xref: /openbmc/qemu/target/arm/cpu.h (revision 3109cd98)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "qemu-common.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #define EXCP_UDEF            1   /* undefined instruction */
33 #define EXCP_SWI             2   /* software interrupt */
34 #define EXCP_PREFETCH_ABORT  3
35 #define EXCP_DATA_ABORT      4
36 #define EXCP_IRQ             5
37 #define EXCP_FIQ             6
38 #define EXCP_BKPT            7
39 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
40 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
41 #define EXCP_HVC            11   /* HyperVisor Call */
42 #define EXCP_HYP_TRAP       12
43 #define EXCP_SMC            13   /* Secure Monitor Call */
44 #define EXCP_VIRQ           14
45 #define EXCP_VFIQ           15
46 #define EXCP_SEMIHOST       16   /* semihosting call */
47 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
48 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
49 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
50 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
51 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
52 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
53 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
54 
55 #define ARMV7M_EXCP_RESET   1
56 #define ARMV7M_EXCP_NMI     2
57 #define ARMV7M_EXCP_HARD    3
58 #define ARMV7M_EXCP_MEM     4
59 #define ARMV7M_EXCP_BUS     5
60 #define ARMV7M_EXCP_USAGE   6
61 #define ARMV7M_EXCP_SECURE  7
62 #define ARMV7M_EXCP_SVC     11
63 #define ARMV7M_EXCP_DEBUG   12
64 #define ARMV7M_EXCP_PENDSV  14
65 #define ARMV7M_EXCP_SYSTICK 15
66 
67 /* For M profile, some registers are banked secure vs non-secure;
68  * these are represented as a 2-element array where the first element
69  * is the non-secure copy and the second is the secure copy.
70  * When the CPU does not have implement the security extension then
71  * only the first element is used.
72  * This means that the copy for the current security state can be
73  * accessed via env->registerfield[env->v7m.secure] (whether the security
74  * extension is implemented or not).
75  */
76 enum {
77     M_REG_NS = 0,
78     M_REG_S = 1,
79     M_REG_NUM_BANKS = 2,
80 };
81 
82 /* ARM-specific interrupt pending bits.  */
83 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
84 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
85 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
86 
87 /* The usual mapping for an AArch64 system register to its AArch32
88  * counterpart is for the 32 bit world to have access to the lower
89  * half only (with writes leaving the upper half untouched). It's
90  * therefore useful to be able to pass TCG the offset of the least
91  * significant half of a uint64_t struct member.
92  */
93 #ifdef HOST_WORDS_BIGENDIAN
94 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
95 #define offsetofhigh32(S, M) offsetof(S, M)
96 #else
97 #define offsetoflow32(S, M) offsetof(S, M)
98 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #endif
100 
101 /* Meanings of the ARMCPU object's four inbound GPIO lines */
102 #define ARM_CPU_IRQ 0
103 #define ARM_CPU_FIQ 1
104 #define ARM_CPU_VIRQ 2
105 #define ARM_CPU_VFIQ 3
106 
107 /* ARM-specific extra insn start words:
108  * 1: Conditional execution bits
109  * 2: Partial exception syndrome for data aborts
110  */
111 #define TARGET_INSN_START_EXTRA_WORDS 2
112 
113 /* The 2nd extra word holding syndrome info for data aborts does not use
114  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
115  * help the sleb128 encoder do a better job.
116  * When restoring the CPU state, we shift it back up.
117  */
118 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
119 #define ARM_INSN_START_WORD2_SHIFT 14
120 
121 /* We currently assume float and double are IEEE single and double
122    precision respectively.
123    Doing runtime conversions is tricky because VFP registers may contain
124    integer values (eg. as the result of a FTOSI instruction).
125    s<2n> maps to the least significant half of d<n>
126    s<2n+1> maps to the most significant half of d<n>
127  */
128 
129 /**
130  * DynamicGDBXMLInfo:
131  * @desc: Contains the XML descriptions.
132  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
133  * @cpregs_keys: Array that contains the corresponding Key of
134  * a given cpreg with the same order of the cpreg in the XML description.
135  */
136 typedef struct DynamicGDBXMLInfo {
137     char *desc;
138     int num_cpregs;
139     uint32_t *cpregs_keys;
140 } DynamicGDBXMLInfo;
141 
142 /* CPU state for each instance of a generic timer (in cp15 c14) */
143 typedef struct ARMGenericTimer {
144     uint64_t cval; /* Timer CompareValue register */
145     uint64_t ctl; /* Timer Control register */
146 } ARMGenericTimer;
147 
148 #define GTIMER_PHYS 0
149 #define GTIMER_VIRT 1
150 #define GTIMER_HYP  2
151 #define GTIMER_SEC  3
152 #define NUM_GTIMERS 4
153 
154 typedef struct {
155     uint64_t raw_tcr;
156     uint32_t mask;
157     uint32_t base_mask;
158 } TCR;
159 
160 /* Define a maximum sized vector register.
161  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
162  * For 64-bit, this is a 2048-bit SVE register.
163  *
164  * Note that the mapping between S, D, and Q views of the register bank
165  * differs between AArch64 and AArch32.
166  * In AArch32:
167  *  Qn = regs[n].d[1]:regs[n].d[0]
168  *  Dn = regs[n / 2].d[n & 1]
169  *  Sn = regs[n / 4].d[n % 4 / 2],
170  *       bits 31..0 for even n, and bits 63..32 for odd n
171  *       (and regs[16] to regs[31] are inaccessible)
172  * In AArch64:
173  *  Zn = regs[n].d[*]
174  *  Qn = regs[n].d[1]:regs[n].d[0]
175  *  Dn = regs[n].d[0]
176  *  Sn = regs[n].d[0] bits 31..0
177  *  Hn = regs[n].d[0] bits 15..0
178  *
179  * This corresponds to the architecturally defined mapping between
180  * the two execution states, and means we do not need to explicitly
181  * map these registers when changing states.
182  *
183  * Align the data for use with TCG host vector operations.
184  */
185 
186 #ifdef TARGET_AARCH64
187 # define ARM_MAX_VQ    16
188 #else
189 # define ARM_MAX_VQ    1
190 #endif
191 
192 typedef struct ARMVectorReg {
193     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
194 } ARMVectorReg;
195 
196 #ifdef TARGET_AARCH64
197 /* In AArch32 mode, predicate registers do not exist at all.  */
198 typedef struct ARMPredicateReg {
199     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
200 } ARMPredicateReg;
201 
202 /* In AArch32 mode, PAC keys do not exist at all.  */
203 typedef struct ARMPACKey {
204     uint64_t lo, hi;
205 } ARMPACKey;
206 #endif
207 
208 
209 typedef struct CPUARMState {
210     /* Regs for current mode.  */
211     uint32_t regs[16];
212 
213     /* 32/64 switch only happens when taking and returning from
214      * exceptions so the overlap semantics are taken care of then
215      * instead of having a complicated union.
216      */
217     /* Regs for A64 mode.  */
218     uint64_t xregs[32];
219     uint64_t pc;
220     /* PSTATE isn't an architectural register for ARMv8. However, it is
221      * convenient for us to assemble the underlying state into a 32 bit format
222      * identical to the architectural format used for the SPSR. (This is also
223      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
224      * 'pstate' register are.) Of the PSTATE bits:
225      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
226      *    semantics as for AArch32, as described in the comments on each field)
227      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
228      *  DAIF (exception masks) are kept in env->daif
229      *  BTYPE is kept in env->btype
230      *  all other bits are stored in their correct places in env->pstate
231      */
232     uint32_t pstate;
233     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
234 
235     /* Frequently accessed CPSR bits are stored separately for efficiency.
236        This contains all the other bits.  Use cpsr_{read,write} to access
237        the whole CPSR.  */
238     uint32_t uncached_cpsr;
239     uint32_t spsr;
240 
241     /* Banked registers.  */
242     uint64_t banked_spsr[8];
243     uint32_t banked_r13[8];
244     uint32_t banked_r14[8];
245 
246     /* These hold r8-r12.  */
247     uint32_t usr_regs[5];
248     uint32_t fiq_regs[5];
249 
250     /* cpsr flag cache for faster execution */
251     uint32_t CF; /* 0 or 1 */
252     uint32_t VF; /* V is the bit 31. All other bits are undefined */
253     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
254     uint32_t ZF; /* Z set if zero.  */
255     uint32_t QF; /* 0 or 1 */
256     uint32_t GE; /* cpsr[19:16] */
257     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
258     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261 
262     uint64_t elr_el[4]; /* AArch64 exception link regs  */
263     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
264 
265     /* System control coprocessor (cp15) */
266     struct {
267         uint32_t c0_cpuid;
268         union { /* Cache size selection */
269             struct {
270                 uint64_t _unused_csselr0;
271                 uint64_t csselr_ns;
272                 uint64_t _unused_csselr1;
273                 uint64_t csselr_s;
274             };
275             uint64_t csselr_el[4];
276         };
277         union { /* System control register. */
278             struct {
279                 uint64_t _unused_sctlr;
280                 uint64_t sctlr_ns;
281                 uint64_t hsctlr;
282                 uint64_t sctlr_s;
283             };
284             uint64_t sctlr_el[4];
285         };
286         uint64_t cpacr_el1; /* Architectural feature access control register */
287         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
288         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
289         uint64_t sder; /* Secure debug enable register. */
290         uint32_t nsacr; /* Non-secure access control register. */
291         union { /* MMU translation table base 0. */
292             struct {
293                 uint64_t _unused_ttbr0_0;
294                 uint64_t ttbr0_ns;
295                 uint64_t _unused_ttbr0_1;
296                 uint64_t ttbr0_s;
297             };
298             uint64_t ttbr0_el[4];
299         };
300         union { /* MMU translation table base 1. */
301             struct {
302                 uint64_t _unused_ttbr1_0;
303                 uint64_t ttbr1_ns;
304                 uint64_t _unused_ttbr1_1;
305                 uint64_t ttbr1_s;
306             };
307             uint64_t ttbr1_el[4];
308         };
309         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
310         /* MMU translation table base control. */
311         TCR tcr_el[4];
312         TCR vtcr_el2; /* Virtualization Translation Control.  */
313         uint32_t c2_data; /* MPU data cacheable bits.  */
314         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
315         union { /* MMU domain access control register
316                  * MPU write buffer control.
317                  */
318             struct {
319                 uint64_t dacr_ns;
320                 uint64_t dacr_s;
321             };
322             struct {
323                 uint64_t dacr32_el2;
324             };
325         };
326         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
327         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
328         uint64_t hcr_el2; /* Hypervisor configuration register */
329         uint64_t scr_el3; /* Secure configuration register.  */
330         union { /* Fault status registers.  */
331             struct {
332                 uint64_t ifsr_ns;
333                 uint64_t ifsr_s;
334             };
335             struct {
336                 uint64_t ifsr32_el2;
337             };
338         };
339         union {
340             struct {
341                 uint64_t _unused_dfsr;
342                 uint64_t dfsr_ns;
343                 uint64_t hsr;
344                 uint64_t dfsr_s;
345             };
346             uint64_t esr_el[4];
347         };
348         uint32_t c6_region[8]; /* MPU base/size registers.  */
349         union { /* Fault address registers. */
350             struct {
351                 uint64_t _unused_far0;
352 #ifdef HOST_WORDS_BIGENDIAN
353                 uint32_t ifar_ns;
354                 uint32_t dfar_ns;
355                 uint32_t ifar_s;
356                 uint32_t dfar_s;
357 #else
358                 uint32_t dfar_ns;
359                 uint32_t ifar_ns;
360                 uint32_t dfar_s;
361                 uint32_t ifar_s;
362 #endif
363                 uint64_t _unused_far3;
364             };
365             uint64_t far_el[4];
366         };
367         uint64_t hpfar_el2;
368         uint64_t hstr_el2;
369         union { /* Translation result. */
370             struct {
371                 uint64_t _unused_par_0;
372                 uint64_t par_ns;
373                 uint64_t _unused_par_1;
374                 uint64_t par_s;
375             };
376             uint64_t par_el[4];
377         };
378 
379         uint32_t c9_insn; /* Cache lockdown registers.  */
380         uint32_t c9_data;
381         uint64_t c9_pmcr; /* performance monitor control register */
382         uint64_t c9_pmcnten; /* perf monitor counter enables */
383         uint64_t c9_pmovsr; /* perf monitor overflow status */
384         uint64_t c9_pmuserenr; /* perf monitor user enable */
385         uint64_t c9_pmselr; /* perf monitor counter selection register */
386         uint64_t c9_pminten; /* perf monitor interrupt enables */
387         union { /* Memory attribute redirection */
388             struct {
389 #ifdef HOST_WORDS_BIGENDIAN
390                 uint64_t _unused_mair_0;
391                 uint32_t mair1_ns;
392                 uint32_t mair0_ns;
393                 uint64_t _unused_mair_1;
394                 uint32_t mair1_s;
395                 uint32_t mair0_s;
396 #else
397                 uint64_t _unused_mair_0;
398                 uint32_t mair0_ns;
399                 uint32_t mair1_ns;
400                 uint64_t _unused_mair_1;
401                 uint32_t mair0_s;
402                 uint32_t mair1_s;
403 #endif
404             };
405             uint64_t mair_el[4];
406         };
407         union { /* vector base address register */
408             struct {
409                 uint64_t _unused_vbar;
410                 uint64_t vbar_ns;
411                 uint64_t hvbar;
412                 uint64_t vbar_s;
413             };
414             uint64_t vbar_el[4];
415         };
416         uint32_t mvbar; /* (monitor) vector base address register */
417         struct { /* FCSE PID. */
418             uint32_t fcseidr_ns;
419             uint32_t fcseidr_s;
420         };
421         union { /* Context ID. */
422             struct {
423                 uint64_t _unused_contextidr_0;
424                 uint64_t contextidr_ns;
425                 uint64_t _unused_contextidr_1;
426                 uint64_t contextidr_s;
427             };
428             uint64_t contextidr_el[4];
429         };
430         union { /* User RW Thread register. */
431             struct {
432                 uint64_t tpidrurw_ns;
433                 uint64_t tpidrprw_ns;
434                 uint64_t htpidr;
435                 uint64_t _tpidr_el3;
436             };
437             uint64_t tpidr_el[4];
438         };
439         /* The secure banks of these registers don't map anywhere */
440         uint64_t tpidrurw_s;
441         uint64_t tpidrprw_s;
442         uint64_t tpidruro_s;
443 
444         union { /* User RO Thread register. */
445             uint64_t tpidruro_ns;
446             uint64_t tpidrro_el[1];
447         };
448         uint64_t c14_cntfrq; /* Counter Frequency register */
449         uint64_t c14_cntkctl; /* Timer Control register */
450         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
451         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
452         ARMGenericTimer c14_timer[NUM_GTIMERS];
453         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
454         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
455         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
456         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
457         uint32_t c15_threadid; /* TI debugger thread-ID.  */
458         uint32_t c15_config_base_address; /* SCU base address.  */
459         uint32_t c15_diagnostic; /* diagnostic register */
460         uint32_t c15_power_diagnostic;
461         uint32_t c15_power_control; /* power control */
462         uint64_t dbgbvr[16]; /* breakpoint value registers */
463         uint64_t dbgbcr[16]; /* breakpoint control registers */
464         uint64_t dbgwvr[16]; /* watchpoint value registers */
465         uint64_t dbgwcr[16]; /* watchpoint control registers */
466         uint64_t mdscr_el1;
467         uint64_t oslsr_el1; /* OS Lock Status */
468         uint64_t mdcr_el2;
469         uint64_t mdcr_el3;
470         /* Stores the architectural value of the counter *the last time it was
471          * updated* by pmccntr_op_start. Accesses should always be surrounded
472          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
473          * architecturally-correct value is being read/set.
474          */
475         uint64_t c15_ccnt;
476         /* Stores the delta between the architectural value and the underlying
477          * cycle count during normal operation. It is used to update c15_ccnt
478          * to be the correct architectural value before accesses. During
479          * accesses, c15_ccnt_delta contains the underlying count being used
480          * for the access, after which it reverts to the delta value in
481          * pmccntr_op_finish.
482          */
483         uint64_t c15_ccnt_delta;
484         uint64_t c14_pmevcntr[31];
485         uint64_t c14_pmevcntr_delta[31];
486         uint64_t c14_pmevtyper[31];
487         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
488         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
489         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
490     } cp15;
491 
492     struct {
493         /* M profile has up to 4 stack pointers:
494          * a Main Stack Pointer and a Process Stack Pointer for each
495          * of the Secure and Non-Secure states. (If the CPU doesn't support
496          * the security extension then it has only two SPs.)
497          * In QEMU we always store the currently active SP in regs[13],
498          * and the non-active SP for the current security state in
499          * v7m.other_sp. The stack pointers for the inactive security state
500          * are stored in other_ss_msp and other_ss_psp.
501          * switch_v7m_security_state() is responsible for rearranging them
502          * when we change security state.
503          */
504         uint32_t other_sp;
505         uint32_t other_ss_msp;
506         uint32_t other_ss_psp;
507         uint32_t vecbase[M_REG_NUM_BANKS];
508         uint32_t basepri[M_REG_NUM_BANKS];
509         uint32_t control[M_REG_NUM_BANKS];
510         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
511         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
512         uint32_t hfsr; /* HardFault Status */
513         uint32_t dfsr; /* Debug Fault Status Register */
514         uint32_t sfsr; /* Secure Fault Status Register */
515         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
516         uint32_t bfar; /* BusFault Address */
517         uint32_t sfar; /* Secure Fault Address Register */
518         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
519         int exception;
520         uint32_t primask[M_REG_NUM_BANKS];
521         uint32_t faultmask[M_REG_NUM_BANKS];
522         uint32_t aircr; /* only holds r/w state if security extn implemented */
523         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
524         uint32_t csselr[M_REG_NUM_BANKS];
525         uint32_t scr[M_REG_NUM_BANKS];
526         uint32_t msplim[M_REG_NUM_BANKS];
527         uint32_t psplim[M_REG_NUM_BANKS];
528         uint32_t fpcar[M_REG_NUM_BANKS];
529         uint32_t fpccr[M_REG_NUM_BANKS];
530         uint32_t fpdscr[M_REG_NUM_BANKS];
531         uint32_t cpacr[M_REG_NUM_BANKS];
532         uint32_t nsacr;
533     } v7m;
534 
535     /* Information associated with an exception about to be taken:
536      * code which raises an exception must set cs->exception_index and
537      * the relevant parts of this structure; the cpu_do_interrupt function
538      * will then set the guest-visible registers as part of the exception
539      * entry process.
540      */
541     struct {
542         uint32_t syndrome; /* AArch64 format syndrome register */
543         uint32_t fsr; /* AArch32 format fault status register info */
544         uint64_t vaddress; /* virtual addr associated with exception, if any */
545         uint32_t target_el; /* EL the exception should be targeted for */
546         /* If we implement EL2 we will also need to store information
547          * about the intermediate physical address for stage 2 faults.
548          */
549     } exception;
550 
551     /* Information associated with an SError */
552     struct {
553         uint8_t pending;
554         uint8_t has_esr;
555         uint64_t esr;
556     } serror;
557 
558     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
559     uint32_t irq_line_state;
560 
561     /* Thumb-2 EE state.  */
562     uint32_t teecr;
563     uint32_t teehbr;
564 
565     /* VFP coprocessor state.  */
566     struct {
567         ARMVectorReg zregs[32];
568 
569 #ifdef TARGET_AARCH64
570         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
571 #define FFR_PRED_NUM 16
572         ARMPredicateReg pregs[17];
573         /* Scratch space for aa64 sve predicate temporary.  */
574         ARMPredicateReg preg_tmp;
575 #endif
576 
577         /* We store these fpcsr fields separately for convenience.  */
578         uint32_t qc[4] QEMU_ALIGNED(16);
579         int vec_len;
580         int vec_stride;
581 
582         uint32_t xregs[16];
583 
584         /* Scratch space for aa32 neon expansion.  */
585         uint32_t scratch[8];
586 
587         /* There are a number of distinct float control structures:
588          *
589          *  fp_status: is the "normal" fp status.
590          *  fp_status_fp16: used for half-precision calculations
591          *  standard_fp_status : the ARM "Standard FPSCR Value"
592          *
593          * Half-precision operations are governed by a separate
594          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
595          * status structure to control this.
596          *
597          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
598          * round-to-nearest and is used by any operations (generally
599          * Neon) which the architecture defines as controlled by the
600          * standard FPSCR value rather than the FPSCR.
601          *
602          * To avoid having to transfer exception bits around, we simply
603          * say that the FPSCR cumulative exception flags are the logical
604          * OR of the flags in the three fp statuses. This relies on the
605          * only thing which needs to read the exception flags being
606          * an explicit FPSCR read.
607          */
608         float_status fp_status;
609         float_status fp_status_f16;
610         float_status standard_fp_status;
611 
612         /* ZCR_EL[1-3] */
613         uint64_t zcr_el[4];
614     } vfp;
615     uint64_t exclusive_addr;
616     uint64_t exclusive_val;
617     uint64_t exclusive_high;
618 
619     /* iwMMXt coprocessor state.  */
620     struct {
621         uint64_t regs[16];
622         uint64_t val;
623 
624         uint32_t cregs[16];
625     } iwmmxt;
626 
627 #ifdef TARGET_AARCH64
628     struct {
629         ARMPACKey apia;
630         ARMPACKey apib;
631         ARMPACKey apda;
632         ARMPACKey apdb;
633         ARMPACKey apga;
634     } keys;
635 #endif
636 
637 #if defined(CONFIG_USER_ONLY)
638     /* For usermode syscall translation.  */
639     int eabi;
640 #endif
641 
642     struct CPUBreakpoint *cpu_breakpoint[16];
643     struct CPUWatchpoint *cpu_watchpoint[16];
644 
645     /* Fields up to this point are cleared by a CPU reset */
646     struct {} end_reset_fields;
647 
648     CPU_COMMON
649 
650     /* Fields after CPU_COMMON are preserved across CPU reset. */
651 
652     /* Internal CPU feature flags.  */
653     uint64_t features;
654 
655     /* PMSAv7 MPU */
656     struct {
657         uint32_t *drbar;
658         uint32_t *drsr;
659         uint32_t *dracr;
660         uint32_t rnr[M_REG_NUM_BANKS];
661     } pmsav7;
662 
663     /* PMSAv8 MPU */
664     struct {
665         /* The PMSAv8 implementation also shares some PMSAv7 config
666          * and state:
667          *  pmsav7.rnr (region number register)
668          *  pmsav7_dregion (number of configured regions)
669          */
670         uint32_t *rbar[M_REG_NUM_BANKS];
671         uint32_t *rlar[M_REG_NUM_BANKS];
672         uint32_t mair0[M_REG_NUM_BANKS];
673         uint32_t mair1[M_REG_NUM_BANKS];
674     } pmsav8;
675 
676     /* v8M SAU */
677     struct {
678         uint32_t *rbar;
679         uint32_t *rlar;
680         uint32_t rnr;
681         uint32_t ctrl;
682     } sau;
683 
684     void *nvic;
685     const struct arm_boot_info *boot_info;
686     /* Store GICv3CPUState to access from this struct */
687     void *gicv3state;
688 } CPUARMState;
689 
690 /**
691  * ARMELChangeHookFn:
692  * type of a function which can be registered via arm_register_el_change_hook()
693  * to get callbacks when the CPU changes its exception level or mode.
694  */
695 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
696 typedef struct ARMELChangeHook ARMELChangeHook;
697 struct ARMELChangeHook {
698     ARMELChangeHookFn *hook;
699     void *opaque;
700     QLIST_ENTRY(ARMELChangeHook) node;
701 };
702 
703 /* These values map onto the return values for
704  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
705 typedef enum ARMPSCIState {
706     PSCI_ON = 0,
707     PSCI_OFF = 1,
708     PSCI_ON_PENDING = 2
709 } ARMPSCIState;
710 
711 typedef struct ARMISARegisters ARMISARegisters;
712 
713 /**
714  * ARMCPU:
715  * @env: #CPUARMState
716  *
717  * An ARM CPU core.
718  */
719 struct ARMCPU {
720     /*< private >*/
721     CPUState parent_obj;
722     /*< public >*/
723 
724     CPUARMState env;
725 
726     /* Coprocessor information */
727     GHashTable *cp_regs;
728     /* For marshalling (mostly coprocessor) register state between the
729      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
730      * we use these arrays.
731      */
732     /* List of register indexes managed via these arrays; (full KVM style
733      * 64 bit indexes, not CPRegInfo 32 bit indexes)
734      */
735     uint64_t *cpreg_indexes;
736     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
737     uint64_t *cpreg_values;
738     /* Length of the indexes, values, reset_values arrays */
739     int32_t cpreg_array_len;
740     /* These are used only for migration: incoming data arrives in
741      * these fields and is sanity checked in post_load before copying
742      * to the working data structures above.
743      */
744     uint64_t *cpreg_vmstate_indexes;
745     uint64_t *cpreg_vmstate_values;
746     int32_t cpreg_vmstate_array_len;
747 
748     DynamicGDBXMLInfo dyn_xml;
749 
750     /* Timers used by the generic (architected) timer */
751     QEMUTimer *gt_timer[NUM_GTIMERS];
752     /*
753      * Timer used by the PMU. Its state is restored after migration by
754      * pmu_op_finish() - it does not need other handling during migration
755      */
756     QEMUTimer *pmu_timer;
757     /* GPIO outputs for generic timer */
758     qemu_irq gt_timer_outputs[NUM_GTIMERS];
759     /* GPIO output for GICv3 maintenance interrupt signal */
760     qemu_irq gicv3_maintenance_interrupt;
761     /* GPIO output for the PMU interrupt */
762     qemu_irq pmu_interrupt;
763 
764     /* MemoryRegion to use for secure physical accesses */
765     MemoryRegion *secure_memory;
766 
767     /* For v8M, pointer to the IDAU interface provided by board/SoC */
768     Object *idau;
769 
770     /* 'compatible' string for this CPU for Linux device trees */
771     const char *dtb_compatible;
772 
773     /* PSCI version for this CPU
774      * Bits[31:16] = Major Version
775      * Bits[15:0] = Minor Version
776      */
777     uint32_t psci_version;
778 
779     /* Should CPU start in PSCI powered-off state? */
780     bool start_powered_off;
781 
782     /* Current power state, access guarded by BQL */
783     ARMPSCIState power_state;
784 
785     /* CPU has virtualization extension */
786     bool has_el2;
787     /* CPU has security extension */
788     bool has_el3;
789     /* CPU has PMU (Performance Monitor Unit) */
790     bool has_pmu;
791 
792     /* CPU has memory protection unit */
793     bool has_mpu;
794     /* PMSAv7 MPU number of supported regions */
795     uint32_t pmsav7_dregion;
796     /* v8M SAU number of supported regions */
797     uint32_t sau_sregion;
798 
799     /* PSCI conduit used to invoke PSCI methods
800      * 0 - disabled, 1 - smc, 2 - hvc
801      */
802     uint32_t psci_conduit;
803 
804     /* For v8M, initial value of the Secure VTOR */
805     uint32_t init_svtor;
806 
807     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
808      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
809      */
810     uint32_t kvm_target;
811 
812     /* KVM init features for this CPU */
813     uint32_t kvm_init_features[7];
814 
815     /* Uniprocessor system with MP extensions */
816     bool mp_is_up;
817 
818     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
819      * and the probe failed (so we need to report the error in realize)
820      */
821     bool host_cpu_probe_failed;
822 
823     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
824      * register.
825      */
826     int32_t core_count;
827 
828     /* The instance init functions for implementation-specific subclasses
829      * set these fields to specify the implementation-dependent values of
830      * various constant registers and reset values of non-constant
831      * registers.
832      * Some of these might become QOM properties eventually.
833      * Field names match the official register names as defined in the
834      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
835      * is used for reset values of non-constant registers; no reset_
836      * prefix means a constant register.
837      * Some of these registers are split out into a substructure that
838      * is shared with the translators to control the ISA.
839      */
840     struct ARMISARegisters {
841         uint32_t id_isar0;
842         uint32_t id_isar1;
843         uint32_t id_isar2;
844         uint32_t id_isar3;
845         uint32_t id_isar4;
846         uint32_t id_isar5;
847         uint32_t id_isar6;
848         uint32_t mvfr0;
849         uint32_t mvfr1;
850         uint32_t mvfr2;
851         uint64_t id_aa64isar0;
852         uint64_t id_aa64isar1;
853         uint64_t id_aa64pfr0;
854         uint64_t id_aa64pfr1;
855         uint64_t id_aa64mmfr0;
856         uint64_t id_aa64mmfr1;
857     } isar;
858     uint32_t midr;
859     uint32_t revidr;
860     uint32_t reset_fpsid;
861     uint32_t ctr;
862     uint32_t reset_sctlr;
863     uint32_t id_pfr0;
864     uint32_t id_pfr1;
865     uint32_t id_dfr0;
866     uint64_t pmceid0;
867     uint64_t pmceid1;
868     uint32_t id_afr0;
869     uint32_t id_mmfr0;
870     uint32_t id_mmfr1;
871     uint32_t id_mmfr2;
872     uint32_t id_mmfr3;
873     uint32_t id_mmfr4;
874     uint64_t id_aa64dfr0;
875     uint64_t id_aa64dfr1;
876     uint64_t id_aa64afr0;
877     uint64_t id_aa64afr1;
878     uint32_t dbgdidr;
879     uint32_t clidr;
880     uint64_t mp_affinity; /* MP ID without feature bits */
881     /* The elements of this array are the CCSIDR values for each cache,
882      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
883      */
884     uint32_t ccsidr[16];
885     uint64_t reset_cbar;
886     uint32_t reset_auxcr;
887     bool reset_hivecs;
888     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
889     uint32_t dcz_blocksize;
890     uint64_t rvbar;
891 
892     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
893     int gic_num_lrs; /* number of list registers */
894     int gic_vpribits; /* number of virtual priority bits */
895     int gic_vprebits; /* number of virtual preemption bits */
896 
897     /* Whether the cfgend input is high (i.e. this CPU should reset into
898      * big-endian mode).  This setting isn't used directly: instead it modifies
899      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
900      * architecture version.
901      */
902     bool cfgend;
903 
904     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
905     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
906 
907     int32_t node_id; /* NUMA node this CPU belongs to */
908 
909     /* Used to synchronize KVM and QEMU in-kernel device levels */
910     uint8_t device_irq_level;
911 
912     /* Used to set the maximum vector length the cpu will support.  */
913     uint32_t sve_max_vq;
914 };
915 
916 void arm_cpu_post_init(Object *obj);
917 
918 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
919 
920 #define ENV_OFFSET offsetof(ARMCPU, env)
921 
922 #ifndef CONFIG_USER_ONLY
923 extern const struct VMStateDescription vmstate_arm_cpu;
924 #endif
925 
926 void arm_cpu_do_interrupt(CPUState *cpu);
927 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
928 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
929 
930 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
931 
932 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
933                                          MemTxAttrs *attrs);
934 
935 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
936 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
937 
938 /* Dynamically generates for gdb stub an XML description of the sysregs from
939  * the cp_regs hashtable. Returns the registered sysregs number.
940  */
941 int arm_gen_dynamic_xml(CPUState *cpu);
942 
943 /* Returns the dynamically generated XML for the gdb stub.
944  * Returns a pointer to the XML contents for the specified XML file or NULL
945  * if the XML name doesn't match the predefined one.
946  */
947 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
948 
949 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
950                              int cpuid, void *opaque);
951 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
952                              int cpuid, void *opaque);
953 
954 #ifdef TARGET_AARCH64
955 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
956 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
957 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
958 void aarch64_sve_change_el(CPUARMState *env, int old_el,
959                            int new_el, bool el0_a64);
960 #else
961 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
962 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
963                                          int n, bool a)
964 { }
965 #endif
966 
967 target_ulong do_arm_semihosting(CPUARMState *env);
968 void aarch64_sync_32_to_64(CPUARMState *env);
969 void aarch64_sync_64_to_32(CPUARMState *env);
970 
971 int fp_exception_el(CPUARMState *env, int cur_el);
972 int sve_exception_el(CPUARMState *env, int cur_el);
973 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
974 
975 static inline bool is_a64(CPUARMState *env)
976 {
977     return env->aarch64;
978 }
979 
980 /* you can call this signal handler from your SIGBUS and SIGSEGV
981    signal handlers to inform the virtual CPU of exceptions. non zero
982    is returned if the signal was handled by the virtual CPU.  */
983 int cpu_arm_signal_handler(int host_signum, void *pinfo,
984                            void *puc);
985 
986 /**
987  * pmu_op_start/finish
988  * @env: CPUARMState
989  *
990  * Convert all PMU counters between their delta form (the typical mode when
991  * they are enabled) and the guest-visible values. These two calls must
992  * surround any action which might affect the counters.
993  */
994 void pmu_op_start(CPUARMState *env);
995 void pmu_op_finish(CPUARMState *env);
996 
997 /*
998  * Called when a PMU counter is due to overflow
999  */
1000 void arm_pmu_timer_cb(void *opaque);
1001 
1002 /**
1003  * Functions to register as EL change hooks for PMU mode filtering
1004  */
1005 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1006 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1007 
1008 /*
1009  * pmu_init
1010  * @cpu: ARMCPU
1011  *
1012  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1013  * for the current configuration
1014  */
1015 void pmu_init(ARMCPU *cpu);
1016 
1017 /* SCTLR bit meanings. Several bits have been reused in newer
1018  * versions of the architecture; in that case we define constants
1019  * for both old and new bit meanings. Code which tests against those
1020  * bits should probably check or otherwise arrange that the CPU
1021  * is the architectural version it expects.
1022  */
1023 #define SCTLR_M       (1U << 0)
1024 #define SCTLR_A       (1U << 1)
1025 #define SCTLR_C       (1U << 2)
1026 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1027 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1028 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1029 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1030 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1031 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1032 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1033 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1034 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1035 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1036 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1037 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1038 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1039 #define SCTLR_SED     (1U << 8) /* v8 onward */
1040 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1041 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1042 #define SCTLR_F       (1U << 10) /* up to v6 */
1043 #define SCTLR_SW      (1U << 10) /* v7 */
1044 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1045 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1046 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1047 #define SCTLR_I       (1U << 12)
1048 #define SCTLR_V       (1U << 13) /* AArch32 only */
1049 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1050 #define SCTLR_RR      (1U << 14) /* up to v7 */
1051 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1052 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1053 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1054 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1055 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1056 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1057 #define SCTLR_BR      (1U << 17) /* PMSA only */
1058 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1059 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1060 #define SCTLR_WXN     (1U << 19)
1061 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1062 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1063 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1064 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1065 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1066 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1067 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1068 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1069 #define SCTLR_VE      (1U << 24) /* up to v7 */
1070 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1071 #define SCTLR_EE      (1U << 25)
1072 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1073 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1074 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1075 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1076 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1077 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1078 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1079 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1080 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1081 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1082 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1083 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1084 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1085 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1086 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1087 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1088 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1089 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1090 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1091 
1092 #define CPTR_TCPAC    (1U << 31)
1093 #define CPTR_TTA      (1U << 20)
1094 #define CPTR_TFP      (1U << 10)
1095 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1096 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1097 
1098 #define MDCR_EPMAD    (1U << 21)
1099 #define MDCR_EDAD     (1U << 20)
1100 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1101 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1102 #define MDCR_SDD      (1U << 16)
1103 #define MDCR_SPD      (3U << 14)
1104 #define MDCR_TDRA     (1U << 11)
1105 #define MDCR_TDOSA    (1U << 10)
1106 #define MDCR_TDA      (1U << 9)
1107 #define MDCR_TDE      (1U << 8)
1108 #define MDCR_HPME     (1U << 7)
1109 #define MDCR_TPM      (1U << 6)
1110 #define MDCR_TPMCR    (1U << 5)
1111 #define MDCR_HPMN     (0x1fU)
1112 
1113 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1114 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1115 
1116 #define CPSR_M (0x1fU)
1117 #define CPSR_T (1U << 5)
1118 #define CPSR_F (1U << 6)
1119 #define CPSR_I (1U << 7)
1120 #define CPSR_A (1U << 8)
1121 #define CPSR_E (1U << 9)
1122 #define CPSR_IT_2_7 (0xfc00U)
1123 #define CPSR_GE (0xfU << 16)
1124 #define CPSR_IL (1U << 20)
1125 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1126  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1127  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1128  * where it is live state but not accessible to the AArch32 code.
1129  */
1130 #define CPSR_RESERVED (0x7U << 21)
1131 #define CPSR_J (1U << 24)
1132 #define CPSR_IT_0_1 (3U << 25)
1133 #define CPSR_Q (1U << 27)
1134 #define CPSR_V (1U << 28)
1135 #define CPSR_C (1U << 29)
1136 #define CPSR_Z (1U << 30)
1137 #define CPSR_N (1U << 31)
1138 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1139 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1140 
1141 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1142 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1143     | CPSR_NZCV)
1144 /* Bits writable in user mode.  */
1145 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1146 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1147 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1148 /* Mask of bits which may be set by exception return copying them from SPSR */
1149 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1150 
1151 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1152 #define XPSR_EXCP 0x1ffU
1153 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1154 #define XPSR_IT_2_7 CPSR_IT_2_7
1155 #define XPSR_GE CPSR_GE
1156 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1157 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1158 #define XPSR_IT_0_1 CPSR_IT_0_1
1159 #define XPSR_Q CPSR_Q
1160 #define XPSR_V CPSR_V
1161 #define XPSR_C CPSR_C
1162 #define XPSR_Z CPSR_Z
1163 #define XPSR_N CPSR_N
1164 #define XPSR_NZCV CPSR_NZCV
1165 #define XPSR_IT CPSR_IT
1166 
1167 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1168 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1169 #define TTBCR_PD0    (1U << 4)
1170 #define TTBCR_PD1    (1U << 5)
1171 #define TTBCR_EPD0   (1U << 7)
1172 #define TTBCR_IRGN0  (3U << 8)
1173 #define TTBCR_ORGN0  (3U << 10)
1174 #define TTBCR_SH0    (3U << 12)
1175 #define TTBCR_T1SZ   (3U << 16)
1176 #define TTBCR_A1     (1U << 22)
1177 #define TTBCR_EPD1   (1U << 23)
1178 #define TTBCR_IRGN1  (3U << 24)
1179 #define TTBCR_ORGN1  (3U << 26)
1180 #define TTBCR_SH1    (1U << 28)
1181 #define TTBCR_EAE    (1U << 31)
1182 
1183 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1184  * Only these are valid when in AArch64 mode; in
1185  * AArch32 mode SPSRs are basically CPSR-format.
1186  */
1187 #define PSTATE_SP (1U)
1188 #define PSTATE_M (0xFU)
1189 #define PSTATE_nRW (1U << 4)
1190 #define PSTATE_F (1U << 6)
1191 #define PSTATE_I (1U << 7)
1192 #define PSTATE_A (1U << 8)
1193 #define PSTATE_D (1U << 9)
1194 #define PSTATE_BTYPE (3U << 10)
1195 #define PSTATE_IL (1U << 20)
1196 #define PSTATE_SS (1U << 21)
1197 #define PSTATE_V (1U << 28)
1198 #define PSTATE_C (1U << 29)
1199 #define PSTATE_Z (1U << 30)
1200 #define PSTATE_N (1U << 31)
1201 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1202 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1203 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1204 /* Mode values for AArch64 */
1205 #define PSTATE_MODE_EL3h 13
1206 #define PSTATE_MODE_EL3t 12
1207 #define PSTATE_MODE_EL2h 9
1208 #define PSTATE_MODE_EL2t 8
1209 #define PSTATE_MODE_EL1h 5
1210 #define PSTATE_MODE_EL1t 4
1211 #define PSTATE_MODE_EL0t 0
1212 
1213 /* Write a new value to v7m.exception, thus transitioning into or out
1214  * of Handler mode; this may result in a change of active stack pointer.
1215  */
1216 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1217 
1218 /* Map EL and handler into a PSTATE_MODE.  */
1219 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1220 {
1221     return (el << 2) | handler;
1222 }
1223 
1224 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1225  * interprocessing, so we don't attempt to sync with the cpsr state used by
1226  * the 32 bit decoder.
1227  */
1228 static inline uint32_t pstate_read(CPUARMState *env)
1229 {
1230     int ZF;
1231 
1232     ZF = (env->ZF == 0);
1233     return (env->NF & 0x80000000) | (ZF << 30)
1234         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1235         | env->pstate | env->daif | (env->btype << 10);
1236 }
1237 
1238 static inline void pstate_write(CPUARMState *env, uint32_t val)
1239 {
1240     env->ZF = (~val) & PSTATE_Z;
1241     env->NF = val;
1242     env->CF = (val >> 29) & 1;
1243     env->VF = (val << 3) & 0x80000000;
1244     env->daif = val & PSTATE_DAIF;
1245     env->btype = (val >> 10) & 3;
1246     env->pstate = val & ~CACHED_PSTATE_BITS;
1247 }
1248 
1249 /* Return the current CPSR value.  */
1250 uint32_t cpsr_read(CPUARMState *env);
1251 
1252 typedef enum CPSRWriteType {
1253     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1254     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1255     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1256     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1257 } CPSRWriteType;
1258 
1259 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1260 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1261                 CPSRWriteType write_type);
1262 
1263 /* Return the current xPSR value.  */
1264 static inline uint32_t xpsr_read(CPUARMState *env)
1265 {
1266     int ZF;
1267     ZF = (env->ZF == 0);
1268     return (env->NF & 0x80000000) | (ZF << 30)
1269         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1270         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1271         | ((env->condexec_bits & 0xfc) << 8)
1272         | (env->GE << 16)
1273         | env->v7m.exception;
1274 }
1275 
1276 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1277 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1278 {
1279     if (mask & XPSR_NZCV) {
1280         env->ZF = (~val) & XPSR_Z;
1281         env->NF = val;
1282         env->CF = (val >> 29) & 1;
1283         env->VF = (val << 3) & 0x80000000;
1284     }
1285     if (mask & XPSR_Q) {
1286         env->QF = ((val & XPSR_Q) != 0);
1287     }
1288     if (mask & XPSR_GE) {
1289         env->GE = (val & XPSR_GE) >> 16;
1290     }
1291     if (mask & XPSR_T) {
1292         env->thumb = ((val & XPSR_T) != 0);
1293     }
1294     if (mask & XPSR_IT_0_1) {
1295         env->condexec_bits &= ~3;
1296         env->condexec_bits |= (val >> 25) & 3;
1297     }
1298     if (mask & XPSR_IT_2_7) {
1299         env->condexec_bits &= 3;
1300         env->condexec_bits |= (val >> 8) & 0xfc;
1301     }
1302     if (mask & XPSR_EXCP) {
1303         /* Note that this only happens on exception exit */
1304         write_v7m_exception(env, val & XPSR_EXCP);
1305     }
1306 }
1307 
1308 #define HCR_VM        (1ULL << 0)
1309 #define HCR_SWIO      (1ULL << 1)
1310 #define HCR_PTW       (1ULL << 2)
1311 #define HCR_FMO       (1ULL << 3)
1312 #define HCR_IMO       (1ULL << 4)
1313 #define HCR_AMO       (1ULL << 5)
1314 #define HCR_VF        (1ULL << 6)
1315 #define HCR_VI        (1ULL << 7)
1316 #define HCR_VSE       (1ULL << 8)
1317 #define HCR_FB        (1ULL << 9)
1318 #define HCR_BSU_MASK  (3ULL << 10)
1319 #define HCR_DC        (1ULL << 12)
1320 #define HCR_TWI       (1ULL << 13)
1321 #define HCR_TWE       (1ULL << 14)
1322 #define HCR_TID0      (1ULL << 15)
1323 #define HCR_TID1      (1ULL << 16)
1324 #define HCR_TID2      (1ULL << 17)
1325 #define HCR_TID3      (1ULL << 18)
1326 #define HCR_TSC       (1ULL << 19)
1327 #define HCR_TIDCP     (1ULL << 20)
1328 #define HCR_TACR      (1ULL << 21)
1329 #define HCR_TSW       (1ULL << 22)
1330 #define HCR_TPCP      (1ULL << 23)
1331 #define HCR_TPU       (1ULL << 24)
1332 #define HCR_TTLB      (1ULL << 25)
1333 #define HCR_TVM       (1ULL << 26)
1334 #define HCR_TGE       (1ULL << 27)
1335 #define HCR_TDZ       (1ULL << 28)
1336 #define HCR_HCD       (1ULL << 29)
1337 #define HCR_TRVM      (1ULL << 30)
1338 #define HCR_RW        (1ULL << 31)
1339 #define HCR_CD        (1ULL << 32)
1340 #define HCR_ID        (1ULL << 33)
1341 #define HCR_E2H       (1ULL << 34)
1342 #define HCR_TLOR      (1ULL << 35)
1343 #define HCR_TERR      (1ULL << 36)
1344 #define HCR_TEA       (1ULL << 37)
1345 #define HCR_MIOCNCE   (1ULL << 38)
1346 #define HCR_APK       (1ULL << 40)
1347 #define HCR_API       (1ULL << 41)
1348 #define HCR_NV        (1ULL << 42)
1349 #define HCR_NV1       (1ULL << 43)
1350 #define HCR_AT        (1ULL << 44)
1351 #define HCR_NV2       (1ULL << 45)
1352 #define HCR_FWB       (1ULL << 46)
1353 #define HCR_FIEN      (1ULL << 47)
1354 #define HCR_TID4      (1ULL << 49)
1355 #define HCR_TICAB     (1ULL << 50)
1356 #define HCR_TOCU      (1ULL << 52)
1357 #define HCR_TTLBIS    (1ULL << 54)
1358 #define HCR_TTLBOS    (1ULL << 55)
1359 #define HCR_ATA       (1ULL << 56)
1360 #define HCR_DCT       (1ULL << 57)
1361 
1362 /*
1363  * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1364  * HCR_MASK and then clear it again if the feature bit is not set in
1365  * hcr_write().
1366  */
1367 #define HCR_MASK      ((1ULL << 34) - 1)
1368 
1369 #define SCR_NS                (1U << 0)
1370 #define SCR_IRQ               (1U << 1)
1371 #define SCR_FIQ               (1U << 2)
1372 #define SCR_EA                (1U << 3)
1373 #define SCR_FW                (1U << 4)
1374 #define SCR_AW                (1U << 5)
1375 #define SCR_NET               (1U << 6)
1376 #define SCR_SMD               (1U << 7)
1377 #define SCR_HCE               (1U << 8)
1378 #define SCR_SIF               (1U << 9)
1379 #define SCR_RW                (1U << 10)
1380 #define SCR_ST                (1U << 11)
1381 #define SCR_TWI               (1U << 12)
1382 #define SCR_TWE               (1U << 13)
1383 #define SCR_TLOR              (1U << 14)
1384 #define SCR_TERR              (1U << 15)
1385 #define SCR_APK               (1U << 16)
1386 #define SCR_API               (1U << 17)
1387 #define SCR_EEL2              (1U << 18)
1388 #define SCR_EASE              (1U << 19)
1389 #define SCR_NMEA              (1U << 20)
1390 #define SCR_FIEN              (1U << 21)
1391 #define SCR_ENSCXT            (1U << 25)
1392 #define SCR_ATA               (1U << 26)
1393 
1394 /* Return the current FPSCR value.  */
1395 uint32_t vfp_get_fpscr(CPUARMState *env);
1396 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1397 
1398 /* FPCR, Floating Point Control Register
1399  * FPSR, Floating Poiht Status Register
1400  *
1401  * For A64 the FPSCR is split into two logically distinct registers,
1402  * FPCR and FPSR. However since they still use non-overlapping bits
1403  * we store the underlying state in fpscr and just mask on read/write.
1404  */
1405 #define FPSR_MASK 0xf800009f
1406 #define FPCR_MASK 0x07ff9f00
1407 
1408 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1409 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1410 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1411 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1412 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1413 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1414 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1415 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1416 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1417 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1418 
1419 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1420 {
1421     return vfp_get_fpscr(env) & FPSR_MASK;
1422 }
1423 
1424 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1425 {
1426     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1427     vfp_set_fpscr(env, new_fpscr);
1428 }
1429 
1430 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1431 {
1432     return vfp_get_fpscr(env) & FPCR_MASK;
1433 }
1434 
1435 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1436 {
1437     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1438     vfp_set_fpscr(env, new_fpscr);
1439 }
1440 
1441 enum arm_cpu_mode {
1442   ARM_CPU_MODE_USR = 0x10,
1443   ARM_CPU_MODE_FIQ = 0x11,
1444   ARM_CPU_MODE_IRQ = 0x12,
1445   ARM_CPU_MODE_SVC = 0x13,
1446   ARM_CPU_MODE_MON = 0x16,
1447   ARM_CPU_MODE_ABT = 0x17,
1448   ARM_CPU_MODE_HYP = 0x1a,
1449   ARM_CPU_MODE_UND = 0x1b,
1450   ARM_CPU_MODE_SYS = 0x1f
1451 };
1452 
1453 /* VFP system registers.  */
1454 #define ARM_VFP_FPSID   0
1455 #define ARM_VFP_FPSCR   1
1456 #define ARM_VFP_MVFR2   5
1457 #define ARM_VFP_MVFR1   6
1458 #define ARM_VFP_MVFR0   7
1459 #define ARM_VFP_FPEXC   8
1460 #define ARM_VFP_FPINST  9
1461 #define ARM_VFP_FPINST2 10
1462 
1463 /* iwMMXt coprocessor control registers.  */
1464 #define ARM_IWMMXT_wCID  0
1465 #define ARM_IWMMXT_wCon  1
1466 #define ARM_IWMMXT_wCSSF 2
1467 #define ARM_IWMMXT_wCASF 3
1468 #define ARM_IWMMXT_wCGR0 8
1469 #define ARM_IWMMXT_wCGR1 9
1470 #define ARM_IWMMXT_wCGR2 10
1471 #define ARM_IWMMXT_wCGR3 11
1472 
1473 /* V7M CCR bits */
1474 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1475 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1476 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1477 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1478 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1479 FIELD(V7M_CCR, STKALIGN, 9, 1)
1480 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1481 FIELD(V7M_CCR, DC, 16, 1)
1482 FIELD(V7M_CCR, IC, 17, 1)
1483 FIELD(V7M_CCR, BP, 18, 1)
1484 
1485 /* V7M SCR bits */
1486 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1487 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1488 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1489 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1490 
1491 /* V7M AIRCR bits */
1492 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1493 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1494 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1495 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1496 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1497 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1498 FIELD(V7M_AIRCR, PRIS, 14, 1)
1499 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1500 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1501 
1502 /* V7M CFSR bits for MMFSR */
1503 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1504 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1505 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1506 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1507 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1508 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1509 
1510 /* V7M CFSR bits for BFSR */
1511 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1512 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1513 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1514 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1515 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1516 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1517 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1518 
1519 /* V7M CFSR bits for UFSR */
1520 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1521 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1522 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1523 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1524 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1525 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1526 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1527 
1528 /* V7M CFSR bit masks covering all of the subregister bits */
1529 FIELD(V7M_CFSR, MMFSR, 0, 8)
1530 FIELD(V7M_CFSR, BFSR, 8, 8)
1531 FIELD(V7M_CFSR, UFSR, 16, 16)
1532 
1533 /* V7M HFSR bits */
1534 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1535 FIELD(V7M_HFSR, FORCED, 30, 1)
1536 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1537 
1538 /* V7M DFSR bits */
1539 FIELD(V7M_DFSR, HALTED, 0, 1)
1540 FIELD(V7M_DFSR, BKPT, 1, 1)
1541 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1542 FIELD(V7M_DFSR, VCATCH, 3, 1)
1543 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1544 
1545 /* V7M SFSR bits */
1546 FIELD(V7M_SFSR, INVEP, 0, 1)
1547 FIELD(V7M_SFSR, INVIS, 1, 1)
1548 FIELD(V7M_SFSR, INVER, 2, 1)
1549 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1550 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1551 FIELD(V7M_SFSR, LSPERR, 5, 1)
1552 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1553 FIELD(V7M_SFSR, LSERR, 7, 1)
1554 
1555 /* v7M MPU_CTRL bits */
1556 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1557 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1558 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1559 
1560 /* v7M CLIDR bits */
1561 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1562 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1563 FIELD(V7M_CLIDR, LOC, 24, 3)
1564 FIELD(V7M_CLIDR, LOUU, 27, 3)
1565 FIELD(V7M_CLIDR, ICB, 30, 2)
1566 
1567 FIELD(V7M_CSSELR, IND, 0, 1)
1568 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1569 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1570  * define a mask for this and check that it doesn't permit running off
1571  * the end of the array.
1572  */
1573 FIELD(V7M_CSSELR, INDEX, 0, 4)
1574 
1575 /* v7M FPCCR bits */
1576 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1577 FIELD(V7M_FPCCR, USER, 1, 1)
1578 FIELD(V7M_FPCCR, S, 2, 1)
1579 FIELD(V7M_FPCCR, THREAD, 3, 1)
1580 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1581 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1582 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1583 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1584 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1585 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1586 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1587 FIELD(V7M_FPCCR, RES0, 11, 15)
1588 FIELD(V7M_FPCCR, TS, 26, 1)
1589 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1590 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1591 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1592 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1593 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1594 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1595 #define R_V7M_FPCCR_BANKED_MASK                 \
1596     (R_V7M_FPCCR_LSPACT_MASK |                  \
1597      R_V7M_FPCCR_USER_MASK |                    \
1598      R_V7M_FPCCR_THREAD_MASK |                  \
1599      R_V7M_FPCCR_MMRDY_MASK |                   \
1600      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1601      R_V7M_FPCCR_UFRDY_MASK |                   \
1602      R_V7M_FPCCR_ASPEN_MASK)
1603 
1604 /*
1605  * System register ID fields.
1606  */
1607 FIELD(ID_ISAR0, SWAP, 0, 4)
1608 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1609 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1610 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1611 FIELD(ID_ISAR0, COPROC, 16, 4)
1612 FIELD(ID_ISAR0, DEBUG, 20, 4)
1613 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1614 
1615 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1616 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1617 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1618 FIELD(ID_ISAR1, EXTEND, 12, 4)
1619 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1620 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1621 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1622 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1623 
1624 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1625 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1626 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1627 FIELD(ID_ISAR2, MULT, 12, 4)
1628 FIELD(ID_ISAR2, MULTS, 16, 4)
1629 FIELD(ID_ISAR2, MULTU, 20, 4)
1630 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1631 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1632 
1633 FIELD(ID_ISAR3, SATURATE, 0, 4)
1634 FIELD(ID_ISAR3, SIMD, 4, 4)
1635 FIELD(ID_ISAR3, SVC, 8, 4)
1636 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1637 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1638 FIELD(ID_ISAR3, T32COPY, 20, 4)
1639 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1640 FIELD(ID_ISAR3, T32EE, 28, 4)
1641 
1642 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1643 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1644 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1645 FIELD(ID_ISAR4, SMC, 12, 4)
1646 FIELD(ID_ISAR4, BARRIER, 16, 4)
1647 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1648 FIELD(ID_ISAR4, PSR_M, 24, 4)
1649 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1650 
1651 FIELD(ID_ISAR5, SEVL, 0, 4)
1652 FIELD(ID_ISAR5, AES, 4, 4)
1653 FIELD(ID_ISAR5, SHA1, 8, 4)
1654 FIELD(ID_ISAR5, SHA2, 12, 4)
1655 FIELD(ID_ISAR5, CRC32, 16, 4)
1656 FIELD(ID_ISAR5, RDM, 24, 4)
1657 FIELD(ID_ISAR5, VCMA, 28, 4)
1658 
1659 FIELD(ID_ISAR6, JSCVT, 0, 4)
1660 FIELD(ID_ISAR6, DP, 4, 4)
1661 FIELD(ID_ISAR6, FHM, 8, 4)
1662 FIELD(ID_ISAR6, SB, 12, 4)
1663 FIELD(ID_ISAR6, SPECRES, 16, 4)
1664 
1665 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1666 FIELD(ID_MMFR4, AC2, 4, 4)
1667 FIELD(ID_MMFR4, XNX, 8, 4)
1668 FIELD(ID_MMFR4, CNP, 12, 4)
1669 FIELD(ID_MMFR4, HPDS, 16, 4)
1670 FIELD(ID_MMFR4, LSM, 20, 4)
1671 FIELD(ID_MMFR4, CCIDX, 24, 4)
1672 FIELD(ID_MMFR4, EVT, 28, 4)
1673 
1674 FIELD(ID_AA64ISAR0, AES, 4, 4)
1675 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1676 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1677 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1678 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1679 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1680 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1681 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1682 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1683 FIELD(ID_AA64ISAR0, DP, 44, 4)
1684 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1685 FIELD(ID_AA64ISAR0, TS, 52, 4)
1686 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1687 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1688 
1689 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1690 FIELD(ID_AA64ISAR1, APA, 4, 4)
1691 FIELD(ID_AA64ISAR1, API, 8, 4)
1692 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1693 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1694 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1695 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1696 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1697 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1698 FIELD(ID_AA64ISAR1, SB, 36, 4)
1699 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1700 
1701 FIELD(ID_AA64PFR0, EL0, 0, 4)
1702 FIELD(ID_AA64PFR0, EL1, 4, 4)
1703 FIELD(ID_AA64PFR0, EL2, 8, 4)
1704 FIELD(ID_AA64PFR0, EL3, 12, 4)
1705 FIELD(ID_AA64PFR0, FP, 16, 4)
1706 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1707 FIELD(ID_AA64PFR0, GIC, 24, 4)
1708 FIELD(ID_AA64PFR0, RAS, 28, 4)
1709 FIELD(ID_AA64PFR0, SVE, 32, 4)
1710 
1711 FIELD(ID_AA64PFR1, BT, 0, 4)
1712 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1713 FIELD(ID_AA64PFR1, MTE, 8, 4)
1714 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1715 
1716 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1717 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1718 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1719 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1720 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1721 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1722 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1723 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1724 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1725 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1726 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1727 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1728 
1729 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1730 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1731 FIELD(ID_AA64MMFR1, VH, 8, 4)
1732 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1733 FIELD(ID_AA64MMFR1, LO, 16, 4)
1734 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1735 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1736 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1737 
1738 FIELD(ID_DFR0, COPDBG, 0, 4)
1739 FIELD(ID_DFR0, COPSDBG, 4, 4)
1740 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1741 FIELD(ID_DFR0, COPTRC, 12, 4)
1742 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1743 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1744 FIELD(ID_DFR0, PERFMON, 24, 4)
1745 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1746 
1747 FIELD(MVFR0, SIMDREG, 0, 4)
1748 FIELD(MVFR0, FPSP, 4, 4)
1749 FIELD(MVFR0, FPDP, 8, 4)
1750 FIELD(MVFR0, FPTRAP, 12, 4)
1751 FIELD(MVFR0, FPDIVIDE, 16, 4)
1752 FIELD(MVFR0, FPSQRT, 20, 4)
1753 FIELD(MVFR0, FPSHVEC, 24, 4)
1754 FIELD(MVFR0, FPROUND, 28, 4)
1755 
1756 FIELD(MVFR1, FPFTZ, 0, 4)
1757 FIELD(MVFR1, FPDNAN, 4, 4)
1758 FIELD(MVFR1, SIMDLS, 8, 4)
1759 FIELD(MVFR1, SIMDINT, 12, 4)
1760 FIELD(MVFR1, SIMDSP, 16, 4)
1761 FIELD(MVFR1, SIMDHP, 20, 4)
1762 FIELD(MVFR1, FPHP, 24, 4)
1763 FIELD(MVFR1, SIMDFMAC, 28, 4)
1764 
1765 FIELD(MVFR2, SIMDMISC, 0, 4)
1766 FIELD(MVFR2, FPMISC, 4, 4)
1767 
1768 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1769 
1770 /* If adding a feature bit which corresponds to a Linux ELF
1771  * HWCAP bit, remember to update the feature-bit-to-hwcap
1772  * mapping in linux-user/elfload.c:get_elf_hwcap().
1773  */
1774 enum arm_features {
1775     ARM_FEATURE_VFP,
1776     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1777     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1778     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1779     ARM_FEATURE_V6,
1780     ARM_FEATURE_V6K,
1781     ARM_FEATURE_V7,
1782     ARM_FEATURE_THUMB2,
1783     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1784     ARM_FEATURE_VFP3,
1785     ARM_FEATURE_NEON,
1786     ARM_FEATURE_M, /* Microcontroller profile.  */
1787     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1788     ARM_FEATURE_THUMB2EE,
1789     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1790     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1791     ARM_FEATURE_V4T,
1792     ARM_FEATURE_V5,
1793     ARM_FEATURE_STRONGARM,
1794     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1795     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1796     ARM_FEATURE_GENERIC_TIMER,
1797     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1798     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1799     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1800     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1801     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1802     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1803     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1804     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1805     ARM_FEATURE_V8,
1806     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1807     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1808     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1809     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1810     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1811     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1812     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1813     ARM_FEATURE_PMU, /* has PMU support */
1814     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1815     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1816     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1817 };
1818 
1819 static inline int arm_feature(CPUARMState *env, int feature)
1820 {
1821     return (env->features & (1ULL << feature)) != 0;
1822 }
1823 
1824 #if !defined(CONFIG_USER_ONLY)
1825 /* Return true if exception levels below EL3 are in secure state,
1826  * or would be following an exception return to that level.
1827  * Unlike arm_is_secure() (which is always a question about the
1828  * _current_ state of the CPU) this doesn't care about the current
1829  * EL or mode.
1830  */
1831 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1832 {
1833     if (arm_feature(env, ARM_FEATURE_EL3)) {
1834         return !(env->cp15.scr_el3 & SCR_NS);
1835     } else {
1836         /* If EL3 is not supported then the secure state is implementation
1837          * defined, in which case QEMU defaults to non-secure.
1838          */
1839         return false;
1840     }
1841 }
1842 
1843 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1844 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1845 {
1846     if (arm_feature(env, ARM_FEATURE_EL3)) {
1847         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1848             /* CPU currently in AArch64 state and EL3 */
1849             return true;
1850         } else if (!is_a64(env) &&
1851                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1852             /* CPU currently in AArch32 state and monitor mode */
1853             return true;
1854         }
1855     }
1856     return false;
1857 }
1858 
1859 /* Return true if the processor is in secure state */
1860 static inline bool arm_is_secure(CPUARMState *env)
1861 {
1862     if (arm_is_el3_or_mon(env)) {
1863         return true;
1864     }
1865     return arm_is_secure_below_el3(env);
1866 }
1867 
1868 #else
1869 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1870 {
1871     return false;
1872 }
1873 
1874 static inline bool arm_is_secure(CPUARMState *env)
1875 {
1876     return false;
1877 }
1878 #endif
1879 
1880 /**
1881  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1882  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1883  * "for all purposes other than a direct read or write access of HCR_EL2."
1884  * Not included here is HCR_RW.
1885  */
1886 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1887 
1888 /* Return true if the specified exception level is running in AArch64 state. */
1889 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1890 {
1891     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1892      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1893      */
1894     assert(el >= 1 && el <= 3);
1895     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1896 
1897     /* The highest exception level is always at the maximum supported
1898      * register width, and then lower levels have a register width controlled
1899      * by bits in the SCR or HCR registers.
1900      */
1901     if (el == 3) {
1902         return aa64;
1903     }
1904 
1905     if (arm_feature(env, ARM_FEATURE_EL3)) {
1906         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1907     }
1908 
1909     if (el == 2) {
1910         return aa64;
1911     }
1912 
1913     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1914         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1915     }
1916 
1917     return aa64;
1918 }
1919 
1920 /* Function for determing whether guest cp register reads and writes should
1921  * access the secure or non-secure bank of a cp register.  When EL3 is
1922  * operating in AArch32 state, the NS-bit determines whether the secure
1923  * instance of a cp register should be used. When EL3 is AArch64 (or if
1924  * it doesn't exist at all) then there is no register banking, and all
1925  * accesses are to the non-secure version.
1926  */
1927 static inline bool access_secure_reg(CPUARMState *env)
1928 {
1929     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1930                 !arm_el_is_aa64(env, 3) &&
1931                 !(env->cp15.scr_el3 & SCR_NS));
1932 
1933     return ret;
1934 }
1935 
1936 /* Macros for accessing a specified CP register bank */
1937 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1938     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1939 
1940 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1941     do {                                                \
1942         if (_secure) {                                   \
1943             (_env)->cp15._regname##_s = (_val);            \
1944         } else {                                        \
1945             (_env)->cp15._regname##_ns = (_val);           \
1946         }                                               \
1947     } while (0)
1948 
1949 /* Macros for automatically accessing a specific CP register bank depending on
1950  * the current secure state of the system.  These macros are not intended for
1951  * supporting instruction translation reads/writes as these are dependent
1952  * solely on the SCR.NS bit and not the mode.
1953  */
1954 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1955     A32_BANKED_REG_GET((_env), _regname,                \
1956                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1957 
1958 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1959     A32_BANKED_REG_SET((_env), _regname,                                    \
1960                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1961                        (_val))
1962 
1963 void arm_cpu_list(void);
1964 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1965                                  uint32_t cur_el, bool secure);
1966 
1967 /* Interface between CPU and Interrupt controller.  */
1968 #ifndef CONFIG_USER_ONLY
1969 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1970 #else
1971 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1972 {
1973     return true;
1974 }
1975 #endif
1976 /**
1977  * armv7m_nvic_set_pending: mark the specified exception as pending
1978  * @opaque: the NVIC
1979  * @irq: the exception number to mark pending
1980  * @secure: false for non-banked exceptions or for the nonsecure
1981  * version of a banked exception, true for the secure version of a banked
1982  * exception.
1983  *
1984  * Marks the specified exception as pending. Note that we will assert()
1985  * if @secure is true and @irq does not specify one of the fixed set
1986  * of architecturally banked exceptions.
1987  */
1988 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1989 /**
1990  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1991  * @opaque: the NVIC
1992  * @irq: the exception number to mark pending
1993  * @secure: false for non-banked exceptions or for the nonsecure
1994  * version of a banked exception, true for the secure version of a banked
1995  * exception.
1996  *
1997  * Similar to armv7m_nvic_set_pending(), but specifically for derived
1998  * exceptions (exceptions generated in the course of trying to take
1999  * a different exception).
2000  */
2001 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2002 /**
2003  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2004  * @opaque: the NVIC
2005  * @irq: the exception number to mark pending
2006  * @secure: false for non-banked exceptions or for the nonsecure
2007  * version of a banked exception, true for the secure version of a banked
2008  * exception.
2009  *
2010  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2011  * generated in the course of lazy stacking of FP registers.
2012  */
2013 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2014 /**
2015  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2016  *    exception, and whether it targets Secure state
2017  * @opaque: the NVIC
2018  * @pirq: set to pending exception number
2019  * @ptargets_secure: set to whether pending exception targets Secure
2020  *
2021  * This function writes the number of the highest priority pending
2022  * exception (the one which would be made active by
2023  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2024  * to true if the current highest priority pending exception should
2025  * be taken to Secure state, false for NS.
2026  */
2027 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2028                                       bool *ptargets_secure);
2029 /**
2030  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2031  * @opaque: the NVIC
2032  *
2033  * Move the current highest priority pending exception from the pending
2034  * state to the active state, and update v7m.exception to indicate that
2035  * it is the exception currently being handled.
2036  */
2037 void armv7m_nvic_acknowledge_irq(void *opaque);
2038 /**
2039  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2040  * @opaque: the NVIC
2041  * @irq: the exception number to complete
2042  * @secure: true if this exception was secure
2043  *
2044  * Returns: -1 if the irq was not active
2045  *           1 if completing this irq brought us back to base (no active irqs)
2046  *           0 if there is still an irq active after this one was completed
2047  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2048  */
2049 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2050 /**
2051  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2052  * @opaque: the NVIC
2053  * @irq: the exception number to mark pending
2054  * @secure: false for non-banked exceptions or for the nonsecure
2055  * version of a banked exception, true for the secure version of a banked
2056  * exception.
2057  *
2058  * Return whether an exception is "ready", i.e. whether the exception is
2059  * enabled and is configured at a priority which would allow it to
2060  * interrupt the current execution priority. This controls whether the
2061  * RDY bit for it in the FPCCR is set.
2062  */
2063 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2064 /**
2065  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2066  * @opaque: the NVIC
2067  *
2068  * Returns: the raw execution priority as defined by the v8M architecture.
2069  * This is the execution priority minus the effects of AIRCR.PRIS,
2070  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2071  * (v8M ARM ARM I_PKLD.)
2072  */
2073 int armv7m_nvic_raw_execution_priority(void *opaque);
2074 /**
2075  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2076  * priority is negative for the specified security state.
2077  * @opaque: the NVIC
2078  * @secure: the security state to test
2079  * This corresponds to the pseudocode IsReqExecPriNeg().
2080  */
2081 #ifndef CONFIG_USER_ONLY
2082 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2083 #else
2084 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2085 {
2086     return false;
2087 }
2088 #endif
2089 
2090 /* Interface for defining coprocessor registers.
2091  * Registers are defined in tables of arm_cp_reginfo structs
2092  * which are passed to define_arm_cp_regs().
2093  */
2094 
2095 /* When looking up a coprocessor register we look for it
2096  * via an integer which encodes all of:
2097  *  coprocessor number
2098  *  Crn, Crm, opc1, opc2 fields
2099  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2100  *    or via MRRC/MCRR?)
2101  *  non-secure/secure bank (AArch32 only)
2102  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2103  * (In this case crn and opc2 should be zero.)
2104  * For AArch64, there is no 32/64 bit size distinction;
2105  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2106  * and 4 bit CRn and CRm. The encoding patterns are chosen
2107  * to be easy to convert to and from the KVM encodings, and also
2108  * so that the hashtable can contain both AArch32 and AArch64
2109  * registers (to allow for interprocessing where we might run
2110  * 32 bit code on a 64 bit core).
2111  */
2112 /* This bit is private to our hashtable cpreg; in KVM register
2113  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2114  * in the upper bits of the 64 bit ID.
2115  */
2116 #define CP_REG_AA64_SHIFT 28
2117 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2118 
2119 /* To enable banking of coprocessor registers depending on ns-bit we
2120  * add a bit to distinguish between secure and non-secure cpregs in the
2121  * hashtable.
2122  */
2123 #define CP_REG_NS_SHIFT 29
2124 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2125 
2126 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2127     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2128      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2129 
2130 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2131     (CP_REG_AA64_MASK |                                 \
2132      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2133      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2134      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2135      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2136      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2137      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2138 
2139 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2140  * version used as a key for the coprocessor register hashtable
2141  */
2142 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2143 {
2144     uint32_t cpregid = kvmid;
2145     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2146         cpregid |= CP_REG_AA64_MASK;
2147     } else {
2148         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2149             cpregid |= (1 << 15);
2150         }
2151 
2152         /* KVM is always non-secure so add the NS flag on AArch32 register
2153          * entries.
2154          */
2155          cpregid |= 1 << CP_REG_NS_SHIFT;
2156     }
2157     return cpregid;
2158 }
2159 
2160 /* Convert a truncated 32 bit hashtable key into the full
2161  * 64 bit KVM register ID.
2162  */
2163 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2164 {
2165     uint64_t kvmid;
2166 
2167     if (cpregid & CP_REG_AA64_MASK) {
2168         kvmid = cpregid & ~CP_REG_AA64_MASK;
2169         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2170     } else {
2171         kvmid = cpregid & ~(1 << 15);
2172         if (cpregid & (1 << 15)) {
2173             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2174         } else {
2175             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2176         }
2177     }
2178     return kvmid;
2179 }
2180 
2181 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2182  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2183  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2184  * TCG can assume the value to be constant (ie load at translate time)
2185  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2186  * indicates that the TB should not be ended after a write to this register
2187  * (the default is that the TB ends after cp writes). OVERRIDE permits
2188  * a register definition to override a previous definition for the
2189  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2190  * old must have the OVERRIDE bit set.
2191  * ALIAS indicates that this register is an alias view of some underlying
2192  * state which is also visible via another register, and that the other
2193  * register is handling migration and reset; registers marked ALIAS will not be
2194  * migrated but may have their state set by syncing of register state from KVM.
2195  * NO_RAW indicates that this register has no underlying state and does not
2196  * support raw access for state saving/loading; it will not be used for either
2197  * migration or KVM state synchronization. (Typically this is for "registers"
2198  * which are actually used as instructions for cache maintenance and so on.)
2199  * IO indicates that this register does I/O and therefore its accesses
2200  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2201  * registers which implement clocks or timers require this.
2202  */
2203 #define ARM_CP_SPECIAL           0x0001
2204 #define ARM_CP_CONST             0x0002
2205 #define ARM_CP_64BIT             0x0004
2206 #define ARM_CP_SUPPRESS_TB_END   0x0008
2207 #define ARM_CP_OVERRIDE          0x0010
2208 #define ARM_CP_ALIAS             0x0020
2209 #define ARM_CP_IO                0x0040
2210 #define ARM_CP_NO_RAW            0x0080
2211 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2212 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2213 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2214 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2215 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2216 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2217 #define ARM_CP_FPU               0x1000
2218 #define ARM_CP_SVE               0x2000
2219 #define ARM_CP_NO_GDB            0x4000
2220 /* Used only as a terminator for ARMCPRegInfo lists */
2221 #define ARM_CP_SENTINEL          0xffff
2222 /* Mask of only the flag bits in a type field */
2223 #define ARM_CP_FLAG_MASK         0x70ff
2224 
2225 /* Valid values for ARMCPRegInfo state field, indicating which of
2226  * the AArch32 and AArch64 execution states this register is visible in.
2227  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2228  * If the reginfo is declared to be visible in both states then a second
2229  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2230  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2231  * Note that we rely on the values of these enums as we iterate through
2232  * the various states in some places.
2233  */
2234 enum {
2235     ARM_CP_STATE_AA32 = 0,
2236     ARM_CP_STATE_AA64 = 1,
2237     ARM_CP_STATE_BOTH = 2,
2238 };
2239 
2240 /* ARM CP register secure state flags.  These flags identify security state
2241  * attributes for a given CP register entry.
2242  * The existence of both or neither secure and non-secure flags indicates that
2243  * the register has both a secure and non-secure hash entry.  A single one of
2244  * these flags causes the register to only be hashed for the specified
2245  * security state.
2246  * Although definitions may have any combination of the S/NS bits, each
2247  * registered entry will only have one to identify whether the entry is secure
2248  * or non-secure.
2249  */
2250 enum {
2251     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2252     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2253 };
2254 
2255 /* Return true if cptype is a valid type field. This is used to try to
2256  * catch errors where the sentinel has been accidentally left off the end
2257  * of a list of registers.
2258  */
2259 static inline bool cptype_valid(int cptype)
2260 {
2261     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2262         || ((cptype & ARM_CP_SPECIAL) &&
2263             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2264 }
2265 
2266 /* Access rights:
2267  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2268  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2269  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2270  * (ie any of the privileged modes in Secure state, or Monitor mode).
2271  * If a register is accessible in one privilege level it's always accessible
2272  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2273  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2274  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2275  * terminology a little and call this PL3.
2276  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2277  * with the ELx exception levels.
2278  *
2279  * If access permissions for a register are more complex than can be
2280  * described with these bits, then use a laxer set of restrictions, and
2281  * do the more restrictive/complex check inside a helper function.
2282  */
2283 #define PL3_R 0x80
2284 #define PL3_W 0x40
2285 #define PL2_R (0x20 | PL3_R)
2286 #define PL2_W (0x10 | PL3_W)
2287 #define PL1_R (0x08 | PL2_R)
2288 #define PL1_W (0x04 | PL2_W)
2289 #define PL0_R (0x02 | PL1_R)
2290 #define PL0_W (0x01 | PL1_W)
2291 
2292 /*
2293  * For user-mode some registers are accessible to EL0 via a kernel
2294  * trap-and-emulate ABI. In this case we define the read permissions
2295  * as actually being PL0_R. However some bits of any given register
2296  * may still be masked.
2297  */
2298 #ifdef CONFIG_USER_ONLY
2299 #define PL0U_R PL0_R
2300 #else
2301 #define PL0U_R PL1_R
2302 #endif
2303 
2304 #define PL3_RW (PL3_R | PL3_W)
2305 #define PL2_RW (PL2_R | PL2_W)
2306 #define PL1_RW (PL1_R | PL1_W)
2307 #define PL0_RW (PL0_R | PL0_W)
2308 
2309 /* Return the highest implemented Exception Level */
2310 static inline int arm_highest_el(CPUARMState *env)
2311 {
2312     if (arm_feature(env, ARM_FEATURE_EL3)) {
2313         return 3;
2314     }
2315     if (arm_feature(env, ARM_FEATURE_EL2)) {
2316         return 2;
2317     }
2318     return 1;
2319 }
2320 
2321 /* Return true if a v7M CPU is in Handler mode */
2322 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2323 {
2324     return env->v7m.exception != 0;
2325 }
2326 
2327 /* Return the current Exception Level (as per ARMv8; note that this differs
2328  * from the ARMv7 Privilege Level).
2329  */
2330 static inline int arm_current_el(CPUARMState *env)
2331 {
2332     if (arm_feature(env, ARM_FEATURE_M)) {
2333         return arm_v7m_is_handler_mode(env) ||
2334             !(env->v7m.control[env->v7m.secure] & 1);
2335     }
2336 
2337     if (is_a64(env)) {
2338         return extract32(env->pstate, 2, 2);
2339     }
2340 
2341     switch (env->uncached_cpsr & 0x1f) {
2342     case ARM_CPU_MODE_USR:
2343         return 0;
2344     case ARM_CPU_MODE_HYP:
2345         return 2;
2346     case ARM_CPU_MODE_MON:
2347         return 3;
2348     default:
2349         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2350             /* If EL3 is 32-bit then all secure privileged modes run in
2351              * EL3
2352              */
2353             return 3;
2354         }
2355 
2356         return 1;
2357     }
2358 }
2359 
2360 typedef struct ARMCPRegInfo ARMCPRegInfo;
2361 
2362 typedef enum CPAccessResult {
2363     /* Access is permitted */
2364     CP_ACCESS_OK = 0,
2365     /* Access fails due to a configurable trap or enable which would
2366      * result in a categorized exception syndrome giving information about
2367      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2368      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2369      * PL1 if in EL0, otherwise to the current EL).
2370      */
2371     CP_ACCESS_TRAP = 1,
2372     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2373      * Note that this is not a catch-all case -- the set of cases which may
2374      * result in this failure is specifically defined by the architecture.
2375      */
2376     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2377     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2378     CP_ACCESS_TRAP_EL2 = 3,
2379     CP_ACCESS_TRAP_EL3 = 4,
2380     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2381     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2382     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2383     /* Access fails and results in an exception syndrome for an FP access,
2384      * trapped directly to EL2 or EL3
2385      */
2386     CP_ACCESS_TRAP_FP_EL2 = 7,
2387     CP_ACCESS_TRAP_FP_EL3 = 8,
2388 } CPAccessResult;
2389 
2390 /* Access functions for coprocessor registers. These cannot fail and
2391  * may not raise exceptions.
2392  */
2393 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2394 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2395                        uint64_t value);
2396 /* Access permission check functions for coprocessor registers. */
2397 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2398                                   const ARMCPRegInfo *opaque,
2399                                   bool isread);
2400 /* Hook function for register reset */
2401 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2402 
2403 #define CP_ANY 0xff
2404 
2405 /* Definition of an ARM coprocessor register */
2406 struct ARMCPRegInfo {
2407     /* Name of register (useful mainly for debugging, need not be unique) */
2408     const char *name;
2409     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2410      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2411      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2412      * will be decoded to this register. The register read and write
2413      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2414      * used by the program, so it is possible to register a wildcard and
2415      * then behave differently on read/write if necessary.
2416      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2417      * must both be zero.
2418      * For AArch64-visible registers, opc0 is also used.
2419      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2420      * way to distinguish (for KVM's benefit) guest-visible system registers
2421      * from demuxed ones provided to preserve the "no side effects on
2422      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2423      * visible (to match KVM's encoding); cp==0 will be converted to
2424      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2425      */
2426     uint8_t cp;
2427     uint8_t crn;
2428     uint8_t crm;
2429     uint8_t opc0;
2430     uint8_t opc1;
2431     uint8_t opc2;
2432     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2433     int state;
2434     /* Register type: ARM_CP_* bits/values */
2435     int type;
2436     /* Access rights: PL*_[RW] */
2437     int access;
2438     /* Security state: ARM_CP_SECSTATE_* bits/values */
2439     int secure;
2440     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2441      * this register was defined: can be used to hand data through to the
2442      * register read/write functions, since they are passed the ARMCPRegInfo*.
2443      */
2444     void *opaque;
2445     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2446      * fieldoffset is non-zero, the reset value of the register.
2447      */
2448     uint64_t resetvalue;
2449     /* Offset of the field in CPUARMState for this register.
2450      *
2451      * This is not needed if either:
2452      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2453      *  2. both readfn and writefn are specified
2454      */
2455     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2456 
2457     /* Offsets of the secure and non-secure fields in CPUARMState for the
2458      * register if it is banked.  These fields are only used during the static
2459      * registration of a register.  During hashing the bank associated
2460      * with a given security state is copied to fieldoffset which is used from
2461      * there on out.
2462      *
2463      * It is expected that register definitions use either fieldoffset or
2464      * bank_fieldoffsets in the definition but not both.  It is also expected
2465      * that both bank offsets are set when defining a banked register.  This
2466      * use indicates that a register is banked.
2467      */
2468     ptrdiff_t bank_fieldoffsets[2];
2469 
2470     /* Function for making any access checks for this register in addition to
2471      * those specified by the 'access' permissions bits. If NULL, no extra
2472      * checks required. The access check is performed at runtime, not at
2473      * translate time.
2474      */
2475     CPAccessFn *accessfn;
2476     /* Function for handling reads of this register. If NULL, then reads
2477      * will be done by loading from the offset into CPUARMState specified
2478      * by fieldoffset.
2479      */
2480     CPReadFn *readfn;
2481     /* Function for handling writes of this register. If NULL, then writes
2482      * will be done by writing to the offset into CPUARMState specified
2483      * by fieldoffset.
2484      */
2485     CPWriteFn *writefn;
2486     /* Function for doing a "raw" read; used when we need to copy
2487      * coprocessor state to the kernel for KVM or out for
2488      * migration. This only needs to be provided if there is also a
2489      * readfn and it has side effects (for instance clear-on-read bits).
2490      */
2491     CPReadFn *raw_readfn;
2492     /* Function for doing a "raw" write; used when we need to copy KVM
2493      * kernel coprocessor state into userspace, or for inbound
2494      * migration. This only needs to be provided if there is also a
2495      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2496      * or similar behaviour.
2497      */
2498     CPWriteFn *raw_writefn;
2499     /* Function for resetting the register. If NULL, then reset will be done
2500      * by writing resetvalue to the field specified in fieldoffset. If
2501      * fieldoffset is 0 then no reset will be done.
2502      */
2503     CPResetFn *resetfn;
2504 };
2505 
2506 /* Macros which are lvalues for the field in CPUARMState for the
2507  * ARMCPRegInfo *ri.
2508  */
2509 #define CPREG_FIELD32(env, ri) \
2510     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2511 #define CPREG_FIELD64(env, ri) \
2512     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2513 
2514 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2515 
2516 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2517                                     const ARMCPRegInfo *regs, void *opaque);
2518 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2519                                        const ARMCPRegInfo *regs, void *opaque);
2520 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2521 {
2522     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2523 }
2524 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2525 {
2526     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2527 }
2528 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2529 
2530 /*
2531  * Definition of an ARM co-processor register as viewed from
2532  * userspace. This is used for presenting sanitised versions of
2533  * registers to userspace when emulating the Linux AArch64 CPU
2534  * ID/feature ABI (advertised as HWCAP_CPUID).
2535  */
2536 typedef struct ARMCPRegUserSpaceInfo {
2537     /* Name of register */
2538     const char *name;
2539 
2540     /* Is the name actually a glob pattern */
2541     bool is_glob;
2542 
2543     /* Only some bits are exported to user space */
2544     uint64_t exported_bits;
2545 
2546     /* Fixed bits are applied after the mask */
2547     uint64_t fixed_bits;
2548 } ARMCPRegUserSpaceInfo;
2549 
2550 #define REGUSERINFO_SENTINEL { .name = NULL }
2551 
2552 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2553 
2554 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2555 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2556                          uint64_t value);
2557 /* CPReadFn that can be used for read-as-zero behaviour */
2558 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2559 
2560 /* CPResetFn that does nothing, for use if no reset is required even
2561  * if fieldoffset is non zero.
2562  */
2563 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2564 
2565 /* Return true if this reginfo struct's field in the cpu state struct
2566  * is 64 bits wide.
2567  */
2568 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2569 {
2570     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2571 }
2572 
2573 static inline bool cp_access_ok(int current_el,
2574                                 const ARMCPRegInfo *ri, int isread)
2575 {
2576     return (ri->access >> ((current_el * 2) + isread)) & 1;
2577 }
2578 
2579 /* Raw read of a coprocessor register (as needed for migration, etc) */
2580 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2581 
2582 /**
2583  * write_list_to_cpustate
2584  * @cpu: ARMCPU
2585  *
2586  * For each register listed in the ARMCPU cpreg_indexes list, write
2587  * its value from the cpreg_values list into the ARMCPUState structure.
2588  * This updates TCG's working data structures from KVM data or
2589  * from incoming migration state.
2590  *
2591  * Returns: true if all register values were updated correctly,
2592  * false if some register was unknown or could not be written.
2593  * Note that we do not stop early on failure -- we will attempt
2594  * writing all registers in the list.
2595  */
2596 bool write_list_to_cpustate(ARMCPU *cpu);
2597 
2598 /**
2599  * write_cpustate_to_list:
2600  * @cpu: ARMCPU
2601  * @kvm_sync: true if this is for syncing back to KVM
2602  *
2603  * For each register listed in the ARMCPU cpreg_indexes list, write
2604  * its value from the ARMCPUState structure into the cpreg_values list.
2605  * This is used to copy info from TCG's working data structures into
2606  * KVM or for outbound migration.
2607  *
2608  * @kvm_sync is true if we are doing this in order to sync the
2609  * register state back to KVM. In this case we will only update
2610  * values in the list if the previous list->cpustate sync actually
2611  * successfully wrote the CPU state. Otherwise we will keep the value
2612  * that is in the list.
2613  *
2614  * Returns: true if all register values were read correctly,
2615  * false if some register was unknown or could not be read.
2616  * Note that we do not stop early on failure -- we will attempt
2617  * reading all registers in the list.
2618  */
2619 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2620 
2621 #define ARM_CPUID_TI915T      0x54029152
2622 #define ARM_CPUID_TI925T      0x54029252
2623 
2624 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2625                                      unsigned int target_el)
2626 {
2627     CPUARMState *env = cs->env_ptr;
2628     unsigned int cur_el = arm_current_el(env);
2629     bool secure = arm_is_secure(env);
2630     bool pstate_unmasked;
2631     int8_t unmasked = 0;
2632     uint64_t hcr_el2;
2633 
2634     /* Don't take exceptions if they target a lower EL.
2635      * This check should catch any exceptions that would not be taken but left
2636      * pending.
2637      */
2638     if (cur_el > target_el) {
2639         return false;
2640     }
2641 
2642     hcr_el2 = arm_hcr_el2_eff(env);
2643 
2644     switch (excp_idx) {
2645     case EXCP_FIQ:
2646         pstate_unmasked = !(env->daif & PSTATE_F);
2647         break;
2648 
2649     case EXCP_IRQ:
2650         pstate_unmasked = !(env->daif & PSTATE_I);
2651         break;
2652 
2653     case EXCP_VFIQ:
2654         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2655             /* VFIQs are only taken when hypervized and non-secure.  */
2656             return false;
2657         }
2658         return !(env->daif & PSTATE_F);
2659     case EXCP_VIRQ:
2660         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2661             /* VIRQs are only taken when hypervized and non-secure.  */
2662             return false;
2663         }
2664         return !(env->daif & PSTATE_I);
2665     default:
2666         g_assert_not_reached();
2667     }
2668 
2669     /* Use the target EL, current execution state and SCR/HCR settings to
2670      * determine whether the corresponding CPSR bit is used to mask the
2671      * interrupt.
2672      */
2673     if ((target_el > cur_el) && (target_el != 1)) {
2674         /* Exceptions targeting a higher EL may not be maskable */
2675         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2676             /* 64-bit masking rules are simple: exceptions to EL3
2677              * can't be masked, and exceptions to EL2 can only be
2678              * masked from Secure state. The HCR and SCR settings
2679              * don't affect the masking logic, only the interrupt routing.
2680              */
2681             if (target_el == 3 || !secure) {
2682                 unmasked = 1;
2683             }
2684         } else {
2685             /* The old 32-bit-only environment has a more complicated
2686              * masking setup. HCR and SCR bits not only affect interrupt
2687              * routing but also change the behaviour of masking.
2688              */
2689             bool hcr, scr;
2690 
2691             switch (excp_idx) {
2692             case EXCP_FIQ:
2693                 /* If FIQs are routed to EL3 or EL2 then there are cases where
2694                  * we override the CPSR.F in determining if the exception is
2695                  * masked or not. If neither of these are set then we fall back
2696                  * to the CPSR.F setting otherwise we further assess the state
2697                  * below.
2698                  */
2699                 hcr = hcr_el2 & HCR_FMO;
2700                 scr = (env->cp15.scr_el3 & SCR_FIQ);
2701 
2702                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2703                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
2704                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2705                  * when non-secure but only when FIQs are only routed to EL3.
2706                  */
2707                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2708                 break;
2709             case EXCP_IRQ:
2710                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2711                  * we may override the CPSR.I masking when in non-secure state.
2712                  * The SCR.IRQ setting has already been taken into consideration
2713                  * when setting the target EL, so it does not have a further
2714                  * affect here.
2715                  */
2716                 hcr = hcr_el2 & HCR_IMO;
2717                 scr = false;
2718                 break;
2719             default:
2720                 g_assert_not_reached();
2721             }
2722 
2723             if ((scr || hcr) && !secure) {
2724                 unmasked = 1;
2725             }
2726         }
2727     }
2728 
2729     /* The PSTATE bits only mask the interrupt if we have not overriden the
2730      * ability above.
2731      */
2732     return unmasked || pstate_unmasked;
2733 }
2734 
2735 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2736 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2737 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2738 
2739 #define cpu_signal_handler cpu_arm_signal_handler
2740 #define cpu_list arm_cpu_list
2741 
2742 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2743  *
2744  * If EL3 is 64-bit:
2745  *  + NonSecure EL1 & 0 stage 1
2746  *  + NonSecure EL1 & 0 stage 2
2747  *  + NonSecure EL2
2748  *  + Secure EL1 & EL0
2749  *  + Secure EL3
2750  * If EL3 is 32-bit:
2751  *  + NonSecure PL1 & 0 stage 1
2752  *  + NonSecure PL1 & 0 stage 2
2753  *  + NonSecure PL2
2754  *  + Secure PL0 & PL1
2755  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2756  *
2757  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2758  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2759  *     may differ in access permissions even if the VA->PA map is the same
2760  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2761  *     translation, which means that we have one mmu_idx that deals with two
2762  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2763  *     architecturally permitted]
2764  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2765  *     handling via the TLB. The only way to do a stage 1 translation without
2766  *     the immediate stage 2 translation is via the ATS or AT system insns,
2767  *     which can be slow-pathed and always do a page table walk.
2768  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2769  *     translation regimes, because they map reasonably well to each other
2770  *     and they can't both be active at the same time.
2771  * This gives us the following list of mmu_idx values:
2772  *
2773  * NS EL0 (aka NS PL0) stage 1+2
2774  * NS EL1 (aka NS PL1) stage 1+2
2775  * NS EL2 (aka NS PL2)
2776  * S EL3 (aka S PL1)
2777  * S EL0 (aka S PL0)
2778  * S EL1 (not used if EL3 is 32 bit)
2779  * NS EL0+1 stage 2
2780  *
2781  * (The last of these is an mmu_idx because we want to be able to use the TLB
2782  * for the accesses done as part of a stage 1 page table walk, rather than
2783  * having to walk the stage 2 page table over and over.)
2784  *
2785  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2786  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2787  * NS EL2 if we ever model a Cortex-R52).
2788  *
2789  * M profile CPUs are rather different as they do not have a true MMU.
2790  * They have the following different MMU indexes:
2791  *  User
2792  *  Privileged
2793  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2794  *  Privileged, execution priority negative (ditto)
2795  * If the CPU supports the v8M Security Extension then there are also:
2796  *  Secure User
2797  *  Secure Privileged
2798  *  Secure User, execution priority negative
2799  *  Secure Privileged, execution priority negative
2800  *
2801  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2802  * are not quite the same -- different CPU types (most notably M profile
2803  * vs A/R profile) would like to use MMU indexes with different semantics,
2804  * but since we don't ever need to use all of those in a single CPU we
2805  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2806  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2807  * the same for any particular CPU.
2808  * Variables of type ARMMUIdx are always full values, and the core
2809  * index values are in variables of type 'int'.
2810  *
2811  * Our enumeration includes at the end some entries which are not "true"
2812  * mmu_idx values in that they don't have corresponding TLBs and are only
2813  * valid for doing slow path page table walks.
2814  *
2815  * The constant names here are patterned after the general style of the names
2816  * of the AT/ATS operations.
2817  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2818  * For M profile we arrange them to have a bit for priv, a bit for negpri
2819  * and a bit for secure.
2820  */
2821 #define ARM_MMU_IDX_A 0x10 /* A profile */
2822 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2823 #define ARM_MMU_IDX_M 0x40 /* M profile */
2824 
2825 /* meanings of the bits for M profile mmu idx values */
2826 #define ARM_MMU_IDX_M_PRIV 0x1
2827 #define ARM_MMU_IDX_M_NEGPRI 0x2
2828 #define ARM_MMU_IDX_M_S 0x4
2829 
2830 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2831 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2832 
2833 typedef enum ARMMMUIdx {
2834     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2835     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2836     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2837     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2838     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2839     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2840     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2841     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2842     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2843     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2844     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2845     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2846     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2847     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2848     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2849     /* Indexes below here don't have TLBs and are used only for AT system
2850      * instructions or for the first stage of an S12 page table walk.
2851      */
2852     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2853     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2854 } ARMMMUIdx;
2855 
2856 /* Bit macros for the core-mmu-index values for each index,
2857  * for use when calling tlb_flush_by_mmuidx() and friends.
2858  */
2859 typedef enum ARMMMUIdxBit {
2860     ARMMMUIdxBit_S12NSE0 = 1 << 0,
2861     ARMMMUIdxBit_S12NSE1 = 1 << 1,
2862     ARMMMUIdxBit_S1E2 = 1 << 2,
2863     ARMMMUIdxBit_S1E3 = 1 << 3,
2864     ARMMMUIdxBit_S1SE0 = 1 << 4,
2865     ARMMMUIdxBit_S1SE1 = 1 << 5,
2866     ARMMMUIdxBit_S2NS = 1 << 6,
2867     ARMMMUIdxBit_MUser = 1 << 0,
2868     ARMMMUIdxBit_MPriv = 1 << 1,
2869     ARMMMUIdxBit_MUserNegPri = 1 << 2,
2870     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2871     ARMMMUIdxBit_MSUser = 1 << 4,
2872     ARMMMUIdxBit_MSPriv = 1 << 5,
2873     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2874     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2875 } ARMMMUIdxBit;
2876 
2877 #define MMU_USER_IDX 0
2878 
2879 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2880 {
2881     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2882 }
2883 
2884 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2885 {
2886     if (arm_feature(env, ARM_FEATURE_M)) {
2887         return mmu_idx | ARM_MMU_IDX_M;
2888     } else {
2889         return mmu_idx | ARM_MMU_IDX_A;
2890     }
2891 }
2892 
2893 /* Return the exception level we're running at if this is our mmu_idx */
2894 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2895 {
2896     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2897     case ARM_MMU_IDX_A:
2898         return mmu_idx & 3;
2899     case ARM_MMU_IDX_M:
2900         return mmu_idx & ARM_MMU_IDX_M_PRIV;
2901     default:
2902         g_assert_not_reached();
2903     }
2904 }
2905 
2906 /*
2907  * Return the MMU index for a v7M CPU with all relevant information
2908  * manually specified.
2909  */
2910 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2911                               bool secstate, bool priv, bool negpri);
2912 
2913 /* Return the MMU index for a v7M CPU in the specified security and
2914  * privilege state.
2915  */
2916 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2917                                                 bool secstate, bool priv);
2918 
2919 /* Return the MMU index for a v7M CPU in the specified security state */
2920 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2921 
2922 /**
2923  * cpu_mmu_index:
2924  * @env: The cpu environment
2925  * @ifetch: True for code access, false for data access.
2926  *
2927  * Return the core mmu index for the current translation regime.
2928  * This function is used by generic TCG code paths.
2929  */
2930 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2931 
2932 /* Indexes used when registering address spaces with cpu_address_space_init */
2933 typedef enum ARMASIdx {
2934     ARMASIdx_NS = 0,
2935     ARMASIdx_S = 1,
2936 } ARMASIdx;
2937 
2938 /* Return the Exception Level targeted by debug exceptions. */
2939 static inline int arm_debug_target_el(CPUARMState *env)
2940 {
2941     bool secure = arm_is_secure(env);
2942     bool route_to_el2 = false;
2943 
2944     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2945         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2946                        env->cp15.mdcr_el2 & MDCR_TDE;
2947     }
2948 
2949     if (route_to_el2) {
2950         return 2;
2951     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2952                !arm_el_is_aa64(env, 3) && secure) {
2953         return 3;
2954     } else {
2955         return 1;
2956     }
2957 }
2958 
2959 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2960 {
2961     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2962      * CSSELR is RAZ/WI.
2963      */
2964     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2965 }
2966 
2967 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2968 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2969 {
2970     int cur_el = arm_current_el(env);
2971     int debug_el;
2972 
2973     if (cur_el == 3) {
2974         return false;
2975     }
2976 
2977     /* MDCR_EL3.SDD disables debug events from Secure state */
2978     if (arm_is_secure_below_el3(env)
2979         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2980         return false;
2981     }
2982 
2983     /*
2984      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2985      * while not masking the (D)ebug bit in DAIF.
2986      */
2987     debug_el = arm_debug_target_el(env);
2988 
2989     if (cur_el == debug_el) {
2990         return extract32(env->cp15.mdscr_el1, 13, 1)
2991             && !(env->daif & PSTATE_D);
2992     }
2993 
2994     /* Otherwise the debug target needs to be a higher EL */
2995     return debug_el > cur_el;
2996 }
2997 
2998 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2999 {
3000     int el = arm_current_el(env);
3001 
3002     if (el == 0 && arm_el_is_aa64(env, 1)) {
3003         return aa64_generate_debug_exceptions(env);
3004     }
3005 
3006     if (arm_is_secure(env)) {
3007         int spd;
3008 
3009         if (el == 0 && (env->cp15.sder & 1)) {
3010             /* SDER.SUIDEN means debug exceptions from Secure EL0
3011              * are always enabled. Otherwise they are controlled by
3012              * SDCR.SPD like those from other Secure ELs.
3013              */
3014             return true;
3015         }
3016 
3017         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3018         switch (spd) {
3019         case 1:
3020             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3021         case 0:
3022             /* For 0b00 we return true if external secure invasive debug
3023              * is enabled. On real hardware this is controlled by external
3024              * signals to the core. QEMU always permits debug, and behaves
3025              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3026              */
3027             return true;
3028         case 2:
3029             return false;
3030         case 3:
3031             return true;
3032         }
3033     }
3034 
3035     return el != 2;
3036 }
3037 
3038 /* Return true if debugging exceptions are currently enabled.
3039  * This corresponds to what in ARM ARM pseudocode would be
3040  *    if UsingAArch32() then
3041  *        return AArch32.GenerateDebugExceptions()
3042  *    else
3043  *        return AArch64.GenerateDebugExceptions()
3044  * We choose to push the if() down into this function for clarity,
3045  * since the pseudocode has it at all callsites except for the one in
3046  * CheckSoftwareStep(), where it is elided because both branches would
3047  * always return the same value.
3048  */
3049 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3050 {
3051     if (env->aarch64) {
3052         return aa64_generate_debug_exceptions(env);
3053     } else {
3054         return aa32_generate_debug_exceptions(env);
3055     }
3056 }
3057 
3058 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3059  * implicitly means this always returns false in pre-v8 CPUs.)
3060  */
3061 static inline bool arm_singlestep_active(CPUARMState *env)
3062 {
3063     return extract32(env->cp15.mdscr_el1, 0, 1)
3064         && arm_el_is_aa64(env, arm_debug_target_el(env))
3065         && arm_generate_debug_exceptions(env);
3066 }
3067 
3068 static inline bool arm_sctlr_b(CPUARMState *env)
3069 {
3070     return
3071         /* We need not implement SCTLR.ITD in user-mode emulation, so
3072          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3073          * This lets people run BE32 binaries with "-cpu any".
3074          */
3075 #ifndef CONFIG_USER_ONLY
3076         !arm_feature(env, ARM_FEATURE_V7) &&
3077 #endif
3078         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3079 }
3080 
3081 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3082 {
3083     if (el == 0) {
3084         /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3085         return env->cp15.sctlr_el[1];
3086     } else {
3087         return env->cp15.sctlr_el[el];
3088     }
3089 }
3090 
3091 
3092 /* Return true if the processor is in big-endian mode. */
3093 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3094 {
3095     /* In 32bit endianness is determined by looking at CPSR's E bit */
3096     if (!is_a64(env)) {
3097         return
3098 #ifdef CONFIG_USER_ONLY
3099             /* In system mode, BE32 is modelled in line with the
3100              * architecture (as word-invariant big-endianness), where loads
3101              * and stores are done little endian but from addresses which
3102              * are adjusted by XORing with the appropriate constant. So the
3103              * endianness to use for the raw data access is not affected by
3104              * SCTLR.B.
3105              * In user mode, however, we model BE32 as byte-invariant
3106              * big-endianness (because user-only code cannot tell the
3107              * difference), and so we need to use a data access endianness
3108              * that depends on SCTLR.B.
3109              */
3110             arm_sctlr_b(env) ||
3111 #endif
3112                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3113     } else {
3114         int cur_el = arm_current_el(env);
3115         uint64_t sctlr = arm_sctlr(env, cur_el);
3116 
3117         return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3118     }
3119 }
3120 
3121 typedef CPUARMState CPUArchState;
3122 typedef ARMCPU ArchCPU;
3123 
3124 #include "exec/cpu-all.h"
3125 
3126 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3127  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3128  * We put flags which are shared between 32 and 64 bit mode at the top
3129  * of the word, and flags which apply to only one mode at the bottom.
3130  */
3131 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3132 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3133 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3134 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3135 /* Target EL if we take a floating-point-disabled exception */
3136 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3137 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3138 
3139 /* Bit usage when in AArch32 state: */
3140 FIELD(TBFLAG_A32, THUMB, 0, 1)
3141 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3142 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3143 /*
3144  * We store the bottom two bits of the CPAR as TB flags and handle
3145  * checks on the other bits at runtime. This shares the same bits as
3146  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3147  */
3148 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3149 /*
3150  * Indicates whether cp register reads and writes by guest code should access
3151  * the secure or nonsecure bank of banked registers; note that this is not
3152  * the same thing as the current security state of the processor!
3153  */
3154 FIELD(TBFLAG_A32, NS, 6, 1)
3155 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3156 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3157 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3158 /* For M profile only, set if FPCCR.LSPACT is set */
3159 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3160 /* For M profile only, set if we must create a new FP context */
3161 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3162 /* For M profile only, set if FPCCR.S does not match current security state */
3163 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3164 /* For M profile only, Handler (ie not Thread) mode */
3165 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3166 /* For M profile only, whether we should generate stack-limit checks */
3167 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3168 
3169 /* Bit usage when in AArch64 state */
3170 FIELD(TBFLAG_A64, TBII, 0, 2)
3171 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3172 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3173 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3174 FIELD(TBFLAG_A64, BT, 9, 1)
3175 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3176 FIELD(TBFLAG_A64, TBID, 12, 2)
3177 
3178 static inline bool bswap_code(bool sctlr_b)
3179 {
3180 #ifdef CONFIG_USER_ONLY
3181     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3182      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3183      * would also end up as a mixed-endian mode with BE code, LE data.
3184      */
3185     return
3186 #ifdef TARGET_WORDS_BIGENDIAN
3187         1 ^
3188 #endif
3189         sctlr_b;
3190 #else
3191     /* All code access in ARM is little endian, and there are no loaders
3192      * doing swaps that need to be reversed
3193      */
3194     return 0;
3195 #endif
3196 }
3197 
3198 #ifdef CONFIG_USER_ONLY
3199 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3200 {
3201     return
3202 #ifdef TARGET_WORDS_BIGENDIAN
3203        1 ^
3204 #endif
3205        arm_cpu_data_is_big_endian(env);
3206 }
3207 #endif
3208 
3209 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3210                           target_ulong *cs_base, uint32_t *flags);
3211 
3212 enum {
3213     QEMU_PSCI_CONDUIT_DISABLED = 0,
3214     QEMU_PSCI_CONDUIT_SMC = 1,
3215     QEMU_PSCI_CONDUIT_HVC = 2,
3216 };
3217 
3218 #ifndef CONFIG_USER_ONLY
3219 /* Return the address space index to use for a memory access */
3220 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3221 {
3222     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3223 }
3224 
3225 /* Return the AddressSpace to use for a memory access
3226  * (which depends on whether the access is S or NS, and whether
3227  * the board gave us a separate AddressSpace for S accesses).
3228  */
3229 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3230 {
3231     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3232 }
3233 #endif
3234 
3235 /**
3236  * arm_register_pre_el_change_hook:
3237  * Register a hook function which will be called immediately before this
3238  * CPU changes exception level or mode. The hook function will be
3239  * passed a pointer to the ARMCPU and the opaque data pointer passed
3240  * to this function when the hook was registered.
3241  *
3242  * Note that if a pre-change hook is called, any registered post-change hooks
3243  * are guaranteed to subsequently be called.
3244  */
3245 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3246                                  void *opaque);
3247 /**
3248  * arm_register_el_change_hook:
3249  * Register a hook function which will be called immediately after this
3250  * CPU changes exception level or mode. The hook function will be
3251  * passed a pointer to the ARMCPU and the opaque data pointer passed
3252  * to this function when the hook was registered.
3253  *
3254  * Note that any registered hooks registered here are guaranteed to be called
3255  * if pre-change hooks have been.
3256  */
3257 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3258         *opaque);
3259 
3260 /**
3261  * aa32_vfp_dreg:
3262  * Return a pointer to the Dn register within env in 32-bit mode.
3263  */
3264 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3265 {
3266     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3267 }
3268 
3269 /**
3270  * aa32_vfp_qreg:
3271  * Return a pointer to the Qn register within env in 32-bit mode.
3272  */
3273 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3274 {
3275     return &env->vfp.zregs[regno].d[0];
3276 }
3277 
3278 /**
3279  * aa64_vfp_qreg:
3280  * Return a pointer to the Qn register within env in 64-bit mode.
3281  */
3282 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3283 {
3284     return &env->vfp.zregs[regno].d[0];
3285 }
3286 
3287 /* Shared between translate-sve.c and sve_helper.c.  */
3288 extern const uint64_t pred_esz_masks[4];
3289 
3290 /*
3291  * 32-bit feature tests via id registers.
3292  */
3293 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3294 {
3295     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3296 }
3297 
3298 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3299 {
3300     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3301 }
3302 
3303 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3304 {
3305     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3306 }
3307 
3308 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3309 {
3310     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3311 }
3312 
3313 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3314 {
3315     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3316 }
3317 
3318 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3319 {
3320     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3321 }
3322 
3323 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3324 {
3325     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3326 }
3327 
3328 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3329 {
3330     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3331 }
3332 
3333 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3334 {
3335     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3336 }
3337 
3338 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3339 {
3340     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3341 }
3342 
3343 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3344 {
3345     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3346 }
3347 
3348 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3349 {
3350     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3351 }
3352 
3353 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3354 {
3355     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3356 }
3357 
3358 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3359 {
3360     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3361 }
3362 
3363 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3364 {
3365     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3366 }
3367 
3368 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3369 {
3370     /*
3371      * This is a placeholder for use by VCMA until the rest of
3372      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3373      * At which point we can properly set and check MVFR1.FPHP.
3374      */
3375     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3376 }
3377 
3378 /*
3379  * We always set the FP and SIMD FP16 fields to indicate identical
3380  * levels of support (assuming SIMD is implemented at all), so
3381  * we only need one set of accessors.
3382  */
3383 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3384 {
3385     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3386 }
3387 
3388 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3389 {
3390     return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3391 }
3392 
3393 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3394 {
3395     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3396 }
3397 
3398 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3399 {
3400     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3401 }
3402 
3403 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3404 {
3405     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3406 }
3407 
3408 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3409 {
3410     return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3411 }
3412 
3413 /*
3414  * 64-bit feature tests via id registers.
3415  */
3416 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3417 {
3418     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3419 }
3420 
3421 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3422 {
3423     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3424 }
3425 
3426 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3427 {
3428     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3429 }
3430 
3431 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3432 {
3433     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3434 }
3435 
3436 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3437 {
3438     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3439 }
3440 
3441 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3442 {
3443     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3444 }
3445 
3446 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3447 {
3448     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3449 }
3450 
3451 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3452 {
3453     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3454 }
3455 
3456 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3457 {
3458     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3459 }
3460 
3461 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3462 {
3463     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3464 }
3465 
3466 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3467 {
3468     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3469 }
3470 
3471 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3472 {
3473     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3474 }
3475 
3476 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3477 {
3478     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3479 }
3480 
3481 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3482 {
3483     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3484 }
3485 
3486 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3487 {
3488     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3489 }
3490 
3491 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3492 {
3493     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3494 }
3495 
3496 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3497 {
3498     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3499 }
3500 
3501 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3502 {
3503     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3504 }
3505 
3506 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3507 {
3508     /*
3509      * Note that while QEMU will only implement the architected algorithm
3510      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3511      * defined algorithms, and thus API+GPI, and this predicate controls
3512      * migration of the 128-bit keys.
3513      */
3514     return (id->id_aa64isar1 &
3515             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3516              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3517              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3518              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3519 }
3520 
3521 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3522 {
3523     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3524 }
3525 
3526 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3527 {
3528     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3529 }
3530 
3531 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3532 {
3533     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3534 }
3535 
3536 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3537 {
3538     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3539     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3540 }
3541 
3542 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3543 {
3544     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3545 }
3546 
3547 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3548 {
3549     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3550 }
3551 
3552 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3553 {
3554     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3555 }
3556 
3557 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3558 {
3559     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3560 }
3561 
3562 /*
3563  * Forward to the above feature tests given an ARMCPU pointer.
3564  */
3565 #define cpu_isar_feature(name, cpu) \
3566     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3567 
3568 #endif
3569