_indexes;
739     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
740     uint64_t *cpreg_values;
741     /* Length of the indexes, values, reset_values arrays */
742     int32_t cpreg_array_len;
743     /* These are used only for migration: incoming data arrives in
744      * these fields and is sanity checked in post_load before copying
745      * to the working data structures above.
746      */
747     uint64_t *cpreg_vmstate_indexes;
748     uint64_t *cpreg_vmstate_values;
749     int32_t cpreg_vmstate_array_len;
750 
751     DynamicGDBXMLInfo dyn_xml;
752 
753     /* Timers used by the generic (architected) timer */
754     QEMUTimer *gt_timer[NUM_GTIMERS];
755     /*
756      * Timer used by the PMU. Its state is restored after migration by
757      * pmu_op_finish() - it does not need other handling during migration
758      */
759     QEMUTimer *pmu_timer;
760     /* GPIO outputs for generic timer */
761     qemu_irq gt_timer_outputs[NUM_GTIMERS];
762     /* GPIO output for GICv3 maintenance interrupt signal */
763     qemu_irq gicv3_maintenance_interrupt;
764     /* GPIO output for the PMU interrupt */
765     qemu_irq pmu_interrupt;
766 
767     /* MemoryRegion to use for secure physical accesses */
768     MemoryRegion *secure_memory;
769 
770     /* For v8M, pointer to the IDAU interface provided by board/SoC */
771     Object *idau;
772 
773     /* 'compatible' string for this CPU for Linux device trees */
774     const char *dtb_compatible;
775 
776     /* PSCI version for this CPU
777      * Bits[31:16] = Major Version
778      * Bits[15:0] = Minor Version
779      */
780     uint32_t psci_version;
781 
782     /* Should CPU start in PSCI powered-off state? */
783     bool start_powered_off;
784 
785     /* Current power state, access guarded by BQL */
786     ARMPSCIState power_state;
787 
788     /* CPU has virtualization extension */
789     bool has_el2;
790     /* CPU has security extension */
791     bool has_el3;
792     /* CPU has PMU (Performance Monitor Unit) */
793     bool has_pmu;
794     /* CPU has VFP */
795     bool has_vfp;
796     /* CPU has Neon */
797     bool has_neon;
798     /* CPU has M-profile DSP extension */
799     bool has_dsp;
800 
801     /* CPU has memory protection unit */
802     bool has_mpu;
803     /* PMSAv7 MPU number of supported regions */
804     uint32_t pmsav7_dregion;
805     /* v8M SAU number of supported regions */
806     uint32_t sau_sregion;
807 
808     /* PSCI conduit used to invoke PSCI methods
809      * 0 - disabled, 1 - smc, 2 - hvc
810      */
811     uint32_t psci_conduit;
812 
813     /* For v8M, initial value of the Secure VTOR */
814     uint32_t init_svtor;
815 
816     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
817      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
818      */
819     uint32_t kvm_target;
820 
821     /* KVM init features for this CPU */
822     uint32_t kvm_init_features[7];
823 
824     /* Uniprocessor system with MP extensions */
825     bool mp_is_up;
826 
827     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
828      * and the probe failed (so we need to report the error in realize)
829      */
830     bool host_cpu_probe_failed;
831 
832     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
833      * register.
834      */
835     int32_t core_count;
836 
837     /* The instance init functions for implementation-specific subclasses
838      * set these fields to specify the implementation-dependent values of
839      * various constant registers and reset values of non-constant
840      * registers.
841      * Some of these might become QOM properties eventually.
842      * Field names match the official register names as defined in the
843      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
844      * is used for reset values of non-constant registers; no reset_
845      * prefix means a constant register.
846      * Some of these registers are split out into a substructure that
847      * is shared with the translators to control the ISA.
848      */
849     struct ARMISARegisters {
850         uint32_t id_isar0;
851         uint32_t id_isar1;
852         uint32_t id_isar2;
853         uint32_t id_isar3;
854         uint32_t id_isar4;
855         uint32_t id_isar5;
856         uint32_t id_isar6;
857         uint32_t mvfr0;
858         uint32_t mvfr1;
859         uint32_t mvfr2;
860         uint64_t id_aa64isar0;
861         uint64_t id_aa64isar1;
862         uint64_t id_aa64pfr0;
863         uint64_t id_aa64pfr1;
864         uint64_t id_aa64mmfr0;
865         uint64_t id_aa64mmfr1;
866     } isar;
867     uint32_t midr;
868     uint32_t revidr;
869     uint32_t reset_fpsid;
870     uint32_t ctr;
871     uint32_t reset_sctlr;
872     uint32_t id_pfr0;
873     uint32_t id_pfr1;
874     uint32_t id_dfr0;
875     uint64_t pmceid0;
876     uint64_t pmceid1;
877     uint32_t id_afr0;
878     uint32_t id_mmfr0;
879     uint32_t id_mmfr1;
880     uint32_t id_mmfr2;
881     uint32_t id_mmfr3;
882     uint32_t id_mmfr4;
883     uint64_t id_aa64dfr0;
884     uint64_t id_aa64dfr1;
885     uint64_t id_aa64afr0;
886     uint64_t id_aa64afr1;
887     uint32_t dbgdidr;
888     uint32_t clidr;
889     uint64_t mp_affinity; /* MP ID without feature bits */
890     /* The elements of this array are the CCSIDR values for each cache,
891      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
892      */
893     uint32_t ccsidr[16];
894     uint64_t reset_cbar;
895     uint32_t reset_auxcr;
896     bool reset_hivecs;
897     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
898     uint32_t dcz_blocksize;
899     uint64_t rvbar;
900 
901     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
902     int gic_num_lrs; /* number of list registers */
903     int gic_vpribits; /* number of virtual priority bits */
904     int gic_vprebits; /* number of virtual preemption bits */
905 
906     /* Whether the cfgend input is high (i.e. this CPU should reset into
907      * big-endian mode).  This setting isn't used directly: instead it modifies
908      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
909      * architecture version.
910      */
911     bool cfgend;
912 
913     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
914     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
915 
916     int32_t node_id; /* NUMA node this CPU belongs to */
917 
918     /* Used to synchronize KVM and QEMU in-kernel device levels */
919     uint8_t device_irq_level;
920 
921     /* Used to set the maximum vector length the cpu will support.  */
922     uint32_t sve_max_vq;
923 
924     /*
925      * In sve_vq_map each set bit is a supported vector length of
926      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
927      * length in quadwords.
928      *
929      * While processing properties during initialization, corresponding
930      * sve_vq_init bits are set for bits in sve_vq_map that have been
931      * set by properties.
932      */
933     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
934     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
935 };
936 
937 void arm_cpu_post_init(Object *obj);
938 
939 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
940 
941 #ifndef CONFIG_USER_ONLY
942 extern const VMStateDescription vmstate_arm_cpu;
943 #endif
944 
945 void arm_cpu_do_interrupt(CPUState *cpu);
946 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
947 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
948 
949 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
950                                          MemTxAttrs *attrs);
951 
952 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
953 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
954 
955 /* Dynamically generates for gdb stub an XML description of the sysregs from
956  * the cp_regs hashtable. Returns the registered sysregs number.
957  */
958 int arm_gen_dynamic_xml(CPUState *cpu);
959 
960 /* Returns the dynamically generated XML for the gdb stub.
961  * Returns a pointer to the XML contents for the specified XML file or NULL
962  * if the XML name doesn't match the predefined one.
963  */
964 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
965 
966 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
967                              int cpuid, void *opaque);
968 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
969                              int cpuid, void *opaque);
970 
971 #ifdef TARGET_AARCH64
972 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
973 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
974 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
975 void aarch64_sve_change_el(CPUARMState *env, int old_el,
976                            int new_el, bool el0_a64);
977 void aarch64_add_sve_properties(Object *obj);
978 #else
979 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
980 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
981                                          int n, bool a)
982 { }
983 static inline void aarch64_add_sve_properties(Object *obj) { }
984 #endif
985 
986 #if !defined(CONFIG_TCG)
987 static inline target_ulong do_arm_semihosting(CPUARMState *env)
988 {
989     g_assert_not_reached();
990 }
991 #else
992 target_ulong do_arm_semihosting(CPUARMState *env);
993 #endif
994 void aarch64_sync_32_to_64(CPUARMState *env);
995 void aarch64_sync_64_to_32(CPUARMState *env);
996 
997 int fp_exception_el(CPUARMState *env, int cur_el);
998 int sve_exception_el(CPUARMState *env, int cur_el);
999 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1000 
1001 static inline bool is_a64(CPUARMState *env)
1002 {
1003     return env->aarch64;
1004 }
1005 
1006 /* you can call this signal handler from your SIGBUS and SIGSEGV
1007    signal handlers to inform the virtual CPU of exceptions. non zero
1008    is returned if the signal was handled by the virtual CPU.  */
1009 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1010                            void *puc);
1011 
1012 /**
1013  * pmu_op_start/finish
1014  * @env: CPUARMState
1015  *
1016  * Convert all PMU counters between their delta form (the typical mode when
1017  * they are enabled) and the guest-visible values. These two calls must
1018  * surround any action which might affect the counters.
1019  */
1020 void pmu_op_start(CPUARMState *env);
1021 void pmu_op_finish(CPUARMState *env);
1022 
1023 /*
1024  * Called when a PMU counter is due to overflow
1025  */
1026 void arm_pmu_timer_cb(void *opaque);
1027 
1028 /**
1029  * Functions to register as EL change hooks for PMU mode filtering
1030  */
1031 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1032 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1033 
1034 /*
1035  * pmu_init
1036  * @cpu: ARMCPU
1037  *
1038  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1039  * for the current configuration
1040  */
1041 void pmu_init(ARMCPU *cpu);
1042 
1043 /* SCTLR bit meanings. Several bits have been reused in newer
1044  * versions of the architecture; in that case we define constants
1045  * for both old and new bit meanings. Code which tests against those
1046  * bits should probably check or otherwise arrange that the CPU
1047  * is the architectural version it expects.
1048  */
1049 #define SCTLR_M       (1U << 0)
1050 #define SCTLR_A       (1U << 1)
1051 #define SCTLR_C       (1U << 2)
1052 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1053 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1054 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1055 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1056 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1057 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1058 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1059 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1060 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1061 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1062 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1063 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1064 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1065 #define SCTLR_SED     (1U << 8) /* v8 onward */
1066 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1067 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1068 #define SCTLR_F       (1U << 10) /* up to v6 */
1069 #define SCTLR_SW      (1U << 10) /* v7 */
1070 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1071 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1072 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1073 #define SCTLR_I       (1U << 12)
1074 #define SCTLR_V       (1U << 13) /* AArch32 only */
1075 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1076 #define SCTLR_RR      (1U << 14) /* up to v7 */
1077 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1078 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1079 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1080 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1081 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1082 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1083 #define SCTLR_BR      (1U << 17) /* PMSA only */
1084 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1085 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1086 #define SCTLR_WXN     (1U << 19)
1087 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1088 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1089 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1090 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1091 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1092 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1093 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1094 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1095 #define SCTLR_VE      (1U << 24) /* up to v7 */
1096 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1097 #define SCTLR_EE      (1U << 25)
1098 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1099 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1100 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1101 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1102 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1103 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1104 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1105 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1106 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1107 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1108 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1109 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1110 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1111 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1112 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1113 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1114 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1115 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1116 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1117 
1118 #define CPTR_TCPAC    (1U << 31)
1119 #define CPTR_TTA      (1U << 20)
1120 #define CPTR_TFP      (1U << 10)
1121 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1122 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1123 
1124 #define MDCR_EPMAD    (1U << 21)
1125 #define MDCR_EDAD     (1U << 20)
1126 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1127 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1128 #define MDCR_SDD      (1U << 16)
1129 #define MDCR_SPD      (3U << 14)
1130 #define MDCR_TDRA     (1U << 11)
1131 #define MDCR_TDOSA    (1U << 10)
1132 #define MDCR_TDA      (1U << 9)
1133 #define MDCR_TDE      (1U << 8)
1134 #define MDCR_HPME     (1U << 7)
1135 #define MDCR_TPM      (1U << 6)
1136 #define MDCR_TPMCR    (1U << 5)
1137 #define MDCR_HPMN     (0x1fU)
1138 
1139 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1140 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1141 
1142 #define CPSR_M (0x1fU)
1143 #define CPSR_T (1U << 5)
1144 #define CPSR_F (1U << 6)
1145 #define CPSR_I (1U << 7)
1146 #define CPSR_A (1U << 8)
1147 #define CPSR_E (1U << 9)
1148 #define CPSR_IT_2_7 (0xfc00U)
1149 #define CPSR_GE (0xfU << 16)
1150 #define CPSR_IL (1U << 20)
1151 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1152  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1153  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1154  * where it is live state but not accessible to the AArch32 code.
1155  */
1156 #define CPSR_RESERVED (0x7U << 21)
1157 #define CPSR_J (1U << 24)
1158 #define CPSR_IT_0_1 (3U << 25)
1159 #define CPSR_Q (1U << 27)
1160 #define CPSR_V (1U << 28)
1161 #define CPSR_C (1U << 29)
1162 #define CPSR_Z (1U << 30)
1163 #define CPSR_N (1U << 31)
1164 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1165 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1166 
1167 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1168 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1169     | CPSR_NZCV)
1170 /* Bits writable in user mode.  */
1171 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1172 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1173 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1174 /* Mask of bits which may be set by exception return copying them from SPSR */
1175 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1176 
1177 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1178 #define XPSR_EXCP 0x1ffU
1179 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1180 #define XPSR_IT_2_7 CPSR_IT_2_7
1181 #define XPSR_GE CPSR_GE
1182 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1183 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1184 #define XPSR_IT_0_1 CPSR_IT_0_1
1185 #define XPSR_Q CPSR_Q
1186 #define XPSR_V CPSR_V
1187 #define XPSR_C CPSR_C
1188 #define XPSR_Z CPSR_Z
1189 #define XPSR_N CPSR_N
1190 #define XPSR_NZCV CPSR_NZCV
1191 #define XPSR_IT CPSR_IT
1192 
1193 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1194 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1195 #define TTBCR_PD0    (1U << 4)
1196 #define TTBCR_PD1    (1U << 5)
1197 #define TTBCR_EPD0   (1U << 7)
1198 #define TTBCR_IRGN0  (3U << 8)
1199 #define TTBCR_ORGN0  (3U << 10)
1200 #define TTBCR_SH0    (3U << 12)
1201 #define TTBCR_T1SZ   (3U << 16)
1202 #define TTBCR_A1     (1U << 22)
1203 #define TTBCR_EPD1   (1U << 23)
1204 #define TTBCR_IRGN1  (3U << 24)
1205 #define TTBCR_ORGN1  (3U << 26)
1206 #define TTBCR_SH1    (1U << 28)
1207 #define TTBCR_EAE    (1U << 31)
1208 
1209 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1210  * Only these are valid when in AArch64 mode; in
1211  * AArch32 mode SPSRs are basically CPSR-format.
1212  */
1213 #define PSTATE_SP (1U)
1214 #define PSTATE_M (0xFU)
1215 #define PSTATE_nRW (1U << 4)
1216 #define PSTATE_F (1U << 6)
1217 #define PSTATE_I (1U << 7)
1218 #define PSTATE_A (1U << 8)
1219 #define PSTATE_D (1U << 9)
1220 #define PSTATE_BTYPE (3U << 10)
1221 #define PSTATE_IL (1U << 20)
1222 #define PSTATE_SS (1U << 21)
1223 #define PSTATE_V (1U << 28)
1224 #define PSTATE_C (1U << 29)
1225 #define PSTATE_Z (1U << 30)
1226 #define PSTATE_N (1U << 31)
1227 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1228 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1229 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1230 /* Mode values for AArch64 */
1231 #define PSTATE_MODE_EL3h 13
1232 #define PSTATE_MODE_EL3t 12
1233 #define PSTATE_MODE_EL2h 9
1234 #define PSTATE_MODE_EL2t 8
1235 #define PSTATE_MODE_EL1h 5
1236 #define PSTATE_MODE_EL1t 4
1237 #define PSTATE_MODE_EL0t 0
1238 
1239 /* Write a new value to v7m.exception, thus transitioning into or out
1240  * of Handler mode; this may result in a change of active stack pointer.
1241  */
1242 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1243 
1244 /* Map EL and handler into a PSTATE_MODE.  */
1245 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1246 {
1247     return (el << 2) | handler;
1248 }
1249 
1250 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1251  * interprocessing, so we don't attempt to sync with the cpsr state used by
1252  * the 32 bit decoder.
1253  */
1254 static inline uint32_t pstate_read(CPUARMState *env)
1255 {
1256     int ZF;
1257 
1258     ZF = (env->ZF == 0);
1259     return (env->NF & 0x80000000) | (ZF << 30)
1260         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1261         | env->pstate | env->daif | (env->btype << 10);
1262 }
1263 
1264 static inline void pstate_write(CPUARMState *env, uint32_t val)
1265 {
1266     env->ZF = (~val) & PSTATE_Z;
1267     env->NF = val;
1268     env->CF = (val >> 29) & 1;
1269     env->VF = (val << 3) & 0x80000000;
1270     env->daif = val & PSTATE_DAIF;
1271     env->btype = (val >> 10) & 3;
1272     env->pstate = val & ~CACHED_PSTATE_BITS;
1273 }
1274 
1275 /* Return the current CPSR value.  */
1276 uint32_t cpsr_read(CPUARMState *env);
1277 
1278 typedef enum CPSRWriteType {
1279     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1280     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1281     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1282     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1283 } CPSRWriteType;
1284 
1285 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1286 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1287                 CPSRWriteType write_type);
1288 
1289 /* Return the current xPSR value.  */
1290 static inline uint32_t xpsr_read(CPUARMState *env)
1291 {
1292     int ZF;
1293     ZF = (env->ZF == 0);
1294     return (env->NF & 0x80000000) | (ZF << 30)
1295         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1296         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1297         | ((env->condexec_bits & 0xfc) << 8)
1298         | (env->GE << 16)
1299         | env->v7m.exception;
1300 }
1301 
1302 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1303 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1304 {
1305     if (mask & XPSR_NZCV) {
1306         env->ZF = (~val) & XPSR_Z;
1307         env->NF = val;
1308         env->CF = (val >> 29) & 1;
1309         env->VF = (val << 3) & 0x80000000;
1310     }
1311     if (mask & XPSR_Q) {
1312         env->QF = ((val & XPSR_Q) != 0);
1313     }
1314     if (mask & XPSR_GE) {
1315         env->GE = (val & XPSR_GE) >> 16;
1316     }
1317     if (mask & XPSR_T) {
1318         env->thumb = ((val & XPSR_T) != 0);
1319     }
1320     if (mask & XPSR_IT_0_1) {
1321         env->condexec_bits &= ~3;
1322         env->condexec_bits |= (val >> 25) & 3;
1323     }
1324     if (mask & XPSR_IT_2_7) {
1325         env->condexec_bits &= 3;
1326         env->condexec_bits |= (val >> 8) & 0xfc;
1327     }
1328     if (mask & XPSR_EXCP) {
1329         /* Note that this only happens on exception exit */
1330         write_v7m_exception(env, val & XPSR_EXCP);
1331     }
1332 }
1333 
1334 #define HCR_VM        (1ULL << 0)
1335 #define HCR_SWIO      (1ULL << 1)
1336 #define HCR_PTW       (1ULL << 2)
1337 #define HCR_FMO       (1ULL << 3)
1338 #define HCR_IMO       (1ULL << 4)
1339 #define HCR_AMO       (1ULL << 5)
1340 #define HCR_VF        (1ULL << 6)
1341 #define HCR_VI        (1ULL << 7)
1342 #define HCR_VSE       (1ULL << 8)
1343 #define HCR_FB        (1ULL << 9)
1344 #define HCR_BSU_MASK  (3ULL << 10)
1345 #define HCR_DC        (1ULL << 12)
1346 #define HCR_TWI       (1ULL << 13)
1347 #define HCR_TWE       (1ULL << 14)
1348 #define HCR_TID0      (1ULL << 15)
1349 #define HCR_TID1      (1ULL << 16)
1350 #define HCR_TID2      (1ULL << 17)
1351 #define HCR_TID3      (1ULL << 18)
1352 #define HCR_TSC       (1ULL << 19)
1353 #define HCR_TIDCP     (1ULL << 20)
1354 #define HCR_TACR      (1ULL << 21)
1355 #define HCR_TSW       (1ULL << 22)
1356 #define HCR_TPCP      (1ULL << 23)
1357 #define HCR_TPU       (1ULL << 24)
1358 #define HCR_TTLB      (1ULL << 25)
1359 #define HCR_TVM       (1ULL << 26)
1360 #define HCR_TGE       (1ULL << 27)
1361 #define HCR_TDZ       (1ULL << 28)
1362 #define HCR_HCD       (1ULL << 29)
1363 #define HCR_TRVM      (1ULL << 30)
1364 #define HCR_RW        (1ULL << 31)
1365 #define HCR_CD        (1ULL << 32)
1366 #define HCR_ID        (1ULL << 33)
1367 #define HCR_E2H       (1ULL << 34)
1368 #define HCR_TLOR      (1ULL << 35)
1369 #define HCR_TERR      (1ULL << 36)
1370 #define HCR_TEA       (1ULL << 37)
1371 #define HCR_MIOCNCE   (1ULL << 38)
1372 #define HCR_APK       (1ULL << 40)
1373 #define HCR_API       (1ULL << 41)
1374 #define HCR_NV        (1ULL << 42)
1375 #define HCR_NV1       (1ULL << 43)
1376 #define HCR_AT        (1ULL << 44)
1377 #define HCR_NV2       (1ULL << 45)
1378 #define HCR_FWB       (1ULL << 46)
1379 #define HCR_FIEN      (1ULL << 47)
1380 #define HCR_TID4      (1ULL << 49)
1381 #define HCR_TICAB     (1ULL << 50)
1382 #define HCR_TOCU      (1ULL << 52)
1383 #define HCR_TTLBIS    (1ULL << 54)
1384 #define HCR_TTLBOS    (1ULL << 55)
1385 #define HCR_ATA       (1ULL << 56)
1386 #define HCR_DCT       (1ULL << 57)
1387 
1388 /*
1389  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1390  * HCR_MASK and then clear it again if the feature bit is not set in
1391  * hcr_write().
1392  */
1393 #define HCR_MASK      ((1ULL << 34) - 1)
1394 
1395 #define SCR_NS                (1U << 0)
1396 #define SCR_IRQ               (1U << 1)
1397 #define SCR_FIQ               (1U << 2)
1398 #define SCR_EA                (1U << 3)
1399 #define SCR_FW                (1U << 4)
1400 #define SCR_AW                (1U << 5)
1401 #define SCR_NET               (1U << 6)
1402 #define SCR_SMD               (1U << 7)
1403 #define SCR_HCE               (1U << 8)
1404 #define SCR_SIF               (1U << 9)
1405 #define SCR_RW                (1U << 10)
1406 #define SCR_ST                (1U << 11)
1407 #define SCR_TWI               (1U << 12)
1408 #define SCR_TWE               (1U << 13)
1409 #define SCR_TLOR              (1U << 14)
1410 #define SCR_TERR              (1U << 15)
1411 #define SCR_APK               (1U << 16)
1412 #define SCR_API               (1U << 17)
1413 #define SCR_EEL2              (1U << 18)
1414 #define SCR_EASE              (1U << 19)
1415 #define SCR_NMEA              (1U << 20)
1416 #define SCR_FIEN              (1U << 21)
1417 #define SCR_ENSCXT            (1U << 25)
1418 #define SCR_ATA               (1U << 26)
1419 
1420 /* Return the current FPSCR value.  */
1421 uint32_t vfp_get_fpscr(CPUARMState *env);
1422 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1423 
1424 /* FPCR, Floating Point Control Register
1425  * FPSR, Floating Poiht Status Register
1426  *
1427  * For A64 the FPSCR is split into two logically distinct registers,
1428  * FPCR and FPSR. However since they still use non-overlapping bits
1429  * we store the underlying state in fpscr and just mask on read/write.
1430  */
1431 #define FPSR_MASK 0xf800009f
1432 #define FPCR_MASK 0x07ff9f00
1433 
1434 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1435 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1436 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1437 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1438 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1439 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1440 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1441 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1442 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1443 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1444 
1445 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1446 {
1447     return vfp_get_fpscr(env) & FPSR_MASK;
1448 }
1449 
1450 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1451 {
1452     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1453     vfp_set_fpscr(env, new_fpscr);
1454 }
1455 
1456 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1457 {
1458     return vfp_get_fpscr(env) & FPCR_MASK;
1459 }
1460 
1461 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1462 {
1463     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1464     vfp_set_fpscr(env, new_fpscr);
1465 }
1466 
1467 enum arm_cpu_mode {
1468   ARM_CPU_MODE_USR = 0x10,
1469   ARM_CPU_MODE_FIQ = 0x11,
1470   ARM_CPU_MODE_IRQ = 0x12,
1471   ARM_CPU_MODE_SVC = 0x13,
1472   ARM_CPU_MODE_MON = 0x16,
1473   ARM_CPU_MODE_ABT = 0x17,
1474   ARM_CPU_MODE_HYP = 0x1a,
1475   ARM_CPU_MODE_UND = 0x1b,
1476   ARM_CPU_MODE_SYS = 0x1f
1477 };
1478 
1479 /* VFP system registers.  */
1480 #define ARM_VFP_FPSID   0
1481 #define ARM_VFP_FPSCR   1
1482 #define ARM_VFP_MVFR2   5
1483 #define ARM_VFP_MVFR1   6
1484 #define ARM_VFP_MVFR0   7
1485 #define ARM_VFP_FPEXC   8
1486 #define ARM_VFP_FPINST  9
1487 #define ARM_VFP_FPINST2 10
1488 
1489 /* iwMMXt coprocessor control registers.  */
1490 #define ARM_IWMMXT_wCID  0
1491 #define ARM_IWMMXT_wCon  1
1492 #define ARM_IWMMXT_wCSSF 2
1493 #define ARM_IWMMXT_wCASF 3
1494 #define ARM_IWMMXT_wCGR0 8
1495 #define ARM_IWMMXT_wCGR1 9
1496 #define ARM_IWMMXT_wCGR2 10
1497 #define ARM_IWMMXT_wCGR3 11
1498 
1499 /* V7M CCR bits */
1500 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1501 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1502 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1503 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1504 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1505 FIELD(V7M_CCR, STKALIGN, 9, 1)
1506 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1507 FIELD(V7M_CCR, DC, 16, 1)
1508 FIELD(V7M_CCR, IC, 17, 1)
1509 FIELD(V7M_CCR, BP, 18, 1)
1510 
1511 /* V7M SCR bits */
1512 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1513 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1514 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1515 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1516 
1517 /* V7M AIRCR bits */
1518 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1519 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1520 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1521 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1522 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1523 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1524 FIELD(V7M_AIRCR, PRIS, 14, 1)
1525 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1526 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1527 
1528 /* V7M CFSR bits for MMFSR */
1529 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1530 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1531 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1532 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1533 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1534 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1535 
1536 /* V7M CFSR bits for BFSR */
1537 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1538 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1539 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1540 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1541 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1542 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1543 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1544 
1545 /* V7M CFSR bits for UFSR */
1546 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1547 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1548 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1549 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1550 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1551 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1552 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1553 
1554 /* V7M CFSR bit masks covering all of the subregister bits */
1555 FIELD(V7M_CFSR, MMFSR, 0, 8)
1556 FIELD(V7M_CFSR, BFSR, 8, 8)
1557 FIELD(V7M_CFSR, UFSR, 16, 16)
1558 
1559 /* V7M HFSR bits */
1560 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1561 FIELD(V7M_HFSR, FORCED, 30, 1)
1562 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1563 
1564 /* V7M DFSR bits */
1565 FIELD(V7M_DFSR, HALTED, 0, 1)
1566 FIELD(V7M_DFSR, BKPT, 1, 1)
1567 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1568 FIELD(V7M_DFSR, VCATCH, 3, 1)
1569 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1570 
1571 /* V7M SFSR bits */
1572 FIELD(V7M_SFSR, INVEP, 0, 1)
1573 FIELD(V7M_SFSR, INVIS, 1, 1)
1574 FIELD(V7M_SFSR, INVER, 2, 1)
1575 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1576 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1577 FIELD(V7M_SFSR, LSPERR, 5, 1)
1578 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1579 FIELD(V7M_SFSR, LSERR, 7, 1)
1580 
1581 /* v7M MPU_CTRL bits */
1582 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1583 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1584 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1585 
1586 /* v7M CLIDR bits */
1587 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1588 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1589 FIELD(V7M_CLIDR, LOC, 24, 3)
1590 FIELD(V7M_CLIDR, LOUU, 27, 3)
1591 FIELD(V7M_CLIDR, ICB, 30, 2)
1592 
1593 FIELD(V7M_CSSELR, IND, 0, 1)
1594 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1595 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1596  * define a mask for this and check that it doesn't permit running off
1597  * the end of the array.
1598  */
1599 FIELD(V7M_CSSELR, INDEX, 0, 4)
1600 
1601 /* v7M FPCCR bits */
1602 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1603 FIELD(V7M_FPCCR, USER, 1, 1)
1604 FIELD(V7M_FPCCR, S, 2, 1)
1605 FIELD(V7M_FPCCR, THREAD, 3, 1)
1606 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1607 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1608 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1609 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1610 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1611 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1612 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1613 FIELD(V7M_FPCCR, RES0, 11, 15)
1614 FIELD(V7M_FPCCR, TS, 26, 1)
1615 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1616 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1617 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1618 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1619 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1620 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1621 #define R_V7M_FPCCR_BANKED_MASK                 \
1622     (R_V7M_FPCCR_LSPACT_MASK |                  \
1623      R_V7M_FPCCR_USER_MASK |                    \
1624      R_V7M_FPCCR_THREAD_MASK |                  \
1625      R_V7M_FPCCR_MMRDY_MASK |                   \
1626      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1627      R_V7M_FPCCR_UFRDY_MASK |                   \
1628      R_V7M_FPCCR_ASPEN_MASK)
1629 
1630 /*
1631  * System register ID fields.
1632  */
1633 FIELD(MIDR_EL1, REVISION, 0, 4)
1634 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1635 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1636 FIELD(MIDR_EL1, VARIANT, 20, 4)
1637 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1638 
1639 FIELD(ID_ISAR0, SWAP, 0, 4)
1640 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1641 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1642 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1643 FIELD(ID_ISAR0, COPROC, 16, 4)
1644 FIELD(ID_ISAR0, DEBUG, 20, 4)
1645 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1646 
1647 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1648 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1649 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1650 FIELD(ID_ISAR1, EXTEND, 12, 4)
1651 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1652 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1653 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1654 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1655 
1656 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1657 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1658 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1659 FIELD(ID_ISAR2, MULT, 12, 4)
1660 FIELD(ID_ISAR2, MULTS, 16, 4)
1661 FIELD(ID_ISAR2, MULTU, 20, 4)
1662 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1663 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1664 
1665 FIELD(ID_ISAR3, SATURATE, 0, 4)
1666 FIELD(ID_ISAR3, SIMD, 4, 4)
1667 FIELD(ID_ISAR3, SVC, 8, 4)
1668 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1669 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1670 FIELD(ID_ISAR3, T32COPY, 20, 4)
1671 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1672 FIELD(ID_ISAR3, T32EE, 28, 4)
1673 
1674 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1675 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1676 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1677 FIELD(ID_ISAR4, SMC, 12, 4)
1678 FIELD(ID_ISAR4, BARRIER, 16, 4)
1679 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1680 FIELD(ID_ISAR4, PSR_M, 24, 4)
1681 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1682 
1683 FIELD(ID_ISAR5, SEVL, 0, 4)
1684 FIELD(ID_ISAR5, AES, 4, 4)
1685 FIELD(ID_ISAR5, SHA1, 8, 4)
1686 FIELD(ID_ISAR5, SHA2, 12, 4)
1687 FIELD(ID_ISAR5, CRC32, 16, 4)
1688 FIELD(ID_ISAR5, RDM, 24, 4)
1689 FIELD(ID_ISAR5, VCMA, 28, 4)
1690 
1691 FIELD(ID_ISAR6, JSCVT, 0, 4)
1692 FIELD(ID_ISAR6, DP, 4, 4)
1693 FIELD(ID_ISAR6, FHM, 8, 4)
1694 FIELD(ID_ISAR6, SB, 12, 4)
1695 FIELD(ID_ISAR6, SPECRES, 16, 4)
1696 
1697 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1698 FIELD(ID_MMFR4, AC2, 4, 4)
1699 FIELD(ID_MMFR4, XNX, 8, 4)
1700 FIELD(ID_MMFR4, CNP, 12, 4)
1701 FIELD(ID_MMFR4, HPDS, 16, 4)
1702 FIELD(ID_MMFR4, LSM, 20, 4)
1703 FIELD(ID_MMFR4, CCIDX, 24, 4)
1704 FIELD(ID_MMFR4, EVT, 28, 4)
1705 
1706 FIELD(ID_AA64ISAR0, AES, 4, 4)
1707 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1708 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1709 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1710 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1711 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1712 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1713 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1714 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1715 FIELD(ID_AA64ISAR0, DP, 44, 4)
1716 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1717 FIELD(ID_AA64ISAR0, TS, 52, 4)
1718 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1719 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1720 
1721 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1722 FIELD(ID_AA64ISAR1, APA, 4, 4)
1723 FIELD(ID_AA64ISAR1, API, 8, 4)
1724 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1725 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1726 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1727 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1728 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1729 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1730 FIELD(ID_AA64ISAR1, SB, 36, 4)
1731 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1732 
1733 FIELD(ID_AA64PFR0, EL0, 0, 4)
1734 FIELD(ID_AA64PFR0, EL1, 4, 4)
1735 FIELD(ID_AA64PFR0, EL2, 8, 4)
1736 FIELD(ID_AA64PFR0, EL3, 12, 4)
1737 FIELD(ID_AA64PFR0, FP, 16, 4)
1738 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1739 FIELD(ID_AA64PFR0, GIC, 24, 4)
1740 FIELD(ID_AA64PFR0, RAS, 28, 4)
1741 FIELD(ID_AA64PFR0, SVE, 32, 4)
1742 
1743 FIELD(ID_AA64PFR1, BT, 0, 4)
1744 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1745 FIELD(ID_AA64PFR1, MTE, 8, 4)
1746 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1747 
1748 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1749 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1750 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1751 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1752 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1753 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1754 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1755 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1756 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1757 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1758 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1759 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1760 
1761 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1762 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1763 FIELD(ID_AA64MMFR1, VH, 8, 4)
1764 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1765 FIELD(ID_AA64MMFR1, LO, 16, 4)
1766 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1767 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1768 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1769 
1770 FIELD(ID_DFR0, COPDBG, 0, 4)
1771 FIELD(ID_DFR0, COPSDBG, 4, 4)
1772 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1773 FIELD(ID_DFR0, COPTRC, 12, 4)
1774 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1775 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1776 FIELD(ID_DFR0, PERFMON, 24, 4)
1777 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1778 
1779 FIELD(MVFR0, SIMDREG, 0, 4)
1780 FIELD(MVFR0, FPSP, 4, 4)
1781 FIELD(MVFR0, FPDP, 8, 4)
1782 FIELD(MVFR0, FPTRAP, 12, 4)
1783 FIELD(MVFR0, FPDIVIDE, 16, 4)
1784 FIELD(MVFR0, FPSQRT, 20, 4)
1785 FIELD(MVFR0, FPSHVEC, 24, 4)
1786 FIELD(MVFR0, FPROUND, 28, 4)
1787 
1788 FIELD(MVFR1, FPFTZ, 0, 4)
1789 FIELD(MVFR1, FPDNAN, 4, 4)
1790 FIELD(MVFR1, SIMDLS, 8, 4)
1791 FIELD(MVFR1, SIMDINT, 12, 4)
1792 FIELD(MVFR1, SIMDSP, 16, 4)
1793 FIELD(MVFR1, SIMDHP, 20, 4)
1794 FIELD(MVFR1, FPHP, 24, 4)
1795 FIELD(MVFR1, SIMDFMAC, 28, 4)
1796 
1797 FIELD(MVFR2, SIMDMISC, 0, 4)
1798 FIELD(MVFR2, FPMISC, 4, 4)
1799 
1800 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1801 
1802 /* If adding a feature bit which corresponds to a Linux ELF
1803  * HWCAP bit, remember to update the feature-bit-to-hwcap
1804  * mapping in linux-user/elfload.c:get_elf_hwcap().
1805  */
1806 enum arm_features {
1807     ARM_FEATURE_VFP,
1808     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1809     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1810     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1811     ARM_FEATURE_V6,
1812     ARM_FEATURE_V6K,
1813     ARM_FEATURE_V7,
1814     ARM_FEATURE_THUMB2,
1815     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1816     ARM_FEATURE_VFP3,
1817     ARM_FEATURE_NEON,
1818     ARM_FEATURE_M, /* Microcontroller profile.  */
1819     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1820     ARM_FEATURE_THUMB2EE,
1821     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1822     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1823     ARM_FEATURE_V4T,
1824     ARM_FEATURE_V5,
1825     ARM_FEATURE_STRONGARM,
1826     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1827     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1828     ARM_FEATURE_GENERIC_TIMER,
1829     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1830     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1831     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1832     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1833     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1834     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1835     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1836     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1837     ARM_FEATURE_V8,
1838     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1839     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1840     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1841     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1842     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1843     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1844     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1845     ARM_FEATURE_PMU, /* has PMU support */
1846     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1847     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1848     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1849 };
1850 
1851 static inline int arm_feature(CPUARMState *env, int feature)
1852 {
1853     return (env->features & (1ULL << feature)) != 0;
1854 }
1855 
1856 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1857 
1858 #if !defined(CONFIG_USER_ONLY)
1859 /* Return true if exception levels below EL3 are in secure state,
1860  * or would be following an exception return to that level.
1861  * Unlike arm_is_secure() (which is always a question about the
1862  * _current_ state of the CPU) this doesn't care about the current
1863  * EL or mode.
1864  */
1865 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1866 {
1867     if (arm_feature(env, ARM_FEATURE_EL3)) {
1868         return !(env->cp15.scr_el3 & SCR_NS);
1869     } else {
1870         /* If EL3 is not supported then the secure state is implementation
1871          * defined, in which case QEMU defaults to non-secure.
1872          */
1873         return false;
1874     }
1875 }
1876 
1877 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1878 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1879 {
1880     if (arm_feature(env, ARM_FEATURE_EL3)) {
1881         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1882             /* CPU currently in AArch64 state and EL3 */
1883             return true;
1884         } else if (!is_a64(env) &&
1885                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1886             /* CPU currently in AArch32 state and monitor mode */
1887             return true;
1888         }
1889     }
1890     return false;
1891 }
1892 
1893 /* Return true if the processor is in secure state */
1894 static inline bool arm_is_secure(CPUARMState *env)
1895 {
1896     if (arm_is_el3_or_mon(env)) {
1897         return true;
1898     }
1899     return arm_is_secure_below_el3(env);
1900 }
1901 
1902 #else
1903 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1904 {
1905     return false;
1906 }
1907 
1908 static inline bool arm_is_secure(CPUARMState *env)
1909 {
1910     return false;
1911 }
1912 #endif
1913 
1914 /**
1915  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1916  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1917  * "for all purposes other than a direct read or write access of HCR_EL2."
1918  * Not included here is HCR_RW.
1919  */
1920 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1921 
1922 /* Return true if the specified exception level is running in AArch64 state. */
1923 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1924 {
1925     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1926      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1927      */
1928     assert(el >= 1 && el <= 3);
1929     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1930 
1931     /* The highest exception level is always at the maximum supported
1932      * register width, and then lower levels have a register width controlled
1933      * by bits in the SCR or HCR registers.
1934      */
1935     if (el == 3) {
1936         return aa64;
1937     }
1938 
1939     if (arm_feature(env, ARM_FEATURE_EL3)) {
1940         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1941     }
1942 
1943     if (el == 2) {
1944         return aa64;
1945     }
1946 
1947     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1948         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1949     }
1950 
1951     return aa64;
1952 }
1953 
1954 /* Function for determing whether guest cp register reads and writes should
1955  * access the secure or non-secure bank of a cp register.  When EL3 is
1956  * operating in AArch32 state, the NS-bit determines whether the secure
1957  * instance of a cp register should be used. When EL3 is AArch64 (or if
1958  * it doesn't exist at all) then there is no register banking, and all
1959  * accesses are to the non-secure version.
1960  */
1961 static inline bool access_secure_reg(CPUARMState *env)
1962 {
1963     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1964                 !arm_el_is_aa64(env, 3) &&
1965                 !(env->cp15.scr_el3 & SCR_NS));
1966 
1967     return ret;
1968 }
1969 
1970 /* Macros for accessing a specified CP register bank */
1971 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1972     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1973 
1974 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1975     do {                                                \
1976         if (_secure) {                                   \
1977             (_env)->cp15._regname##_s = (_val);            \
1978         } else {                                        \
1979             (_env)->cp15._regname##_ns = (_val);           \
1980         }                                               \
1981     } while (0)
1982 
1983 /* Macros for automatically accessing a specific CP register bank depending on
1984  * the current secure state of the system.  These macros are not intended for
1985  * supporting instruction translation reads/writes as these are dependent
1986  * solely on the SCR.NS bit and not the mode.
1987  */
1988 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1989     A32_BANKED_REG_GET((_env), _regname,                \
1990                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1991 
1992 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1993     A32_BANKED_REG_SET((_env), _regname,                                    \
1994                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1995                        (_val))
1996 
1997 void arm_cpu_list(void);
1998 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1999                                  uint32_t cur_el, bool secure);
2000 
2001 /* Interface between CPU and Interrupt controller.  */
2002 #ifndef CONFIG_USER_ONLY
2003 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2004 #else
2005 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2006 {
2007     return true;
2008 }
2009 #endif
2010 /**
2011  * armv7m_nvic_set_pending: mark the specified exception as pending
2012  * @opaque: the NVIC
2013  * @irq: the exception number to mark pending
2014  * @secure: false for non-banked exceptions or for the nonsecure
2015  * version of a banked exception, true for the secure version of a banked
2016  * exception.
2017  *
2018  * Marks the specified exception as pending. Note that we will assert()
2019  * if @secure is true and @irq does not specify one of the fixed set
2020  * of architecturally banked exceptions.
2021  */
2022 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2023 /**
2024  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2025  * @opaque: the NVIC
2026  * @irq: the exception number to mark pending
2027  * @secure: false for non-banked exceptions or for the nonsecure
2028  * version of a banked exception, true for the secure version of a banked
2029  * exception.
2030  *
2031  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2032  * exceptions (exceptions generated in the course of trying to take
2033  * a different exception).
2034  */
2035 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2036 /**
2037  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2038  * @opaque: the NVIC
2039  * @irq: the exception number to mark pending
2040  * @secure: false for non-banked exceptions or for the nonsecure
2041  * version of a banked exception, true for the secure version of a banked
2042  * exception.
2043  *
2044  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2045  * generated in the course of lazy stacking of FP registers.
2046  */
2047 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2048 /**
2049  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2050  *    exception, and whether it targets Secure state
2051  * @opaque: the NVIC
2052  * @pirq: set to pending exception number
2053  * @ptargets_secure: set to whether pending exception targets Secure
2054  *
2055  * This function writes the number of the highest priority pending
2056  * exception (the one which would be made active by
2057  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2058  * to true if the current highest priority pending exception should
2059  * be taken to Secure state, false for NS.
2060  */
2061 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2062                                       bool *ptargets_secure);
2063 /**
2064  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2065  * @opaque: the NVIC
2066  *
2067  * Move the current highest priority pending exception from the pending
2068  * state to the active state, and update v7m.exception to indicate that
2069  * it is the exception currently being handled.
2070  */
2071 void armv7m_nvic_acknowledge_irq(void *opaque);
2072 /**
2073  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2074  * @opaque: the NVIC
2075  * @irq: the exception number to complete
2076  * @secure: true if this exception was secure
2077  *
2078  * Returns: -1 if the irq was not active
2079  *           1 if completing this irq brought us back to base (no active irqs)
2080  *           0 if there is still an irq active after this one was completed
2081  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2082  */
2083 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2084 /**
2085  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2086  * @opaque: the NVIC
2087  * @irq: the exception number to mark pending
2088  * @secure: false for non-banked exceptions or for the nonsecure
2089  * version of a banked exception, true for the secure version of a banked
2090  * exception.
2091  *
2092  * Return whether an exception is "ready", i.e. whether the exception is
2093  * enabled and is configured at a priority which would allow it to
2094  * interrupt the current execution priority. This controls whether the
2095  * RDY bit for it in the FPCCR is set.
2096  */
2097 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2098 /**
2099  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2100  * @opaque: the NVIC
2101  *
2102  * Returns: the raw execution priority as defined by the v8M architecture.
2103  * This is the execution priority minus the effects of AIRCR.PRIS,
2104  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2105  * (v8M ARM ARM I_PKLD.)
2106  */
2107 int armv7m_nvic_raw_execution_priority(void *opaque);
2108 /**
2109  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2110  * priority is negative for the specified security state.
2111  * @opaque: the NVIC
2112  * @secure: the security state to test
2113  * This corresponds to the pseudocode IsReqExecPriNeg().
2114  */
2115 #ifndef CONFIG_USER_ONLY
2116 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2117 #else
2118 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2119 {
2120     return false;
2121 }
2122 #endif
2123 
2124 /* Interface for defining coprocessor registers.
2125  * Registers are defined in tables of arm_cp_reginfo structs
2126  * which are passed to define_arm_cp_regs().
2127  */
2128 
2129 /* When looking up a coprocessor register we look for it
2130  * via an integer which encodes all of:
2131  *  coprocessor number
2132  *  Crn, Crm, opc1, opc2 fields
2133  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2134  *    or via MRRC/MCRR?)
2135  *  non-secure/secure bank (AArch32 only)
2136  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2137  * (In this case crn and opc2 should be zero.)
2138  * For AArch64, there is no 32/64 bit size distinction;
2139  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2140  * and 4 bit CRn and CRm. The encoding patterns are chosen
2141  * to be easy to convert to and from the KVM encodings, and also
2142  * so that the hashtable can contain both AArch32 and AArch64
2143  * registers (to allow for interprocessing where we might run
2144  * 32 bit code on a 64 bit core).
2145  */
2146 /* This bit is private to our hashtable cpreg; in KVM register
2147  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2148  * in the upper bits of the 64 bit ID.
2149  */
2150 #define CP_REG_AA64_SHIFT 28
2151 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2152 
2153 /* To enable banking of coprocessor registers depending on ns-bit we
2154  * add a bit to distinguish between secure and non-secure cpregs in the
2155  * hashtable.
2156  */
2157 #define CP_REG_NS_SHIFT 29
2158 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2159 
2160 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2161     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2162      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2163 
2164 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2165     (CP_REG_AA64_MASK |                                 \
2166      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2167      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2168      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2169      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2170      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2171      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2172 
2173 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2174  * version used as a key for the coprocessor register hashtable
2175  */
2176 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2177 {
2178     uint32_t cpregid = kvmid;
2179     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2180         cpregid |= CP_REG_AA64_MASK;
2181     } else {
2182         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2183             cpregid |= (1 << 15);
2184         }
2185 
2186         /* KVM is always non-secure so add the NS flag on AArch32 register
2187          * entries.
2188          */
2189          cpregid |= 1 << CP_REG_NS_SHIFT;
2190     }
2191     return cpregid;
2192 }
2193 
2194 /* Convert a truncated 32 bit hashtable key into the full
2195  * 64 bit KVM register ID.
2196  */
2197 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2198 {
2199     uint64_t kvmid;
2200 
2201     if (cpregid & CP_REG_AA64_MASK) {
2202         kvmid = cpregid & ~CP_REG_AA64_MASK;
2203         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2204     } else {
2205         kvmid = cpregid & ~(1 << 15);
2206         if (cpregid & (1 << 15)) {
2207             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2208         } else {
2209             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2210         }
2211     }
2212     return kvmid;
2213 }
2214 
2215 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2216  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2217  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2218  * TCG can assume the value to be constant (ie load at translate time)
2219  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2220  * indicates that the TB should not be ended after a write to this register
2221  * (the default is that the TB ends after cp writes). OVERRIDE permits
2222  * a register definition to override a previous definition for the
2223  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2224  * old must have the OVERRIDE bit set.
2225  * ALIAS indicates that this register is an alias view of some underlying
2226  * state which is also visible via another register, and that the other
2227  * register is handling migration and reset; registers marked ALIAS will not be
2228  * migrated but may have their state set by syncing of register state from KVM.
2229  * NO_RAW indicates that this register has no underlying state and does not
2230  * support raw access for state saving/loading; it will not be used for either
2231  * migration or KVM state synchronization. (Typically this is for "registers"
2232  * which are actually used as instructions for cache maintenance and so on.)
2233  * IO indicates that this register does I/O and therefore its accesses
2234  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2235  * registers which implement clocks or timers require this.
2236  * RAISES_EXC is for when the read or write hook might raise an exception;
2237  * the generated code will synchronize the CPU state before calling the hook
2238  * so that it is safe for the hook to call raise_exception().
2239  */
2240 #define ARM_CP_SPECIAL           0x0001
2241 #define ARM_CP_CONST             0x0002
2242 #define ARM_CP_64BIT             0x0004
2243 #define ARM_CP_SUPPRESS_TB_END   0x0008
2244 #define ARM_CP_OVERRIDE          0x0010
2245 #define ARM_CP_ALIAS             0x0020
2246 #define ARM_CP_IO                0x0040
2247 #define ARM_CP_NO_RAW            0x0080
2248 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2249 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2250 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2251 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2252 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2253 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2254 #define ARM_CP_FPU               0x1000
2255 #define ARM_CP_SVE               0x2000
2256 #define ARM_CP_NO_GDB            0x4000
2257 #define ARM_CP_RAISES_EXC        0x8000
2258 /* Used only as a terminator for ARMCPRegInfo lists */
2259 #define ARM_CP_SENTINEL          0xffff
2260 /* Mask of only the flag bits in a type field */
2261 #define ARM_CP_FLAG_MASK         0xf0ff
2262 
2263 /* Valid values for ARMCPRegInfo state field, indicating which of
2264  * the AArch32 and AArch64 execution states this register is visible in.
2265  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2266  * If the reginfo is declared to be visible in both states then a second
2267  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2268  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2269  * Note that we rely on the values of these enums as we iterate through
2270  * the various states in some places.
2271  */
2272 enum {
2273     ARM_CP_STATE_AA32 = 0,
2274     ARM_CP_STATE_AA64 = 1,
2275     ARM_CP_STATE_BOTH = 2,
2276 };
2277 
2278 /* ARM CP register secure state flags.  These flags identify security state
2279  * attributes for a given CP register entry.
2280  * The existence of both or neither secure and non-secure flags indicates that
2281  * the register has both a secure and non-secure hash entry.  A single one of
2282  * these flags causes the register to only be hashed for the specified
2283  * security state.
2284  * Although definitions may have any combination of the S/NS bits, each
2285  * registered entry will only have one to identify whether the entry is secure
2286  * or non-secure.
2287  */
2288 enum {
2289     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2290     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2291 };
2292 
2293 /* Return true if cptype is a valid type field. This is used to try to
2294  * catch errors where the sentinel has been accidentally left off the end
2295  * of a list of registers.
2296  */
2297 static inline bool cptype_valid(int cptype)
2298 {
2299     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2300         || ((cptype & ARM_CP_SPECIAL) &&
2301             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2302 }
2303 
2304 /* Access rights:
2305  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2306  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2307  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2308  * (ie any of the privileged modes in Secure state, or Monitor mode).
2309  * If a register is accessible in one privilege level it's always accessible
2310  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2311  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2312  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2313  * terminology a little and call this PL3.
2314  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2315  * with the ELx exception levels.
2316  *
2317  * If access permissions for a register are more complex than can be
2318  * described with these bits, then use a laxer set of restrictions, and
2319  * do the more restrictive/complex check inside a helper function.
2320  */
2321 #define PL3_R 0x80
2322 #define PL3_W 0x40
2323 #define PL2_R (0x20 | PL3_R)
2324 #define PL2_W (0x10 | PL3_W)
2325 #define PL1_R (0x08 | PL2_R)
2326 #define PL1_W (0x04 | PL2_W)
2327 #define PL0_R (0x02 | PL1_R)
2328 #define PL0_W (0x01 | PL1_W)
2329 
2330 /*
2331  * For user-mode some registers are accessible to EL0 via a kernel
2332  * trap-and-emulate ABI. In this case we define the read permissions
2333  * as actually being PL0_R. However some bits of any given register
2334  * may still be masked.
2335  */
2336 #ifdef CONFIG_USER_ONLY
2337 #define PL0U_R PL0_R
2338 #else
2339 #define PL0U_R PL1_R
2340 #endif
2341 
2342 #define PL3_RW (PL3_R | PL3_W)
2343 #define PL2_RW (PL2_R | PL2_W)
2344 #define PL1_RW (PL1_R | PL1_W)
2345 #define PL0_RW (PL0_R | PL0_W)
2346 
2347 /* Return the highest implemented Exception Level */
2348 static inline int arm_highest_el(CPUARMState *env)
2349 {
2350     if (arm_feature(env, ARM_FEATURE_EL3)) {
2351         return 3;
2352     }
2353     if (arm_feature(env, ARM_FEATURE_EL2)) {
2354         return 2;
2355     }
2356     return 1;
2357 }
2358 
2359 /* Return true if a v7M CPU is in Handler mode */
2360 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2361 {
2362     return env->v7m.exception != 0;
2363 }
2364 
2365 /* Return the current Exception Level (as per ARMv8; note that this differs
2366  * from the ARMv7 Privilege Level).
2367  */
2368 static inline int arm_current_el(CPUARMState *env)
2369 {
2370     if (arm_feature(env, ARM_FEATURE_M)) {
2371         return arm_v7m_is_handler_mode(env) ||
2372             !(env->v7m.control[env->v7m.secure] & 1);
2373     }
2374 
2375     if (is_a64(env)) {
2376         return extract32(env->pstate, 2, 2);
2377     }
2378 
2379     switch (env->uncached_cpsr & 0x1f) {
2380     case ARM_CPU_MODE_USR:
2381         return 0;
2382     case ARM_CPU_MODE_HYP:
2383         return 2;
2384     case ARM_CPU_MODE_MON:
2385         return 3;
2386     default:
2387         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2388             /* If EL3 is 32-bit then all secure privileged modes run in
2389              * EL3
2390              */
2391             return 3;
2392         }
2393 
2394         return 1;
2395     }
2396 }
2397 
2398 typedef struct ARMCPRegInfo ARMCPRegInfo;
2399 
2400 typedef enum CPAccessResult {
2401     /* Access is permitted */
2402     CP_ACCESS_OK = 0,
2403     /* Access fails due to a configurable trap or enable which would
2404      * result in a categorized exception syndrome giving information about
2405      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2406      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2407      * PL1 if in EL0, otherwise to the current EL).
2408      */
2409     CP_ACCESS_TRAP = 1,
2410     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2411      * Note that this is not a catch-all case -- the set of cases which may
2412      * result in this failure is specifically defined by the architecture.
2413      */
2414     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2415     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2416     CP_ACCESS_TRAP_EL2 = 3,
2417     CP_ACCESS_TRAP_EL3 = 4,
2418     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2419     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2420     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2421     /* Access fails and results in an exception syndrome for an FP access,
2422      * trapped directly to EL2 or EL3
2423      */
2424     CP_ACCESS_TRAP_FP_EL2 = 7,
2425     CP_ACCESS_TRAP_FP_EL3 = 8,
2426 } CPAccessResult;
2427 
2428 /* Access functions for coprocessor registers. These cannot fail and
2429  * may not raise exceptions.
2430  */
2431 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2432 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2433                        uint64_t value);
2434 /* Access permission check functions for coprocessor registers. */
2435 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2436                                   const ARMCPRegInfo *opaque,
2437                                   bool isread);
2438 /* Hook function for register reset */
2439 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2440 
2441 #define CP_ANY 0xff
2442 
2443 /* Definition of an ARM coprocessor register */
2444 struct ARMCPRegInfo {
2445     /* Name of register (useful mainly for debugging, need not be unique) */
2446     const char *name;
2447     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2448      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2449      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2450      * will be decoded to this register. The register read and write
2451      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2452      * used by the program, so it is possible to register a wildcard and
2453      * then behave differently on read/write if necessary.
2454      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2455      * must both be zero.
2456      * For AArch64-visible registers, opc0 is also used.
2457      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2458      * way to distinguish (for KVM's benefit) guest-visible system registers
2459      * from demuxed ones provided to preserve the "no side effects on
2460      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2461      * visible (to match KVM's encoding); cp==0 will be converted to
2462      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2463      */
2464     uint8_t cp;
2465     uint8_t crn;
2466     uint8_t crm;
2467     uint8_t opc0;
2468     uint8_t opc1;
2469     uint8_t opc2;
2470     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2471     int state;
2472     /* Register type: ARM_CP_* bits/values */
2473     int type;
2474     /* Access rights: PL*_[RW] */
2475     int access;
2476     /* Security state: ARM_CP_SECSTATE_* bits/values */
2477     int secure;
2478     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2479      * this register was defined: can be used to hand data through to the
2480      * register read/write functions, since they are passed the ARMCPRegInfo*.
2481      */
2482     void *opaque;
2483     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2484      * fieldoffset is non-zero, the reset value of the register.
2485      */
2486     uint64_t resetvalue;
2487     /* Offset of the field in CPUARMState for this register.
2488      *
2489      * This is not needed if either:
2490      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2491      *  2. both readfn and writefn are specified
2492      */
2493     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2494 
2495     /* Offsets of the secure and non-secure fields in CPUARMState for the
2496      * register if it is banked.  These fields are only used during the static
2497      * registration of a register.  During hashing the bank associated
2498      * with a given security state is copied to fieldoffset which is used from
2499      * there on out.
2500      *
2501      * It is expected that register definitions use either fieldoffset or
2502      * bank_fieldoffsets in the definition but not both.  It is also expected
2503      * that both bank offsets are set when defining a banked register.  This
2504      * use indicates that a register is banked.
2505      */
2506     ptrdiff_t bank_fieldoffsets[2];
2507 
2508     /* Function for making any access checks for this register in addition to
2509      * those specified by the 'access' permissions bits. If NULL, no extra
2510      * checks required. The access check is performed at runtime, not at
2511      * translate time.
2512      */
2513     CPAccessFn *accessfn;
2514     /* Function for handling reads of this register. If NULL, then reads
2515      * will be done by loading from the offset into CPUARMState specified
2516      * by fieldoffset.
2517      */
2518     CPReadFn *readfn;
2519     /* Function for handling writes of this register. If NULL, then writes
2520      * will be done by writing to the offset into CPUARMState specified
2521      * by fieldoffset.
2522      */
2523     CPWriteFn *writefn;
2524     /* Function for doing a "raw" read; used when we need to copy
2525      * coprocessor state to the kernel for KVM or out for
2526      * migration. This only needs to be provided if there is also a
2527      * readfn and it has side effects (for instance clear-on-read bits).
2528      */
2529     CPReadFn *raw_readfn;
2530     /* Function for doing a "raw" write; used when we need to copy KVM
2531      * kernel coprocessor state into userspace, or for inbound
2532      * migration. This only needs to be provided if there is also a
2533      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2534      * or similar behaviour.
2535      */
2536     CPWriteFn *raw_writefn;
2537     /* Function for resetting the register. If NULL, then reset will be done
2538      * by writing resetvalue to the field specified in fieldoffset. If
2539      * fieldoffset is 0 then no reset will be done.
2540      */
2541     CPResetFn *resetfn;
2542 };
2543 
2544 /* Macros which are lvalues for the field in CPUARMState for the
2545  * ARMCPRegInfo *ri.
2546  */
2547 #define CPREG_FIELD32(env, ri) \
2548     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2549 #define CPREG_FIELD64(env, ri) \
2550     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2551 
2552 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2553 
2554 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2555                                     const ARMCPRegInfo *regs, void *opaque);
2556 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2557                                        const ARMCPRegInfo *regs, void *opaque);
2558 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2559 {
2560     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2561 }
2562 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2563 {
2564     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2565 }
2566 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2567 
2568 /*
2569  * Definition of an ARM co-processor register as viewed from
2570  * userspace. This is used for presenting sanitised versions of
2571  * registers to userspace when emulating the Linux AArch64 CPU
2572  * ID/feature ABI (advertised as HWCAP_CPUID).
2573  */
2574 typedef struct ARMCPRegUserSpaceInfo {
2575     /* Name of register */
2576     const char *name;
2577 
2578     /* Is the name actually a glob pattern */
2579     bool is_glob;
2580 
2581     /* Only some bits are exported to user space */
2582     uint64_t exported_bits;
2583 
2584     /* Fixed bits are applied after the mask */
2585     uint64_t fixed_bits;
2586 } ARMCPRegUserSpaceInfo;
2587 
2588 #define REGUSERINFO_SENTINEL { .name = NULL }
2589 
2590 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2591 
2592 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2593 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2594                          uint64_t value);
2595 /* CPReadFn that can be used for read-as-zero behaviour */
2596 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2597 
2598 /* CPResetFn that does nothing, for use if no reset is required even
2599  * if fieldoffset is non zero.
2600  */
2601 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2602 
2603 /* Return true if this reginfo struct's field in the cpu state struct
2604  * is 64 bits wide.
2605  */
2606 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2607 {
2608     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2609 }
2610 
2611 static inline bool cp_access_ok(int current_el,
2612                                 const ARMCPRegInfo *ri, int isread)
2613 {
2614     return (ri->access >> ((current_el * 2) + isread)) & 1;
2615 }
2616 
2617 /* Raw read of a coprocessor register (as needed for migration, etc) */
2618 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2619 
2620 /**
2621  * write_list_to_cpustate
2622  * @cpu: ARMCPU
2623  *
2624  * For each register listed in the ARMCPU cpreg_indexes list, write
2625  * its value from the cpreg_values list into the ARMCPUState structure.
2626  * This updates TCG's working data structures from KVM data or
2627  * from incoming migration state.
2628  *
2629  * Returns: true if all register values were updated correctly,
2630  * false if some register was unknown or could not be written.
2631  * Note that we do not stop early on failure -- we will attempt
2632  * writing all registers in the list.
2633  */
2634 bool write_list_to_cpustate(ARMCPU *cpu);
2635 
2636 /**
2637  * write_cpustate_to_list:
2638  * @cpu: ARMCPU
2639  * @kvm_sync: true if this is for syncing back to KVM
2640  *
2641  * For each register listed in the ARMCPU cpreg_indexes list, write
2642  * its value from the ARMCPUState structure into the cpreg_values list.
2643  * This is used to copy info from TCG's working data structures into
2644  * KVM or for outbound migration.
2645  *
2646  * @kvm_sync is true if we are doing this in order to sync the
2647  * register state back to KVM. In this case we will only update
2648  * values in the list if the previous list->cpustate sync actually
2649  * successfully wrote the CPU state. Otherwise we will keep the value
2650  * that is in the list.
2651  *
2652  * Returns: true if all register values were read correctly,
2653  * false if some register was unknown or could not be read.
2654  * Note that we do not stop early on failure -- we will attempt
2655  * reading all registers in the list.
2656  */
2657 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2658 
2659 #define ARM_CPUID_TI915T      0x54029152
2660 #define ARM_CPUID_TI925T      0x54029252
2661 
2662 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2663                                      unsigned int target_el)
2664 {
2665     CPUARMState *env = cs->env_ptr;
2666     unsigned int cur_el = arm_current_el(env);
2667     bool secure = arm_is_secure(env);
2668     bool pstate_unmasked;
2669     int8_t unmasked = 0;
2670     uint64_t hcr_el2;
2671 
2672     /* Don't take exceptions if they target a lower EL.
2673      * This check should catch any exceptions that would not be taken but left
2674      * pending.
2675      */
2676     if (cur_el > target_el) {
2677         return false;
2678     }
2679 
2680     hcr_el2 = arm_hcr_el2_eff(env);
2681 
2682     switch (excp_idx) {
2683     case EXCP_FIQ:
2684         pstate_unmasked = !(env->daif & PSTATE_F);
2685         break;
2686 
2687     case EXCP_IRQ:
2688         pstate_unmasked = !(env->daif & PSTATE_I);
2689         break;
2690 
2691     case EXCP_VFIQ:
2692         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2693             /* VFIQs are only taken when hypervized and non-secure.  */
2694             return false;
2695         }
2696         return !(env->daif & PSTATE_F);
2697     case EXCP_VIRQ:
2698         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2699             /* VIRQs are only taken when hypervized and non-secure.  */
2700             return false;
2701         }
2702         return !(env->daif & PSTATE_I);
2703     default:
2704         g_assert_not_reached();
2705     }
2706 
2707     /* Use the target EL, current execution state and SCR/HCR settings to
2708      * determine whether the corresponding CPSR bit is used to mask the
2709      * interrupt.
2710      */
2711     if ((target_el > cur_el) && (target_el != 1)) {
2712         /* Exceptions targeting a higher EL may not be maskable */
2713         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2714             /* 64-bit masking rules are simple: exceptions to EL3
2715              * can't be masked, and exceptions to EL2 can only be
2716              * masked from Secure state. The HCR and SCR settings
2717              * don't affect the masking logic, only the interrupt routing.
2718              */
2719             if (target_el == 3 || !secure) {
2720                 unmasked = 1;
2721             }
2722         } else {
2723             /* The old 32-bit-only environment has a more complicated
2724              * masking setup. HCR and SCR bits not only affect interrupt
2725              * routing but also change the behaviour of masking.
2726              */
2727             bool hcr, scr;
2728 
2729             switch (excp_idx) {
2730             case EXCP_FIQ:
2731                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2732                  * we override the CPSR.F in determining if the exception is
2733                  * masked or not. If neither of these are set then we fall back
2734                  * to the CPSR.F setting otherwise we further assess the state
2735                  * below.
2736                  */
2737                 hcr = hcr_el2 & HCR_FMO;
2738                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2739 
2740                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2741                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2742                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2743                  * when non-secure but only when FIQs are only routed to EL3.
2744                  */
2745                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2746                 break;
2747             case EXCP_IRQ:
2748                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2749                  * we may override the CPSR.I masking when in non-secure state.
2750                  * The SCR.IRQ setting has already been taken into consideration
2751                  * when setting the target EL, so it does not have a further
2752                  * affect here.
2753                  */
2754                 hcr = hcr_el2 & HCR_IMO;
2755                 scr = false;
2756                 break;
2757             default:
2758                 g_assert_not_reached();
2759             }
2760 
2761             if ((scr || hcr) && !secure) {
2762                 unmasked = 1;
2763             }
2764         }
2765     }
2766 
2767     /* The PSTATE bits only mask the interrupt if we have not overriden the
2768      * ability above.
2769      */
2770     return unmasked || pstate_unmasked;
2771 }
2772 
2773 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2774 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2775 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2776 
2777 #define cpu_signal_handler cpu_arm_signal_handler
2778 #define cpu_list arm_cpu_list
2779 
2780 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2781  *
2782  * If EL3 is 64-bit:
2783  *  + NonSecure EL1 & 0 stage 1
2784  *  + NonSecure EL1 & 0 stage 2
2785  *  + NonSecure EL2
2786  *  + Secure EL1 & EL0
2787  *  + Secure EL3
2788  * If EL3 is 32-bit:
2789  *  + NonSecure PL1 & 0 stage 1
2790  *  + NonSecure PL1 & 0 stage 2
2791  *  + NonSecure PL2
2792  *  + Secure PL0 & PL1
2793  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2794  *
2795  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2796  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2797  *     may differ in access permissions even if the VA->PA map is the same
2798  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2799  *     translation, which means that we have one mmu_idx that deals with two
2800  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2801  *     architecturally permitted]
2802  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2803  *     handling via the TLB. The only way to do a stage 1 translation without
2804  *     the immediate stage 2 translation is via the ATS or AT system insns,
2805  *     which can be slow-pathed and always do a page table walk.
2806  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2807  *     translation regimes, because they map reasonably well to each other
2808  *     and they can't both be active at the same time.
2809  * This gives us the following list of mmu_idx values:
2810  *
2811  * NS EL0 (aka NS PL0) stage 1+2
2812  * NS EL1 (aka NS PL1) stage 1+2
2813  * NS EL2 (aka NS PL2)
2814  * S EL3 (aka S PL1)
2815  * S EL0 (aka S PL0)
2816  * S EL1 (not used if EL3 is 32 bit)
2817  * NS EL0+1 stage 2
2818  *
2819  * (The last of these is an mmu_idx because we want to be able to use the TLB
2820  * for the accesses done as part of a stage 1 page table walk, rather than
2821  * having to walk the stage 2 page table over and over.)
2822  *
2823  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2824  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2825  * NS EL2 if we ever model a Cortex-R52).
2826  *
2827  * M profile CPUs are rather different as they do not have a true MMU.
2828  * They have the following different MMU indexes:
2829  *  User
2830  *  Privileged
2831  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2832  *  Privileged, execution priority negative (ditto)
2833  * If the CPU supports the v8M Security Extension then there are also:
2834  *  Secure User
2835  *  Secure Privileged
2836  *  Secure User, execution priority negative
2837  *  Secure Privileged, execution priority negative
2838  *
2839  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2840  * are not quite the same -- different CPU types (most notably M profile
2841  * vs A/R profile) would like to use MMU indexes with different semantics,
2842  * but since we don't ever need to use all of those in a single CPU we
2843  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2844  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2845  * the same for any particular CPU.
2846  * Variables of type ARMMUIdx are always full values, and the core
2847  * index values are in variables of type 'int'.
2848  *
2849  * Our enumeration includes at the end some entries which are not "true"
2850  * mmu_idx values in that they don't have corresponding TLBs and are only
2851  * valid for doing slow path page table walks.
2852  *
2853  * The constant names here are patterned after the general style of the names
2854  * of the AT/ATS operations.
2855  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2856  * For M profile we arrange them to have a bit for priv, a bit for negpri
2857  * and a bit for secure.
2858  */
2859 #define ARM_MMU_IDX_A 0x10 /* A profile */
2860 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2861 #define ARM_MMU_IDX_M 0x40 /* M profile */
2862 
2863 /* meanings of the bits for M profile mmu idx values */
2864 #define ARM_MMU_IDX_M_PRIV 0x1
2865 #define ARM_MMU_IDX_M_NEGPRI 0x2
2866 #define ARM_MMU_IDX_M_S 0x4
2867 
2868 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2869 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2870 
2871 typedef enum ARMMMUIdx {
2872     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2873     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2874     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2875     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2876     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2877     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2878     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2879     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2880     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2881     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2882     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2883     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2884     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2885     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2886     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2887     /* Indexes below here don't have TLBs and are used only for AT system
2888      * instructions or for the first stage of an S12 page table walk.
2889      */
2890     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2891     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2892 } ARMMMUIdx;
2893 
2894 /* Bit macros for the core-mmu-index values for each index,
2895  * for use when calling tlb_flush_by_mmuidx() and friends.
2896  */
2897 typedef enum ARMMMUIdxBit {
2898     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2899     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2900     ARMMMUIdxBit_S1E2 = 1 << 2,
2901     ARMMMUIdxBit_S1E3 = 1 << 3,
2902     ARMMMUIdxBit_S1SE0 = 1 << 4,
2903     ARMMMUIdxBit_S1SE1 = 1 << 5,
2904     ARMMMUIdxBit_S2NS = 1 << 6,
2905     ARMMMUIdxBit_MUser = 1 << 0,
2906     ARMMMUIdxBit_MPriv = 1 << 1,
2907     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2908     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2909     ARMMMUIdxBit_MSUser = 1 << 4,
2910     ARMMMUIdxBit_MSPriv = 1 << 5,
2911     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2912     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2913 } ARMMMUIdxBit;
2914 
2915 #define MMU_USER_IDX 0
2916 
2917 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2918 {
2919     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2920 }
2921 
2922 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2923 {
2924     if (arm_feature(env, ARM_FEATURE_M)) {
2925         return mmu_idx | ARM_MMU_IDX_M;
2926     } else {
2927         return mmu_idx | ARM_MMU_IDX_A;
2928     }
2929 }
2930 
2931 /* Return the exception level we're running at if this is our mmu_idx */
2932 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2933 {
2934     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2935     case ARM_MMU_IDX_A:
2936         return mmu_idx & 3;
2937     case ARM_MMU_IDX_M:
2938         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2939     default:
2940         g_assert_not_reached();
2941     }
2942 }
2943 
2944 /*
2945  * Return the MMU index for a v7M CPU with all relevant information
2946  * manually specified.
2947  */
2948 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2949                               bool secstate, bool priv, bool negpri);
2950 
2951 /* Return the MMU index for a v7M CPU in the specified security and
2952  * privilege state.
2953  */
2954 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2955                                                 bool secstate, bool priv);
2956 
2957 /* Return the MMU index for a v7M CPU in the specified security state */
2958 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2959 
2960 /**
2961  * cpu_mmu_index:
2962  * @env: The cpu environment
2963  * @ifetch: True for code access, false for data access.
2964  *
2965  * Return the core mmu index for the current translation regime.
2966  * This function is used by generic TCG code paths.
2967  */
2968 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2969 
2970 /* Indexes used when registering address spaces with cpu_address_space_init */
2971 typedef enum ARMASIdx {
2972     ARMASIdx_NS = 0,
2973     ARMASIdx_S = 1,
2974 } ARMASIdx;
2975 
2976 /* Return the Exception Level targeted by debug exceptions. */
2977 static inline int arm_debug_target_el(CPUARMState *env)
2978 {
2979     bool secure = arm_is_secure(env);
2980     bool route_to_el2 = false;
2981 
2982     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2983         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2984                        env->cp15.mdcr_el2 & MDCR_TDE;
2985     }
2986 
2987     if (route_to_el2) {
2988         return 2;
2989     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2990                !arm_el_is_aa64(env, 3) && secure) {
2991         return 3;
2992     } else {
2993         return 1;
2994     }
2995 }
2996 
2997 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2998 {
2999     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3000      * CSSELR is RAZ/WI.
3001      */
3002     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3003 }
3004 
3005 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3006 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3007 {
3008     int cur_el = arm_current_el(env);
3009     int debug_el;
3010 
3011     if (cur_el == 3) {
3012         return false;
3013     }
3014 
3015     /* MDCR_EL3.SDD disables debug events from Secure state */
3016     if (arm_is_secure_below_el3(env)
3017         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3018         return false;
3019     }
3020 
3021     /*
3022      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3023      * while not masking the (D)ebug bit in DAIF.
3024      */
3025     debug_el = arm_debug_target_el(env);
3026 
3027     if (cur_el == debug_el) {
3028         return extract32(env->cp15.mdscr_el1, 13, 1)
3029             && !(env->daif & PSTATE_D);
3030     }
3031 
3032     /* Otherwise the debug target needs to be a higher EL */
3033     return debug_el > cur_el;
3034 }
3035 
3036 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3037 {
3038     int el = arm_current_el(env);
3039 
3040     if (el == 0 && arm_el_is_aa64(env, 1)) {
3041         return aa64_generate_debug_exceptions(env);
3042     }
3043 
3044     if (arm_is_secure(env)) {
3045         int spd;
3046 
3047         if (el == 0 && (env->cp15.sder & 1)) {
3048             /* SDER.SUIDEN means debug exceptions from Secure EL0
3049              * are always enabled. Otherwise they are controlled by
3050              * SDCR.SPD like those from other Secure ELs.
3051              */
3052             return true;
3053         }
3054 
3055         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3056         switch (spd) {
3057         case 1:
3058             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3059         case 0:
3060             /* For 0b00 we return true if external secure invasive debug
3061              * is enabled. On real hardware this is controlled by external
3062              * signals to the core. QEMU always permits debug, and behaves
3063              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3064              */
3065             return true;
3066         case 2:
3067             return false;
3068         case 3:
3069             return true;
3070         }
3071     }
3072 
3073     return el != 2;
3074 }
3075 
3076 /* Return true if debugging exceptions are currently enabled.
3077  * This corresponds to what in ARM ARM pseudocode would be
3078  *    if UsingAArch32() then
3079  *        return AArch32.GenerateDebugExceptions()
3080  *    else
3081  *        return AArch64.GenerateDebugExceptions()
3082  * We choose to push the if() down into this function for clarity,
3083  * since the pseudocode has it at all callsites except for the one in
3084  * CheckSoftwareStep(), where it is elided because both branches would
3085  * always return the same value.
3086  */
3087 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3088 {
3089     if (env->aarch64) {
3090         return aa64_generate_debug_exceptions(env);
3091     } else {
3092         return aa32_generate_debug_exceptions(env);
3093     }
3094 }
3095 
3096 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3097  * implicitly means this always returns false in pre-v8 CPUs.)
3098  */
3099 static inline bool arm_singlestep_active(CPUARMState *env)
3100 {
3101     return extract32(env->cp15.mdscr_el1, 0, 1)
3102         && arm_el_is_aa64(env, arm_debug_target_el(env))
3103         && arm_generate_debug_exceptions(env);
3104 }
3105 
3106 static inline bool arm_sctlr_b(CPUARMState *env)
3107 {
3108     return
3109         /* We need not implement SCTLR.ITD in user-mode emulation, so
3110          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3111          * This lets people run BE32 binaries with "-cpu any".
3112          */
3113 #ifndef CONFIG_USER_ONLY
3114         !arm_feature(env, ARM_FEATURE_V7) &&
3115 #endif
3116         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3117 }
3118 
3119 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3120 {
3121     if (el == 0) {
3122         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3123         return env->cp15.sctlr_el[1];
3124     } else {
3125         return env->cp15.sctlr_el[el];
3126     }
3127 }
3128 
3129 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3130                                                   bool sctlr_b)
3131 {
3132 #ifdef CONFIG_USER_ONLY
3133     /*
3134      * In system mode, BE32 is modelled in line with the
3135      * architecture (as word-invariant big-endianness), where loads
3136      * and stores are done little endian but from addresses which
3137      * are adjusted by XORing with the appropriate constant. So the
3138      * endianness to use for the raw data access is not affected by
3139      * SCTLR.B.
3140      * In user mode, however, we model BE32 as byte-invariant
3141      * big-endianness (because user-only code cannot tell the
3142      * difference), and so we need to use a data access endianness
3143      * that depends on SCTLR.B.
3144      */
3145     if (sctlr_b) {
3146         return true;
3147     }
3148 #endif
3149     /* In 32bit endianness is determined by looking at CPSR's E bit */
3150     return env->uncached_cpsr & CPSR_E;
3151 }
3152 
3153 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3154 {
3155     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3156 }
3157 
3158 /* Return true if the processor is in big-endian mode. */
3159 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3160 {
3161     if (!is_a64(env)) {
3162         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3163     } else {
3164         int cur_el = arm_current_el(env);
3165         uint64_t sctlr = arm_sctlr(env, cur_el);
3166         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3167     }
3168 }
3169 
3170 typedef CPUARMState CPUArchState;
3171 typedef ARMCPU ArchCPU;
3172 
3173 #include "exec/cpu-all.h"
3174 
3175 /*
3176  * Bit usage in the TB flags field: bit 31 indicates whether we are
3177  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3178  * We put flags which are shared between 32 and 64 bit mode at the top
3179  * of the word, and flags which apply to only one mode at the bottom.
3180  *
3181  * Unless otherwise noted, these bits are cached in env->hflags.
3182  */
3183 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3184 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3185 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3186 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)     /* Not cached. */
3187 /* Target EL if we take a floating-point-disabled exception */
3188 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3189 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3190 /*
3191  * For A-profile only, target EL for debug exceptions.
3192  * Note that this overlaps with the M-profile-only HANDLER and STACKCHECK bits.
3193  */
3194 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 21, 2)
3195 
3196 /* Bit usage when in AArch32 state: */
3197 FIELD(TBFLAG_A32, THUMB, 0, 1)          /* Not cached. */
3198 FIELD(TBFLAG_A32, VECLEN, 1, 3)         /* Not cached. */
3199 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)      /* Not cached. */
3200 /*
3201  * We store the bottom two bits of the CPAR as TB flags and handle
3202  * checks on the other bits at runtime. This shares the same bits as
3203  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3204  * Not cached, because VECLEN+VECSTRIDE are not cached.
3205  */
3206 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3207 /*
3208  * Indicates whether cp register reads and writes by guest code should access
3209  * the secure or nonsecure bank of banked registers; note that this is not
3210  * the same thing as the current security state of the processor!
3211  */
3212 FIELD(TBFLAG_A32, NS, 6, 1)
3213 FIELD(TBFLAG_A32, VFPEN, 7, 1)          /* Partially cached, minus FPEXC. */
3214 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)       /* Not cached. */
3215 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3216 /* For M profile only, set if FPCCR.LSPACT is set */
3217 FIELD(TBFLAG_A32, LSPACT, 18, 1)        /* Not cached. */
3218 /* For M profile only, set if we must create a new FP context */
3219 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1) /* Not cached. */
3220 /* For M profile only, set if FPCCR.S does not match current security state */
3221 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1) /* Not cached. */
3222 /* For M profile only, Handler (ie not Thread) mode */
3223 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3224 /* For M profile only, whether we should generate stack-limit checks */
3225 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3226 
3227 /* Bit usage when in AArch64 state */
3228 FIELD(TBFLAG_A64, TBII, 0, 2)
3229 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3230 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3231 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3232 FIELD(TBFLAG_A64, BT, 9, 1)
3233 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3234 FIELD(TBFLAG_A64, TBID, 12, 2)
3235 
3236 static inline bool bswap_code(bool sctlr_b)
3237 {
3238 #ifdef CONFIG_USER_ONLY
3239     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3240      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3241      * would also end up as a mixed-endian mode with BE code, LE data.
3242      */
3243     return
3244 #ifdef TARGET_WORDS_BIGENDIAN
3245         1 ^
3246 #endif
3247         sctlr_b;
3248 #else
3249     /* All code access in ARM is little endian, and there are no loaders
3250      * doing swaps that need to be reversed
3251      */
3252     return 0;
3253 #endif
3254 }
3255 
3256 #ifdef CONFIG_USER_ONLY
3257 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3258 {
3259     return
3260 #ifdef TARGET_WORDS_BIGENDIAN
3261        1 ^
3262 #endif
3263        arm_cpu_data_is_big_endian(env);
3264 }
3265 #endif
3266 
3267 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3268                           target_ulong *cs_base, uint32_t *flags);
3269 
3270 enum {
3271     QEMU_PSCI_CONDUIT_DISABLED = 0,
3272     QEMU_PSCI_CONDUIT_SMC = 1,
3273     QEMU_PSCI_CONDUIT_HVC = 2,
3274 };
3275 
3276 #ifndef CONFIG_USER_ONLY
3277 /* Return the address space index to use for a memory access */
3278 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3279 {
3280     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3281 }
3282 
3283 /* Return the AddressSpace to use for a memory access
3284  * (which depends on whether the access is S or NS, and whether
3285  * the board gave us a separate AddressSpace for S accesses).
3286  */
3287 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3288 {
3289     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3290 }
3291 #endif
3292 
3293 /**
3294  * arm_register_pre_el_change_hook:
3295  * Register a hook function which will be called immediately before this
3296  * CPU changes exception level or mode. The hook function will be
3297  * passed a pointer to the ARMCPU and the opaque data pointer passed
3298  * to this function when the hook was registered.
3299  *
3300  * Note that if a pre-change hook is called, any registered post-change hooks
3301  * are guaranteed to subsequently be called.
3302  */
3303 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3304                                  void *opaque);
3305 /**
3306  * arm_register_el_change_hook:
3307  * Register a hook function which will be called immediately after this
3308  * CPU changes exception level or mode. The hook function will be
3309  * passed a pointer to the ARMCPU and the opaque data pointer passed
3310  * to this function when the hook was registered.
3311  *
3312  * Note that any registered hooks registered here are guaranteed to be called
3313  * if pre-change hooks have been.
3314  */
3315 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3316         *opaque);
3317 
3318 /**
3319  * arm_rebuild_hflags:
3320  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3321  */
3322 void arm_rebuild_hflags(CPUARMState *env);
3323 
3324 /**
3325  * aa32_vfp_dreg:
3326  * Return a pointer to the Dn register within env in 32-bit mode.
3327  */
3328 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3329 {
3330     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3331 }
3332 
3333 /**
3334  * aa32_vfp_qreg:
3335  * Return a pointer to the Qn register within env in 32-bit mode.
3336  */
3337 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3338 {
3339     return &env->vfp.zregs[regno].d[0];
3340 }
3341 
3342 /**
3343  * aa64_vfp_qreg:
3344  * Return a pointer to the Qn register within env in 64-bit mode.
3345  */
3346 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3347 {
3348     return &env->vfp.zregs[regno].d[0];
3349 }
3350 
3351 /* Shared between translate-sve.c and sve_helper.c.  */
3352 extern const uint64_t pred_esz_masks[4];
3353 
3354 /*
3355  * 32-bit feature tests via id registers.
3356  */
3357 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3358 {
3359     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3360 }
3361 
3362 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3363 {
3364     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3365 }
3366 
3367 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3368 {
3369     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3370 }
3371 
3372 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3373 {
3374     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3375 }
3376 
3377 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3378 {
3379     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3380 }
3381 
3382 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3383 {
3384     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3385 }
3386 
3387 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3388 {
3389     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3390 }
3391 
3392 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3393 {
3394     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3395 }
3396 
3397 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3398 {
3399     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3400 }
3401 
3402 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3403 {
3404     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3405 }
3406 
3407 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3408 {
3409     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3410 }
3411 
3412 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3413 {
3414     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3415 }
3416 
3417 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3418 {
3419     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3420 }
3421 
3422 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3423 {
3424     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3425 }
3426 
3427 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3428 {
3429     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3430 }
3431 
3432 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3433 {
3434     /*
3435      * This is a placeholder for use by VCMA until the rest of
3436      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3437      * At which point we can properly set and check MVFR1.FPHP.
3438      */
3439     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3440 }
3441 
3442 static inline bool isar_feature_aa32_fp_d32(const ARMISARegisters *id)
3443 {
3444     /* Return true if D16-D31 are implemented */
3445     return FIELD_EX64(id->mvfr0, MVFR0, SIMDREG) >= 2;
3446 }
3447 
3448 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3449 {
3450     return FIELD_EX64(id->mvfr0, MVFR0, FPSHVEC) > 0;
3451 }
3452 
3453 static inline bool isar_feature_aa32_fpdp(const ARMISARegisters *id)
3454 {
3455     /* Return true if CPU supports double precision floating point */
3456     return FIELD_EX64(id->mvfr0, MVFR0, FPDP) > 0;
3457 }
3458 
3459 /*
3460  * We always set the FP and SIMD FP16 fields to indicate identical
3461  * levels of support (assuming SIMD is implemented at all), so
3462  * we only need one set of accessors.
3463  */
3464 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3465 {
3466     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3467 }
3468 
3469 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3470 {
3471     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3472 }
3473 
3474 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3475 {
3476     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3477 }
3478 
3479 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3480 {
3481     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3482 }
3483 
3484 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3485 {
3486     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3487 }
3488 
3489 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3490 {
3491     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3492 }
3493 
3494 /*
3495  * 64-bit feature tests via id registers.
3496  */
3497 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3498 {
3499     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3500 }
3501 
3502 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3503 {
3504     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3505 }
3506 
3507 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3510 }
3511 
3512 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3513 {
3514     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3515 }
3516 
3517 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3518 {
3519     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3520 }
3521 
3522 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3523 {
3524     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3525 }
3526 
3527 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3528 {
3529     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3530 }
3531 
3532 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3533 {
3534     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3535 }
3536 
3537 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3538 {
3539     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3540 }
3541 
3542 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3543 {
3544     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3545 }
3546 
3547 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3548 {
3549     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3550 }
3551 
3552 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3553 {
3554     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3555 }
3556 
3557 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3558 {
3559     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3560 }
3561 
3562 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3563 {
3564     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3565 }
3566 
3567 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3568 {
3569     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3570 }
3571 
3572 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3573 {
3574     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3575 }
3576 
3577 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3578 {
3579     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3580 }
3581 
3582 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3583 {
3584     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3585 }
3586 
3587 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3588 {
3589     /*
3590      * Note that while QEMU will only implement the architected algorithm
3591      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3592      * defined algorithms, and thus API+GPI, and this predicate controls
3593      * migration of the 128-bit keys.
3594      */
3595     return (id->id_aa64isar1 &
3596             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3597              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3598              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3599              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3600 }
3601 
3602 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3603 {
3604     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3605 }
3606 
3607 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3608 {
3609     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3610 }
3611 
3612 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3613 {
3614     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3615 }
3616 
3617 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3618 {
3619     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3620     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3621 }
3622 
3623 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3624 {
3625     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3626 }
3627 
3628 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3629 {
3630     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3631 }
3632 
3633 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3634 {
3635     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3636 }
3637 
3638 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3639 {
3640     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3641 }
3642 
3643 /*
3644  * Forward to the above feature tests given an ARMCPU pointer.
3645  */
3646 #define cpu_isar_feature(name, cpu) \
3647     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3648 
3649 #endif
3650