xref: /openbmc/qemu/target/arm/cpu.h (revision 334e8dad7a109d15cb20b090131374ae98682a50)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #define CPUArchState struct CPUARMState
37 
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41 
42 #include "fpu/softfloat.h"
43 
44 #define EXCP_UDEF            1   /* undefined instruction */
45 #define EXCP_SWI             2   /* software interrupt */
46 #define EXCP_PREFETCH_ABORT  3
47 #define EXCP_DATA_ABORT      4
48 #define EXCP_IRQ             5
49 #define EXCP_FIQ             6
50 #define EXCP_BKPT            7
51 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53 #define EXCP_HVC            11   /* HyperVisor Call */
54 #define EXCP_HYP_TRAP       12
55 #define EXCP_SMC            13   /* Secure Monitor Call */
56 #define EXCP_VIRQ           14
57 #define EXCP_VFIQ           15
58 #define EXCP_SEMIHOST       16   /* semihosting call */
59 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 
63 #define ARMV7M_EXCP_RESET   1
64 #define ARMV7M_EXCP_NMI     2
65 #define ARMV7M_EXCP_HARD    3
66 #define ARMV7M_EXCP_MEM     4
67 #define ARMV7M_EXCP_BUS     5
68 #define ARMV7M_EXCP_USAGE   6
69 #define ARMV7M_EXCP_SECURE  7
70 #define ARMV7M_EXCP_SVC     11
71 #define ARMV7M_EXCP_DEBUG   12
72 #define ARMV7M_EXCP_PENDSV  14
73 #define ARMV7M_EXCP_SYSTICK 15
74 
75 /* For M profile, some registers are banked secure vs non-secure;
76  * these are represented as a 2-element array where the first element
77  * is the non-secure copy and the second is the secure copy.
78  * When the CPU does not have implement the security extension then
79  * only the first element is used.
80  * This means that the copy for the current security state can be
81  * accessed via env->registerfield[env->v7m.secure] (whether the security
82  * extension is implemented or not).
83  */
84 #define M_REG_NS 0
85 #define M_REG_S 1
86 
87 /* ARM-specific interrupt pending bits.  */
88 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
89 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
90 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
91 
92 /* The usual mapping for an AArch64 system register to its AArch32
93  * counterpart is for the 32 bit world to have access to the lower
94  * half only (with writes leaving the upper half untouched). It's
95  * therefore useful to be able to pass TCG the offset of the least
96  * significant half of a uint64_t struct member.
97  */
98 #ifdef HOST_WORDS_BIGENDIAN
99 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #define offsetofhigh32(S, M) offsetof(S, M)
101 #else
102 #define offsetoflow32(S, M) offsetof(S, M)
103 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #endif
105 
106 /* Meanings of the ARMCPU object's four inbound GPIO lines */
107 #define ARM_CPU_IRQ 0
108 #define ARM_CPU_FIQ 1
109 #define ARM_CPU_VIRQ 2
110 #define ARM_CPU_VFIQ 3
111 
112 #define NB_MMU_MODES 7
113 /* ARM-specific extra insn start words:
114  * 1: Conditional execution bits
115  * 2: Partial exception syndrome for data aborts
116  */
117 #define TARGET_INSN_START_EXTRA_WORDS 2
118 
119 /* The 2nd extra word holding syndrome info for data aborts does not use
120  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
121  * help the sleb128 encoder do a better job.
122  * When restoring the CPU state, we shift it back up.
123  */
124 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
125 #define ARM_INSN_START_WORD2_SHIFT 14
126 
127 /* We currently assume float and double are IEEE single and double
128    precision respectively.
129    Doing runtime conversions is tricky because VFP registers may contain
130    integer values (eg. as the result of a FTOSI instruction).
131    s<2n> maps to the least significant half of d<n>
132    s<2n+1> maps to the most significant half of d<n>
133  */
134 
135 /* CPU state for each instance of a generic timer (in cp15 c14) */
136 typedef struct ARMGenericTimer {
137     uint64_t cval; /* Timer CompareValue register */
138     uint64_t ctl; /* Timer Control register */
139 } ARMGenericTimer;
140 
141 #define GTIMER_PHYS 0
142 #define GTIMER_VIRT 1
143 #define GTIMER_HYP  2
144 #define GTIMER_SEC  3
145 #define NUM_GTIMERS 4
146 
147 typedef struct {
148     uint64_t raw_tcr;
149     uint32_t mask;
150     uint32_t base_mask;
151 } TCR;
152 
153 typedef struct CPUARMState {
154     /* Regs for current mode.  */
155     uint32_t regs[16];
156 
157     /* 32/64 switch only happens when taking and returning from
158      * exceptions so the overlap semantics are taken care of then
159      * instead of having a complicated union.
160      */
161     /* Regs for A64 mode.  */
162     uint64_t xregs[32];
163     uint64_t pc;
164     /* PSTATE isn't an architectural register for ARMv8. However, it is
165      * convenient for us to assemble the underlying state into a 32 bit format
166      * identical to the architectural format used for the SPSR. (This is also
167      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
168      * 'pstate' register are.) Of the PSTATE bits:
169      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
170      *    semantics as for AArch32, as described in the comments on each field)
171      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
172      *  DAIF (exception masks) are kept in env->daif
173      *  all other bits are stored in their correct places in env->pstate
174      */
175     uint32_t pstate;
176     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
177 
178     /* Frequently accessed CPSR bits are stored separately for efficiency.
179        This contains all the other bits.  Use cpsr_{read,write} to access
180        the whole CPSR.  */
181     uint32_t uncached_cpsr;
182     uint32_t spsr;
183 
184     /* Banked registers.  */
185     uint64_t banked_spsr[8];
186     uint32_t banked_r13[8];
187     uint32_t banked_r14[8];
188 
189     /* These hold r8-r12.  */
190     uint32_t usr_regs[5];
191     uint32_t fiq_regs[5];
192 
193     /* cpsr flag cache for faster execution */
194     uint32_t CF; /* 0 or 1 */
195     uint32_t VF; /* V is the bit 31. All other bits are undefined */
196     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
197     uint32_t ZF; /* Z set if zero.  */
198     uint32_t QF; /* 0 or 1 */
199     uint32_t GE; /* cpsr[19:16] */
200     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
201     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
202     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
203 
204     uint64_t elr_el[4]; /* AArch64 exception link regs  */
205     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
206 
207     /* System control coprocessor (cp15) */
208     struct {
209         uint32_t c0_cpuid;
210         union { /* Cache size selection */
211             struct {
212                 uint64_t _unused_csselr0;
213                 uint64_t csselr_ns;
214                 uint64_t _unused_csselr1;
215                 uint64_t csselr_s;
216             };
217             uint64_t csselr_el[4];
218         };
219         union { /* System control register. */
220             struct {
221                 uint64_t _unused_sctlr;
222                 uint64_t sctlr_ns;
223                 uint64_t hsctlr;
224                 uint64_t sctlr_s;
225             };
226             uint64_t sctlr_el[4];
227         };
228         uint64_t cpacr_el1; /* Architectural feature access control register */
229         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
230         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
231         uint64_t sder; /* Secure debug enable register. */
232         uint32_t nsacr; /* Non-secure access control register. */
233         union { /* MMU translation table base 0. */
234             struct {
235                 uint64_t _unused_ttbr0_0;
236                 uint64_t ttbr0_ns;
237                 uint64_t _unused_ttbr0_1;
238                 uint64_t ttbr0_s;
239             };
240             uint64_t ttbr0_el[4];
241         };
242         union { /* MMU translation table base 1. */
243             struct {
244                 uint64_t _unused_ttbr1_0;
245                 uint64_t ttbr1_ns;
246                 uint64_t _unused_ttbr1_1;
247                 uint64_t ttbr1_s;
248             };
249             uint64_t ttbr1_el[4];
250         };
251         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
252         /* MMU translation table base control. */
253         TCR tcr_el[4];
254         TCR vtcr_el2; /* Virtualization Translation Control.  */
255         uint32_t c2_data; /* MPU data cacheable bits.  */
256         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
257         union { /* MMU domain access control register
258                  * MPU write buffer control.
259                  */
260             struct {
261                 uint64_t dacr_ns;
262                 uint64_t dacr_s;
263             };
264             struct {
265                 uint64_t dacr32_el2;
266             };
267         };
268         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
269         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
270         uint64_t hcr_el2; /* Hypervisor configuration register */
271         uint64_t scr_el3; /* Secure configuration register.  */
272         union { /* Fault status registers.  */
273             struct {
274                 uint64_t ifsr_ns;
275                 uint64_t ifsr_s;
276             };
277             struct {
278                 uint64_t ifsr32_el2;
279             };
280         };
281         union {
282             struct {
283                 uint64_t _unused_dfsr;
284                 uint64_t dfsr_ns;
285                 uint64_t hsr;
286                 uint64_t dfsr_s;
287             };
288             uint64_t esr_el[4];
289         };
290         uint32_t c6_region[8]; /* MPU base/size registers.  */
291         union { /* Fault address registers. */
292             struct {
293                 uint64_t _unused_far0;
294 #ifdef HOST_WORDS_BIGENDIAN
295                 uint32_t ifar_ns;
296                 uint32_t dfar_ns;
297                 uint32_t ifar_s;
298                 uint32_t dfar_s;
299 #else
300                 uint32_t dfar_ns;
301                 uint32_t ifar_ns;
302                 uint32_t dfar_s;
303                 uint32_t ifar_s;
304 #endif
305                 uint64_t _unused_far3;
306             };
307             uint64_t far_el[4];
308         };
309         uint64_t hpfar_el2;
310         uint64_t hstr_el2;
311         union { /* Translation result. */
312             struct {
313                 uint64_t _unused_par_0;
314                 uint64_t par_ns;
315                 uint64_t _unused_par_1;
316                 uint64_t par_s;
317             };
318             uint64_t par_el[4];
319         };
320 
321         uint32_t c9_insn; /* Cache lockdown registers.  */
322         uint32_t c9_data;
323         uint64_t c9_pmcr; /* performance monitor control register */
324         uint64_t c9_pmcnten; /* perf monitor counter enables */
325         uint32_t c9_pmovsr; /* perf monitor overflow status */
326         uint32_t c9_pmuserenr; /* perf monitor user enable */
327         uint64_t c9_pmselr; /* perf monitor counter selection register */
328         uint64_t c9_pminten; /* perf monitor interrupt enables */
329         union { /* Memory attribute redirection */
330             struct {
331 #ifdef HOST_WORDS_BIGENDIAN
332                 uint64_t _unused_mair_0;
333                 uint32_t mair1_ns;
334                 uint32_t mair0_ns;
335                 uint64_t _unused_mair_1;
336                 uint32_t mair1_s;
337                 uint32_t mair0_s;
338 #else
339                 uint64_t _unused_mair_0;
340                 uint32_t mair0_ns;
341                 uint32_t mair1_ns;
342                 uint64_t _unused_mair_1;
343                 uint32_t mair0_s;
344                 uint32_t mair1_s;
345 #endif
346             };
347             uint64_t mair_el[4];
348         };
349         union { /* vector base address register */
350             struct {
351                 uint64_t _unused_vbar;
352                 uint64_t vbar_ns;
353                 uint64_t hvbar;
354                 uint64_t vbar_s;
355             };
356             uint64_t vbar_el[4];
357         };
358         uint32_t mvbar; /* (monitor) vector base address register */
359         struct { /* FCSE PID. */
360             uint32_t fcseidr_ns;
361             uint32_t fcseidr_s;
362         };
363         union { /* Context ID. */
364             struct {
365                 uint64_t _unused_contextidr_0;
366                 uint64_t contextidr_ns;
367                 uint64_t _unused_contextidr_1;
368                 uint64_t contextidr_s;
369             };
370             uint64_t contextidr_el[4];
371         };
372         union { /* User RW Thread register. */
373             struct {
374                 uint64_t tpidrurw_ns;
375                 uint64_t tpidrprw_ns;
376                 uint64_t htpidr;
377                 uint64_t _tpidr_el3;
378             };
379             uint64_t tpidr_el[4];
380         };
381         /* The secure banks of these registers don't map anywhere */
382         uint64_t tpidrurw_s;
383         uint64_t tpidrprw_s;
384         uint64_t tpidruro_s;
385 
386         union { /* User RO Thread register. */
387             uint64_t tpidruro_ns;
388             uint64_t tpidrro_el[1];
389         };
390         uint64_t c14_cntfrq; /* Counter Frequency register */
391         uint64_t c14_cntkctl; /* Timer Control register */
392         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
393         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
394         ARMGenericTimer c14_timer[NUM_GTIMERS];
395         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
396         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
397         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
398         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
399         uint32_t c15_threadid; /* TI debugger thread-ID.  */
400         uint32_t c15_config_base_address; /* SCU base address.  */
401         uint32_t c15_diagnostic; /* diagnostic register */
402         uint32_t c15_power_diagnostic;
403         uint32_t c15_power_control; /* power control */
404         uint64_t dbgbvr[16]; /* breakpoint value registers */
405         uint64_t dbgbcr[16]; /* breakpoint control registers */
406         uint64_t dbgwvr[16]; /* watchpoint value registers */
407         uint64_t dbgwcr[16]; /* watchpoint control registers */
408         uint64_t mdscr_el1;
409         uint64_t oslsr_el1; /* OS Lock Status */
410         uint64_t mdcr_el2;
411         uint64_t mdcr_el3;
412         /* If the counter is enabled, this stores the last time the counter
413          * was reset. Otherwise it stores the counter value
414          */
415         uint64_t c15_ccnt;
416         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
417         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
418         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
419     } cp15;
420 
421     struct {
422         uint32_t other_sp;
423         uint32_t vecbase[2];
424         uint32_t basepri[2];
425         uint32_t control[2];
426         uint32_t ccr[2]; /* Configuration and Control */
427         uint32_t cfsr[2]; /* Configurable Fault Status */
428         uint32_t hfsr; /* HardFault Status */
429         uint32_t dfsr; /* Debug Fault Status Register */
430         uint32_t mmfar[2]; /* MemManage Fault Address */
431         uint32_t bfar; /* BusFault Address */
432         unsigned mpu_ctrl[2]; /* MPU_CTRL */
433         int exception;
434         uint32_t primask[2];
435         uint32_t faultmask[2];
436         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
437     } v7m;
438 
439     /* Information associated with an exception about to be taken:
440      * code which raises an exception must set cs->exception_index and
441      * the relevant parts of this structure; the cpu_do_interrupt function
442      * will then set the guest-visible registers as part of the exception
443      * entry process.
444      */
445     struct {
446         uint32_t syndrome; /* AArch64 format syndrome register */
447         uint32_t fsr; /* AArch32 format fault status register info */
448         uint64_t vaddress; /* virtual addr associated with exception, if any */
449         uint32_t target_el; /* EL the exception should be targeted for */
450         /* If we implement EL2 we will also need to store information
451          * about the intermediate physical address for stage 2 faults.
452          */
453     } exception;
454 
455     /* Thumb-2 EE state.  */
456     uint32_t teecr;
457     uint32_t teehbr;
458 
459     /* VFP coprocessor state.  */
460     struct {
461         /* VFP/Neon register state. Note that the mapping between S, D and Q
462          * views of the register bank differs between AArch64 and AArch32:
463          * In AArch32:
464          *  Qn = regs[2n+1]:regs[2n]
465          *  Dn = regs[n]
466          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
467          * (and regs[32] to regs[63] are inaccessible)
468          * In AArch64:
469          *  Qn = regs[2n+1]:regs[2n]
470          *  Dn = regs[2n]
471          *  Sn = regs[2n] bits 31..0
472          * This corresponds to the architecturally defined mapping between
473          * the two execution states, and means we do not need to explicitly
474          * map these registers when changing states.
475          */
476         float64 regs[64];
477 
478         uint32_t xregs[16];
479         /* We store these fpcsr fields separately for convenience.  */
480         int vec_len;
481         int vec_stride;
482 
483         /* scratch space when Tn are not sufficient.  */
484         uint32_t scratch[8];
485 
486         /* fp_status is the "normal" fp status. standard_fp_status retains
487          * values corresponding to the ARM "Standard FPSCR Value", ie
488          * default-NaN, flush-to-zero, round-to-nearest and is used by
489          * any operations (generally Neon) which the architecture defines
490          * as controlled by the standard FPSCR value rather than the FPSCR.
491          *
492          * To avoid having to transfer exception bits around, we simply
493          * say that the FPSCR cumulative exception flags are the logical
494          * OR of the flags in the two fp statuses. This relies on the
495          * only thing which needs to read the exception flags being
496          * an explicit FPSCR read.
497          */
498         float_status fp_status;
499         float_status standard_fp_status;
500     } vfp;
501     uint64_t exclusive_addr;
502     uint64_t exclusive_val;
503     uint64_t exclusive_high;
504 
505     /* iwMMXt coprocessor state.  */
506     struct {
507         uint64_t regs[16];
508         uint64_t val;
509 
510         uint32_t cregs[16];
511     } iwmmxt;
512 
513 #if defined(CONFIG_USER_ONLY)
514     /* For usermode syscall translation.  */
515     int eabi;
516 #endif
517 
518     struct CPUBreakpoint *cpu_breakpoint[16];
519     struct CPUWatchpoint *cpu_watchpoint[16];
520 
521     /* Fields up to this point are cleared by a CPU reset */
522     struct {} end_reset_fields;
523 
524     CPU_COMMON
525 
526     /* Fields after CPU_COMMON are preserved across CPU reset. */
527 
528     /* Internal CPU feature flags.  */
529     uint64_t features;
530 
531     /* PMSAv7 MPU */
532     struct {
533         uint32_t *drbar;
534         uint32_t *drsr;
535         uint32_t *dracr;
536         uint32_t rnr[2];
537     } pmsav7;
538 
539     /* PMSAv8 MPU */
540     struct {
541         /* The PMSAv8 implementation also shares some PMSAv7 config
542          * and state:
543          *  pmsav7.rnr (region number register)
544          *  pmsav7_dregion (number of configured regions)
545          */
546         uint32_t *rbar[2];
547         uint32_t *rlar[2];
548         uint32_t mair0[2];
549         uint32_t mair1[2];
550     } pmsav8;
551 
552     void *nvic;
553     const struct arm_boot_info *boot_info;
554     /* Store GICv3CPUState to access from this struct */
555     void *gicv3state;
556 } CPUARMState;
557 
558 /**
559  * ARMELChangeHook:
560  * type of a function which can be registered via arm_register_el_change_hook()
561  * to get callbacks when the CPU changes its exception level or mode.
562  */
563 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
564 
565 
566 /* These values map onto the return values for
567  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
568 typedef enum ARMPSCIState {
569     PSCI_ON = 0,
570     PSCI_OFF = 1,
571     PSCI_ON_PENDING = 2
572 } ARMPSCIState;
573 
574 /**
575  * ARMCPU:
576  * @env: #CPUARMState
577  *
578  * An ARM CPU core.
579  */
580 struct ARMCPU {
581     /*< private >*/
582     CPUState parent_obj;
583     /*< public >*/
584 
585     CPUARMState env;
586 
587     /* Coprocessor information */
588     GHashTable *cp_regs;
589     /* For marshalling (mostly coprocessor) register state between the
590      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
591      * we use these arrays.
592      */
593     /* List of register indexes managed via these arrays; (full KVM style
594      * 64 bit indexes, not CPRegInfo 32 bit indexes)
595      */
596     uint64_t *cpreg_indexes;
597     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
598     uint64_t *cpreg_values;
599     /* Length of the indexes, values, reset_values arrays */
600     int32_t cpreg_array_len;
601     /* These are used only for migration: incoming data arrives in
602      * these fields and is sanity checked in post_load before copying
603      * to the working data structures above.
604      */
605     uint64_t *cpreg_vmstate_indexes;
606     uint64_t *cpreg_vmstate_values;
607     int32_t cpreg_vmstate_array_len;
608 
609     /* Timers used by the generic (architected) timer */
610     QEMUTimer *gt_timer[NUM_GTIMERS];
611     /* GPIO outputs for generic timer */
612     qemu_irq gt_timer_outputs[NUM_GTIMERS];
613     /* GPIO output for GICv3 maintenance interrupt signal */
614     qemu_irq gicv3_maintenance_interrupt;
615     /* GPIO output for the PMU interrupt */
616     qemu_irq pmu_interrupt;
617 
618     /* MemoryRegion to use for secure physical accesses */
619     MemoryRegion *secure_memory;
620 
621     /* 'compatible' string for this CPU for Linux device trees */
622     const char *dtb_compatible;
623 
624     /* PSCI version for this CPU
625      * Bits[31:16] = Major Version
626      * Bits[15:0] = Minor Version
627      */
628     uint32_t psci_version;
629 
630     /* Should CPU start in PSCI powered-off state? */
631     bool start_powered_off;
632 
633     /* Current power state, access guarded by BQL */
634     ARMPSCIState power_state;
635 
636     /* CPU has virtualization extension */
637     bool has_el2;
638     /* CPU has security extension */
639     bool has_el3;
640     /* CPU has PMU (Performance Monitor Unit) */
641     bool has_pmu;
642 
643     /* CPU has memory protection unit */
644     bool has_mpu;
645     /* PMSAv7 MPU number of supported regions */
646     uint32_t pmsav7_dregion;
647 
648     /* PSCI conduit used to invoke PSCI methods
649      * 0 - disabled, 1 - smc, 2 - hvc
650      */
651     uint32_t psci_conduit;
652 
653     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
654      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
655      */
656     uint32_t kvm_target;
657 
658     /* KVM init features for this CPU */
659     uint32_t kvm_init_features[7];
660 
661     /* Uniprocessor system with MP extensions */
662     bool mp_is_up;
663 
664     /* The instance init functions for implementation-specific subclasses
665      * set these fields to specify the implementation-dependent values of
666      * various constant registers and reset values of non-constant
667      * registers.
668      * Some of these might become QOM properties eventually.
669      * Field names match the official register names as defined in the
670      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
671      * is used for reset values of non-constant registers; no reset_
672      * prefix means a constant register.
673      */
674     uint32_t midr;
675     uint32_t revidr;
676     uint32_t reset_fpsid;
677     uint32_t mvfr0;
678     uint32_t mvfr1;
679     uint32_t mvfr2;
680     uint32_t ctr;
681     uint32_t reset_sctlr;
682     uint32_t id_pfr0;
683     uint32_t id_pfr1;
684     uint32_t id_dfr0;
685     uint32_t pmceid0;
686     uint32_t pmceid1;
687     uint32_t id_afr0;
688     uint32_t id_mmfr0;
689     uint32_t id_mmfr1;
690     uint32_t id_mmfr2;
691     uint32_t id_mmfr3;
692     uint32_t id_mmfr4;
693     uint32_t id_isar0;
694     uint32_t id_isar1;
695     uint32_t id_isar2;
696     uint32_t id_isar3;
697     uint32_t id_isar4;
698     uint32_t id_isar5;
699     uint64_t id_aa64pfr0;
700     uint64_t id_aa64pfr1;
701     uint64_t id_aa64dfr0;
702     uint64_t id_aa64dfr1;
703     uint64_t id_aa64afr0;
704     uint64_t id_aa64afr1;
705     uint64_t id_aa64isar0;
706     uint64_t id_aa64isar1;
707     uint64_t id_aa64mmfr0;
708     uint64_t id_aa64mmfr1;
709     uint32_t dbgdidr;
710     uint32_t clidr;
711     uint64_t mp_affinity; /* MP ID without feature bits */
712     /* The elements of this array are the CCSIDR values for each cache,
713      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
714      */
715     uint32_t ccsidr[16];
716     uint64_t reset_cbar;
717     uint32_t reset_auxcr;
718     bool reset_hivecs;
719     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
720     uint32_t dcz_blocksize;
721     uint64_t rvbar;
722 
723     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
724     int gic_num_lrs; /* number of list registers */
725     int gic_vpribits; /* number of virtual priority bits */
726     int gic_vprebits; /* number of virtual preemption bits */
727 
728     /* Whether the cfgend input is high (i.e. this CPU should reset into
729      * big-endian mode).  This setting isn't used directly: instead it modifies
730      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
731      * architecture version.
732      */
733     bool cfgend;
734 
735     ARMELChangeHook *el_change_hook;
736     void *el_change_hook_opaque;
737 
738     int32_t node_id; /* NUMA node this CPU belongs to */
739 
740     /* Used to synchronize KVM and QEMU in-kernel device levels */
741     uint8_t device_irq_level;
742 };
743 
744 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
745 {
746     return container_of(env, ARMCPU, env);
747 }
748 
749 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
750 
751 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
752 
753 #define ENV_OFFSET offsetof(ARMCPU, env)
754 
755 #ifndef CONFIG_USER_ONLY
756 extern const struct VMStateDescription vmstate_arm_cpu;
757 #endif
758 
759 void arm_cpu_do_interrupt(CPUState *cpu);
760 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
761 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
762 
763 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
764                         int flags);
765 
766 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
767                                          MemTxAttrs *attrs);
768 
769 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
770 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
771 
772 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
773                              int cpuid, void *opaque);
774 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
775                              int cpuid, void *opaque);
776 
777 #ifdef TARGET_AARCH64
778 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
779 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
780 #endif
781 
782 target_ulong do_arm_semihosting(CPUARMState *env);
783 void aarch64_sync_32_to_64(CPUARMState *env);
784 void aarch64_sync_64_to_32(CPUARMState *env);
785 
786 static inline bool is_a64(CPUARMState *env)
787 {
788     return env->aarch64;
789 }
790 
791 /* you can call this signal handler from your SIGBUS and SIGSEGV
792    signal handlers to inform the virtual CPU of exceptions. non zero
793    is returned if the signal was handled by the virtual CPU.  */
794 int cpu_arm_signal_handler(int host_signum, void *pinfo,
795                            void *puc);
796 
797 /**
798  * pmccntr_sync
799  * @env: CPUARMState
800  *
801  * Synchronises the counter in the PMCCNTR. This must always be called twice,
802  * once before any action that might affect the timer and again afterwards.
803  * The function is used to swap the state of the register if required.
804  * This only happens when not in user mode (!CONFIG_USER_ONLY)
805  */
806 void pmccntr_sync(CPUARMState *env);
807 
808 /* SCTLR bit meanings. Several bits have been reused in newer
809  * versions of the architecture; in that case we define constants
810  * for both old and new bit meanings. Code which tests against those
811  * bits should probably check or otherwise arrange that the CPU
812  * is the architectural version it expects.
813  */
814 #define SCTLR_M       (1U << 0)
815 #define SCTLR_A       (1U << 1)
816 #define SCTLR_C       (1U << 2)
817 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
818 #define SCTLR_SA      (1U << 3)
819 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
820 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
821 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
822 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
823 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
824 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
825 #define SCTLR_ITD     (1U << 7) /* v8 onward */
826 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
827 #define SCTLR_SED     (1U << 8) /* v8 onward */
828 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
829 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
830 #define SCTLR_F       (1U << 10) /* up to v6 */
831 #define SCTLR_SW      (1U << 10) /* v7 onward */
832 #define SCTLR_Z       (1U << 11)
833 #define SCTLR_I       (1U << 12)
834 #define SCTLR_V       (1U << 13)
835 #define SCTLR_RR      (1U << 14) /* up to v7 */
836 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
837 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
838 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
839 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
840 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
841 #define SCTLR_HA      (1U << 17)
842 #define SCTLR_BR      (1U << 17) /* PMSA only */
843 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
844 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
845 #define SCTLR_WXN     (1U << 19)
846 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
847 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
848 #define SCTLR_FI      (1U << 21)
849 #define SCTLR_U       (1U << 22)
850 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
851 #define SCTLR_VE      (1U << 24) /* up to v7 */
852 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
853 #define SCTLR_EE      (1U << 25)
854 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
855 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
856 #define SCTLR_NMFI    (1U << 27)
857 #define SCTLR_TRE     (1U << 28)
858 #define SCTLR_AFE     (1U << 29)
859 #define SCTLR_TE      (1U << 30)
860 
861 #define CPTR_TCPAC    (1U << 31)
862 #define CPTR_TTA      (1U << 20)
863 #define CPTR_TFP      (1U << 10)
864 
865 #define MDCR_EPMAD    (1U << 21)
866 #define MDCR_EDAD     (1U << 20)
867 #define MDCR_SPME     (1U << 17)
868 #define MDCR_SDD      (1U << 16)
869 #define MDCR_SPD      (3U << 14)
870 #define MDCR_TDRA     (1U << 11)
871 #define MDCR_TDOSA    (1U << 10)
872 #define MDCR_TDA      (1U << 9)
873 #define MDCR_TDE      (1U << 8)
874 #define MDCR_HPME     (1U << 7)
875 #define MDCR_TPM      (1U << 6)
876 #define MDCR_TPMCR    (1U << 5)
877 
878 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
879 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
880 
881 #define CPSR_M (0x1fU)
882 #define CPSR_T (1U << 5)
883 #define CPSR_F (1U << 6)
884 #define CPSR_I (1U << 7)
885 #define CPSR_A (1U << 8)
886 #define CPSR_E (1U << 9)
887 #define CPSR_IT_2_7 (0xfc00U)
888 #define CPSR_GE (0xfU << 16)
889 #define CPSR_IL (1U << 20)
890 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
891  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
892  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
893  * where it is live state but not accessible to the AArch32 code.
894  */
895 #define CPSR_RESERVED (0x7U << 21)
896 #define CPSR_J (1U << 24)
897 #define CPSR_IT_0_1 (3U << 25)
898 #define CPSR_Q (1U << 27)
899 #define CPSR_V (1U << 28)
900 #define CPSR_C (1U << 29)
901 #define CPSR_Z (1U << 30)
902 #define CPSR_N (1U << 31)
903 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
904 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
905 
906 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
907 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
908     | CPSR_NZCV)
909 /* Bits writable in user mode.  */
910 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
911 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
912 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
913 /* Mask of bits which may be set by exception return copying them from SPSR */
914 #define CPSR_ERET_MASK (~CPSR_RESERVED)
915 
916 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
917 #define XPSR_EXCP 0x1ffU
918 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
919 #define XPSR_IT_2_7 CPSR_IT_2_7
920 #define XPSR_GE CPSR_GE
921 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
922 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
923 #define XPSR_IT_0_1 CPSR_IT_0_1
924 #define XPSR_Q CPSR_Q
925 #define XPSR_V CPSR_V
926 #define XPSR_C CPSR_C
927 #define XPSR_Z CPSR_Z
928 #define XPSR_N CPSR_N
929 #define XPSR_NZCV CPSR_NZCV
930 #define XPSR_IT CPSR_IT
931 
932 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
933 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
934 #define TTBCR_PD0    (1U << 4)
935 #define TTBCR_PD1    (1U << 5)
936 #define TTBCR_EPD0   (1U << 7)
937 #define TTBCR_IRGN0  (3U << 8)
938 #define TTBCR_ORGN0  (3U << 10)
939 #define TTBCR_SH0    (3U << 12)
940 #define TTBCR_T1SZ   (3U << 16)
941 #define TTBCR_A1     (1U << 22)
942 #define TTBCR_EPD1   (1U << 23)
943 #define TTBCR_IRGN1  (3U << 24)
944 #define TTBCR_ORGN1  (3U << 26)
945 #define TTBCR_SH1    (1U << 28)
946 #define TTBCR_EAE    (1U << 31)
947 
948 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
949  * Only these are valid when in AArch64 mode; in
950  * AArch32 mode SPSRs are basically CPSR-format.
951  */
952 #define PSTATE_SP (1U)
953 #define PSTATE_M (0xFU)
954 #define PSTATE_nRW (1U << 4)
955 #define PSTATE_F (1U << 6)
956 #define PSTATE_I (1U << 7)
957 #define PSTATE_A (1U << 8)
958 #define PSTATE_D (1U << 9)
959 #define PSTATE_IL (1U << 20)
960 #define PSTATE_SS (1U << 21)
961 #define PSTATE_V (1U << 28)
962 #define PSTATE_C (1U << 29)
963 #define PSTATE_Z (1U << 30)
964 #define PSTATE_N (1U << 31)
965 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
966 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
967 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
968 /* Mode values for AArch64 */
969 #define PSTATE_MODE_EL3h 13
970 #define PSTATE_MODE_EL3t 12
971 #define PSTATE_MODE_EL2h 9
972 #define PSTATE_MODE_EL2t 8
973 #define PSTATE_MODE_EL1h 5
974 #define PSTATE_MODE_EL1t 4
975 #define PSTATE_MODE_EL0t 0
976 
977 /* Map EL and handler into a PSTATE_MODE.  */
978 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
979 {
980     return (el << 2) | handler;
981 }
982 
983 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
984  * interprocessing, so we don't attempt to sync with the cpsr state used by
985  * the 32 bit decoder.
986  */
987 static inline uint32_t pstate_read(CPUARMState *env)
988 {
989     int ZF;
990 
991     ZF = (env->ZF == 0);
992     return (env->NF & 0x80000000) | (ZF << 30)
993         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
994         | env->pstate | env->daif;
995 }
996 
997 static inline void pstate_write(CPUARMState *env, uint32_t val)
998 {
999     env->ZF = (~val) & PSTATE_Z;
1000     env->NF = val;
1001     env->CF = (val >> 29) & 1;
1002     env->VF = (val << 3) & 0x80000000;
1003     env->daif = val & PSTATE_DAIF;
1004     env->pstate = val & ~CACHED_PSTATE_BITS;
1005 }
1006 
1007 /* Return the current CPSR value.  */
1008 uint32_t cpsr_read(CPUARMState *env);
1009 
1010 typedef enum CPSRWriteType {
1011     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1012     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1013     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1014     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1015 } CPSRWriteType;
1016 
1017 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1018 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1019                 CPSRWriteType write_type);
1020 
1021 /* Return the current xPSR value.  */
1022 static inline uint32_t xpsr_read(CPUARMState *env)
1023 {
1024     int ZF;
1025     ZF = (env->ZF == 0);
1026     return (env->NF & 0x80000000) | (ZF << 30)
1027         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1028         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1029         | ((env->condexec_bits & 0xfc) << 8)
1030         | env->v7m.exception;
1031 }
1032 
1033 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1034 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1035 {
1036     if (mask & XPSR_NZCV) {
1037         env->ZF = (~val) & XPSR_Z;
1038         env->NF = val;
1039         env->CF = (val >> 29) & 1;
1040         env->VF = (val << 3) & 0x80000000;
1041     }
1042     if (mask & XPSR_Q) {
1043         env->QF = ((val & XPSR_Q) != 0);
1044     }
1045     if (mask & XPSR_T) {
1046         env->thumb = ((val & XPSR_T) != 0);
1047     }
1048     if (mask & XPSR_IT_0_1) {
1049         env->condexec_bits &= ~3;
1050         env->condexec_bits |= (val >> 25) & 3;
1051     }
1052     if (mask & XPSR_IT_2_7) {
1053         env->condexec_bits &= 3;
1054         env->condexec_bits |= (val >> 8) & 0xfc;
1055     }
1056     if (mask & XPSR_EXCP) {
1057         env->v7m.exception = val & XPSR_EXCP;
1058     }
1059 }
1060 
1061 #define HCR_VM        (1ULL << 0)
1062 #define HCR_SWIO      (1ULL << 1)
1063 #define HCR_PTW       (1ULL << 2)
1064 #define HCR_FMO       (1ULL << 3)
1065 #define HCR_IMO       (1ULL << 4)
1066 #define HCR_AMO       (1ULL << 5)
1067 #define HCR_VF        (1ULL << 6)
1068 #define HCR_VI        (1ULL << 7)
1069 #define HCR_VSE       (1ULL << 8)
1070 #define HCR_FB        (1ULL << 9)
1071 #define HCR_BSU_MASK  (3ULL << 10)
1072 #define HCR_DC        (1ULL << 12)
1073 #define HCR_TWI       (1ULL << 13)
1074 #define HCR_TWE       (1ULL << 14)
1075 #define HCR_TID0      (1ULL << 15)
1076 #define HCR_TID1      (1ULL << 16)
1077 #define HCR_TID2      (1ULL << 17)
1078 #define HCR_TID3      (1ULL << 18)
1079 #define HCR_TSC       (1ULL << 19)
1080 #define HCR_TIDCP     (1ULL << 20)
1081 #define HCR_TACR      (1ULL << 21)
1082 #define HCR_TSW       (1ULL << 22)
1083 #define HCR_TPC       (1ULL << 23)
1084 #define HCR_TPU       (1ULL << 24)
1085 #define HCR_TTLB      (1ULL << 25)
1086 #define HCR_TVM       (1ULL << 26)
1087 #define HCR_TGE       (1ULL << 27)
1088 #define HCR_TDZ       (1ULL << 28)
1089 #define HCR_HCD       (1ULL << 29)
1090 #define HCR_TRVM      (1ULL << 30)
1091 #define HCR_RW        (1ULL << 31)
1092 #define HCR_CD        (1ULL << 32)
1093 #define HCR_ID        (1ULL << 33)
1094 #define HCR_MASK      ((1ULL << 34) - 1)
1095 
1096 #define SCR_NS                (1U << 0)
1097 #define SCR_IRQ               (1U << 1)
1098 #define SCR_FIQ               (1U << 2)
1099 #define SCR_EA                (1U << 3)
1100 #define SCR_FW                (1U << 4)
1101 #define SCR_AW                (1U << 5)
1102 #define SCR_NET               (1U << 6)
1103 #define SCR_SMD               (1U << 7)
1104 #define SCR_HCE               (1U << 8)
1105 #define SCR_SIF               (1U << 9)
1106 #define SCR_RW                (1U << 10)
1107 #define SCR_ST                (1U << 11)
1108 #define SCR_TWI               (1U << 12)
1109 #define SCR_TWE               (1U << 13)
1110 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1111 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1112 
1113 /* Return the current FPSCR value.  */
1114 uint32_t vfp_get_fpscr(CPUARMState *env);
1115 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1116 
1117 /* For A64 the FPSCR is split into two logically distinct registers,
1118  * FPCR and FPSR. However since they still use non-overlapping bits
1119  * we store the underlying state in fpscr and just mask on read/write.
1120  */
1121 #define FPSR_MASK 0xf800009f
1122 #define FPCR_MASK 0x07f79f00
1123 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1124 {
1125     return vfp_get_fpscr(env) & FPSR_MASK;
1126 }
1127 
1128 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1129 {
1130     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1131     vfp_set_fpscr(env, new_fpscr);
1132 }
1133 
1134 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1135 {
1136     return vfp_get_fpscr(env) & FPCR_MASK;
1137 }
1138 
1139 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1140 {
1141     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1142     vfp_set_fpscr(env, new_fpscr);
1143 }
1144 
1145 enum arm_cpu_mode {
1146   ARM_CPU_MODE_USR = 0x10,
1147   ARM_CPU_MODE_FIQ = 0x11,
1148   ARM_CPU_MODE_IRQ = 0x12,
1149   ARM_CPU_MODE_SVC = 0x13,
1150   ARM_CPU_MODE_MON = 0x16,
1151   ARM_CPU_MODE_ABT = 0x17,
1152   ARM_CPU_MODE_HYP = 0x1a,
1153   ARM_CPU_MODE_UND = 0x1b,
1154   ARM_CPU_MODE_SYS = 0x1f
1155 };
1156 
1157 /* VFP system registers.  */
1158 #define ARM_VFP_FPSID   0
1159 #define ARM_VFP_FPSCR   1
1160 #define ARM_VFP_MVFR2   5
1161 #define ARM_VFP_MVFR1   6
1162 #define ARM_VFP_MVFR0   7
1163 #define ARM_VFP_FPEXC   8
1164 #define ARM_VFP_FPINST  9
1165 #define ARM_VFP_FPINST2 10
1166 
1167 /* iwMMXt coprocessor control registers.  */
1168 #define ARM_IWMMXT_wCID		0
1169 #define ARM_IWMMXT_wCon		1
1170 #define ARM_IWMMXT_wCSSF	2
1171 #define ARM_IWMMXT_wCASF	3
1172 #define ARM_IWMMXT_wCGR0	8
1173 #define ARM_IWMMXT_wCGR1	9
1174 #define ARM_IWMMXT_wCGR2	10
1175 #define ARM_IWMMXT_wCGR3	11
1176 
1177 /* V7M CCR bits */
1178 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1179 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1180 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1181 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1182 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1183 FIELD(V7M_CCR, STKALIGN, 9, 1)
1184 FIELD(V7M_CCR, DC, 16, 1)
1185 FIELD(V7M_CCR, IC, 17, 1)
1186 
1187 /* V7M CFSR bits for MMFSR */
1188 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1189 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1190 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1191 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1192 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1193 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1194 
1195 /* V7M CFSR bits for BFSR */
1196 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1197 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1198 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1199 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1200 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1201 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1202 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1203 
1204 /* V7M CFSR bits for UFSR */
1205 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1206 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1207 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1208 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1209 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1210 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1211 
1212 /* V7M CFSR bit masks covering all of the subregister bits */
1213 FIELD(V7M_CFSR, MMFSR, 0, 8)
1214 FIELD(V7M_CFSR, BFSR, 8, 8)
1215 FIELD(V7M_CFSR, UFSR, 16, 16)
1216 
1217 /* V7M HFSR bits */
1218 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1219 FIELD(V7M_HFSR, FORCED, 30, 1)
1220 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1221 
1222 /* V7M DFSR bits */
1223 FIELD(V7M_DFSR, HALTED, 0, 1)
1224 FIELD(V7M_DFSR, BKPT, 1, 1)
1225 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1226 FIELD(V7M_DFSR, VCATCH, 3, 1)
1227 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1228 
1229 /* v7M MPU_CTRL bits */
1230 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1231 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1232 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1233 
1234 /* If adding a feature bit which corresponds to a Linux ELF
1235  * HWCAP bit, remember to update the feature-bit-to-hwcap
1236  * mapping in linux-user/elfload.c:get_elf_hwcap().
1237  */
1238 enum arm_features {
1239     ARM_FEATURE_VFP,
1240     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1241     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1242     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1243     ARM_FEATURE_V6,
1244     ARM_FEATURE_V6K,
1245     ARM_FEATURE_V7,
1246     ARM_FEATURE_THUMB2,
1247     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1248     ARM_FEATURE_VFP3,
1249     ARM_FEATURE_VFP_FP16,
1250     ARM_FEATURE_NEON,
1251     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1252     ARM_FEATURE_M, /* Microcontroller profile.  */
1253     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1254     ARM_FEATURE_THUMB2EE,
1255     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1256     ARM_FEATURE_V4T,
1257     ARM_FEATURE_V5,
1258     ARM_FEATURE_STRONGARM,
1259     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1260     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1261     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1262     ARM_FEATURE_GENERIC_TIMER,
1263     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1264     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1265     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1266     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1267     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1268     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1269     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1270     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1271     ARM_FEATURE_V8,
1272     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1273     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1274     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1275     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1276     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1277     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1278     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1279     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1280     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1281     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1282     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1283     ARM_FEATURE_PMU, /* has PMU support */
1284     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1285     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1286 };
1287 
1288 static inline int arm_feature(CPUARMState *env, int feature)
1289 {
1290     return (env->features & (1ULL << feature)) != 0;
1291 }
1292 
1293 #if !defined(CONFIG_USER_ONLY)
1294 /* Return true if exception levels below EL3 are in secure state,
1295  * or would be following an exception return to that level.
1296  * Unlike arm_is_secure() (which is always a question about the
1297  * _current_ state of the CPU) this doesn't care about the current
1298  * EL or mode.
1299  */
1300 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1301 {
1302     if (arm_feature(env, ARM_FEATURE_EL3)) {
1303         return !(env->cp15.scr_el3 & SCR_NS);
1304     } else {
1305         /* If EL3 is not supported then the secure state is implementation
1306          * defined, in which case QEMU defaults to non-secure.
1307          */
1308         return false;
1309     }
1310 }
1311 
1312 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1313 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1314 {
1315     if (arm_feature(env, ARM_FEATURE_EL3)) {
1316         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1317             /* CPU currently in AArch64 state and EL3 */
1318             return true;
1319         } else if (!is_a64(env) &&
1320                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1321             /* CPU currently in AArch32 state and monitor mode */
1322             return true;
1323         }
1324     }
1325     return false;
1326 }
1327 
1328 /* Return true if the processor is in secure state */
1329 static inline bool arm_is_secure(CPUARMState *env)
1330 {
1331     if (arm_is_el3_or_mon(env)) {
1332         return true;
1333     }
1334     return arm_is_secure_below_el3(env);
1335 }
1336 
1337 #else
1338 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1339 {
1340     return false;
1341 }
1342 
1343 static inline bool arm_is_secure(CPUARMState *env)
1344 {
1345     return false;
1346 }
1347 #endif
1348 
1349 /* Return true if the specified exception level is running in AArch64 state. */
1350 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1351 {
1352     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1353      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1354      */
1355     assert(el >= 1 && el <= 3);
1356     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1357 
1358     /* The highest exception level is always at the maximum supported
1359      * register width, and then lower levels have a register width controlled
1360      * by bits in the SCR or HCR registers.
1361      */
1362     if (el == 3) {
1363         return aa64;
1364     }
1365 
1366     if (arm_feature(env, ARM_FEATURE_EL3)) {
1367         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1368     }
1369 
1370     if (el == 2) {
1371         return aa64;
1372     }
1373 
1374     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1375         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1376     }
1377 
1378     return aa64;
1379 }
1380 
1381 /* Function for determing whether guest cp register reads and writes should
1382  * access the secure or non-secure bank of a cp register.  When EL3 is
1383  * operating in AArch32 state, the NS-bit determines whether the secure
1384  * instance of a cp register should be used. When EL3 is AArch64 (or if
1385  * it doesn't exist at all) then there is no register banking, and all
1386  * accesses are to the non-secure version.
1387  */
1388 static inline bool access_secure_reg(CPUARMState *env)
1389 {
1390     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1391                 !arm_el_is_aa64(env, 3) &&
1392                 !(env->cp15.scr_el3 & SCR_NS));
1393 
1394     return ret;
1395 }
1396 
1397 /* Macros for accessing a specified CP register bank */
1398 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1399     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1400 
1401 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1402     do {                                                \
1403         if (_secure) {                                   \
1404             (_env)->cp15._regname##_s = (_val);            \
1405         } else {                                        \
1406             (_env)->cp15._regname##_ns = (_val);           \
1407         }                                               \
1408     } while (0)
1409 
1410 /* Macros for automatically accessing a specific CP register bank depending on
1411  * the current secure state of the system.  These macros are not intended for
1412  * supporting instruction translation reads/writes as these are dependent
1413  * solely on the SCR.NS bit and not the mode.
1414  */
1415 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1416     A32_BANKED_REG_GET((_env), _regname,                \
1417                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1418 
1419 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1420     A32_BANKED_REG_SET((_env), _regname,                                    \
1421                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1422                        (_val))
1423 
1424 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1425 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1426                                  uint32_t cur_el, bool secure);
1427 
1428 /* Interface between CPU and Interrupt controller.  */
1429 #ifndef CONFIG_USER_ONLY
1430 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1431 #else
1432 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1433 {
1434     return true;
1435 }
1436 #endif
1437 void armv7m_nvic_set_pending(void *opaque, int irq);
1438 void armv7m_nvic_acknowledge_irq(void *opaque);
1439 /**
1440  * armv7m_nvic_complete_irq: complete specified interrupt or exception
1441  * @opaque: the NVIC
1442  * @irq: the exception number to complete
1443  *
1444  * Returns: -1 if the irq was not active
1445  *           1 if completing this irq brought us back to base (no active irqs)
1446  *           0 if there is still an irq active after this one was completed
1447  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1448  */
1449 int armv7m_nvic_complete_irq(void *opaque, int irq);
1450 /**
1451  * armv7m_nvic_raw_execution_priority: return the raw execution priority
1452  * @opaque: the NVIC
1453  *
1454  * Returns: the raw execution priority as defined by the v8M architecture.
1455  * This is the execution priority minus the effects of AIRCR.PRIS,
1456  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1457  * (v8M ARM ARM I_PKLD.)
1458  */
1459 int armv7m_nvic_raw_execution_priority(void *opaque);
1460 
1461 /* Interface for defining coprocessor registers.
1462  * Registers are defined in tables of arm_cp_reginfo structs
1463  * which are passed to define_arm_cp_regs().
1464  */
1465 
1466 /* When looking up a coprocessor register we look for it
1467  * via an integer which encodes all of:
1468  *  coprocessor number
1469  *  Crn, Crm, opc1, opc2 fields
1470  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1471  *    or via MRRC/MCRR?)
1472  *  non-secure/secure bank (AArch32 only)
1473  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1474  * (In this case crn and opc2 should be zero.)
1475  * For AArch64, there is no 32/64 bit size distinction;
1476  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1477  * and 4 bit CRn and CRm. The encoding patterns are chosen
1478  * to be easy to convert to and from the KVM encodings, and also
1479  * so that the hashtable can contain both AArch32 and AArch64
1480  * registers (to allow for interprocessing where we might run
1481  * 32 bit code on a 64 bit core).
1482  */
1483 /* This bit is private to our hashtable cpreg; in KVM register
1484  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1485  * in the upper bits of the 64 bit ID.
1486  */
1487 #define CP_REG_AA64_SHIFT 28
1488 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1489 
1490 /* To enable banking of coprocessor registers depending on ns-bit we
1491  * add a bit to distinguish between secure and non-secure cpregs in the
1492  * hashtable.
1493  */
1494 #define CP_REG_NS_SHIFT 29
1495 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1496 
1497 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1498     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1499      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1500 
1501 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1502     (CP_REG_AA64_MASK |                                 \
1503      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1504      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1505      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1506      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1507      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1508      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1509 
1510 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1511  * version used as a key for the coprocessor register hashtable
1512  */
1513 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1514 {
1515     uint32_t cpregid = kvmid;
1516     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1517         cpregid |= CP_REG_AA64_MASK;
1518     } else {
1519         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1520             cpregid |= (1 << 15);
1521         }
1522 
1523         /* KVM is always non-secure so add the NS flag on AArch32 register
1524          * entries.
1525          */
1526          cpregid |= 1 << CP_REG_NS_SHIFT;
1527     }
1528     return cpregid;
1529 }
1530 
1531 /* Convert a truncated 32 bit hashtable key into the full
1532  * 64 bit KVM register ID.
1533  */
1534 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1535 {
1536     uint64_t kvmid;
1537 
1538     if (cpregid & CP_REG_AA64_MASK) {
1539         kvmid = cpregid & ~CP_REG_AA64_MASK;
1540         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1541     } else {
1542         kvmid = cpregid & ~(1 << 15);
1543         if (cpregid & (1 << 15)) {
1544             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1545         } else {
1546             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1547         }
1548     }
1549     return kvmid;
1550 }
1551 
1552 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1553  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1554  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1555  * TCG can assume the value to be constant (ie load at translate time)
1556  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1557  * indicates that the TB should not be ended after a write to this register
1558  * (the default is that the TB ends after cp writes). OVERRIDE permits
1559  * a register definition to override a previous definition for the
1560  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1561  * old must have the OVERRIDE bit set.
1562  * ALIAS indicates that this register is an alias view of some underlying
1563  * state which is also visible via another register, and that the other
1564  * register is handling migration and reset; registers marked ALIAS will not be
1565  * migrated but may have their state set by syncing of register state from KVM.
1566  * NO_RAW indicates that this register has no underlying state and does not
1567  * support raw access for state saving/loading; it will not be used for either
1568  * migration or KVM state synchronization. (Typically this is for "registers"
1569  * which are actually used as instructions for cache maintenance and so on.)
1570  * IO indicates that this register does I/O and therefore its accesses
1571  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1572  * registers which implement clocks or timers require this.
1573  */
1574 #define ARM_CP_SPECIAL 1
1575 #define ARM_CP_CONST 2
1576 #define ARM_CP_64BIT 4
1577 #define ARM_CP_SUPPRESS_TB_END 8
1578 #define ARM_CP_OVERRIDE 16
1579 #define ARM_CP_ALIAS 32
1580 #define ARM_CP_IO 64
1581 #define ARM_CP_NO_RAW 128
1582 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1583 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1584 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1585 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1586 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1587 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1588 /* Used only as a terminator for ARMCPRegInfo lists */
1589 #define ARM_CP_SENTINEL 0xffff
1590 /* Mask of only the flag bits in a type field */
1591 #define ARM_CP_FLAG_MASK 0xff
1592 
1593 /* Valid values for ARMCPRegInfo state field, indicating which of
1594  * the AArch32 and AArch64 execution states this register is visible in.
1595  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1596  * If the reginfo is declared to be visible in both states then a second
1597  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1598  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1599  * Note that we rely on the values of these enums as we iterate through
1600  * the various states in some places.
1601  */
1602 enum {
1603     ARM_CP_STATE_AA32 = 0,
1604     ARM_CP_STATE_AA64 = 1,
1605     ARM_CP_STATE_BOTH = 2,
1606 };
1607 
1608 /* ARM CP register secure state flags.  These flags identify security state
1609  * attributes for a given CP register entry.
1610  * The existence of both or neither secure and non-secure flags indicates that
1611  * the register has both a secure and non-secure hash entry.  A single one of
1612  * these flags causes the register to only be hashed for the specified
1613  * security state.
1614  * Although definitions may have any combination of the S/NS bits, each
1615  * registered entry will only have one to identify whether the entry is secure
1616  * or non-secure.
1617  */
1618 enum {
1619     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1620     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1621 };
1622 
1623 /* Return true if cptype is a valid type field. This is used to try to
1624  * catch errors where the sentinel has been accidentally left off the end
1625  * of a list of registers.
1626  */
1627 static inline bool cptype_valid(int cptype)
1628 {
1629     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1630         || ((cptype & ARM_CP_SPECIAL) &&
1631             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1632 }
1633 
1634 /* Access rights:
1635  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1636  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1637  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1638  * (ie any of the privileged modes in Secure state, or Monitor mode).
1639  * If a register is accessible in one privilege level it's always accessible
1640  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1641  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1642  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1643  * terminology a little and call this PL3.
1644  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1645  * with the ELx exception levels.
1646  *
1647  * If access permissions for a register are more complex than can be
1648  * described with these bits, then use a laxer set of restrictions, and
1649  * do the more restrictive/complex check inside a helper function.
1650  */
1651 #define PL3_R 0x80
1652 #define PL3_W 0x40
1653 #define PL2_R (0x20 | PL3_R)
1654 #define PL2_W (0x10 | PL3_W)
1655 #define PL1_R (0x08 | PL2_R)
1656 #define PL1_W (0x04 | PL2_W)
1657 #define PL0_R (0x02 | PL1_R)
1658 #define PL0_W (0x01 | PL1_W)
1659 
1660 #define PL3_RW (PL3_R | PL3_W)
1661 #define PL2_RW (PL2_R | PL2_W)
1662 #define PL1_RW (PL1_R | PL1_W)
1663 #define PL0_RW (PL0_R | PL0_W)
1664 
1665 /* Return the highest implemented Exception Level */
1666 static inline int arm_highest_el(CPUARMState *env)
1667 {
1668     if (arm_feature(env, ARM_FEATURE_EL3)) {
1669         return 3;
1670     }
1671     if (arm_feature(env, ARM_FEATURE_EL2)) {
1672         return 2;
1673     }
1674     return 1;
1675 }
1676 
1677 /* Return true if a v7M CPU is in Handler mode */
1678 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1679 {
1680     return env->v7m.exception != 0;
1681 }
1682 
1683 /* Return the current Exception Level (as per ARMv8; note that this differs
1684  * from the ARMv7 Privilege Level).
1685  */
1686 static inline int arm_current_el(CPUARMState *env)
1687 {
1688     if (arm_feature(env, ARM_FEATURE_M)) {
1689         return arm_v7m_is_handler_mode(env) ||
1690             !(env->v7m.control[env->v7m.secure] & 1);
1691     }
1692 
1693     if (is_a64(env)) {
1694         return extract32(env->pstate, 2, 2);
1695     }
1696 
1697     switch (env->uncached_cpsr & 0x1f) {
1698     case ARM_CPU_MODE_USR:
1699         return 0;
1700     case ARM_CPU_MODE_HYP:
1701         return 2;
1702     case ARM_CPU_MODE_MON:
1703         return 3;
1704     default:
1705         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1706             /* If EL3 is 32-bit then all secure privileged modes run in
1707              * EL3
1708              */
1709             return 3;
1710         }
1711 
1712         return 1;
1713     }
1714 }
1715 
1716 typedef struct ARMCPRegInfo ARMCPRegInfo;
1717 
1718 typedef enum CPAccessResult {
1719     /* Access is permitted */
1720     CP_ACCESS_OK = 0,
1721     /* Access fails due to a configurable trap or enable which would
1722      * result in a categorized exception syndrome giving information about
1723      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1724      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1725      * PL1 if in EL0, otherwise to the current EL).
1726      */
1727     CP_ACCESS_TRAP = 1,
1728     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1729      * Note that this is not a catch-all case -- the set of cases which may
1730      * result in this failure is specifically defined by the architecture.
1731      */
1732     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1733     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1734     CP_ACCESS_TRAP_EL2 = 3,
1735     CP_ACCESS_TRAP_EL3 = 4,
1736     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1737     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1738     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1739     /* Access fails and results in an exception syndrome for an FP access,
1740      * trapped directly to EL2 or EL3
1741      */
1742     CP_ACCESS_TRAP_FP_EL2 = 7,
1743     CP_ACCESS_TRAP_FP_EL3 = 8,
1744 } CPAccessResult;
1745 
1746 /* Access functions for coprocessor registers. These cannot fail and
1747  * may not raise exceptions.
1748  */
1749 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1750 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1751                        uint64_t value);
1752 /* Access permission check functions for coprocessor registers. */
1753 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1754                                   const ARMCPRegInfo *opaque,
1755                                   bool isread);
1756 /* Hook function for register reset */
1757 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1758 
1759 #define CP_ANY 0xff
1760 
1761 /* Definition of an ARM coprocessor register */
1762 struct ARMCPRegInfo {
1763     /* Name of register (useful mainly for debugging, need not be unique) */
1764     const char *name;
1765     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1766      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1767      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1768      * will be decoded to this register. The register read and write
1769      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1770      * used by the program, so it is possible to register a wildcard and
1771      * then behave differently on read/write if necessary.
1772      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1773      * must both be zero.
1774      * For AArch64-visible registers, opc0 is also used.
1775      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1776      * way to distinguish (for KVM's benefit) guest-visible system registers
1777      * from demuxed ones provided to preserve the "no side effects on
1778      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1779      * visible (to match KVM's encoding); cp==0 will be converted to
1780      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1781      */
1782     uint8_t cp;
1783     uint8_t crn;
1784     uint8_t crm;
1785     uint8_t opc0;
1786     uint8_t opc1;
1787     uint8_t opc2;
1788     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1789     int state;
1790     /* Register type: ARM_CP_* bits/values */
1791     int type;
1792     /* Access rights: PL*_[RW] */
1793     int access;
1794     /* Security state: ARM_CP_SECSTATE_* bits/values */
1795     int secure;
1796     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1797      * this register was defined: can be used to hand data through to the
1798      * register read/write functions, since they are passed the ARMCPRegInfo*.
1799      */
1800     void *opaque;
1801     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1802      * fieldoffset is non-zero, the reset value of the register.
1803      */
1804     uint64_t resetvalue;
1805     /* Offset of the field in CPUARMState for this register.
1806      *
1807      * This is not needed if either:
1808      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1809      *  2. both readfn and writefn are specified
1810      */
1811     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1812 
1813     /* Offsets of the secure and non-secure fields in CPUARMState for the
1814      * register if it is banked.  These fields are only used during the static
1815      * registration of a register.  During hashing the bank associated
1816      * with a given security state is copied to fieldoffset which is used from
1817      * there on out.
1818      *
1819      * It is expected that register definitions use either fieldoffset or
1820      * bank_fieldoffsets in the definition but not both.  It is also expected
1821      * that both bank offsets are set when defining a banked register.  This
1822      * use indicates that a register is banked.
1823      */
1824     ptrdiff_t bank_fieldoffsets[2];
1825 
1826     /* Function for making any access checks for this register in addition to
1827      * those specified by the 'access' permissions bits. If NULL, no extra
1828      * checks required. The access check is performed at runtime, not at
1829      * translate time.
1830      */
1831     CPAccessFn *accessfn;
1832     /* Function for handling reads of this register. If NULL, then reads
1833      * will be done by loading from the offset into CPUARMState specified
1834      * by fieldoffset.
1835      */
1836     CPReadFn *readfn;
1837     /* Function for handling writes of this register. If NULL, then writes
1838      * will be done by writing to the offset into CPUARMState specified
1839      * by fieldoffset.
1840      */
1841     CPWriteFn *writefn;
1842     /* Function for doing a "raw" read; used when we need to copy
1843      * coprocessor state to the kernel for KVM or out for
1844      * migration. This only needs to be provided if there is also a
1845      * readfn and it has side effects (for instance clear-on-read bits).
1846      */
1847     CPReadFn *raw_readfn;
1848     /* Function for doing a "raw" write; used when we need to copy KVM
1849      * kernel coprocessor state into userspace, or for inbound
1850      * migration. This only needs to be provided if there is also a
1851      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1852      * or similar behaviour.
1853      */
1854     CPWriteFn *raw_writefn;
1855     /* Function for resetting the register. If NULL, then reset will be done
1856      * by writing resetvalue to the field specified in fieldoffset. If
1857      * fieldoffset is 0 then no reset will be done.
1858      */
1859     CPResetFn *resetfn;
1860 };
1861 
1862 /* Macros which are lvalues for the field in CPUARMState for the
1863  * ARMCPRegInfo *ri.
1864  */
1865 #define CPREG_FIELD32(env, ri) \
1866     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1867 #define CPREG_FIELD64(env, ri) \
1868     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1869 
1870 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1871 
1872 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1873                                     const ARMCPRegInfo *regs, void *opaque);
1874 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1875                                        const ARMCPRegInfo *regs, void *opaque);
1876 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1877 {
1878     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1879 }
1880 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1881 {
1882     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1883 }
1884 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1885 
1886 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1887 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1888                          uint64_t value);
1889 /* CPReadFn that can be used for read-as-zero behaviour */
1890 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1891 
1892 /* CPResetFn that does nothing, for use if no reset is required even
1893  * if fieldoffset is non zero.
1894  */
1895 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1896 
1897 /* Return true if this reginfo struct's field in the cpu state struct
1898  * is 64 bits wide.
1899  */
1900 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1901 {
1902     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1903 }
1904 
1905 static inline bool cp_access_ok(int current_el,
1906                                 const ARMCPRegInfo *ri, int isread)
1907 {
1908     return (ri->access >> ((current_el * 2) + isread)) & 1;
1909 }
1910 
1911 /* Raw read of a coprocessor register (as needed for migration, etc) */
1912 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1913 
1914 /**
1915  * write_list_to_cpustate
1916  * @cpu: ARMCPU
1917  *
1918  * For each register listed in the ARMCPU cpreg_indexes list, write
1919  * its value from the cpreg_values list into the ARMCPUState structure.
1920  * This updates TCG's working data structures from KVM data or
1921  * from incoming migration state.
1922  *
1923  * Returns: true if all register values were updated correctly,
1924  * false if some register was unknown or could not be written.
1925  * Note that we do not stop early on failure -- we will attempt
1926  * writing all registers in the list.
1927  */
1928 bool write_list_to_cpustate(ARMCPU *cpu);
1929 
1930 /**
1931  * write_cpustate_to_list:
1932  * @cpu: ARMCPU
1933  *
1934  * For each register listed in the ARMCPU cpreg_indexes list, write
1935  * its value from the ARMCPUState structure into the cpreg_values list.
1936  * This is used to copy info from TCG's working data structures into
1937  * KVM or for outbound migration.
1938  *
1939  * Returns: true if all register values were read correctly,
1940  * false if some register was unknown or could not be read.
1941  * Note that we do not stop early on failure -- we will attempt
1942  * reading all registers in the list.
1943  */
1944 bool write_cpustate_to_list(ARMCPU *cpu);
1945 
1946 #define ARM_CPUID_TI915T      0x54029152
1947 #define ARM_CPUID_TI925T      0x54029252
1948 
1949 #if defined(CONFIG_USER_ONLY)
1950 #define TARGET_PAGE_BITS 12
1951 #else
1952 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1953  * have to support 1K tiny pages.
1954  */
1955 #define TARGET_PAGE_BITS_VARY
1956 #define TARGET_PAGE_BITS_MIN 10
1957 #endif
1958 
1959 #if defined(TARGET_AARCH64)
1960 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1961 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1962 #else
1963 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1964 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1965 #endif
1966 
1967 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1968                                      unsigned int target_el)
1969 {
1970     CPUARMState *env = cs->env_ptr;
1971     unsigned int cur_el = arm_current_el(env);
1972     bool secure = arm_is_secure(env);
1973     bool pstate_unmasked;
1974     int8_t unmasked = 0;
1975 
1976     /* Don't take exceptions if they target a lower EL.
1977      * This check should catch any exceptions that would not be taken but left
1978      * pending.
1979      */
1980     if (cur_el > target_el) {
1981         return false;
1982     }
1983 
1984     switch (excp_idx) {
1985     case EXCP_FIQ:
1986         pstate_unmasked = !(env->daif & PSTATE_F);
1987         break;
1988 
1989     case EXCP_IRQ:
1990         pstate_unmasked = !(env->daif & PSTATE_I);
1991         break;
1992 
1993     case EXCP_VFIQ:
1994         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1995             /* VFIQs are only taken when hypervized and non-secure.  */
1996             return false;
1997         }
1998         return !(env->daif & PSTATE_F);
1999     case EXCP_VIRQ:
2000         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2001             /* VIRQs are only taken when hypervized and non-secure.  */
2002             return false;
2003         }
2004         return !(env->daif & PSTATE_I);
2005     default:
2006         g_assert_not_reached();
2007     }
2008 
2009     /* Use the target EL, current execution state and SCR/HCR settings to
2010      * determine whether the corresponding CPSR bit is used to mask the
2011      * interrupt.
2012      */
2013     if ((target_el > cur_el) && (target_el != 1)) {
2014         /* Exceptions targeting a higher EL may not be maskable */
2015         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2016             /* 64-bit masking rules are simple: exceptions to EL3
2017              * can't be masked, and exceptions to EL2 can only be
2018              * masked from Secure state. The HCR and SCR settings
2019              * don't affect the masking logic, only the interrupt routing.
2020              */
2021             if (target_el == 3 || !secure) {
2022                 unmasked = 1;
2023             }
2024         } else {
2025             /* The old 32-bit-only environment has a more complicated
2026              * masking setup. HCR and SCR bits not only affect interrupt
2027              * routing but also change the behaviour of masking.
2028              */
2029             bool hcr, scr;
2030 
2031             switch (excp_idx) {
2032             case EXCP_FIQ:
2033                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2034                  * we override the CPSR.F in determining if the exception is
2035                  * masked or not. If neither of these are set then we fall back
2036                  * to the CPSR.F setting otherwise we further assess the state
2037                  * below.
2038                  */
2039                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2040                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2041 
2042                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2043                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2044                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2045                  * when non-secure but only when FIQs are only routed to EL3.
2046                  */
2047                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2048                 break;
2049             case EXCP_IRQ:
2050                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2051                  * we may override the CPSR.I masking when in non-secure state.
2052                  * The SCR.IRQ setting has already been taken into consideration
2053                  * when setting the target EL, so it does not have a further
2054                  * affect here.
2055                  */
2056                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2057                 scr = false;
2058                 break;
2059             default:
2060                 g_assert_not_reached();
2061             }
2062 
2063             if ((scr || hcr) && !secure) {
2064                 unmasked = 1;
2065             }
2066         }
2067     }
2068 
2069     /* The PSTATE bits only mask the interrupt if we have not overriden the
2070      * ability above.
2071      */
2072     return unmasked || pstate_unmasked;
2073 }
2074 
2075 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2076 
2077 #define cpu_signal_handler cpu_arm_signal_handler
2078 #define cpu_list arm_cpu_list
2079 
2080 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2081  *
2082  * If EL3 is 64-bit:
2083  *  + NonSecure EL1 & 0 stage 1
2084  *  + NonSecure EL1 & 0 stage 2
2085  *  + NonSecure EL2
2086  *  + Secure EL1 & EL0
2087  *  + Secure EL3
2088  * If EL3 is 32-bit:
2089  *  + NonSecure PL1 & 0 stage 1
2090  *  + NonSecure PL1 & 0 stage 2
2091  *  + NonSecure PL2
2092  *  + Secure PL0 & PL1
2093  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2094  *
2095  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2096  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2097  *     may differ in access permissions even if the VA->PA map is the same
2098  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2099  *     translation, which means that we have one mmu_idx that deals with two
2100  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2101  *     architecturally permitted]
2102  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2103  *     handling via the TLB. The only way to do a stage 1 translation without
2104  *     the immediate stage 2 translation is via the ATS or AT system insns,
2105  *     which can be slow-pathed and always do a page table walk.
2106  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2107  *     translation regimes, because they map reasonably well to each other
2108  *     and they can't both be active at the same time.
2109  * This gives us the following list of mmu_idx values:
2110  *
2111  * NS EL0 (aka NS PL0) stage 1+2
2112  * NS EL1 (aka NS PL1) stage 1+2
2113  * NS EL2 (aka NS PL2)
2114  * S EL3 (aka S PL1)
2115  * S EL0 (aka S PL0)
2116  * S EL1 (not used if EL3 is 32 bit)
2117  * NS EL0+1 stage 2
2118  *
2119  * (The last of these is an mmu_idx because we want to be able to use the TLB
2120  * for the accesses done as part of a stage 1 page table walk, rather than
2121  * having to walk the stage 2 page table over and over.)
2122  *
2123  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2124  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2125  * NS EL2 if we ever model a Cortex-R52).
2126  *
2127  * M profile CPUs are rather different as they do not have a true MMU.
2128  * They have the following different MMU indexes:
2129  *  User
2130  *  Privileged
2131  *  Execution priority negative (this is like privileged, but the
2132  *  MPU HFNMIENA bit means that it may have different access permission
2133  *  check results to normal privileged code, so can't share a TLB).
2134  * If the CPU supports the v8M Security Extension then there are also:
2135  *  Secure User
2136  *  Secure Privileged
2137  *  Secure, execution priority negative
2138  *
2139  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2140  * are not quite the same -- different CPU types (most notably M profile
2141  * vs A/R profile) would like to use MMU indexes with different semantics,
2142  * but since we don't ever need to use all of those in a single CPU we
2143  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2144  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2145  * the same for any particular CPU.
2146  * Variables of type ARMMUIdx are always full values, and the core
2147  * index values are in variables of type 'int'.
2148  *
2149  * Our enumeration includes at the end some entries which are not "true"
2150  * mmu_idx values in that they don't have corresponding TLBs and are only
2151  * valid for doing slow path page table walks.
2152  *
2153  * The constant names here are patterned after the general style of the names
2154  * of the AT/ATS operations.
2155  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2156  */
2157 #define ARM_MMU_IDX_A 0x10 /* A profile */
2158 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2159 #define ARM_MMU_IDX_M 0x40 /* M profile */
2160 
2161 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2162 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2163 
2164 typedef enum ARMMMUIdx {
2165     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2166     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2167     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2168     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2169     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2170     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2171     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2172     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2173     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2174     ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2175     ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M,
2176     ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M,
2177     ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M,
2178     /* Indexes below here don't have TLBs and are used only for AT system
2179      * instructions or for the first stage of an S12 page table walk.
2180      */
2181     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2182     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2183 } ARMMMUIdx;
2184 
2185 /* Bit macros for the core-mmu-index values for each index,
2186  * for use when calling tlb_flush_by_mmuidx() and friends.
2187  */
2188 typedef enum ARMMMUIdxBit {
2189     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2190     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2191     ARMMMUIdxBit_S1E2 = 1 << 2,
2192     ARMMMUIdxBit_S1E3 = 1 << 3,
2193     ARMMMUIdxBit_S1SE0 = 1 << 4,
2194     ARMMMUIdxBit_S1SE1 = 1 << 5,
2195     ARMMMUIdxBit_S2NS = 1 << 6,
2196     ARMMMUIdxBit_MUser = 1 << 0,
2197     ARMMMUIdxBit_MPriv = 1 << 1,
2198     ARMMMUIdxBit_MNegPri = 1 << 2,
2199     ARMMMUIdxBit_MSUser = 1 << 3,
2200     ARMMMUIdxBit_MSPriv = 1 << 4,
2201     ARMMMUIdxBit_MSNegPri = 1 << 5,
2202 } ARMMMUIdxBit;
2203 
2204 #define MMU_USER_IDX 0
2205 
2206 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2207 {
2208     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2209 }
2210 
2211 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2212 {
2213     if (arm_feature(env, ARM_FEATURE_M)) {
2214         return mmu_idx | ARM_MMU_IDX_M;
2215     } else {
2216         return mmu_idx | ARM_MMU_IDX_A;
2217     }
2218 }
2219 
2220 /* Return the exception level we're running at if this is our mmu_idx */
2221 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2222 {
2223     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2224     case ARM_MMU_IDX_A:
2225         return mmu_idx & 3;
2226     case ARM_MMU_IDX_M:
2227         return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser)
2228             ? 0 : 1;
2229     default:
2230         g_assert_not_reached();
2231     }
2232 }
2233 
2234 /* Determine the current mmu_idx to use for normal loads/stores */
2235 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2236 {
2237     int el = arm_current_el(env);
2238 
2239     if (arm_feature(env, ARM_FEATURE_M)) {
2240         ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2241 
2242         /* Execution priority is negative if FAULTMASK is set or
2243          * we're in a HardFault or NMI handler.
2244          */
2245         if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2246             || env->v7m.faultmask[env->v7m.secure]) {
2247             mmu_idx = ARMMMUIdx_MNegPri;
2248         }
2249 
2250         if (env->v7m.secure) {
2251             mmu_idx += ARMMMUIdx_MSUser;
2252         }
2253 
2254         return arm_to_core_mmu_idx(mmu_idx);
2255     }
2256 
2257     if (el < 2 && arm_is_secure_below_el3(env)) {
2258         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2259     }
2260     return el;
2261 }
2262 
2263 /* Indexes used when registering address spaces with cpu_address_space_init */
2264 typedef enum ARMASIdx {
2265     ARMASIdx_NS = 0,
2266     ARMASIdx_S = 1,
2267 } ARMASIdx;
2268 
2269 /* Return the Exception Level targeted by debug exceptions. */
2270 static inline int arm_debug_target_el(CPUARMState *env)
2271 {
2272     bool secure = arm_is_secure(env);
2273     bool route_to_el2 = false;
2274 
2275     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2276         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2277                        env->cp15.mdcr_el2 & (1 << 8);
2278     }
2279 
2280     if (route_to_el2) {
2281         return 2;
2282     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2283                !arm_el_is_aa64(env, 3) && secure) {
2284         return 3;
2285     } else {
2286         return 1;
2287     }
2288 }
2289 
2290 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2291 {
2292     if (arm_is_secure(env)) {
2293         /* MDCR_EL3.SDD disables debug events from Secure state */
2294         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2295             || arm_current_el(env) == 3) {
2296             return false;
2297         }
2298     }
2299 
2300     if (arm_current_el(env) == arm_debug_target_el(env)) {
2301         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2302             || (env->daif & PSTATE_D)) {
2303             return false;
2304         }
2305     }
2306     return true;
2307 }
2308 
2309 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2310 {
2311     int el = arm_current_el(env);
2312 
2313     if (el == 0 && arm_el_is_aa64(env, 1)) {
2314         return aa64_generate_debug_exceptions(env);
2315     }
2316 
2317     if (arm_is_secure(env)) {
2318         int spd;
2319 
2320         if (el == 0 && (env->cp15.sder & 1)) {
2321             /* SDER.SUIDEN means debug exceptions from Secure EL0
2322              * are always enabled. Otherwise they are controlled by
2323              * SDCR.SPD like those from other Secure ELs.
2324              */
2325             return true;
2326         }
2327 
2328         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2329         switch (spd) {
2330         case 1:
2331             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2332         case 0:
2333             /* For 0b00 we return true if external secure invasive debug
2334              * is enabled. On real hardware this is controlled by external
2335              * signals to the core. QEMU always permits debug, and behaves
2336              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2337              */
2338             return true;
2339         case 2:
2340             return false;
2341         case 3:
2342             return true;
2343         }
2344     }
2345 
2346     return el != 2;
2347 }
2348 
2349 /* Return true if debugging exceptions are currently enabled.
2350  * This corresponds to what in ARM ARM pseudocode would be
2351  *    if UsingAArch32() then
2352  *        return AArch32.GenerateDebugExceptions()
2353  *    else
2354  *        return AArch64.GenerateDebugExceptions()
2355  * We choose to push the if() down into this function for clarity,
2356  * since the pseudocode has it at all callsites except for the one in
2357  * CheckSoftwareStep(), where it is elided because both branches would
2358  * always return the same value.
2359  *
2360  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2361  * don't yet implement those exception levels or their associated trap bits.
2362  */
2363 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2364 {
2365     if (env->aarch64) {
2366         return aa64_generate_debug_exceptions(env);
2367     } else {
2368         return aa32_generate_debug_exceptions(env);
2369     }
2370 }
2371 
2372 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2373  * implicitly means this always returns false in pre-v8 CPUs.)
2374  */
2375 static inline bool arm_singlestep_active(CPUARMState *env)
2376 {
2377     return extract32(env->cp15.mdscr_el1, 0, 1)
2378         && arm_el_is_aa64(env, arm_debug_target_el(env))
2379         && arm_generate_debug_exceptions(env);
2380 }
2381 
2382 static inline bool arm_sctlr_b(CPUARMState *env)
2383 {
2384     return
2385         /* We need not implement SCTLR.ITD in user-mode emulation, so
2386          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2387          * This lets people run BE32 binaries with "-cpu any".
2388          */
2389 #ifndef CONFIG_USER_ONLY
2390         !arm_feature(env, ARM_FEATURE_V7) &&
2391 #endif
2392         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2393 }
2394 
2395 /* Return true if the processor is in big-endian mode. */
2396 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2397 {
2398     int cur_el;
2399 
2400     /* In 32bit endianness is determined by looking at CPSR's E bit */
2401     if (!is_a64(env)) {
2402         return
2403 #ifdef CONFIG_USER_ONLY
2404             /* In system mode, BE32 is modelled in line with the
2405              * architecture (as word-invariant big-endianness), where loads
2406              * and stores are done little endian but from addresses which
2407              * are adjusted by XORing with the appropriate constant. So the
2408              * endianness to use for the raw data access is not affected by
2409              * SCTLR.B.
2410              * In user mode, however, we model BE32 as byte-invariant
2411              * big-endianness (because user-only code cannot tell the
2412              * difference), and so we need to use a data access endianness
2413              * that depends on SCTLR.B.
2414              */
2415             arm_sctlr_b(env) ||
2416 #endif
2417                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2418     }
2419 
2420     cur_el = arm_current_el(env);
2421 
2422     if (cur_el == 0) {
2423         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2424     }
2425 
2426     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2427 }
2428 
2429 #include "exec/cpu-all.h"
2430 
2431 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2432  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2433  * We put flags which are shared between 32 and 64 bit mode at the top
2434  * of the word, and flags which apply to only one mode at the bottom.
2435  */
2436 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2437 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2438 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2439 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2440 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2441 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2442 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2443 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2444 /* Target EL if we take a floating-point-disabled exception */
2445 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2446 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2447 
2448 /* Bit usage when in AArch32 state: */
2449 #define ARM_TBFLAG_THUMB_SHIFT      0
2450 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2451 #define ARM_TBFLAG_VECLEN_SHIFT     1
2452 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2453 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2454 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2455 #define ARM_TBFLAG_VFPEN_SHIFT      7
2456 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2457 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2458 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2459 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2460 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2461 /* We store the bottom two bits of the CPAR as TB flags and handle
2462  * checks on the other bits at runtime
2463  */
2464 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2465 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2466 /* Indicates whether cp register reads and writes by guest code should access
2467  * the secure or nonsecure bank of banked registers; note that this is not
2468  * the same thing as the current security state of the processor!
2469  */
2470 #define ARM_TBFLAG_NS_SHIFT         19
2471 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2472 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2473 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2474 /* For M profile only, Handler (ie not Thread) mode */
2475 #define ARM_TBFLAG_HANDLER_SHIFT    21
2476 #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
2477 
2478 /* Bit usage when in AArch64 state */
2479 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2480 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2481 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2482 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2483 
2484 /* some convenience accessor macros */
2485 #define ARM_TBFLAG_AARCH64_STATE(F) \
2486     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2487 #define ARM_TBFLAG_MMUIDX(F) \
2488     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2489 #define ARM_TBFLAG_SS_ACTIVE(F) \
2490     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2491 #define ARM_TBFLAG_PSTATE_SS(F) \
2492     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2493 #define ARM_TBFLAG_FPEXC_EL(F) \
2494     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2495 #define ARM_TBFLAG_THUMB(F) \
2496     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2497 #define ARM_TBFLAG_VECLEN(F) \
2498     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2499 #define ARM_TBFLAG_VECSTRIDE(F) \
2500     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2501 #define ARM_TBFLAG_VFPEN(F) \
2502     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2503 #define ARM_TBFLAG_CONDEXEC(F) \
2504     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2505 #define ARM_TBFLAG_SCTLR_B(F) \
2506     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2507 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2508     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2509 #define ARM_TBFLAG_NS(F) \
2510     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2511 #define ARM_TBFLAG_BE_DATA(F) \
2512     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2513 #define ARM_TBFLAG_HANDLER(F) \
2514     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2515 #define ARM_TBFLAG_TBI0(F) \
2516     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2517 #define ARM_TBFLAG_TBI1(F) \
2518     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2519 
2520 static inline bool bswap_code(bool sctlr_b)
2521 {
2522 #ifdef CONFIG_USER_ONLY
2523     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2524      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2525      * would also end up as a mixed-endian mode with BE code, LE data.
2526      */
2527     return
2528 #ifdef TARGET_WORDS_BIGENDIAN
2529         1 ^
2530 #endif
2531         sctlr_b;
2532 #else
2533     /* All code access in ARM is little endian, and there are no loaders
2534      * doing swaps that need to be reversed
2535      */
2536     return 0;
2537 #endif
2538 }
2539 
2540 /* Return the exception level to which FP-disabled exceptions should
2541  * be taken, or 0 if FP is enabled.
2542  */
2543 static inline int fp_exception_el(CPUARMState *env)
2544 {
2545     int fpen;
2546     int cur_el = arm_current_el(env);
2547 
2548     /* CPACR and the CPTR registers don't exist before v6, so FP is
2549      * always accessible
2550      */
2551     if (!arm_feature(env, ARM_FEATURE_V6)) {
2552         return 0;
2553     }
2554 
2555     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2556      * 0, 2 : trap EL0 and EL1/PL1 accesses
2557      * 1    : trap only EL0 accesses
2558      * 3    : trap no accesses
2559      */
2560     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2561     switch (fpen) {
2562     case 0:
2563     case 2:
2564         if (cur_el == 0 || cur_el == 1) {
2565             /* Trap to PL1, which might be EL1 or EL3 */
2566             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2567                 return 3;
2568             }
2569             return 1;
2570         }
2571         if (cur_el == 3 && !is_a64(env)) {
2572             /* Secure PL1 running at EL3 */
2573             return 3;
2574         }
2575         break;
2576     case 1:
2577         if (cur_el == 0) {
2578             return 1;
2579         }
2580         break;
2581     case 3:
2582         break;
2583     }
2584 
2585     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2586      * check because zero bits in the registers mean "don't trap".
2587      */
2588 
2589     /* CPTR_EL2 : present in v7VE or v8 */
2590     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2591         && !arm_is_secure_below_el3(env)) {
2592         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2593         return 2;
2594     }
2595 
2596     /* CPTR_EL3 : present in v8 */
2597     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2598         /* Trap all FP ops to EL3 */
2599         return 3;
2600     }
2601 
2602     return 0;
2603 }
2604 
2605 #ifdef CONFIG_USER_ONLY
2606 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2607 {
2608     return
2609 #ifdef TARGET_WORDS_BIGENDIAN
2610        1 ^
2611 #endif
2612        arm_cpu_data_is_big_endian(env);
2613 }
2614 #endif
2615 
2616 #ifndef CONFIG_USER_ONLY
2617 /**
2618  * arm_regime_tbi0:
2619  * @env: CPUARMState
2620  * @mmu_idx: MMU index indicating required translation regime
2621  *
2622  * Extracts the TBI0 value from the appropriate TCR for the current EL
2623  *
2624  * Returns: the TBI0 value.
2625  */
2626 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2627 
2628 /**
2629  * arm_regime_tbi1:
2630  * @env: CPUARMState
2631  * @mmu_idx: MMU index indicating required translation regime
2632  *
2633  * Extracts the TBI1 value from the appropriate TCR for the current EL
2634  *
2635  * Returns: the TBI1 value.
2636  */
2637 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2638 #else
2639 /* We can't handle tagged addresses properly in user-only mode */
2640 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2641 {
2642     return 0;
2643 }
2644 
2645 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2646 {
2647     return 0;
2648 }
2649 #endif
2650 
2651 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2652                                         target_ulong *cs_base, uint32_t *flags)
2653 {
2654     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2655     if (is_a64(env)) {
2656         *pc = env->pc;
2657         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2658         /* Get control bits for tagged addresses */
2659         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2660         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2661     } else {
2662         *pc = env->regs[15];
2663         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2664             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2665             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2666             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2667             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2668         if (!(access_secure_reg(env))) {
2669             *flags |= ARM_TBFLAG_NS_MASK;
2670         }
2671         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2672             || arm_el_is_aa64(env, 1)) {
2673             *flags |= ARM_TBFLAG_VFPEN_MASK;
2674         }
2675         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2676                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2677     }
2678 
2679     *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2680 
2681     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2682      * states defined in the ARM ARM for software singlestep:
2683      *  SS_ACTIVE   PSTATE.SS   State
2684      *     0            x       Inactive (the TB flag for SS is always 0)
2685      *     1            0       Active-pending
2686      *     1            1       Active-not-pending
2687      */
2688     if (arm_singlestep_active(env)) {
2689         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2690         if (is_a64(env)) {
2691             if (env->pstate & PSTATE_SS) {
2692                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2693             }
2694         } else {
2695             if (env->uncached_cpsr & PSTATE_SS) {
2696                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2697             }
2698         }
2699     }
2700     if (arm_cpu_data_is_big_endian(env)) {
2701         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2702     }
2703     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2704 
2705     if (arm_v7m_is_handler_mode(env)) {
2706         *flags |= ARM_TBFLAG_HANDLER_MASK;
2707     }
2708 
2709     *cs_base = 0;
2710 }
2711 
2712 enum {
2713     QEMU_PSCI_CONDUIT_DISABLED = 0,
2714     QEMU_PSCI_CONDUIT_SMC = 1,
2715     QEMU_PSCI_CONDUIT_HVC = 2,
2716 };
2717 
2718 #ifndef CONFIG_USER_ONLY
2719 /* Return the address space index to use for a memory access */
2720 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2721 {
2722     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2723 }
2724 
2725 /* Return the AddressSpace to use for a memory access
2726  * (which depends on whether the access is S or NS, and whether
2727  * the board gave us a separate AddressSpace for S accesses).
2728  */
2729 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2730 {
2731     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2732 }
2733 #endif
2734 
2735 /**
2736  * arm_register_el_change_hook:
2737  * Register a hook function which will be called back whenever this
2738  * CPU changes exception level or mode. The hook function will be
2739  * passed a pointer to the ARMCPU and the opaque data pointer passed
2740  * to this function when the hook was registered.
2741  *
2742  * Note that we currently only support registering a single hook function,
2743  * and will assert if this function is called twice.
2744  * This facility is intended for the use of the GICv3 emulation.
2745  */
2746 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2747                                  void *opaque);
2748 
2749 /**
2750  * arm_get_el_change_hook_opaque:
2751  * Return the opaque data that will be used by the el_change_hook
2752  * for this CPU.
2753  */
2754 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2755 {
2756     return cpu->el_change_hook_opaque;
2757 }
2758 
2759 #endif
2760