xref: /openbmc/qemu/target/arm/cpu.h (revision 2fc979cb)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 
28 /* ARM processors have a weak memory model */
29 #define TCG_GUEST_DEFAULT_MO      (0)
30 
31 #ifdef TARGET_AARCH64
32 #define KVM_HAVE_MCE_INJECTION 1
33 #endif
34 
35 #define EXCP_UDEF            1   /* undefined instruction */
36 #define EXCP_SWI             2   /* software interrupt */
37 #define EXCP_PREFETCH_ABORT  3
38 #define EXCP_DATA_ABORT      4
39 #define EXCP_IRQ             5
40 #define EXCP_FIQ             6
41 #define EXCP_BKPT            7
42 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
43 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
44 #define EXCP_HVC            11   /* HyperVisor Call */
45 #define EXCP_HYP_TRAP       12
46 #define EXCP_SMC            13   /* Secure Monitor Call */
47 #define EXCP_VIRQ           14
48 #define EXCP_VFIQ           15
49 #define EXCP_SEMIHOST       16   /* semihosting call */
50 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
51 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
52 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
53 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
54 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
55 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
56 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
57 
58 #define ARMV7M_EXCP_RESET   1
59 #define ARMV7M_EXCP_NMI     2
60 #define ARMV7M_EXCP_HARD    3
61 #define ARMV7M_EXCP_MEM     4
62 #define ARMV7M_EXCP_BUS     5
63 #define ARMV7M_EXCP_USAGE   6
64 #define ARMV7M_EXCP_SECURE  7
65 #define ARMV7M_EXCP_SVC     11
66 #define ARMV7M_EXCP_DEBUG   12
67 #define ARMV7M_EXCP_PENDSV  14
68 #define ARMV7M_EXCP_SYSTICK 15
69 
70 /* For M profile, some registers are banked secure vs non-secure;
71  * these are represented as a 2-element array where the first element
72  * is the non-secure copy and the second is the secure copy.
73  * When the CPU does not have implement the security extension then
74  * only the first element is used.
75  * This means that the copy for the current security state can be
76  * accessed via env->registerfield[env->v7m.secure] (whether the security
77  * extension is implemented or not).
78  */
79 enum {
80     M_REG_NS = 0,
81     M_REG_S = 1,
82     M_REG_NUM_BANKS = 2,
83 };
84 
85 /* ARM-specific interrupt pending bits.  */
86 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
87 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
88 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
89 
90 /* The usual mapping for an AArch64 system register to its AArch32
91  * counterpart is for the 32 bit world to have access to the lower
92  * half only (with writes leaving the upper half untouched). It's
93  * therefore useful to be able to pass TCG the offset of the least
94  * significant half of a uint64_t struct member.
95  */
96 #ifdef HOST_WORDS_BIGENDIAN
97 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #define offsetofhigh32(S, M) offsetof(S, M)
99 #else
100 #define offsetoflow32(S, M) offsetof(S, M)
101 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #endif
103 
104 /* Meanings of the ARMCPU object's four inbound GPIO lines */
105 #define ARM_CPU_IRQ 0
106 #define ARM_CPU_FIQ 1
107 #define ARM_CPU_VIRQ 2
108 #define ARM_CPU_VFIQ 3
109 
110 /* ARM-specific extra insn start words:
111  * 1: Conditional execution bits
112  * 2: Partial exception syndrome for data aborts
113  */
114 #define TARGET_INSN_START_EXTRA_WORDS 2
115 
116 /* The 2nd extra word holding syndrome info for data aborts does not use
117  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
118  * help the sleb128 encoder do a better job.
119  * When restoring the CPU state, we shift it back up.
120  */
121 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
122 #define ARM_INSN_START_WORD2_SHIFT 14
123 
124 /* We currently assume float and double are IEEE single and double
125    precision respectively.
126    Doing runtime conversions is tricky because VFP registers may contain
127    integer values (eg. as the result of a FTOSI instruction).
128    s<2n> maps to the least significant half of d<n>
129    s<2n+1> maps to the most significant half of d<n>
130  */
131 
132 /**
133  * DynamicGDBXMLInfo:
134  * @desc: Contains the XML descriptions.
135  * @num: Number of the registers in this XML seen by GDB.
136  * @data: A union with data specific to the set of registers
137  *    @cpregs_keys: Array that contains the corresponding Key of
138  *                  a given cpreg with the same order of the cpreg
139  *                  in the XML description.
140  */
141 typedef struct DynamicGDBXMLInfo {
142     char *desc;
143     int num;
144     union {
145         struct {
146             uint32_t *keys;
147         } cpregs;
148     } data;
149 } DynamicGDBXMLInfo;
150 
151 /* CPU state for each instance of a generic timer (in cp15 c14) */
152 typedef struct ARMGenericTimer {
153     uint64_t cval; /* Timer CompareValue register */
154     uint64_t ctl; /* Timer Control register */
155 } ARMGenericTimer;
156 
157 #define GTIMER_PHYS     0
158 #define GTIMER_VIRT     1
159 #define GTIMER_HYP      2
160 #define GTIMER_SEC      3
161 #define GTIMER_HYPVIRT  4
162 #define NUM_GTIMERS     5
163 
164 typedef struct {
165     uint64_t raw_tcr;
166     uint32_t mask;
167     uint32_t base_mask;
168 } TCR;
169 
170 /* Define a maximum sized vector register.
171  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
172  * For 64-bit, this is a 2048-bit SVE register.
173  *
174  * Note that the mapping between S, D, and Q views of the register bank
175  * differs between AArch64 and AArch32.
176  * In AArch32:
177  *  Qn = regs[n].d[1]:regs[n].d[0]
178  *  Dn = regs[n / 2].d[n & 1]
179  *  Sn = regs[n / 4].d[n % 4 / 2],
180  *       bits 31..0 for even n, and bits 63..32 for odd n
181  *       (and regs[16] to regs[31] are inaccessible)
182  * In AArch64:
183  *  Zn = regs[n].d[*]
184  *  Qn = regs[n].d[1]:regs[n].d[0]
185  *  Dn = regs[n].d[0]
186  *  Sn = regs[n].d[0] bits 31..0
187  *  Hn = regs[n].d[0] bits 15..0
188  *
189  * This corresponds to the architecturally defined mapping between
190  * the two execution states, and means we do not need to explicitly
191  * map these registers when changing states.
192  *
193  * Align the data for use with TCG host vector operations.
194  */
195 
196 #ifdef TARGET_AARCH64
197 # define ARM_MAX_VQ    16
198 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
199 #else
200 # define ARM_MAX_VQ    1
201 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
202 #endif
203 
204 typedef struct ARMVectorReg {
205     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
206 } ARMVectorReg;
207 
208 #ifdef TARGET_AARCH64
209 /* In AArch32 mode, predicate registers do not exist at all.  */
210 typedef struct ARMPredicateReg {
211     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
212 } ARMPredicateReg;
213 
214 /* In AArch32 mode, PAC keys do not exist at all.  */
215 typedef struct ARMPACKey {
216     uint64_t lo, hi;
217 } ARMPACKey;
218 #endif
219 
220 
221 typedef struct CPUARMState {
222     /* Regs for current mode.  */
223     uint32_t regs[16];
224 
225     /* 32/64 switch only happens when taking and returning from
226      * exceptions so the overlap semantics are taken care of then
227      * instead of having a complicated union.
228      */
229     /* Regs for A64 mode.  */
230     uint64_t xregs[32];
231     uint64_t pc;
232     /* PSTATE isn't an architectural register for ARMv8. However, it is
233      * convenient for us to assemble the underlying state into a 32 bit format
234      * identical to the architectural format used for the SPSR. (This is also
235      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
236      * 'pstate' register are.) Of the PSTATE bits:
237      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
238      *    semantics as for AArch32, as described in the comments on each field)
239      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
240      *  DAIF (exception masks) are kept in env->daif
241      *  BTYPE is kept in env->btype
242      *  all other bits are stored in their correct places in env->pstate
243      */
244     uint32_t pstate;
245     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
246 
247     /* Cached TBFLAGS state.  See below for which bits are included.  */
248     uint32_t hflags;
249 
250     /* Frequently accessed CPSR bits are stored separately for efficiency.
251        This contains all the other bits.  Use cpsr_{read,write} to access
252        the whole CPSR.  */
253     uint32_t uncached_cpsr;
254     uint32_t spsr;
255 
256     /* Banked registers.  */
257     uint64_t banked_spsr[8];
258     uint32_t banked_r13[8];
259     uint32_t banked_r14[8];
260 
261     /* These hold r8-r12.  */
262     uint32_t usr_regs[5];
263     uint32_t fiq_regs[5];
264 
265     /* cpsr flag cache for faster execution */
266     uint32_t CF; /* 0 or 1 */
267     uint32_t VF; /* V is the bit 31. All other bits are undefined */
268     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
269     uint32_t ZF; /* Z set if zero.  */
270     uint32_t QF; /* 0 or 1 */
271     uint32_t GE; /* cpsr[19:16] */
272     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
273     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
274     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
275     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
276 
277     uint64_t elr_el[4]; /* AArch64 exception link regs  */
278     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
279 
280     /* System control coprocessor (cp15) */
281     struct {
282         uint32_t c0_cpuid;
283         union { /* Cache size selection */
284             struct {
285                 uint64_t _unused_csselr0;
286                 uint64_t csselr_ns;
287                 uint64_t _unused_csselr1;
288                 uint64_t csselr_s;
289             };
290             uint64_t csselr_el[4];
291         };
292         union { /* System control register. */
293             struct {
294                 uint64_t _unused_sctlr;
295                 uint64_t sctlr_ns;
296                 uint64_t hsctlr;
297                 uint64_t sctlr_s;
298             };
299             uint64_t sctlr_el[4];
300         };
301         uint64_t cpacr_el1; /* Architectural feature access control register */
302         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
303         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
304         uint64_t sder; /* Secure debug enable register. */
305         uint32_t nsacr; /* Non-secure access control register. */
306         union { /* MMU translation table base 0. */
307             struct {
308                 uint64_t _unused_ttbr0_0;
309                 uint64_t ttbr0_ns;
310                 uint64_t _unused_ttbr0_1;
311                 uint64_t ttbr0_s;
312             };
313             uint64_t ttbr0_el[4];
314         };
315         union { /* MMU translation table base 1. */
316             struct {
317                 uint64_t _unused_ttbr1_0;
318                 uint64_t ttbr1_ns;
319                 uint64_t _unused_ttbr1_1;
320                 uint64_t ttbr1_s;
321             };
322             uint64_t ttbr1_el[4];
323         };
324         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
325         /* MMU translation table base control. */
326         TCR tcr_el[4];
327         TCR vtcr_el2; /* Virtualization Translation Control.  */
328         uint32_t c2_data; /* MPU data cacheable bits.  */
329         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
330         union { /* MMU domain access control register
331                  * MPU write buffer control.
332                  */
333             struct {
334                 uint64_t dacr_ns;
335                 uint64_t dacr_s;
336             };
337             struct {
338                 uint64_t dacr32_el2;
339             };
340         };
341         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
342         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
343         uint64_t hcr_el2; /* Hypervisor configuration register */
344         uint64_t scr_el3; /* Secure configuration register.  */
345         union { /* Fault status registers.  */
346             struct {
347                 uint64_t ifsr_ns;
348                 uint64_t ifsr_s;
349             };
350             struct {
351                 uint64_t ifsr32_el2;
352             };
353         };
354         union {
355             struct {
356                 uint64_t _unused_dfsr;
357                 uint64_t dfsr_ns;
358                 uint64_t hsr;
359                 uint64_t dfsr_s;
360             };
361             uint64_t esr_el[4];
362         };
363         uint32_t c6_region[8]; /* MPU base/size registers.  */
364         union { /* Fault address registers. */
365             struct {
366                 uint64_t _unused_far0;
367 #ifdef HOST_WORDS_BIGENDIAN
368                 uint32_t ifar_ns;
369                 uint32_t dfar_ns;
370                 uint32_t ifar_s;
371                 uint32_t dfar_s;
372 #else
373                 uint32_t dfar_ns;
374                 uint32_t ifar_ns;
375                 uint32_t dfar_s;
376                 uint32_t ifar_s;
377 #endif
378                 uint64_t _unused_far3;
379             };
380             uint64_t far_el[4];
381         };
382         uint64_t hpfar_el2;
383         uint64_t hstr_el2;
384         union { /* Translation result. */
385             struct {
386                 uint64_t _unused_par_0;
387                 uint64_t par_ns;
388                 uint64_t _unused_par_1;
389                 uint64_t par_s;
390             };
391             uint64_t par_el[4];
392         };
393 
394         uint32_t c9_insn; /* Cache lockdown registers.  */
395         uint32_t c9_data;
396         uint64_t c9_pmcr; /* performance monitor control register */
397         uint64_t c9_pmcnten; /* perf monitor counter enables */
398         uint64_t c9_pmovsr; /* perf monitor overflow status */
399         uint64_t c9_pmuserenr; /* perf monitor user enable */
400         uint64_t c9_pmselr; /* perf monitor counter selection register */
401         uint64_t c9_pminten; /* perf monitor interrupt enables */
402         union { /* Memory attribute redirection */
403             struct {
404 #ifdef HOST_WORDS_BIGENDIAN
405                 uint64_t _unused_mair_0;
406                 uint32_t mair1_ns;
407                 uint32_t mair0_ns;
408                 uint64_t _unused_mair_1;
409                 uint32_t mair1_s;
410                 uint32_t mair0_s;
411 #else
412                 uint64_t _unused_mair_0;
413                 uint32_t mair0_ns;
414                 uint32_t mair1_ns;
415                 uint64_t _unused_mair_1;
416                 uint32_t mair0_s;
417                 uint32_t mair1_s;
418 #endif
419             };
420             uint64_t mair_el[4];
421         };
422         union { /* vector base address register */
423             struct {
424                 uint64_t _unused_vbar;
425                 uint64_t vbar_ns;
426                 uint64_t hvbar;
427                 uint64_t vbar_s;
428             };
429             uint64_t vbar_el[4];
430         };
431         uint32_t mvbar; /* (monitor) vector base address register */
432         struct { /* FCSE PID. */
433             uint32_t fcseidr_ns;
434             uint32_t fcseidr_s;
435         };
436         union { /* Context ID. */
437             struct {
438                 uint64_t _unused_contextidr_0;
439                 uint64_t contextidr_ns;
440                 uint64_t _unused_contextidr_1;
441                 uint64_t contextidr_s;
442             };
443             uint64_t contextidr_el[4];
444         };
445         union { /* User RW Thread register. */
446             struct {
447                 uint64_t tpidrurw_ns;
448                 uint64_t tpidrprw_ns;
449                 uint64_t htpidr;
450                 uint64_t _tpidr_el3;
451             };
452             uint64_t tpidr_el[4];
453         };
454         /* The secure banks of these registers don't map anywhere */
455         uint64_t tpidrurw_s;
456         uint64_t tpidrprw_s;
457         uint64_t tpidruro_s;
458 
459         union { /* User RO Thread register. */
460             uint64_t tpidruro_ns;
461             uint64_t tpidrro_el[1];
462         };
463         uint64_t c14_cntfrq; /* Counter Frequency register */
464         uint64_t c14_cntkctl; /* Timer Control register */
465         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
466         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
467         ARMGenericTimer c14_timer[NUM_GTIMERS];
468         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
469         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
470         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
471         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
472         uint32_t c15_threadid; /* TI debugger thread-ID.  */
473         uint32_t c15_config_base_address; /* SCU base address.  */
474         uint32_t c15_diagnostic; /* diagnostic register */
475         uint32_t c15_power_diagnostic;
476         uint32_t c15_power_control; /* power control */
477         uint64_t dbgbvr[16]; /* breakpoint value registers */
478         uint64_t dbgbcr[16]; /* breakpoint control registers */
479         uint64_t dbgwvr[16]; /* watchpoint value registers */
480         uint64_t dbgwcr[16]; /* watchpoint control registers */
481         uint64_t mdscr_el1;
482         uint64_t oslsr_el1; /* OS Lock Status */
483         uint64_t mdcr_el2;
484         uint64_t mdcr_el3;
485         /* Stores the architectural value of the counter *the last time it was
486          * updated* by pmccntr_op_start. Accesses should always be surrounded
487          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
488          * architecturally-correct value is being read/set.
489          */
490         uint64_t c15_ccnt;
491         /* Stores the delta between the architectural value and the underlying
492          * cycle count during normal operation. It is used to update c15_ccnt
493          * to be the correct architectural value before accesses. During
494          * accesses, c15_ccnt_delta contains the underlying count being used
495          * for the access, after which it reverts to the delta value in
496          * pmccntr_op_finish.
497          */
498         uint64_t c15_ccnt_delta;
499         uint64_t c14_pmevcntr[31];
500         uint64_t c14_pmevcntr_delta[31];
501         uint64_t c14_pmevtyper[31];
502         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
503         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
504         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
505     } cp15;
506 
507     struct {
508         /* M profile has up to 4 stack pointers:
509          * a Main Stack Pointer and a Process Stack Pointer for each
510          * of the Secure and Non-Secure states. (If the CPU doesn't support
511          * the security extension then it has only two SPs.)
512          * In QEMU we always store the currently active SP in regs[13],
513          * and the non-active SP for the current security state in
514          * v7m.other_sp. The stack pointers for the inactive security state
515          * are stored in other_ss_msp and other_ss_psp.
516          * switch_v7m_security_state() is responsible for rearranging them
517          * when we change security state.
518          */
519         uint32_t other_sp;
520         uint32_t other_ss_msp;
521         uint32_t other_ss_psp;
522         uint32_t vecbase[M_REG_NUM_BANKS];
523         uint32_t basepri[M_REG_NUM_BANKS];
524         uint32_t control[M_REG_NUM_BANKS];
525         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
526         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
527         uint32_t hfsr; /* HardFault Status */
528         uint32_t dfsr; /* Debug Fault Status Register */
529         uint32_t sfsr; /* Secure Fault Status Register */
530         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
531         uint32_t bfar; /* BusFault Address */
532         uint32_t sfar; /* Secure Fault Address Register */
533         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
534         int exception;
535         uint32_t primask[M_REG_NUM_BANKS];
536         uint32_t faultmask[M_REG_NUM_BANKS];
537         uint32_t aircr; /* only holds r/w state if security extn implemented */
538         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
539         uint32_t csselr[M_REG_NUM_BANKS];
540         uint32_t scr[M_REG_NUM_BANKS];
541         uint32_t msplim[M_REG_NUM_BANKS];
542         uint32_t psplim[M_REG_NUM_BANKS];
543         uint32_t fpcar[M_REG_NUM_BANKS];
544         uint32_t fpccr[M_REG_NUM_BANKS];
545         uint32_t fpdscr[M_REG_NUM_BANKS];
546         uint32_t cpacr[M_REG_NUM_BANKS];
547         uint32_t nsacr;
548     } v7m;
549 
550     /* Information associated with an exception about to be taken:
551      * code which raises an exception must set cs->exception_index and
552      * the relevant parts of this structure; the cpu_do_interrupt function
553      * will then set the guest-visible registers as part of the exception
554      * entry process.
555      */
556     struct {
557         uint32_t syndrome; /* AArch64 format syndrome register */
558         uint32_t fsr; /* AArch32 format fault status register info */
559         uint64_t vaddress; /* virtual addr associated with exception, if any */
560         uint32_t target_el; /* EL the exception should be targeted for */
561         /* If we implement EL2 we will also need to store information
562          * about the intermediate physical address for stage 2 faults.
563          */
564     } exception;
565 
566     /* Information associated with an SError */
567     struct {
568         uint8_t pending;
569         uint8_t has_esr;
570         uint64_t esr;
571     } serror;
572 
573     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
574     uint32_t irq_line_state;
575 
576     /* Thumb-2 EE state.  */
577     uint32_t teecr;
578     uint32_t teehbr;
579 
580     /* VFP coprocessor state.  */
581     struct {
582         ARMVectorReg zregs[32];
583 
584 #ifdef TARGET_AARCH64
585         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
586 #define FFR_PRED_NUM 16
587         ARMPredicateReg pregs[17];
588         /* Scratch space for aa64 sve predicate temporary.  */
589         ARMPredicateReg preg_tmp;
590 #endif
591 
592         /* We store these fpcsr fields separately for convenience.  */
593         uint32_t qc[4] QEMU_ALIGNED(16);
594         int vec_len;
595         int vec_stride;
596 
597         uint32_t xregs[16];
598 
599         /* Scratch space for aa32 neon expansion.  */
600         uint32_t scratch[8];
601 
602         /* There are a number of distinct float control structures:
603          *
604          *  fp_status: is the "normal" fp status.
605          *  fp_status_fp16: used for half-precision calculations
606          *  standard_fp_status : the ARM "Standard FPSCR Value"
607          *
608          * Half-precision operations are governed by a separate
609          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
610          * status structure to control this.
611          *
612          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
613          * round-to-nearest and is used by any operations (generally
614          * Neon) which the architecture defines as controlled by the
615          * standard FPSCR value rather than the FPSCR.
616          *
617          * To avoid having to transfer exception bits around, we simply
618          * say that the FPSCR cumulative exception flags are the logical
619          * OR of the flags in the three fp statuses. This relies on the
620          * only thing which needs to read the exception flags being
621          * an explicit FPSCR read.
622          */
623         float_status fp_status;
624         float_status fp_status_f16;
625         float_status standard_fp_status;
626 
627         /* ZCR_EL[1-3] */
628         uint64_t zcr_el[4];
629     } vfp;
630     uint64_t exclusive_addr;
631     uint64_t exclusive_val;
632     uint64_t exclusive_high;
633 
634     /* iwMMXt coprocessor state.  */
635     struct {
636         uint64_t regs[16];
637         uint64_t val;
638 
639         uint32_t cregs[16];
640     } iwmmxt;
641 
642 #ifdef TARGET_AARCH64
643     struct {
644         ARMPACKey apia;
645         ARMPACKey apib;
646         ARMPACKey apda;
647         ARMPACKey apdb;
648         ARMPACKey apga;
649     } keys;
650 #endif
651 
652 #if defined(CONFIG_USER_ONLY)
653     /* For usermode syscall translation.  */
654     int eabi;
655 #endif
656 
657     struct CPUBreakpoint *cpu_breakpoint[16];
658     struct CPUWatchpoint *cpu_watchpoint[16];
659 
660     /* Fields up to this point are cleared by a CPU reset */
661     struct {} end_reset_fields;
662 
663     /* Fields after this point are preserved across CPU reset. */
664 
665     /* Internal CPU feature flags.  */
666     uint64_t features;
667 
668     /* PMSAv7 MPU */
669     struct {
670         uint32_t *drbar;
671         uint32_t *drsr;
672         uint32_t *dracr;
673         uint32_t rnr[M_REG_NUM_BANKS];
674     } pmsav7;
675 
676     /* PMSAv8 MPU */
677     struct {
678         /* The PMSAv8 implementation also shares some PMSAv7 config
679          * and state:
680          *  pmsav7.rnr (region number register)
681          *  pmsav7_dregion (number of configured regions)
682          */
683         uint32_t *rbar[M_REG_NUM_BANKS];
684         uint32_t *rlar[M_REG_NUM_BANKS];
685         uint32_t mair0[M_REG_NUM_BANKS];
686         uint32_t mair1[M_REG_NUM_BANKS];
687     } pmsav8;
688 
689     /* v8M SAU */
690     struct {
691         uint32_t *rbar;
692         uint32_t *rlar;
693         uint32_t rnr;
694         uint32_t ctrl;
695     } sau;
696 
697     void *nvic;
698     const struct arm_boot_info *boot_info;
699     /* Store GICv3CPUState to access from this struct */
700     void *gicv3state;
701 } CPUARMState;
702 
703 static inline void set_feature(CPUARMState *env, int feature)
704 {
705     env->features |= 1ULL << feature;
706 }
707 
708 static inline void unset_feature(CPUARMState *env, int feature)
709 {
710     env->features &= ~(1ULL << feature);
711 }
712 
713 /**
714  * ARMELChangeHookFn:
715  * type of a function which can be registered via arm_register_el_change_hook()
716  * to get callbacks when the CPU changes its exception level or mode.
717  */
718 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
719 typedef struct ARMELChangeHook ARMELChangeHook;
720 struct ARMELChangeHook {
721     ARMELChangeHookFn *hook;
722     void *opaque;
723     QLIST_ENTRY(ARMELChangeHook) node;
724 };
725 
726 /* These values map onto the return values for
727  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
728 typedef enum ARMPSCIState {
729     PSCI_ON = 0,
730     PSCI_OFF = 1,
731     PSCI_ON_PENDING = 2
732 } ARMPSCIState;
733 
734 typedef struct ARMISARegisters ARMISARegisters;
735 
736 /**
737  * ARMCPU:
738  * @env: #CPUARMState
739  *
740  * An ARM CPU core.
741  */
742 struct ARMCPU {
743     /*< private >*/
744     CPUState parent_obj;
745     /*< public >*/
746 
747     CPUNegativeOffsetState neg;
748     CPUARMState env;
749 
750     /* Coprocessor information */
751     GHashTable *cp_regs;
752     /* For marshalling (mostly coprocessor) register state between the
753      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
754      * we use these arrays.
755      */
756     /* List of register indexes managed via these arrays; (full KVM style
757      * 64 bit indexes, not CPRegInfo 32 bit indexes)
758      */
759     uint64_t *cpreg_indexes;
760     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
761     uint64_t *cpreg_values;
762     /* Length of the indexes, values, reset_values arrays */
763     int32_t cpreg_array_len;
764     /* These are used only for migration: incoming data arrives in
765      * these fields and is sanity checked in post_load before copying
766      * to the working data structures above.
767      */
768     uint64_t *cpreg_vmstate_indexes;
769     uint64_t *cpreg_vmstate_values;
770     int32_t cpreg_vmstate_array_len;
771 
772     DynamicGDBXMLInfo dyn_sysreg_xml;
773     DynamicGDBXMLInfo dyn_svereg_xml;
774 
775     /* Timers used by the generic (architected) timer */
776     QEMUTimer *gt_timer[NUM_GTIMERS];
777     /*
778      * Timer used by the PMU. Its state is restored after migration by
779      * pmu_op_finish() - it does not need other handling during migration
780      */
781     QEMUTimer *pmu_timer;
782     /* GPIO outputs for generic timer */
783     qemu_irq gt_timer_outputs[NUM_GTIMERS];
784     /* GPIO output for GICv3 maintenance interrupt signal */
785     qemu_irq gicv3_maintenance_interrupt;
786     /* GPIO output for the PMU interrupt */
787     qemu_irq pmu_interrupt;
788 
789     /* MemoryRegion to use for secure physical accesses */
790     MemoryRegion *secure_memory;
791 
792     /* For v8M, pointer to the IDAU interface provided by board/SoC */
793     Object *idau;
794 
795     /* 'compatible' string for this CPU for Linux device trees */
796     const char *dtb_compatible;
797 
798     /* PSCI version for this CPU
799      * Bits[31:16] = Major Version
800      * Bits[15:0] = Minor Version
801      */
802     uint32_t psci_version;
803 
804     /* Should CPU start in PSCI powered-off state? */
805     bool start_powered_off;
806 
807     /* Current power state, access guarded by BQL */
808     ARMPSCIState power_state;
809 
810     /* CPU has virtualization extension */
811     bool has_el2;
812     /* CPU has security extension */
813     bool has_el3;
814     /* CPU has PMU (Performance Monitor Unit) */
815     bool has_pmu;
816     /* CPU has VFP */
817     bool has_vfp;
818     /* CPU has Neon */
819     bool has_neon;
820     /* CPU has M-profile DSP extension */
821     bool has_dsp;
822 
823     /* CPU has memory protection unit */
824     bool has_mpu;
825     /* PMSAv7 MPU number of supported regions */
826     uint32_t pmsav7_dregion;
827     /* v8M SAU number of supported regions */
828     uint32_t sau_sregion;
829 
830     /* PSCI conduit used to invoke PSCI methods
831      * 0 - disabled, 1 - smc, 2 - hvc
832      */
833     uint32_t psci_conduit;
834 
835     /* For v8M, initial value of the Secure VTOR */
836     uint32_t init_svtor;
837 
838     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
839      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
840      */
841     uint32_t kvm_target;
842 
843     /* KVM init features for this CPU */
844     uint32_t kvm_init_features[7];
845 
846     /* KVM CPU state */
847 
848     /* KVM virtual time adjustment */
849     bool kvm_adjvtime;
850     bool kvm_vtime_dirty;
851     uint64_t kvm_vtime;
852 
853     /* Uniprocessor system with MP extensions */
854     bool mp_is_up;
855 
856     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
857      * and the probe failed (so we need to report the error in realize)
858      */
859     bool host_cpu_probe_failed;
860 
861     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
862      * register.
863      */
864     int32_t core_count;
865 
866     /* The instance init functions for implementation-specific subclasses
867      * set these fields to specify the implementation-dependent values of
868      * various constant registers and reset values of non-constant
869      * registers.
870      * Some of these might become QOM properties eventually.
871      * Field names match the official register names as defined in the
872      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
873      * is used for reset values of non-constant registers; no reset_
874      * prefix means a constant register.
875      * Some of these registers are split out into a substructure that
876      * is shared with the translators to control the ISA.
877      *
878      * Note that if you add an ID register to the ARMISARegisters struct
879      * you need to also update the 32-bit and 64-bit versions of the
880      * kvm_arm_get_host_cpu_features() function to correctly populate the
881      * field by reading the value from the KVM vCPU.
882      */
883     struct ARMISARegisters {
884         uint32_t id_isar0;
885         uint32_t id_isar1;
886         uint32_t id_isar2;
887         uint32_t id_isar3;
888         uint32_t id_isar4;
889         uint32_t id_isar5;
890         uint32_t id_isar6;
891         uint32_t id_mmfr0;
892         uint32_t id_mmfr1;
893         uint32_t id_mmfr2;
894         uint32_t id_mmfr3;
895         uint32_t id_mmfr4;
896         uint32_t mvfr0;
897         uint32_t mvfr1;
898         uint32_t mvfr2;
899         uint32_t id_dfr0;
900         uint32_t dbgdidr;
901         uint64_t id_aa64isar0;
902         uint64_t id_aa64isar1;
903         uint64_t id_aa64pfr0;
904         uint64_t id_aa64pfr1;
905         uint64_t id_aa64mmfr0;
906         uint64_t id_aa64mmfr1;
907         uint64_t id_aa64mmfr2;
908         uint64_t id_aa64dfr0;
909         uint64_t id_aa64dfr1;
910     } isar;
911     uint64_t midr;
912     uint32_t revidr;
913     uint32_t reset_fpsid;
914     uint32_t ctr;
915     uint32_t reset_sctlr;
916     uint32_t id_pfr0;
917     uint32_t id_pfr1;
918     uint64_t pmceid0;
919     uint64_t pmceid1;
920     uint32_t id_afr0;
921     uint64_t id_aa64afr0;
922     uint64_t id_aa64afr1;
923     uint32_t clidr;
924     uint64_t mp_affinity; /* MP ID without feature bits */
925     /* The elements of this array are the CCSIDR values for each cache,
926      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
927      */
928     uint64_t ccsidr[16];
929     uint64_t reset_cbar;
930     uint32_t reset_auxcr;
931     bool reset_hivecs;
932     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
933     uint32_t dcz_blocksize;
934     uint64_t rvbar;
935 
936     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
937     int gic_num_lrs; /* number of list registers */
938     int gic_vpribits; /* number of virtual priority bits */
939     int gic_vprebits; /* number of virtual preemption bits */
940 
941     /* Whether the cfgend input is high (i.e. this CPU should reset into
942      * big-endian mode).  This setting isn't used directly: instead it modifies
943      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
944      * architecture version.
945      */
946     bool cfgend;
947 
948     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
949     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
950 
951     int32_t node_id; /* NUMA node this CPU belongs to */
952 
953     /* Used to synchronize KVM and QEMU in-kernel device levels */
954     uint8_t device_irq_level;
955 
956     /* Used to set the maximum vector length the cpu will support.  */
957     uint32_t sve_max_vq;
958 
959     /*
960      * In sve_vq_map each set bit is a supported vector length of
961      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
962      * length in quadwords.
963      *
964      * While processing properties during initialization, corresponding
965      * sve_vq_init bits are set for bits in sve_vq_map that have been
966      * set by properties.
967      */
968     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
969     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
970 
971     /* Generic timer counter frequency, in Hz */
972     uint64_t gt_cntfrq_hz;
973 };
974 
975 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
976 
977 void arm_cpu_post_init(Object *obj);
978 
979 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
980 
981 #ifndef CONFIG_USER_ONLY
982 extern const VMStateDescription vmstate_arm_cpu;
983 #endif
984 
985 void arm_cpu_do_interrupt(CPUState *cpu);
986 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
987 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
988 
989 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
990                                          MemTxAttrs *attrs);
991 
992 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
993 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
994 
995 /*
996  * Helpers to dynamically generates XML descriptions of the sysregs
997  * and SVE registers. Returns the number of registers in each set.
998  */
999 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1000 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1001 
1002 /* Returns the dynamically generated XML for the gdb stub.
1003  * Returns a pointer to the XML contents for the specified XML file or NULL
1004  * if the XML name doesn't match the predefined one.
1005  */
1006 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1007 
1008 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1009                              int cpuid, void *opaque);
1010 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1011                              int cpuid, void *opaque);
1012 
1013 #ifdef TARGET_AARCH64
1014 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1015 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1016 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1017 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1018                            int new_el, bool el0_a64);
1019 void aarch64_add_sve_properties(Object *obj);
1020 
1021 /*
1022  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1023  * The byte at offset i from the start of the in-memory representation contains
1024  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1025  * lowest offsets are stored in the lowest memory addresses, then that nearly
1026  * matches QEMU's representation, which is to use an array of host-endian
1027  * uint64_t's, where the lower offsets are at the lower indices. To complete
1028  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1029  */
1030 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1031 {
1032 #ifdef HOST_WORDS_BIGENDIAN
1033     int i;
1034 
1035     for (i = 0; i < nr; ++i) {
1036         dst[i] = bswap64(src[i]);
1037     }
1038 
1039     return dst;
1040 #else
1041     return src;
1042 #endif
1043 }
1044 
1045 #else
1046 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1047 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1048                                          int n, bool a)
1049 { }
1050 static inline void aarch64_add_sve_properties(Object *obj) { }
1051 #endif
1052 
1053 #if !defined(CONFIG_TCG)
1054 static inline target_ulong do_arm_semihosting(CPUARMState *env)
1055 {
1056     g_assert_not_reached();
1057 }
1058 #else
1059 target_ulong do_arm_semihosting(CPUARMState *env);
1060 #endif
1061 void aarch64_sync_32_to_64(CPUARMState *env);
1062 void aarch64_sync_64_to_32(CPUARMState *env);
1063 
1064 int fp_exception_el(CPUARMState *env, int cur_el);
1065 int sve_exception_el(CPUARMState *env, int cur_el);
1066 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1067 
1068 static inline bool is_a64(CPUARMState *env)
1069 {
1070     return env->aarch64;
1071 }
1072 
1073 /* you can call this signal handler from your SIGBUS and SIGSEGV
1074    signal handlers to inform the virtual CPU of exceptions. non zero
1075    is returned if the signal was handled by the virtual CPU.  */
1076 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1077                            void *puc);
1078 
1079 /**
1080  * pmu_op_start/finish
1081  * @env: CPUARMState
1082  *
1083  * Convert all PMU counters between their delta form (the typical mode when
1084  * they are enabled) and the guest-visible values. These two calls must
1085  * surround any action which might affect the counters.
1086  */
1087 void pmu_op_start(CPUARMState *env);
1088 void pmu_op_finish(CPUARMState *env);
1089 
1090 /*
1091  * Called when a PMU counter is due to overflow
1092  */
1093 void arm_pmu_timer_cb(void *opaque);
1094 
1095 /**
1096  * Functions to register as EL change hooks for PMU mode filtering
1097  */
1098 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1099 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1100 
1101 /*
1102  * pmu_init
1103  * @cpu: ARMCPU
1104  *
1105  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1106  * for the current configuration
1107  */
1108 void pmu_init(ARMCPU *cpu);
1109 
1110 /* SCTLR bit meanings. Several bits have been reused in newer
1111  * versions of the architecture; in that case we define constants
1112  * for both old and new bit meanings. Code which tests against those
1113  * bits should probably check or otherwise arrange that the CPU
1114  * is the architectural version it expects.
1115  */
1116 #define SCTLR_M       (1U << 0)
1117 #define SCTLR_A       (1U << 1)
1118 #define SCTLR_C       (1U << 2)
1119 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1120 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1121 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1122 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1123 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1124 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1125 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1126 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1127 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1128 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1129 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1130 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1131 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1132 #define SCTLR_SED     (1U << 8) /* v8 onward */
1133 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1134 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1135 #define SCTLR_F       (1U << 10) /* up to v6 */
1136 #define SCTLR_SW      (1U << 10) /* v7 */
1137 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1138 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1139 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1140 #define SCTLR_I       (1U << 12)
1141 #define SCTLR_V       (1U << 13) /* AArch32 only */
1142 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1143 #define SCTLR_RR      (1U << 14) /* up to v7 */
1144 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1145 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1146 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1147 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1148 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1149 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1150 #define SCTLR_BR      (1U << 17) /* PMSA only */
1151 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1152 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1153 #define SCTLR_WXN     (1U << 19)
1154 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1155 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1156 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1157 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1158 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1159 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1160 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1161 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1162 #define SCTLR_VE      (1U << 24) /* up to v7 */
1163 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1164 #define SCTLR_EE      (1U << 25)
1165 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1166 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1167 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1168 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1169 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1170 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1171 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1172 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1173 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1174 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1175 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1176 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1177 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1178 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1179 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1180 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1181 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1182 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1183 #define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1184 
1185 #define CPTR_TCPAC    (1U << 31)
1186 #define CPTR_TTA      (1U << 20)
1187 #define CPTR_TFP      (1U << 10)
1188 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1189 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1190 
1191 #define MDCR_EPMAD    (1U << 21)
1192 #define MDCR_EDAD     (1U << 20)
1193 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1194 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1195 #define MDCR_SDD      (1U << 16)
1196 #define MDCR_SPD      (3U << 14)
1197 #define MDCR_TDRA     (1U << 11)
1198 #define MDCR_TDOSA    (1U << 10)
1199 #define MDCR_TDA      (1U << 9)
1200 #define MDCR_TDE      (1U << 8)
1201 #define MDCR_HPME     (1U << 7)
1202 #define MDCR_TPM      (1U << 6)
1203 #define MDCR_TPMCR    (1U << 5)
1204 #define MDCR_HPMN     (0x1fU)
1205 
1206 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1207 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1208 
1209 #define CPSR_M (0x1fU)
1210 #define CPSR_T (1U << 5)
1211 #define CPSR_F (1U << 6)
1212 #define CPSR_I (1U << 7)
1213 #define CPSR_A (1U << 8)
1214 #define CPSR_E (1U << 9)
1215 #define CPSR_IT_2_7 (0xfc00U)
1216 #define CPSR_GE (0xfU << 16)
1217 #define CPSR_IL (1U << 20)
1218 #define CPSR_PAN (1U << 22)
1219 #define CPSR_J (1U << 24)
1220 #define CPSR_IT_0_1 (3U << 25)
1221 #define CPSR_Q (1U << 27)
1222 #define CPSR_V (1U << 28)
1223 #define CPSR_C (1U << 29)
1224 #define CPSR_Z (1U << 30)
1225 #define CPSR_N (1U << 31)
1226 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1227 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1228 
1229 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1230 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1231     | CPSR_NZCV)
1232 /* Bits writable in user mode.  */
1233 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1234 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1235 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1236 
1237 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1238 #define XPSR_EXCP 0x1ffU
1239 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1240 #define XPSR_IT_2_7 CPSR_IT_2_7
1241 #define XPSR_GE CPSR_GE
1242 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1243 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1244 #define XPSR_IT_0_1 CPSR_IT_0_1
1245 #define XPSR_Q CPSR_Q
1246 #define XPSR_V CPSR_V
1247 #define XPSR_C CPSR_C
1248 #define XPSR_Z CPSR_Z
1249 #define XPSR_N CPSR_N
1250 #define XPSR_NZCV CPSR_NZCV
1251 #define XPSR_IT CPSR_IT
1252 
1253 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1254 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1255 #define TTBCR_PD0    (1U << 4)
1256 #define TTBCR_PD1    (1U << 5)
1257 #define TTBCR_EPD0   (1U << 7)
1258 #define TTBCR_IRGN0  (3U << 8)
1259 #define TTBCR_ORGN0  (3U << 10)
1260 #define TTBCR_SH0    (3U << 12)
1261 #define TTBCR_T1SZ   (3U << 16)
1262 #define TTBCR_A1     (1U << 22)
1263 #define TTBCR_EPD1   (1U << 23)
1264 #define TTBCR_IRGN1  (3U << 24)
1265 #define TTBCR_ORGN1  (3U << 26)
1266 #define TTBCR_SH1    (1U << 28)
1267 #define TTBCR_EAE    (1U << 31)
1268 
1269 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1270  * Only these are valid when in AArch64 mode; in
1271  * AArch32 mode SPSRs are basically CPSR-format.
1272  */
1273 #define PSTATE_SP (1U)
1274 #define PSTATE_M (0xFU)
1275 #define PSTATE_nRW (1U << 4)
1276 #define PSTATE_F (1U << 6)
1277 #define PSTATE_I (1U << 7)
1278 #define PSTATE_A (1U << 8)
1279 #define PSTATE_D (1U << 9)
1280 #define PSTATE_BTYPE (3U << 10)
1281 #define PSTATE_IL (1U << 20)
1282 #define PSTATE_SS (1U << 21)
1283 #define PSTATE_PAN (1U << 22)
1284 #define PSTATE_UAO (1U << 23)
1285 #define PSTATE_V (1U << 28)
1286 #define PSTATE_C (1U << 29)
1287 #define PSTATE_Z (1U << 30)
1288 #define PSTATE_N (1U << 31)
1289 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1290 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1291 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1292 /* Mode values for AArch64 */
1293 #define PSTATE_MODE_EL3h 13
1294 #define PSTATE_MODE_EL3t 12
1295 #define PSTATE_MODE_EL2h 9
1296 #define PSTATE_MODE_EL2t 8
1297 #define PSTATE_MODE_EL1h 5
1298 #define PSTATE_MODE_EL1t 4
1299 #define PSTATE_MODE_EL0t 0
1300 
1301 /* Write a new value to v7m.exception, thus transitioning into or out
1302  * of Handler mode; this may result in a change of active stack pointer.
1303  */
1304 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1305 
1306 /* Map EL and handler into a PSTATE_MODE.  */
1307 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1308 {
1309     return (el << 2) | handler;
1310 }
1311 
1312 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1313  * interprocessing, so we don't attempt to sync with the cpsr state used by
1314  * the 32 bit decoder.
1315  */
1316 static inline uint32_t pstate_read(CPUARMState *env)
1317 {
1318     int ZF;
1319 
1320     ZF = (env->ZF == 0);
1321     return (env->NF & 0x80000000) | (ZF << 30)
1322         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1323         | env->pstate | env->daif | (env->btype << 10);
1324 }
1325 
1326 static inline void pstate_write(CPUARMState *env, uint32_t val)
1327 {
1328     env->ZF = (~val) & PSTATE_Z;
1329     env->NF = val;
1330     env->CF = (val >> 29) & 1;
1331     env->VF = (val << 3) & 0x80000000;
1332     env->daif = val & PSTATE_DAIF;
1333     env->btype = (val >> 10) & 3;
1334     env->pstate = val & ~CACHED_PSTATE_BITS;
1335 }
1336 
1337 /* Return the current CPSR value.  */
1338 uint32_t cpsr_read(CPUARMState *env);
1339 
1340 typedef enum CPSRWriteType {
1341     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1342     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1343     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1344     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1345 } CPSRWriteType;
1346 
1347 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1348 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1349                 CPSRWriteType write_type);
1350 
1351 /* Return the current xPSR value.  */
1352 static inline uint32_t xpsr_read(CPUARMState *env)
1353 {
1354     int ZF;
1355     ZF = (env->ZF == 0);
1356     return (env->NF & 0x80000000) | (ZF << 30)
1357         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1358         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1359         | ((env->condexec_bits & 0xfc) << 8)
1360         | (env->GE << 16)
1361         | env->v7m.exception;
1362 }
1363 
1364 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1365 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1366 {
1367     if (mask & XPSR_NZCV) {
1368         env->ZF = (~val) & XPSR_Z;
1369         env->NF = val;
1370         env->CF = (val >> 29) & 1;
1371         env->VF = (val << 3) & 0x80000000;
1372     }
1373     if (mask & XPSR_Q) {
1374         env->QF = ((val & XPSR_Q) != 0);
1375     }
1376     if (mask & XPSR_GE) {
1377         env->GE = (val & XPSR_GE) >> 16;
1378     }
1379 #ifndef CONFIG_USER_ONLY
1380     if (mask & XPSR_T) {
1381         env->thumb = ((val & XPSR_T) != 0);
1382     }
1383     if (mask & XPSR_IT_0_1) {
1384         env->condexec_bits &= ~3;
1385         env->condexec_bits |= (val >> 25) & 3;
1386     }
1387     if (mask & XPSR_IT_2_7) {
1388         env->condexec_bits &= 3;
1389         env->condexec_bits |= (val >> 8) & 0xfc;
1390     }
1391     if (mask & XPSR_EXCP) {
1392         /* Note that this only happens on exception exit */
1393         write_v7m_exception(env, val & XPSR_EXCP);
1394     }
1395 #endif
1396 }
1397 
1398 #define HCR_VM        (1ULL << 0)
1399 #define HCR_SWIO      (1ULL << 1)
1400 #define HCR_PTW       (1ULL << 2)
1401 #define HCR_FMO       (1ULL << 3)
1402 #define HCR_IMO       (1ULL << 4)
1403 #define HCR_AMO       (1ULL << 5)
1404 #define HCR_VF        (1ULL << 6)
1405 #define HCR_VI        (1ULL << 7)
1406 #define HCR_VSE       (1ULL << 8)
1407 #define HCR_FB        (1ULL << 9)
1408 #define HCR_BSU_MASK  (3ULL << 10)
1409 #define HCR_DC        (1ULL << 12)
1410 #define HCR_TWI       (1ULL << 13)
1411 #define HCR_TWE       (1ULL << 14)
1412 #define HCR_TID0      (1ULL << 15)
1413 #define HCR_TID1      (1ULL << 16)
1414 #define HCR_TID2      (1ULL << 17)
1415 #define HCR_TID3      (1ULL << 18)
1416 #define HCR_TSC       (1ULL << 19)
1417 #define HCR_TIDCP     (1ULL << 20)
1418 #define HCR_TACR      (1ULL << 21)
1419 #define HCR_TSW       (1ULL << 22)
1420 #define HCR_TPCP      (1ULL << 23)
1421 #define HCR_TPU       (1ULL << 24)
1422 #define HCR_TTLB      (1ULL << 25)
1423 #define HCR_TVM       (1ULL << 26)
1424 #define HCR_TGE       (1ULL << 27)
1425 #define HCR_TDZ       (1ULL << 28)
1426 #define HCR_HCD       (1ULL << 29)
1427 #define HCR_TRVM      (1ULL << 30)
1428 #define HCR_RW        (1ULL << 31)
1429 #define HCR_CD        (1ULL << 32)
1430 #define HCR_ID        (1ULL << 33)
1431 #define HCR_E2H       (1ULL << 34)
1432 #define HCR_TLOR      (1ULL << 35)
1433 #define HCR_TERR      (1ULL << 36)
1434 #define HCR_TEA       (1ULL << 37)
1435 #define HCR_MIOCNCE   (1ULL << 38)
1436 /* RES0 bit 39 */
1437 #define HCR_APK       (1ULL << 40)
1438 #define HCR_API       (1ULL << 41)
1439 #define HCR_NV        (1ULL << 42)
1440 #define HCR_NV1       (1ULL << 43)
1441 #define HCR_AT        (1ULL << 44)
1442 #define HCR_NV2       (1ULL << 45)
1443 #define HCR_FWB       (1ULL << 46)
1444 #define HCR_FIEN      (1ULL << 47)
1445 /* RES0 bit 48 */
1446 #define HCR_TID4      (1ULL << 49)
1447 #define HCR_TICAB     (1ULL << 50)
1448 #define HCR_AMVOFFEN  (1ULL << 51)
1449 #define HCR_TOCU      (1ULL << 52)
1450 #define HCR_ENSCXT    (1ULL << 53)
1451 #define HCR_TTLBIS    (1ULL << 54)
1452 #define HCR_TTLBOS    (1ULL << 55)
1453 #define HCR_ATA       (1ULL << 56)
1454 #define HCR_DCT       (1ULL << 57)
1455 #define HCR_TID5      (1ULL << 58)
1456 #define HCR_TWEDEN    (1ULL << 59)
1457 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1458 
1459 #define SCR_NS                (1U << 0)
1460 #define SCR_IRQ               (1U << 1)
1461 #define SCR_FIQ               (1U << 2)
1462 #define SCR_EA                (1U << 3)
1463 #define SCR_FW                (1U << 4)
1464 #define SCR_AW                (1U << 5)
1465 #define SCR_NET               (1U << 6)
1466 #define SCR_SMD               (1U << 7)
1467 #define SCR_HCE               (1U << 8)
1468 #define SCR_SIF               (1U << 9)
1469 #define SCR_RW                (1U << 10)
1470 #define SCR_ST                (1U << 11)
1471 #define SCR_TWI               (1U << 12)
1472 #define SCR_TWE               (1U << 13)
1473 #define SCR_TLOR              (1U << 14)
1474 #define SCR_TERR              (1U << 15)
1475 #define SCR_APK               (1U << 16)
1476 #define SCR_API               (1U << 17)
1477 #define SCR_EEL2              (1U << 18)
1478 #define SCR_EASE              (1U << 19)
1479 #define SCR_NMEA              (1U << 20)
1480 #define SCR_FIEN              (1U << 21)
1481 #define SCR_ENSCXT            (1U << 25)
1482 #define SCR_ATA               (1U << 26)
1483 
1484 /* Return the current FPSCR value.  */
1485 uint32_t vfp_get_fpscr(CPUARMState *env);
1486 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1487 
1488 /* FPCR, Floating Point Control Register
1489  * FPSR, Floating Poiht Status Register
1490  *
1491  * For A64 the FPSCR is split into two logically distinct registers,
1492  * FPCR and FPSR. However since they still use non-overlapping bits
1493  * we store the underlying state in fpscr and just mask on read/write.
1494  */
1495 #define FPSR_MASK 0xf800009f
1496 #define FPCR_MASK 0x07ff9f00
1497 
1498 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1499 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1500 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1501 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1502 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1503 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1504 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1505 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1506 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1507 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1508 
1509 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1510 {
1511     return vfp_get_fpscr(env) & FPSR_MASK;
1512 }
1513 
1514 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1515 {
1516     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1517     vfp_set_fpscr(env, new_fpscr);
1518 }
1519 
1520 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1521 {
1522     return vfp_get_fpscr(env) & FPCR_MASK;
1523 }
1524 
1525 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1526 {
1527     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1528     vfp_set_fpscr(env, new_fpscr);
1529 }
1530 
1531 enum arm_cpu_mode {
1532   ARM_CPU_MODE_USR = 0x10,
1533   ARM_CPU_MODE_FIQ = 0x11,
1534   ARM_CPU_MODE_IRQ = 0x12,
1535   ARM_CPU_MODE_SVC = 0x13,
1536   ARM_CPU_MODE_MON = 0x16,
1537   ARM_CPU_MODE_ABT = 0x17,
1538   ARM_CPU_MODE_HYP = 0x1a,
1539   ARM_CPU_MODE_UND = 0x1b,
1540   ARM_CPU_MODE_SYS = 0x1f
1541 };
1542 
1543 /* VFP system registers.  */
1544 #define ARM_VFP_FPSID   0
1545 #define ARM_VFP_FPSCR   1
1546 #define ARM_VFP_MVFR2   5
1547 #define ARM_VFP_MVFR1   6
1548 #define ARM_VFP_MVFR0   7
1549 #define ARM_VFP_FPEXC   8
1550 #define ARM_VFP_FPINST  9
1551 #define ARM_VFP_FPINST2 10
1552 
1553 /* iwMMXt coprocessor control registers.  */
1554 #define ARM_IWMMXT_wCID  0
1555 #define ARM_IWMMXT_wCon  1
1556 #define ARM_IWMMXT_wCSSF 2
1557 #define ARM_IWMMXT_wCASF 3
1558 #define ARM_IWMMXT_wCGR0 8
1559 #define ARM_IWMMXT_wCGR1 9
1560 #define ARM_IWMMXT_wCGR2 10
1561 #define ARM_IWMMXT_wCGR3 11
1562 
1563 /* V7M CCR bits */
1564 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1565 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1566 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1567 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1568 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1569 FIELD(V7M_CCR, STKALIGN, 9, 1)
1570 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1571 FIELD(V7M_CCR, DC, 16, 1)
1572 FIELD(V7M_CCR, IC, 17, 1)
1573 FIELD(V7M_CCR, BP, 18, 1)
1574 
1575 /* V7M SCR bits */
1576 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1577 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1578 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1579 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1580 
1581 /* V7M AIRCR bits */
1582 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1583 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1584 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1585 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1586 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1587 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1588 FIELD(V7M_AIRCR, PRIS, 14, 1)
1589 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1590 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1591 
1592 /* V7M CFSR bits for MMFSR */
1593 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1594 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1595 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1596 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1597 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1598 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1599 
1600 /* V7M CFSR bits for BFSR */
1601 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1602 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1603 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1604 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1605 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1606 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1607 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1608 
1609 /* V7M CFSR bits for UFSR */
1610 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1611 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1612 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1613 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1614 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1615 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1616 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1617 
1618 /* V7M CFSR bit masks covering all of the subregister bits */
1619 FIELD(V7M_CFSR, MMFSR, 0, 8)
1620 FIELD(V7M_CFSR, BFSR, 8, 8)
1621 FIELD(V7M_CFSR, UFSR, 16, 16)
1622 
1623 /* V7M HFSR bits */
1624 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1625 FIELD(V7M_HFSR, FORCED, 30, 1)
1626 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1627 
1628 /* V7M DFSR bits */
1629 FIELD(V7M_DFSR, HALTED, 0, 1)
1630 FIELD(V7M_DFSR, BKPT, 1, 1)
1631 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1632 FIELD(V7M_DFSR, VCATCH, 3, 1)
1633 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1634 
1635 /* V7M SFSR bits */
1636 FIELD(V7M_SFSR, INVEP, 0, 1)
1637 FIELD(V7M_SFSR, INVIS, 1, 1)
1638 FIELD(V7M_SFSR, INVER, 2, 1)
1639 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1640 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1641 FIELD(V7M_SFSR, LSPERR, 5, 1)
1642 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1643 FIELD(V7M_SFSR, LSERR, 7, 1)
1644 
1645 /* v7M MPU_CTRL bits */
1646 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1647 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1648 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1649 
1650 /* v7M CLIDR bits */
1651 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1652 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1653 FIELD(V7M_CLIDR, LOC, 24, 3)
1654 FIELD(V7M_CLIDR, LOUU, 27, 3)
1655 FIELD(V7M_CLIDR, ICB, 30, 2)
1656 
1657 FIELD(V7M_CSSELR, IND, 0, 1)
1658 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1659 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1660  * define a mask for this and check that it doesn't permit running off
1661  * the end of the array.
1662  */
1663 FIELD(V7M_CSSELR, INDEX, 0, 4)
1664 
1665 /* v7M FPCCR bits */
1666 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1667 FIELD(V7M_FPCCR, USER, 1, 1)
1668 FIELD(V7M_FPCCR, S, 2, 1)
1669 FIELD(V7M_FPCCR, THREAD, 3, 1)
1670 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1671 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1672 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1673 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1674 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1675 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1676 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1677 FIELD(V7M_FPCCR, RES0, 11, 15)
1678 FIELD(V7M_FPCCR, TS, 26, 1)
1679 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1680 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1681 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1682 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1683 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1684 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1685 #define R_V7M_FPCCR_BANKED_MASK                 \
1686     (R_V7M_FPCCR_LSPACT_MASK |                  \
1687      R_V7M_FPCCR_USER_MASK |                    \
1688      R_V7M_FPCCR_THREAD_MASK |                  \
1689      R_V7M_FPCCR_MMRDY_MASK |                   \
1690      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1691      R_V7M_FPCCR_UFRDY_MASK |                   \
1692      R_V7M_FPCCR_ASPEN_MASK)
1693 
1694 /*
1695  * System register ID fields.
1696  */
1697 FIELD(MIDR_EL1, REVISION, 0, 4)
1698 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1699 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1700 FIELD(MIDR_EL1, VARIANT, 20, 4)
1701 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1702 
1703 FIELD(ID_ISAR0, SWAP, 0, 4)
1704 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1705 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1706 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1707 FIELD(ID_ISAR0, COPROC, 16, 4)
1708 FIELD(ID_ISAR0, DEBUG, 20, 4)
1709 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1710 
1711 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1712 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1713 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1714 FIELD(ID_ISAR1, EXTEND, 12, 4)
1715 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1716 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1717 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1718 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1719 
1720 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1721 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1722 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1723 FIELD(ID_ISAR2, MULT, 12, 4)
1724 FIELD(ID_ISAR2, MULTS, 16, 4)
1725 FIELD(ID_ISAR2, MULTU, 20, 4)
1726 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1727 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1728 
1729 FIELD(ID_ISAR3, SATURATE, 0, 4)
1730 FIELD(ID_ISAR3, SIMD, 4, 4)
1731 FIELD(ID_ISAR3, SVC, 8, 4)
1732 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1733 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1734 FIELD(ID_ISAR3, T32COPY, 20, 4)
1735 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1736 FIELD(ID_ISAR3, T32EE, 28, 4)
1737 
1738 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1739 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1740 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1741 FIELD(ID_ISAR4, SMC, 12, 4)
1742 FIELD(ID_ISAR4, BARRIER, 16, 4)
1743 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1744 FIELD(ID_ISAR4, PSR_M, 24, 4)
1745 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1746 
1747 FIELD(ID_ISAR5, SEVL, 0, 4)
1748 FIELD(ID_ISAR5, AES, 4, 4)
1749 FIELD(ID_ISAR5, SHA1, 8, 4)
1750 FIELD(ID_ISAR5, SHA2, 12, 4)
1751 FIELD(ID_ISAR5, CRC32, 16, 4)
1752 FIELD(ID_ISAR5, RDM, 24, 4)
1753 FIELD(ID_ISAR5, VCMA, 28, 4)
1754 
1755 FIELD(ID_ISAR6, JSCVT, 0, 4)
1756 FIELD(ID_ISAR6, DP, 4, 4)
1757 FIELD(ID_ISAR6, FHM, 8, 4)
1758 FIELD(ID_ISAR6, SB, 12, 4)
1759 FIELD(ID_ISAR6, SPECRES, 16, 4)
1760 
1761 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1762 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1763 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1764 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1765 FIELD(ID_MMFR3, PAN, 16, 4)
1766 FIELD(ID_MMFR3, COHWALK, 20, 4)
1767 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1768 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1769 
1770 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1771 FIELD(ID_MMFR4, AC2, 4, 4)
1772 FIELD(ID_MMFR4, XNX, 8, 4)
1773 FIELD(ID_MMFR4, CNP, 12, 4)
1774 FIELD(ID_MMFR4, HPDS, 16, 4)
1775 FIELD(ID_MMFR4, LSM, 20, 4)
1776 FIELD(ID_MMFR4, CCIDX, 24, 4)
1777 FIELD(ID_MMFR4, EVT, 28, 4)
1778 
1779 FIELD(ID_AA64ISAR0, AES, 4, 4)
1780 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1781 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1782 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1783 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1784 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1785 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1786 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1787 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1788 FIELD(ID_AA64ISAR0, DP, 44, 4)
1789 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1790 FIELD(ID_AA64ISAR0, TS, 52, 4)
1791 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1792 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1793 
1794 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1795 FIELD(ID_AA64ISAR1, APA, 4, 4)
1796 FIELD(ID_AA64ISAR1, API, 8, 4)
1797 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1798 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1799 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1800 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1801 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1802 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1803 FIELD(ID_AA64ISAR1, SB, 36, 4)
1804 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1805 
1806 FIELD(ID_AA64PFR0, EL0, 0, 4)
1807 FIELD(ID_AA64PFR0, EL1, 4, 4)
1808 FIELD(ID_AA64PFR0, EL2, 8, 4)
1809 FIELD(ID_AA64PFR0, EL3, 12, 4)
1810 FIELD(ID_AA64PFR0, FP, 16, 4)
1811 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1812 FIELD(ID_AA64PFR0, GIC, 24, 4)
1813 FIELD(ID_AA64PFR0, RAS, 28, 4)
1814 FIELD(ID_AA64PFR0, SVE, 32, 4)
1815 
1816 FIELD(ID_AA64PFR1, BT, 0, 4)
1817 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1818 FIELD(ID_AA64PFR1, MTE, 8, 4)
1819 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1820 
1821 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1822 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1823 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1824 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1825 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1826 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1827 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1828 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1829 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1830 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1831 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1832 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1833 
1834 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1835 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1836 FIELD(ID_AA64MMFR1, VH, 8, 4)
1837 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1838 FIELD(ID_AA64MMFR1, LO, 16, 4)
1839 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1840 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1841 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1842 
1843 FIELD(ID_AA64MMFR2, CNP, 0, 4)
1844 FIELD(ID_AA64MMFR2, UAO, 4, 4)
1845 FIELD(ID_AA64MMFR2, LSM, 8, 4)
1846 FIELD(ID_AA64MMFR2, IESB, 12, 4)
1847 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
1848 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
1849 FIELD(ID_AA64MMFR2, NV, 24, 4)
1850 FIELD(ID_AA64MMFR2, ST, 28, 4)
1851 FIELD(ID_AA64MMFR2, AT, 32, 4)
1852 FIELD(ID_AA64MMFR2, IDS, 36, 4)
1853 FIELD(ID_AA64MMFR2, FWB, 40, 4)
1854 FIELD(ID_AA64MMFR2, TTL, 48, 4)
1855 FIELD(ID_AA64MMFR2, BBM, 52, 4)
1856 FIELD(ID_AA64MMFR2, EVT, 56, 4)
1857 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
1858 
1859 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
1860 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
1861 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
1862 FIELD(ID_AA64DFR0, BRPS, 12, 4)
1863 FIELD(ID_AA64DFR0, WRPS, 20, 4)
1864 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
1865 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
1866 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
1867 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
1868 
1869 FIELD(ID_DFR0, COPDBG, 0, 4)
1870 FIELD(ID_DFR0, COPSDBG, 4, 4)
1871 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1872 FIELD(ID_DFR0, COPTRC, 12, 4)
1873 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1874 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1875 FIELD(ID_DFR0, PERFMON, 24, 4)
1876 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1877 
1878 FIELD(DBGDIDR, SE_IMP, 12, 1)
1879 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
1880 FIELD(DBGDIDR, VERSION, 16, 4)
1881 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
1882 FIELD(DBGDIDR, BRPS, 24, 4)
1883 FIELD(DBGDIDR, WRPS, 28, 4)
1884 
1885 FIELD(MVFR0, SIMDREG, 0, 4)
1886 FIELD(MVFR0, FPSP, 4, 4)
1887 FIELD(MVFR0, FPDP, 8, 4)
1888 FIELD(MVFR0, FPTRAP, 12, 4)
1889 FIELD(MVFR0, FPDIVIDE, 16, 4)
1890 FIELD(MVFR0, FPSQRT, 20, 4)
1891 FIELD(MVFR0, FPSHVEC, 24, 4)
1892 FIELD(MVFR0, FPROUND, 28, 4)
1893 
1894 FIELD(MVFR1, FPFTZ, 0, 4)
1895 FIELD(MVFR1, FPDNAN, 4, 4)
1896 FIELD(MVFR1, SIMDLS, 8, 4)
1897 FIELD(MVFR1, SIMDINT, 12, 4)
1898 FIELD(MVFR1, SIMDSP, 16, 4)
1899 FIELD(MVFR1, SIMDHP, 20, 4)
1900 FIELD(MVFR1, FPHP, 24, 4)
1901 FIELD(MVFR1, SIMDFMAC, 28, 4)
1902 
1903 FIELD(MVFR2, SIMDMISC, 0, 4)
1904 FIELD(MVFR2, FPMISC, 4, 4)
1905 
1906 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1907 
1908 /* If adding a feature bit which corresponds to a Linux ELF
1909  * HWCAP bit, remember to update the feature-bit-to-hwcap
1910  * mapping in linux-user/elfload.c:get_elf_hwcap().
1911  */
1912 enum arm_features {
1913     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1914     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1915     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1916     ARM_FEATURE_V6,
1917     ARM_FEATURE_V6K,
1918     ARM_FEATURE_V7,
1919     ARM_FEATURE_THUMB2,
1920     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1921     ARM_FEATURE_NEON,
1922     ARM_FEATURE_M, /* Microcontroller profile.  */
1923     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1924     ARM_FEATURE_THUMB2EE,
1925     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1926     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1927     ARM_FEATURE_V4T,
1928     ARM_FEATURE_V5,
1929     ARM_FEATURE_STRONGARM,
1930     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1931     ARM_FEATURE_GENERIC_TIMER,
1932     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1933     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1934     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1935     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1936     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1937     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1938     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1939     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1940     ARM_FEATURE_V8,
1941     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1942     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1943     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1944     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1945     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1946     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1947     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1948     ARM_FEATURE_PMU, /* has PMU support */
1949     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1950     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1951     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1952 };
1953 
1954 static inline int arm_feature(CPUARMState *env, int feature)
1955 {
1956     return (env->features & (1ULL << feature)) != 0;
1957 }
1958 
1959 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
1960 
1961 #if !defined(CONFIG_USER_ONLY)
1962 /* Return true if exception levels below EL3 are in secure state,
1963  * or would be following an exception return to that level.
1964  * Unlike arm_is_secure() (which is always a question about the
1965  * _current_ state of the CPU) this doesn't care about the current
1966  * EL or mode.
1967  */
1968 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1969 {
1970     if (arm_feature(env, ARM_FEATURE_EL3)) {
1971         return !(env->cp15.scr_el3 & SCR_NS);
1972     } else {
1973         /* If EL3 is not supported then the secure state is implementation
1974          * defined, in which case QEMU defaults to non-secure.
1975          */
1976         return false;
1977     }
1978 }
1979 
1980 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1981 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1982 {
1983     if (arm_feature(env, ARM_FEATURE_EL3)) {
1984         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1985             /* CPU currently in AArch64 state and EL3 */
1986             return true;
1987         } else if (!is_a64(env) &&
1988                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1989             /* CPU currently in AArch32 state and monitor mode */
1990             return true;
1991         }
1992     }
1993     return false;
1994 }
1995 
1996 /* Return true if the processor is in secure state */
1997 static inline bool arm_is_secure(CPUARMState *env)
1998 {
1999     if (arm_is_el3_or_mon(env)) {
2000         return true;
2001     }
2002     return arm_is_secure_below_el3(env);
2003 }
2004 
2005 #else
2006 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2007 {
2008     return false;
2009 }
2010 
2011 static inline bool arm_is_secure(CPUARMState *env)
2012 {
2013     return false;
2014 }
2015 #endif
2016 
2017 /**
2018  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2019  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2020  * "for all purposes other than a direct read or write access of HCR_EL2."
2021  * Not included here is HCR_RW.
2022  */
2023 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2024 
2025 /* Return true if the specified exception level is running in AArch64 state. */
2026 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2027 {
2028     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2029      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2030      */
2031     assert(el >= 1 && el <= 3);
2032     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2033 
2034     /* The highest exception level is always at the maximum supported
2035      * register width, and then lower levels have a register width controlled
2036      * by bits in the SCR or HCR registers.
2037      */
2038     if (el == 3) {
2039         return aa64;
2040     }
2041 
2042     if (arm_feature(env, ARM_FEATURE_EL3)) {
2043         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2044     }
2045 
2046     if (el == 2) {
2047         return aa64;
2048     }
2049 
2050     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
2051         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2052     }
2053 
2054     return aa64;
2055 }
2056 
2057 /* Function for determing whether guest cp register reads and writes should
2058  * access the secure or non-secure bank of a cp register.  When EL3 is
2059  * operating in AArch32 state, the NS-bit determines whether the secure
2060  * instance of a cp register should be used. When EL3 is AArch64 (or if
2061  * it doesn't exist at all) then there is no register banking, and all
2062  * accesses are to the non-secure version.
2063  */
2064 static inline bool access_secure_reg(CPUARMState *env)
2065 {
2066     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2067                 !arm_el_is_aa64(env, 3) &&
2068                 !(env->cp15.scr_el3 & SCR_NS));
2069 
2070     return ret;
2071 }
2072 
2073 /* Macros for accessing a specified CP register bank */
2074 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2075     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2076 
2077 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2078     do {                                                \
2079         if (_secure) {                                   \
2080             (_env)->cp15._regname##_s = (_val);            \
2081         } else {                                        \
2082             (_env)->cp15._regname##_ns = (_val);           \
2083         }                                               \
2084     } while (0)
2085 
2086 /* Macros for automatically accessing a specific CP register bank depending on
2087  * the current secure state of the system.  These macros are not intended for
2088  * supporting instruction translation reads/writes as these are dependent
2089  * solely on the SCR.NS bit and not the mode.
2090  */
2091 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2092     A32_BANKED_REG_GET((_env), _regname,                \
2093                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2094 
2095 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2096     A32_BANKED_REG_SET((_env), _regname,                                    \
2097                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2098                        (_val))
2099 
2100 void arm_cpu_list(void);
2101 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2102                                  uint32_t cur_el, bool secure);
2103 
2104 /* Interface between CPU and Interrupt controller.  */
2105 #ifndef CONFIG_USER_ONLY
2106 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2107 #else
2108 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2109 {
2110     return true;
2111 }
2112 #endif
2113 /**
2114  * armv7m_nvic_set_pending: mark the specified exception as pending
2115  * @opaque: the NVIC
2116  * @irq: the exception number to mark pending
2117  * @secure: false for non-banked exceptions or for the nonsecure
2118  * version of a banked exception, true for the secure version of a banked
2119  * exception.
2120  *
2121  * Marks the specified exception as pending. Note that we will assert()
2122  * if @secure is true and @irq does not specify one of the fixed set
2123  * of architecturally banked exceptions.
2124  */
2125 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2126 /**
2127  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2128  * @opaque: the NVIC
2129  * @irq: the exception number to mark pending
2130  * @secure: false for non-banked exceptions or for the nonsecure
2131  * version of a banked exception, true for the secure version of a banked
2132  * exception.
2133  *
2134  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2135  * exceptions (exceptions generated in the course of trying to take
2136  * a different exception).
2137  */
2138 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2139 /**
2140  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2141  * @opaque: the NVIC
2142  * @irq: the exception number to mark pending
2143  * @secure: false for non-banked exceptions or for the nonsecure
2144  * version of a banked exception, true for the secure version of a banked
2145  * exception.
2146  *
2147  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2148  * generated in the course of lazy stacking of FP registers.
2149  */
2150 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2151 /**
2152  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2153  *    exception, and whether it targets Secure state
2154  * @opaque: the NVIC
2155  * @pirq: set to pending exception number
2156  * @ptargets_secure: set to whether pending exception targets Secure
2157  *
2158  * This function writes the number of the highest priority pending
2159  * exception (the one which would be made active by
2160  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2161  * to true if the current highest priority pending exception should
2162  * be taken to Secure state, false for NS.
2163  */
2164 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2165                                       bool *ptargets_secure);
2166 /**
2167  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2168  * @opaque: the NVIC
2169  *
2170  * Move the current highest priority pending exception from the pending
2171  * state to the active state, and update v7m.exception to indicate that
2172  * it is the exception currently being handled.
2173  */
2174 void armv7m_nvic_acknowledge_irq(void *opaque);
2175 /**
2176  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2177  * @opaque: the NVIC
2178  * @irq: the exception number to complete
2179  * @secure: true if this exception was secure
2180  *
2181  * Returns: -1 if the irq was not active
2182  *           1 if completing this irq brought us back to base (no active irqs)
2183  *           0 if there is still an irq active after this one was completed
2184  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2185  */
2186 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2187 /**
2188  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2189  * @opaque: the NVIC
2190  * @irq: the exception number to mark pending
2191  * @secure: false for non-banked exceptions or for the nonsecure
2192  * version of a banked exception, true for the secure version of a banked
2193  * exception.
2194  *
2195  * Return whether an exception is "ready", i.e. whether the exception is
2196  * enabled and is configured at a priority which would allow it to
2197  * interrupt the current execution priority. This controls whether the
2198  * RDY bit for it in the FPCCR is set.
2199  */
2200 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2201 /**
2202  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2203  * @opaque: the NVIC
2204  *
2205  * Returns: the raw execution priority as defined by the v8M architecture.
2206  * This is the execution priority minus the effects of AIRCR.PRIS,
2207  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2208  * (v8M ARM ARM I_PKLD.)
2209  */
2210 int armv7m_nvic_raw_execution_priority(void *opaque);
2211 /**
2212  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2213  * priority is negative for the specified security state.
2214  * @opaque: the NVIC
2215  * @secure: the security state to test
2216  * This corresponds to the pseudocode IsReqExecPriNeg().
2217  */
2218 #ifndef CONFIG_USER_ONLY
2219 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2220 #else
2221 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2222 {
2223     return false;
2224 }
2225 #endif
2226 
2227 /* Interface for defining coprocessor registers.
2228  * Registers are defined in tables of arm_cp_reginfo structs
2229  * which are passed to define_arm_cp_regs().
2230  */
2231 
2232 /* When looking up a coprocessor register we look for it
2233  * via an integer which encodes all of:
2234  *  coprocessor number
2235  *  Crn, Crm, opc1, opc2 fields
2236  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2237  *    or via MRRC/MCRR?)
2238  *  non-secure/secure bank (AArch32 only)
2239  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2240  * (In this case crn and opc2 should be zero.)
2241  * For AArch64, there is no 32/64 bit size distinction;
2242  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2243  * and 4 bit CRn and CRm. The encoding patterns are chosen
2244  * to be easy to convert to and from the KVM encodings, and also
2245  * so that the hashtable can contain both AArch32 and AArch64
2246  * registers (to allow for interprocessing where we might run
2247  * 32 bit code on a 64 bit core).
2248  */
2249 /* This bit is private to our hashtable cpreg; in KVM register
2250  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2251  * in the upper bits of the 64 bit ID.
2252  */
2253 #define CP_REG_AA64_SHIFT 28
2254 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2255 
2256 /* To enable banking of coprocessor registers depending on ns-bit we
2257  * add a bit to distinguish between secure and non-secure cpregs in the
2258  * hashtable.
2259  */
2260 #define CP_REG_NS_SHIFT 29
2261 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2262 
2263 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2264     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2265      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2266 
2267 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2268     (CP_REG_AA64_MASK |                                 \
2269      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2270      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2271      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2272      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2273      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2274      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2275 
2276 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2277  * version used as a key for the coprocessor register hashtable
2278  */
2279 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2280 {
2281     uint32_t cpregid = kvmid;
2282     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2283         cpregid |= CP_REG_AA64_MASK;
2284     } else {
2285         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2286             cpregid |= (1 << 15);
2287         }
2288 
2289         /* KVM is always non-secure so add the NS flag on AArch32 register
2290          * entries.
2291          */
2292          cpregid |= 1 << CP_REG_NS_SHIFT;
2293     }
2294     return cpregid;
2295 }
2296 
2297 /* Convert a truncated 32 bit hashtable key into the full
2298  * 64 bit KVM register ID.
2299  */
2300 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2301 {
2302     uint64_t kvmid;
2303 
2304     if (cpregid & CP_REG_AA64_MASK) {
2305         kvmid = cpregid & ~CP_REG_AA64_MASK;
2306         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2307     } else {
2308         kvmid = cpregid & ~(1 << 15);
2309         if (cpregid & (1 << 15)) {
2310             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2311         } else {
2312             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2313         }
2314     }
2315     return kvmid;
2316 }
2317 
2318 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2319  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2320  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2321  * TCG can assume the value to be constant (ie load at translate time)
2322  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2323  * indicates that the TB should not be ended after a write to this register
2324  * (the default is that the TB ends after cp writes). OVERRIDE permits
2325  * a register definition to override a previous definition for the
2326  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2327  * old must have the OVERRIDE bit set.
2328  * ALIAS indicates that this register is an alias view of some underlying
2329  * state which is also visible via another register, and that the other
2330  * register is handling migration and reset; registers marked ALIAS will not be
2331  * migrated but may have their state set by syncing of register state from KVM.
2332  * NO_RAW indicates that this register has no underlying state and does not
2333  * support raw access for state saving/loading; it will not be used for either
2334  * migration or KVM state synchronization. (Typically this is for "registers"
2335  * which are actually used as instructions for cache maintenance and so on.)
2336  * IO indicates that this register does I/O and therefore its accesses
2337  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2338  * registers which implement clocks or timers require this.
2339  * RAISES_EXC is for when the read or write hook might raise an exception;
2340  * the generated code will synchronize the CPU state before calling the hook
2341  * so that it is safe for the hook to call raise_exception().
2342  * NEWEL is for writes to registers that might change the exception
2343  * level - typically on older ARM chips. For those cases we need to
2344  * re-read the new el when recomputing the translation flags.
2345  */
2346 #define ARM_CP_SPECIAL           0x0001
2347 #define ARM_CP_CONST             0x0002
2348 #define ARM_CP_64BIT             0x0004
2349 #define ARM_CP_SUPPRESS_TB_END   0x0008
2350 #define ARM_CP_OVERRIDE          0x0010
2351 #define ARM_CP_ALIAS             0x0020
2352 #define ARM_CP_IO                0x0040
2353 #define ARM_CP_NO_RAW            0x0080
2354 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2355 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2356 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2357 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2358 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2359 #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2360 #define ARM_CP_FPU               0x1000
2361 #define ARM_CP_SVE               0x2000
2362 #define ARM_CP_NO_GDB            0x4000
2363 #define ARM_CP_RAISES_EXC        0x8000
2364 #define ARM_CP_NEWEL             0x10000
2365 /* Used only as a terminator for ARMCPRegInfo lists */
2366 #define ARM_CP_SENTINEL          0xfffff
2367 /* Mask of only the flag bits in a type field */
2368 #define ARM_CP_FLAG_MASK         0x1f0ff
2369 
2370 /* Valid values for ARMCPRegInfo state field, indicating which of
2371  * the AArch32 and AArch64 execution states this register is visible in.
2372  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2373  * If the reginfo is declared to be visible in both states then a second
2374  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2375  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2376  * Note that we rely on the values of these enums as we iterate through
2377  * the various states in some places.
2378  */
2379 enum {
2380     ARM_CP_STATE_AA32 = 0,
2381     ARM_CP_STATE_AA64 = 1,
2382     ARM_CP_STATE_BOTH = 2,
2383 };
2384 
2385 /* ARM CP register secure state flags.  These flags identify security state
2386  * attributes for a given CP register entry.
2387  * The existence of both or neither secure and non-secure flags indicates that
2388  * the register has both a secure and non-secure hash entry.  A single one of
2389  * these flags causes the register to only be hashed for the specified
2390  * security state.
2391  * Although definitions may have any combination of the S/NS bits, each
2392  * registered entry will only have one to identify whether the entry is secure
2393  * or non-secure.
2394  */
2395 enum {
2396     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2397     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2398 };
2399 
2400 /* Return true if cptype is a valid type field. This is used to try to
2401  * catch errors where the sentinel has been accidentally left off the end
2402  * of a list of registers.
2403  */
2404 static inline bool cptype_valid(int cptype)
2405 {
2406     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2407         || ((cptype & ARM_CP_SPECIAL) &&
2408             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2409 }
2410 
2411 /* Access rights:
2412  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2413  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2414  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2415  * (ie any of the privileged modes in Secure state, or Monitor mode).
2416  * If a register is accessible in one privilege level it's always accessible
2417  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2418  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2419  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2420  * terminology a little and call this PL3.
2421  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2422  * with the ELx exception levels.
2423  *
2424  * If access permissions for a register are more complex than can be
2425  * described with these bits, then use a laxer set of restrictions, and
2426  * do the more restrictive/complex check inside a helper function.
2427  */
2428 #define PL3_R 0x80
2429 #define PL3_W 0x40
2430 #define PL2_R (0x20 | PL3_R)
2431 #define PL2_W (0x10 | PL3_W)
2432 #define PL1_R (0x08 | PL2_R)
2433 #define PL1_W (0x04 | PL2_W)
2434 #define PL0_R (0x02 | PL1_R)
2435 #define PL0_W (0x01 | PL1_W)
2436 
2437 /*
2438  * For user-mode some registers are accessible to EL0 via a kernel
2439  * trap-and-emulate ABI. In this case we define the read permissions
2440  * as actually being PL0_R. However some bits of any given register
2441  * may still be masked.
2442  */
2443 #ifdef CONFIG_USER_ONLY
2444 #define PL0U_R PL0_R
2445 #else
2446 #define PL0U_R PL1_R
2447 #endif
2448 
2449 #define PL3_RW (PL3_R | PL3_W)
2450 #define PL2_RW (PL2_R | PL2_W)
2451 #define PL1_RW (PL1_R | PL1_W)
2452 #define PL0_RW (PL0_R | PL0_W)
2453 
2454 /* Return the highest implemented Exception Level */
2455 static inline int arm_highest_el(CPUARMState *env)
2456 {
2457     if (arm_feature(env, ARM_FEATURE_EL3)) {
2458         return 3;
2459     }
2460     if (arm_feature(env, ARM_FEATURE_EL2)) {
2461         return 2;
2462     }
2463     return 1;
2464 }
2465 
2466 /* Return true if a v7M CPU is in Handler mode */
2467 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2468 {
2469     return env->v7m.exception != 0;
2470 }
2471 
2472 /* Return the current Exception Level (as per ARMv8; note that this differs
2473  * from the ARMv7 Privilege Level).
2474  */
2475 static inline int arm_current_el(CPUARMState *env)
2476 {
2477     if (arm_feature(env, ARM_FEATURE_M)) {
2478         return arm_v7m_is_handler_mode(env) ||
2479             !(env->v7m.control[env->v7m.secure] & 1);
2480     }
2481 
2482     if (is_a64(env)) {
2483         return extract32(env->pstate, 2, 2);
2484     }
2485 
2486     switch (env->uncached_cpsr & 0x1f) {
2487     case ARM_CPU_MODE_USR:
2488         return 0;
2489     case ARM_CPU_MODE_HYP:
2490         return 2;
2491     case ARM_CPU_MODE_MON:
2492         return 3;
2493     default:
2494         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2495             /* If EL3 is 32-bit then all secure privileged modes run in
2496              * EL3
2497              */
2498             return 3;
2499         }
2500 
2501         return 1;
2502     }
2503 }
2504 
2505 typedef struct ARMCPRegInfo ARMCPRegInfo;
2506 
2507 typedef enum CPAccessResult {
2508     /* Access is permitted */
2509     CP_ACCESS_OK = 0,
2510     /* Access fails due to a configurable trap or enable which would
2511      * result in a categorized exception syndrome giving information about
2512      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2513      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2514      * PL1 if in EL0, otherwise to the current EL).
2515      */
2516     CP_ACCESS_TRAP = 1,
2517     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2518      * Note that this is not a catch-all case -- the set of cases which may
2519      * result in this failure is specifically defined by the architecture.
2520      */
2521     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2522     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2523     CP_ACCESS_TRAP_EL2 = 3,
2524     CP_ACCESS_TRAP_EL3 = 4,
2525     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2526     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2527     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2528     /* Access fails and results in an exception syndrome for an FP access,
2529      * trapped directly to EL2 or EL3
2530      */
2531     CP_ACCESS_TRAP_FP_EL2 = 7,
2532     CP_ACCESS_TRAP_FP_EL3 = 8,
2533 } CPAccessResult;
2534 
2535 /* Access functions for coprocessor registers. These cannot fail and
2536  * may not raise exceptions.
2537  */
2538 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2539 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2540                        uint64_t value);
2541 /* Access permission check functions for coprocessor registers. */
2542 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2543                                   const ARMCPRegInfo *opaque,
2544                                   bool isread);
2545 /* Hook function for register reset */
2546 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2547 
2548 #define CP_ANY 0xff
2549 
2550 /* Definition of an ARM coprocessor register */
2551 struct ARMCPRegInfo {
2552     /* Name of register (useful mainly for debugging, need not be unique) */
2553     const char *name;
2554     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2555      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2556      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2557      * will be decoded to this register. The register read and write
2558      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2559      * used by the program, so it is possible to register a wildcard and
2560      * then behave differently on read/write if necessary.
2561      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2562      * must both be zero.
2563      * For AArch64-visible registers, opc0 is also used.
2564      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2565      * way to distinguish (for KVM's benefit) guest-visible system registers
2566      * from demuxed ones provided to preserve the "no side effects on
2567      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2568      * visible (to match KVM's encoding); cp==0 will be converted to
2569      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2570      */
2571     uint8_t cp;
2572     uint8_t crn;
2573     uint8_t crm;
2574     uint8_t opc0;
2575     uint8_t opc1;
2576     uint8_t opc2;
2577     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2578     int state;
2579     /* Register type: ARM_CP_* bits/values */
2580     int type;
2581     /* Access rights: PL*_[RW] */
2582     int access;
2583     /* Security state: ARM_CP_SECSTATE_* bits/values */
2584     int secure;
2585     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2586      * this register was defined: can be used to hand data through to the
2587      * register read/write functions, since they are passed the ARMCPRegInfo*.
2588      */
2589     void *opaque;
2590     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2591      * fieldoffset is non-zero, the reset value of the register.
2592      */
2593     uint64_t resetvalue;
2594     /* Offset of the field in CPUARMState for this register.
2595      *
2596      * This is not needed if either:
2597      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2598      *  2. both readfn and writefn are specified
2599      */
2600     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2601 
2602     /* Offsets of the secure and non-secure fields in CPUARMState for the
2603      * register if it is banked.  These fields are only used during the static
2604      * registration of a register.  During hashing the bank associated
2605      * with a given security state is copied to fieldoffset which is used from
2606      * there on out.
2607      *
2608      * It is expected that register definitions use either fieldoffset or
2609      * bank_fieldoffsets in the definition but not both.  It is also expected
2610      * that both bank offsets are set when defining a banked register.  This
2611      * use indicates that a register is banked.
2612      */
2613     ptrdiff_t bank_fieldoffsets[2];
2614 
2615     /* Function for making any access checks for this register in addition to
2616      * those specified by the 'access' permissions bits. If NULL, no extra
2617      * checks required. The access check is performed at runtime, not at
2618      * translate time.
2619      */
2620     CPAccessFn *accessfn;
2621     /* Function for handling reads of this register. If NULL, then reads
2622      * will be done by loading from the offset into CPUARMState specified
2623      * by fieldoffset.
2624      */
2625     CPReadFn *readfn;
2626     /* Function for handling writes of this register. If NULL, then writes
2627      * will be done by writing to the offset into CPUARMState specified
2628      * by fieldoffset.
2629      */
2630     CPWriteFn *writefn;
2631     /* Function for doing a "raw" read; used when we need to copy
2632      * coprocessor state to the kernel for KVM or out for
2633      * migration. This only needs to be provided if there is also a
2634      * readfn and it has side effects (for instance clear-on-read bits).
2635      */
2636     CPReadFn *raw_readfn;
2637     /* Function for doing a "raw" write; used when we need to copy KVM
2638      * kernel coprocessor state into userspace, or for inbound
2639      * migration. This only needs to be provided if there is also a
2640      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2641      * or similar behaviour.
2642      */
2643     CPWriteFn *raw_writefn;
2644     /* Function for resetting the register. If NULL, then reset will be done
2645      * by writing resetvalue to the field specified in fieldoffset. If
2646      * fieldoffset is 0 then no reset will be done.
2647      */
2648     CPResetFn *resetfn;
2649 
2650     /*
2651      * "Original" writefn and readfn.
2652      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2653      * accessor functions of various EL1/EL0 to perform the runtime
2654      * check for which sysreg should actually be modified, and then
2655      * forwards the operation.  Before overwriting the accessors,
2656      * the original function is copied here, so that accesses that
2657      * really do go to the EL1/EL0 version proceed normally.
2658      * (The corresponding EL2 register is linked via opaque.)
2659      */
2660     CPReadFn *orig_readfn;
2661     CPWriteFn *orig_writefn;
2662 };
2663 
2664 /* Macros which are lvalues for the field in CPUARMState for the
2665  * ARMCPRegInfo *ri.
2666  */
2667 #define CPREG_FIELD32(env, ri) \
2668     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2669 #define CPREG_FIELD64(env, ri) \
2670     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2671 
2672 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2673 
2674 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2675                                     const ARMCPRegInfo *regs, void *opaque);
2676 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2677                                        const ARMCPRegInfo *regs, void *opaque);
2678 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2679 {
2680     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2681 }
2682 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2683 {
2684     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2685 }
2686 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2687 
2688 /*
2689  * Definition of an ARM co-processor register as viewed from
2690  * userspace. This is used for presenting sanitised versions of
2691  * registers to userspace when emulating the Linux AArch64 CPU
2692  * ID/feature ABI (advertised as HWCAP_CPUID).
2693  */
2694 typedef struct ARMCPRegUserSpaceInfo {
2695     /* Name of register */
2696     const char *name;
2697 
2698     /* Is the name actually a glob pattern */
2699     bool is_glob;
2700 
2701     /* Only some bits are exported to user space */
2702     uint64_t exported_bits;
2703 
2704     /* Fixed bits are applied after the mask */
2705     uint64_t fixed_bits;
2706 } ARMCPRegUserSpaceInfo;
2707 
2708 #define REGUSERINFO_SENTINEL { .name = NULL }
2709 
2710 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2711 
2712 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2713 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2714                          uint64_t value);
2715 /* CPReadFn that can be used for read-as-zero behaviour */
2716 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2717 
2718 /* CPResetFn that does nothing, for use if no reset is required even
2719  * if fieldoffset is non zero.
2720  */
2721 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2722 
2723 /* Return true if this reginfo struct's field in the cpu state struct
2724  * is 64 bits wide.
2725  */
2726 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2727 {
2728     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2729 }
2730 
2731 static inline bool cp_access_ok(int current_el,
2732                                 const ARMCPRegInfo *ri, int isread)
2733 {
2734     return (ri->access >> ((current_el * 2) + isread)) & 1;
2735 }
2736 
2737 /* Raw read of a coprocessor register (as needed for migration, etc) */
2738 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2739 
2740 /**
2741  * write_list_to_cpustate
2742  * @cpu: ARMCPU
2743  *
2744  * For each register listed in the ARMCPU cpreg_indexes list, write
2745  * its value from the cpreg_values list into the ARMCPUState structure.
2746  * This updates TCG's working data structures from KVM data or
2747  * from incoming migration state.
2748  *
2749  * Returns: true if all register values were updated correctly,
2750  * false if some register was unknown or could not be written.
2751  * Note that we do not stop early on failure -- we will attempt
2752  * writing all registers in the list.
2753  */
2754 bool write_list_to_cpustate(ARMCPU *cpu);
2755 
2756 /**
2757  * write_cpustate_to_list:
2758  * @cpu: ARMCPU
2759  * @kvm_sync: true if this is for syncing back to KVM
2760  *
2761  * For each register listed in the ARMCPU cpreg_indexes list, write
2762  * its value from the ARMCPUState structure into the cpreg_values list.
2763  * This is used to copy info from TCG's working data structures into
2764  * KVM or for outbound migration.
2765  *
2766  * @kvm_sync is true if we are doing this in order to sync the
2767  * register state back to KVM. In this case we will only update
2768  * values in the list if the previous list->cpustate sync actually
2769  * successfully wrote the CPU state. Otherwise we will keep the value
2770  * that is in the list.
2771  *
2772  * Returns: true if all register values were read correctly,
2773  * false if some register was unknown or could not be read.
2774  * Note that we do not stop early on failure -- we will attempt
2775  * reading all registers in the list.
2776  */
2777 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2778 
2779 #define ARM_CPUID_TI915T      0x54029152
2780 #define ARM_CPUID_TI925T      0x54029252
2781 
2782 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2783 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2784 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2785 
2786 #define cpu_signal_handler cpu_arm_signal_handler
2787 #define cpu_list arm_cpu_list
2788 
2789 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2790  *
2791  * If EL3 is 64-bit:
2792  *  + NonSecure EL1 & 0 stage 1
2793  *  + NonSecure EL1 & 0 stage 2
2794  *  + NonSecure EL2
2795  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2796  *  + Secure EL1 & 0
2797  *  + Secure EL3
2798  * If EL3 is 32-bit:
2799  *  + NonSecure PL1 & 0 stage 1
2800  *  + NonSecure PL1 & 0 stage 2
2801  *  + NonSecure PL2
2802  *  + Secure PL0
2803  *  + Secure PL1
2804  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2805  *
2806  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2807  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2808  *     because they may differ in access permissions even if the VA->PA map is
2809  *     the same
2810  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2811  *     translation, which means that we have one mmu_idx that deals with two
2812  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2813  *     architecturally permitted]
2814  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2815  *     handling via the TLB. The only way to do a stage 1 translation without
2816  *     the immediate stage 2 translation is via the ATS or AT system insns,
2817  *     which can be slow-pathed and always do a page table walk.
2818  *     The only use of stage 2 translations is either as part of an s1+2
2819  *     lookup or when loading the descriptors during a stage 1 page table walk,
2820  *     and in both those cases we don't use the TLB.
2821  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2822  *     translation regimes, because they map reasonably well to each other
2823  *     and they can't both be active at the same time.
2824  *  5. we want to be able to use the TLB for accesses done as part of a
2825  *     stage1 page table walk, rather than having to walk the stage2 page
2826  *     table over and over.
2827  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2828  *     Never (PAN) bit within PSTATE.
2829  *
2830  * This gives us the following list of cases:
2831  *
2832  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2833  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2834  * NS EL1 EL1&0 stage 1+2 +PAN
2835  * NS EL0 EL2&0
2836  * NS EL2 EL2&0
2837  * NS EL2 EL2&0 +PAN
2838  * NS EL2 (aka NS PL2)
2839  * S EL0 EL1&0 (aka S PL0)
2840  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2841  * S EL1 EL1&0 +PAN
2842  * S EL3 (aka S PL1)
2843  *
2844  * for a total of 11 different mmu_idx.
2845  *
2846  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2847  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2848  * NS EL2 if we ever model a Cortex-R52).
2849  *
2850  * M profile CPUs are rather different as they do not have a true MMU.
2851  * They have the following different MMU indexes:
2852  *  User
2853  *  Privileged
2854  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2855  *  Privileged, execution priority negative (ditto)
2856  * If the CPU supports the v8M Security Extension then there are also:
2857  *  Secure User
2858  *  Secure Privileged
2859  *  Secure User, execution priority negative
2860  *  Secure Privileged, execution priority negative
2861  *
2862  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2863  * are not quite the same -- different CPU types (most notably M profile
2864  * vs A/R profile) would like to use MMU indexes with different semantics,
2865  * but since we don't ever need to use all of those in a single CPU we
2866  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2867  * modes + total number of M profile MMU modes". The lower bits of
2868  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2869  * the same for any particular CPU.
2870  * Variables of type ARMMUIdx are always full values, and the core
2871  * index values are in variables of type 'int'.
2872  *
2873  * Our enumeration includes at the end some entries which are not "true"
2874  * mmu_idx values in that they don't have corresponding TLBs and are only
2875  * valid for doing slow path page table walks.
2876  *
2877  * The constant names here are patterned after the general style of the names
2878  * of the AT/ATS operations.
2879  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2880  * For M profile we arrange them to have a bit for priv, a bit for negpri
2881  * and a bit for secure.
2882  */
2883 #define ARM_MMU_IDX_A     0x10  /* A profile */
2884 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2885 #define ARM_MMU_IDX_M     0x40  /* M profile */
2886 
2887 /* Meanings of the bits for M profile mmu idx values */
2888 #define ARM_MMU_IDX_M_PRIV   0x1
2889 #define ARM_MMU_IDX_M_NEGPRI 0x2
2890 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2891 
2892 #define ARM_MMU_IDX_TYPE_MASK \
2893     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2894 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2895 
2896 typedef enum ARMMMUIdx {
2897     /*
2898      * A-profile.
2899      */
2900     ARMMMUIdx_E10_0      =  0 | ARM_MMU_IDX_A,
2901     ARMMMUIdx_E20_0      =  1 | ARM_MMU_IDX_A,
2902 
2903     ARMMMUIdx_E10_1      =  2 | ARM_MMU_IDX_A,
2904     ARMMMUIdx_E10_1_PAN  =  3 | ARM_MMU_IDX_A,
2905 
2906     ARMMMUIdx_E2         =  4 | ARM_MMU_IDX_A,
2907     ARMMMUIdx_E20_2      =  5 | ARM_MMU_IDX_A,
2908     ARMMMUIdx_E20_2_PAN  =  6 | ARM_MMU_IDX_A,
2909 
2910     ARMMMUIdx_SE10_0     = 7 | ARM_MMU_IDX_A,
2911     ARMMMUIdx_SE10_1     = 8 | ARM_MMU_IDX_A,
2912     ARMMMUIdx_SE10_1_PAN = 9 | ARM_MMU_IDX_A,
2913     ARMMMUIdx_SE3        = 10 | ARM_MMU_IDX_A,
2914 
2915     /*
2916      * These are not allocated TLBs and are used only for AT system
2917      * instructions or for the first stage of an S12 page table walk.
2918      */
2919     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2920     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2921     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2922     /*
2923      * Not allocated a TLB: used only for second stage of an S12 page
2924      * table walk, or for descriptor loads during first stage of an S1
2925      * page table walk. Note that if we ever want to have a TLB for this
2926      * then various TLB flush insns which currently are no-ops or flush
2927      * only stage 1 MMU indexes will need to change to flush stage 2.
2928      */
2929     ARMMMUIdx_Stage2     = 3 | ARM_MMU_IDX_NOTLB,
2930 
2931     /*
2932      * M-profile.
2933      */
2934     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2935     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2936     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2937     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2938     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2939     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2940     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2941     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2942 } ARMMMUIdx;
2943 
2944 /*
2945  * Bit macros for the core-mmu-index values for each index,
2946  * for use when calling tlb_flush_by_mmuidx() and friends.
2947  */
2948 #define TO_CORE_BIT(NAME) \
2949     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2950 
2951 typedef enum ARMMMUIdxBit {
2952     TO_CORE_BIT(E10_0),
2953     TO_CORE_BIT(E20_0),
2954     TO_CORE_BIT(E10_1),
2955     TO_CORE_BIT(E10_1_PAN),
2956     TO_CORE_BIT(E2),
2957     TO_CORE_BIT(E20_2),
2958     TO_CORE_BIT(E20_2_PAN),
2959     TO_CORE_BIT(SE10_0),
2960     TO_CORE_BIT(SE10_1),
2961     TO_CORE_BIT(SE10_1_PAN),
2962     TO_CORE_BIT(SE3),
2963 
2964     TO_CORE_BIT(MUser),
2965     TO_CORE_BIT(MPriv),
2966     TO_CORE_BIT(MUserNegPri),
2967     TO_CORE_BIT(MPrivNegPri),
2968     TO_CORE_BIT(MSUser),
2969     TO_CORE_BIT(MSPriv),
2970     TO_CORE_BIT(MSUserNegPri),
2971     TO_CORE_BIT(MSPrivNegPri),
2972 } ARMMMUIdxBit;
2973 
2974 #undef TO_CORE_BIT
2975 
2976 #define MMU_USER_IDX 0
2977 
2978 /* Indexes used when registering address spaces with cpu_address_space_init */
2979 typedef enum ARMASIdx {
2980     ARMASIdx_NS = 0,
2981     ARMASIdx_S = 1,
2982 } ARMASIdx;
2983 
2984 /* Return the Exception Level targeted by debug exceptions. */
2985 static inline int arm_debug_target_el(CPUARMState *env)
2986 {
2987     bool secure = arm_is_secure(env);
2988     bool route_to_el2 = false;
2989 
2990     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2991         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2992                        env->cp15.mdcr_el2 & MDCR_TDE;
2993     }
2994 
2995     if (route_to_el2) {
2996         return 2;
2997     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2998                !arm_el_is_aa64(env, 3) && secure) {
2999         return 3;
3000     } else {
3001         return 1;
3002     }
3003 }
3004 
3005 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3006 {
3007     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3008      * CSSELR is RAZ/WI.
3009      */
3010     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3011 }
3012 
3013 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3014 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3015 {
3016     int cur_el = arm_current_el(env);
3017     int debug_el;
3018 
3019     if (cur_el == 3) {
3020         return false;
3021     }
3022 
3023     /* MDCR_EL3.SDD disables debug events from Secure state */
3024     if (arm_is_secure_below_el3(env)
3025         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3026         return false;
3027     }
3028 
3029     /*
3030      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3031      * while not masking the (D)ebug bit in DAIF.
3032      */
3033     debug_el = arm_debug_target_el(env);
3034 
3035     if (cur_el == debug_el) {
3036         return extract32(env->cp15.mdscr_el1, 13, 1)
3037             && !(env->daif & PSTATE_D);
3038     }
3039 
3040     /* Otherwise the debug target needs to be a higher EL */
3041     return debug_el > cur_el;
3042 }
3043 
3044 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3045 {
3046     int el = arm_current_el(env);
3047 
3048     if (el == 0 && arm_el_is_aa64(env, 1)) {
3049         return aa64_generate_debug_exceptions(env);
3050     }
3051 
3052     if (arm_is_secure(env)) {
3053         int spd;
3054 
3055         if (el == 0 && (env->cp15.sder & 1)) {
3056             /* SDER.SUIDEN means debug exceptions from Secure EL0
3057              * are always enabled. Otherwise they are controlled by
3058              * SDCR.SPD like those from other Secure ELs.
3059              */
3060             return true;
3061         }
3062 
3063         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3064         switch (spd) {
3065         case 1:
3066             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3067         case 0:
3068             /* For 0b00 we return true if external secure invasive debug
3069              * is enabled. On real hardware this is controlled by external
3070              * signals to the core. QEMU always permits debug, and behaves
3071              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3072              */
3073             return true;
3074         case 2:
3075             return false;
3076         case 3:
3077             return true;
3078         }
3079     }
3080 
3081     return el != 2;
3082 }
3083 
3084 /* Return true if debugging exceptions are currently enabled.
3085  * This corresponds to what in ARM ARM pseudocode would be
3086  *    if UsingAArch32() then
3087  *        return AArch32.GenerateDebugExceptions()
3088  *    else
3089  *        return AArch64.GenerateDebugExceptions()
3090  * We choose to push the if() down into this function for clarity,
3091  * since the pseudocode has it at all callsites except for the one in
3092  * CheckSoftwareStep(), where it is elided because both branches would
3093  * always return the same value.
3094  */
3095 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3096 {
3097     if (env->aarch64) {
3098         return aa64_generate_debug_exceptions(env);
3099     } else {
3100         return aa32_generate_debug_exceptions(env);
3101     }
3102 }
3103 
3104 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3105  * implicitly means this always returns false in pre-v8 CPUs.)
3106  */
3107 static inline bool arm_singlestep_active(CPUARMState *env)
3108 {
3109     return extract32(env->cp15.mdscr_el1, 0, 1)
3110         && arm_el_is_aa64(env, arm_debug_target_el(env))
3111         && arm_generate_debug_exceptions(env);
3112 }
3113 
3114 static inline bool arm_sctlr_b(CPUARMState *env)
3115 {
3116     return
3117         /* We need not implement SCTLR.ITD in user-mode emulation, so
3118          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3119          * This lets people run BE32 binaries with "-cpu any".
3120          */
3121 #ifndef CONFIG_USER_ONLY
3122         !arm_feature(env, ARM_FEATURE_V7) &&
3123 #endif
3124         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3125 }
3126 
3127 uint64_t arm_sctlr(CPUARMState *env, int el);
3128 
3129 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3130                                                   bool sctlr_b)
3131 {
3132 #ifdef CONFIG_USER_ONLY
3133     /*
3134      * In system mode, BE32 is modelled in line with the
3135      * architecture (as word-invariant big-endianness), where loads
3136      * and stores are done little endian but from addresses which
3137      * are adjusted by XORing with the appropriate constant. So the
3138      * endianness to use for the raw data access is not affected by
3139      * SCTLR.B.
3140      * In user mode, however, we model BE32 as byte-invariant
3141      * big-endianness (because user-only code cannot tell the
3142      * difference), and so we need to use a data access endianness
3143      * that depends on SCTLR.B.
3144      */
3145     if (sctlr_b) {
3146         return true;
3147     }
3148 #endif
3149     /* In 32bit endianness is determined by looking at CPSR's E bit */
3150     return env->uncached_cpsr & CPSR_E;
3151 }
3152 
3153 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3154 {
3155     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3156 }
3157 
3158 /* Return true if the processor is in big-endian mode. */
3159 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3160 {
3161     if (!is_a64(env)) {
3162         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3163     } else {
3164         int cur_el = arm_current_el(env);
3165         uint64_t sctlr = arm_sctlr(env, cur_el);
3166         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3167     }
3168 }
3169 
3170 typedef CPUARMState CPUArchState;
3171 typedef ARMCPU ArchCPU;
3172 
3173 #include "exec/cpu-all.h"
3174 
3175 /*
3176  * Bit usage in the TB flags field: bit 31 indicates whether we are
3177  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3178  * We put flags which are shared between 32 and 64 bit mode at the top
3179  * of the word, and flags which apply to only one mode at the bottom.
3180  *
3181  *  31          20    18    14          9              0
3182  * +--------------+-----+-----+----------+--------------+
3183  * |              |     |   TBFLAG_A32   |              |
3184  * |              |     +-----+----------+  TBFLAG_AM32 |
3185  * |  TBFLAG_ANY  |           |TBFLAG_M32|              |
3186  * |              |         +-+----------+--------------|
3187  * |              |         |         TBFLAG_A64        |
3188  * +--------------+---------+---------------------------+
3189  *  31          20        15                           0
3190  *
3191  * Unless otherwise noted, these bits are cached in env->hflags.
3192  */
3193 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3194 FIELD(TBFLAG_ANY, SS_ACTIVE, 30, 1)
3195 FIELD(TBFLAG_ANY, PSTATE_SS, 29, 1)     /* Not cached. */
3196 FIELD(TBFLAG_ANY, BE_DATA, 28, 1)
3197 FIELD(TBFLAG_ANY, MMUIDX, 24, 4)
3198 /* Target EL if we take a floating-point-disabled exception */
3199 FIELD(TBFLAG_ANY, FPEXC_EL, 22, 2)
3200 /* For A-profile only, target EL for debug exceptions.  */
3201 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 20, 2)
3202 
3203 /*
3204  * Bit usage when in AArch32 state, both A- and M-profile.
3205  */
3206 FIELD(TBFLAG_AM32, CONDEXEC, 0, 8)      /* Not cached. */
3207 FIELD(TBFLAG_AM32, THUMB, 8, 1)         /* Not cached. */
3208 
3209 /*
3210  * Bit usage when in AArch32 state, for A-profile only.
3211  */
3212 FIELD(TBFLAG_A32, VECLEN, 9, 3)         /* Not cached. */
3213 FIELD(TBFLAG_A32, VECSTRIDE, 12, 2)     /* Not cached. */
3214 /*
3215  * We store the bottom two bits of the CPAR as TB flags and handle
3216  * checks on the other bits at runtime. This shares the same bits as
3217  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3218  * Not cached, because VECLEN+VECSTRIDE are not cached.
3219  */
3220 FIELD(TBFLAG_A32, XSCALE_CPAR, 12, 2)
3221 FIELD(TBFLAG_A32, VFPEN, 14, 1)         /* Partially cached, minus FPEXC. */
3222 FIELD(TBFLAG_A32, SCTLR_B, 15, 1)
3223 FIELD(TBFLAG_A32, HSTR_ACTIVE, 16, 1)
3224 /*
3225  * Indicates whether cp register reads and writes by guest code should access
3226  * the secure or nonsecure bank of banked registers; note that this is not
3227  * the same thing as the current security state of the processor!
3228  */
3229 FIELD(TBFLAG_A32, NS, 17, 1)
3230 
3231 /*
3232  * Bit usage when in AArch32 state, for M-profile only.
3233  */
3234 /* Handler (ie not Thread) mode */
3235 FIELD(TBFLAG_M32, HANDLER, 9, 1)
3236 /* Whether we should generate stack-limit checks */
3237 FIELD(TBFLAG_M32, STACKCHECK, 10, 1)
3238 /* Set if FPCCR.LSPACT is set */
3239 FIELD(TBFLAG_M32, LSPACT, 11, 1)                 /* Not cached. */
3240 /* Set if we must create a new FP context */
3241 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 12, 1)     /* Not cached. */
3242 /* Set if FPCCR.S does not match current security state */
3243 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 13, 1)          /* Not cached. */
3244 
3245 /*
3246  * Bit usage when in AArch64 state
3247  */
3248 FIELD(TBFLAG_A64, TBII, 0, 2)
3249 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3250 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3251 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3252 FIELD(TBFLAG_A64, BT, 9, 1)
3253 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3254 FIELD(TBFLAG_A64, TBID, 12, 2)
3255 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3256 
3257 /**
3258  * cpu_mmu_index:
3259  * @env: The cpu environment
3260  * @ifetch: True for code access, false for data access.
3261  *
3262  * Return the core mmu index for the current translation regime.
3263  * This function is used by generic TCG code paths.
3264  */
3265 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3266 {
3267     return FIELD_EX32(env->hflags, TBFLAG_ANY, MMUIDX);
3268 }
3269 
3270 static inline bool bswap_code(bool sctlr_b)
3271 {
3272 #ifdef CONFIG_USER_ONLY
3273     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3274      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3275      * would also end up as a mixed-endian mode with BE code, LE data.
3276      */
3277     return
3278 #ifdef TARGET_WORDS_BIGENDIAN
3279         1 ^
3280 #endif
3281         sctlr_b;
3282 #else
3283     /* All code access in ARM is little endian, and there are no loaders
3284      * doing swaps that need to be reversed
3285      */
3286     return 0;
3287 #endif
3288 }
3289 
3290 #ifdef CONFIG_USER_ONLY
3291 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3292 {
3293     return
3294 #ifdef TARGET_WORDS_BIGENDIAN
3295        1 ^
3296 #endif
3297        arm_cpu_data_is_big_endian(env);
3298 }
3299 #endif
3300 
3301 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3302                           target_ulong *cs_base, uint32_t *flags);
3303 
3304 enum {
3305     QEMU_PSCI_CONDUIT_DISABLED = 0,
3306     QEMU_PSCI_CONDUIT_SMC = 1,
3307     QEMU_PSCI_CONDUIT_HVC = 2,
3308 };
3309 
3310 #ifndef CONFIG_USER_ONLY
3311 /* Return the address space index to use for a memory access */
3312 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3313 {
3314     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3315 }
3316 
3317 /* Return the AddressSpace to use for a memory access
3318  * (which depends on whether the access is S or NS, and whether
3319  * the board gave us a separate AddressSpace for S accesses).
3320  */
3321 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3322 {
3323     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3324 }
3325 #endif
3326 
3327 /**
3328  * arm_register_pre_el_change_hook:
3329  * Register a hook function which will be called immediately before this
3330  * CPU changes exception level or mode. The hook function will be
3331  * passed a pointer to the ARMCPU and the opaque data pointer passed
3332  * to this function when the hook was registered.
3333  *
3334  * Note that if a pre-change hook is called, any registered post-change hooks
3335  * are guaranteed to subsequently be called.
3336  */
3337 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3338                                  void *opaque);
3339 /**
3340  * arm_register_el_change_hook:
3341  * Register a hook function which will be called immediately after this
3342  * CPU changes exception level or mode. The hook function will be
3343  * passed a pointer to the ARMCPU and the opaque data pointer passed
3344  * to this function when the hook was registered.
3345  *
3346  * Note that any registered hooks registered here are guaranteed to be called
3347  * if pre-change hooks have been.
3348  */
3349 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3350         *opaque);
3351 
3352 /**
3353  * arm_rebuild_hflags:
3354  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3355  */
3356 void arm_rebuild_hflags(CPUARMState *env);
3357 
3358 /**
3359  * aa32_vfp_dreg:
3360  * Return a pointer to the Dn register within env in 32-bit mode.
3361  */
3362 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3363 {
3364     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3365 }
3366 
3367 /**
3368  * aa32_vfp_qreg:
3369  * Return a pointer to the Qn register within env in 32-bit mode.
3370  */
3371 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3372 {
3373     return &env->vfp.zregs[regno].d[0];
3374 }
3375 
3376 /**
3377  * aa64_vfp_qreg:
3378  * Return a pointer to the Qn register within env in 64-bit mode.
3379  */
3380 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3381 {
3382     return &env->vfp.zregs[regno].d[0];
3383 }
3384 
3385 /* Shared between translate-sve.c and sve_helper.c.  */
3386 extern const uint64_t pred_esz_masks[4];
3387 
3388 /*
3389  * Naming convention for isar_feature functions:
3390  * Functions which test 32-bit ID registers should have _aa32_ in
3391  * their name. Functions which test 64-bit ID registers should have
3392  * _aa64_ in their name. These must only be used in code where we
3393  * know for certain that the CPU has AArch32 or AArch64 respectively
3394  * or where the correct answer for a CPU which doesn't implement that
3395  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3396  * system registers that are specific to that CPU state, for "should
3397  * we let this system register bit be set" tests where the 32-bit
3398  * flavour of the register doesn't have the bit, and so on).
3399  * Functions which simply ask "does this feature exist at all" have
3400  * _any_ in their name, and always return the logical OR of the _aa64_
3401  * and the _aa32_ function.
3402  */
3403 
3404 /*
3405  * 32-bit feature tests via id registers.
3406  */
3407 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3408 {
3409     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3410 }
3411 
3412 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3413 {
3414     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3415 }
3416 
3417 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3418 {
3419     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3420 }
3421 
3422 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3423 {
3424     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3425 }
3426 
3427 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3428 {
3429     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3430 }
3431 
3432 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3433 {
3434     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3435 }
3436 
3437 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3438 {
3439     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3440 }
3441 
3442 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3443 {
3444     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3445 }
3446 
3447 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3448 {
3449     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3450 }
3451 
3452 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3453 {
3454     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3455 }
3456 
3457 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3458 {
3459     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3460 }
3461 
3462 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3463 {
3464     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3465 }
3466 
3467 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3468 {
3469     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3470 }
3471 
3472 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3473 {
3474     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3475 }
3476 
3477 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3478 {
3479     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3480 }
3481 
3482 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3483 {
3484     /*
3485      * This is a placeholder for use by VCMA until the rest of
3486      * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3487      * At which point we can properly set and check MVFR1.FPHP.
3488      */
3489     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3490 }
3491 
3492 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3493 {
3494     /*
3495      * Return true if either VFP or SIMD is implemented.
3496      * In this case, a minimum of VFP w/ D0-D15.
3497      */
3498     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3499 }
3500 
3501 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3502 {
3503     /* Return true if D16-D31 are implemented */
3504     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3505 }
3506 
3507 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3510 }
3511 
3512 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3513 {
3514     /* Return true if CPU supports single precision floating point, VFPv2 */
3515     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3516 }
3517 
3518 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3519 {
3520     /* Return true if CPU supports single precision floating point, VFPv3 */
3521     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3522 }
3523 
3524 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3525 {
3526     /* Return true if CPU supports double precision floating point, VFPv2 */
3527     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3528 }
3529 
3530 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3531 {
3532     /* Return true if CPU supports double precision floating point, VFPv3 */
3533     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3534 }
3535 
3536 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3537 {
3538     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3539 }
3540 
3541 /*
3542  * We always set the FP and SIMD FP16 fields to indicate identical
3543  * levels of support (assuming SIMD is implemented at all), so
3544  * we only need one set of accessors.
3545  */
3546 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3547 {
3548     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3549 }
3550 
3551 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3552 {
3553     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3554 }
3555 
3556 /*
3557  * Note that this ID register field covers both VFP and Neon FMAC,
3558  * so should usually be tested in combination with some other
3559  * check that confirms the presence of whichever of VFP or Neon is
3560  * relevant, to avoid accidentally enabling a Neon feature on
3561  * a VFP-no-Neon core or vice-versa.
3562  */
3563 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3564 {
3565     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3566 }
3567 
3568 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3569 {
3570     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3571 }
3572 
3573 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3574 {
3575     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3576 }
3577 
3578 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3579 {
3580     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3581 }
3582 
3583 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3584 {
3585     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3586 }
3587 
3588 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3589 {
3590     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3591 }
3592 
3593 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3594 {
3595     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3596 }
3597 
3598 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3599 {
3600     /* 0xf means "non-standard IMPDEF PMU" */
3601     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3602         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3603 }
3604 
3605 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3606 {
3607     /* 0xf means "non-standard IMPDEF PMU" */
3608     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3609         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3610 }
3611 
3612 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3613 {
3614     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3615 }
3616 
3617 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3618 {
3619     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3620 }
3621 
3622 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3623 {
3624     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3625 }
3626 
3627 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3628 {
3629     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3630 }
3631 
3632 /*
3633  * 64-bit feature tests via id registers.
3634  */
3635 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3636 {
3637     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3638 }
3639 
3640 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3641 {
3642     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3643 }
3644 
3645 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3646 {
3647     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3648 }
3649 
3650 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3651 {
3652     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3653 }
3654 
3655 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3656 {
3657     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3658 }
3659 
3660 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3661 {
3662     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3663 }
3664 
3665 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3666 {
3667     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3668 }
3669 
3670 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3671 {
3672     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3673 }
3674 
3675 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3676 {
3677     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3678 }
3679 
3680 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3681 {
3682     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3683 }
3684 
3685 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3686 {
3687     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3688 }
3689 
3690 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3691 {
3692     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3693 }
3694 
3695 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3696 {
3697     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3698 }
3699 
3700 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3701 {
3702     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3703 }
3704 
3705 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3706 {
3707     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3708 }
3709 
3710 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3711 {
3712     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3713 }
3714 
3715 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3716 {
3717     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3718 }
3719 
3720 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3721 {
3722     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3723 }
3724 
3725 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3726 {
3727     /*
3728      * Note that while QEMU will only implement the architected algorithm
3729      * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3730      * defined algorithms, and thus API+GPI, and this predicate controls
3731      * migration of the 128-bit keys.
3732      */
3733     return (id->id_aa64isar1 &
3734             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3735              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3736              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3737              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3738 }
3739 
3740 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3741 {
3742     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3743 }
3744 
3745 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3746 {
3747     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3748 }
3749 
3750 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3751 {
3752     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3753 }
3754 
3755 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3756 {
3757     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3758 }
3759 
3760 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3761 {
3762     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3763 }
3764 
3765 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3766 {
3767     /* We always set the AdvSIMD and FP fields identically.  */
3768     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3769 }
3770 
3771 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3772 {
3773     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3774     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3775 }
3776 
3777 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3778 {
3779     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3780 }
3781 
3782 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3783 {
3784     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3785 }
3786 
3787 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3788 {
3789     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3790 }
3791 
3792 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3793 {
3794     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3795 }
3796 
3797 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3798 {
3799     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3800 }
3801 
3802 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3803 {
3804     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3805 }
3806 
3807 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3808 {
3809     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3810 }
3811 
3812 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3813 {
3814     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3815 }
3816 
3817 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3818 {
3819     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3820         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3821 }
3822 
3823 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3824 {
3825     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3826         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3827 }
3828 
3829 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3830 {
3831     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3832 }
3833 
3834 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3835 {
3836     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3837 }
3838 
3839 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
3840 {
3841     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
3842 }
3843 
3844 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
3845 {
3846     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
3847 }
3848 
3849 /*
3850  * Feature tests for "does this exist in either 32-bit or 64-bit?"
3851  */
3852 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
3853 {
3854     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
3855 }
3856 
3857 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
3858 {
3859     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
3860 }
3861 
3862 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
3863 {
3864     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
3865 }
3866 
3867 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
3868 {
3869     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
3870 }
3871 
3872 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
3873 {
3874     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
3875 }
3876 
3877 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
3878 {
3879     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
3880 }
3881 
3882 /*
3883  * Forward to the above feature tests given an ARMCPU pointer.
3884  */
3885 #define cpu_isar_feature(name, cpu) \
3886     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3887 
3888 #endif
3889