xref: /openbmc/qemu/target/arm/cpu.h (revision 1fea334eeed2b747d1c91ee0099401595ba697f8)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-common.h"
28 #include "exec/cpu-defs.h"
29 #include "exec/cpu-interrupt.h"
30 #include "exec/gdbstub.h"
31 #include "exec/page-protection.h"
32 #include "qapi/qapi-types-common.h"
33 #include "target/arm/multiprocessing.h"
34 #include "target/arm/gtimer.h"
35 #include "target/arm/cpu-sysregs.h"
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
61 #define EXCP_NMI            26
62 #define EXCP_VINMI          27
63 #define EXCP_VFNMI          28
64 #define EXCP_MON_TRAP       29   /* AArch32 trap to Monitor mode */
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66 
67 #define ARMV7M_EXCP_RESET   1
68 #define ARMV7M_EXCP_NMI     2
69 #define ARMV7M_EXCP_HARD    3
70 #define ARMV7M_EXCP_MEM     4
71 #define ARMV7M_EXCP_BUS     5
72 #define ARMV7M_EXCP_USAGE   6
73 #define ARMV7M_EXCP_SECURE  7
74 #define ARMV7M_EXCP_SVC     11
75 #define ARMV7M_EXCP_DEBUG   12
76 #define ARMV7M_EXCP_PENDSV  14
77 #define ARMV7M_EXCP_SYSTICK 15
78 
79 /* ARM-specific interrupt pending bits.  */
80 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87 
88 /* The usual mapping for an AArch64 system register to its AArch32
89  * counterpart is for the 32 bit world to have access to the lower
90  * half only (with writes leaving the upper half untouched). It's
91  * therefore useful to be able to pass TCG the offset of the least
92  * significant half of a uint64_t struct member.
93  */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101 
102 /* The 2nd extra word holding syndrome info for data aborts does not use
103  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
104  * help the sleb128 encoder do a better job.
105  * When restoring the CPU state, we shift it back up.
106  */
107 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
108 #define ARM_INSN_START_WORD2_SHIFT 13
109 
110 /* We currently assume float and double are IEEE single and double
111    precision respectively.
112    Doing runtime conversions is tricky because VFP registers may contain
113    integer values (eg. as the result of a FTOSI instruction).
114    s<2n> maps to the least significant half of d<n>
115    s<2n+1> maps to the most significant half of d<n>
116  */
117 
118 /**
119  * DynamicGDBFeatureInfo:
120  * @desc: Contains the feature descriptions.
121  * @data: A union with data specific to the set of registers
122  *    @cpregs_keys: Array that contains the corresponding Key of
123  *                  a given cpreg with the same order of the cpreg
124  *                  in the XML description.
125  */
126 typedef struct DynamicGDBFeatureInfo {
127     GDBFeature desc;
128     union {
129         struct {
130             uint32_t *keys;
131         } cpregs;
132     } data;
133 } DynamicGDBFeatureInfo;
134 
135 /* CPU state for each instance of a generic timer (in cp15 c14) */
136 typedef struct ARMGenericTimer {
137     uint64_t cval; /* Timer CompareValue register */
138     uint64_t ctl; /* Timer Control register */
139 } ARMGenericTimer;
140 
141 /* Define a maximum sized vector register.
142  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
143  * For 64-bit, this is a 2048-bit SVE register.
144  *
145  * Note that the mapping between S, D, and Q views of the register bank
146  * differs between AArch64 and AArch32.
147  * In AArch32:
148  *  Qn = regs[n].d[1]:regs[n].d[0]
149  *  Dn = regs[n / 2].d[n & 1]
150  *  Sn = regs[n / 4].d[n % 4 / 2],
151  *       bits 31..0 for even n, and bits 63..32 for odd n
152  *       (and regs[16] to regs[31] are inaccessible)
153  * In AArch64:
154  *  Zn = regs[n].d[*]
155  *  Qn = regs[n].d[1]:regs[n].d[0]
156  *  Dn = regs[n].d[0]
157  *  Sn = regs[n].d[0] bits 31..0
158  *  Hn = regs[n].d[0] bits 15..0
159  *
160  * This corresponds to the architecturally defined mapping between
161  * the two execution states, and means we do not need to explicitly
162  * map these registers when changing states.
163  *
164  * Align the data for use with TCG host vector operations.
165  */
166 
167 #define ARM_MAX_VQ    16
168 
169 typedef struct ARMVectorReg {
170     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
171 } ARMVectorReg;
172 
173 /* In AArch32 mode, predicate registers do not exist at all.  */
174 typedef struct ARMPredicateReg {
175     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
176 } ARMPredicateReg;
177 
178 /* In AArch32 mode, PAC keys do not exist at all.  */
179 typedef struct ARMPACKey {
180     uint64_t lo, hi;
181 } ARMPACKey;
182 
183 /* See the commentary above the TBFLAG field definitions.  */
184 typedef struct CPUARMTBFlags {
185     uint32_t flags;
186     uint64_t flags2;
187 } CPUARMTBFlags;
188 
189 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
190 
191 typedef struct NVICState NVICState;
192 
193 /*
194  * Enum for indexing vfp.fp_status[].
195  *
196  * FPST_A32: is the "normal" fp status for AArch32 insns
197  * FPST_A64: is the "normal" fp status for AArch64 insns
198  * FPST_A32_F16: used for AArch32 half-precision calculations
199  * FPST_A64_F16: used for AArch64 half-precision calculations
200  * FPST_STD: the ARM "Standard FPSCR Value"
201  * FPST_STD_F16: used for half-precision
202  *       calculations with the ARM "Standard FPSCR Value"
203  * FPST_AH: used for the A64 insns which change behaviour
204  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
205  *       and the reciprocal and square root estimate/step insns)
206  * FPST_AH_F16: used for the A64 insns which change behaviour
207  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
208  *       and the reciprocal and square root estimate/step insns);
209  *       for half-precision
210  * ZA: the "streaming sve" fp status.
211  * ZA_F16: likewise for half-precision.
212  *
213  * Half-precision operations are governed by a separate
214  * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
215  * status structure to control this.
216  *
217  * The "Standard FPSCR", ie default-NaN, flush-to-zero,
218  * round-to-nearest and is used by any operations (generally
219  * Neon) which the architecture defines as controlled by the
220  * standard FPSCR value rather than the FPSCR.
221  *
222  * The "standard FPSCR but for fp16 ops" is needed because
223  * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
224  * using a fixed value for it.
225  *
226  * FPST_AH is needed because some insns have different
227  * behaviour when FPCR.AH == 1: they don't update cumulative
228  * exception flags, they act like FPCR.{FZ,FIZ} = {1,1} and
229  * they ignore FPCR.RMode. But they don't ignore FPCR.FZ16,
230  * which means we need an FPST_AH_F16 as well.
231  *
232  * The "ZA" float_status are for Streaming SVE operations which use
233  * default-NaN and do not generate fp exceptions, which means that they
234  * do not accumulate exception bits back into FPCR.
235  * See e.g. FPAdd vs FPAdd_ZA pseudocode functions, and the setting
236  * of fpcr.DN and fpexec parameters.
237  *
238  * To avoid having to transfer exception bits around, we simply
239  * say that the FPSCR cumulative exception flags are the logical
240  * OR of the flags in the four fp statuses. This relies on the
241  * only thing which needs to read the exception flags being
242  * an explicit FPSCR read.
243  */
244 typedef enum ARMFPStatusFlavour {
245     FPST_A32,
246     FPST_A64,
247     FPST_A32_F16,
248     FPST_A64_F16,
249     FPST_AH,
250     FPST_AH_F16,
251     FPST_ZA,
252     FPST_ZA_F16,
253     FPST_STD,
254     FPST_STD_F16,
255 } ARMFPStatusFlavour;
256 #define FPST_COUNT  10
257 
258 typedef struct CPUArchState {
259     /* Regs for current mode.  */
260     uint32_t regs[16];
261 
262     /* 32/64 switch only happens when taking and returning from
263      * exceptions so the overlap semantics are taken care of then
264      * instead of having a complicated union.
265      */
266     /* Regs for A64 mode.  */
267     uint64_t xregs[32];
268     uint64_t pc;
269     /* PSTATE isn't an architectural register for ARMv8. However, it is
270      * convenient for us to assemble the underlying state into a 32 bit format
271      * identical to the architectural format used for the SPSR. (This is also
272      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
273      * 'pstate' register are.) Of the PSTATE bits:
274      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
275      *    semantics as for AArch32, as described in the comments on each field)
276      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
277      *  DAIF (exception masks) are kept in env->daif
278      *  BTYPE is kept in env->btype
279      *  SM and ZA are kept in env->svcr
280      *  all other bits are stored in their correct places in env->pstate
281      */
282     uint32_t pstate;
283     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
284     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
285 
286     /* Cached TBFLAGS state.  See below for which bits are included.  */
287     CPUARMTBFlags hflags;
288 
289     /* Frequently accessed CPSR bits are stored separately for efficiency.
290        This contains all the other bits.  Use cpsr_{read,write} to access
291        the whole CPSR.  */
292     uint32_t uncached_cpsr;
293     uint32_t spsr;
294 
295     /* Banked registers.  */
296     uint64_t banked_spsr[8];
297     uint32_t banked_r13[8];
298     uint32_t banked_r14[8];
299 
300     /* These hold r8-r12.  */
301     uint32_t usr_regs[5];
302     uint32_t fiq_regs[5];
303 
304     /* cpsr flag cache for faster execution */
305     uint32_t CF; /* 0 or 1 */
306     uint32_t VF; /* V is the bit 31. All other bits are undefined */
307     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
308     uint32_t ZF; /* Z set if zero.  */
309     uint32_t QF; /* 0 or 1 */
310     uint32_t GE; /* cpsr[19:16] */
311     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
312     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
313     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
314     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
315 
316     uint64_t elr_el[4]; /* AArch64 exception link regs  */
317     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
318 
319     /* System control coprocessor (cp15) */
320     struct {
321         uint32_t c0_cpuid;
322         union { /* Cache size selection */
323             struct {
324                 uint64_t _unused_csselr0;
325                 uint64_t csselr_ns;
326                 uint64_t _unused_csselr1;
327                 uint64_t csselr_s;
328             };
329             uint64_t csselr_el[4];
330         };
331         union { /* System control register. */
332             struct {
333                 uint64_t _unused_sctlr;
334                 uint64_t sctlr_ns;
335                 uint64_t hsctlr;
336                 uint64_t sctlr_s;
337             };
338             uint64_t sctlr_el[4];
339         };
340         uint64_t vsctlr; /* Virtualization System control register. */
341         uint64_t cpacr_el1; /* Architectural feature access control register */
342         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
343         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
344         uint64_t sder; /* Secure debug enable register. */
345         uint32_t nsacr; /* Non-secure access control register. */
346         union { /* MMU translation table base 0. */
347             struct {
348                 uint64_t _unused_ttbr0_0;
349                 uint64_t ttbr0_ns;
350                 uint64_t _unused_ttbr0_1;
351                 uint64_t ttbr0_s;
352             };
353             uint64_t ttbr0_el[4];
354         };
355         union { /* MMU translation table base 1. */
356             struct {
357                 uint64_t _unused_ttbr1_0;
358                 uint64_t ttbr1_ns;
359                 uint64_t _unused_ttbr1_1;
360                 uint64_t ttbr1_s;
361             };
362             uint64_t ttbr1_el[4];
363         };
364         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
365         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
366         /* MMU translation table base control. */
367         uint64_t tcr_el[4];
368         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
369         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
370         uint32_t c2_data; /* MPU data cacheable bits.  */
371         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
372         union { /* MMU domain access control register
373                  * MPU write buffer control.
374                  */
375             struct {
376                 uint64_t dacr_ns;
377                 uint64_t dacr_s;
378             };
379             struct {
380                 uint64_t dacr32_el2;
381             };
382         };
383         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
384         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
385         uint64_t hcr_el2; /* Hypervisor configuration register */
386         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
387         uint64_t scr_el3; /* Secure configuration register.  */
388         union { /* Fault status registers.  */
389             struct {
390                 uint64_t ifsr_ns;
391                 uint64_t ifsr_s;
392             };
393             struct {
394                 uint64_t ifsr32_el2;
395             };
396         };
397         union {
398             struct {
399                 uint64_t _unused_dfsr;
400                 uint64_t dfsr_ns;
401                 uint64_t hsr;
402                 uint64_t dfsr_s;
403             };
404             uint64_t esr_el[4];
405         };
406         uint32_t c6_region[8]; /* MPU base/size registers.  */
407         union { /* Fault address registers. */
408             struct {
409                 uint64_t _unused_far0;
410 #if HOST_BIG_ENDIAN
411                 uint32_t ifar_ns;
412                 uint32_t dfar_ns;
413                 uint32_t ifar_s;
414                 uint32_t dfar_s;
415 #else
416                 uint32_t dfar_ns;
417                 uint32_t ifar_ns;
418                 uint32_t dfar_s;
419                 uint32_t ifar_s;
420 #endif
421                 uint64_t _unused_far3;
422             };
423             uint64_t far_el[4];
424         };
425         uint64_t hpfar_el2;
426         uint64_t hstr_el2;
427         union { /* Translation result. */
428             struct {
429                 uint64_t _unused_par_0;
430                 uint64_t par_ns;
431                 uint64_t _unused_par_1;
432                 uint64_t par_s;
433             };
434             uint64_t par_el[4];
435         };
436 
437         uint32_t c9_insn; /* Cache lockdown registers.  */
438         uint32_t c9_data;
439         uint64_t c9_pmcr; /* performance monitor control register */
440         uint64_t c9_pmcnten; /* perf monitor counter enables */
441         uint64_t c9_pmovsr; /* perf monitor overflow status */
442         uint64_t c9_pmuserenr; /* perf monitor user enable */
443         uint64_t c9_pmselr; /* perf monitor counter selection register */
444         uint64_t c9_pminten; /* perf monitor interrupt enables */
445         union { /* Memory attribute redirection */
446             struct {
447 #if HOST_BIG_ENDIAN
448                 uint64_t _unused_mair_0;
449                 uint32_t mair1_ns;
450                 uint32_t mair0_ns;
451                 uint64_t _unused_mair_1;
452                 uint32_t mair1_s;
453                 uint32_t mair0_s;
454 #else
455                 uint64_t _unused_mair_0;
456                 uint32_t mair0_ns;
457                 uint32_t mair1_ns;
458                 uint64_t _unused_mair_1;
459                 uint32_t mair0_s;
460                 uint32_t mair1_s;
461 #endif
462             };
463             uint64_t mair_el[4];
464         };
465         union { /* vector base address register */
466             struct {
467                 uint64_t _unused_vbar;
468                 uint64_t vbar_ns;
469                 uint64_t hvbar;
470                 uint64_t vbar_s;
471             };
472             uint64_t vbar_el[4];
473         };
474         uint32_t mvbar; /* (monitor) vector base address register */
475         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
476         struct { /* FCSE PID. */
477             uint32_t fcseidr_ns;
478             uint32_t fcseidr_s;
479         };
480         union { /* Context ID. */
481             struct {
482                 uint64_t _unused_contextidr_0;
483                 uint64_t contextidr_ns;
484                 uint64_t _unused_contextidr_1;
485                 uint64_t contextidr_s;
486             };
487             uint64_t contextidr_el[4];
488         };
489         union { /* User RW Thread register. */
490             struct {
491                 uint64_t tpidrurw_ns;
492                 uint64_t tpidrprw_ns;
493                 uint64_t htpidr;
494                 uint64_t _tpidr_el3;
495             };
496             uint64_t tpidr_el[4];
497         };
498         uint64_t tpidr2_el0;
499         /* The secure banks of these registers don't map anywhere */
500         uint64_t tpidrurw_s;
501         uint64_t tpidrprw_s;
502         uint64_t tpidruro_s;
503 
504         union { /* User RO Thread register. */
505             uint64_t tpidruro_ns;
506             uint64_t tpidrro_el[1];
507         };
508         uint64_t c14_cntfrq; /* Counter Frequency register */
509         uint64_t c14_cntkctl; /* Timer Control register */
510         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
511         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
512         uint64_t cntpoff_el2; /* Counter Physical Offset register */
513         ARMGenericTimer c14_timer[NUM_GTIMERS];
514         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
515         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
516         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
517         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
518         uint32_t c15_threadid; /* TI debugger thread-ID.  */
519         uint32_t c15_config_base_address; /* SCU base address.  */
520         uint32_t c15_diagnostic; /* diagnostic register */
521         uint32_t c15_power_diagnostic;
522         uint32_t c15_power_control; /* power control */
523         uint64_t dbgbvr[16]; /* breakpoint value registers */
524         uint64_t dbgbcr[16]; /* breakpoint control registers */
525         uint64_t dbgwvr[16]; /* watchpoint value registers */
526         uint64_t dbgwcr[16]; /* watchpoint control registers */
527         uint64_t dbgclaim;   /* DBGCLAIM bits */
528         uint64_t mdscr_el1;
529         uint64_t oslsr_el1; /* OS Lock Status */
530         uint64_t osdlr_el1; /* OS DoubleLock status */
531         uint64_t mdcr_el2;
532         uint64_t mdcr_el3;
533         /* Stores the architectural value of the counter *the last time it was
534          * updated* by pmccntr_op_start. Accesses should always be surrounded
535          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
536          * architecturally-correct value is being read/set.
537          */
538         uint64_t c15_ccnt;
539         /* Stores the delta between the architectural value and the underlying
540          * cycle count during normal operation. It is used to update c15_ccnt
541          * to be the correct architectural value before accesses. During
542          * accesses, c15_ccnt_delta contains the underlying count being used
543          * for the access, after which it reverts to the delta value in
544          * pmccntr_op_finish.
545          */
546         uint64_t c15_ccnt_delta;
547         uint64_t c14_pmevcntr[31];
548         uint64_t c14_pmevcntr_delta[31];
549         uint64_t c14_pmevtyper[31];
550         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
551         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
552         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
553         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
554         uint64_t gcr_el1;
555         uint64_t rgsr_el1;
556 
557         /* Minimal RAS registers */
558         uint64_t disr_el1;
559         uint64_t vdisr_el2;
560         uint64_t vsesr_el2;
561 
562         /*
563          * Fine-Grained Trap registers. We store these as arrays so the
564          * access checking code doesn't have to manually select
565          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
566          * FEAT_FGT2 will add more elements to these arrays.
567          */
568         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
569         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
570         uint64_t fgt_exec[1]; /* HFGITR */
571 
572         /* RME registers */
573         uint64_t gpccr_el3;
574         uint64_t gptbr_el3;
575         uint64_t mfar_el3;
576 
577         /* NV2 register */
578         uint64_t vncr_el2;
579     } cp15;
580 
581     struct {
582         /* M profile has up to 4 stack pointers:
583          * a Main Stack Pointer and a Process Stack Pointer for each
584          * of the Secure and Non-Secure states. (If the CPU doesn't support
585          * the security extension then it has only two SPs.)
586          * In QEMU we always store the currently active SP in regs[13],
587          * and the non-active SP for the current security state in
588          * v7m.other_sp. The stack pointers for the inactive security state
589          * are stored in other_ss_msp and other_ss_psp.
590          * switch_v7m_security_state() is responsible for rearranging them
591          * when we change security state.
592          */
593         uint32_t other_sp;
594         uint32_t other_ss_msp;
595         uint32_t other_ss_psp;
596         uint32_t vecbase[M_REG_NUM_BANKS];
597         uint32_t basepri[M_REG_NUM_BANKS];
598         uint32_t control[M_REG_NUM_BANKS];
599         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
600         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
601         uint32_t hfsr; /* HardFault Status */
602         uint32_t dfsr; /* Debug Fault Status Register */
603         uint32_t sfsr; /* Secure Fault Status Register */
604         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
605         uint32_t bfar; /* BusFault Address */
606         uint32_t sfar; /* Secure Fault Address Register */
607         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
608         int exception;
609         uint32_t primask[M_REG_NUM_BANKS];
610         uint32_t faultmask[M_REG_NUM_BANKS];
611         uint32_t aircr; /* only holds r/w state if security extn implemented */
612         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
613         uint32_t csselr[M_REG_NUM_BANKS];
614         uint32_t scr[M_REG_NUM_BANKS];
615         uint32_t msplim[M_REG_NUM_BANKS];
616         uint32_t psplim[M_REG_NUM_BANKS];
617         uint32_t fpcar[M_REG_NUM_BANKS];
618         uint32_t fpccr[M_REG_NUM_BANKS];
619         uint32_t fpdscr[M_REG_NUM_BANKS];
620         uint32_t cpacr[M_REG_NUM_BANKS];
621         uint32_t nsacr;
622         uint32_t ltpsize;
623         uint32_t vpr;
624     } v7m;
625 
626     /* Information associated with an exception about to be taken:
627      * code which raises an exception must set cs->exception_index and
628      * the relevant parts of this structure; the cpu_do_interrupt function
629      * will then set the guest-visible registers as part of the exception
630      * entry process.
631      */
632     struct {
633         uint32_t syndrome; /* AArch64 format syndrome register */
634         uint32_t fsr; /* AArch32 format fault status register info */
635         uint64_t vaddress; /* virtual addr associated with exception, if any */
636         uint32_t target_el; /* EL the exception should be targeted for */
637         /* If we implement EL2 we will also need to store information
638          * about the intermediate physical address for stage 2 faults.
639          */
640     } exception;
641 
642     /* Information associated with an SError */
643     struct {
644         uint8_t pending;
645         uint8_t has_esr;
646         uint64_t esr;
647     } serror;
648 
649     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
650 
651     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
652     uint32_t irq_line_state;
653 
654     /* Thumb-2 EE state.  */
655     uint32_t teecr;
656     uint32_t teehbr;
657 
658     /* VFP coprocessor state.  */
659     struct {
660         ARMVectorReg zregs[32];
661 
662         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
663 #define FFR_PRED_NUM 16
664         ARMPredicateReg pregs[17];
665         /* Scratch space for aa64 sve predicate temporary.  */
666         ARMPredicateReg preg_tmp;
667 
668         /* We store these fpcsr fields separately for convenience.  */
669         uint32_t qc[4] QEMU_ALIGNED(16);
670         int vec_len;
671         int vec_stride;
672 
673         /*
674          * Floating point status and control registers. Some bits are
675          * stored separately in other fields or in the float_status below.
676          */
677         uint64_t fpsr;
678         uint64_t fpcr;
679 
680         uint32_t xregs[16];
681 
682         /* There are a number of distinct float control structures. */
683         float_status fp_status[FPST_COUNT];
684 
685         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
686         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
687     } vfp;
688 
689     uint64_t exclusive_addr;
690     uint64_t exclusive_val;
691     /*
692      * Contains the 'val' for the second 64-bit register of LDXP, which comes
693      * from the higher address, not the high part of a complete 128-bit value.
694      * In some ways it might be more convenient to record the exclusive value
695      * as the low and high halves of a 128 bit data value, but the current
696      * semantics of these fields are baked into the migration format.
697      */
698     uint64_t exclusive_high;
699 
700     /* iwMMXt coprocessor state.  */
701     struct {
702         uint64_t regs[16];
703         uint64_t val;
704 
705         uint32_t cregs[16];
706     } iwmmxt;
707 
708     struct {
709         ARMPACKey apia;
710         ARMPACKey apib;
711         ARMPACKey apda;
712         ARMPACKey apdb;
713         ARMPACKey apga;
714     } keys;
715 
716     uint64_t scxtnum_el[4];
717 
718     struct {
719         /* SME2 ZT0 -- 512 bit array, with data ordered like ARMVectorReg. */
720         uint64_t zt0[512 / 64] QEMU_ALIGNED(16);
721 
722         /*
723          * SME ZA storage -- 256 x 256 byte array, with bytes in host
724          * word order, as we do with vfp.zregs[].  This corresponds to
725          * the architectural ZA array, where ZA[N] is in the least
726          * significant bytes of env->za_state.za[N].
727          *
728          * When SVL is less than the architectural maximum, the accessible
729          * storage is restricted, such that if the SVL is X bytes the guest
730          * can see only the bottom X elements of zarray[], and only the least
731          * significant X bytes of each element of the array. (In other words,
732          * the observable part is always square.)
733          *
734          * The ZA storage can also be considered as a set of square tiles of
735          * elements of different sizes. The mapping from tiles to the ZA array
736          * is architecturally defined, such that for tiles of elements of esz
737          * bytes, the Nth row (or "horizontal slice") of tile T is in
738          * ZA[T + N * esz]. Note that this means that each tile is not
739          * contiguous in the ZA storage, because its rows are striped through
740          * the ZA array.
741          *
742          * Because this is so large, keep this toward the end of the
743          * reset area, to keep the offsets into the rest of the structure
744          * smaller.
745          */
746         ARMVectorReg za[ARM_MAX_VQ * 16];
747     } za_state;
748 
749     struct CPUBreakpoint *cpu_breakpoint[16];
750     struct CPUWatchpoint *cpu_watchpoint[16];
751 
752     /* Optional fault info across tlb lookup. */
753     ARMMMUFaultInfo *tlb_fi;
754 
755     /* Fields up to this point are cleared by a CPU reset */
756     struct {} end_reset_fields;
757 
758     /* Fields after this point are preserved across CPU reset. */
759 
760     /* Internal CPU feature flags.  */
761     uint64_t features;
762 
763     /* PMSAv7 MPU */
764     struct {
765         uint32_t *drbar;
766         uint32_t *drsr;
767         uint32_t *dracr;
768         uint32_t rnr[M_REG_NUM_BANKS];
769     } pmsav7;
770 
771     /* PMSAv8 MPU */
772     struct {
773         /* The PMSAv8 implementation also shares some PMSAv7 config
774          * and state:
775          *  pmsav7.rnr (region number register)
776          *  pmsav7_dregion (number of configured regions)
777          */
778         uint32_t *rbar[M_REG_NUM_BANKS];
779         uint32_t *rlar[M_REG_NUM_BANKS];
780         uint32_t *hprbar;
781         uint32_t *hprlar;
782         uint32_t mair0[M_REG_NUM_BANKS];
783         uint32_t mair1[M_REG_NUM_BANKS];
784         uint32_t hprselr;
785     } pmsav8;
786 
787     /* v8M SAU */
788     struct {
789         uint32_t *rbar;
790         uint32_t *rlar;
791         uint32_t rnr;
792         uint32_t ctrl;
793     } sau;
794 
795 #if !defined(CONFIG_USER_ONLY)
796     NVICState *nvic;
797     const struct arm_boot_info *boot_info;
798     /* Store GICv3CPUState to access from this struct */
799     void *gicv3state;
800 #else /* CONFIG_USER_ONLY */
801     /* For usermode syscall translation.  */
802     bool eabi;
803     /* Linux syscall tagged address support */
804     bool tagged_addr_enable;
805 #endif /* CONFIG_USER_ONLY */
806 } CPUARMState;
807 
808 static inline void set_feature(CPUARMState *env, int feature)
809 {
810     env->features |= 1ULL << feature;
811 }
812 
813 static inline void unset_feature(CPUARMState *env, int feature)
814 {
815     env->features &= ~(1ULL << feature);
816 }
817 
818 /**
819  * ARMELChangeHookFn:
820  * type of a function which can be registered via arm_register_el_change_hook()
821  * to get callbacks when the CPU changes its exception level or mode.
822  */
823 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
824 typedef struct ARMELChangeHook ARMELChangeHook;
825 struct ARMELChangeHook {
826     ARMELChangeHookFn *hook;
827     void *opaque;
828     QLIST_ENTRY(ARMELChangeHook) node;
829 };
830 
831 /* These values map onto the return values for
832  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
833 typedef enum ARMPSCIState {
834     PSCI_ON = 0,
835     PSCI_OFF = 1,
836     PSCI_ON_PENDING = 2
837 } ARMPSCIState;
838 
839 typedef struct ARMISARegisters ARMISARegisters;
840 
841 /*
842  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
843  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
844  *
845  * While processing properties during initialization, corresponding init bits
846  * are set for bits in sve_vq_map that have been set by properties.
847  *
848  * Bits set in supported represent valid vector lengths for the CPU type.
849  */
850 typedef struct {
851     uint32_t map, init, supported;
852 } ARMVQMap;
853 
854 /* REG is ID_XXX */
855 #define FIELD_DP64_IDREG(ISAR, REG, FIELD, VALUE)                       \
856     ({                                                                  \
857         ARMISARegisters *i_ = (ISAR);                                   \
858         uint64_t regval = i_->idregs[REG ## _EL1_IDX];                  \
859         regval = FIELD_DP64(regval, REG, FIELD, VALUE);                 \
860         i_->idregs[REG ## _EL1_IDX] = regval;                           \
861     })
862 
863 #define FIELD_DP32_IDREG(ISAR, REG, FIELD, VALUE)                       \
864     ({                                                                  \
865         ARMISARegisters *i_ = (ISAR);                                   \
866         uint64_t regval = i_->idregs[REG ## _EL1_IDX];                  \
867         regval = FIELD_DP32(regval, REG, FIELD, VALUE);                 \
868         i_->idregs[REG ## _EL1_IDX] = regval;                           \
869     })
870 
871 #define FIELD_EX64_IDREG(ISAR, REG, FIELD)                              \
872     ({                                                                  \
873         const ARMISARegisters *i_ = (ISAR);                             \
874         FIELD_EX64(i_->idregs[REG ## _EL1_IDX], REG, FIELD);            \
875     })
876 
877 #define FIELD_EX32_IDREG(ISAR, REG, FIELD)                              \
878     ({                                                                  \
879         const ARMISARegisters *i_ = (ISAR);                             \
880         FIELD_EX32(i_->idregs[REG ## _EL1_IDX], REG, FIELD);            \
881     })
882 
883 #define FIELD_SEX64_IDREG(ISAR, REG, FIELD)                             \
884     ({                                                                  \
885         const ARMISARegisters *i_ = (ISAR);                             \
886         FIELD_SEX64(i_->idregs[REG ## _EL1_IDX], REG, FIELD);           \
887     })
888 
889 #define SET_IDREG(ISAR, REG, VALUE)                                     \
890     ({                                                                  \
891         ARMISARegisters *i_ = (ISAR);                                   \
892         i_->idregs[REG ## _EL1_IDX] = VALUE;                            \
893     })
894 
895 #define GET_IDREG(ISAR, REG)                                            \
896     ({                                                                  \
897         const ARMISARegisters *i_ = (ISAR);                             \
898         i_->idregs[REG ## _EL1_IDX];                                    \
899     })
900 
901 /**
902  * ARMCPU:
903  * @env: #CPUARMState
904  *
905  * An ARM CPU core.
906  */
907 struct ArchCPU {
908     CPUState parent_obj;
909 
910     CPUARMState env;
911 
912     /* Coprocessor information */
913     GHashTable *cp_regs;
914     /* For marshalling (mostly coprocessor) register state between the
915      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
916      * we use these arrays.
917      */
918     /* List of register indexes managed via these arrays; (full KVM style
919      * 64 bit indexes, not CPRegInfo 32 bit indexes)
920      */
921     uint64_t *cpreg_indexes;
922     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
923     uint64_t *cpreg_values;
924     /* Length of the indexes, values, reset_values arrays */
925     int32_t cpreg_array_len;
926     /* These are used only for migration: incoming data arrives in
927      * these fields and is sanity checked in post_load before copying
928      * to the working data structures above.
929      */
930     uint64_t *cpreg_vmstate_indexes;
931     uint64_t *cpreg_vmstate_values;
932     int32_t cpreg_vmstate_array_len;
933 
934     DynamicGDBFeatureInfo dyn_sysreg_feature;
935     DynamicGDBFeatureInfo dyn_svereg_feature;
936     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
937     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
938 
939     /* Timers used by the generic (architected) timer */
940     QEMUTimer *gt_timer[NUM_GTIMERS];
941     /*
942      * Timer used by the PMU. Its state is restored after migration by
943      * pmu_op_finish() - it does not need other handling during migration
944      */
945     QEMUTimer *pmu_timer;
946     /* Timer used for WFxT timeouts */
947     QEMUTimer *wfxt_timer;
948 
949     /* GPIO outputs for generic timer */
950     qemu_irq gt_timer_outputs[NUM_GTIMERS];
951     /* GPIO output for GICv3 maintenance interrupt signal */
952     qemu_irq gicv3_maintenance_interrupt;
953     /* GPIO output for the PMU interrupt */
954     qemu_irq pmu_interrupt;
955 
956     /* MemoryRegion to use for secure physical accesses */
957     MemoryRegion *secure_memory;
958 
959     /* MemoryRegion to use for allocation tag accesses */
960     MemoryRegion *tag_memory;
961     MemoryRegion *secure_tag_memory;
962 
963     /* For v8M, pointer to the IDAU interface provided by board/SoC */
964     Object *idau;
965 
966     /* 'compatible' string for this CPU for Linux device trees */
967     const char *dtb_compatible;
968 
969     /* PSCI version for this CPU
970      * Bits[31:16] = Major Version
971      * Bits[15:0] = Minor Version
972      */
973     uint32_t psci_version;
974 
975     /* Current power state, access guarded by BQL */
976     ARMPSCIState power_state;
977 
978     /* CPU has virtualization extension */
979     bool has_el2;
980     /* CPU has security extension */
981     bool has_el3;
982     /* CPU has PMU (Performance Monitor Unit) */
983     bool has_pmu;
984     /* CPU has VFP */
985     bool has_vfp;
986     /* CPU has 32 VFP registers */
987     bool has_vfp_d32;
988     /* CPU has Neon */
989     bool has_neon;
990     /* CPU has M-profile DSP extension */
991     bool has_dsp;
992 
993     /* CPU has memory protection unit */
994     bool has_mpu;
995     /* CPU has MTE enabled in KVM mode */
996     bool kvm_mte;
997     /* PMSAv7 MPU number of supported regions */
998     uint32_t pmsav7_dregion;
999     /* PMSAv8 MPU number of supported hyp regions */
1000     uint32_t pmsav8r_hdregion;
1001     /* v8M SAU number of supported regions */
1002     uint32_t sau_sregion;
1003 
1004     /* PSCI conduit used to invoke PSCI methods
1005      * 0 - disabled, 1 - smc, 2 - hvc
1006      */
1007     uint32_t psci_conduit;
1008 
1009     /* For v8M, initial value of the Secure VTOR */
1010     uint32_t init_svtor;
1011     /* For v8M, initial value of the Non-secure VTOR */
1012     uint32_t init_nsvtor;
1013 
1014     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
1015      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
1016      */
1017     uint32_t kvm_target;
1018 
1019     /* KVM init features for this CPU */
1020     uint32_t kvm_init_features[7];
1021 
1022     /* KVM CPU state */
1023 
1024     /* KVM virtual time adjustment */
1025     bool kvm_adjvtime;
1026     bool kvm_vtime_dirty;
1027     uint64_t kvm_vtime;
1028 
1029     /* KVM steal time */
1030     OnOffAuto kvm_steal_time;
1031 
1032     /* Uniprocessor system with MP extensions */
1033     bool mp_is_up;
1034 
1035     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
1036      * and the probe failed (so we need to report the error in realize)
1037      */
1038     bool host_cpu_probe_failed;
1039 
1040     /* QOM property to indicate we should use the back-compat CNTFRQ default */
1041     bool backcompat_cntfrq;
1042 
1043     /* QOM property to indicate we should use the back-compat QARMA5 default */
1044     bool backcompat_pauth_default_use_qarma5;
1045 
1046     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
1047      * register.
1048      */
1049     int32_t core_count;
1050 
1051     /* The instance init functions for implementation-specific subclasses
1052      * set these fields to specify the implementation-dependent values of
1053      * various constant registers and reset values of non-constant
1054      * registers.
1055      * Some of these might become QOM properties eventually.
1056      * Field names match the official register names as defined in the
1057      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
1058      * is used for reset values of non-constant registers; no reset_
1059      * prefix means a constant register.
1060      * Some of these registers are split out into a substructure that
1061      * is shared with the translators to control the ISA.
1062      *
1063      * Note that if you add an ID register to the ARMISARegisters struct
1064      * you need to also update the 32-bit and 64-bit versions of the
1065      * kvm_arm_get_host_cpu_features() function to correctly populate the
1066      * field by reading the value from the KVM vCPU.
1067      */
1068     struct ARMISARegisters {
1069         uint32_t mvfr0;
1070         uint32_t mvfr1;
1071         uint32_t mvfr2;
1072         uint32_t dbgdidr;
1073         uint32_t dbgdevid;
1074         uint32_t dbgdevid1;
1075         uint64_t reset_pmcr_el0;
1076         uint64_t idregs[NUM_ID_IDX];
1077     } isar;
1078     uint64_t midr;
1079     uint32_t revidr;
1080     uint32_t reset_fpsid;
1081     uint64_t ctr;
1082     uint32_t reset_sctlr;
1083     uint64_t pmceid0;
1084     uint64_t pmceid1;
1085     uint64_t id_aa64afr0;
1086     uint64_t id_aa64afr1;
1087     uint64_t clidr;
1088     uint64_t mp_affinity; /* MP ID without feature bits */
1089     /* The elements of this array are the CCSIDR values for each cache,
1090      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1091      */
1092     uint64_t ccsidr[16];
1093     uint64_t reset_cbar;
1094     uint32_t reset_auxcr;
1095     bool reset_hivecs;
1096     uint8_t reset_l0gptsz;
1097 
1098     /*
1099      * Intermediate values used during property parsing.
1100      * Once finalized, the values should be read from ID_AA64*.
1101      */
1102     bool prop_pauth;
1103     bool prop_pauth_impdef;
1104     bool prop_pauth_qarma3;
1105     bool prop_pauth_qarma5;
1106     bool prop_lpa2;
1107 
1108     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1109     uint8_t dcz_blocksize;
1110     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1111     uint8_t gm_blocksize;
1112 
1113     uint64_t rvbar_prop; /* Property/input signals.  */
1114 
1115     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1116     int gic_num_lrs; /* number of list registers */
1117     int gic_vpribits; /* number of virtual priority bits */
1118     int gic_vprebits; /* number of virtual preemption bits */
1119     int gic_pribits; /* number of physical priority bits */
1120 
1121     /* Whether the cfgend input is high (i.e. this CPU should reset into
1122      * big-endian mode).  This setting isn't used directly: instead it modifies
1123      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1124      * architecture version.
1125      */
1126     bool cfgend;
1127 
1128     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1129     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1130 
1131     int32_t node_id; /* NUMA node this CPU belongs to */
1132 
1133     /* Used to synchronize KVM and QEMU in-kernel device levels */
1134     uint8_t device_irq_level;
1135 
1136     /* Used to set the maximum vector length the cpu will support.  */
1137     uint32_t sve_max_vq;
1138     uint32_t sme_max_vq;
1139 
1140 #ifdef CONFIG_USER_ONLY
1141     /* Used to set the default vector length at process start. */
1142     uint32_t sve_default_vq;
1143     uint32_t sme_default_vq;
1144 #endif
1145 
1146     ARMVQMap sve_vq;
1147     ARMVQMap sme_vq;
1148 
1149     /* Generic timer counter frequency, in Hz */
1150     uint64_t gt_cntfrq_hz;
1151 };
1152 
1153 typedef struct ARMCPUInfo {
1154     const char *name;
1155     const char *deprecation_note;
1156     void (*initfn)(Object *obj);
1157     void (*class_init)(ObjectClass *oc, const void *data);
1158 } ARMCPUInfo;
1159 
1160 /**
1161  * ARMCPUClass:
1162  * @parent_realize: The parent class' realize handler.
1163  * @parent_phases: The parent class' reset phase handlers.
1164  *
1165  * An ARM CPU model.
1166  */
1167 struct ARMCPUClass {
1168     CPUClass parent_class;
1169 
1170     const ARMCPUInfo *info;
1171     DeviceRealize parent_realize;
1172     ResettablePhases parent_phases;
1173 };
1174 
1175 /* Callback functions for the generic timer's timers. */
1176 void arm_gt_ptimer_cb(void *opaque);
1177 void arm_gt_vtimer_cb(void *opaque);
1178 void arm_gt_htimer_cb(void *opaque);
1179 void arm_gt_stimer_cb(void *opaque);
1180 void arm_gt_hvtimer_cb(void *opaque);
1181 void arm_gt_sel2timer_cb(void *opaque);
1182 void arm_gt_sel2vtimer_cb(void *opaque);
1183 
1184 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1185 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1186 
1187 #define ARM_AFF0_SHIFT 0
1188 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1189 #define ARM_AFF1_SHIFT 8
1190 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1191 #define ARM_AFF2_SHIFT 16
1192 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1193 #define ARM_AFF3_SHIFT 32
1194 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1195 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1196 
1197 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1198 #define ARM64_AFFINITY_MASK \
1199     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1200 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1201 
1202 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1203 
1204 #ifndef CONFIG_USER_ONLY
1205 extern const VMStateDescription vmstate_arm_cpu;
1206 
1207 void arm_cpu_do_interrupt(CPUState *cpu);
1208 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1209 
1210 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1211                                          MemTxAttrs *attrs);
1212 #endif /* !CONFIG_USER_ONLY */
1213 
1214 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1215 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1216 
1217 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1218                              int cpuid, DumpState *s);
1219 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1220                              int cpuid, DumpState *s);
1221 
1222 /**
1223  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1224  * @cpu: CPU (which must have been freshly reset)
1225  * @target_el: exception level to put the CPU into
1226  * @secure: whether to put the CPU in secure state
1227  *
1228  * When QEMU is directly running a guest kernel at a lower level than
1229  * EL3 it implicitly emulates some aspects of the guest firmware.
1230  * This includes that on reset we need to configure the parts of the
1231  * CPU corresponding to EL3 so that the real guest code can run at its
1232  * lower exception level. This function does that post-reset CPU setup,
1233  * for when we do direct boot of a guest kernel, and for when we
1234  * emulate PSCI and similar firmware interfaces starting a CPU at a
1235  * lower exception level.
1236  *
1237  * @target_el must be an EL implemented by the CPU between 1 and 3.
1238  * We do not support dropping into a Secure EL other than 3.
1239  *
1240  * It is the responsibility of the caller to call arm_rebuild_hflags().
1241  */
1242 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1243 
1244 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1245 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1246 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1247 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1248                            int new_el, bool el0_a64);
1249 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1250 
1251 /*
1252  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1253  * The byte at offset i from the start of the in-memory representation contains
1254  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1255  * lowest offsets are stored in the lowest memory addresses, then that nearly
1256  * matches QEMU's representation, which is to use an array of host-endian
1257  * uint64_t's, where the lower offsets are at the lower indices. To complete
1258  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1259  */
1260 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1261 {
1262 #if HOST_BIG_ENDIAN
1263     int i;
1264 
1265     for (i = 0; i < nr; ++i) {
1266         dst[i] = bswap64(src[i]);
1267     }
1268 
1269     return dst;
1270 #else
1271     return src;
1272 #endif
1273 }
1274 
1275 void aarch64_sync_32_to_64(CPUARMState *env);
1276 void aarch64_sync_64_to_32(CPUARMState *env);
1277 
1278 int fp_exception_el(CPUARMState *env, int cur_el);
1279 int sve_exception_el(CPUARMState *env, int cur_el);
1280 int sme_exception_el(CPUARMState *env, int cur_el);
1281 
1282 /**
1283  * sve_vqm1_for_el_sm:
1284  * @env: CPUARMState
1285  * @el: exception level
1286  * @sm: streaming mode
1287  *
1288  * Compute the current vector length for @el & @sm, in units of
1289  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1290  * If @sm, compute for SVL, otherwise NVL.
1291  */
1292 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1293 
1294 /* Likewise, but using @sm = PSTATE.SM. */
1295 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1296 
1297 static inline bool is_a64(CPUARMState *env)
1298 {
1299     return env->aarch64;
1300 }
1301 
1302 /**
1303  * pmu_op_start/finish
1304  * @env: CPUARMState
1305  *
1306  * Convert all PMU counters between their delta form (the typical mode when
1307  * they are enabled) and the guest-visible values. These two calls must
1308  * surround any action which might affect the counters.
1309  */
1310 void pmu_op_start(CPUARMState *env);
1311 void pmu_op_finish(CPUARMState *env);
1312 
1313 /*
1314  * Called when a PMU counter is due to overflow
1315  */
1316 void arm_pmu_timer_cb(void *opaque);
1317 
1318 /**
1319  * Functions to register as EL change hooks for PMU mode filtering
1320  */
1321 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1322 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1323 
1324 /*
1325  * pmu_init
1326  * @cpu: ARMCPU
1327  *
1328  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1329  * for the current configuration
1330  */
1331 void pmu_init(ARMCPU *cpu);
1332 
1333 /* SCTLR bit meanings. Several bits have been reused in newer
1334  * versions of the architecture; in that case we define constants
1335  * for both old and new bit meanings. Code which tests against those
1336  * bits should probably check or otherwise arrange that the CPU
1337  * is the architectural version it expects.
1338  */
1339 #define SCTLR_M       (1U << 0)
1340 #define SCTLR_A       (1U << 1)
1341 #define SCTLR_C       (1U << 2)
1342 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1343 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1344 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1345 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1346 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1347 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1348 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1349 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1350 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1351 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1352 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1353 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1354 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1355 #define SCTLR_SED     (1U << 8) /* v8 onward */
1356 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1357 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1358 #define SCTLR_F       (1U << 10) /* up to v6 */
1359 #define SCTLR_SW      (1U << 10) /* v7 */
1360 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1361 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1362 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1363 #define SCTLR_I       (1U << 12)
1364 #define SCTLR_V       (1U << 13) /* AArch32 only */
1365 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1366 #define SCTLR_RR      (1U << 14) /* up to v7 */
1367 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1368 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1369 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1370 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1371 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1372 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1373 #define SCTLR_BR      (1U << 17) /* PMSA only */
1374 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1375 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1376 #define SCTLR_WXN     (1U << 19)
1377 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1378 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1379 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1380 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1381 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1382 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1383 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1384 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1385 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1386 #define SCTLR_VE      (1U << 24) /* up to v7 */
1387 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1388 #define SCTLR_EE      (1U << 25)
1389 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1390 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1391 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1392 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1393 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1394 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1395 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1396 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1397 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1398 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1399 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1400 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1401 #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1402 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1403 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1404 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1405 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1406 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1407 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1408 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1409 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1410 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1411 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1412 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1413 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1414 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1415 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1416 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1417 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1418 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1419 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1420 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1421 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1422 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1423 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1424 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1425 
1426 #define CPSR_M (0x1fU)
1427 #define CPSR_T (1U << 5)
1428 #define CPSR_F (1U << 6)
1429 #define CPSR_I (1U << 7)
1430 #define CPSR_A (1U << 8)
1431 #define CPSR_E (1U << 9)
1432 #define CPSR_IT_2_7 (0xfc00U)
1433 #define CPSR_GE (0xfU << 16)
1434 #define CPSR_IL (1U << 20)
1435 #define CPSR_DIT (1U << 21)
1436 #define CPSR_PAN (1U << 22)
1437 #define CPSR_SSBS (1U << 23)
1438 #define CPSR_J (1U << 24)
1439 #define CPSR_IT_0_1 (3U << 25)
1440 #define CPSR_Q (1U << 27)
1441 #define CPSR_V (1U << 28)
1442 #define CPSR_C (1U << 29)
1443 #define CPSR_Z (1U << 30)
1444 #define CPSR_N (1U << 31)
1445 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1446 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1447 #define ISR_FS (1U << 9)
1448 #define ISR_IS (1U << 10)
1449 
1450 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1451 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1452     | CPSR_NZCV)
1453 /* Bits writable in user mode.  */
1454 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1455 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1456 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1457 
1458 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1459 #define XPSR_EXCP 0x1ffU
1460 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1461 #define XPSR_IT_2_7 CPSR_IT_2_7
1462 #define XPSR_GE CPSR_GE
1463 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1464 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1465 #define XPSR_IT_0_1 CPSR_IT_0_1
1466 #define XPSR_Q CPSR_Q
1467 #define XPSR_V CPSR_V
1468 #define XPSR_C CPSR_C
1469 #define XPSR_Z CPSR_Z
1470 #define XPSR_N CPSR_N
1471 #define XPSR_NZCV CPSR_NZCV
1472 #define XPSR_IT CPSR_IT
1473 
1474 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1475  * Only these are valid when in AArch64 mode; in
1476  * AArch32 mode SPSRs are basically CPSR-format.
1477  */
1478 #define PSTATE_SP (1U)
1479 #define PSTATE_M (0xFU)
1480 #define PSTATE_nRW (1U << 4)
1481 #define PSTATE_F (1U << 6)
1482 #define PSTATE_I (1U << 7)
1483 #define PSTATE_A (1U << 8)
1484 #define PSTATE_D (1U << 9)
1485 #define PSTATE_BTYPE (3U << 10)
1486 #define PSTATE_SSBS (1U << 12)
1487 #define PSTATE_ALLINT (1U << 13)
1488 #define PSTATE_IL (1U << 20)
1489 #define PSTATE_SS (1U << 21)
1490 #define PSTATE_PAN (1U << 22)
1491 #define PSTATE_UAO (1U << 23)
1492 #define PSTATE_DIT (1U << 24)
1493 #define PSTATE_TCO (1U << 25)
1494 #define PSTATE_V (1U << 28)
1495 #define PSTATE_C (1U << 29)
1496 #define PSTATE_Z (1U << 30)
1497 #define PSTATE_N (1U << 31)
1498 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1499 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1500 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1501 /* Mode values for AArch64 */
1502 #define PSTATE_MODE_EL3h 13
1503 #define PSTATE_MODE_EL3t 12
1504 #define PSTATE_MODE_EL2h 9
1505 #define PSTATE_MODE_EL2t 8
1506 #define PSTATE_MODE_EL1h 5
1507 #define PSTATE_MODE_EL1t 4
1508 #define PSTATE_MODE_EL0t 0
1509 
1510 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1511 FIELD(SVCR, SM, 0, 1)
1512 FIELD(SVCR, ZA, 1, 1)
1513 
1514 /* Fields for SMCR_ELx. */
1515 FIELD(SMCR, LEN, 0, 4)
1516 FIELD(SMCR, EZT0, 30, 1)
1517 FIELD(SMCR, FA64, 31, 1)
1518 
1519 /* Write a new value to v7m.exception, thus transitioning into or out
1520  * of Handler mode; this may result in a change of active stack pointer.
1521  */
1522 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1523 
1524 /* Map EL and handler into a PSTATE_MODE.  */
1525 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1526 {
1527     return (el << 2) | handler;
1528 }
1529 
1530 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1531  * interprocessing, so we don't attempt to sync with the cpsr state used by
1532  * the 32 bit decoder.
1533  */
1534 static inline uint32_t pstate_read(CPUARMState *env)
1535 {
1536     int ZF;
1537 
1538     ZF = (env->ZF == 0);
1539     return (env->NF & 0x80000000) | (ZF << 30)
1540         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1541         | env->pstate | env->daif | (env->btype << 10);
1542 }
1543 
1544 static inline void pstate_write(CPUARMState *env, uint32_t val)
1545 {
1546     env->ZF = (~val) & PSTATE_Z;
1547     env->NF = val;
1548     env->CF = (val >> 29) & 1;
1549     env->VF = (val << 3) & 0x80000000;
1550     env->daif = val & PSTATE_DAIF;
1551     env->btype = (val >> 10) & 3;
1552     env->pstate = val & ~CACHED_PSTATE_BITS;
1553 }
1554 
1555 /* Return the current CPSR value.  */
1556 uint32_t cpsr_read(CPUARMState *env);
1557 
1558 typedef enum CPSRWriteType {
1559     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1560     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1561     CPSRWriteRaw = 2,
1562         /* trust values, no reg bank switch, no hflags rebuild */
1563     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1564 } CPSRWriteType;
1565 
1566 /*
1567  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1568  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1569  * correspond to TB flags bits cached in the hflags, unless @write_type
1570  * is CPSRWriteRaw.
1571  */
1572 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1573                 CPSRWriteType write_type);
1574 
1575 /* Return the current xPSR value.  */
1576 static inline uint32_t xpsr_read(CPUARMState *env)
1577 {
1578     int ZF;
1579     ZF = (env->ZF == 0);
1580     return (env->NF & 0x80000000) | (ZF << 30)
1581         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1582         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1583         | ((env->condexec_bits & 0xfc) << 8)
1584         | (env->GE << 16)
1585         | env->v7m.exception;
1586 }
1587 
1588 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1589 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1590 {
1591     if (mask & XPSR_NZCV) {
1592         env->ZF = (~val) & XPSR_Z;
1593         env->NF = val;
1594         env->CF = (val >> 29) & 1;
1595         env->VF = (val << 3) & 0x80000000;
1596     }
1597     if (mask & XPSR_Q) {
1598         env->QF = ((val & XPSR_Q) != 0);
1599     }
1600     if (mask & XPSR_GE) {
1601         env->GE = (val & XPSR_GE) >> 16;
1602     }
1603 #ifndef CONFIG_USER_ONLY
1604     if (mask & XPSR_T) {
1605         env->thumb = ((val & XPSR_T) != 0);
1606     }
1607     if (mask & XPSR_IT_0_1) {
1608         env->condexec_bits &= ~3;
1609         env->condexec_bits |= (val >> 25) & 3;
1610     }
1611     if (mask & XPSR_IT_2_7) {
1612         env->condexec_bits &= 3;
1613         env->condexec_bits |= (val >> 8) & 0xfc;
1614     }
1615     if (mask & XPSR_EXCP) {
1616         /* Note that this only happens on exception exit */
1617         write_v7m_exception(env, val & XPSR_EXCP);
1618     }
1619 #endif
1620 }
1621 
1622 #define HCR_VM        (1ULL << 0)
1623 #define HCR_SWIO      (1ULL << 1)
1624 #define HCR_PTW       (1ULL << 2)
1625 #define HCR_FMO       (1ULL << 3)
1626 #define HCR_IMO       (1ULL << 4)
1627 #define HCR_AMO       (1ULL << 5)
1628 #define HCR_VF        (1ULL << 6)
1629 #define HCR_VI        (1ULL << 7)
1630 #define HCR_VSE       (1ULL << 8)
1631 #define HCR_FB        (1ULL << 9)
1632 #define HCR_BSU_MASK  (3ULL << 10)
1633 #define HCR_DC        (1ULL << 12)
1634 #define HCR_TWI       (1ULL << 13)
1635 #define HCR_TWE       (1ULL << 14)
1636 #define HCR_TID0      (1ULL << 15)
1637 #define HCR_TID1      (1ULL << 16)
1638 #define HCR_TID2      (1ULL << 17)
1639 #define HCR_TID3      (1ULL << 18)
1640 #define HCR_TSC       (1ULL << 19)
1641 #define HCR_TIDCP     (1ULL << 20)
1642 #define HCR_TACR      (1ULL << 21)
1643 #define HCR_TSW       (1ULL << 22)
1644 #define HCR_TPCP      (1ULL << 23)
1645 #define HCR_TPU       (1ULL << 24)
1646 #define HCR_TTLB      (1ULL << 25)
1647 #define HCR_TVM       (1ULL << 26)
1648 #define HCR_TGE       (1ULL << 27)
1649 #define HCR_TDZ       (1ULL << 28)
1650 #define HCR_HCD       (1ULL << 29)
1651 #define HCR_TRVM      (1ULL << 30)
1652 #define HCR_RW        (1ULL << 31)
1653 #define HCR_CD        (1ULL << 32)
1654 #define HCR_ID        (1ULL << 33)
1655 #define HCR_E2H       (1ULL << 34)
1656 #define HCR_TLOR      (1ULL << 35)
1657 #define HCR_TERR      (1ULL << 36)
1658 #define HCR_TEA       (1ULL << 37)
1659 #define HCR_MIOCNCE   (1ULL << 38)
1660 #define HCR_TME       (1ULL << 39)
1661 #define HCR_APK       (1ULL << 40)
1662 #define HCR_API       (1ULL << 41)
1663 #define HCR_NV        (1ULL << 42)
1664 #define HCR_NV1       (1ULL << 43)
1665 #define HCR_AT        (1ULL << 44)
1666 #define HCR_NV2       (1ULL << 45)
1667 #define HCR_FWB       (1ULL << 46)
1668 #define HCR_FIEN      (1ULL << 47)
1669 #define HCR_GPF       (1ULL << 48)
1670 #define HCR_TID4      (1ULL << 49)
1671 #define HCR_TICAB     (1ULL << 50)
1672 #define HCR_AMVOFFEN  (1ULL << 51)
1673 #define HCR_TOCU      (1ULL << 52)
1674 #define HCR_ENSCXT    (1ULL << 53)
1675 #define HCR_TTLBIS    (1ULL << 54)
1676 #define HCR_TTLBOS    (1ULL << 55)
1677 #define HCR_ATA       (1ULL << 56)
1678 #define HCR_DCT       (1ULL << 57)
1679 #define HCR_TID5      (1ULL << 58)
1680 #define HCR_TWEDEN    (1ULL << 59)
1681 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1682 
1683 #define SCR_NS                (1ULL << 0)
1684 #define SCR_IRQ               (1ULL << 1)
1685 #define SCR_FIQ               (1ULL << 2)
1686 #define SCR_EA                (1ULL << 3)
1687 #define SCR_FW                (1ULL << 4)
1688 #define SCR_AW                (1ULL << 5)
1689 #define SCR_NET               (1ULL << 6)
1690 #define SCR_SMD               (1ULL << 7)
1691 #define SCR_HCE               (1ULL << 8)
1692 #define SCR_SIF               (1ULL << 9)
1693 #define SCR_RW                (1ULL << 10)
1694 #define SCR_ST                (1ULL << 11)
1695 #define SCR_TWI               (1ULL << 12)
1696 #define SCR_TWE               (1ULL << 13)
1697 #define SCR_TLOR              (1ULL << 14)
1698 #define SCR_TERR              (1ULL << 15)
1699 #define SCR_APK               (1ULL << 16)
1700 #define SCR_API               (1ULL << 17)
1701 #define SCR_EEL2              (1ULL << 18)
1702 #define SCR_EASE              (1ULL << 19)
1703 #define SCR_NMEA              (1ULL << 20)
1704 #define SCR_FIEN              (1ULL << 21)
1705 #define SCR_ENSCXT            (1ULL << 25)
1706 #define SCR_ATA               (1ULL << 26)
1707 #define SCR_FGTEN             (1ULL << 27)
1708 #define SCR_ECVEN             (1ULL << 28)
1709 #define SCR_TWEDEN            (1ULL << 29)
1710 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1711 #define SCR_TME               (1ULL << 34)
1712 #define SCR_AMVOFFEN          (1ULL << 35)
1713 #define SCR_ENAS0             (1ULL << 36)
1714 #define SCR_ADEN              (1ULL << 37)
1715 #define SCR_HXEN              (1ULL << 38)
1716 #define SCR_TRNDR             (1ULL << 40)
1717 #define SCR_ENTP2             (1ULL << 41)
1718 #define SCR_GPF               (1ULL << 48)
1719 #define SCR_NSE               (1ULL << 62)
1720 
1721 /* Return the current FPSCR value.  */
1722 uint32_t vfp_get_fpscr(CPUARMState *env);
1723 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1724 
1725 /*
1726  * FPCR, Floating Point Control Register
1727  * FPSR, Floating Point Status Register
1728  *
1729  * For A64 floating point control and status bits are stored in
1730  * two logically distinct registers, FPCR and FPSR. We store these
1731  * in QEMU in vfp.fpcr and vfp.fpsr.
1732  * For A32 there was only one register, FPSCR. The bits are arranged
1733  * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1734  * so we can use appropriate masking to handle FPSCR reads and writes.
1735  * Note that the FPCR has some bits which are not visible in the
1736  * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1737  */
1738 
1739 /* FPCR bits */
1740 #define FPCR_FIZ    (1 << 0)    /* Flush Inputs to Zero (FEAT_AFP) */
1741 #define FPCR_AH     (1 << 1)    /* Alternate Handling (FEAT_AFP) */
1742 #define FPCR_NEP    (1 << 2)    /* SIMD scalar ops preserve elts (FEAT_AFP) */
1743 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1744 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1745 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1746 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1747 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1748 #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1749 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1750 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1751 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1752 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1753 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1754 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1755 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1756 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1757 
1758 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1759 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1760 #define FPCR_LTPSIZE_LENGTH 3
1761 
1762 /* Cumulative exception trap enable bits */
1763 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1764 
1765 /* FPSR bits */
1766 #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1767 #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1768 #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1769 #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1770 #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1771 #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1772 #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1773 #define FPSR_V      (1 << 28)   /* FP overflow flag */
1774 #define FPSR_C      (1 << 29)   /* FP carry flag */
1775 #define FPSR_Z      (1 << 30)   /* FP zero flag */
1776 #define FPSR_N      (1 << 31)   /* FP negative flag */
1777 
1778 /* Cumulative exception status bits */
1779 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1780 
1781 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1782 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1783 
1784 /* A32 FPSCR bits which architecturally map to FPSR bits */
1785 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1786 /* A32 FPSCR bits which architecturally map to FPCR bits */
1787 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1788                          FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1789                          FPCR_FZ | FPCR_DN | FPCR_AHP)
1790 /* These masks don't overlap: each bit lives in only one place */
1791 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1792 
1793 /**
1794  * vfp_get_fpsr: read the AArch64 FPSR
1795  * @env: CPU context
1796  *
1797  * Return the current AArch64 FPSR value
1798  */
1799 uint32_t vfp_get_fpsr(CPUARMState *env);
1800 
1801 /**
1802  * vfp_get_fpcr: read the AArch64 FPCR
1803  * @env: CPU context
1804  *
1805  * Return the current AArch64 FPCR value
1806  */
1807 uint32_t vfp_get_fpcr(CPUARMState *env);
1808 
1809 /**
1810  * vfp_set_fpsr: write the AArch64 FPSR
1811  * @env: CPU context
1812  * @value: new value
1813  */
1814 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1815 
1816 /**
1817  * vfp_set_fpcr: write the AArch64 FPCR
1818  * @env: CPU context
1819  * @value: new value
1820  */
1821 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1822 
1823 enum arm_cpu_mode {
1824   ARM_CPU_MODE_USR = 0x10,
1825   ARM_CPU_MODE_FIQ = 0x11,
1826   ARM_CPU_MODE_IRQ = 0x12,
1827   ARM_CPU_MODE_SVC = 0x13,
1828   ARM_CPU_MODE_MON = 0x16,
1829   ARM_CPU_MODE_ABT = 0x17,
1830   ARM_CPU_MODE_HYP = 0x1a,
1831   ARM_CPU_MODE_UND = 0x1b,
1832   ARM_CPU_MODE_SYS = 0x1f
1833 };
1834 
1835 /* VFP system registers.  */
1836 #define ARM_VFP_FPSID   0
1837 #define ARM_VFP_FPSCR   1
1838 #define ARM_VFP_MVFR2   5
1839 #define ARM_VFP_MVFR1   6
1840 #define ARM_VFP_MVFR0   7
1841 #define ARM_VFP_FPEXC   8
1842 #define ARM_VFP_FPINST  9
1843 #define ARM_VFP_FPINST2 10
1844 /* These ones are M-profile only */
1845 #define ARM_VFP_FPSCR_NZCVQC 2
1846 #define ARM_VFP_VPR 12
1847 #define ARM_VFP_P0 13
1848 #define ARM_VFP_FPCXT_NS 14
1849 #define ARM_VFP_FPCXT_S 15
1850 
1851 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1852 #define QEMU_VFP_FPSCR_NZCV 0xffff
1853 
1854 /* iwMMXt coprocessor control registers.  */
1855 #define ARM_IWMMXT_wCID  0
1856 #define ARM_IWMMXT_wCon  1
1857 #define ARM_IWMMXT_wCSSF 2
1858 #define ARM_IWMMXT_wCASF 3
1859 #define ARM_IWMMXT_wCGR0 8
1860 #define ARM_IWMMXT_wCGR1 9
1861 #define ARM_IWMMXT_wCGR2 10
1862 #define ARM_IWMMXT_wCGR3 11
1863 
1864 /* V7M CCR bits */
1865 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1866 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1867 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1868 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1869 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1870 FIELD(V7M_CCR, STKALIGN, 9, 1)
1871 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1872 FIELD(V7M_CCR, DC, 16, 1)
1873 FIELD(V7M_CCR, IC, 17, 1)
1874 FIELD(V7M_CCR, BP, 18, 1)
1875 FIELD(V7M_CCR, LOB, 19, 1)
1876 FIELD(V7M_CCR, TRD, 20, 1)
1877 
1878 /* V7M SCR bits */
1879 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1880 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1881 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1882 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1883 
1884 /* V7M AIRCR bits */
1885 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1886 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1887 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1888 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1889 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1890 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1891 FIELD(V7M_AIRCR, PRIS, 14, 1)
1892 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1893 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1894 
1895 /* V7M CFSR bits for MMFSR */
1896 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1897 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1898 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1899 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1900 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1901 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1902 
1903 /* V7M CFSR bits for BFSR */
1904 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1905 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1906 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1907 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1908 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1909 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1910 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1911 
1912 /* V7M CFSR bits for UFSR */
1913 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1914 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1915 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1916 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1917 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1918 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1919 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1920 
1921 /* V7M CFSR bit masks covering all of the subregister bits */
1922 FIELD(V7M_CFSR, MMFSR, 0, 8)
1923 FIELD(V7M_CFSR, BFSR, 8, 8)
1924 FIELD(V7M_CFSR, UFSR, 16, 16)
1925 
1926 /* V7M HFSR bits */
1927 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1928 FIELD(V7M_HFSR, FORCED, 30, 1)
1929 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1930 
1931 /* V7M DFSR bits */
1932 FIELD(V7M_DFSR, HALTED, 0, 1)
1933 FIELD(V7M_DFSR, BKPT, 1, 1)
1934 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1935 FIELD(V7M_DFSR, VCATCH, 3, 1)
1936 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1937 
1938 /* V7M SFSR bits */
1939 FIELD(V7M_SFSR, INVEP, 0, 1)
1940 FIELD(V7M_SFSR, INVIS, 1, 1)
1941 FIELD(V7M_SFSR, INVER, 2, 1)
1942 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1943 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1944 FIELD(V7M_SFSR, LSPERR, 5, 1)
1945 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1946 FIELD(V7M_SFSR, LSERR, 7, 1)
1947 
1948 /* v7M MPU_CTRL bits */
1949 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1950 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1951 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1952 
1953 /* v7M CLIDR bits */
1954 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1955 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1956 FIELD(V7M_CLIDR, LOC, 24, 3)
1957 FIELD(V7M_CLIDR, LOUU, 27, 3)
1958 FIELD(V7M_CLIDR, ICB, 30, 2)
1959 
1960 FIELD(V7M_CSSELR, IND, 0, 1)
1961 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1962 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1963  * define a mask for this and check that it doesn't permit running off
1964  * the end of the array.
1965  */
1966 FIELD(V7M_CSSELR, INDEX, 0, 4)
1967 
1968 /* v7M FPCCR bits */
1969 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1970 FIELD(V7M_FPCCR, USER, 1, 1)
1971 FIELD(V7M_FPCCR, S, 2, 1)
1972 FIELD(V7M_FPCCR, THREAD, 3, 1)
1973 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1974 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1975 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1976 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1977 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1978 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1979 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1980 FIELD(V7M_FPCCR, RES0, 11, 15)
1981 FIELD(V7M_FPCCR, TS, 26, 1)
1982 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1983 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1984 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1985 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1986 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1987 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1988 #define R_V7M_FPCCR_BANKED_MASK                 \
1989     (R_V7M_FPCCR_LSPACT_MASK |                  \
1990      R_V7M_FPCCR_USER_MASK |                    \
1991      R_V7M_FPCCR_THREAD_MASK |                  \
1992      R_V7M_FPCCR_MMRDY_MASK |                   \
1993      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1994      R_V7M_FPCCR_UFRDY_MASK |                   \
1995      R_V7M_FPCCR_ASPEN_MASK)
1996 
1997 /* v7M VPR bits */
1998 FIELD(V7M_VPR, P0, 0, 16)
1999 FIELD(V7M_VPR, MASK01, 16, 4)
2000 FIELD(V7M_VPR, MASK23, 20, 4)
2001 
2002 /*
2003  * System register ID fields.
2004  */
2005 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2006 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2007 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2008 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2009 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2010 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2011 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2012 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2013 FIELD(CLIDR_EL1, LOC, 24, 3)
2014 FIELD(CLIDR_EL1, LOUU, 27, 3)
2015 FIELD(CLIDR_EL1, ICB, 30, 3)
2016 
2017 /* When FEAT_CCIDX is implemented */
2018 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2019 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2020 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2021 
2022 /* When FEAT_CCIDX is not implemented */
2023 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2024 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2025 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2026 
2027 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2028 FIELD(CTR_EL0,  L1IP, 14, 2)
2029 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2030 FIELD(CTR_EL0,  ERG, 20, 4)
2031 FIELD(CTR_EL0,  CWG, 24, 4)
2032 FIELD(CTR_EL0,  IDC, 28, 1)
2033 FIELD(CTR_EL0,  DIC, 29, 1)
2034 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2035 
2036 FIELD(MIDR_EL1, REVISION, 0, 4)
2037 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2038 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2039 FIELD(MIDR_EL1, VARIANT, 20, 4)
2040 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2041 
2042 FIELD(ID_ISAR0, SWAP, 0, 4)
2043 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2044 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2045 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2046 FIELD(ID_ISAR0, COPROC, 16, 4)
2047 FIELD(ID_ISAR0, DEBUG, 20, 4)
2048 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2049 
2050 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2051 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2052 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2053 FIELD(ID_ISAR1, EXTEND, 12, 4)
2054 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2055 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2056 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2057 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2058 
2059 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2060 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2061 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2062 FIELD(ID_ISAR2, MULT, 12, 4)
2063 FIELD(ID_ISAR2, MULTS, 16, 4)
2064 FIELD(ID_ISAR2, MULTU, 20, 4)
2065 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2066 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2067 
2068 FIELD(ID_ISAR3, SATURATE, 0, 4)
2069 FIELD(ID_ISAR3, SIMD, 4, 4)
2070 FIELD(ID_ISAR3, SVC, 8, 4)
2071 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2072 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2073 FIELD(ID_ISAR3, T32COPY, 20, 4)
2074 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2075 FIELD(ID_ISAR3, T32EE, 28, 4)
2076 
2077 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2078 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2079 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2080 FIELD(ID_ISAR4, SMC, 12, 4)
2081 FIELD(ID_ISAR4, BARRIER, 16, 4)
2082 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2083 FIELD(ID_ISAR4, PSR_M, 24, 4)
2084 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2085 
2086 FIELD(ID_ISAR5, SEVL, 0, 4)
2087 FIELD(ID_ISAR5, AES, 4, 4)
2088 FIELD(ID_ISAR5, SHA1, 8, 4)
2089 FIELD(ID_ISAR5, SHA2, 12, 4)
2090 FIELD(ID_ISAR5, CRC32, 16, 4)
2091 FIELD(ID_ISAR5, RDM, 24, 4)
2092 FIELD(ID_ISAR5, VCMA, 28, 4)
2093 
2094 FIELD(ID_ISAR6, JSCVT, 0, 4)
2095 FIELD(ID_ISAR6, DP, 4, 4)
2096 FIELD(ID_ISAR6, FHM, 8, 4)
2097 FIELD(ID_ISAR6, SB, 12, 4)
2098 FIELD(ID_ISAR6, SPECRES, 16, 4)
2099 FIELD(ID_ISAR6, BF16, 20, 4)
2100 FIELD(ID_ISAR6, I8MM, 24, 4)
2101 
2102 FIELD(ID_MMFR0, VMSA, 0, 4)
2103 FIELD(ID_MMFR0, PMSA, 4, 4)
2104 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2105 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2106 FIELD(ID_MMFR0, TCM, 16, 4)
2107 FIELD(ID_MMFR0, AUXREG, 20, 4)
2108 FIELD(ID_MMFR0, FCSE, 24, 4)
2109 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2110 
2111 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2112 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2113 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2114 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2115 FIELD(ID_MMFR1, L1HVD, 16, 4)
2116 FIELD(ID_MMFR1, L1UNI, 20, 4)
2117 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2118 FIELD(ID_MMFR1, BPRED, 28, 4)
2119 
2120 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2121 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2122 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2123 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2124 FIELD(ID_MMFR2, UNITLB, 16, 4)
2125 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2126 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2127 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2128 
2129 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2130 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2131 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2132 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2133 FIELD(ID_MMFR3, PAN, 16, 4)
2134 FIELD(ID_MMFR3, COHWALK, 20, 4)
2135 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2136 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2137 
2138 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2139 FIELD(ID_MMFR4, AC2, 4, 4)
2140 FIELD(ID_MMFR4, XNX, 8, 4)
2141 FIELD(ID_MMFR4, CNP, 12, 4)
2142 FIELD(ID_MMFR4, HPDS, 16, 4)
2143 FIELD(ID_MMFR4, LSM, 20, 4)
2144 FIELD(ID_MMFR4, CCIDX, 24, 4)
2145 FIELD(ID_MMFR4, EVT, 28, 4)
2146 
2147 FIELD(ID_MMFR5, ETS, 0, 4)
2148 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2149 
2150 FIELD(ID_PFR0, STATE0, 0, 4)
2151 FIELD(ID_PFR0, STATE1, 4, 4)
2152 FIELD(ID_PFR0, STATE2, 8, 4)
2153 FIELD(ID_PFR0, STATE3, 12, 4)
2154 FIELD(ID_PFR0, CSV2, 16, 4)
2155 FIELD(ID_PFR0, AMU, 20, 4)
2156 FIELD(ID_PFR0, DIT, 24, 4)
2157 FIELD(ID_PFR0, RAS, 28, 4)
2158 
2159 FIELD(ID_PFR1, PROGMOD, 0, 4)
2160 FIELD(ID_PFR1, SECURITY, 4, 4)
2161 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2162 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2163 FIELD(ID_PFR1, GENTIMER, 16, 4)
2164 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2165 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2166 FIELD(ID_PFR1, GIC, 28, 4)
2167 
2168 FIELD(ID_PFR2, CSV3, 0, 4)
2169 FIELD(ID_PFR2, SSBS, 4, 4)
2170 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2171 
2172 FIELD(ID_AA64ISAR0, AES, 4, 4)
2173 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2174 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2175 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2176 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2177 FIELD(ID_AA64ISAR0, TME, 24, 4)
2178 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2179 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2180 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2181 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2182 FIELD(ID_AA64ISAR0, DP, 44, 4)
2183 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2184 FIELD(ID_AA64ISAR0, TS, 52, 4)
2185 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2186 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2187 
2188 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2189 FIELD(ID_AA64ISAR1, APA, 4, 4)
2190 FIELD(ID_AA64ISAR1, API, 8, 4)
2191 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2192 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2193 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2194 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2195 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2196 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2197 FIELD(ID_AA64ISAR1, SB, 36, 4)
2198 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2199 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2200 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2201 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2202 FIELD(ID_AA64ISAR1, XS, 56, 4)
2203 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2204 
2205 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2206 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2207 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2208 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2209 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2210 FIELD(ID_AA64ISAR2, BC, 20, 4)
2211 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2212 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2213 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2214 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2215 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2216 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2217 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2218 FIELD(ID_AA64ISAR2, LUT, 56, 4)
2219 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2220 
2221 FIELD(ID_AA64PFR0, EL0, 0, 4)
2222 FIELD(ID_AA64PFR0, EL1, 4, 4)
2223 FIELD(ID_AA64PFR0, EL2, 8, 4)
2224 FIELD(ID_AA64PFR0, EL3, 12, 4)
2225 FIELD(ID_AA64PFR0, FP, 16, 4)
2226 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2227 FIELD(ID_AA64PFR0, GIC, 24, 4)
2228 FIELD(ID_AA64PFR0, RAS, 28, 4)
2229 FIELD(ID_AA64PFR0, SVE, 32, 4)
2230 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2231 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2232 FIELD(ID_AA64PFR0, AMU, 44, 4)
2233 FIELD(ID_AA64PFR0, DIT, 48, 4)
2234 FIELD(ID_AA64PFR0, RME, 52, 4)
2235 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2236 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2237 
2238 FIELD(ID_AA64PFR1, BT, 0, 4)
2239 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2240 FIELD(ID_AA64PFR1, MTE, 8, 4)
2241 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2242 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2243 FIELD(ID_AA64PFR1, SME, 24, 4)
2244 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2245 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2246 FIELD(ID_AA64PFR1, NMI, 36, 4)
2247 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2248 FIELD(ID_AA64PFR1, GCS, 44, 4)
2249 FIELD(ID_AA64PFR1, THE, 48, 4)
2250 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2251 FIELD(ID_AA64PFR1, DF2, 56, 4)
2252 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2253 
2254 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2255 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2256 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2257 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2258 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2259 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2260 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2261 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2262 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2263 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2264 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2265 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2266 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2267 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2268 
2269 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2270 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2271 FIELD(ID_AA64MMFR1, VH, 8, 4)
2272 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2273 FIELD(ID_AA64MMFR1, LO, 16, 4)
2274 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2275 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2276 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2277 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2278 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2279 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2280 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2281 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2282 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2283 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2284 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2285 
2286 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2287 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2288 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2289 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2290 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2291 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2292 FIELD(ID_AA64MMFR2, NV, 24, 4)
2293 FIELD(ID_AA64MMFR2, ST, 28, 4)
2294 FIELD(ID_AA64MMFR2, AT, 32, 4)
2295 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2296 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2297 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2298 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2299 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2300 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2301 
2302 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2303 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2304 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2305 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2306 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2307 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2308 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2309 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2310 FIELD(ID_AA64MMFR3, D128, 32, 4)
2311 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2312 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2313 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2314 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2315 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2316 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2317 
2318 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2319 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2320 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2321 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2322 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2323 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2324 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2325 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2326 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2327 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2328 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2329 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2330 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2331 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2332 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2333 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2334 
2335 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2336 FIELD(ID_AA64ZFR0, AES, 4, 4)
2337 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2338 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2339 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2340 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2341 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2342 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2343 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2344 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2345 
2346 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2347 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2348 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2349 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2350 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2351 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2352 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2353 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2354 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2355 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2356 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2357 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2358 
2359 FIELD(ID_DFR0, COPDBG, 0, 4)
2360 FIELD(ID_DFR0, COPSDBG, 4, 4)
2361 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2362 FIELD(ID_DFR0, COPTRC, 12, 4)
2363 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2364 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2365 FIELD(ID_DFR0, PERFMON, 24, 4)
2366 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2367 
2368 FIELD(ID_DFR1, MTPMU, 0, 4)
2369 FIELD(ID_DFR1, HPMN0, 4, 4)
2370 
2371 FIELD(DBGDIDR, SE_IMP, 12, 1)
2372 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2373 FIELD(DBGDIDR, VERSION, 16, 4)
2374 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2375 FIELD(DBGDIDR, BRPS, 24, 4)
2376 FIELD(DBGDIDR, WRPS, 28, 4)
2377 
2378 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2379 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2380 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2381 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2382 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2383 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2384 FIELD(DBGDEVID, AUXREGS, 24, 4)
2385 FIELD(DBGDEVID, CIDMASK, 28, 4)
2386 
2387 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2388 
2389 FIELD(MVFR0, SIMDREG, 0, 4)
2390 FIELD(MVFR0, FPSP, 4, 4)
2391 FIELD(MVFR0, FPDP, 8, 4)
2392 FIELD(MVFR0, FPTRAP, 12, 4)
2393 FIELD(MVFR0, FPDIVIDE, 16, 4)
2394 FIELD(MVFR0, FPSQRT, 20, 4)
2395 FIELD(MVFR0, FPSHVEC, 24, 4)
2396 FIELD(MVFR0, FPROUND, 28, 4)
2397 
2398 FIELD(MVFR1, FPFTZ, 0, 4)
2399 FIELD(MVFR1, FPDNAN, 4, 4)
2400 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2401 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2402 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2403 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2404 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2405 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2406 FIELD(MVFR1, FPHP, 24, 4)
2407 FIELD(MVFR1, SIMDFMAC, 28, 4)
2408 
2409 FIELD(MVFR2, SIMDMISC, 0, 4)
2410 FIELD(MVFR2, FPMISC, 4, 4)
2411 
2412 FIELD(GPCCR, PPS, 0, 3)
2413 FIELD(GPCCR, IRGN, 8, 2)
2414 FIELD(GPCCR, ORGN, 10, 2)
2415 FIELD(GPCCR, SH, 12, 2)
2416 FIELD(GPCCR, PGS, 14, 2)
2417 FIELD(GPCCR, GPC, 16, 1)
2418 FIELD(GPCCR, GPCP, 17, 1)
2419 FIELD(GPCCR, L0GPTSZ, 20, 4)
2420 
2421 FIELD(MFAR, FPA, 12, 40)
2422 FIELD(MFAR, NSE, 62, 1)
2423 FIELD(MFAR, NS, 63, 1)
2424 
2425 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2426 
2427 /* If adding a feature bit which corresponds to a Linux ELF
2428  * HWCAP bit, remember to update the feature-bit-to-hwcap
2429  * mapping in linux-user/elfload.c:get_elf_hwcap().
2430  */
2431 enum arm_features {
2432     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2433     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2434     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2435     ARM_FEATURE_V6,
2436     ARM_FEATURE_V6K,
2437     ARM_FEATURE_V7,
2438     ARM_FEATURE_THUMB2,
2439     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2440     ARM_FEATURE_NEON,
2441     ARM_FEATURE_M, /* Microcontroller profile.  */
2442     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2443     ARM_FEATURE_THUMB2EE,
2444     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2445     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2446     ARM_FEATURE_V4T,
2447     ARM_FEATURE_V5,
2448     ARM_FEATURE_STRONGARM,
2449     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2450     ARM_FEATURE_GENERIC_TIMER,
2451     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2452     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2453     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2454     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2455     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2456     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2457     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2458     ARM_FEATURE_V8,
2459     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2460     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2461     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2462     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2463     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2464     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2465     ARM_FEATURE_PMU, /* has PMU support */
2466     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2467     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2468     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2469     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2470     /*
2471      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2472      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2473      * compatibility and used only with CPU definitions that were already
2474      * in QEMU before we changed the default. It should not be set on any
2475      * CPU types added in future.
2476      */
2477     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2478 };
2479 
2480 static inline int arm_feature(CPUARMState *env, int feature)
2481 {
2482     return (env->features & (1ULL << feature)) != 0;
2483 }
2484 
2485 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2486 
2487 /*
2488  * ARM v9 security states.
2489  * The ordering of the enumeration corresponds to the low 2 bits
2490  * of the GPI value, and (except for Root) the concat of NSE:NS.
2491  */
2492 
2493 typedef enum ARMSecuritySpace {
2494     ARMSS_Secure     = 0,
2495     ARMSS_NonSecure  = 1,
2496     ARMSS_Root       = 2,
2497     ARMSS_Realm      = 3,
2498 } ARMSecuritySpace;
2499 
2500 /* Return true if @space is secure, in the pre-v9 sense. */
2501 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2502 {
2503     return space == ARMSS_Secure || space == ARMSS_Root;
2504 }
2505 
2506 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2507 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2508 {
2509     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2510 }
2511 
2512 #if !defined(CONFIG_USER_ONLY)
2513 /**
2514  * arm_security_space_below_el3:
2515  * @env: cpu context
2516  *
2517  * Return the security space of exception levels below EL3, following
2518  * an exception return to those levels.  Unlike arm_security_space,
2519  * this doesn't care about the current EL.
2520  */
2521 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2522 
2523 /**
2524  * arm_is_secure_below_el3:
2525  * @env: cpu context
2526  *
2527  * Return true if exception levels below EL3 are in secure state,
2528  * or would be following an exception return to those levels.
2529  */
2530 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2531 {
2532     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2533     return ss == ARMSS_Secure;
2534 }
2535 
2536 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2537 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2538 {
2539     assert(!arm_feature(env, ARM_FEATURE_M));
2540     if (arm_feature(env, ARM_FEATURE_EL3)) {
2541         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2542             /* CPU currently in AArch64 state and EL3 */
2543             return true;
2544         } else if (!is_a64(env) &&
2545                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2546             /* CPU currently in AArch32 state and monitor mode */
2547             return true;
2548         }
2549     }
2550     return false;
2551 }
2552 
2553 /**
2554  * arm_security_space:
2555  * @env: cpu context
2556  *
2557  * Return the current security space of the cpu.
2558  */
2559 ARMSecuritySpace arm_security_space(CPUARMState *env);
2560 
2561 /**
2562  * arm_is_secure:
2563  * @env: cpu context
2564  *
2565  * Return true if the processor is in secure state.
2566  */
2567 static inline bool arm_is_secure(CPUARMState *env)
2568 {
2569     return arm_space_is_secure(arm_security_space(env));
2570 }
2571 
2572 /*
2573  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2574  * This corresponds to the pseudocode EL2Enabled().
2575  */
2576 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2577                                                ARMSecuritySpace space)
2578 {
2579     assert(space != ARMSS_Root);
2580     return arm_feature(env, ARM_FEATURE_EL2)
2581            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2582 }
2583 
2584 static inline bool arm_is_el2_enabled(CPUARMState *env)
2585 {
2586     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2587 }
2588 
2589 #else
2590 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2591 {
2592     return ARMSS_NonSecure;
2593 }
2594 
2595 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2596 {
2597     return false;
2598 }
2599 
2600 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2601 {
2602     return false;
2603 }
2604 
2605 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2606 {
2607     return ARMSS_NonSecure;
2608 }
2609 
2610 static inline bool arm_is_secure(CPUARMState *env)
2611 {
2612     return false;
2613 }
2614 
2615 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2616                                                ARMSecuritySpace space)
2617 {
2618     return false;
2619 }
2620 
2621 static inline bool arm_is_el2_enabled(CPUARMState *env)
2622 {
2623     return false;
2624 }
2625 #endif
2626 
2627 /**
2628  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2629  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2630  * "for all purposes other than a direct read or write access of HCR_EL2."
2631  * Not included here is HCR_RW.
2632  */
2633 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2634 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2635 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2636 
2637 /*
2638  * Function for determining whether guest cp register reads and writes should
2639  * access the secure or non-secure bank of a cp register.  When EL3 is
2640  * operating in AArch32 state, the NS-bit determines whether the secure
2641  * instance of a cp register should be used. When EL3 is AArch64 (or if
2642  * it doesn't exist at all) then there is no register banking, and all
2643  * accesses are to the non-secure version.
2644  */
2645 bool access_secure_reg(CPUARMState *env);
2646 
2647 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2648                                  uint32_t cur_el, bool secure);
2649 
2650 /* Return the highest implemented Exception Level */
2651 static inline int arm_highest_el(CPUARMState *env)
2652 {
2653     if (arm_feature(env, ARM_FEATURE_EL3)) {
2654         return 3;
2655     }
2656     if (arm_feature(env, ARM_FEATURE_EL2)) {
2657         return 2;
2658     }
2659     return 1;
2660 }
2661 
2662 /* Return true if a v7M CPU is in Handler mode */
2663 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2664 {
2665     return env->v7m.exception != 0;
2666 }
2667 
2668 /**
2669  * write_list_to_cpustate
2670  * @cpu: ARMCPU
2671  *
2672  * For each register listed in the ARMCPU cpreg_indexes list, write
2673  * its value from the cpreg_values list into the ARMCPUState structure.
2674  * This updates TCG's working data structures from KVM data or
2675  * from incoming migration state.
2676  *
2677  * Returns: true if all register values were updated correctly,
2678  * false if some register was unknown or could not be written.
2679  * Note that we do not stop early on failure -- we will attempt
2680  * writing all registers in the list.
2681  */
2682 bool write_list_to_cpustate(ARMCPU *cpu);
2683 
2684 /**
2685  * write_cpustate_to_list:
2686  * @cpu: ARMCPU
2687  * @kvm_sync: true if this is for syncing back to KVM
2688  *
2689  * For each register listed in the ARMCPU cpreg_indexes list, write
2690  * its value from the ARMCPUState structure into the cpreg_values list.
2691  * This is used to copy info from TCG's working data structures into
2692  * KVM or for outbound migration.
2693  *
2694  * @kvm_sync is true if we are doing this in order to sync the
2695  * register state back to KVM. In this case we will only update
2696  * values in the list if the previous list->cpustate sync actually
2697  * successfully wrote the CPU state. Otherwise we will keep the value
2698  * that is in the list.
2699  *
2700  * Returns: true if all register values were read correctly,
2701  * false if some register was unknown or could not be read.
2702  * Note that we do not stop early on failure -- we will attempt
2703  * reading all registers in the list.
2704  */
2705 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2706 
2707 #define ARM_CPUID_TI915T      0x54029152
2708 #define ARM_CPUID_TI925T      0x54029252
2709 
2710 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2711 
2712 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2713 
2714 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2715  *
2716  * If EL3 is 64-bit:
2717  *  + NonSecure EL1 & 0 stage 1
2718  *  + NonSecure EL1 & 0 stage 2
2719  *  + NonSecure EL2
2720  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2721  *  + Secure EL1 & 0 stage 1
2722  *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2723  *  + Secure EL2 (FEAT_SEL2)
2724  *  + Secure EL2 & 0 (FEAT_SEL2)
2725  *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2726  *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2727  *  + Realm EL2 (FEAT_RME)
2728  *  + EL3
2729  * If EL3 is 32-bit:
2730  *  + NonSecure PL1 & 0 stage 1
2731  *  + NonSecure PL1 & 0 stage 2
2732  *  + NonSecure PL2
2733  *  + Secure PL1 & 0
2734  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2735  *
2736  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2737  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2738  *     because they may differ in access permissions even if the VA->PA map is
2739  *     the same
2740  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2741  *     translation, which means that we have one mmu_idx that deals with two
2742  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2743  *     architecturally permitted]
2744  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2745  *     handling via the TLB. The only way to do a stage 1 translation without
2746  *     the immediate stage 2 translation is via the ATS or AT system insns,
2747  *     which can be slow-pathed and always do a page table walk.
2748  *     The only use of stage 2 translations is either as part of an s1+2
2749  *     lookup or when loading the descriptors during a stage 1 page table walk,
2750  *     and in both those cases we don't use the TLB.
2751  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2752  *     translation regimes, because they map reasonably well to each other
2753  *     and they can't both be active at the same time.
2754  *  5. we want to be able to use the TLB for accesses done as part of a
2755  *     stage1 page table walk, rather than having to walk the stage2 page
2756  *     table over and over.
2757  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2758  *     Never (PAN) bit within PSTATE.
2759  *  7. we fold together most secure and non-secure regimes for A-profile,
2760  *     because there are no banked system registers for aarch64, so the
2761  *     process of switching between secure and non-secure is
2762  *     already heavyweight.
2763  *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2764  *     because both are in use simultaneously for Secure EL2.
2765  *
2766  * This gives us the following list of cases:
2767  *
2768  * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2769  * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2770  * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2771  * EL0 EL2&0
2772  * EL2 EL2&0
2773  * EL2 EL2&0 +PAN
2774  * EL2 (aka NS PL2)
2775  * EL3 (aka AArch32 S PL1 PL1&0)
2776  * AArch32 S PL0 PL1&0 (we call this EL30_0)
2777  * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2778  * Stage2 Secure
2779  * Stage2 NonSecure
2780  * plus one TLB per Physical address space: S, NS, Realm, Root
2781  *
2782  * for a total of 16 different mmu_idx.
2783  *
2784  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2785  * as A profile. They only need to distinguish EL0 and EL1 (and
2786  * EL2 for cores like the Cortex-R52).
2787  *
2788  * M profile CPUs are rather different as they do not have a true MMU.
2789  * They have the following different MMU indexes:
2790  *  User
2791  *  Privileged
2792  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2793  *  Privileged, execution priority negative (ditto)
2794  * If the CPU supports the v8M Security Extension then there are also:
2795  *  Secure User
2796  *  Secure Privileged
2797  *  Secure User, execution priority negative
2798  *  Secure Privileged, execution priority negative
2799  *
2800  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2801  * are not quite the same -- different CPU types (most notably M profile
2802  * vs A/R profile) would like to use MMU indexes with different semantics,
2803  * but since we don't ever need to use all of those in a single CPU we
2804  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2805  * modes + total number of M profile MMU modes". The lower bits of
2806  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2807  * the same for any particular CPU.
2808  * Variables of type ARMMUIdx are always full values, and the core
2809  * index values are in variables of type 'int'.
2810  *
2811  * Our enumeration includes at the end some entries which are not "true"
2812  * mmu_idx values in that they don't have corresponding TLBs and are only
2813  * valid for doing slow path page table walks.
2814  *
2815  * The constant names here are patterned after the general style of the names
2816  * of the AT/ATS operations.
2817  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2818  * For M profile we arrange them to have a bit for priv, a bit for negpri
2819  * and a bit for secure.
2820  */
2821 #define ARM_MMU_IDX_A     0x10  /* A profile */
2822 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2823 #define ARM_MMU_IDX_M     0x40  /* M profile */
2824 
2825 /* Meanings of the bits for M profile mmu idx values */
2826 #define ARM_MMU_IDX_M_PRIV   0x1
2827 #define ARM_MMU_IDX_M_NEGPRI 0x2
2828 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2829 
2830 #define ARM_MMU_IDX_TYPE_MASK \
2831     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2832 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2833 
2834 typedef enum ARMMMUIdx {
2835     /*
2836      * A-profile.
2837      */
2838     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2839     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2840     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2841     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2842     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2843     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2844     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2845     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2846     ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2847     ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2848 
2849     /*
2850      * Used for second stage of an S12 page table walk, or for descriptor
2851      * loads during first stage of an S1 page table walk.  Note that both
2852      * are in use simultaneously for SecureEL2: the security state for
2853      * the S2 ptw is selected by the NS bit from the S1 ptw.
2854      */
2855     ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2856     ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2857 
2858     /* TLBs with 1-1 mapping to the physical address spaces. */
2859     ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2860     ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2861     ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2862     ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2863 
2864     /*
2865      * These are not allocated TLBs and are used only for AT system
2866      * instructions or for the first stage of an S12 page table walk.
2867      */
2868     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2869     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2870     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2871 
2872     /*
2873      * M-profile.
2874      */
2875     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2876     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2877     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2878     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2879     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2880     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2881     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2882     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2883 } ARMMMUIdx;
2884 
2885 /*
2886  * Bit macros for the core-mmu-index values for each index,
2887  * for use when calling tlb_flush_by_mmuidx() and friends.
2888  */
2889 #define TO_CORE_BIT(NAME) \
2890     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2891 
2892 typedef enum ARMMMUIdxBit {
2893     TO_CORE_BIT(E10_0),
2894     TO_CORE_BIT(E20_0),
2895     TO_CORE_BIT(E10_1),
2896     TO_CORE_BIT(E10_1_PAN),
2897     TO_CORE_BIT(E2),
2898     TO_CORE_BIT(E20_2),
2899     TO_CORE_BIT(E20_2_PAN),
2900     TO_CORE_BIT(E3),
2901     TO_CORE_BIT(E30_0),
2902     TO_CORE_BIT(E30_3_PAN),
2903     TO_CORE_BIT(Stage2),
2904     TO_CORE_BIT(Stage2_S),
2905 
2906     TO_CORE_BIT(MUser),
2907     TO_CORE_BIT(MPriv),
2908     TO_CORE_BIT(MUserNegPri),
2909     TO_CORE_BIT(MPrivNegPri),
2910     TO_CORE_BIT(MSUser),
2911     TO_CORE_BIT(MSPriv),
2912     TO_CORE_BIT(MSUserNegPri),
2913     TO_CORE_BIT(MSPrivNegPri),
2914 } ARMMMUIdxBit;
2915 
2916 #undef TO_CORE_BIT
2917 
2918 #define MMU_USER_IDX 0
2919 
2920 /* Indexes used when registering address spaces with cpu_address_space_init */
2921 typedef enum ARMASIdx {
2922     ARMASIdx_NS = 0,
2923     ARMASIdx_S = 1,
2924     ARMASIdx_TagNS = 2,
2925     ARMASIdx_TagS = 3,
2926 } ARMASIdx;
2927 
2928 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2929 {
2930     /* Assert the relative order of the physical mmu indexes. */
2931     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2932     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2933     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2934     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2935 
2936     return ARMMMUIdx_Phys_S + space;
2937 }
2938 
2939 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2940 {
2941     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2942     return idx - ARMMMUIdx_Phys_S;
2943 }
2944 
2945 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2946 {
2947     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2948      * CSSELR is RAZ/WI.
2949      */
2950     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2951 }
2952 
2953 static inline bool arm_sctlr_b(CPUARMState *env)
2954 {
2955     return
2956         /* We need not implement SCTLR.ITD in user-mode emulation, so
2957          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2958          * This lets people run BE32 binaries with "-cpu any".
2959          */
2960 #ifndef CONFIG_USER_ONLY
2961         !arm_feature(env, ARM_FEATURE_V7) &&
2962 #endif
2963         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2964 }
2965 
2966 uint64_t arm_sctlr(CPUARMState *env, int el);
2967 
2968 /*
2969  * We have more than 32-bits worth of state per TB, so we split the data
2970  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2971  * We collect these two parts in CPUARMTBFlags where they are named
2972  * flags and flags2 respectively.
2973  *
2974  * The flags that are shared between all execution modes, TBFLAG_ANY, are stored
2975  * in flags. The flags that are specific to a given mode are stored in flags2.
2976  * flags2 always has 64-bits, even though only 32-bits are used for A32 and M32.
2977  *
2978  * The bits for 32-bit A-profile and M-profile partially overlap:
2979  *
2980  *  31         23         11 10             0
2981  * +-------------+----------+----------------+
2982  * |             |          |   TBFLAG_A32   |
2983  * | TBFLAG_AM32 |          +-----+----------+
2984  * |             |                |TBFLAG_M32|
2985  * +-------------+----------------+----------+
2986  *  31         23                6 5        0
2987  *
2988  * Unless otherwise noted, these bits are cached in env->hflags.
2989  */
2990 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2991 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2992 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
2993 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2994 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
2995 /* Target EL if we take a floating-point-disabled exception */
2996 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
2997 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
2998 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
2999 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3000 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3001 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3002 
3003 /*
3004  * Bit usage when in AArch32 state, both A- and M-profile.
3005  */
3006 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3007 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3008 
3009 /*
3010  * Bit usage when in AArch32 state, for A-profile only.
3011  */
3012 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3013 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3014 /*
3015  * We store the bottom two bits of the CPAR as TB flags and handle
3016  * checks on the other bits at runtime. This shares the same bits as
3017  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3018  * Not cached, because VECLEN+VECSTRIDE are not cached.
3019  */
3020 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3021 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3022 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3023 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3024 /*
3025  * Indicates whether cp register reads and writes by guest code should access
3026  * the secure or nonsecure bank of banked registers; note that this is not
3027  * the same thing as the current security state of the processor!
3028  */
3029 FIELD(TBFLAG_A32, NS, 10, 1)
3030 /*
3031  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3032  * This requires an SME trap from AArch32 mode when using NEON.
3033  */
3034 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3035 
3036 /*
3037  * Bit usage when in AArch32 state, for M-profile only.
3038  */
3039 /* Handler (ie not Thread) mode */
3040 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3041 /* Whether we should generate stack-limit checks */
3042 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3043 /* Set if FPCCR.LSPACT is set */
3044 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3045 /* Set if we must create a new FP context */
3046 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3047 /* Set if FPCCR.S does not match current security state */
3048 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3049 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3050 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3051 /* Set if in secure mode */
3052 FIELD(TBFLAG_M32, SECURE, 6, 1)
3053 
3054 /*
3055  * Bit usage when in AArch64 state
3056  */
3057 FIELD(TBFLAG_A64, TBII, 0, 2)
3058 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3059 /* The current vector length, either NVL or SVL. */
3060 FIELD(TBFLAG_A64, VL, 4, 4)
3061 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3062 FIELD(TBFLAG_A64, BT, 9, 1)
3063 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3064 FIELD(TBFLAG_A64, TBID, 12, 2)
3065 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3066 FIELD(TBFLAG_A64, ATA, 15, 1)
3067 FIELD(TBFLAG_A64, TCMA, 16, 2)
3068 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3069 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3070 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3071 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3072 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3073 FIELD(TBFLAG_A64, SVL, 24, 4)
3074 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3075 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3076 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3077 FIELD(TBFLAG_A64, NAA, 30, 1)
3078 FIELD(TBFLAG_A64, ATA0, 31, 1)
3079 FIELD(TBFLAG_A64, NV, 32, 1)
3080 FIELD(TBFLAG_A64, NV1, 33, 1)
3081 FIELD(TBFLAG_A64, NV2, 34, 1)
3082 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3083 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3084 /* Set if FEAT_NV2 RAM accesses are big-endian */
3085 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3086 FIELD(TBFLAG_A64, AH, 37, 1)   /* FPCR.AH */
3087 FIELD(TBFLAG_A64, NEP, 38, 1)   /* FPCR.NEP */
3088 FIELD(TBFLAG_A64, ZT0EXC_EL, 39, 2)
3089 
3090 /*
3091  * Helpers for using the above. Note that only the A64 accessors use
3092  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3093  * word either is or might be 32 bits only.
3094  */
3095 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3096     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3097 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3098     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3099 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3100     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3101 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3102     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3103 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3104     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3105 
3106 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3107 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3108 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3109 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3110 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3111 
3112 /**
3113  * sve_vq
3114  * @env: the cpu context
3115  *
3116  * Return the VL cached within env->hflags, in units of quadwords.
3117  */
3118 static inline int sve_vq(CPUARMState *env)
3119 {
3120     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3121 }
3122 
3123 /**
3124  * sme_vq
3125  * @env: the cpu context
3126  *
3127  * Return the SVL cached within env->hflags, in units of quadwords.
3128  */
3129 static inline int sme_vq(CPUARMState *env)
3130 {
3131     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3132 }
3133 
3134 static inline bool bswap_code(bool sctlr_b)
3135 {
3136 #ifdef CONFIG_USER_ONLY
3137     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3138      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3139      * would also end up as a mixed-endian mode with BE code, LE data.
3140      */
3141     return TARGET_BIG_ENDIAN ^ sctlr_b;
3142 #else
3143     /* All code access in ARM is little endian, and there are no loaders
3144      * doing swaps that need to be reversed
3145      */
3146     return 0;
3147 #endif
3148 }
3149 
3150 enum {
3151     QEMU_PSCI_CONDUIT_DISABLED = 0,
3152     QEMU_PSCI_CONDUIT_SMC = 1,
3153     QEMU_PSCI_CONDUIT_HVC = 2,
3154 };
3155 
3156 #ifndef CONFIG_USER_ONLY
3157 /* Return the address space index to use for a memory access */
3158 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3159 {
3160     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3161 }
3162 
3163 /* Return the AddressSpace to use for a memory access
3164  * (which depends on whether the access is S or NS, and whether
3165  * the board gave us a separate AddressSpace for S accesses).
3166  */
3167 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3168 {
3169     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3170 }
3171 #endif
3172 
3173 /**
3174  * arm_register_pre_el_change_hook:
3175  * Register a hook function which will be called immediately before this
3176  * CPU changes exception level or mode. The hook function will be
3177  * passed a pointer to the ARMCPU and the opaque data pointer passed
3178  * to this function when the hook was registered.
3179  *
3180  * Note that if a pre-change hook is called, any registered post-change hooks
3181  * are guaranteed to subsequently be called.
3182  */
3183 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3184                                  void *opaque);
3185 /**
3186  * arm_register_el_change_hook:
3187  * Register a hook function which will be called immediately after this
3188  * CPU changes exception level or mode. The hook function will be
3189  * passed a pointer to the ARMCPU and the opaque data pointer passed
3190  * to this function when the hook was registered.
3191  *
3192  * Note that any registered hooks registered here are guaranteed to be called
3193  * if pre-change hooks have been.
3194  */
3195 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3196         *opaque);
3197 
3198 /**
3199  * arm_rebuild_hflags:
3200  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3201  */
3202 void arm_rebuild_hflags(CPUARMState *env);
3203 
3204 /**
3205  * aa32_vfp_dreg:
3206  * Return a pointer to the Dn register within env in 32-bit mode.
3207  */
3208 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3209 {
3210     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3211 }
3212 
3213 /**
3214  * aa32_vfp_qreg:
3215  * Return a pointer to the Qn register within env in 32-bit mode.
3216  */
3217 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3218 {
3219     return &env->vfp.zregs[regno].d[0];
3220 }
3221 
3222 /**
3223  * aa64_vfp_qreg:
3224  * Return a pointer to the Qn register within env in 64-bit mode.
3225  */
3226 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3227 {
3228     return &env->vfp.zregs[regno].d[0];
3229 }
3230 
3231 /* Shared between translate-sve.c and sve_helper.c.  */
3232 extern const uint64_t pred_esz_masks[5];
3233 
3234 /*
3235  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3236  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3237  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3238  */
3239 #define PAGE_BTI            PAGE_TARGET_1
3240 #define PAGE_MTE            PAGE_TARGET_2
3241 #define PAGE_TARGET_STICKY  PAGE_MTE
3242 
3243 /* We associate one allocation tag per 16 bytes, the minimum.  */
3244 #define LOG2_TAG_GRANULE 4
3245 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3246 
3247 #endif
3248